WO2012016544A1 - 具有外被动式冷却的方法及其装置 - Google Patents

具有外被动式冷却的方法及其装置 Download PDF

Info

Publication number
WO2012016544A1
WO2012016544A1 PCT/CN2011/078047 CN2011078047W WO2012016544A1 WO 2012016544 A1 WO2012016544 A1 WO 2012016544A1 CN 2011078047 W CN2011078047 W CN 2011078047W WO 2012016544 A1 WO2012016544 A1 WO 2012016544A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
air
cavity
exhaust
cooling device
Prior art date
Application number
PCT/CN2011/078047
Other languages
English (en)
French (fr)
Inventor
于向阳
Original Assignee
Yu Xiangyang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu Xiangyang filed Critical Yu Xiangyang
Publication of WO2012016544A1 publication Critical patent/WO2012016544A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the invention relates to the technical field of HVAC, and is a method and device with external passive cooling, which is suitable for use in various living, public buildings and industrial buildings, so as to effectively reduce the solar radiation heat of the room transparent enclosure structure. .
  • the cooling load of the air-conditioning equipment in summer is mainly composed of the cold load of the air-conditioned room, the cold load and the fresh air load that need to be eliminated by the heat production of the unit itself. According to different regions, different meteorological conditions, different equipment conditions, and different envelope structures, the proportion of cold load occupied by the three parts is different, but the cold load formed by the heat of the air-conditioned room is the main weight part. Caused full attention.
  • the total cooling load of the room consists of the following parts: 1. The amount of heat dissipation from personnel and indoor electrical equipment; 2. The cold load formed by the solar radiation of the window; 3. The wall, roof, etc. through heat conduction and convection The formed cold load; 4. The cold load formed by the infiltration of new wind outside the indoor area through the door and window.
  • the energy consumption of doors and windows is about 4 times that of the wall, 5 times of the roof, and 20 times of the ground, accounting for 40% to 50% of the total energy consumption of the building envelope. Therefore, enhancing the thermal insulation performance of doors and windows and reducing the energy consumption of doors and windows is an important part of improving the quality of indoor thermal environment and improving the energy-saving level of buildings.
  • the outer window has a significant influence on the air conditioning cooling load. Since the heat transfer coefficient of glass is much larger than that of non-transparent enclosures such as walls and roofs, the proportion of air-conditioning cooling load formed is much larger. According to statistics, the heat lost through the window accounts for 46% of the building energy consumption. The hot and cold load of the glass through the solar radiation accounts for about 20% to 30% of the air conditioning cooling load. Must be given full attention. According to the study, half of the cold load of global residential buildings and non-residential buildings is the heat load of solar radiation, and the solar radiation through the windows is the most important.
  • the window is the weak link of building energy conservation, the black hole of building energy consumption, and the main direction to control building energy consumption.
  • the solar radiation reaching the ground through the atmosphere includes direct radiation and scattered radiation, and the outer surface of the building envelope receives three scattered radiation from the air, namely sky-scattered radiation, ground-reflected radiation and atmospheric long-wave radiation.
  • Normally (incident angle ⁇ 60°) when sunlight hits the ordinary glass surface, 7.3% of the energy is reflected, it will not become the heat of the room; 79% directly enters the room through the glass, and all become the heat of the room; Another 13.7% is absorbed by the glass, which increases the glass temperature. Of the absorbed energy, 4.9% will be treated with long-wave heat radiation and convection.
  • the style is transmitted indoors, and the remaining 8.8% is also radiated outside by long-wave heat radiation and convection, and will not become the heat of the room. Therefore, the higher the reflectivity of the glass, the lower the transmittance and the absorptivity, and the less heat the sun gets.
  • shading facilities In order to effectively block solar radiation and reduce summer air conditioning load, the use of shading facilities is currently a common method. According to the location, it can be divided into external shading facilities, internal shading facilities, or between external shading facilities and internal shading facilities.
  • the way to install the louvers between two layers of glass is called a double-layer leather curtain wall.
  • the infra-radiation heat that enters the room through the glass window is the solar radiation that is directly into the room through the window glass (referred to as the transmission of the solar radiation) and the window glass absorbs the solar radiation, and then transmits the heat in the room in the opposite direction and the radiation method (abbreviated as absorption and heat release). ) These two parts are composed.
  • the internal shading device can reflect part of the solar radiation, but a part of the outward reflection will be reflected back by the glass, so that the reflection is weakened.
  • the inner sunshade only temporarily isolates the solar radiant heat from the sunshade. However, except for the outdoor part that is partially reflected, most of the radiant heat is absorbed by the sunshade and the glass and then re-entered into the room through radiation and convection. It does not fundamentally reduce the air conditioning load in the room.
  • the external shading facilities are better than the internal shading facilities, but the external shading facilities are exposed to the harsh external environment because of the external shading. They are subject to long-term sun and rain and variable wind loads, which are easily damaged and polluted in the external atmospheric environment. After reducing its ability to reflect the sun's rays, it is not easy to clean; affecting the shape of the building, not beautiful; some improper shading measures can not achieve effective insulation, but also bring more inconvenience to living.
  • the double-layered leather window wall combines the characteristics of the inner and outer sunshade.
  • the louver is arranged between the two layers of glass.
  • some disadvantages of the outer shading device are eliminated, the temperature of the louver heats up the glass interlayer due to the heat absorption. Part of the heat will be transmitted to the room to reduce its heat insulation capacity.
  • the technology is to adopt ventilation measures in the glass interlayer, and the heat of the glass layer is discharged to the outside through natural ventilation or mechanical ventilation, so that the sunshade can be insulated. The effect is closer to the external shading facility.
  • the main disadvantage is that the thickness of the air layer between the two layers of glass is usually small, resulting in limited air flow and limited cooling effect.
  • the laminated louvers still have the problem of air pollution, and the cleaning after pollution is even more difficult than the external shading facilities.
  • the overall production cost is high, and it is difficult to cooperate with the building.
  • the opening angle of the louver requires an electric adjustment mechanism, which increases the initial investment cost and the cost of maintenance.
  • the overall control of the enclosure structure is required to achieve complete isolation between the interior and exterior of the building, whether it is natural lighting, air penetration or heat transfer.
  • the thorough isolation between indoor and outdoor can effectively control the physical parameters of the indoors. Relatively speaking, the less energy consumption is required, the more energy-saving.
  • some regions from the climate characteristics sometimes hope that the envelope structure becomes an "energy transmission channel connecting indoor and outdoor, these two concepts will pursue completely different forms of architecture and form of enclosure.
  • windows are the weak link in building energy conservation, and the main factors causing the increase of indoor thermal and thermal load.
  • the invention provides a method and an apparatus with external passive cooling, which overcomes the deficiencies of the prior art and effectively solves the high temperature of the indoor area caused by the high heat of solar radiation caused by the light-transmitting envelope structure such as windows.
  • the problem is that it can effectively reduce the temperature rise of the indoor area caused by the light-transmitting envelope structure such as windows and the cost is low, and it is easy to cooperate with the building.
  • a method with external passive cooling which is performed as follows: air outside the indoor area is treated by an evaporative cooling device and then exhausted by an external passive cooling device After the cavity is discharged into the indoor area; wherein, the external passive cooling device comprises an inner sunshade device and a light-transmitting enclosure structure, the inner sunshade device itself or the light-transmitting envelope structure itself or the inner sunshade device and the light-transmitting envelope structure
  • the air flow passage formed in at least one layer is an exhaust air cavity;
  • the inner sunshade device is made of a light-transmitting or non-light-transmitting material;
  • the indoor area is composed of a light-transmitting envelope structure and other enclosure structures. interior space.
  • the exhaust air is pressed into the exhaust air cavity by the exhaust fan and discharged into the indoor area or the exhaust air is sucked into the exhaust air cavity by the exhaust fan and discharged into the indoor area, and the exhaust fan is located in the exhaust air cavity or outside the exhaust air cavity.
  • An evaporative refrigerating device is installed at the inlet of the exhaust air chamber, and the evaporative refrigerating device uses a direct evaporative cooling device.
  • the above-mentioned open wet curtain water film device comprises a spray head, a water pump and a water receiving tank, and the water pump sends the water in the water tank to the spray head through the water pipe, and the water sprayed from the spray head forms a water film and falls into the water tank.
  • an evaporative cooling device that simultaneously outputs cold air and cold water, and the air outside the indoor area is cooled by the evaporative cooling device and then enters the exhaust air cavity from the air inlet.
  • the cold water of the evaporative cooling device is sent to the nozzle through the water pump and the water pipe, and the water in the water tank is returned to the water inlet pipe of the evaporating and cooling device.
  • the outside air is cooled by the evaporative cooling device and enters the exhaust cavity from the inlet air.
  • the cold water of the evaporative cooling device is sent to the inlet pipe of the closed water cooling device through the water pump and the water pipe, and the water of the closed water cooling device flows back through the outlet pipe. Evaporate the inlet pipe of the refrigeration unit.
  • the air outlet of the above evaporative refrigeration device is divided into two, one air is sent into the exhaust air cavity, and the other air is sent into the air. Area.
  • the evaporative refrigerating apparatus described above employs an indirect evaporative cooling apparatus, and the process wind of the indirect evaporative refrigerating apparatus is exhausted from the indoor area and directly discharged into the indoor area.
  • a device with external passive cooling characterized by including an indoor area and having an external passive cooling device, and having an external passive cooling device including an internal shading device and light transmission.
  • the air retaining structure, the inner air-shielding device itself or the light-transmitting retaining structure itself or the inner air-shielding device and the light-transmitting protective structure form a flow channel of not less than one layer, which is an exhaust air cavity, and the air exhausting air is empty
  • the chamber has an inlet and an exhaust; the evaporative cooling unit is located in the indoor area or outside the indoor area, or the evaporative cooling unit is located at the top of the translucent enclosure or/and at the bottom of the translucent enclosure or/and The side of the optical enclosure, or the evaporative refrigeration unit is located at a position where it can be placed; the evaporative refrigeration unit has an air inlet and an air outlet; the air inlet of the evaporative refrigeration unit communicates with the outside of the indoor area, and the air outlet
  • An exhaust fan is installed at an exhaust or/and an inlet of the exhaust air chamber.
  • the exhaust fan is located in the exhaust cavity or outside the exhaust cavity.
  • An evaporative refrigerating device is installed at the inlet of the exhaust air chamber, and the evaporative refrigerating device employs a direct evaporative cooling device.
  • the exhaust air cavity has not less than two layers and is S-shaped, and the exhaust air cavity has an air inlet and an exhaust air.
  • the above-mentioned exhaust air cavity has not less than two layers, and each layer of the exhaust air cavity has an air inlet portion and an air exhaust portion.
  • the above-mentioned open wet curtain water film device comprises a nozzle, a water pump and a water tank, and the water inlet pipe of the water pump is connected into the water tank, and the water outlet pipe of the water pump communicates with the nozzle, and the water sprayed by the nozzle forms a water film and falls into the water tank.
  • an evaporative cooling device that simultaneously outputs cold air and cold water, and the air outside the indoor area is cooled by the evaporative cooling device and then enters the exhaust air cavity from the air inlet.
  • the cold water of the evaporative cooling device is sent to the nozzle through the water pump and the water pipe, and the water in the water tank is returned to the water inlet pipe of the evaporating and cooling device.
  • the closed water cooling device has a water cooling cavity, and the air inlet portion in the indoor area or outside the indoor area or the exhaust air cavity is simultaneously
  • the evaporating and refrigerating device that outputs cold air and cold water, the air outside the indoor area is cooled by the evaporative cooling device, and then enters the exhaust air cavity from the air inlet, and the cold water of the evaporating and cooling device is sent to the water inlet pipe of the closed water cooling device through the water pump and the water pipe.
  • the water in the closed water cooling device flows back through the outlet pipe to steam The inlet pipe of the refrigeration unit.
  • the evaporative refrigeration device has two air outlets, one air outlet communicating with the exhaust air cavity, and the other air outlet communicating with the indoor area.
  • the evaporative refrigeration device uses an indirect evaporative refrigeration device, and the process air inlet of the indirect evaporative refrigeration device communicates with the indoor region, and the process air outlet is connected to the outside of the indoor region.
  • the inner shading device adopts a louver, and the vane of the louver is horizontal or vertical, and the vane has a cavity therein, and the hollow cavity is an exhaust air cavity or/and a water-cooling cavity.
  • the blade surface of the above louver has a layer of highly reflective material or a layer of highly heat absorbing material.
  • the invention can be applied to various living, public buildings and industrial buildings, and absorbs the heat of the solar radiation of the light-transmitting enclosure structure by passive cooling, thereby effectively reducing the heat load of the room and being easy to cooperate with the building space. , the cost is lower.
  • it is applied in dry and hot areas, and its purpose is to apply high-efficiency gradients of dry air energy, effectively reducing the heat load of the light-transmitting envelope structure such as windows, and achieving more efficient step configuration of energy.
  • the method and the device with external passive cooling according to the invention greatly reduce the weakening of the building energy consumption of the window heating, and realize the air and indoor exhaust air outside the indoor area by constructing a smooth passage of indoor and outdoor airflow heat exchange.
  • it has made a breakthrough in the application of residential buildings.
  • the invention is applicable to all kinds of residential, public buildings and industrial buildings, and its unique passive cooling integrated device effectively reduces the cooling load of the room in the summer, and can form an insulating air interlayer to protect the heat in the winter. Effectively reduce the heat load of the room.
  • the invention reduces the entire HVAC system due to the reduction of the indoor load, including all the equipment and materials in the HVAC system, which not only can be more easily matched in the building, but also brings greater users. Economical, low cost.
  • the invention can be "graded utilization, optimized matching" in the application of energy, and the air sent into the room rises from about 16 ° C to about 26 ° C, and then convective heat exchange occurs with the high temperature wall and the air flow near the window. It is discharged outside, and it is more reasonable and sufficient in the utilization of energy.
  • the invention constructs a channel for indoor and outdoor contact, effectively solves the problem of disorder of exhaust air in the HVAC system, and makes the airflow indoors and outdoors more smooth.
  • the present invention provides a realistic basis for the large-scale application of evaporative refrigeration air conditioning technology in residential buildings and the like.
  • the invention expands the applicable area of the evaporative refrigeration air conditioner, not only in the dry heat region, but also in the hot and humid place The area is well applied.
  • Figure 1 is a schematic view showing the method and apparatus of Embodiment 1 of the present invention.
  • Figure 2 is a schematic illustration of the method and apparatus of Example 2 of the present invention.
  • Figure 3 is a schematic illustration of the method and apparatus of Example 3 of the present invention.
  • Figure 4 is a schematic illustration of the method and apparatus of embodiment 4 of the present invention.
  • Figure 5 is a schematic illustration of the method and apparatus of Example 5 of the present invention.
  • Figure 6 is a schematic view showing the method and apparatus of Embodiment 6 of the present invention.
  • Figure 7 is a schematic illustration of the method and apparatus of embodiment 7 of the present invention.
  • Figure 8 is a schematic illustration of the method and apparatus of embodiment 8 of the present invention.
  • Figure 9 is a schematic illustration of the method and apparatus of embodiment 9 of the present invention.
  • the codes in the drawings are: 1 is the air outside the indoor area; 2 is the direct evaporative cooling device; 3 is the exhaust fan; 4 is the exhaust duct; 5 is the exhaust outside the indoor area; 6 is the inner shading facility.
  • a is an evaporative refrigeration unit.
  • Embodiment 1 As shown in FIG. 1 , the device with external passive cooling includes an indoor area B and has an external passive cooling device C, and the external passive cooling device C includes an inner sunshade device 6 and a light transmissive enclosure.
  • the inner air-shielding device 6 itself or the light-transmitting envelope structure itself or the inner air-shielding device 6 and the light-transmitting protective structure form a flow channel of not less than one layer, which is an exhaust air cavity, and the air exhaust cavity has a Wind and exhaust;
  • Evaporative cooling unit a is located in the indoor area or outside the indoor area, or the evaporative cooling device a is located at the top of the light transmissive structure or / and the bottom of the light transmissive structure or / and light transmission
  • the side of the protective enclosure, or the evaporative cooling device a is located at a position where it can be placed;
  • the evaporative refrigeration device a has an air inlet and an air outlet; the air inlet of the e
  • the method of external passive cooling is carried out as follows: As shown in FIG. 1, the air outside the indoor zone B is processed by the direct evaporative cooling device 2 and then discharged through the exhaust cavity of the external passive cooling device C to be discharged into the indoor region. B That is, the exhaust air 5 outside the indoor area.
  • the air outside the indoor area enters the evaporative cooling device with the external passive cooling device C through the air inlet, and is a humidifying humidification (adiabatic humidification) process, the humidification efficiency (saturation efficiency) and the type of the filler (heat-humid exchange) Area size), the speed of heat and humidity exchange (determined by the thickness of the airflow direction), the flow direction of the medium between the heat and humidity exchanges is closely related.
  • the area of heat and humidity exchange is infinite, time Infinitely long, the incoming airflow passes through the direct evaporative cooling device, and its saturation efficiency can reach 100%.
  • the corresponding outlet dry bulb temperature is the wet bulb temperature of the incoming air. Under actual conditions, the temperature of the dry bulb of the wind is close to the temperature of the wet bulb of the incoming air.
  • the area is different, the outdoor weather state is different, and the degree of temperature reduction is reduced to some extent.
  • the air outside the indoor area after the temperature is lowered then enters the exhaust air cavity with the external passive cooling device C. After absorbing the heat of the solar radiation of the window and the heat gain of the indoor part, the exhaust fan disposed at the top passes through the exhaust air line. discharge.
  • Embodiment 1 The advantage of Embodiment 1 is that: through the device, the air 1 outside the indoor area forms a cooling process only in the external passive cooling device C. Since the fresh air is not sent into the indoor room, the process flow is simple and the setting is convenient. While reducing the heat gain of the window, it can effectively reduce the other heat gain in the room, so that the indoor load can be effectively reduced, or part of the function of the air conditioner can be replaced in some areas and parts of the time by the device, or integrated in the high temperature and high humidity area.
  • the external passive cooling device c of the evaporative refrigeration technology has a real practical application.
  • Embodiment 2 As shown in FIGS. 1 and 2, Embodiment 2 differs from Embodiment 1 in that: the exhaust air cavity of Embodiment 2 has not less than two layers and is S-shaped, and the exhaust air is empty.
  • the chamber has an air inlet and an exhaust.
  • Embodiment 3 As shown in FIGS. 1 to 3, Embodiment 3 is different from Embodiments 1 and 2 in that: as shown in FIG. 3, the inner wall of the exhaust air cavity of Embodiment 3 is not less than a layer of open wet curtain water film device, the air flowing through the exhaust cavity can be in contact with the water film of the open wet curtain water film device; the open wet curtain water film device comprises a nozzle, a water pump and a water tank The water pump sends the water in the water tank to the nozzle through the water pipe, and the water sprayed from the nozzle forms a water film and falls into the water tank.
  • the open wet curtain water film device is a single layer.
  • the expanded water film is a heat and moisture exchange medium for air flow and water. Unlike the filler, the water film itself forms a cold barrier while the hot and humid exchange forms cold air to eliminate heat from the window or the room through convective heat transfer.
  • the solar radiation from the window can be removed by radiative heat transfer.
  • Embodiment 4 As shown in Figures 3 and 4, Embodiment 4 differs from Embodiment 2 in that, as shown in Figure 4, the open wet curtain water film device of Embodiment 2 is double-layered.
  • Embodiment 5 differs from Embodiments 1 to 4 in that: as shown in FIG. 5, the evaporative cooling device a of Embodiment 5 is located in an indoor area (may also be According to actual needs, it is located outside the indoor area or at the top of the window or the bottom of the window or the inside of the window or the outside of the window or the side of the window.
  • the inner wall of the exhaust cavity has not less than one layer of open wet curtain water film device. And Figure 5 shows only a single layer.
  • Evaporative cooling device a is simultaneous output Cold air and cold water evaporative refrigeration device, cold water enters the single-layer open wet curtain water film structure, and the solar radiation of the window is removed by radiation heat exchange; at the same time, the exhaust air in a is connected to C, through convective heat transfer Eliminate the heat gain from the part of the window. In line with the principle of cold gradient utilization, the use of cold capacity is more efficient.
  • Embodiment 6 As shown in FIGS. 5 and 6, Embodiment 6 is different from Embodiment 5 in that: as shown in FIG. 6, the open wet curtain water film device of Embodiment 6 is double-layered, Radiant heat exchange eliminates the heat generated by the solar radiation of the window; at the same time, the exhaust air in a is connected to C, and part of the heat gain of the window is eliminated by convective heat transfer.
  • Embodiment 7 As shown in FIGS. 1 to 6, Embodiment 7 is different from Embodiments 1 to 6 in that: as shown in FIG. 7, the wall of the exhaust air cavity of Embodiment 6 is not less than One layer of closed water cooling device, shown in Figure 7 is only a single layer, in the indoor area B or in the air inlet of the exhaust cavity, there is an evaporative cooling device a that simultaneously outputs cold and cold water, and air outside the indoor area B.
  • the evaporative cooling device a After being cooled by the evaporative cooling device a, it enters the exhaust air cavity from the air inlet, and the cold water of the evaporative cooling device a is sent to the inlet pipe of the closed water cooling device through the water pump and the water pipe, and the water of the closed water cooling device flows back through the outlet pipe to evaporate.
  • the water inlet pipe of the refrigeration unit a After being cooled by the evaporative cooling device a, it enters the exhaust air cavity from the air inlet, and the cold water of the evaporative cooling device a is sent to the inlet pipe of the closed water cooling device through the water pump and the water pipe, and the water of the closed water cooling device flows back through the outlet pipe to evaporate.
  • the water inlet pipe of the refrigeration unit a After being cooled by the evaporative cooling device a, it enters the exhaust air cavity from the air inlet, and the cold water of the evaporative cooling device a is sent to the inlet pipe of the closed water cooling device
  • Embodiment 8 As shown in Figs. 7 and 8, Embodiment 8 is different from Embodiment 7 in that, as shown in Fig. 7, the closed water-cooling apparatus of Embodiment 7 is double-layered.
  • Embodiment 9 As shown in FIGS. 1 to 8, Embodiment 9 is different from Embodiments 1 to 8 in that: as shown in FIG. 9, the air inlet portion of the ventilating cavity of Embodiment 9 is installed with evaporation.
  • the refrigerating device a, and the cold water of the evaporating and cooling device is introduced into the open wet curtain water film structure or the closed water cooling device from the bottom of the water tank, and the returned water returns to the evaporative cooling device a to form a circulation; at the same time, the indoor area
  • the outside air 1 enters the cavity in C through the evaporative cooling device a, removes part of the heat gain of the window by convective heat transfer, and then discharges B through the exhaust fan 3.
  • the air outside the indoor area 1 does not enter the indoor area B.
  • the device complies with the principle of cold gradient utilization, and the use of cold capacity is more efficient and thorough.
  • the above technical features constitute an embodiment of the present invention, which has strong adaptability and implementation effects, and can increase or decrease non-essential technical features according to actual needs to meet the needs of different situations.
  • the evaporative refrigeration unit can have two air outlets, one air outlet is connected to the exhaust air cavity, and the other air outlet is connected to the indoor area;
  • the inner shading device is made of blinds, and the blades of the blind are horizontal or vertical, the blade There is a cavity therein, which is an exhaust cavity or/and a water-cooled cavity.
  • the blade surface of the louver has a layer of highly reflective material or a layer of highly absorbing material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Sustainable Energy (AREA)
  • Building Environments (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

具有外被动式冷却的方法及其装置 技术领域
本发明涉及暖通空调技术领域, 是一种具有外被动式冷却的方法及其装置, 适用于各 类居住、 公共建筑及工业建筑中, 以有效减少房间透光性围护结构的太阳辐射得热量。
背景技术
中国 2005年颁布实施的《公共建筑节能设计标准》 中指出: 中国建筑用能已经超过 全国能源消费总量的 1/4,并将随着人民生活水平的提高逐步增加到 1/3以上,而在建筑用 能中, 暖通空调的能耗又占到了 27.4%左右, 因此大力倡导暖通空调节能, 对于建设资源 节约型、 环境友好型的低碳型社会有着至关重要的作用。
空调设备夏季承担的冷负荷主要由空调房间的冷负荷、机组本身产热需要消除的冷负 荷及新风负荷三部分构成。 按照不同的地区, 不同的气象条件, 不同的设备条件, 及围护 结构的不同, 三部分所占的冷负荷比例有所不同, 但空调房间的得热形成的冷负荷为主要 权重部分, 必须引起充分的重视。 而房间的总冷负荷由以下部分构成: 1、 人员、 室内电 器设备的散热散湿量; 2、 窗户的太阳辐射得热形成的冷负荷; 3、 围护墙体、 屋面等通过 导热、 对流形成的冷负荷; 4、 室内区域外新风通过门窗渗透形成的冷负荷。
根据相关资料, 在建筑围护结构中, 门窗的能耗约为墙体的 4倍、 屋面的 5倍、 地面 的 20多倍, 约占建筑围护结构总能耗的 40%至 50%。 因此, 增强门窗的保温隔热性能, 减少门窗能耗, 是改善室内热环境质量和提高建筑节能水平的重要环节。
对于建筑室内环境来说,太阳辐射热是十分重要的的外扰, 在围护结构中, 外窗对空 调冷负荷有明显的影响。 由于玻璃的传热系数远大于墙体和屋顶等非透明围护结构, 其形 成的空调冷负荷所占比例要大得多,据统计,通过窗流失的热量占建筑能耗的 46%,透过 玻璃的日射得热冷负荷约占空调冷负荷的 20%至 30%。 必须引起充分的重视。 另据有关 研究, 全球居住建筑以及非居住建筑冷负荷的一半为太阳辐射得热负荷, 其中通过窗户的 太阳辐射得热又占绝大部分。
因此, 窗是建筑节能的薄弱环节, 是建筑能耗的黑洞, 是控制建筑能耗的主要方向。 透过大气层到达地面的太阳辐射中包括直射辐射和散射辐射, 而建筑围护结构外表面 从空中所接受的散射辐射包括三项, 即天空散射辐射, 地面反射辐射和大气长波辐射。通 常情况下(入射角<60° )太阳光照射到普通玻璃表面后, 7.3%的能量被反射, 不会成为 房间的得热; 79%直接透过玻璃直接进入室内, 全部成为房间的热量; 还有 13.7%则被玻 璃吸收, 而使玻璃温度提高。被吸收的这部分能量中, 4.9%又将以长波热辐射和对流的方 式传至室内, 而余下的 8.8%同样以长波热辐射和对流的方式散至室外, 不会成为房间的 得热。 因此玻璃的反射率越高, 透过率和吸收率越低, 太阳得热量就越少。
为了有效遮挡太阳辐射, 减少夏季空调负荷, 采用遮阳设施是目前常用的手段, 按照 设置位置的不同, 可分为外遮阳设施、 内遮阳设施, 或者是介于外遮阳设施、 内遮阳设施 之间的, 将百叶安装在两层玻璃之间的方式, 称之为双层皮幕墙。
透过玻璃窗进入室内的日射得热系由透过窗玻璃直接进人室内的日射 (简称透射日射) 和窗玻璃吸收日射后以对统和辐射方式再传人室内的热量 (简称吸收再放热)这两部分组 成。
内遮阳设施可以反射掉部分太阳辐射, 但向外反射的一部分又会被玻璃反射回来, 使 得反射作用减弱。 内遮阳只是暂时将太阳辐射热隔绝在内遮阳以外, 但这些辐射热量除部 分被反射的室外, 大部分被遮阳帘和玻璃吸收后通过辐射、对流等方式重新进入室内, 全 部成为室内得热, 并没有从根本上降低室内的空调负荷。
外遮阳设施的作用要好于内遮阳设施,但外遮阳设施由于外遮阳常年暴露在恶劣的外 界环境中, 要承受长期日晒雨淋和变化无常的风荷载, 容易损坏, 在外界大气环境中污染 后降低其反射太阳光线的能力, 不易清洗; 影响建筑的造型, 不美观; 一些不当的遮阳措 施既达不到有效的隔热, 还会给居住生活带来更多的不便。
双层皮窗户幕墙结合内、 外遮阳的特点, 采用将百叶设置在两层玻璃之间, 尽管消除 了外遮阳设施的部分缺点, 但由于百叶吸热后升温会加热玻璃间层的空气, 其中部分热量 会向室内传导而降低了其隔热能力, 目前有技术是在玻璃间层采取通风措施, 通过自然通 风或机械通风把玻璃间层的热量排到室外,这样就可以使得其遮阳隔热作用更接近于外遮 阳设施。其存在的缺点主要在于两层玻璃间空气层厚度通常较小, 导致空气流量有限, 降 温效果有限。其次是夹层百叶仍然存在被来流空气污染的问题, 且污染后的清洁甚至比外 遮阳设施更为困难。 另外其次整体制作成本较高, 与建筑的配合存在困难, 随着使用时间 的不同, 太阳高度角的不同, 百叶的开启角度需要电动调节机构, 增加其初投资成本和维 护保养的成本。
因此, 从控制稳定的室内空气环境, 对建筑形式和围护结构来说, 全面掌控一定要求 围护结构对建筑实现室内外的全面隔绝, 无论是自然采光、 空气渗透还是热传递。 室内外 的彻底隔绝才可以对室内各物理参数进行有效的调控, 相对来说, 所需要的能源消耗也就 越少, 越节能。 然而从环境的改善出发, 首先要追求自然采光、 自然通风、 甚至对围护结 构的传热性能来说, 有些地域从气候特点出发有时也希望围护结构成为连接室内外的 "能 量传输通道,,, 这样的两种理念就会追求完全不同的建筑形式和围护结构形式。 综上所述,窗户是建筑节能的薄弱环节,造成的室内冷热负荷增大的主要因素,但是, 一直以来还未见到既能满足室内空气调节的需要又能大幅度减少能耗且成本低的室内空 气调节的方法及其装置的报道。
发明内容
本发明提供了一种具有外被动式冷却的方法及其装置, 其克服了现有技术之不足, 有 效解决了由于窗户等透光性围护结构因太阳辐射得热量高而造成的室内区域温度高的问 题, 其能有效地大幅度减少窗户等透光性围护结构造成的室内区域温度的升高且成本较 低, 易与建筑物配合。
本发明的技术方案之一是通过以下措施来实现的: 一种具有外被动式冷却的方法, 其 按下述方法进行:室内区域外的空气经过蒸发制冷装置处理后通过外被动式冷却装置的排 风空腔后被排出室内区域; 其中, 外被动式冷却装置包括内遮阳设施和透光性围护结构, 内遮阳设施自身或透光性围护结构自身或内遮阳设施与透光性围护结构之间形成的不少 于一层的气流通道为排风空腔; 内遮阳设施采用透光或非透光的材料制成; 室内区域是由 透光性围护结构与其它围护结构所构成的室内空间。
下面是对上述技术方案之一的进一步优化或 /和选择:
上述排风被排风机压入排风空腔并排出室内区域或者排风被排风机吸入排风空腔并排出 室内区域, 排风机位于排风空腔内或排风空腔外。
在上述排风空腔的进风处安装有蒸发制冷装置,该蒸发制冷装置釆用直接蒸发制冷装 置。
在上述排风空腔的内壁上或 /和内遮阳设施的水冷空腔的内壁上有不少于一层的开式 湿帘水膜装置。
上述开式湿帘水膜装置包括喷头、 水泵和接水槽, 水泵将水槽中的水通过水管送给喷 头, 而喷头喷出的水形成水膜并落入接水槽内。
在上述室内区域内或室内区域外或排风空腔的进风处有同时输出冷风和冷水的蒸发 制冷装置,室内区域外的空气经过蒸发制冷装置冷却后从进风处进入排风空腔内,蒸发制 冷装置的冷水经过水泵和水管送给喷头, 接水槽内的水流回蒸发制冷装置的进水管。
在上述排风空腔的壁上有不少于一层的闭式水冷装置, 室内区域内或室内区域外或排 风空腔的进风处有同时输出冷风和冷水的蒸发制冷装置,室内区域外的空气经过蒸发制冷 装置冷却后从进风处进入排风空腔内,蒸发制冷装置的冷水经过水泵和水管送给闭式水冷 装置的进水管, 闭式水冷装置的水经过出水管流回蒸发制冷装置的进水管。
上述蒸发制冷装置的出风分成两股, 一股出风送入排风空腔内, 另一股出风送入室内 区域。
上述蒸发制冷装置釆用间接蒸发制冷装置, 该间接蒸发制冷装置的工艺风来自室内区 域的排风并被直接排出室内区域。
本发明的技术方案之二是通过以下措施来实现的: 一种具有外被动式冷却的装置, 其 特征在于包括室内区域和具有外被动式冷却装置,而具有外被动式冷却装置包括内遮阳设 施和透光性围护结构, 内遮阳设施自身或透光性围护结构自身或内遮阳设施与透光性围护 结构之间形成的不少于一层的气流通道为排风空腔, 该排风空腔有进风处和排风处; 蒸发 制冷装置位于室内区域内或室内区域外,或者蒸发制冷装置位于透光性围护结构的顶部或 /和透光性围护结构的底部或 /和透光性围护结构的侧面, 或者蒸发制冷装置位于能够放置 的位置; 蒸发制冷装置有进风口和出风口; 蒸发制冷装置的进风口与室内区域外相通, 蒸 发制冷装置的出风口与排风空腔的进风处相通, 排风空腔的排风处与室内区域外相通; 内 遮阳设施采用透光或非透光的材料制成;室内区域是由透光性围护结构与其它围护结构所 构成的室内空间。
下面是对上述技术方案之二的进一步优化或 /和选择:
在上述排风空腔的排风处或 /和进风处安装有排风机。
上述排风机位于排风空腔内或排风空腔外。
在上述排风空腔的进风处安装有蒸发制冷装置,该蒸发制冷装置采用直接蒸发制冷装 置。
上述排风空腔有不少于二层, 且呈 S形, 该排风空腔有一个进风处和一个排风处。 上述排风空腔有不少于二层, 每层排风空腔有进风处和排风处。
在上述排风空腔的内壁上或 /和内遮阳设施的水冷空腔的内壁上有不少于一层的开式 湿帘水膜装置。
上述开式湿帘水膜装置包括喷头、 水泵和接水槽, 水泵的进水管通入水槽中, 水泵的 出水管与喷头相通, 喷头喷出的水形成水膜并落入接水槽内。
在上述室内区域内或室内区域外或排风空腔的进风处有同时输出冷风和冷水的蒸发 制冷装置,室内区域外的空气经过蒸发制冷装置冷却后从进风处进入排风空腔内,蒸发制 冷装置的冷水经过水泵和水管送给喷头, 接水槽内的水流回蒸发制冷装置的进水管。
在上述排风空腔的壁上有不少于一层的闭式水冷装置, 该闭式水冷装置内有水冷空 腔, 室内区域内或室内区域外或排风空腔的进风处有同时输出冷风和冷水的蒸发制冷装 置, 室内区域外的空气经过蒸发制冷装置冷却后从进风处进入排风空腔内, 蒸发制冷装置 的冷水经过水泵和水管送给闭式水冷装置的进水管, 闭式水冷装置的水经过出水管流回蒸 发制冷装置的进水管。
上述蒸发制冷装置有两个出风口, 一个出风口与排风空腔相通, 另一个出风口与室内 区域相通。
上述蒸发制冷装置釆用间接蒸发制冷装置, 该间接蒸发制冷装置的工艺风进风口与室 内区域内相通, 工艺风出风口与室内区域外相通。
上述内遮阳设施采用百叶窗, 该百叶窗的叶片为横式或纵式, 该叶片内有空腔, 该空 腔为排风空腔或 /和水冷空腔。
上述百叶窗的叶片表面有高反射材料层或 /和高吸热材料层。
本发明可以适用于各类居住、 公共建筑及工业建筑中, 以被动冷却的方式大幅吸收透 光性围护结构的太阳辐射得热量,从而有效减低了室内的得热负荷,易于和建筑空间配合, 成本较低。特别的是其在干热地区应用,其目的在于干空气能的高效梯度应用,有效降低窗 户等透光性围护结构的得热负荷, 实现能量更有效的梯级配置。在通过本发明具有外被动 式冷却的方法及其装置大幅降低窗户得热这一建筑能耗的薄弱环节, 由于构建了室内外气 流热交换的顺畅通道, 实现了室内区域外的空气和室内排风气流交换的建筑呼吸系统, 室 内空气品质好。特别地在干空气能蒸发制冷技术应用领域, 使得其在家庭居住建筑的应用 实现了突破性的进展。
本发明的综合效果为:
1.本发明适用于各类居住、 公共建筑及工业建筑中, 其特有的被动式冷却集成装置在 夏季有效的降低了房间的冷负荷,在冬季又可以形成保温空气夹层起到隔热的作用从而有 效的降低房间的热负荷。
2.本发明由于室内负荷的降低使得整个暖通空调系统减小, 其中包括暖通空调系统中 的所有设备和用材, 不仅可以在建筑上更容易配合, 而且也为用户带来了更大的经济性, 成本较低。
3.本发明在能源的应用上能够 "分级利用、 优化匹配", 送入室内的空气从 16°C左右 上升到 26°C左右后,又和窗户附近的高温壁面和气流发生对流换热后才排出室外,在能量 的利用上更加合理、 充分。
4.本发明构建了室内外联系的通道,有效的解决了暖通空调系统中的排风无序的问题, 使得室内外的气流更加顺畅。
5.本发明使得蒸发制冷空调技术在住宅建筑等民用建筑的大规模应用有了现实的基 础。
6.本发明拓展了蒸发制冷空调适用的区域, 不仅仅在干热地区使用, 更可以在湿热地 区得到很好的应用。
附图说明
附图 1为本发明的实施例 1的方法及其装置的示意图。
附图 2为本发明的实施例 2的方法及其装置的示意图。
附图 3为本发明的实施例 3的方法及其装置的示意图。
附图 4为本发明的实施例 4的方法及其装置的示意图。
附图 5为本发明的实施例 5的方法及其装置的示意图。
附图 6为本发明的实施例 6的方法及其装置的示意图。
附图 7为本发明的实施例 7的方法及其装置的示意图。
附图 8为本发明的实施例 8的方法及其装置的示意图。
附图 9为本发明的实施例 9的方法及其装置的示意图。
附图中的编码分别为: 1为室内区域外的空气; 2为直接蒸发制冷装置; 3为排风机; 4为排风管道; 5为室内区域外的排风; 6为内遮阳设施。 B为室内区域; C为具有外被动 式冷却装置。 a为蒸发制冷装置。
具体实施方式
本发明不受下述实施例的限制, 可根据上述本发明的技术方案和实际情况来确定具体 的实施方式。
下面结合实施例对本发明作进一步论述:
实施例 1 : 如附图 1所示, 该具有外被动式冷却的装置包括室内区域 B和具有外被动 式冷却装置 C,而具有外被动式冷却装置 C包括内遮阳设施 6和透光性围护结构, 内遮阳 设施 6自身或透光性围护结构自身或内遮阳设施 6与透光性围护结构之间形成的不少于一 层的气流通道为排风空腔, 该排风空腔有进风处和排风处; 蒸发制冷装置 a位于室内区域 内或室内区域外,或者蒸发制冷装置 a位于透光性围护结构的顶部或 /和透光性围护结构的 底部或 /和透光性围护结构的侧面,或者蒸发制冷装置 a位于能够放置的位置;蒸发制冷装 置 a有进风口和出风口; 蒸发制冷装置 a的进风口与室内区域外相通, 蒸发制冷装置 a的 出风口与排风空腔的进风处相通,排风空腔的排风处与室内区域 B外相通; 内遮阳设施采 用透光或非透光的材料制成;室内区域 B是由透光性围护结构与其它围护结构所构成的室 内空间。如附图 1所示,排风空腔的进风处安装有蒸发制冷装置,该蒸发制冷装置釆用直接 蒸发制冷装置 2。
该具有外被动式冷却的方法按下述方法进行: 如附图 1所示, 室内区域 B外的空气经 过直接蒸发制冷装置 2处理后通过外被动式冷却装置 C的排风空腔后被排出室内区域 B 即成为室内区域外的排风 5。
室内区域外的空气 1通过进风处进入具有外被动式冷却装置 C中的蒸发冷却装置,为 等焓降温加湿(绝热加湿)过程, 其加湿效率(饱和效率)和填料的种类(热湿交换的面 积大小),热湿交换的时间的快慢 (气流流经方向的厚度大小决定),热湿交换间介质的流动 方向有密切的关系, 在理想情况下, 如果热湿交换的面积无限大, 时间无限长, 则来流气 流经过直接蒸发制冷装置, 其饱和效率可达到 100%, 这时对应的出风干球温度为进风的 湿球温度。 在实际情况下, 出风的干球温度趋近于进风的湿球温度, 地区不同, 室外气象 状态不同, 其温度降低的程度, 但都有一定程度的降低。
温度降低后的室内区域外的空气随后进入具有外被动式冷却装置 C 中排风空腔,吸收 窗户的太阳辐射得热量及室内部分得热量后,通过设置在顶部的排风机,通过排风管路排 出。
实施例 1的优点在于: 通过该装置, 室内区域外的空气 1仅仅在具有外被动式冷却装 置 C中形成降温过程, 由于新风不送入室内房间, 工艺流程简单, 设置方便。在降低窗户 得热量的同时, 可有效降低室内其它的得热量, 使得室内负荷有效减低, 或者通过该装置 在部分地区、 部分时间段替代空调的部分功能, 或者是, 在高温高湿地区, 集成蒸发制冷 技术的具有外被动式冷却装置 c得到真正的实际应用。
实施例 2:如附图 1和 2所示, 实施例 2与实施例 1的不同之处在于: 实施例 2的排风 空腔有不少于二层, 且呈 S形, 该排风空腔有一个进风处和一个排风处。
实施例 3:如附图 1至 3所示, 实施例 3与实施例 1和 2的不同之处在于: 如附图 3所 示, 实施例 3的排风空腔的内壁上有不少于一层的开式湿帘水膜装置, 流过排风空腔内的 空气能与开式湿帘水膜装置的水膜相接触;该开式湿帘水膜装置包括喷头、水泵和接水槽, 水泵将水槽中的水通过水管送给喷头, 而喷头喷出的水形成水膜并落入接水槽内。开式湿 帘水膜装置为单层的。扩展的水膜为空气气流和水的热湿交换介质, 和填料不同的是, 在 发生热湿交换形成冷风通过对流换热消除窗户或室内得热量的同时,水膜本身形成了一道 冷屏障, 可通过辐射换热消除窗户的太阳辐射得热量。
实施例 4:如附图 3和 4所示, 实施例 4与实施例 2的不同之处在于: 如附图 4所示, 实施例 2的开式湿帘水膜装置为双层的。
实施例 5:如附图 1至 4所示, 实施例 5与实施例 1至 4的不同之处在于: 如附图 5所 示, 实施例 5的蒸发制冷装置 a位于室内区域内(也可根据实际需要位于室内区域外或窗 户的顶部或窗户的底部或窗户的内侧或窗户的外侧或窗户的侧面), 排风空腔的内壁上有 不少于一层的开式湿帘水膜装置, 而附图 5所示仅为单层的。蒸发制冷装置 a为同时输出 冷风和冷水的蒸发制冷装置, 冷水通入单层开式湿帘水膜结构, 通过辐射换热消除窗户的 太阳辐射得热量; 与此同时, a中的排风接入 C, 通过对流换热消除窗户的部分得热量。 符合冷量梯度利用的原则, 冷量利用更高效。
实施例 6:如附图 5和 6所示, 实施例 6与实施例 5的不同之处在于: 如附图 6所示, 实施例 6的开式湿帘水膜装置为双层的, 通过辐射换热消除窗户的太阳辐射得热量; 与此 同时, a中的排风接入 C, 通过对流换热消除窗户的部分得热量。
实施例 7:如附图 1至 6所示, 实施例 7与实施例 1至 6的不同之处在于: 如附图 7所 示, 实施例 6的排风空腔的壁上有不少于一层的闭式水冷装置, 附图 7所示仅为单层的, 室内区域 B内或排风空腔的进风处有同时输出冷风和冷水的蒸发制冷装置 a, 室内区域 B 外的空气经过蒸发制冷装置 a冷却后从进风处进入排风空腔内,蒸发制冷装置 a的冷水经 过水泵和水管送给闭式水冷装置的进水管, 闭式水冷装置的水经过出水管流回蒸发制冷装 置 a的进水管。
实施例 8:如附图 7和 8所示, 实施例 8与实施例 7的不同之处在于: 如附图 7所示, 实施例 7的闭式水冷装置为双层的。
实施例 9:如附图 1至 8所示, 实施例 9与实施例 1至 8的不同之处在于: 如附图 9所 示, 实施例 9的排风空腔的进风处安装有蒸发制冷装置 a, 而蒸发制冷装置的冷水从水箱 底部通入开式湿帘水膜结构或闭式水冷装置中, 升温后的回水回到蒸发制冷装置 a, 形成 循环; 与此同时, 室内区域外的空气 1经过蒸发制冷装置 a进入 C中的空腔,通过对流换 热消除窗户的部分得热量, 然后通过排风机 3排出 B。 室内区域外的空气 1没有进入室内 区域 B。 该装置符合冷量梯度利用的原则, 冷量利用更为高效和彻底。
以上技术特征构成了本发明的实施例, 其具有较强的适应性和实施效果, 可根据实 际需要增减非必要的技术特征, 来满足不同情况的需求。 例如: 蒸发制冷装置可有两个出 风口, 一个出风口与排风空腔相通, 另一个出风口与室内区域相通; 内遮阳设施采用百叶 窗, 该百叶窗的叶片为横式或纵式, 该叶片内有空腔, 该空腔为排风空腔或 /和水冷空腔。 百叶窗的叶片表面有高反射材料层或 /和高吸热材料层。

Claims

1.一种具有外被动式冷却的方法,其特征在于按下述方法进行:室内区域外的空气经过蒸 发制冷装置处理后通过外被动式冷却装置的排风空腔后被排出室内区域; 其中, 外被动式 冷却装置包括内遮阳设施和透光性围护结构, 内遮阳设施自身或透光性围护结构自身或内 遮阳设施与透光性围护结构之间形成的不少于一层的气流通道为排风空腔; 内遮阳设施釆 用透光或非透光的材料制成;室内区域是由透光性围护结构与其它围护结构所构成的室内 空间。
2.根据权利要求 1所述的具有外被动式冷却的方法,其特征在于排风被排风机压入排风空 腔并排出室内区域或者排风被排风机吸入排风空腔并排出室内区域,排风机位于排风空腔 内或排风空腔外。
3.根据权利要求 1或 2所述的具有外被动式冷却的方法,其特征在于排风空腔的进风处安 装有蒸发制冷装置,该蒸发制冷装置采用直接蒸发制冷装置。
4.根据权利要求 1或 2所述的具有外被动式冷却的方法,其特征在于排风空腔的内壁上或 /和内遮阳设施的水冷空腔的内壁上有不少于一层的开式湿帘水膜装置。
5.根据权利要求 3所述的具有外被动式冷却的方法, 其特征在于排风空腔的内壁上或 /和 内遮阳设施的水冷空腔的内壁上有不少于一层的开式湿帘水膜装置。
6.根据权利要求 4所述的具有外被动式冷却的方法,其特征在于开式湿帘水膜装置包括喷 头、 水泵和接水槽, 水泵将水槽中的水通过水管送给喷头, 而喷头喷出的水形成水膜并落 入接水槽内。
7.根据权利要求 5所述的具有外被动式冷却的方法,其特征在于开式湿帘水膜装置包括喷 头、 水泵和接水槽, 水泵将水槽中的水通过水管送给喷头, 而喷头喷出的水形成水膜并落 入接水槽内。
8.根据权利要求 6所述的具有外被动式冷却的方法,其特征在于室内区域内或室内区域外 或排风空腔的进风处有同时输出冷风和冷水的蒸发制冷装置,室内区域外的空气经过蒸发 制冷装置冷却后从进风处进入排风空腔内,蒸发制冷装置的冷水经过水泵和水管送给喷头, 接水槽内的水流回蒸发制冷装置的进水管。
9.根据权利要求 7所述的具有外被动式冷却的方法,其特征在于室内区域内或室内区域外 或排风空腔的进风处有同时输出冷风和冷水的蒸发制冷装置,室内区域外的空气经过蒸发 制冷装置冷却后从进风处进入排风空腔内,蒸发制冷装置的冷水经过水泵和水管送给喷头, 接水槽内的水流回蒸发制冷装置的进水管。
10.根据权利要求 1或 2所述的具有外被动式冷却的方法, 其特征在于排风空腔的壁上有 不少于一层的闭式水冷装置,室内区域内或室内区域外或排风空腔的进风处有同时输出冷 风和冷水的蒸发制冷装置,室内区域外的空气经过蒸发制冷装置冷却后从进风处进入排风 空腔内, 蒸发制冷装置的冷水经过水泵和水管送给闭式水冷装置的进水管, 闭式水冷装置 的水经过出水管流回蒸发制冷装置的进水管。
11.根据权利要求 3所述的具有外被动式冷却的方法, 其特征在于排风空腔的壁上有不少 于一层的闭式水冷装置,室内区域内或室内区域外或排风空腔的进风处有同时输出冷风和 冷水的蒸发制冷装置,室内区域外的空气经过蒸发制冷装置冷却后从进风处进入排风空腔 内, 蒸发制冷装置的冷水经过水泵和水管送给闭式水冷装置的进水管, 闭式水冷装置的水 经过出水管流回蒸发制冷装置的进水管。
12.根据权利要求 1或 2所述的具有外被动式冷却的方法, 其特征在于蒸发制冷装置的出 风分成两股, 一股出风送入排风空腔内, 另一股出风送入室内区域。
13.根据权利要求 9所述的具有外被动式冷却的方法, 其特征在于蒸发制冷装置的出风分 成两股, 一股出风送入排风空腔内, 另一股出风送入室内区域。
14.根据权利要求 11所述的具有外被动式冷却的方法,其特征在于蒸发制冷装置的出风分 成两股, 一股出风送入排风空腔内, 另一股出风送入室内区域。
15.根据权利要求 12所述的具有外被动式冷却的方法,其特征在于蒸发制冷装置采用间接 蒸发制冷装置, 该间接蒸发制冷装置的工艺风来自室内区域的排风并被直接排出室内区 域。
16.根据权利要求 13所述的具有外被动式冷却的方法,其特征在于蒸发制冷装置采用间接 蒸发制冷装置, 该间接蒸发制冷装置的工艺风来自室内区域的排风并被直接排出室内区 域。
17.根据权利要求 14所述的具有外被动式冷却的方法,其特征在于蒸发制冷装置采用间接 蒸发制冷装置, 该间接蒸发制冷装置的工艺风来自室内区域的排风并被直接排出室内区 域。
18.一种具有外被动式冷却的装置, 其特征在于包括室内区域和具有外被动式冷却装置, 而具有外被动式冷却装置包括内遮阳设施和透光性围护结构, 内遮阳设施自身或透光性围 护结构自身或内遮阳设施与透光性围护结构之间形成的不少于一层的气流通道为排风空 腔, 该排风空腔有进风处和排风处; 蒸发制冷装置位于室内区域内或室内区域外, 或者蒸 发制冷装置位于透光性围护结构的顶部或 /和透光性围护结构的底部或 /和透光性围护结构 的侧面, 或者蒸发制冷装置位于能够放置的位置; 蒸发制冷装置有进风口和出风口; 蒸发 制冷装置的进风口与室内区域外相通, 蒸发制冷装置的出风口与排风空腔的进风处相通, 排风空腔的排风处与室内区域外相通; 内遮阳设施采用透光或非透光的材料制成; 室内区 域是由透光性围护结构与其它围护结构所构成的室内空间。
19.根据权利要求 18述的具有外被动式冷却的装置, 其特征在于排风空腔的排风处或 /和 进风处安装有排风机。
20.根据权利要求 18述的具有外被动式冷却的装置,其特征在于排风机位于排风空腔内或 排风空腔外。
21.根据利要求 18或 19或 20所述的具有外被动式冷却的装置,其特征在于排风空腔的进 风处安装有蒸发制冷装置,该蒸发制冷装置采用直接蒸发制冷装置。
22.根据权利要求 18或 19或 20所述的具有外被动式冷却的装置,其特征在于排风空腔有 不少于二层, 且呈 S形, 该排风空腔有一个进风处和一个排风处。
23.根据权利要求 21 所述的具有外被动式冷却的装置, 其特征在于排风空腔有不少于二 层, 每层排风空腔有进风处和排风处。
24.根据权利要求 18或 19或 20所述的具有外被动式冷却的装置,其特征在于排风空腔的 内壁上或 /和内遮阳设施的水冷空腔的内壁上有不少于一层的开式湿帘水膜装置。
25.根据权利要求 21所述的具有外被动式冷却的装置, 其特征在于排风空腔的内壁上或 / 和内遮阳设施的水冷空腔的内壁上有不少于一层的开式湿帘水膜装置。
26.根据权利要求 23所述的具有外被动式冷却的装置, 其特征在于排风空腔的内壁上或 / 和内遮阳设施的水冷空腔的内壁上有不少于一层的开式湿帘水膜装置。
27.根据权利要求 24所述的具有外被动式冷却的装置,其特征在于开式湿帘水膜装置包括 喷头、 水泵和接水槽, 水泵的进水管通入水槽中, 水泵的出水管与喷头相通, 喷头喷出的 水形成水膜并落入接水槽内。
28.根据权利要求 25所述的具有外被动式冷却的装置,其特征在于开式湿帘水膜装置包括 喷头、 水泵和接水槽, 水泵的进水管通入水槽中, 水泵的出水管与喷头相通, 喷头喷出的 水形成水膜并落入接水槽内。
29.根据权利要求 26所述的具有外被动式冷却的装置,其特征在于开式湿帘水膜装置包括 喷头、 水泵和接水槽, 水泵的进水管通入水槽中, 水泵的出水管与喷头相通, 喷头喷出的 水形成水膜并落入接水槽内。
30.根据权利要求 24所述的具有外被动式冷却的装置,其特征在于室内区域内或室内区域 外或排风空腔的进风处有同时输出冷风和冷水的蒸发制冷装置,室内区域外的空气经过蒸 发制冷装置冷却后从进风处进入排风空腔内,蒸发制冷装置的冷水经过水泵和水管送给喷 头, 接水槽内的水流回蒸发制冷装置的进水管。
31.根据权利要求 25所述的具有外被动式冷却的装置 ,其特征在于室内区域内或室内区域 外或排风空腔的进风处有同时输出冷风和冷水的蒸发制冷装置,室内区域外的空气经过蒸 发制冷装置冷却后从进风处进入排风空腔内,蒸发制冷装置的冷水经过水泵和水管送给喷 头, 接水槽内的水流回蒸发制冷装置的进水管。
32.根据权利要求 26所述的具有外被动式冷却的装置,其特征在于室内区域内或室内区域 外或排风空腔的进风处有同时输出冷风和冷水的蒸发制冷装置,室内区域外的空气经过蒸 发制冷装置冷却后从进风处进入排风空腔内,蒸发制冷装置的冷水经过水泵和水管送给喷 头, 接水槽内的水流回蒸发制冷装置的进水管。
33.根据权利要求 18或 19或 20所述的具有外被动式冷却的装置,其特征在于排风空腔的 壁上有不少于一层的闭式水冷装置, 该闭式水冷装置内有水冷空腔, 室内区域内或室内区 域外或排风空腔的进风处有同时输出冷风和冷水的蒸发制冷装置,室内区域外的空气经过 蒸发制冷装置冷却后从进风处进入排风空腔内,蒸发制冷装置的冷水经过水泵和水管送给 闭式水冷装置的进水管, 闭式水冷装置的水经过出水管流回蒸发制冷装置的进水管。
34.根据权利要求 22所述的具有外被动式冷却的装置,其特征在于排风空腔的壁上有不少 于一层的闭式水冷装置, 该闭式水冷装置内有水冷空腔, 室内区域内或室内区域外或排风 空腔的进风处有同时输出冷风和冷水的蒸发制冷装置,室内区域外的空气经过蒸发制冷装 置冷却后从进风处进入排风空腔内,蒸发制冷装置的冷水经过水泵和水管送给闭式水冷装 置的进水管, 闭式水冷装置的水经过出水管流回蒸发制冷装置的进水管。
35.根据权利要求 23所述的具有外被动式冷却的装置,其特征在于排风空腔的壁上有不少 于一层的闭式水冷装置, 该闭式水冷装置内有水冷空腔, 室内区域内或室内区域外或排风 空腔的进风处有同时输出冷风和冷水的蒸发制冷装置,室内区域外的空气经过蒸发制冷装 置冷却后从进风处进入排风空腔内,蒸发制冷装置的冷水经过水泵和水管送给闭式水冷装 置的进水管, 闭式水冷装置的水经过出水管流回蒸发制冷装置的进水管。
36.根据权利要求 18或 19或 20所述的具有外被动式冷却的装置,其特征在于蒸发制冷装 置有两个出风口, 一个出风口与排风空腔相通, 另一个出风口与室内区域相通。
37.根据权利要求 26所述的具有外被动式冷却的装置,其特征在于蒸发制冷装置有两个出 风口, 一个出风口与排风空腔相通, 另一个出风口与室内区域相通。
38.根据权利要求 32所述的具有外被动式冷却的装置,其特征在于蒸发制冷装置有两个出 风口, 一个出风口与排风空腔相通, 另一个出风口与室内区域相通。
39.根据权利要求 35所述的具有外被动式冷却的装置,其特征在于蒸发制冷装置有两个出 风口, 一个出风口与排风空腔相通, 另一个出风口与室内区域相通。
40.根据权利要求 36所述的具有外被动式冷却的装置,其特征在于蒸发制冷装置采用间接 蒸发制冷装置, 该间接蒸发制冷装置的工艺风进风口与室内区域内相通, 工艺风出风口与 室内区域外相通。
41.根据权利要求 18或 19或 20所述的具有外被动式冷却的装置,其特征在于内遮阳设施 采用百叶窗,该百叶窗的叶片为横式或纵式,该叶片内有空腔,该空腔为排风空腔或 /和水 冷空腔。
42.根据权利要求 40所述的具有外被动式冷却的装置, 其特征在于内遮阳设施采用百叶 窗, 该百叶窗的叶片为横式或纵式, 该叶片内有空腔, 该空腔为排风空腔或 /和水冷空腔。
43.根据权利要求 41所述的具有外被动式冷却的装置,其特征在于百叶窗的叶片表面有高 反射材料层或 /和高吸热材料层。
44.根据权利要求 42所述的具有外被动式冷却的装置,其特征在于百叶窗的叶片表面有高 反射材料层或 /和高吸热材料层。
PCT/CN2011/078047 2010-08-06 2011-08-05 具有外被动式冷却的方法及其装置 WO2012016544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102474199A CN101892800B (zh) 2010-08-06 2010-08-06 具有外被动式冷却的方法及其装置
CN2010102474199 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012016544A1 true WO2012016544A1 (zh) 2012-02-09

Family

ID=43102132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078047 WO2012016544A1 (zh) 2010-08-06 2011-08-05 具有外被动式冷却的方法及其装置

Country Status (2)

Country Link
CN (1) CN101892800B (zh)
WO (1) WO2012016544A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151217A (zh) * 2018-02-02 2018-06-12 伟视门窗(湖州)有限公司 一种多功能南立面窗墙板块
CN114609840A (zh) * 2022-01-24 2022-06-10 北京科技大学 一种电致变色智能液流窗

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892800B (zh) * 2010-08-06 2012-09-05 于向阳 具有外被动式冷却的方法及其装置
CN103017287B (zh) * 2012-11-28 2017-04-12 于向阳 通气排热装置和空调用节能的装置与方法
CN105757848A (zh) * 2016-03-04 2016-07-13 苏州市吴江合众科技纤维有限公司 环保天然纤维业厂房空调
CN106014152B (zh) * 2016-08-03 2018-03-30 安徽卡塔门窗有限公司 一种隔热窗
CN107166581B (zh) * 2017-05-09 2020-06-19 西安工程大学 宿舍公寓楼用被动式蒸发冷却空调系统
CN108222367A (zh) * 2018-03-22 2018-06-29 深圳瑞凌新能源科技有限公司 一种建筑外墙或屋顶用中空辐射降温被动式结构
CN109489165B (zh) * 2018-11-26 2021-03-05 西安工程大学 一种太阳能烟囱与蒸发冷却相复合的排热系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243670A (ja) * 1994-03-01 1995-09-19 Shimizu Corp 空調装置
CN2732880Y (zh) * 2004-10-26 2005-10-12 叶鹏 水幕墙
CN2744756Y (zh) * 2004-07-16 2005-12-07 方大集团股份有限公司 双层幕墙的机械通风系统
JP2006152561A (ja) * 2004-11-25 2006-06-15 Ykk Ap株式会社 カーテンウォール
CN101603341A (zh) * 2009-06-23 2009-12-16 深圳市富诚科技发展有限公司 建筑结构承载的安全和经济型双层幕墙及施工工艺
DE202009015506U1 (de) * 2009-11-13 2010-02-11 Franz Hesedenz Gmbh Doppelfassade
JP2010065450A (ja) * 2008-09-11 2010-03-25 Ykk Ap株式会社 カーテンウォール
JP2010138546A (ja) * 2008-12-09 2010-06-24 Ykk Ap株式会社 カーテンウォール
CN101892800A (zh) * 2010-08-06 2010-11-24 于向阳 具有外被动式冷却的方法及其装置
CN201865546U (zh) * 2010-08-06 2011-06-15 于向阳 具有外被动式冷却的装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936984B2 (ja) * 2000-07-03 2007-06-27 シャープ株式会社 太陽電池パネルの設置構造
JP2002227328A (ja) * 2001-02-01 2002-08-14 Mitsubishi Estate Co Ltd ビル外壁用カーテンウォール
CN2661802Y (zh) * 2003-10-13 2004-12-08 深圳市三鑫特种玻璃技术股份有限公司 内循环呼吸式玻璃幕墙
CN2716382Y (zh) * 2004-07-03 2005-08-10 尹学军 门窗幕墙及其空气调节装置
CN2861336Y (zh) * 2005-05-17 2007-01-24 珠海兴业幕墙工程有限公司 内循环智能呼吸幕墙

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243670A (ja) * 1994-03-01 1995-09-19 Shimizu Corp 空調装置
CN2744756Y (zh) * 2004-07-16 2005-12-07 方大集团股份有限公司 双层幕墙的机械通风系统
CN2732880Y (zh) * 2004-10-26 2005-10-12 叶鹏 水幕墙
JP2006152561A (ja) * 2004-11-25 2006-06-15 Ykk Ap株式会社 カーテンウォール
JP2010065450A (ja) * 2008-09-11 2010-03-25 Ykk Ap株式会社 カーテンウォール
JP2010138546A (ja) * 2008-12-09 2010-06-24 Ykk Ap株式会社 カーテンウォール
CN101603341A (zh) * 2009-06-23 2009-12-16 深圳市富诚科技发展有限公司 建筑结构承载的安全和经济型双层幕墙及施工工艺
DE202009015506U1 (de) * 2009-11-13 2010-02-11 Franz Hesedenz Gmbh Doppelfassade
CN101892800A (zh) * 2010-08-06 2010-11-24 于向阳 具有外被动式冷却的方法及其装置
CN201865546U (zh) * 2010-08-06 2011-06-15 于向阳 具有外被动式冷却的装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151217A (zh) * 2018-02-02 2018-06-12 伟视门窗(湖州)有限公司 一种多功能南立面窗墙板块
CN108151217B (zh) * 2018-02-02 2023-09-12 伟视幕墙(上海)有限公司 一种多功能南立面窗墙板块
CN114609840A (zh) * 2022-01-24 2022-06-10 北京科技大学 一种电致变色智能液流窗

Also Published As

Publication number Publication date
CN101892800B (zh) 2012-09-05
CN101892800A (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
WO2012016544A1 (zh) 具有外被动式冷却的方法及其装置
Zhang et al. The application of air layers in building envelopes: A review
Khedari et al. Experimental study of a roof solar collector towards the natural ventilation of new houses
CN101922775B (zh) 具有被动式冷却的空调方法及其装置
CN201952950U (zh) 一种通风换气幕墙结构
WO2006000159A1 (fr) Mur-rideau pour porte et fenetre et appareil de conditionnement d&#39;air utilisant celui-ci
CN208458079U (zh) 一种新型太阳能集热蓄热墙采暖通风系统
WO2012016543A1 (zh) 具有内空气水循环被动式冷却的空调方法及其装置
CN108626776A (zh) 一种新型太阳能集热蓄热墙采暖通风系统
JP2002267227A (ja) 給気装置
CN210288762U (zh) 利用自然能源的模块化动态建筑表皮
Duraković et al. Passive solar heating/cooling strategies
CN201794488U (zh) 具有外空气水循环被动式冷却的装置
JP3149506U (ja) P・a(パッシブ・アクティブ)ハイブリッド冷暖房システム
CN1974974A (zh) 一种内外双循环双层幕墙
CN201865546U (zh) 具有外被动式冷却的装置
WO2012016545A1 (zh) 具有外空气水循环被动式冷却的方法及装置
CN201865547U (zh) 被动式冷却集成装置和蒸发制冷被动式冷却集成装置及其空调装置
CN108442619B (zh) 自清洁光热光伏一体化隔热通风可透光玻璃屋顶
CN201865545U (zh) 水被动式冷却集成装置、蒸发制冷水被动式冷却集成装置及其空调装置
CN114413356B (zh) 中庭建筑的分层温控系统
CN200971574Y (zh) 一种内外双循环双层幕墙
CN201802281U (zh) 外遮阳冷却为基础的蒸发制冷装置
CN101936121B (zh) 外遮阳冷却为基础的蒸发制冷方法与装置
CN204513684U (zh) 一种室内自然通风装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814127

Country of ref document: EP

Kind code of ref document: A1