WO2012014569A1 - 熱アシスト集積ヘッド及び熱アシスト記録装置 - Google Patents

熱アシスト集積ヘッド及び熱アシスト記録装置 Download PDF

Info

Publication number
WO2012014569A1
WO2012014569A1 PCT/JP2011/062944 JP2011062944W WO2012014569A1 WO 2012014569 A1 WO2012014569 A1 WO 2012014569A1 JP 2011062944 W JP2011062944 W JP 2011062944W WO 2012014569 A1 WO2012014569 A1 WO 2012014569A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
light
slider
waveguide
mirror
Prior art date
Application number
PCT/JP2011/062944
Other languages
English (en)
French (fr)
Inventor
松本 拓也
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2012014569A1 publication Critical patent/WO2012014569A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6088Optical waveguide in or on flying head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Definitions

  • the present invention relates to a heat-assisted integrated head and a heat-assisted recording apparatus using the same.
  • the coercive force is lowered by heating the medium with light at the moment of recording.
  • recording on a high coercive force medium is possible, and a recording density of 1 Tb / in 2 or more can be realized.
  • the spot diameter of the irradiated light needs to be the same size (several tens of nm) as the recording bit. This is because information on adjacent tracks is erased if the light spot diameter is larger than that.
  • Near-field light is used to heat such a minute region.
  • Near-field light is a localized electromagnetic field (light having wavenumber having an imaginary component) existing in the vicinity of a minute object having a wavelength equal to or smaller than the light wavelength, and is generated using a minute aperture or a metal scatterer having a diameter equal to or smaller than the light wavelength.
  • 2001-255254 proposes a near-field light generating element using a triangular metal scatterer as a highly efficient near-field light generating element.
  • plasmon resonance is excited in the metal scatterer, and strong near-field light is generated at the apex of the triangle.
  • Japanese Patent Application Laid-Open No. 2004-151046 proposes a structure in which a depression is formed on the surface of the metal scatterer on the slider flying surface side other than the apex where near-field light is generated. With this structure, it is possible to reduce the width of the intensity distribution of near-field light generated at the apex, and to suppress the generation of weak near-field light (background light) generated on the side opposite to the apex.
  • a waveguide is formed on the side of the magnetic pole, and the light generated from the semiconductor laser as the light source is guided to the vicinity of the tip of the magnetic pole.
  • the semiconductor laser is mounted on the flying slider or guides light from the suspension to the flying slider using a waveguide such as an optical fiber.
  • the semiconductor laser As a method for arranging the semiconductor laser as the light source on the flying slider, for example, as in US ⁇ 2009/0266789 A1, a method has been proposed in which the edge emitting laser is arranged so as to stand vertically with respect to the upper surface of the flying slider. ing. Further, as disclosed in Japanese Patent Application Laid-Open No. 2009-4030, the semiconductor laser is disposed so as to be horizontal with respect to the upper surface of the flying slider, and a mirror is formed on the end surface thereof, so that emitted light is formed in the flying slider. A method of directly coupling to a waveguide is proposed.
  • US 2008 / 0002298A1 proposes a method of arranging a semiconductor laser on the side surface of a slider.
  • a surface emitting laser is used as the semiconductor laser, and the laser is disposed on the side surface on the outflow end side of the flying slider.
  • the slider is provided with a waveguide having a grating coupler formed on its side surface so that light emitted from the semiconductor laser is coupled to the waveguide through the grating coupler.
  • the edge-emitting semiconductor laser is disposed on the top surface of the flying slider
  • the height of the entire head increases as the semiconductor laser is disposed.
  • the flying of the slider becomes unstable when an impact is applied to the drive.
  • the distance between the disks must be increased accordingly. Will become thicker.
  • the height of the entire head can be reduced.
  • the semiconductor laser is disposed on the thin submount and the submount is disposed on the upper surface of the slider.
  • the distance between the semiconductor laser and the waveguide is increased by the thickness of the submount. Therefore, the efficiency with which light from the semiconductor laser is coupled to the waveguide is reduced.
  • the thickness of the submount needs to be several tens of microns or less. However, considering the productivity of the submount, it is difficult to produce a large number of submounts with such a thickness. is there.
  • the semiconductor laser When the semiconductor laser is arranged on the side surface on the outflow end side of the slider, there is no need to arrange the semiconductor laser on the slider, so the problem of the height of the entire head is eliminated.
  • it is necessary to make light incident from the side surface of the waveguide and it is necessary to use a grating coupler. Since the grating coupler has a large wavelength dependence, when the wavelength of the semiconductor laser changes due to a change in the environmental temperature, the intensity of light coupled to the waveguide fluctuates.
  • the periphery of the magnetic head needs to be covered with an alumina film, and the outflow end side of the slider is usually covered with an alumina film having a thickness of 30 microns or more. Therefore, the semiconductor laser is placed on a thick alumina film. In this case, the heat generated by the semiconductor laser is difficult to escape, so that the temperature of the semiconductor laser rises significantly and the semiconductor laser is damaged or its life is shortened.
  • the present invention has a low overall head height, a high coupling efficiency between the semiconductor laser and the waveguide, and is hardly affected by the wavelength variation of the semiconductor laser.
  • a semiconductor laser having a mirror formed therein is used as a semiconductor laser, and the lateral surface of the flying slider, which is different from the inflow end and outflow end side surfaces, is different from the side surface.
  • the entrance of the waveguide formed in the flying slider is located on the side surface of the slider on which the semiconductor laser is disposed, and the emitted light from the semiconductor laser is directly coupled to the end face of the waveguide.
  • the waveguide in the slider has a curved portion so that light traveling in the waveguide travels in a direction toward the near-field light generating element.
  • the radius of curvature at the curved portion of the waveguide is too small, light is emitted from the waveguide and a propagation loss occurs.
  • the radius of curvature of the waveguide is preferably 60 ⁇ m or more.
  • a mirror may be provided in the middle of the waveguide. In this case, the light is totally reflected on the reflecting surface or the light is reflected by forming a metal film on the reflecting surface.
  • Mirrors are formed at both ends of a stripe structure in a semiconductor laser (a region constituted by a channel waveguide formed by etching a ridge for confining light and an active layer, where light amplification is performed).
  • the light reflected by the mirror is incident on the side surface of the semiconductor laser perpendicularly, and the light reflected by the side surface of the semiconductor laser returns to the stripe structure side.
  • the direction of the mirror is such that the reflected light at both ends of the stripe structure travels in opposite directions or in the same direction.
  • the two opposite side surfaces of the semiconductor laser function as a mirror constituting the resonator.
  • one opposing side surface of the semiconductor laser functions as a mirror constituting the resonator.
  • Mirrors for bending the optical path are formed by forming deep grooves by etching at both ends of the stripe structure. At this time, in order to prevent the mirror surface from deteriorating, it is preferable to form a dielectric film on the mirror surface.
  • the structure of the present invention has the following advantages.
  • the semiconductor laser is formed on the side of the flying slider, the height of the entire head does not increase. Accordingly, the slider can be stably floated, and the distance between the disks in the drive can be reduced.
  • the direction of the spot size converter can be set in the horizontal direction of the slider, the length of the spot size converter can be increased. As a result, the spot conversion rate can be increased, and the coupling efficiency when the light from the semiconductor laser is coupled to the waveguide can be increased. Therefore, the power of the semiconductor laser can be reduced, and the power consumption and the heat generation amount can be reduced. In addition, since the tolerance for the positional deviation of the semiconductor laser can be increased, the yield during assembly can be increased, and the manufacturing cost can be reduced.
  • Mirrors for bending the optical path may be formed only on one side of the stripe structure.
  • a deep groove or a grating formed by etching may be used instead of the side surface of the semiconductor laser.
  • a deep groove or a grating produced by etching may be used instead of the side surface of the semiconductor laser.
  • the electrodes of the semiconductor laser are formed only in the stripe structure, or in the region including the periphery of the mirror and the region near the emission surface. In order to prevent breakage of the mirror, it may be formed only in a region near the stripe structure and the exit surface.
  • the energy band width may be increased by making appropriate atoms diffuse in the active layer around the mirror or between the mirror and the side surface of the semiconductor laser so that light absorption is less likely to occur.
  • the stripe structure may be wide in the vicinity of the mirror. At this time, by making the width of the stripe structure in the direction parallel to the reflection surface of the mirror around the mirror larger than the width of the reflection surface of the mirror, the mirror can be etched simultaneously with a mask for etching the stripe structure. become. Therefore, it is possible to suppress the positional deviation between the stripe structure and the mirror.
  • the angle between the incident light and the reflected light may be 90 degrees, or the angle of the mirror may be different from that.
  • the angle between the incident light and the reflected light is greater than 90 degrees, the distance between the stripe structure and the side surface of the semiconductor laser can be increased, so that when the semiconductor laser side surface is cleaved, a part of the stripe structure is missing. Can be prevented.
  • the width of the semiconductor laser can be increased, the mechanical strength can be increased.
  • a waveguide for confining the light in the direction parallel to the active layer is provided from the mirror to the side surface of the semiconductor laser. You may form between.
  • the waveguide may have the same material or structure as the stripe structure, or may have a different material or structure.
  • the width of the waveguide between the mirror and the semiconductor laser may be such that the mode field diameter is the same as or different from the mode field diameter in the stripe structure.
  • the shape of the mirror surface may be a curved surface, for example, a parabolic surface, a spherical surface, an elliptical surface, or the like.
  • the light reflected by the mirror can be made into convergent light or parallel light.
  • the reflected light is converged on the side surface of the semiconductor laser, the light reflected on the side surface of the semiconductor laser is efficiently coupled to the stripe structure, so that the light emission efficiency of the semiconductor laser can be increased.
  • the efficiency with which the emitted light of the semiconductor laser is coupled to the waveguide can be increased.
  • the reflected light may be substantially parallel.
  • the shape of the mirror is a paraboloid, but may be another shape such as a spherical surface or an elliptical surface.
  • the light emitted from the stripe structure is different from completely parallel light, and is also different from the light spreading from one point light source. Therefore, when a mirror having a shape such as a paraboloid, a spherical surface, or an ellipsoid is used, the reflected light does not become completely parallel light or light that is completely collected at one point due to aberration.
  • the shape of the mirror is preferably an aspheric shape optimized to eliminate aberrations.
  • a cylindrical lens may be disposed near the side surface of the semiconductor laser. Thereby, the coupling efficiency when light is introduced into the waveguide in the slider can be increased.
  • the current to the semiconductor laser may be supplied by placing a flexible printed circuit board of the suspension on the upper surface of the semiconductor laser and bringing the wiring formed thereon into contact with the electrode of the semiconductor laser.
  • the semiconductor laser In order to suppress noise caused by light reflected from the slider side and returning to the semiconductor laser, the semiconductor laser is placed so that the direction of the semiconductor laser is oblique to the side of the slider, or the side of the slider is on the air bearing surface. Alternatively, it may be inclined. By doing so, it becomes difficult for reflected light to enter the semiconductor laser, so that noise can be reduced.
  • the waveguide in the slider may be branched in the middle, and the power of the light coupled thereto may be monitored with a photodetector. By forming a feedback loop, power fluctuation can be suppressed.
  • the semiconductor laser of the present invention may be disposed on the upper surface of the slider (the surface opposite to the air bearing surface).
  • the optical path in the semiconductor laser is bent by the mirror, so that the overall height does not increase.
  • the distance between the semiconductor laser and the slider can be reduced.
  • the efficiency with which the light emitted from the semiconductor laser is coupled to the waveguide can be increased.
  • light having a polarization direction necessary for a near-field light generating element using a metal scatterer can be generated using a TE mode laser.
  • a structure in which a semiconductor laser is attached to a flying slider provided with a magnetic pole that generates a recording magnetic field, a near-field light generating element, and a waveguide is called a heat-assisted integrated head.
  • FIG. 3 is a side sectional view showing an example of the thermally-assisted integrated head of the present invention. It is a figure which shows the heat assist integrated head of this invention, and is sectional drawing seen from the outflow end side.
  • FIG. 4 is a side view of the heat-assisted integrated head of the present invention as seen from the side surface on which the semiconductor laser is disposed.
  • FIG. 3 is a cross-sectional view of the heat-assisted integrated head of the present invention as viewed from the top surface of the slider. The figure which shows the main magnetic pole front-end
  • FIG. 4 is a diagram showing a tip of a main magnetic pole and a portion of a near-field generating element, and a cross-sectional view seen from the air bearing surface side.
  • the figure which shows the electrode structure on a semiconductor laser is a figure which shows the example in which the electrode was formed in the part except a mirror and an emission part.
  • the figure which shows the electrode structure on a semiconductor laser is a figure which shows the example in which the electrode was formed also in the upper surface of a mirror and an emission part.
  • the figure which shows the electrode structure on a semiconductor laser and is a figure which shows the example in which the electrode was formed in the part except a mirror and an emission part.
  • the figure which shows the relationship between the stripe structure of a semiconductor laser, and a mirror is a figure which shows the case where the width
  • the figure which shows the relationship between the stripe structure of a semiconductor laser, and a mirror and is a figure which shows the case where a stripe structure is arrange
  • the figure which shows the reflection structure in the opposite side to the output side is a figure which shows the example which used the same surface as the surface of the output side as a reflection surface.
  • the figure which shows the reflective structure in the opposite side to the output side is a figure which shows the example which used the surface orthogonal to the surface of the output side as a reflective surface.
  • the figure which shows the reflective structure in the opposite side to the output side and is a figure which shows the example which used the side surface of the groove
  • the figure which shows the reflective structure in the opposite side to the output side and is a figure which shows the example reflected with the grating formed in the active layer surface.
  • the figure which shows the example in which the waveguide was formed between the mirror and the output surface and is a figure which shows the example whose width
  • the figure which shows the example in which the waveguide of the material different from a stripe structure was formed between the stripe and the output surface, and is a figure which shows the example using a mirror.
  • the figure which shows the example in which the waveguide of the material different from a stripe structure was formed between the stripe and the output surface, and the figure which shows the example which bent the waveguide.
  • the figure which shows the wiring method to a semiconductor laser and is the figure which shows the example which sent the electric current through the electrode on a submount.
  • the figure which shows the wiring method to a semiconductor laser and is a figure which shows the example which formed two electrodes in the surface of the one side of a semiconductor laser.
  • FIG. 1 It is a figure which shows the wiring method when a submount is arrange
  • the figure which shows the means to reduce the reflected light in a slider side surface and is a figure which shows the example which filled with resin between the semiconductor laser and the waveguide.
  • the figure which shows the means to reduce the reflected light in a slider side surface is a figure which shows the example which inclined the slider side surface.
  • the figure which shows the example which formed the antireflection film in the slider side surface is the figure which shows the example which formed the groove
  • the figure which shows the example which formed the antireflection film in the slider side surface and is the figure which shows the example which formed the groove
  • the figure which shows the example which formed the antireflection film in the slider side surface and is a figure which shows the example which mounted the semiconductor laser after slider cutting.
  • the figure which shows the example which bent the direction of the waveguide in a slider using the mirror It is a figure which shows the example in which a waveguide injects diagonally with respect to a near-field light generating element, and is a whole figure.
  • positioning a semiconductor laser It is a figure which shows the example which formed the waveguide for optical power monitors, and is a general view.
  • the figure which shows the example which formed the waveguide for optical power monitors and is a figure which shows the example of the branch part of a waveguide.
  • the figure which shows the example which formed the waveguide for optical power monitors and is the figure which shows the example which made the edge part of the termination
  • the figure which shows the example which formed the waveguide for optical power monitors and is a figure which shows the example in which the central axis of the waveguide for optical power monitors became diagonal with respect to the slider side surface.
  • the figure which shows the alignment method and is a figure which shows the example of arrangement
  • the figure which shows the alignment method and is a figure which shows the holding method of components.
  • FIG. 5 is a view showing an example in which a semiconductor laser is arranged on a slider and an electrode is provided on an upper portion of a submount, and is a cross-sectional view seen from a side surface side.
  • FIG 3 is a diagram showing an example in which a semiconductor laser is arranged on a slider and electrodes are provided on the side surface of a submount, and is a cross-sectional view seen from the side surface side.
  • positioned the cylindrical lens near the emission surface of a semiconductor laser shows the example which has arrange
  • positioned the cylindrical lens near the emitting surface of a semiconductor laser and shows the example which has arrange
  • the recording magnetic field is generated by the magnetic head unit 6 including the coil 7, the thick magnetic pole 27 for transmitting the magnetic flux generated by the coil 7, the main magnetic pole 2, and the return pole 8. .
  • the magnetic field generated by the coil 7 is transmitted through the thick magnetic pole 27 and is transmitted to the main magnetic pole 2 disposed in the vicinity of the near-field light generating element 1.
  • the magnetic recording medium 14 is heated by the near-field light generated from the near-field light generating element 1, and at the same time, the recording magnetic field generated from the main magnetic pole 2 is applied to the magnetic recording medium 14, thereby recording layer 14 ' A record mark was written on.
  • FIG. 4 shows an enlarged view of the main magnetic pole 2 and the near-field light generating element 1.
  • 5A shows the main magnetic pole and the near-field light generating element as seen from the side
  • FIG. 5B shows the view as seen from the air bearing surface.
  • the main magnetic pole 2 was formed at the tip of the thick magnetic pole 27 for transmitting the magnetic flux generated in the coil 7.
  • the width above the thinned portion was gradually increased, and the angle ⁇ of the tapered portion was 45 degrees.
  • the height h 4 of the main magnetic pole was 900 nm.
  • the distance h 12 between the thick magnetic pole 27 and the slider air bearing surface 17 was 100 nm.
  • the magnetic pole was made of NiFe or CoFe alloy.
  • a reproducing head including a magnetic reproducing element 4 was formed on the side of the write head as shown in FIG.
  • a Giant Magneto Resistive (GMR) element or a Tunneling Magneto Resistive (TMR) element is used as the magnetic reproducing element 4.
  • a magnetic shield 9 is formed around the magnetic reproducing element 4 to prevent magnetic field leakage.
  • the shape seen from the slider air bearing surface 17 is a shape in which the width gradually decreases toward the vertex 20 where the near-field light is generated (in this embodiment, a triangle).
  • the metal structure 1 having a shape when viewed from the side surface of the slider is such that the width W 3 is wide at the slider upper portion 21 and narrowed at the slider lower portion 22.
  • a tapered portion 26 was formed between a portion 21 having a wide upper portion and a portion 22 having a narrow lower portion.
  • the length W a of the bottom triangular portion is 60 nm to 100 nm, the apex angle ⁇ 1 is 60 degrees, the tip width W b is 10 nm, and the distance s between the apex 20 where the near-field light is generated and the main magnetic pole is 20 ⁇ 30 nm.
  • the height h 3 of the metal structure 1 was 900 nm, the upper width W 3 was 3 ⁇ m, and the distance h 7 from the air bearing surface to the expanded portion of the upper portion was 250 nm.
  • the apex angle ⁇ 2 of the tapered portion 26 was 60 degrees.
  • the material of the metal structure 1 was gold, and the material around the metal structure 1 was alumina (Al 2 O 3 ).
  • the waveguide 3 (shown by the core portion in the figure) was used.
  • the core 3 of the waveguide was disposed beside the metal structure 1 as shown in FIG. 5A.
  • the distance between the waveguide core 3 and the metal structure 1 (dx in FIG. 5A) was 20 nm.
  • evanescent light generated so as to ooze out into the clad 15 exists.
  • surface plasmons which are charge density waves, are generated at the interface 29 between the metal structure 1 and the clad 15.
  • the width of the upper portion 21 of the metal structure 1 when viewed from the side of the slider is increased and the tapered portion 26 is provided.
  • the surface generated in the upper portion 21 of the metal structure 1 Plasmons gather at the portion 22 where the width of the bottom of the metal structure is narrowed.
  • the electromagnetic field strength is increased at the bottom of the metal structure, and the generation efficiency of near-field light generated at the apex 20 can be increased.
  • the portion of the metal structure 1 other than the vertex 20 on the medium side surface is such that the distance between the surface of the scatterer and the medium surface is the distance between the vertex 20 of the scatterer and the medium surface.
  • weak near-field light background light
  • the medium is heated also at portions other than the apex portion 20, and the recorded information may be erased.
  • the recess h 2 amount of the bottom surface 25 is 10 nm.
  • a semiconductor laser 30 having a wavelength of 780 to 980 nm is used, and as shown in FIGS. 2A, 2B and 3, it is not on the inflow end side among the four side surfaces of the flying slider 5, And it arrange
  • the height of the flying slider was 230 ⁇ m, and the width in the direction parallel to the surface of the recording disk was 850 ⁇ m in the direction parallel to the recording track and 700 ⁇ m in the direction perpendicular to the recording track.
  • the direction of the stripe structure of the semiconductor laser is directed to the side surface 63 of the slider.
  • a mirror structure in which mirrors 101 are formed at both ends of the stripe structure is used.
  • the angle ⁇ of the mirror 101 is 45 °, and the light transmitted through the stripe structure is bent by the mirror 101 in a horizontal direction (in-plane direction of the active layer 31) with respect to the active layer 31 deposition surface in the semiconductor laser.
  • the semiconductor laser was advanced in a direction perpendicular to the side surface of the semiconductor laser (surface located on both sides of the stripe structure).
  • the direction of the mirror 101 is such that the reflected light at both ends travels in opposite directions. Part of the light reflected by the mirror is reflected on the side surface and returns to the stripe structure side. At this time, the two opposite side surfaces function as a mirror that forms an optical resonator.
  • By injecting current into the active layer from the electrode 45 on the upper surface of the semiconductor laser laser oscillation occurs and laser light is emitted from the side surface.
  • a reflectance adjustment film (dielectric multilayer film or single layer film) 109 on the side surface of the semiconductor laser, the reflectance on the side surface on which the laser beam is emitted is low, and the reflectance is reflected on the opposite side surface. The rate was made higher.
  • the semiconductor laser 30 was placed on the submount 32, and the submount 32 was bonded to the side surface 63 of the slider using a conductive adhesive 37. Although heat is generated from the semiconductor laser 30, if the heat does not escape, the temperature of the semiconductor laser rises, leading to damage to the semiconductor laser or a decrease in life. When the side surfaces of the submount 32 and the slider 5 are joined using the conductive adhesive 37, the heat generated by the semiconductor laser is transmitted to the submount and then to the slider 5. The heat transmitted to the flying slider 5 is released to the recording disk side through an air flow flowing between the flying surface and the recording disk. As a result, temperature rise in the semiconductor laser can be suppressed.
  • the entrance of the waveguide formed in the flying slider 5 is positioned on the side surface of the slider on which the semiconductor laser is disposed so that the light emitted from the semiconductor laser 30 is directly coupled to the waveguide formed in the flying slider 5. I made it.
  • the distance between the semiconductor laser and the side surface of the slider is preferably as short as possible. In this embodiment, the distance is set to 0 to 10 ⁇ m. The ideal is 0, but a width of 0 to 10 ⁇ m occurs due to the alignment error.
  • the waveguide 3 in the slider is provided with a curved portion so that light travels in a direction substantially parallel to the air bearing surface of the slider in the vicinity of the light incident portion 16, and in the vicinity of the near-field light generating element 1, The light travels in a direction perpendicular to the flying surface of the slider. In this way, light emitted from the semiconductor laser 30 in the horizontal direction hits the near-field light element 1 from above (the direction opposite to the air bearing surface 17). Note that when the waveguide 3 is processed, the substrate surface becomes a plane parallel to the yz plane. Therefore, the waveguide having the curved portion as described above can be easily manufactured by lithography.
  • the material of the core 3 of the waveguide is Ta 2 O 5, and the material of the clad portion 15 is Al 2 O 3 .
  • the wavelength is 830 nm
  • the core width W 1 in the direction perpendicular to the recording track direction is 500 nm
  • the core width W 2 in the direction parallel to the recording track direction is 300 nm
  • the wavelength is 980 nm.
  • the core width W 1 in the direction perpendicular to the direction of the recording track was 650 nm
  • the core width W 2 in the direction parallel to the direction of the recording track was 300 nm.
  • the material of the waveguide 3 is not limited as long as the refractive index of the core is larger than the refractive index of the clad.
  • the clad material is Al 2 O 3 and the core material is TiO 2 , SiN, or SiO x N y. Good.
  • the clad material may be SiO 2 and the core material may be Ta 2 O 5 , TiO 2 , SiO x N y , or Ge-doped SiO 2 .
  • FIG. 6 shows the relationship between the radius of curvature R and the transmittance of the waveguide when the core width is 500 nm ⁇ 300 nm. As shown in this figure, when the radius is 60 ⁇ m or more, no propagation loss occurs, but when the radius is less than that, a propagation loss occurs, and the light intensity reaching the near-field light generating element 1 decreases. In this example, the radius of curvature was set to 100 ⁇ m or 150 ⁇ m so as not to cause propagation loss.
  • the length L 10 of the straight portion was set to 30 [mu] m.
  • the length L 10 of the straight portion if not hit the coil or magnetic pole and waveguide of the magnetic head, may be other values.
  • a spot size converter 19 as shown in FIG. 7 is formed at the entrance of the waveguide 3.
  • the width W 20 on the entrance side of the waveguide 3 is made smaller than W 1 , and has a refractive index intermediate between the refractive index of the core and the refractive index of the cladding 15 around the core of the waveguide 3 made of Ta 2 O 5.
  • a layer 18 made of material was formed.
  • the material of the layer 18 and addition of SiN on Al 2 O 3 amount of SiN, rather than the refractive index of the refractive index of Al 2 O 3 but the addition of SiN on Al 2 O 3 It adjusted so that it might become 0.05 larger.
  • the width W 20 on the incident side of the waveguide core was 80 nm.
  • the width W 21 of the layer 18 was 10 ⁇ m, the width W 22 was 5 ⁇ m, and the length W 23 was 250 ⁇ m.
  • the direction of the spot size converter (direction in which light travels) is the horizontal direction (y direction) of the slider. Therefore, it is possible to increase the spot diameter conversion rate (the ratio of the mode field diameter at the entrance of the spot size converter to the mode field diameter at the exit) of the spot size converter. That is, generally, as the length W 23 of the spot size converter 19 is large, it is possible to increase the conversion ratio of the spot diameter.
  • the direction of the spot size converter is perpendicular to the air bearing surface 17 (z direction). In this case, the length W 23 of the spot size converter can not be greater than the height of the slider (z-direction width).
  • the direction of the spot size converter is in the horizontal direction of the slider (y direction), so that the spot size converter is more perpendicular to the air bearing surface 17 than the spot size converter.
  • the length of the spot size converter can be increased. This is because the horizontal width (y-direction width) of the slider is more than twice as large as the thickness (z-direction width). Therefore, the spot diameter conversion rate can be increased. If the spot diameter conversion rate can be increased in this way, the mode field diameter at the waveguide entrance 16 can be increased, so that the coupling efficiency between the semiconductor laser and the waveguide can be increased. In addition, since the amount of decrease in coupling efficiency when the position of the semiconductor laser is shifted is reduced, the allowable range for the position shift amount of the semiconductor laser can be increased.
  • a TE mode laser was used as the semiconductor laser, and the polarization direction 64 of the emitted light 110 of the semiconductor laser was made parallel to the air bearing surface of the slider, as shown in FIG.
  • the propagation direction changes, so that the polarization direction is perpendicular to the side surface 29 of the metal structure 1 in the vicinity of the near-field light generating element 1. That is, the polarization direction of incident light coincides with the polarization direction necessary for generating surface plasmons in the metal structure 1.
  • the structure of the present invention has the following advantages.
  • the longitudinal direction of the semiconductor laser is parallel to the direction of the recording track. Therefore, the width of the semiconductor laser in the direction perpendicular to the direction of the recording track is small, and the position of the center of gravity does not deviate greatly from the center. Therefore, stable levitation becomes possible.
  • the direction of the spot size converter can be set in the horizontal direction of the slider, the length of the spot size converter can be increased. As a result, the spot conversion rate can be increased, and the coupling efficiency when the light from the semiconductor laser is coupled to the waveguide can be increased. Therefore, the power of the semiconductor laser can be reduced, and the power consumption and the heat generation amount can be reduced. In addition, since the tolerance for the positional deviation of the semiconductor laser can be increased, the yield during assembly can be increased, and the manufacturing cost can be reduced.
  • the thickness L 2 of the semiconductor laser was 50 ⁇ m
  • the length L 1 in the long side direction was 550 ⁇ m
  • the length L 3 in the short side direction was 80 to 100 ⁇ m.
  • the length L 1 in the long side direction depends on the required light amount, and may be shortened when recording is possible with low power, for example, 300 ⁇ m.
  • the length L 3 in the short side direction depends on the distance L 20 from the end of the stripe structure to the side surface 65 of the semiconductor laser. When the distance L 20 is too large, while proceeds from the mirror to the side, the beam will spread.
  • the distance L 20 is preferably small.
  • the side surface of the semiconductor laser (the emission surface and the opposite surface) is formed by cleavage, chipping is present at the edge of the cleavage surface. Therefore, if the distance L 20 is too small, cleavage may cause a part of the stripe structure to be damaged and hinder laser oscillation.
  • the target value of the distance L 20 is set to 40 to 50 ⁇ m. Due to the variation due to cleavage, the actual value was larger or smaller than this value.
  • FIG. 8A shows a cross-sectional structure of the semiconductor laser 30.
  • a GaAs substrate was used as the substrate 105, and an AlGaAs lower clad layer 103 and an Al x Ga 1-x As active layer 31 were formed thereon. The mixed crystal ratio x was adjusted according to the wavelength used.
  • an AlGaAs upper cladding layer 102, an insulating layer 104, and an electrode layer 45 were formed on the active layer.
  • a ridge 100 is formed in the upper clad layer 102 so that light is confined in a direction horizontal to the film (in the portion where the ridge is formed, the equivalent refractive index of the active layer is larger than that of the periphery, so that the light is Trapped).
  • the width W 30 of the ridge 100 was 1.5 to 2.5 ⁇ m.
  • the Al x Ga 1-x As active layer can generate light having a wavelength of 0.7 to 0.9 ⁇ m. However, by using other materials for the active layer, light having other wavelengths can be generated. May be generated. For example, materials such as In x Ga x As (wavelength 900 nm or more) and In 1-x Ga x As y P 1-y (wavelength 1.3 to 1.6 ⁇ m) may be used.
  • an embedded type structure may be used.
  • the portions other than the central portion were etched to form the clad layer 106 in the periphery.
  • the electrode layer 45 was formed thereon.
  • the refractive index of the active layer in the part that has not been etched becomes higher than the surroundings, it functions as a channel-type waveguide, and light is confined in the active layer.
  • FIG. 9 shows the structure of the mirror 101 formed at both ends of the semiconductor laser 30.
  • the ridge type structure of FIG. 8A was used as the structure of the semiconductor laser.
  • Deep grooves 107 were formed at both ends of the ridge 100 of the semiconductor laser by dry etching.
  • the depth D 10 of the deep groove and the width W 34 in the direction perpendicular to the ridge were made sufficiently larger than the beam diameter of the light transmitted through the active layer.
  • the depth D 10 is 6 to 8 ⁇ m
  • the width W 34 is 10 to 15 ⁇ m.
  • the side surface of the groove is inclined at the end surface of the ridge 100 so that the side surface 118 functions as a mirror.
  • the side surface (mirror surface) 118 of the deep groove was covered with a dielectric film 108 having a refractive index such as SiO 2 smaller than the refractive index of the active layer in order to prevent deterioration of the end surface.
  • the thickness of the dielectric film was 0.3-2 ⁇ m.
  • a dielectric film 109 for adjusting the reflectivity was formed on the side surface (emission surface) of the semiconductor laser on the laser beam emission side and the side surface on the opposite side.
  • the dielectric film was made of a transparent material such as SiO 2 , SiN, Al 2 O 3 , or TiO 2, and the optimum reflectance was obtained by adjusting the thickness.
  • the dielectric film may be a multilayer film made of different materials.
  • the reflectance of the exit surface is 30%, and the reflectance on the opposite surface is 95%.
  • These reflectance values may be other values as long as the amount of reflected light on the side surface is sufficient to satisfy the oscillation conditions of the semiconductor laser.
  • the reflectance on the emission side is set to 20%. May be.
  • the semiconductor laser electrode 45 (p-electrode) was formed on a portion other than the periphery of the mirror 101 on the ridge 100 as shown in FIG. 10A. Since light absorption in the active layer increases in a region where no current is injected, it is preferable to increase the area covered by the electrode as much as possible, and the electrode may be formed so as to include the mirror 101 as shown in FIG. 10B. . However, when the mirror 101 is processed, impurities may be mixed in or the lattice defects may occur on the mirror surface 118. As a result, there are impurity ranks and lattice defect ranks in the energy rank, and carrier recombination occurs through those ranks. And the mirror surface may be damaged by the heat generated by the recombination. In order to prevent this, as shown in FIG. 10C, portions other than the mirror may be covered with electrodes.
  • the energy band width is widened in all the regions 115 between the mirror surface and the side surface of the semiconductor laser so that light absorption is less likely to occur. It may be.
  • the ridge 100 and the mirror 101 are in contact with each other.
  • the ridge 100 and the mirror 101 may be formed so as to be separated from each other.
  • the ridge 100 and the mirror 101 are in contact with each other, and the width W 32 of the ridge 100 in the direction parallel to the mirror surface 118 is greater than or equal to the width W 31 of the mirror surface 118 in the vicinity of the mirror. It may be. By doing so, the mirror can be formed so that there is no positional deviation between the ridge 100 and the mirror surface 118.
  • a first mask layer resist layer or hard mask layer
  • a second mask layer that covers the outside of the deep groove 107 is formed.
  • the size of the portion covered with the second mask is made larger than the deep groove 107 forming the mirror so that the portion of the side surface 118 of the mirror is not covered with the second mask.
  • the width W 32 of the ridge 100 is equal to or greater than the width of the mirror surface 118 (width in the direction perpendicular to the light incident direction) W 31 , the periphery of the portion that becomes the mirror surface 118 is the first mask. Since it is covered with the layer, it is not etched, and the shape of the mirror surface 118 is finally determined by the shape of the first mask layer. Accordingly, the ridge 100 and the mirror surface 118 are not misaligned.
  • the width W 31 of the mirror surface 118 is 10 ⁇ m
  • the width W 32 in the direction parallel to the mirror surface of the portion 119 where the width of the ridge end portion is wide is 12 ⁇ m
  • the width W in the direction perpendicular to the mirror surface. 33 was set to 2 ⁇ m.
  • the portion 119 where the width of the ridge end portion is wide may be formed so as to reach the side surface 65 of the semiconductor laser. Further, a portion 119 having a wide ridge end portion may be formed so as to surround the mirror 101.
  • the ridge type structure is used as the stripe structure of the semiconductor laser. However, even in the buried type as shown in FIG. 8B, in the vicinity of the mirror 101 as in the case of FIG. 11B and FIG. The active layer portion may be widened.
  • the angle ⁇ of the mirror 101 is 45 degrees, but it may be 45 degrees or more or 45 degrees or less.
  • the mirror angle ⁇ is set to 55 degrees.
  • the distance L 20 from the end of the stripe structure (ridge or buried waveguide) 100 to the side surface of the semiconductor laser is preferably small in consideration of the light emission efficiency of the semiconductor laser. However, since the side surface of the semiconductor laser manufactured in cleaving, when the angle is 45 degrees, the distance L 20 is too small, the chipping caused by cleavage, likely that some may be damaged stripe structure is there.
  • the width L 3 of the semiconductor laser becomes very small if the distance L 20 from the end of the stripe structure 100 to the side surface of the semiconductor laser is small. For example, if the distance L 20 from the end of the stripe structure to the side surface of the semiconductor laser is 20 ⁇ m at both ends of the stripe structure, the width L 3 of the semiconductor laser is 40 ⁇ m.
  • the width is reduced in this manner, the mechanical strength is weakened, and the laser may break during the processing of the semiconductor laser or the operation of attaching the semiconductor laser to the slider. Further, heat generated in the active layer is likely to be trapped in the semiconductor laser, and the laser may be damaged by heat generation.
  • the angle ⁇ of the mirrors at both ends of the stripe structure is larger than 45 degrees, the direction of the stripe structure 100 can be inclined, so the distance between the stripe structure and the side surface of the semiconductor laser. And the width L 3 of the semiconductor laser can be increased. Therefore, problems such as chipping during dicing, mechanical strength, and heat generation can be avoided.
  • the distance L 21 between the two mirrors is 500 ⁇ m, and the distance (L 20 , L 21 ) from the stripe structure end to the side surface of the semiconductor laser is 20 ⁇ m at both ends. Therefore, L 3 was 128 ⁇ m.
  • the mirror angle may be set to 45 degrees, and the stripe structure 100 may be gradually bent along the way.
  • the distance L 22 between the two mirrors is 500 ⁇ m
  • the distances (L 20 , L 21 ) from the ridge end to the side of the semiconductor laser are both 20 ⁇ m
  • the stripe structure is gradually bent.
  • L 3 was 90 ⁇ m.
  • the traveling directions of the light reflected by the mirror 101 are different from each other on the laser light emission side and the opposite side, but they may proceed in the same direction as shown in FIG. 13A. That is, the two reflecting surfaces forming the resonator may be the same surface.
  • the reflectivity of the end face on the emission side of the semiconductor laser is preferably smaller than the reflectivity of the end face on the opposite side, but in order to realize this, a film of the dielectric film 109 for adjusting the reflectivity It is necessary to make the thickness and composition different from each other on the laser beam emission side and the opposite side. Therefore, in this embodiment, the dielectric film 109 is formed separately on the emission side and the opposite side so that the reflectance differs between the emission side and the opposite side. For example, the reflectance on the emission side is 30% and the reflectance on the opposite side is 95%.
  • the reflecting surface opposite to the side on which light is emitted may be a side surface 113 orthogonal to the side on which light is emitted. In this way, since the number of mirrors 101 can be reduced to one, loss due to light scattering generated on the mirror surface 118 can be reduced.
  • the side surface of the semiconductor laser is used as the resonator mirror, but a deep groove may be formed on the substrate by etching, and the side surface of the groove may be used as the resonator mirror.
  • the deep groove 116 is formed at the end of the stripe structure opposite to the emission side.
  • the side surface of the deep groove 116 and the semiconductor laser on the emission side A resonator is configured by the side surface.
  • the side surface (reflection surface) of the deep groove 116 was covered with a dielectric film such as SiO 2 or Al 2 O 3 in order to protect the surface and adjust the reflectance.
  • the light is reflected by using the side surface 113 orthogonal to the side surface on which light is emitted.
  • the side surface on the emission side is formed by cleavage
  • cleavage of the side surface 113 orthogonal to the side surface 113 is performed. Can be difficult and rough.
  • the reflection surface can be flattened, so that the light loss can be reduced.
  • the side surface of the semiconductor laser When the side surface of the semiconductor laser is used as the output side mirror, the side surface is formed by cleavage, but the distance between the mirror 101 and the side surface 65 of the semiconductor laser varies due to the displacement of the cleavage position.
  • the light spot spreads while propagating from the mirror to the side surface of the semiconductor laser when the distance between the mirror 101 and the side surface 65 of the semiconductor laser fluctuates, when the light reflected by the side surface returns to the stripe structure 100, the light coupled to the stripe structure Will change. As a result, the laser beam generation efficiency varies.
  • the output side mirror is manufactured by etching, the position of the mirror is accurately determined, and thus such fluctuations in generation efficiency are reduced.
  • light may be reflected by forming a grating 117 on the surface of the active layer instead of using the side surface or deep groove of the semiconductor laser.
  • Light can be reflected by optimizing the period of the grating.
  • a waveguide for confining light in the direction parallel to the active layer (the x direction in FIG. 3) is not formed between the mirror 101 and the side surface 65 of the semiconductor laser.
  • a waveguide 114 such as a ridge waveguide or a channel waveguide may be formed between the mirror 101 and the side surface 65 of the semiconductor laser. Without such a confinement structure between the mirror and the side surface of the semiconductor laser, a light spot spreads while propagating from the mirror to the side surface of the semiconductor laser.
  • the mode field diameter of the stripe structure 100 of the main body is different from the spot diameter of the reflected light, so that coupling loss occurs.
  • the light emission efficiency of the semiconductor laser decreases.
  • the side surface of the semiconductor laser is formed by cleavage, the deviation of the cleavage position causes variation in the spot diameter of the emitted light.
  • the spread of the light spot in this region can be suppressed.
  • a waveguide 114 having the same material and film structure as the stripe structure 100 of the main body is formed between the mirror and the side surface of the semiconductor laser, the ridge width W 30 of the stripe structure 100 of the main body is 2 ⁇ m, The width W 31 of the ridge of the waveguide 114 between the side surfaces of the semiconductor laser was set to 2 ⁇ m.
  • the width W 30 of the stripe structure 100 of the main body and the width W 31 of the waveguide 114 between the mirror and the side surface of the semiconductor laser may be different.
  • the mode field diameter in the waveguide 114 can be made larger than the mode field diameter in the stripe structure 100.
  • the beam diameter of the emitted light is increased, the influence of the positional deviation between the semiconductor laser and the waveguide in the slider can be reduced.
  • the width W 31 of the waveguide 114 between the mirror and the side surface of the semiconductor laser may be gradually changed.
  • the width W 31 is gradually increased from 2 ⁇ m to 2.5 ⁇ m as it proceeds in the direction of the exit surface (in the vicinity of the exit surface, the distance L 20 between the mirror and the side surface of the semiconductor laser).
  • the width W 31 is made constant so that the spot diameter does not vary due to variation).
  • the semiconductor laser side surface 65 When the width W 31 of the waveguide 114 between the mirror and the side surface of the semiconductor laser is made larger than the width W 30 of the stripe structure 100 of the main body without providing the taper portion in this way, the semiconductor laser side surface 65 When the reflected light returns to the stripe structure 100 of the main body, a coupling loss occurs because the mode field diameter of the stripe structure 100 of the main body and the spot diameter of the reflected light are different.
  • the spot diameter of the reflected light gradually decreases as it proceeds in the direction opposite to the exit surface, and becomes close to the mode field diameter of the stripe structure 100 of the main body. Therefore, coupling loss can be suppressed.
  • the waveguide having the same material and film configuration as the main body stripe structure 100 is formed between the mirror and the side surface of the semiconductor laser. It may be formed.
  • it was made of a material obtained by adding SiN to Al 2 O 3 between the mirror 101 and the semiconductor laser side surface 65 in the same manner as the waveguide on the entrance side of the spot size converter shown in FIG. A core 111 having a rectangular cross section was formed, and an Al 2 O 3 clad 112 was formed around the core 111.
  • Amount of SiN, the refractive index of the added material of SiN was controlled to 0.05 greater than the refractive index of the Al 2 O 3 to Al 2 O 3.
  • the width W 21 in the x direction of the waveguide core was 10 ⁇ m, and the width W 22 in the z direction (thickness direction) was 5 ⁇ m.
  • Other materials may be used for the core and cladding.
  • a semiconductor material having a wide band gap by changing the atomic composition ratio of the material constituting the active layer may be used as the material of the waveguide core 111.
  • the material of the core is Al x Ga 1-x As, and the ratio x is adjusted so that the laser beam is not absorbed.
  • the material of the clad 112 was the same material (AlGaAs) as the clad layer of the stripe structure 100.
  • the light traveling direction can be changed by bending the waveguide core 111 instead of the mirror 101 as shown in FIG. 15B. You may change it.
  • the material of the core 111 is Al x Ga 1-x As with the ratio x adjusted so that the laser beam is not absorbed, and the material of the clad 112 is SiO 2 .
  • the distance L 20 between the stripe structure 100 and the side surface 65 of the semiconductor laser was 70 ⁇ m.
  • the reflection surface 118 of the mirror 101 may be a curved surface as shown in FIG.
  • the curved surface is a paraboloid. That is, when the angle between the traveling direction of the light incident on the mirror surface 118 and the traveling direction of the reflected light is ⁇ ′, the center of the incident light passes through the intersection of the central axis of the incident light and the central axis of the reflected light.
  • the straight line whose angle to the axis is ⁇ ′ / 2 is the Y ′ axis and the straight line perpendicular to it is the X ′ axis
  • the coordinates of the curve on the X ′ and Y ′ coordinates satisfy the following equation: .
  • Y ' X' 2 / 4a (1)
  • a is a constant.
  • the mirror having the above-described structure functions to suppress the spread of the beam in the direction (x direction) parallel to the film formation surface of the active layer.
  • a laminated structure of lower clad / active layer / upper clad exists between the mirror 101 and the semiconductor laser side surface 65, so that light is confined in the active layer.
  • the beam diameter is not widened.
  • the distance f from the center of the mirror 101 (the point where the central axis of the stripe structure 100 and the mirror surface 118 intersect) to the point where the beam diameter becomes the smallest is from the center of the mirror to the semiconductor.
  • the constant a is adjusted to be equal to the distance to the side surface of the laser
  • the beam diameter of the light reflected from the semiconductor laser side surface and returned to the end of the stripe structure 100 is the beam diameter when emitted from the stripe structure 100.
  • the returned light is easily coupled to the stripe structure 100 (coupling loss is reduced), and the laser emission efficiency can be increased.
  • the distance L 20 between the semiconductor laser side surface and the mirror center was 30 ⁇ m
  • the value of a was 30 ⁇ m.
  • the value of a of the curved mirror may be such that the reflected light converges at the waveguide entrance portion of the slider side surface 63.
  • the ratio (coupling efficiency) at which the incident light is coupled to the waveguide can be increased.
  • the distance between the semiconductor laser side surface 65 and the slider side surface 63 is 10 ⁇ m
  • the distance L 20 between the semiconductor laser side surface and the mirror center is 30 ⁇ m
  • the value of a was 40 ⁇ m.
  • the value of a of the curved mirror may be such that the laser light becomes substantially parallel light on the slider side surface 63 (or the semiconductor laser side surface 65). By doing so, fluctuations in the intensity of light emitted from the semiconductor laser and the intensity of light coupled to the waveguide can be reduced due to the difference in distance between the semiconductor laser side surface and the slider side surface.
  • the value of a is 50 to 60 ⁇ m.
  • the direction of the axis of the paraboloid may be another direction.
  • the direction of the central axis of the stripe structure 100 is Y ′′ and the direction perpendicular to it is X ′′
  • Y ′′ (X ′′ ⁇ ) 2 / 4a + ⁇
  • the direction perpendicular to the side surface 65 of the semiconductor laser is Y ′ ′′ and the direction perpendicular to the direction is X ′ ′′
  • Y ′ ′′ (X ′ ′′ ⁇ ⁇ ) 2 / 4a + ⁇ (3) You may make it become.
  • ⁇ and ⁇ are constants and are adjusted so that the reflected light is perpendicularly incident on the side surface 65 of the semiconductor laser and the reflected light becomes parallel light or light that converges at a desired position.
  • the angle ⁇ of the mirror is 45 degrees.
  • may be a value different from 45 degrees, such as 55 degrees.
  • the width W 32 of the stripe structure is equal to the mirror width W 31 (in the x ′ direction) at the end of the stripe structure 100, as in FIGS. 11B and 11C. It is preferable that the width be larger than the width.
  • the shape of the mirror is a paraboloid, but other shapes such as an arc or an ellipse may be used.
  • the light emitted from the stripe structure is different from completely parallel light, and is also different from the light spreading from one point light source. Therefore, when a mirror having a shape such as a paraboloid, a spherical surface, or an ellipsoid is used, the reflected light does not become completely parallel light or light that is completely collected at one point due to aberration.
  • the shape of the mirror is preferably an aspheric shape optimized to eliminate aberrations. The shape can be optimized by a simulator.
  • the mirror having the curved surface functions to suppress the spread of the beam in the direction (x direction) parallel to the film formation surface of the active layer.
  • a laminated structure of lower clad / active layer / upper clad exists between the mirror 101 and the semiconductor laser side surface 65, so that light is confined in the active layer.
  • the beam diameter is not widened.
  • the spot diameter in the z direction of the light emitted from the semiconductor laser increases as the distance from the emission surface of the semiconductor laser increases. Therefore, if the distance between the side surface 65 of the semiconductor laser and the slider side surface 63 varies, the light spot diameter varies at the entrance to the waveguide in the slider, and the coupling efficiency varies.
  • a cylindrical lens 124 may be disposed on the semiconductor laser side surface 65.
  • the spread of the emitted light in the z direction can be suppressed, the influence of variations in the distance between the side surface of the semiconductor laser and the side surface of the slider can be suppressed.
  • the coupling efficiency to the waveguide is increased. Therefore, by arranging the cylindrical lens as described above, the efficiency with which light is coupled to the waveguide can be increased.
  • a lens is arranged on the exit surface side, it is necessary to align the lens.
  • the cylindrical lens 124 may be disposed on the slider side surface 63 as shown in FIG. 33B.
  • the two electrodes 45 of the semiconductor laser were formed on the surface on the submount 32 side and the surface on the opposite side.
  • the thickness L 7 of the submount 32 is 150 ⁇ m, and the thickness L 9 is 100 ⁇ m at the portion where the semiconductor laser is mounted.
  • the width L 5 was 120 ⁇ m and the length L 6 was 750 ⁇ m.
  • the material of the submount was Si, SiC, or AlN.
  • the electrode 33 on the submount has a multilayer structure of Ti / Pt / Au (gold is the surface).
  • the electrode 33 on the submount and the electrode 45 of the semiconductor laser 30 were joined by solder 36.
  • the wiring 13 material: copper or a laminated structure of copper and gold
  • the wiring 13 is extended on the semiconductor laser 30 and the submount 32 so that the electrode on the semiconductor laser is formed. 45 and the electrode 33 on the submount were connected to the wiring 13 by solder or conductive adhesive 46.
  • the size of the portion (electrode pad) 121 in contact with the semiconductor laser at the tip of the wiring 13 or the electrode on the submount (electrode pad) 121 is set to about 100 ⁇ m ⁇ 100 ⁇ m.
  • the contact surface property between the electrode 45 of the semiconductor laser and the wiring 13 may be further increased.
  • the heat generated from the semiconductor laser escapes to the wiring 13, so that the temperature rise in the semiconductor laser can be reduced.
  • the wiring 13 is attached, there is a possibility that the two electrodes of the semiconductor laser may be short-circuited due to the conductive adhesive protruding and coming into contact with the opposite electrode.
  • the gap between the side surface of the semiconductor laser and the electrode 33 may be filled with an insulating material 71 such as a photocurable resin.
  • the surface of the wiring 13 was covered with polyimide (73 in FIG. 2B) in order to prevent electric leakage and corrosion except for the portion that contacts the electrode 33 on the submount and the electrode 45 of the semiconductor laser.
  • the end of the portion 72 where the wiring 13 is exposed was positioned inside the end of the electrode 33 on the submount or the electrode 45 of the semiconductor laser.
  • the side wall of polyimide at the boundary between the portion 72 where the wiring 13 is exposed and the portion where the wiring 13 is not exposed prevents the solder or the conductive adhesive 46 from protruding outside the electrode 33 or the electrode 45 of the semiconductor laser.
  • the thickness T 1 of the polyimide on the surface was 5 ⁇ m, and the periphery of the adhesion region was surrounded by a polyimide wall having a height of 5 ⁇ m to prevent the solder or the conductive adhesive 46 from protruding from the electrode.
  • the wiring 13 may be brought into contact with the suspension flexure 10 with the electrode 33 on the submount or the electrode 45 on the semiconductor laser being grounded. Since the flexure 10 is made of metal (usually stainless steel), the heat transferred to the wiring 13 can be released to the flexure by bringing the wiring 13 into contact with the flexure. Therefore, the temperature rise in the semiconductor laser can be reduced.
  • the wiring connected to the electrode 45 of the semiconductor laser 30 is brought into contact with the flexure.
  • the surface of the flexure on the side in contact with the wiring 13 may be covered with a metal material having a high thermal conductivity such as copper or gold. By doing so, the heat transmitted to the flexure can easily escape and the temperature rise in the semiconductor laser can be further reduced.
  • the thickness of the submount 32 is reduced at the portion on which the semiconductor laser 30 is placed, but the submount 32 may be flattened as shown in FIG.
  • the wiring 13 was brought close to the electrode 33 on the submount by bending a part of the thin stainless steel plate 122 with the flexible printed board 35 to the submount side.
  • the wiring 13 and the electrode 33 on the submount were joined using a conductive adhesive or solder 46.
  • the thickness L 7 of the submount 32 is 100 ⁇ m, and the widths L 5 and L 6 are the same as those in the embodiment of FIGS. 2A and 2B.
  • the two electrodes (p-electrode and n-electrode) of the semiconductor laser are formed on two opposing surfaces of the semiconductor laser surface.
  • the two electrodes may be formed on one surface.
  • two electrodes are formed on the surface of the semiconductor laser on the suspension side. In this case, the wiring 13 is directly joined to the electrode 45 on the semiconductor laser without passing through the electrode 33 on the submount.
  • the active layer 31 of the semiconductor laser 30 is disposed on the opposite side of the submount 32, but may be disposed on the submount side as shown in FIG. 19A.
  • the heat generated in the active layer 31 can easily escape to the submount side, and the temperature rise of the semiconductor laser can be reduced.
  • the submount 32 is disposed on the air bearing surface side of the slider 5, but may be disposed such that the submount 32 is located on the opposite side of the air bearing surface 17 as shown in FIG. 19B.
  • the electrode forming method at this time is shown in FIGS. 20A and 20B.
  • an electrode pattern is formed on the submount so that the two electrodes 33 are exposed on the side surface 66 of the submount 32 and the electrodes are connected to the two electrodes 45 of the semiconductor laser 30.
  • One of the electrodes on the submount is in contact with the semiconductor laser electrode 45 at the portion where the thickness of the submount is reduced, and the other electrode is on the side surface 67 of the step portion on the other electrode of the semiconductor laser. 45.
  • the electrode 45 of the semiconductor laser and the electrode 33 on the submount were joined with solder or a conductive adhesive 46.
  • the submount 32 and the semiconductor laser 30 are arranged on the side surface of the slider 5, and the electrode 33 formed on the side surface of the submount 32 is connected to the wiring 13 on the suspension to the electrode for the recording / reproducing head. As in the case of 34, bonding was performed using solder 36.
  • the submount 32 is disposed on the side surface of the slider 5, but a part of the submount 32 may be disposed so as to enter the upper portion of the slider 5 (between the suspension and the slider). Good.
  • a light-transmitting resin 70 having a refractive index greater than 1 may be formed between the semiconductor laser 30 and the slider 5 as shown in FIG. 21A. Good. By forming the resin 70 having a refractive index larger than 1 as described above, the refractive index difference on the slider side surface is reduced, and the reflectance on the slider side surface can be reduced.
  • a photo-curing resin is used as the resin 70, and the refractive index thereof is made equal to the refractive index of the spot diameter converting core 18 constituting the spot size converter 19.
  • the refractive index of the resin 70 is equal to the refractive index of the cladding 15. You may make it equal.
  • the direction of the semiconductor laser 30 is arranged obliquely so that the emitted light from the semiconductor laser 30 is incident on the side surface of the slider obliquely. May be. By doing so, reflected light returning to the semiconductor laser 30 can be reduced, and return light noise can be reduced.
  • the direction of the waveguide core in the vicinity of the waveguide entrance 16 is preferably inclined with respect to the side surface of the slider.
  • the angle ⁇ 5 formed by the direction of the emitted light of the semiconductor laser 30 and the normal of the side surface of the slider is smaller than 1 ⁇ 2 of the beam divergence angle (full width at half maximum) of the emitted light of the semiconductor laser. It is preferable to increase the value.
  • the beam divergence angle of the emitted light from the semiconductor laser was 12 degrees, so the angle ⁇ 5 formed by the direction of the emitted light from the semiconductor laser and the perpendicular to the side surface of the slider was set to 7 °.
  • n is the refractive index of the spot diameter converting core 18 constituting the spot converter 19.
  • n is the refractive index of the cladding 15.
  • the angle ⁇ 10 is 4 °.
  • the angle ⁇ 5 formed by the direction of the emitted light of the semiconductor laser 30 and the normal of the side surface of the slider is larger than 1 ⁇ 2 of the beam divergence angle (full width at half maximum) of the emitted light of the semiconductor laser as described above. However, if the effect can be obtained, it may be equal to or less than 1 ⁇ 2 of the beam divergence angle (full angle at half maximum). For example, the angle ⁇ 5 may be 4 degrees.
  • the side surface of the slider 5 may be inclined with respect to the air bearing surface 17 as shown in FIG. 21C.
  • the tilt angle ⁇ 5 of the slider side surface that is, the angle formed by the traveling direction of the emitted light of the semiconductor laser 30 and the normal line of the slider side surface is larger than 1 ⁇ 2 of the beam divergence angle (full width at half maximum) of the emitted light of the semiconductor laser 30. It is preferable to do so.
  • the tilt angle ⁇ 5 on the side surface of the slider was set to 7 °.
  • the side surface of the submount was also slanted according to the inclination of the slider side surface.
  • the angle ⁇ 5 formed by the direction of the emitted light of the semiconductor laser 30 and the normal of the side surface of the slider may be equal to or less than 1 ⁇ 2 of the beam divergence angle (full width at half maximum) if an effect is obtained.
  • the angle ⁇ 5 may be 4 degrees.
  • an antireflection film composed of a dielectric multilayer film may be formed on the side surface of the slider.
  • the width W 40 of the groove is made larger than the thickness W 41 of the dicing blade in order to prevent the dicing blade from hitting the antireflection film portion and damaging the film when the slider is cut out by dicing.
  • the groove is formed by a dicing apparatus or etching, and the antireflection film is formed by using a film forming apparatus such as CVD (Chemical Vapor Deposition) or sputtering.
  • CVD Chemical Vapor Deposition
  • the thickness of the blade was 70 ⁇ m
  • the width W 40 of the groove was 90 ⁇ m.
  • the side surface of the groove is made perpendicular to the wafer surface.
  • the side surface may be inclined.
  • the angle ⁇ 12 on the side surface of the groove is set to 5 °.
  • the depth D 40 of the groove may be any depth as long as the entrance 16 of the waveguide in the slider is covered with the antireflection film, and may be 10 ⁇ m, for example.
  • a large step is generated on the side surface of the slider after cutting out by dicing. In this case, the distance between the semiconductor laser 30 and the entrance 16 of the waveguide increases, and the light coupling efficiency decreases.
  • the depth D 40 of the groove is larger than the thickness L 2 of the semiconductor laser, as shown in FIG. 22C, the exit surface of the semiconductor laser, it is preferable to so penetrate the inside of the slider .
  • the thickness L 2 of the semiconductor laser was 50 ⁇ m
  • the groove depth D 40 was 70 ⁇ m.
  • the direction of the waveguide 3 is changed by providing a curved portion in the middle of the waveguide 3, but the direction of the waveguide 3 is changed by forming a mirror 38 in the middle as shown in FIG. You may change it.
  • the mirror this time, using a material obtained by forming a film of low refractive index dielectric reflective portion side than the cladding 15, the incident angle theta 4 of the incident light to the reflecting surface of the mirror 38, becomes greater than or equal to a total reflection angle Like that.
  • the mirror is made of a material such as SiO 2 or MgF 2 , and the incident angle ⁇ 4 is 60 °.
  • the waveguide was slightly bent between the spot size converter 19 and the mirror 38 so that the incident angle ⁇ 4 was 60 °.
  • a dielectric is used as the material of the mirror 38, but a metal such as gold, aluminum, silver, or copper may be used.
  • the direction of the central axis of the waveguide 3 (direction of the light traveling direction) is perpendicular to the slider flying surface in the vicinity of the near-field light element 1 at the end of the waveguide.
  • the direction of the central axis of the waveguide 3 may be inclined with respect to the slider air bearing surface 17. That is, the angle formed by the central axis of the waveguide and the normal line of the slider air bearing surface 17 may be larger than zero.
  • the light propagating through the waveguide 3 is incident on the slider air bearing surface 17 at an angle, so that the light reflected by the slider air bearing surface 17 does not return to the incident side of the waveguide 3. . Therefore, the return light noise of the semiconductor laser 30 can be reduced.
  • the radius of curvature of the curved portion of the waveguide core 3 can be increased by making such an inclination, it occurs at the curved portion that occurs when the refractive index difference between the waveguide core 3 and the cladding 15 is small. Light propagation loss can be reduced.
  • the waveguide direction ⁇ 3 in the vicinity of the near-field light generating element 1 is set to 60 to 80 °.
  • the near-field light generating element 1 is as shown in FIGS. 24B and 24C.
  • the shape may be asymmetrical.
  • the metal structure 1 is inclined to the incident side of the waveguide.
  • the traveling direction of light in the waveguide is inclined with respect to the slider air bearing surface 17
  • the surface plasmon excited in the metal structure 1 also propagates in the same direction as the traveling direction of light in the waveguide.
  • a weight 76 may be disposed on the side opposite to the slider side. The weight and position of the weight 76 were adjusted so that the entire center of gravity was located at the center.
  • the intensity of the output light of the semiconductor laser 30 varies as the environmental temperature changes. If the drive is used for a long period of time, the output intensity gradually decreases due to deterioration of the semiconductor laser 30. Further, the position of the semiconductor laser 30 with respect to the waveguide 3 may also change due to a change in environmental temperature or long-term use. Due to these factors, the intensity of light coupled into the waveguide 3 may vary. When the light intensity changes, the rising temperature of the magnetic recording medium changes, so that stable recording becomes difficult.
  • a second waveguide for monitoring the power of light in the waveguide 3 may be formed in the slider 5 as shown in FIGS. 26A to 26D.
  • the power of the evanescent light around the waveguide core 3, that is, the light generated so as to leak into the cladding at the interface between the core and the cladding is generated as shown in FIG. 26A.
  • a monitoring waveguide 43 is disposed. When the waveguide 43 is arranged in this way, a part of the evanescent light component in the light transmitted through the waveguide 3 is coupled to the waveguide 43. The light transmitted to the power monitoring waveguide 43 was detected by the photodetector 40 arranged on the opposite side of the semiconductor laser 30.
  • the intensity of light coupled to the power monitoring waveguide 43 is shown in FIG. 26B by the distance D between the main waveguide 3 and the power monitoring waveguide 43 and the length of the overlapping portion of each waveguide (coupling). length) depends on the L 11.
  • the distance D and the coupling length L 11 are optimized so that the intensity of light coupled to the waveguide 43 is 1 to 10% of the intensity of the main waveguide 3.
  • the width of the waveguide 43 is 500 nm ⁇ 200 nm
  • the distance D between the two waveguides is 700 nm
  • the coupling length L 11 is 25 ⁇ m.
  • the end surface of the waveguide 43 is inclined with respect to the slider side surface 77, or Alternatively, as shown in FIG. 26D, the direction of the waveguide 43 is bent halfway so that light is incident on the slider side surface 77 obliquely.
  • the end portion angle ⁇ 10 is set to 5 to 15 °.
  • the angle ⁇ 11 formed by the center line of the waveguide 43 and the slider side surface 77 is set to 75 to 85 °.
  • the photodetector 40 may be anything as long as it converts light into an electrical signal, but in the present embodiment, a photodiode is used.
  • the size of the light receiving surface was made sufficiently larger than the light spot at the waveguide exit so that the position adjustment of the photodiode was easy. In this embodiment, the size of the light receiving surface 42 is set to 50 ⁇ m in the z direction and 70 ⁇ m in the x direction.
  • the photodiode was fixed on the flexible printed circuit board 35 on the slider side or suspension. As shown in FIG. 27, the photodiode electrode 41 is formed on the surface opposite to the light receiving surface, and is connected to the photodiode wiring 44 formed on the flexible printed board 35 on the suspension. The electrode 41 of the photodiode and the wiring 44 were connected by solder or conductive adhesive 46.
  • the power monitoring waveguide is formed so as to branch from the middle of the waveguide 3 for introducing light into the near-field light element 1, but as shown in FIG.
  • a waveguide 3 for introducing light into the near-field light element 1 is disposed so that light is incident obliquely, and the light reflected by the slider air bearing surface 17 is detected by the power monitor waveguide 43 with the photodetector 40. You may lead to.
  • the amount of light introduced into the near-field light element 1 can be increased, Light utilization efficiency can be increased.
  • FIG. 29A and 29B show an embodiment of an apparatus (alignment apparatus) for attaching the mount 32 on which the semiconductor laser 30 is mounted to the side surface of the slider 5.
  • FIG. 29A is a diagram showing an example of arrangement of alignment marks
  • FIG. 29B is a diagram showing a method for holding components.
  • the submount 32 and the slider 5 were fixed on the vacuum suction stage 49, respectively.
  • alignment marks were formed near the surface of the semiconductor laser 30 and the top surface of the slider.
  • the alignment mark 56 of the semiconductor laser a square alignment mark having a width of 30 ⁇ m ⁇ 30 ⁇ m was used, and two alignment marks were formed in the vicinity of the emission position so that the distance L 23 was 100 ⁇ m.
  • the emission position of the laser beam was set to be on the center line of the two alignment marks.
  • the alignment mark 56 was formed at the same time when the ridge 100 and the mirror 101 of the semiconductor laser were formed by etching.
  • the alignment mark 57 of the slider 5 is a rectangular metal pattern formed near the upper surface of the slider.
  • the width in the x direction is 5 ⁇ m
  • the width in the y direction is 30 ⁇ m
  • the width D 4 in the proper direction (z direction) was set to 10 ⁇ m.
  • Two marks were formed such that the distance L 24 between the alignment mark and the waveguide center was 5 ⁇ m, and the distance L 25 between them was 100 ⁇ m.
  • the distance D 3 from the slider upper surface to the alignment mark was about 5 ⁇ m
  • the distance from the alignment mark to the center of the waveguide was 5 ⁇ m.
  • Alignment was performed according to the following procedure.
  • the alignment mark 57 is observed from the upper surface of the slider 5 with a CCD camera, and the direction of the waveguide 3 and the position in the x direction are obtained. That is, since the positional relationship between the waveguide 3 and the alignment mark 57 is known, the position of the waveguide 3 is obtained from the position of the alignment mark 57.
  • the distance between the semiconductor laser 30 and the slider 5 is obtained by observing the edge 65 on the side of the emission side of the semiconductor laser 30 and the edge of the side of the slider 5 with a CCD camera.
  • the position of the vacuum suction stage 49 on which the semiconductor laser is mounted or the vacuum suction stage 49 on which the slider is mounted is adjusted so that the laser light is incident on the center of the waveguide entrance.
  • the shape and dimensions of the alignment mark are merely examples, and other shapes and dimensions may be used.
  • the position may be finely adjusted while monitoring the power of light coupled to the waveguide 3 in the slider. That is, during the alignment, a current is supplied to the semiconductor laser, and the vacuum suction stage 49 is moved in a state where light is emitted. At this time, the intensity of light emitted from the exit of the waveguide 3 (exit with a near-field light element) or the exit of the waveguide 43 for power monitoring is measured using a photodetector such as a photodiode or a photomultiplier tube. To detect. The adhesive 37 is cured after adjusting the position so that the light intensity becomes maximum. By performing alignment in this way, alignment accuracy can be further increased. In the alignment performed while monitoring the light intensity, it is possible to shorten the time required for alignment by first performing alignment using the alignment mark and finally performing alignment while monitoring the intensity. I can do it.
  • the semiconductor laser is arranged on the side surface of the slider.
  • the semiconductor laser may be arranged on the upper portion of the slider.
  • 30A is a cross-sectional view seen from the side
  • FIG. 30B is a view seen from the other side
  • FIG. 30C is a diagram showing a wiring method in the upper part of the slider.
  • the entrance of the waveguide 3 in the slider is positioned above the slider so that the light emitted from the semiconductor laser 30 is directly coupled to the waveguide in the slider.
  • the distance between the semiconductor laser 30 and the slider was 0 to 10 ⁇ m.
  • the semiconductor laser 30 was disposed on the side surface of the submount 32 disposed on the slider.
  • the size of the sub-mount is slightly protruding size from the size or slider 5 that fits on the upper surface of the slider 5, the thickness L 30 of the submount was 100 ⁇ 150 [mu] m. Since the submount 32 and the semiconductor laser 30 cover only one side of the upper surface of the slider, a space is opened between the slider 5 suspension 10 on the opposite side.
  • the thickness on one side of the suspension upper surface is arranged equal spacer 132 to the thickness L 30 of the sub-mount.
  • a metal electrode 33 for supplying a current to the semiconductor laser was formed on the upper surface and the side surface of the submount 32, and the semiconductor laser 30 was fixed on the side electrode 33 with solder.
  • Metal electrodes 60 were also formed on the upper and side surfaces of the spacer 132, and the electrode on the side surface of the spacer and the other electrode of the semiconductor laser were joined with the conductive adhesive 37.
  • the wiring 13 connected to the driver of the semiconductor laser on the flexible printed circuit board is arranged, and the two electrodes and the wiring 13 are connected with a conductive adhesive or solder. And joined.
  • the magnetic head electrode 34 formed on the slider is separated from the suspension 10, but as shown in FIG. 30A, the flexible printed circuit board 35 on the suspension is bent and lowered to the air bearing surface side, thereby reducing the magnetic head electrode.
  • the wiring 78 was connected to the electrode 34 for the magnetic head.
  • the wiring 78 and the electrode 34 were joined using the solder 36.
  • the semiconductor laser on which the mirror of the present invention is formed is arranged on the slider, the optical path in the semiconductor laser is bent by the mirror, so that the overall height does not increase.
  • the distance between the semiconductor laser and the slider can be reduced.
  • the efficiency with which the light emitted from the semiconductor laser is coupled to the waveguide can be increased.
  • the semiconductor laser electrode 33 formed on the submount 32 and the semiconductor laser electrode 60 formed on the spacer 132 are exposed on the side surface, and the wiring on the flexible printed board 35 is formed. 13 and side surfaces may be joined by solder 36.
  • electrodes 79 for the magnetic head were formed on the side surfaces of the submount 32 and the spacer 132 and joined to the wiring 78 on the flexible printed board by the solder 36. This electrode 79 and the electrode 34 on the slider were further joined by solder 36.
  • the width L 32 of the submount 32 is substantially half the width of the slider, but it may be larger than that.
  • the distance L 31 from the side surface of the slider to the near-field light generating element 1 is set to be larger than half the slider width, or the position of the near-field light generating element 1 is near the center of the slider.
  • the waveguide L in the slider is bent so that the entrance of the waveguide in the slider is closer to the side surface, so that the width L 32 of the submount 32 is widened.
  • FIG. 32 shows an overall view of a recording apparatus using the heat-assisted integrated head of the present invention.
  • the flying slider 5 was fixed to the suspension 56 and positioned at a desired track position on the magnetic disk 14 by an actuator comprising a voice coil motor 51.
  • a flying pad was formed on the head surface, and the magnetic disk 14 was floated with a flying height of 5 nm or less.
  • the magnetic disk 14 was fixed and rotated on a spindle 53 that was rotationally driven by a motor.
  • the semiconductor laser and the submount 55 were arranged on the side surface of the slider 5.
  • the semiconductor laser and the submount 55 were arranged on the outer peripheral side of the disk so as not to hit the axis of the spindle 53.
  • the driving current of the semiconductor laser was supplied through the flexible printed board 50, and the driving IC was disposed on the circuit board 52.
  • the recording signal was generated by the signal processing LSI 54, and the recording signal and the power supply for the semiconductor laser were supplied to the semiconductor laser driver through the flexible printed board 50.
  • a recording magnetic field was generated by a coil provided in the flying slider 5 and simultaneously a semiconductor laser was emitted to form a recording mark on the recording layer of the magnetic recording medium 14.
  • Data recorded on the magnetic recording medium 14 was reproduced by a magnetic reproducing element (GMR or TMR element) formed in the flying slider 5.
  • the signal processing of the reproduction signal was performed by the signal processing circuit 54.
  • the semiconductor laser in which the mirror of the present invention is formed is arranged on the slider, but it may be arranged outside the slider 5 as shown in FIG.
  • a semiconductor laser having a curved mirror formed as shown in FIG. 16 is used and is arranged near the end of the tail portion of the suspension.
  • the light emitted from the semiconductor laser 30 was coupled to an optical fiber or polymer waveguide 125 to guide the light toward the slider 5.
  • the entrance of the waveguide in the slider is positioned on the upper surface of the slider, and the light transmitted through the optical fiber or polymer waveguide 125 is reflected by the mirror 126 and coupled to the waveguide 3 in the slider.
  • the emitted light from the semiconductor laser becomes convergent light in order to increase the light coupling efficiency.
  • the light may be converged by a lens or the like, but the cost of the lens is increased.
  • the semiconductor laser using the curved mirror of the present invention only the direction parallel to the stacking direction of the active layer is used, but the emitted light can be made into convergent light, so that a lens is not used.
  • the light coupling efficiency can be increased.
  • the semiconductor laser of the present invention may be used for a recording apparatus other than the heat-assisted recording, for example, a recording apparatus using a phase change medium.
  • the recording head in which the photodiode 40 is arranged is used as the recording head, and the photodiode 40 is used for reproducing the recording data. That is, the light from the semiconductor laser 30 was condensed by the near-field light generating element 1, and the phase change medium was locally heated by the light to write the recording data. During reproduction, near-field light was generated in a state where the intensity of light generated from the semiconductor laser 30 was weakened. When the near-field light and the phase change medium interact to generate scattered light, the scattered light intensity changes depending on the state of the recording bit. The scattered data was guided to the photodiode 40 through the waveguide 43, and the recorded data was reproduced by detecting the intensity change.
  • the semiconductor laser of the present invention may be used for apparatuses other than the recording apparatus, for example, for optical communication or optical wiring.
  • optical communication and optical wiring as in the case of FIG. 34, it is necessary to introduce light from a semiconductor laser into an optical fiber or polymer waveguide.
  • a semiconductor laser in which a mirror having a curved surface is formed.
  • the coupling efficiency between the semiconductor laser and the optical fiber or polymer waveguide can be increased without using a lens.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

 半導体レーザを搭載した熱アシスト集積ヘッドにおいて、安定な浮上を実現し、かつ波長変動による光パワー変動が起きにくくなるようにする。また、半導体レーザの温度上昇を抑制する。 浮上スライダ5の側面、もしくは上面に半導体レーザ30を配置する。このとき半導体レーザ中のストライプ構造100の向きが、浮上スライダの浮上面に対し平行になるようにする。半導体レーザ内部にミラー101を形成し、活性層の面内方向に光路が曲がるようにする。半導体レーザから出射した光は、スライダ中に形成した導波路3を用いて近接場光発生素子に導く。浮上スライダの側面に半導体レーザを配置する場合は、導波路に入射した光が、近接場光発生素子に向かう方向に進むように、導波路3の途中に曲線部もしくはミラーを形成する。

Description

熱アシスト集積ヘッド及び熱アシスト記録装置
 本発明は、熱アシスト集積ヘッド及びそれを用いた熱アシスト記録装置に関する。
 近年、1Tb/in2以上の記録密度を実現する記録方式として、熱アシスト記録方式が提案されている(H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, Jpn. J. Appl. Phys. 38, Part 1, 1839 (1999))。従来の磁気記録装置では、記録密度が1Tb/in2以上になると、熱揺らぎによる記録情報の消失が問題となる。これを防ぐためには、磁気記録媒体の保磁力を上げる必要があるが、記録ヘッドから発生させることができる磁界の大きさには限りがあるため、保磁力を上げすぎると媒体に記録ビットを形成することが不可能となる。これを解決するために、熱アシスト記録方式では、記録の瞬間、媒体を光で加熱し保磁力を低下させる。これにより、高保磁力媒体への記録が可能となり、1Tb/in2以上の記録密度が実現可能となる。
 この熱アシスト記録装置において、照射する光のスポット径は、記録ビットと同程度の大きさ(数10nm)にする必要がある。なぜなら、光スポット径がそれよりも大きいと、隣接トラックの情報を消去してしまうからである。このような微小な領域を加熱するためには、近接場光を用いる。近接場光は、光波長以下の微小物体近傍に存在する局在した電磁場(波数が虚数成分を持つ光)であり、径が光波長以下の微小開口や金属の散乱体を用いて発生させる。例えば、特開2001-255254号公報には、高効率な近接場光発生素子として三角形の形状をした金属散乱体を用いた近接場光発生素子が提案されている。金属散乱体に光を入射させると、金属散乱体中にプラズモン共鳴が励起され、三角形の頂点に強い近接場光が発生する。この近接場光発生素子を用いることにより、光を数10nm以下の領域に高効率に集めることが可能になる。また、特開2004-151046号公報には、上記金属の散乱体のスライダ浮上面側の表面において、近接場光が発生する頂点以外の部分の表面に窪みを削った構造が提案されている。この構造により、頂点に発生する近接場光の強度分布の幅を小さくすると共に、頂点と反対側の辺に発生する弱い近接場光(バックグランド光)の発生を抑制することができる。
 上記熱アシスト磁気記録のためには、磁界を印加するための磁極近傍の媒体を光で加熱する必要がある。そのためには、例えば導波路を磁極脇に形成し、光源である半導体レーザから発生した光を、磁極の先端近傍にまで導く。このとき、半導体レーザは浮上スライダ上に搭載するか、サスペンションの根元において、そこから浮上スライダまで光ファイバなどの導波路を用いて光を導く。
 光源である半導体レーザを浮上スライダ上に配置する方法としては、例えば、US 2009/0266789 A1のように、端面発光型レーザを浮上スライダの上面に対して垂直に立てるように配置する方法が提案されている。また、特開2009-4030号公報のように、半導体レーザを浮上スライダの上面に対して水平になるように配置し、かつその端面にミラーを形成することにより出射光を浮上スライダ中に形成された導波路に直接結合させる方法が提案されている。
 また、US 2008/0002298 A1には、半導体レーザをスライダの側面に配置する方法も提案されている。この場合、半導体レーザとして面発光レーザを用い、そのレーザを浮上スライダの流出端側の側面上に配置する。スライダには側面にグレーティングカプラが形成された導波路を配置し、半導体レーザから出射した光が、グレーティングカプラを通して導波路に結合するようにする。
特開2001-255254号公報 特開2004-151046号公報 特開2009-4030号公報 US 2009/0266789 A1 US 2008/0002298 A1
Jpn. J. Appl. Phys. 38, Part 1, 1839 (1999)
 端面発光型半導体レーザを浮上スライダの上面に配置すると、半導体レーザを配置する分、ヘッド全体の高さが高くなる。このように高さが高くなると、ドライブに衝撃が加えられたときなどにスライダの浮上が不安定になる。また、ドライブ内には記録容量を大きくするために、複数のディスクとヘッドを配置する必要があるが、ヘッド全体の高さが大きくなると、その分ディスクの間隔を大きくする必要があり、ドライブ全体の厚さが大きくなってしまう。また逆に、ドライブの厚さを薄く保つためには、ディスクの枚数を減らす必要があり、その場合、記録容量が減ってしまう。
 端面にミラーが形成された半導体レーザをスライダ上面に配置する場合、ヘッド全体の高さを低くすることが出来る。しかしこの場合、半導体レーザは、厚さの薄いサブマウントの上に配置し、そのサブマウントをスライダの上面に配置することになるが、サブマウントの厚さ分半導体レーザと導波路の距離が空いてしまうため、半導体レーザからの光が導波路に結合する効率が低くなる。効率を大きくするには、サブマウントの厚さを数10ミクロン以下にする必要があるが、サブマウントの生産性を考慮すると、このような厚さのサブマウントを多量に生産することは困難である。ミラーが形成された半導体レーザをスライダ上に直接半田付けする方法もあるが、この場合、スライダへの搭載前に半導体レーザの検査が出来ない、半田付けによりスライダがゆがみ、浮上量が変動する、といった問題点がある。また、上記金属の散乱体からなる近接場光発生素子を用いるためには、入射光の偏光方向が記録トラックに対して平行な方向になるようにする必要があるが、通常用いられるTEモードの半導体レーザにミラーを形成した場合、入射光の偏光方向が記録トラックに対して垂直な方向になってしまい、金属の散乱体からなる近接場光発生素子に用いることが出来ないという問題も存在する。
 半導体レーザをスライダの流出端側の側面に配置する場合、スライダ上に半導体レーザを配置する必要がないのでヘッド全体の高さの問題はなくなる。しかし、従来例では導波路の側面から光を入射する必要があり、グレーティングカプラの利用が必要になる。グレーティングカプラは、波長依存性が大きいため、環境温度の変化などにより半導体レーザの波長が変化したとき、導波路に結合する光強度が変動してしまう。また、磁気ヘッド周辺はアルミナの膜で覆う必要があり、通常、スライダの流出端側は厚さ30ミクロン以上のアルミナの膜で覆われている。したがって半導体レーザは、厚いアルミナの膜の上に配置することになる。この場合、半導体レーザで発生した熱が逃げにくくなるため、半導体レーザの温度が大幅に上昇し、半導体レーザが破損するか、寿命が短くなってしまう。
 本発明は、半導体レーザを浮上スライダに搭載する場合において、ヘッド全体の高さが低く、かつ半導体レーザと導波路の結合効率が高く、かつ半導体レーザの波長変動の影響を受けにくく、かつ半導体レーザにおける温度上昇が小さくなるように半導体レーザを配置する手段を提供する。
 上記目的を達成するために、本発明では、半導体レーザとして内部にミラーが形成された半導体レーザを用い、浮上スライダの4つの側面の内、流入端及び流出端側の面とは異なる側面の横に配置する。浮上スライダ中に形成する導波路の入口は、半導体レーザを配置したスライダ側面側に位置するようにし、半導体レーザからの出射光は、導波路の端面に直接結合するようにする。スライダ中の導波路は曲線部を有するようにし、導波路中を進む光が、近接場光発生素子に向かう方向に進むようにする。
 導波路の曲線部における曲率半径は、小さすぎると導波路から光が放出され、伝播ロスが生じてしまう。伝播ロスが生じないようにするためには、導波路の曲率半径は60μm以上にするのが好ましい。また、導波路中の光の進行方向を途中で曲げるために、導波路途中にミラーを設けてもよい。この場合、反射面で光が全反射するようにするか、反射面に金属膜を形成することで光を反射させる。
 半導体レーザからの出射光を導波路に効率よく結合させるために、導波路の入口には、スポットサイズコンバータを形成することが好ましい。
 半導体レーザ中のストライプ構造(光を閉じ込めるためのリッジや活性層をエッチングすることにより形成されたチャネル導波路により構成され、光増幅が行われる領域)の両端には、ミラーを形成する。ミラーにより反射した光は、半導体レーザの側面に垂直に入射するようにし、半導体レーザの側面で反射した光が、ストライプ構造側に戻るようにする。ミラーの向きは、ストライプ構造の両端における反射光が、互いに反対向きもしくは同じ向きに進むようにする。反射光が互いに反対向きに進む場合は、半導体レーザの対向する2つの側面が共振器を構成するミラーとして機能する。反射光が同じ向きに進む場合は、半導体レーザの対向する1つの側面が共振器を構成するミラーとして機能する。
 光路を曲げるためのミラーは、ストライプ構造の両端部においてエッチングにより深溝を形成することで形成する。このとき、ミラー面が劣化することを防ぐ為に、ミラー表面には、誘電体膜を形成することが好ましい。
 本発明の構造は次の利点を有する。
(1) 半導体レーザを浮上スライダの側面に形成するため、ヘッド全体の高さは高くならない。したがって、スライダの安定浮上が可能で、ドライブ内において、ディスクとディスクの間隔を小さくすることも出来る。
(2) スライダの側面に物を配置する場合、重心位置が中心からずれて浮上が不安定になる可能性があるが、本発明の構造では、半導体レーザ中にミラーが形成されて光路が折り返されているので、浮上スライダの中心から半導体レーザの外側の端までの距離を小さくすることが出来る。したがって重心位置が中心から大きくずれることがなく、安定浮上を実現できる。 
(3) 半導体レーザからの光を導波路に結合させる際、グレーティングカプラを用いる必要がない。したがって、波長が変動することにより、導波路に結合した光の強度が揺らぐことはない。
(4) 半導体レーザから発生する熱は、サブマウントを介して、浮上スライダに逃げる。そして、浮上スライダに伝達した熱は、浮上面と記録ディスクの間を流れる空気流を介して記録ディスク側へ放出される。したがって、半導体レーザの温度上昇を抑制することができる。その結果、半導体レーザの破損や寿命低下を防ぐことが出来る。
(5) スポットサイズコンバータの向きをスライダの横方向になるようにすることが出来るので、スポットサイズコンバータの長さを長くすることが出来る。その結果、スポット変換率を大きくすることが可能になり、半導体レーザからの光を導波路に結合させるときの結合効率を上げることが出来る。したがって、半導体レーザのパワーを下げることが可能になり、消費電力や発熱量を下げることが可能になる。また、半導体レーザの位置ずれに対する許容幅を大きくすることが出来るので、組み立て時の歩留まりを上げることが出来、製造コストを下げることが出来る。
 光路を曲げるためのミラーは、ストライプ構造の片側にのみ形成してもよい。このとき、共振器を構成するためのミラーとして、半導体レーザの側面ではなく、エッチングにより形成された深溝もしくはグレーティングを用いてもよい。
 出射面側において光反射させる手段として、半導体レーザの側面ではなく、エッチングにより作製した深溝もしくはグレーティングを用いてもよい。
 半導体レーザの電極は、ストライプ構造の部分のみに形成するか、ミラー周辺や、出射面近くの領域も含んだ領域に形成する。ミラーの破損を防ぐために、ストライプ構造及び出射面近くの領域のみに形成してもよい。
 ミラー周辺や、ミラーと半導体レーザの側面の間において、活性層に、適当な原子を拡散させるなどにより、エネルギーバンド幅を大きくして、光吸収が起きにくくなるようにしてもよい。
 ストライプ構造は、ミラー付近において幅が広くなるようにしてもよい。このとき、ミラー周辺においてミラーの反射面に平行な方向のストライプ構造の幅が、ミラーの反射面の幅よりも大きくすることにより、ストライプ構造をエッチングするマスクで、ミラーも同時にエッチングすることが可能になる。したがって、ストライプ構造とミラーの位置ずれを抑制することが出来る。
 ミラーの角度は、入射光と反射光の成す角度が90度であってよいし、それと異なる角度であってもよい。入射光と反射光の成す角度を90度より大きくする場合、ストライプ構造と半導体レーザ側面の距離を大きくすることが出来るので、半導体レーザ側面をへき開により形成する際、ストライプ構造の一部が欠けることを防ぐことが出来る。また、半導体レーザの幅を広くすることが出来るので、機械的強度を強くすることが出来る。
 ミラーから半導体レーザの側面までの間において光が広がることを防止するために、光を活性層に平行な方向に閉じ込めるための導波路(リッジやチャネル導波路)を、ミラーから半導体レーザの側面までの間に形成してもよい。このとき、導波路は、ストライプ構造と同じ材質や構造を有するようにしてもよいし、異なる材質や構造を有するようにしてもよい。ミラーと半導体レーザの間の導波路の幅は、そこでのモードフィールド径が、ストライプ構造中のモードフィールド径と同じになるようにしてもよいし、異なるようにしてもよい。ミラーと半導体レーザの間の導波路中のモードフィールド径が、ストライプ構造中のモードフィールド径よりも大きくなるようにした場合、出射光のビーム径を大きくすることが出来るので、半導体レーザとスライダ中の導波路の間の位置ずれの影響を小さくすることが出来る。
 ミラー面の形状は曲面にしてもよく、例えば放物面、球面、楕円面などの形状にしてもよい。このようにすることにより、ミラーで反射した光が、収束光もしくは平行光となるようにすることが出来る。反射光が、半導体レーザの側面で収束するようにしたとき、半導体レーザの側面で反射した光が効率よくストライプ構造に結合するので、半導体レーザの発光効率を大きくすることが出来る。また、反射光がスライダ中の導波路入口で収束するようにしたとき、半導体レーザの出射光が導波路に結合する効率を大きくすることが出来る。また、反射光が、ほぼ平行になるようにしてもよい。このようにすることにより、半導体レーザ側面とスライダ側面の距離のずれにより、半導体レーザから出射する光の強度や導波路に結合する光の強度の変動を小さくすることが出来る。ミラーの形状は、放物面となるようにしたが、球面や楕円面など他の形状にしてもよい。実際には、ストライプ構造から出射する光は、完全な平行光とは異なり、また1つの点光源から広がる光とも異なる。そのため、放物面、球面、楕円面など形状をしたミラーを用いた場合、収差により、反射光は、完全な平行光や、1点に完全に集まる光とはならない。このことを防ぐためには、ミラーの形状は、収差がなくなるよう最適化された非球面形状とするのが好ましい。
 活性層の成膜方向に垂直な方向における出射光の広がりを抑えるために、半導体レーザの側面付近にシリンドリカルレンズを配置してもよい。これにより、スライダ中の導波路に光が導入されるときの結合効率を大きくすることが出来る。
 半導体レーザへの電流は、半導体レーザの上面にサスペンションのフレキシブルプリント基板を配置し、そこに形成された配線と半導体レーザの電極を接触させることで供給するとよい。
 スライダ側面で光が反射し、半導体レーザに戻ることにより生じるノイズを抑制するために、半導体レーザの向きがスライダの側面に対し斜めになるように配置する、もしくはスライダ側面の向きが、浮上面に対して斜めになるようにしてもよい。このようにすることで、反射光が半導体レーザに入りにくくなるので、ノイズを小さくすることが出来る。
 スライダ中の導波路に結合した光のパワー変動を抑えるために、スライダ中の導波路は途中で分岐させて、そこに結合した光のパワーを光検出器でモニタしてもよい。フィードバックループを形成することで、パワー変動を抑えることが出来る。
 本発明の半導体レーザは、スライダの上面(浮上面と反対側の面)に配置してもよい。本発明の半導体レーザを用いる場合、ミラーにより半導体レーザ中の光路が折れ曲がっているため、全体の高さが高くなることがない。また、半導体レーザの出射面とスライダの間にサブマウントが存在しないため、半導体レーザとスライダの間隔を小さくすることが出来る。その結果、半導体レーザからの出射する光が導波路に結合する効率を大きくすることが出来る。また、金属の散乱体を用いた近接場光発生素子に必要な偏光方向を有する光を、TEモードレーザを用いて発生させることが出来る。
 なお、本明細書では、記録磁界を発生する磁極や近接場光発生素子や導波路が設けられた浮上スライダに、半導体レーザを付属させた構造体を熱アシスト集積ヘッドと呼ぶ。
本発明の熱アシスト集積ヘッドの一例を示す側断面図。 本発明の熱アシスト集積ヘッドを示す図で、流出端側から見た側断面図。 本発明の熱アシスト集積ヘッドを示す図で、半導体レーザを配置した側面側からみた側面図。 スライダ上面から見た本発明の熱アシスト集積ヘッドの断面図。 主磁極先端及び近接場発生素子の部分を示す図。 主磁極先端及び近接場発生素子の部分を示す図で、側面側からみた断面図。 主磁極先端及び近接場発生素子の部分を示す図で、浮上面側から見た断面図。 導波路中を伝わる光の透過率と曲率半径の関係を示す図。 導波路のスポットサイズコンバータを示す図。 半導体レーザの構造を示す図で、リッジ型構造。 半導体レーザの構造を示す図で、埋め込み型構造を示す図。 半導体レーザに形成されたミラーを示す図。 半導体レーザ上の電極構造を示す図で、ミラー及び出射部を除いた部分に電極が形成された例を示す図。 半導体レーザ上の電極構造を示す図で、ミラー及び出射部の上面においても電極が形成された例を示す図。 半導体レーザ上の電極構造を示す図で、ミラー及び出射部を除いた部分に電極が形成された例を示す図。 半導体レーザのストライプ構造とミラーの関係を示す図で、ストライプ構造とミラーが離れている場合を示す図。 半導体レーザのストライプ構造とミラーの関係を示す図で、ストライプ構造の幅がミラーの幅よりも大きくなった場合を示す図。 半導体レーザのストライプ構造とミラーの関係を示す図で、ストライプ構造が、出射端まで続き、かつミラーを囲むように配置された場合を示す図。 ミラー及びリッジの向きを示す図で、ミラーの角度が45以下である例を示す図。 ミラー及びリッジの向きを示す図で、ミラーの角度が45度で、リッジが途中で曲がった例を示す図。 出射側と反対側における反射構造を示す図で、出射側の面と同一面を反射面とした例を示す図。 出射側と反対側における反射構造を示す図で、出射側の面と直交する面を反射面とした例を示す図。 出射側と反対側における反射構造を示す図で、半導体レーザに形成された溝の側面を反射面とした例を示す図。 出射側と反対側における反射構造を示す図で、活性層表面に形成されたグレーティングにより反射させる例を示す図。 ミラーと出射面との間に導波路が形成された例を示す図で、導波路の幅が一定である例を示す図。 ミラーと出射面との間に導波路が形成された例を示す図で、導波路の幅が変化した例を示す図。 ストライプと出射面との間にストライプ構造と異なる材料の導波路が形成された例を示す図で、ミラーを用いた例を示す図。 ストライプと出射面との間にストライプ構造と異なる材料の導波路が形成された例を示す図で、導波路を曲げた例を示す図。 反射面が曲面である例を示す図。 半導体レーザへの配線方法を示す図で、サブマウント上の電極を介して電流を流した例を示す図。 半導体レーザへの配線方法を示す図で、半導体レーザの片側の面に2つの電極を形成した例を示す図。 平らなサブマウントを用いた場合の半導体レーザへの配線方法を示す図。 半導体レーザとサブマウントの位置関係を示した図で、活性層がサブマウント側に配置された例を示す図。 半導体レーザとサブマウントの位置関係を示した図で、サブマウントが浮上面と反対側に配置された例を示す図。 サブマウントが浮上面と反対側に配置された場合の配線方法を示す図で、全体図。 サブマウントが浮上面と反対側に配置された場合の配線方法を示す図で、サブマウントの構造を示す図。 スライダ側面での反射光を少なくする手段を示す図で、半導体レーザと導波路の間を樹脂で埋めた例を示す図。 スライダ側面での反射光を少なくする手段を示す図で、半導体レーザを傾けて配置した例を示す図。 スライダ側面での反射光を少なくする手段を示す図で、スライダ側面を傾けた例を示す図。 スライダ側面に反射防止膜を形成した例を示す図で、ウェハ上に側面が垂直な溝を形成して反射防止膜を形成した例を示す図。 スライダ側面に反射防止膜を形成した例を示す図で、ウェハ上に側面が斜めになった溝を形成して反射防止膜を形成した例を示す図。 スライダ側面に反射防止膜を形成した例を示す図で、スライダ切断後に半導体レーザを搭載した例を示す図。 スライダ中の導波路の向きをミラーを用いて曲げた例を示す図。 近接場光発生素子に対し、導波路が斜めに入射する例を示す図で、全体図。 近接場光発生素子に対し、導波路が斜めに入射する例を示す図で、近接場光発生素子全体も斜めになった例を示す図。 近接場光発生素子に対し、導波路が斜めに入射する例を示す図で、近接場光発生素子の先端部が斜めになった例を示す図。 半導体レーザを配置するのと反対側のスライダ側面に重りを載せた例を示す図。 光パワーモニタ用導波路を形成した例を示す図で、全体図。 光パワーモニタ用導波路を形成した例を示す図で、導波路の分岐部の例を示す図。 光パワーモニタ用導波路を形成した例を示す図で、光パワーモニタ用導波路の終端部の端部を斜めにした例を示す図。 光パワーモニタ用導波路を形成した例を示す図で、光パワーモニタ用導波路の中心軸がスライダ側面に対して斜めになった例を示す図。 光パワーモニタ用光検出器の配置方法を示す図。 近接場光発生素子に光を導入するための導波路の中心軸が浮上面に対し斜めになり、導波路終端で反射した光を光パワーモニタ用導波路で検出する例を示す図。 アライメント方法を示す図で、アライメントマークの配置例を示す図。 アライメント方法を示す図で、部品の保持方法を示す図。 半導体レーザをスライダの上に配置し、電極をサブマウントの上部に設けた例を示す図で、側面側から見た断面図。 半導体レーザをスライダの上に配置し、電極をサブマウントの上部に設けた例を示す図で、他の側面側から見た図。 半導体レーザをスライダの上に配置し、電極をサブマウントの上部に設けた例を示す図で、スライダ上部における配線方法を示す図。 半導体レーザをスライダの上に配置し、電極をサブマウントの側面に設けた例を示す図で、側面側から見た断面図。 半導体レーザをスライダの上に配置し、電極をサブマウントの側面に設けた例を示す図で、他の側面側から見た図。 半導体レーザをスライダの上に配置し、電極をサブマウントの側面に設けた例を示す図で、スライダ上部から見た図。 記録再生装置の構成例を示す図。 半導体レーザの出射面付近にシリンドリカルレンズを配置した例を示す図で、レンズを半導体レーザ上に配置した例を示す図。 半導体レーザの出射面付近にシリンドリカルレンズを配置した例を示す図で、レンズをスライダ側面に配置した例を示す図。 半導体レーザをスライダの外に置いた例を示す図。
 以下、図面を参照して本発明の実施の形態を説明する。
 図1~6に、本発明による熱アシスト集積ヘッドの構成例を示す。図1に示すように、記録用磁界は、コイル7と、コイル7で発生した磁束を伝えるための太い磁極27と主磁極2とリターンポール8とから構成される磁気ヘッド部6により発生させた。コイル7により発生した磁界は、太い磁極27を伝わり、近接場光発生素子1の近傍に配置された主磁極2に伝わる。記録の瞬間に、近接場光発生素子1より発生する近接場光により磁気記録媒体14を加熱すると同時に、主磁極2から発生する記録磁界を磁気記録媒体14に印加することで、記録層14’に記録マークを書き込んだ。
 図4に、主磁極2及び近接場光発生素子1の拡大図を示す。また、図5Aに主磁極と近接場光発生素子を側面から見た図、図5Bに浮上面側から見た図を示す。磁極としては、コイル7で発生した磁束を伝えるための太い磁極27の先に、主磁極2を形成した。主磁極2の先端は幅が狭くなるようにし、主磁極先端部のx,y方向の幅(Wc,Wd)は、Wc=150nm、Wd=100nmとなるようにし、細くなった部分の高さ(スロートハイト)h10は50nmとした。細くなった部分の上の部分は幅が徐々に大きくなるようにし、そのテーパ部の角度φは45度にした。主磁極の高さhは、900nmとした。太い磁極27とスライダ浮上面17の距離h12は100nmとした。磁極の材質は、NiFeもしくはCoFe合金とした。このような構造を用いることで、コイルで発生された磁界を狭い領域に集中させることが可能で、光加熱位置に、10kOe以上の強い磁界を発生させることができる。
 書込ヘッドの脇には、図1に示すように、磁気再生素子4を含む再生ヘッドを形成した。本実施例では、磁気再生素子4としてGiant Magneto Resistive(GMR)素子又はTunneling Magneto Resistive(TMR)素子を利用した。磁気再生素子4の周辺には、磁界の漏れを防ぐための磁気シールド9を形成した。
 近接場光発生素子としては、図5Bに示すように、スライダ浮上面17から見た形状が、近接場光が発生する頂点20に向かい幅が徐々に小さくなった形状(本実施例では三角形)となり、かつ図4に示すように、スライダ側面から見たときの形状が、スライダ上部21において幅W3が広く、スライダ下部22において狭くなった形状をした金属構造体1を用いた。上部の幅が広い部分21と下部の幅が狭くなった部分22の間には、テーパ部26を形成した。底部の三角形の形状をした部分の長さWaは60nm~100nmとし、頂角θ1は60度、先端幅Wbは10nm、近接場光が発生する頂点20と主磁極の距離sは20~30nmとした。金属構造体1の高さh3は900nm、上部の幅W3は3μm、浮上面から上部の広げた部分までの距離h7は250nmとした。テーパ部26の頂角θ2は60度とした。金属構造体1の材質は金、金属構造体1の周辺の材料はアルミナ(Al23)とした。
 光源で発生した光を近接場光発生素子に導くためには、導波路3(図ではコア部を示す)を用いた。導波路のコア3は、図5Aに示すように、金属構造体1の横に配置した。導波路コア3と金属構造体1の距離(図5A中、dx)は、20nmとした。導波路のコア3とクラッド15の界面には、クラッド15に染み出すように発生するエバネッセント光が存在する。このエバネッセント光が金属構造体1の上部21の側面29に当たると、金属構造体1とクラッド15の界面29には、電荷の粗密波である表面プラズモンが発生する。この波が下方向(金属構造体1の先端20に向かう方向)に進み、金属構造体1の底部の幅が狭くなった部分22に到達すると、金属構造体1の底部の幅が狭くなった部分22には、局在プラズモンが発生する。金属構造体1の底部の幅が狭くなった部分22において、金属内部を振動する電荷は、鋭く尖った先端部20に集中し、その近傍には、局在した電磁場、すなわち近接場光が発生する。特に、磁気記録媒体14が、近接場光素子1の近傍に存在すると、媒体中のイメージ電荷と相互作用するため、金属中の電荷が媒体側にさらに引き寄せられ、媒体に近い頂点20に強い近接場光が発生する。
 上記構造において、スライダ側面から見たときの金属構造体1の上部21の幅を広げ、かつテーパ部26を設けたが、このようにすることにより、金属構造体1の上部21に発生した表面プラズモンが、金属構造体の底部の幅が狭くなった部分22に集まるようになる。その結果、金属構造体の底部において電磁場強度が強くなり、頂点20に発生する近接場光の発生効率を上げることが出来る。
 上記構造において、金属構造体1の媒体側の表面の頂点20以外の部分(図4中、25)は、散乱体の表面と媒体表面の距離が、散乱体の頂点部20と媒体表面の距離よりも大きくなるようにした。光を散乱体に入射させたとき、頂点20の他に、頂点と反対側の辺にも弱い近接場光(バックグランド光)が発生する。このバックグランド光が媒体に当たると、頂点部20以外においても媒体が加熱されてしまい、そこにおける記録情報が消去されてしまう可能性がある。上記のように、金属構造体1の底面25と媒体表面の距離が大きくなるように金属構造体1の底面25を削ると、頂点20の反対側の辺に発生する弱い近接場光が媒体表面に届かなくなり、その近接場光が媒体に与える影響を小さくすることができる。本実施例では、底面25の凹み(リセス)量h2は10nmとした。
 上記構造において、金属構造体1とクラッド15の界面に、表面プラズモンを励起するためには、界面に垂直な電界成分を有する光を金属構造体1の側面に照射する必要がある。一般的に、金属膜表面に表面プラズモンを励起するためには、膜表面に垂直な電界成分を有する光を膜に入射させる必要がある。そのためには、導波路コア3に導入する光の偏光方向は、金属構造体1とクラッド15の界面に垂直な方向(図5A中、矢印23の方向)にする必要がある。
 光加熱用の光源としては波長780~980nmの半導体レーザ30を用い、それを、図2A,図2B及び図3に示すように、浮上スライダ5の4つの側面の内、流入端側でもなく、かつ流出端側でもない側面の横に配置した。浮上スライダの高さは230μmとし、記録ディスクの面に平行な方向の幅は、記録トラックに平行な方向が850μm、記録トラックに垂直な方向が700μmとなるようにした。
 半導体レーザとしては、半導体レーザのストライプ構造(光を閉じ込めるためのリッジや活性層をエッチングすることにより形成されたチャネル導波路により構成され、光増幅が行われる領域)の向きが、スライダの側面63に対して、平行になるようにし、ストライプ構造の両端にミラー101が形成されたものを用いた。ミラー101の角度θは45°とし、ストライプ構造中を伝わる光は、ミラー101により、半導体レーザ中の活性層31の成膜面に対して水平な方向(活性層31の面内方向)に曲がり、半導体レーザの側面(ストライプ構造の両脇に位置する面)に対して垂直な方向に進むようにした。ミラー101の向きは、両端部における反射光が互いに反対の方向に進むようにした。ミラーで反射した光の一部は、側面において反射し、ストライプ構造側に戻る。このとき、対向する2つの側面が光の共振器を形成するミラーとして機能する。半導体レーザ上面の電極45から活性層に電流を注入することで、レーザ発振が生じ側面からレーザ光が出射する。半導体レーザの側面には、反射率調整膜(誘電体多層膜、もしくは単層膜)109を形成することで、レーザ光が出射する側の側面の反射率が低く、それと反対側の側面において反射率が高くなるようにした。
 半導体レーザ30はサブマウント32上に配置し、サブマウント32をスライダの側面63に、導電性接着剤37を用いて接着した。半導体レーザ30からは熱が生じるが、その熱が逃げないと、半導体レーザの温度が上昇し、半導体レーザの破損もしくは寿命の低下につながる。サブマウント32とスライダ5の側面を、導電性接着剤37を用いて接合させると、半導体レーザで発生した熱が、サブマウントに伝わった後、スライダ5に伝わる。浮上スライダ5に伝達した熱は、浮上面と記録ディスクの間を流れる空気流を介して記録ディスク側へ放出される。その結果、半導体レーザにおける温度上昇を抑制することが出来る。
 浮上スライダ5中に形成した導波路の入口は、半導体レーザを配置したスライダ側面側に位置するようにし、半導体レーザ30からの出射光が、浮上スライダ5中に形成した導波路に直接結合するようにした。半導体レーザから出射した光が導波路に結合するときの結合効率を大きくするためには、半導体レーザとスライダの側面の距離はなるべく短くするのが好ましく、本実施例では0~10μmとした。理想は0であるが、アライメント誤差により0~10μmと幅が生じる。
 スライダ中の導波路3には曲線部を設け、光の入射部16付近においては、スライダの浮上面に対してほぼ平行な方向に光が進むようにし、近接場光発生素子1付近においては、スライダの浮上面に対し垂直な方向に光が進むようにした。このようにすることにより、半導体レーザ30から水平方向に出射した光が、上方向(浮上面17の反対の方向)から、近接場光素子1に当たるようにした。なお、導波路3を加工する際、基板表面は、yz面に平行な面となる。したがって、上記のような曲線部を有する導波路は、リソグラフィにより容易に作製することが出来る。
 導波路のコア3の材質はTa25とし、クラッド部15の材質はAl23とした。コアの幅は、波長が830nmのときは、記録トラックの方向と垂直な方向のコア幅W1は500nm、記録トラックの方向と平行な方向のコア幅Wは300nmとし、波長が980nmのときは、記録トラックの方向と垂直な方向のコア幅W1は650nm、記録トラックの方向と平行な方向のコア幅W2は300nmとした。コア幅は、他の値にしてもよく、例えば、830nmのときW1=500nm、W2=200nmにしてもよい。導波路3の材質は、コアの屈折率がクラッドの屈折率よりも大きければよく、例えば、クラッドの材質をAl23にし、コアの材質をTiO2やSiN,SiOxyにしてもよい。またクラッドの材質をSiO2にし、コアの材質をTa25,TiO2,SiOxy,GeドープSiO2にしてもよい。
 導波路3の曲線部の曲率半径Rは、小さすぎると導波路から光が放出され、伝播ロスが生じてしまう。図6に、コア幅が500nm×300nmであるとき、曲率半径Rと導波路の透過率の関係を示す。この図に示すように、半径が60μm以上であるときは伝播ロスは生じないが、それ以下になると伝播ロスが生じてしまい、近接場光発生素子1に到達する光強度が低下してしまう。本実施例では、伝播ロスが生じないように、曲率半径は100μmもしくは150μmとした。近接場光発生素子1付近の導波路は直線になるようにし、直線部の長さL10は30μmとした。この直線部の長さL10は、磁気ヘッドのコイルもしくは磁極と導波路がぶつからなければ、他の値にしてもよい。
 半導体レーザからの出射光が導波路3に効率よく結合するために、導波路3の入口には、図7に示すようなスポットサイズコンバータ19を形成した。導波路3の入口側の幅W20をW1よりも小さくし、Ta25からなる導波路3のコア周辺に、コアの屈折率と、クラッド15の屈折率の中間の屈折率を有する材料で出来た層18を形成した。このような構造を用いると、導波路の入射部におけるモードフィールド径を広げることが出来る。その結果、半導体レーザからの出射光と導波路の結合効率を上げることが出来る。本実施例では、層18の材料はAl23にSiNを添加したものとし、SiNの添加量は、Al23にSiNを添加したものの屈折率がAl23の屈折率よりも0.05大きくなるように調整した。導波路コアの入射側の幅W20は80nmとした。層18の幅W21は10μm、幅W22は5μm、長さW23は250μmとした。
 本発明の構造においては、スポットサイズコンバータの向き(光が進行する向き)は、スライダの横方向(y方向)になる。そのため、スポットサイズコンバータのスポット径の変換率(スポットサイズコンバータの入口におけるモードフィールド径と、出口におけるモードフィールド径の比)を大きくすることが出来る。すなわち、一般的に、スポットサイズコンバータ19の長さW23が大きいほど、スポット径の変換率を大きくすることが出来る。半導体レーザをスライダ上部に設置する場合、スポットサイズコンバータの向きは、浮上面17に対して垂直(z方向)になる。この場合、スポットサイズコンバータの長さW23はスライダの高さ(z方向の幅)よりも大きくすることが出来ない。
 これに対して、本発明の構造を用いれば、スポットサイズコンバータの向きは、スライダの横方向に(y方向)になるので、スポットサイズコンバータを浮上面17に対して垂直に配置するときよりもスポットサイズコンバータの長さを、長くすることができる。何故なら、スライダの横方向の幅(y方向の幅)の方が、厚さ(z方向の幅)よりも2倍以上大きいからである。したがって、スポット径の変換率を大きくすることが出来る。このようにスポット径の変換率を大きくすることが出来ると、導波路入口16におけるモードフィールド径を大きくすることが出来るので、半導体レーザと導波路の結合効率を上げることが出来る。また、半導体レーザの位置がずれたときの、結合効率の低下量が小さくなるので、半導体レーザの位置ずれ量に対する許容幅を大きくすることが出来る。
 本実施例において、半導体レーザとしてはTEモードレーザを用い、図3に示すように、半導体レーザの出射光110の偏光方向64はスライダの浮上面に平行になるようにした。この光が曲線部を有する導波路3を伝わると、伝播方向が変化するため、近接場光発生素子1付近において、偏光方向は金属構造体1の側面29に対して垂直な方向になる。すなわち、入射光の偏光方向が、金属構造体1に表面プラズモンを発生させるのに必要な偏光方向に一致するようになる。
 本発明の構造は次の利点を有する。
(1) 半導体レーザを浮上スライダの側面に形成するため、ヘッド全体の高さは高くならない。したがって、浮上が不安定になることはなく、またドライブ内において、ディスクとディスクの間隔を大きくする必要がなく、装置全体の厚さを従来と同様薄く保つことが出来る。
(2) 熱アシスト記録用レーザとしては、出力が30~60mWのレーザを用いる必要があるが、従来の端面発光レーザを用いる場合、そのような出力を実現するためには、300~600μm以上の共振器長が必要となる。そのような半導体レーザを浮上スライダの側面(流出端とは異なる面)に形成する場合、共振器の向きは、記録トラックの方向に対して垂直な方向となるが、浮上スライダの中心から半導体レーザの外側の端までの距離(記録トラックの方向に対して垂直な方向における距離)が大きくなり、重心位置が浮上スライダの中心から大きくずれてしまう。その結果、浮上が不安定になる。これに対して、本発明の構造では、半導体レーザの内部において光路が折り曲げられているため、半導体レーザの長手方向が、記録トラックの方向に対して平行な方向となる。したがって、記録トラックの方向に対して垂直な方向の半導体レーザの幅は小さく、重心位置が中心から大きくずれることがない。そのため、安定浮上が可能になる。
(3) 半導体レーザからの光を導波路に結合させる際、グレーティングカプラを用いる必要がない。したがって、波長が変動することにより、導波路に結合した光の強度が揺らぐことはない。
(4) 半導体レーザから発生する熱は、サブマウントを介して、浮上スライダ及びサスペンションのフレクシャー部に逃げる。そして、浮上スライダに伝達した熱は、浮上面と記録ディスクの間を流れる空気流を介して記録ディスク側へ放出される。したがって、半導体レーザの温度上昇を抑制することができる。その結果、半導体レーザの破損や寿命低下を防ぐことが出来る。
(5) スポットサイズコンバータの向きをスライダの横方向になるようにすることが出来るので、スポットサイズコンバータの長さを長くすることが出来る。その結果、スポット変換率を大きくすることが可能になり、半導体レーザからの光を導波路に結合させるときの結合効率を上げることが出来る。したがって、半導体レーザのパワーを下げることが可能になり、消費電力や発熱量を下げることが可能になる。また、半導体レーザの位置ずれに対する許容幅を大きくすることが出来るので、組み立て時の歩留まりを上げることが出来、製造コストを下げることが出来る。
 ここで本発明の構造に用いたミラーつき半導体レーザの詳細構造について記載する。 半導体レーザの厚さL2は50μm、長辺方向の長さL1は550μm、短辺方向の長さL3は80~100μmとした。長辺方向の長さL1は、必要な光量に依存し、低パワーで記録が可能な場合は短くしてもよく、例えば300μmなどにしてもよい。短辺方向の長さL3は、ストライプ構造の端から半導体レーザの側面65までの距離L20に依存する。距離L20が大きすぎると、ミラーから側面まで進む間に、ビームが広がってしまう。その結果、半導体レーザの側面65で反射した光が、ストライプ構造部に戻ったときに、戻り光がストライプ構造に結合する割合が小さくなる。そのため、発光効率が低下してしまう。これを防ぐためには、距離L20は小さい方が好ましい。しかし,半導体レーザの側面(出射面及びその反対側の面)はへき開で作製するため、へき開面のエッジには、欠け(チッピング)が存在する。したがって、距離L20が小さすぎると、へき開により、ストライプ構造の一部が破損しレーザ発振の妨げとなる可能性がある。本実施例では、このことを考慮し、距離L20の目標値は40~50μmとした。へき開によるばらつきにより、実際の値は、この値よりさらに大きくなったものも、小さくなったものも存在した。
 図8Aに、半導体レーザ30の断面構造を示す。基板105としてはGaAs基板を用い、その上にAlGaAsの下部クラッド層103及びAlxGa1-xAsの活性層31を形成した。混晶比xは使用する波長に合わせて調整した。活性層の上には、AlGaAsの上部クラッド層102、絶縁層104及び電極層45を形成した。上部クラッド層102にはリッジ100を形成し、膜に対し水平な方向に光が閉じ込められるようにした(リッジを形成した部分では、活性層の等価屈折率が周辺よりも大きくなるため、光が閉じ込められる)。リッジ100の幅W30は1.5~2.5μmとした。上記AlxGa1-xAsの活性層により、波長0.7~0.9μmの波長の光を発生させることが出来るが、活性層の材質を他の材質にすることにより他の波長の光が発生するようにしてもよい。例えば、InxGaxAs(波長900nm以上)や、In1-xGaxAsy1-y(波長1.3~1.6μm)などの材料を用いてもよい。
 半導体レーザのストライプ構造としては、他の構造を用いてもよく、例えば、図8Bに示すように、埋め込み型の構造を用いてもよい。この場合、下部クラッド層103、活性層31、上部クラッド層102を形成後、中心部以外をエッチングし、周辺にクラッド層106を形成した。活性層31が残った部分以外の上面に絶縁層104を形成後、その上に電極層45を形成した。この構造では、エッチングされなかった部分の活性層の屈折率が周囲よりも高くなるので、チャネル型導波路として機能し、光が活性層に閉じ込められる。
 図9に半導体レーザ30の両端部に形成したミラー101の構造を示す。この例では、半導体レーザの構造として、図8Aのリッジ型構造を用いた。半導体レーザのリッジ100の両端に、ドライエッチングにより深溝107を形成した。深溝の深さD10及びリッジに垂直な方向の幅W34は、活性層中を伝わる光のビーム径よりも十分大きくなるようにした。本実施例では、深さD10は6~8μm、幅W34は10~15μmとした。溝の側面は、リッジ100の端面において、斜めになるようにし、その側面118がミラーとして機能するようにした。深溝の側面(ミラー面)118は、端面の劣化を防ぐために、SiO2などの屈折率が活性層の屈折率よりも小さな誘電体膜108で覆った。誘電体膜の厚さは、0.3~2μmとした。このような構造を形成することにより、活性層中を伝わる光が深溝の側面において全反射し、横方向に反射される。ミラーの角度(図3中θ)は45度とした。ミラー面118の表面に形成した誘電体膜108の材質としては、SiO2を用いたが、他の材料にしてもよく、例えば、SiN,Al23,TiO2などを用いてもよい。深溝107の形状は、側面118が形成されれば任意であり、図10A~10Cのように三角形にしてもよいし、図11A~11Cのように、長方形にしてもよい。
 レーザ光が出射する側の半導体レーザの側面(出射面)及びその反対側の側面には、反射率を調整するための誘電体膜109を形成した。誘電体膜の材質は、SiO2,SiN,Al23,TiO2などの透明材料とし、厚さを調整することにより最適な反射率となるようにした。誘電体膜は、異なる材質からなる多層膜としてもよい。本実施例では、出射面の反射率を30%とし、その反対側の面での反射率を95%となるようにした。これら反射率の値は、側面における反射光の光量が、半導体レーザの発振条件を満たすのに十分な強度であれば、他の値にしてもよく、例えば、出射側の反射率を20%にしてもよい。
 上記実施例において半導体レーザの電極45(p電極)は、図10Aに示すように、リッジ100上のミラー101周辺以外の部分に形成した。電流が注入されていない領域では活性層中での光吸収が大きくなるため、電極で覆う範囲はなるべく大きくすることが好ましく、図10Bのようにミラー101も含むように電極を形成してもよい。ただし、ミラー101を加工する際、ミラー面118において不純物の混入や格子欠陥が発生する可能性がある。その結果、エネルギー順位の中に不純物順位や格子欠陥順位が存在し、それらの順位を介したキャリアの再結合が生じる。そして、再結合により生じた熱によりミラー面が破損する可能性がある。これを防ぐために、図10Cに示すように、ミラー以外の部分を電極で覆ってもよい。
 レーザ光が出射する側面65や、ミラー面118においては、へき開やエッチングの際生じた不純物の混入や格子欠陥、もしくは酸化物により光吸収が発生する可能性がある。その結果熱が発生し、側面が破壊される可能性がある。この光吸収を防ぐために、半導体レーザ側面65やミラー面118付近において、活性層に亜鉛などの原子を拡散させることにより、エネルギーバンド幅が活性層におけるエネルギーバンド幅よりも大きくなるようにすることで、光吸収が起きにくくするようにしてもよい。また、図10Aの電極がない部分(電流注入がない部分)における光吸収を防ぐために、ミラー面と半導体レーザ側面の間のすべての領域115において、エネルギーバンド幅を広げ光吸収が起きにくくなるようにしてもよい。
 上記実施例では、リッジ100とミラー101が接するようにしたが、図11Aに示すように、リッジ100とミラー101が離れるように形成してもよい。また、図11Bに示すように、リッジ100とミラー101が接するようにし、ミラー付近において、リッジ100のミラー面118に平行な方向の幅W32が、ミラー面118の幅W31以上になるようにしてもよい。このようにすることにより、リッジ100とミラー面118の位置ずれがないようにミラーを形成することが出来る。すなわち、まずリッジ100及びリッジ終端部の幅が広くなった部分119を覆う第1のマスク層(レジスト層もしくはハードマスク層)を形成し、その周辺をエッチングする。次に、深溝107の外側を覆う第2のマスク層を形成する。このとき、第2のマスクにより覆う部分の大きさは、点線で示すように、ミラーを形成する深溝107よりも大きくなるようにし、ミラーの側面118の部分が第2のマスクに覆われないようにする。このとき、リッジ100の幅W32がミラー面118の幅(光の入射方向に垂直な方向の幅)W31以上になっていると、ミラー面118となる部分の周辺は、第1のマスク層により覆われているため、エッチングされず、最終的に、第1のマスク層の形状によりミラー面118の形状が決まることになる。したがって、リッジ100とミラー面118の位置ずれが生じることがない。本実施例では、ミラー面118の幅W31は10μmとし、リッジ終端部の幅が広くなった部分119のミラー面に平行な方向の幅W32は12μm、ミラー面に垂直な方向の幅W33は2μmとなるようにした。
 図11Cに示すように、リッジ終端部の幅が広くなった部分119は、半導体レーザの側面65にまで到達するように形成してもよい。また、リッジ終端部の幅が広くなった部分119が、ミラー101を囲むように形成してもよい。なお、上記実施例では、半導体レーザのストライプ構造としてリッジ型構造を用いたが、図8Bに示すような埋め込み型の場合においても、図11Bや図11Cの場合と同様に、ミラー101付近において、活性層の部分が広くなるようにしてもよい。
 上記実施例では、ミラー101の角度θは45度としたが、45度以上もしくは45度以下になるようにしてもよい。例えば、図12Aの実施例では、ミラーの角度θを55度にした。ストライプ構造(リッジもしくは埋め込み導波路)100の終端から半導体レーザ側面までの距離L20は、半導体レーザの発光効率を考慮すると小さい方が好ましい。しかし、半導体レーザの側面はへき開で作製するため、角度が45度であるとき、距離L20が小さくなりすぎると、へき開により生じた欠けにより、ストライプ構造の一部が破損してしまう可能性がある。また、角度が45度であるとき、ストライプ構造100の終端から半導体レーザ側面までの距離L20が小さいと半導体レーザの幅L3が非常に小さくなる。例えば、ストライプ構造終端部から半導体レーザ側面までの距離L20をストライプ構造両端部共に20μmとなるようにすると半導体レーザの幅L3は40μmとなる。このように幅が小さくなると機械的強度が弱くなり、半導体レーザの加工中や半導体レーザをスライダに取り付ける作業中に、レーザが折れてしまう可能性がある。また、活性層中で発生した熱が半導体レーザの中にこもりやすくなり、発熱によりレーザが破損する可能性がある。
 これに対して、図12Aのように、ストライプ構造両端のミラーの角度θを45度よりも大きくすると、ストライプ構造100の向きを斜めにすることが出来るので、ストライプ構造と半導体レーザの側面の距離を大きくすることが出来、また半導体レーザの幅L3を広げることが出来る。したがって、ダイシング時の欠けや、機械的強度、発熱の問題を回避することが出来る。例えば、本実施例では、2つのミラー間の距離L21は500μm、ストライプ構造終端部から半導体レーザ側面までの距離(L20,L21)は両端部共に20μmとした。したがって、L3は128μmとなった。
 上記のように半導体レーザの幅L3が小さくなりすぎることを防ぐためには、図12Bに示すように、ミラーの角度は45度とし、ストライプ構造100が途中で徐々に曲がるようにしてもよい。本実施例では、2つのミラー間の距離L22は500μm、リッジ終端部から半導体レーザ側面までの距離(L20,L21)は共に20μmとし、ストライプ構造部が徐々に曲がるようにすることで、L3は90μmとした。
 上記実施例では、ミラー101で反射した光の進む向きは、レーザ光の出射側とその反対側において互いに異なるようにしたが、図13Aに示すように、同じ方向に進むようにしてもよい。すなわち、共振器を形成する2つの反射面が同一面になるようにしてもよい。半導体レーザの出射側の端面の反射率は、その反対側の端面の反射率よりも小さくすることが好ましいが、これを実現するためには、反射率を調整するための誘電体膜109の膜厚や組成が、レーザ光の出射側とその反対側において互いに異なるようにする必要がある。そのために、本実施例では、誘電体膜109を出射側とその反対側とを別々に成膜し、出射側とその反対側において反射率が異なるようにした。例えば、出射側の反射率を30%、反対側の反射率を95%とした。
 光が出射する側の側面と反対側の反射面は、図13Bに示すように、光が出射する側の側面に対し直交する側面113となるようにしてもよい。このようにすることで、ミラー101の数量を1つにすることができるので、ミラー面118で発生する光の散乱などによるロスを軽減することができる。
 上記実施例では、半導体レーザの側面を共振器のミラーとして用いたが、エッチングにより基板上に深溝を形成し、溝の側面を共振器のミラーとして用いてもよい。図13Cの実施例では、出射側と反対側のストライプ構造の端に深溝116を形成した。溝の側面の垂線の向きが、ストライプ構造中の光の進行方向となるようにすることで、ストライプ構造から出射する光が反対方向に進むようにし、深溝116の側面と出射側の半導体レーザの側面により共振器が構成されるようにした。深溝116の側面(反射面)は、表面の保護及び反射率の調整のために、SiO2やAl23などの誘電体膜で覆った。
 図13Bの実施例では、光が出射する側の側面に対し直交する側面113を用いて光を反射させたが、出射する側の側面をへき開により形成した場合、これに直交する側面113のへき開は難しく、面が荒れる可能性がある。これに対し、図13Cのように、深溝により光を反射させる場合、反射面を平坦にすることができるので、光のロスを軽減することができる。なお、このようなエッチングにより作製した反射面は、出射面側に用いてもよい。出射側のミラーとして、半導体レーザの側面を用いる場合、側面はへき開により形成されるが、へき開位置のずれにより、ミラー101と半導体レーザの側面65の距離にばらつきが生じる。ミラーから半導体レーザ側面に伝播する間に光のスポットは広がるが、ミラー101と半導体レーザの側面65の距離が変動すると、側面で反射した光がストライプ構造100に戻るとき、ストライプ構造に結合する光の割合が変化してしまう。その結果、レーザ光の発生効率が変動してしまう。出射側のミラーをエッチングで作製する場合、ミラーの位置は正確に決まるため、このような発生効率の変動が少なくなる。
 図13Dに示すように、半導体レーザの側面や深溝を用いることに替えて、活性層表面にグレーティング117を形成することにより光を反射させてもよい。グレーティングの周期を最適化することにより、光を反射させることが出来る。
 上記実施例では、ミラー101と半導体レーザの側面65の間には、光を活性層に平行な方向(図3のx方向)に閉じ込めるための導波路(リッジやチャネル導波路)を形成しなかったが、図14Aのように、ミラー101と半導体レーザの側面65の間に、リッジ導波路やチャネル導波路などの導波路114を形成してもよい。ミラーと半導体レーザ側面の間にこのような閉じ込め構造がないと、ミラーから半導体レーザ側面に伝播する間に光のスポットが広がってしまう。この場合、半導体レーザ側面65で反射した光が、本体のストライプ構造100に戻る際、本体のストライプ構造100のモードフィールド径と反射光のスポット径が異なるために、結合ロスが発生してしまう。その結果、半導体レーザの発光効率が低下してしまう。また、半導体レーザ側面はへき開により形成するが、へき開位置のずれにより、出射光のスポット径にばらつきが生じてしまう。これに対し、ミラーと半導体レーザの間に導波路を形成することで、この領域における光スポットの広がりを抑えることができる。その結果、反射光がストライプ構造に結合するときの結合ロスの発生を抑えることが出来、また、へき開位置のずれによる出射光のスポット径の変動を抑えることも出来る。本実施例では、本体のストライプ構造100と同じ材質や膜構成を有する導波路114をミラーと半導体レーザの側面の間に形成し、本体のストライプ構造100のリッジの幅W30を2μm、ミラーと半導体レーザの側面の間の導波路114のリッジの幅W31を2μmとした。本体のストライプ構造100の幅W30とミラーと半導体レーザの側面の間の導波路114の幅W31は異なるようにしてもよく。例えば、W30=2μm、W31=2.5μmなどのように、W30<W31となるようにしてもよい。このようにすることで、導波路114中のモードフィールド径がストライプ構造100中のモードフィールド径よりも大きくなるようにすることが出来る。その結果、出射光のビーム径が大きくなるので、半導体レーザとスライダ中の導波路の間の位置ずれの影響を小さくすることが出来る。
 ミラーと半導体レーザの側面の間の導波路114の幅W31は徐々に変化させてもよい。例えば、図14Bの実施例では、出射面方向に進むに従い、幅W31が2μmから2.5μmに徐々に大きくなるようにした(出射面付近では、ミラーと半導体レーザの側面の距離L20のばらつきにより、スポット径がばらつかないように、幅W31が一定になるようにした)。このようにテーパ部を設けずに、ミラーと半導体レーザの側面の間の導波路114の幅W31が本体のストライプ構造100の幅W30よりも大きくなるようにした場合、半導体レーザ側面65で反射した光が、本体のストライプ構造100に戻る際、本体のストライプ構造100のモードフィールド径と反射光のスポット径が異なるために、結合ロスが発生してしまう。これに対して、テーパ部を設けることにより、反射光のスポット径は、出射面と反対の方向に進むに従い徐々に小さくなり、本体のストライプ構造100のモードフィールド径に近くなる。そのため、結合ロスを抑えることが出来る。
 上記実施例では、本体のストライプ構造100と同じ材質や膜構成を有する導波路をミラーと半導体レーザの側面の間に形成したが、本体のストライプ構造100と異なる材質や膜構成を有する導波路を形成してもよい。例えば、図15Aの実施例では、ミラー101と半導体レーザ側面65の間に、図7に示すスポットサイズコンバータの入口側の導波路と同じようにAl23にSiNを添加した材料で出来た断面形状が長方形となるコア111を形成し、その周辺にAl23のクラッド112を形成した。SiNの添加量は、Al23にSiNを添加した材料の屈折率がAl23の屈折率よりも0.05大きくなるように調整した。導波路コアのx方向の幅W21は10μm、z方向(厚さ方向)の幅W22は5μmとした。コアやクラッドの材質は他のものであってもよく、例えば、活性層を構成する材料の原子の組成比を変えることでバンドギャップを広くした半導体材料を導波路コア111の材料として用いてもよい。例えば、本実施例では、コアの材質をAlxGa1-xAsにし、レーザ光が吸収されないように比率xを調整した。クラッド112の材料は、ストライプ構造100のクラッド層と同じ材料(AlGaAs)とした。
 上記出射面近くに形成した導波路コア111の屈折率とクラッド112の屈折率の差が大きい場合、図15Bのように、ミラー101ではなく、導波路コア111を曲げることで光の進行方向を変えてもよい。例えば、本実施例では、コア111の材料は、レーザ光が吸収されないように比率xを調整したAlxGa1-xAsにし、クラッド112の材料はSiO2とした。ストライプ構造100と半導体レーザの側面65までの距離L20は70μmとした。
 上記ミラーを用いた実施例において、ミラー101の反射面118は、図16に示すように、曲面となるようにしてもよい。例えば本実施例では、曲面の形状が放物面となるようにした。すなわち、ミラー面118に入射する光の進行方向と、反射した光の進行方向がなす角をθ’とするとき、入射光の中心軸と反射光の中心軸の交点を通り、入射光の中心軸とのなす角度がθ’/2となる直線をY’軸、それと直交する直線をX’軸とするとき、X’,Y’座標上での曲線の座標が次式を満たすようにした。
     Y’=X’2/4a   (1)
 ここでaは定数である。このようにすることで反射光は広がらずに収束光もしくは平行光になる。
 なお、上記構造のミラーは、活性層の成膜面に平行な方向(x方向)のビームの広がりを抑制する働きをする。成膜面に垂直な方向(z方向)に関しては、ミラー101と半導体レーザ側面65の間に、下部クラッド/活性層/上部クラッドの積層構造が存在するため、光は活性層中に閉じ込められて、ビーム径が広がらないようになっている。
 上記形状を放物面としたミラーにおいて、ミラー101の中心(ストライプ構造100の中心軸とミラー面118が交わる点)からビーム径が一番小さくなる点までの距離fが、ミラーの中心から半導体レーザの側面までの距離に等しくなるように、定数aを調整すると、半導体レーザ側面で反射してストライプ構造100の端部に戻った光のビーム径は、ストライプ構造100から出射したときのビーム径と同じ大きさになる。その結果、戻った光がストライプ構造100に結合しやすくなり(結合ロスが小さくなる)、レーザの発光効率を上げることが出来る。本実施例では、ミラーの角度(θ=θ’/2)を45度とし、半導体レーザ側面とミラー中心の距離L20を30μm、aの値を30μmとした。
 曲面ミラーのaの値は、反射光がスライダ側面63の導波路入口部において収束するようにしてもよい。このように、導波路入口において光が収束するようにすると、入射光が導波路に結合する割合(結合効率)を大きくすることが出来る。例えば、本実施例では、ミラーの角度(θ=θ’/2)を45度とし、半導体レーザ側面65とスライダ側面63の距離を10μm、半導体レーザ側面とミラー中心の距離L20を30μmとし、aの値を40μmとした。
 曲面ミラーのaの値は、スライダ側面63(もしくは半導体レーザ側面65)においてレーザ光がほぼ平行光になるようにしてもよい。このようにすることにより、半導体レーザ側面とスライダ側面の距離のずれにより、半導体レーザから出射する光の強度や導波路に結合する光の強度の変動を小さくすることが出来る。本実施例では、半導体レーザ側面65とスライダ側面63の距離を10μm、半導体レーザ側面とミラー中心の距離L20を30μmとしたとき、aの値を50~60μmとした。
 上記曲面ミラーの形状を放物面とする場合において、放物面の軸の向きは他の向きにしてもよい。例えば図16に示すように、ストライプ構造100の中心軸の方向をY’’、それに直交する方向をX’’としたとき、
     Y’’=(X’’-α)2/4a+β   (2)
となるようにしてもよいし、半導体レーザの側面65に垂直な方向をY’’’、それに直交する方向をX’’’としたとき、
     Y’’’=(X’’’-α)2/4a+β  (3)
となるようにしてもよい。ここで、α,βは定数であり、反射光が半導体レーザの側面65に対して垂直に入射し、かつ反射光が平行光、もしくは所望の位置において光が収束する光になるように調整する。本実施例では、ミラーの形状は式(2)の形状とし、ミラーの角度θを45度、α=2a、β=-aとなるようにした。このときおよそf=2a離れた位置において光が収束する。aの値は15μmとし、スライダ側面の導波路入口において、光が収束するようにした。
 上記曲面ミラーを用いた実施例では、ミラーの角度θは45度としたが、図12Aの場合と同様に、55度などθを45度と異なる値にしてもよい。また、ミラー面118とストライプ構造100の位置ずれを防ぐために、図11Bや図11Cの場合と同様、ストライプ構造100の端部において、ストライプ構造の幅W32がミラーの幅W31(x’方向の幅)よりも大きくなるようにするのが好ましい。
 上記実施例において、ミラーの形状は、放物面となるようにしたが、円弧や楕円形など他の形状にしてもよい。また、実際には、ストライプ構造から出射する光は、完全な平行光とは異なり、また1つの点光源から広がる光とも異なる。そのため、放物面、球面、楕円面などの形状をしたミラーを用いた場合、収差により、反射光は、完全な平行光や、1点に完全に集まる光とはならない。このことを防ぐためには、ミラーの形状は、収差がなくなるよう最適化された非球面形状となるようにするのが好ましい。形状は、シミュレータにより最適化することができる。
 上記形状が曲面となったミラーは、活性層の成膜面に平行な方向(x方向)のビームの広がりを抑制する働きをする。成膜面に垂直な方向(z方向)に関しては、ミラー101と半導体レーザ側面65の間に、下部クラッド/活性層/上部クラッドの積層構造が存在するため、光は活性層中に閉じ込められて、ビーム径が広がらないようになっている。しかし、半導体レーザから出射した光のz方向のスポット径は、半導体レーザの出射面から離れるに従い、大きくなってしまう。そのため、半導体レーザの側面65とスライダ側面63の距離にばらつきがあると、スライダ中の導波路に入口において光のスポット径にばらつきが生じるため、結合効率がばらついてしまう。このことを防ぐために、図33Aに示すように、半導体レーザ側面65にシリンドリカルレンズ124を配置してもよい。このようにすることで、出射光のz方向の広がりを抑えることができるので、半導体レーザの側面とスライダ側面の距離のばらつきの影響を抑えることが出来る。また、導波路の入射する光が平行光もしくは導波路入口において収束する光であるとき、導波路への結合効率が高くなる。したがって、上記のようにシリンドリカルレンズを配置することにより、光が導波路に結合する効率を高くすることが出来る。なお、出射面側にレンズを配置する場合、レンズの位置合わせが必要となるが、シリンドリカルレンズの場合、1方向のアライメントのみで済むため、通常の球面レンズを用いる場合よりも位置合わせは容易となる。また、結合効率を高くすることが目的であれば、図33Bのように、シリンドリカルレンズ124はスライダ側面63に配置してもよい。
 以下、本発明の半導体レーザへの配線方法について記載する。
 図2Bに示すように、半導体レーザの2つの電極45は、サブマウント32側の面とその反対側の面にそれぞれ形成した。サブマウント32の厚さL7は150μmとし、半導体レーザを搭載する部分において厚さL9を100μmとした。幅L5は、120μmとし、長さL6は750μmとした。サブマウントの材質は、Si又はSiC又はAlNとした。サブマウント32の半導体レーザ30に接する側の面の上には、半導体レーザ用の電極33を全面に形成した。サブマウント上の電極33はTi/Pt/Au(金が表面)の多層構造とした。サブマウント上の電極33と半導体レーザ30の電極45は、半田36により接合した。
 図2B及び図17Aに示すように、半導体レーザ30及びサブマウント32の上に、フレキシブルプリント基板上の配線13(材質:銅もしくは銅と金の積層構造)が延びるようにし、半導体レーザ上の電極45及びサブマウント上の電極33は、半田又は導電性接着剤46により配線13につないだ。図17Aの実施例では、配線13の先の半導体レーザやサブマウント上の電極に接する部分(電極パッド)121の大きさはおよそ100μm×100μm程度となるようにした。ここで、半導体レーザの電極45と配線13の接触面性はさらに大きくしてもよい。このようにすることで、半導体レーザから発生する熱が配線13に逃げるので、半導体レーザにおける温度上昇を小さくすることが出来る。なお、配線13を取り付ける際、導電性接着剤がはみ出て反対側の電極に接するなどして、半導体レーザの2つの電極がショートする可能性がある。それを防ぐために、半導体レーザの側面と電極33の間は、光硬化性樹脂などの絶縁材71で埋めてもよい。
 上記配線13は、サブマウント上の電極33や半導体レーザの電極45と接触する部分以外は、漏電や腐食を防ぐために、表面をポリイミド(図2B中の73)で覆った。このとき、配線13を露出させる部分72の端は、サブマウント上の電極33もしくは半導体レーザの電極45の端よりも内側に位置するようにした。このようにしたとき、配線13が露出した部分72と、露出しない部分の境目におけるポリイミドの側壁が、半田もしくは導電性接着剤46が、電極33もしくは半導体レーザの電極45の外にはみ出ることを阻止する働きをする。本実施例では、表面のポリイミドの厚さT1は5μmとし、接着領域の周辺を高さ5μmのポリイミドの壁で囲うことにより、半田もしくは導電性接着剤46が電極からはみ出ることを防いだ。
 上記半導体レーザをサブマウントの上部に配置する実施例において、サブマウント上の電極33又は半導体レーザ上の電極45をグランドにして、配線13をサスペンションのフレクシャー10に接触させてもよい。フレクシャー10は金属(通常ステンレス)で出来ているので、配線13をフレクシャーに接触させることにより、配線13に伝わった熱をフレクシャーに逃がすことが出来る。したがって、半導体レーザにおける温度上昇を小さくすることが出来る。例えば、本実施例では、半導体レーザ30の電極45につながる配線をフレクシャーに接触させた。ここで、配線13に接触する側のフレクシャーの表面を、銅や金などの熱伝導率の高い金属材料で覆ってもよい。このようにすることにより、フレクシャーに伝わった熱が逃げやすくなり、半導体レーザにおける温度上昇をさらに小さくすることが出来る。
 上記実施例では、サブマウント32の厚さが半導体レーザ30を載せる部分において薄くなるようにしたが、図18に示すように、サブマウント32が平らになるようにしてもよい。この場合、フレキシブルプリント基板35のついたステンレスの薄い板122の一部をサブマウント側に折り曲げることで、配線13をサブマウント上の電極33に近づけた。配線13とサブマウント上の電極33は、導電性接着剤もしくは半田46を用いて接合させた。サブマウント32の厚さL7は100μmとし、幅L5,L6は図2A,図2Bの実施例と同じとした。
 上記実施例では、半導体レーザの2つの電極(p電極及びn電極)は、半導体レーザ表面の対向する2つの面に形成したが、2つの電極を共に一方の面の上に形成してもよい。例えば、図17Bの実施例では、2つの電極を半導体レーザのサスペンション側の面上に形成した。この場合、配線13は、サブマウント上の電極33を介さずに、半導体レーザ上の電極45に直接接合される。
 上記実施例では、半導体レーザ30の活性層31は、サブマウント32の反対側に配置したが、図19Aに示すように、サブマウント側に配置してもよい。このように、サブマウント側に配置すると、活性層31で発生した熱がサブマウント側に逃げやすくなり、半導体レーザの温度上昇を小さくすることが出来る。
 上記実施例では、サブマウント32を、スライダ5の浮上面側に配置したが、図19Bに示すように、サブマウント32が浮上面17の反対側に位置するように配置してもよい。このときの電極の形成方法を図20A,20Bに示す。図20Bに示すように、サブマウント32の側面66には、2つの電極33を露出させ、それらの電極が半導体レーザ30の2つの電極45につながるように、サブマウント上に電極パターンを形成した。サブマウント上の電極の一方は、サブマウントの厚さが薄くなった部分において半導体レーザの電極45と接するようにし、もう一方の電極は、段差部の側面67において、半導体レーザのもう片方の電極45に接するようにした。半導体レーザの電極45とサブマウント上の電極33は、半田もしくは導電性接着剤46で接合させた。このサブマウント32及び半導体レーザ30を図20Aに示すように、スライダ5の側面に配置し、サブマウント32の側面に形成された電極33は、サスペンション上の配線13に、記録再生ヘッド用の電極34と同じように、半田36を用いて接合させた。なお、上記図19Bの実施例では、サブマウント32をスライダ5の側面に配置したが、サブマウント32の一部が、スライダ5の上部(サスペンションとスライダの間)に入り込むように配置してもよい。
 以下、半導体レーザとスライダ中の導波路の結合方法及び、スライダ中の導波路の構造について記載する。
 半導体レーザからの光がスライダの側面に入射するとき、入射光がスライダ側面に対し垂直に入射する場合、スライダ側面で反射した光が半導体レーザに戻り、戻り光ノイズが発生する可能性がある。スライダ側面で発生する戻り光の量を減らすために、図21Aに示すように、半導体レーザ30とスライダ5の間に、屈折率が1よりも大きな光透過性のある樹脂70を形成してもよい。このように屈折率が1よりも大きな樹脂70を形成することにより、スライダ側面における屈折率差が小さくなるので、スライダ側面における反射率を小さくすることが出来る。また、このように半導体レーザの出射端面を覆うことにより、端面の劣化を防ぐことも出来る。すなわち、端面が空気に触れることにより生じる端面の変質やコンタミの付着を防止できる。本実施例では、樹脂70として、光硬化性樹脂を用い、その屈折率を、スポットサイズコンバータ19を構成するスポット径変換用コア18の屈折率に等しくなるようにした。スポット径変換用コア18と空気の界面で発生する反射光の量よりもクラッド15と空気の界面で発生する反射光の量が大きい場合は、樹脂70の屈折率は、クラッド15の屈折率に等しくなるようにしてもよい。
 スライダ側面における反射光の量を減らすために、図21Bに示すように、半導体レーザ30の向きを斜めに配置し、半導体レーザ30からの出射光が、スライダ側面に対して斜めに入射するようにしてもよい。このようにすることにより、半導体レーザ30に戻る反射光を減らすことができ、戻り光ノイズを低減させることが出来る。このとき、半導体レーザ30からの光が導波路に効率よく結合するためには、導波路入口16付近における導波路コアの方向は、スライダ側面に対して斜めになるようにするとよい。戻り光を十分小さくするためには、半導体レーザ30の出射光の向きとスライダ側面の法線とがなす角度θ5は、半導体レーザの出射光のビーム広がり角(半値全角)の1/2よりも大きくなるようにするのが好ましい。本実施例では、半導体レーザの出射光のビーム広がり角は12度であったので、半導体レーザの出射光の向きとスライダ側面の垂線とがなす角度θ5は7°とした。導波路入口における導波路コア3の方向とスライダ側面の法線とがなす角度θ10は、スライダ側面表面における光の屈折を考慮し、およそsinθ5=n・sinθ10を満たすようにするとよい。ここで、nはスポットコンバータ19を構成するスポット径変換用コア18の屈折率である。なお、スポット径変換用コア18と空気の界面で発生する反射光の量よりもクラッド15と空気の界面で発生する反射光の量が大きい場合には、nはクラッド15の屈折率である。本実施例では、角度θ10は4°とした。なお、半導体レーザ30の出射光の向きとスライダ側面の法線とがなす角度θ5は、上記のように半導体レーザの出射光のビーム広がり角(半値全角)の1/2よりも大きくなるようにするのが好ましいが、もし効果が得られるのであれば、ビーム広がり角(半値全角)の1/2以下であってもよく、例えば角度θ5を4度としてもよい。
 スライダの側面で発生する反射光の影響を小さくするために、図21Cに示すように、スライダ5の側面が浮上面17に対して斜めになるようにしてもよい。このように、スライダの側面が斜めになるようにすると、スライダ側面で反射した光が、半導体レーザ30の活性層31の中に戻らなくなり、戻り光によるノイズの発生を抑制することが出来る。スライダ側面の傾き角θ5、すなわち半導体レーザ30の出射光の進行方向とスライダ側面の法線がなす角は、半導体レーザ30の出射光のビーム広がり角(半値全角)の1/2よりも大きくなるようにするのが好ましい。本実施例では、半導体レーザの出射光のビーム広がり角は12度であったので、スライダ側面の傾き角θ5は、7°になるようにした。サブマウント側面もスライダ側面の傾きに合わせて斜めにした。導波路入口における導波路コア3の方向とスライダ側面の法線とがなす角度θ10は、図21Bの場合と同様に、およそsinθ5=n・sinθ10を満たすようにした。半導体レーザ30の出射光の向きとスライダ側面の法線とがなす角度θ5は、もし効果が得られるのであれば、ビーム広がり角(半値全角)の1/2以下であってもよく、例えば角度θ5を4度としてもよい。
 スライダの側面で発生する反射光の影響を小さくするために、スライダの側面に、誘電体多層膜で構成される反射防止膜を形成してもよい。ただし、スライダの側面に反射防止膜を形成するためには、ダイシングによりスライダを切り出してから各々の側面に反射防止膜を形成する必要があり、製造コストがかかってしまう。そこで図22Aに示すように、ウェハの状態で、スライダに切り出す位置において溝62を形成し、溝62の内側に、反射防止膜61を形成した。このとき、溝の幅W40は、ダイシングでスライダを切り出す際、反射防止膜の部分にダイシングのブレードが当たり膜が破損することを防ぐために、ダイシングのブレードの厚さW41よりも大きくするのが好ましい。本実施例では、溝をダイシング装置もしくはエッチングにより形成し、反射防止膜をCVD(Chemical vapor deposition)やスパッタなどの成膜装置を用いて形成した。ブレードの厚さは70μmとし、溝の幅W40は90μmとした。
 上記実施例では、溝の側面はウェハ面に対して垂直になるようにしたが、反射防止膜を成膜時に、溝の側面に膜がつきやすくなるように、図22Bに示すように、溝の側面は斜めになるようにしてもよい。例えば本実施例では、溝の側面の角度θ12を5°とした。溝の深さD40は、スライダ中の導波路の入口16が反射防止膜で覆われる深さであればよく、例えば10μmであってもよい。ただし、ダイシングのブレードの厚さW41と溝の幅W40に差がある場合、ダイシングで切り出した後、スライダ側面に大きな段差が生じてしまう。その場合、半導体レーザ30と導波路の入口16までの距離が大きくなり、光の結合効率が低下してしまう。これを防ぐためには、溝の深さD40を半導体レーザの厚さL2よりも大きくなるようにして、図22Cのように、半導体レーザの出射面が、スライダの内側に入り込むようにするとよい。本実施例では、半導体レーザの厚さL2を50μmとし、溝の深さD40を70μmとした。
 上記実施例では、導波路3の途中に曲線部を設けることにより、導波路3の向きを変えたが、図23に示すように、途中にミラー38を形成することにより導波路3の向きを変えてもよい。このときミラーとしては、クラッド15よりも屈折率が小さい誘電体の膜を反射部側面に形成したものを用い、ミラー38の反射面に対する入射光の入射角度θ4が、全反射角度以上になるようにする。本実施例では、ミラーとしては、SiO2やMgF2などの材料を用い、入射角度θ4は60°とした。入射角度θ4が60°となるように、スポットサイズコンバータ19とミラー38の間において導波路はわずかに曲げた。なお、上記実施例では、ミラー38の材質としては誘電体を用いたが、金、アルミ、銀、銅などの金属を用いてもよい。
 上記実施例では、導波路終端部の近接場光素子1付近において、導波路3の中心軸の向き(光の進行方向の向き)がスライダ浮上面に対して垂直になるようにしたが、図24Aに示すように、導波路3の中心軸の向きが、スライダ浮上面17に対して斜めになるようにしてもよい。すなわち、導波路の中心軸とスライダ浮上面17の法線のなす角が0よりも大きくなるようにしてもよい。このようにすることにより、導波路3を伝播する光は、スライダ浮上面17に対して斜めに入射するので、スライダ浮上面17で反射する光が、導波路3の入射側に戻ることがない。したがって、半導体レーザ30の戻り光ノイズを減らすことが出来る。また、このように斜めにすれば、導波路コア3の曲線部の曲率半径を大きくすることが出来るので、導波路コア3とクラッド15の屈折率差が小さい場合において発生する曲線部で発生する光の伝播ロスを小さくすることが出来る。本実施例では、近接場光発生素子1の付近における導波路の向きθ3は60~80°とした。
 上記のように、近接場光発生素子付近における導波路中の光の進行方向が、スライダ浮上面に対して斜めになるとき、近接場光発生素子1は、図24Bや図24Cに示すように、形状が左右非対称になるようにしてもよい。これらの実施例においては、金属構造体1が導波路の入射側に傾くようにした。導波路中の光の進行方向が、スライダ浮上面17に対して斜めになるとき、金属構造体1中に励起される表面プラズモンも、導波路の中の光の進行方向と同じ向き伝播する。これら実施例のように、金属構造体1も斜めにすることにより、斜め方向に進行する表面プラズモンが先端部20に集まりやすくなり、近接場光強度を強くすることが出来る。
 上記実施例において、スライダ側面の片側に半導体レーザ30とサブマウント32を配置することによって片側の重量が重くなり、スライダの浮上が不安定になる場合は、図25に示すように、重さのバランスを取るために、スライダ側の反対側に重り76を配置してもよい。全体の重心が中心に位置するように、重り76の重量と位置を調整した。
 半導体レーザ30の出力光の強度は、環境温度が変化すると変動する。また、長期間に渡りドライブを使用すると、半導体レーザ30の劣化により出力強度が徐々に低下する。また、導波路3に対する半導体レーザ30の位置も、環境温度の変化や、長期間の使用により変化する可能性もある。これらの要因により、導波路3の中に結合する光の強度が変動する可能性がある。光強度が変化すると、磁気記録媒体の上昇温度が変化するので、安定な記録が困難になる。以上の問題点を解決するために、図26A~26Dに示すように、導波路3中の光のパワーをモニタするための第2の導波路をスライダ5中に形成してもよい。
 図26A~26Dの実施例では、導波路コア3周辺のエバネッセント光、すなわちコアとクラッドの界面においてクラッドに染み出すように発生する光、が発生している領域に、図26Aに示すようにパワーモニタ用の導波路43を配置した。このように導波路43を配置すると、導波路3を伝わる光の中のエバネッセント光成分の一部が、導波路43に結合する。このパワーモニタ用の導波路43に伝わった光を、半導体レーザ30の反対側に配置した光検出器40により検出した。光検出器40で検出した光の強度を元に、光量が小さいときは半導体レーザ30に流す電流を上げるように、光量が大きいときは半導体レーザ30に流す電流を下げるようにフィードバック回路を形成した。パワーモニタ用の導波路43に結合する光の強度は、図26Bに示した、メインの導波路3とパワーモニタ用の導波路43の距離D及びそれぞれの導波路が重なる部分の長さ(結合長)L11に依存する。本実施例では、距離D及び結合長L11を最適化し、導波路43に結合する光の強度がメインの導波路3の強度の1~10%になるようにした。例えば、導波路43の幅を500nm×200nmとし、2つの導波路の距離Dを700nm、結合長L11を25μmとした。
 導波路43の終端部において反射光が半導体レーザ30の方向に戻らないようにするために、図26Cに示すように、導波路43の端面がスライダ側面77に対して斜めになるようするか、もしくは図26Dに示すように、導波路43の向きを途中で曲げ、光がスライダ側面77に対して斜めに入射するようにした。図26Cに示すように、端面の向きを斜めにした場合、終端部の角度θ10は5~15°にした。図26Dに示すように、導波路43をスライダ側面77に対して斜めに配置したときは、導波路43の中心線とスライダ側面77のなす角度θ11は75~85°となるようにした。光検出器40は、光を電気信号に換えるものであれば何でもよいが、本実施例では、フォトダイオードを用いた。受光面の大きさは、フォトダイオードの位置調整が容易なように、導波路出口での光スポットより十分大きくなるようにした。本実施例では、受光面42の大きさはz方向が50μm、x方向が70μmとなるようにした。フォトダイオードは、スライダ側面もしくはサスペンション上のフレキシブルプリント基板35上に固定した。図27に示すように、フォトダイオードの電極41は、受光面と反対側の面に形成し、それを、サスペンション上のフレキシブルプリント基板35上に形成したフォトダイオード用の配線44につないだ。フォトダイオードの電極41と配線44は、半田もしくは導電性接着剤46により接続した。
 上記実施例では、パワーモニタ用導波路を、近接場光素子1に光を導入するための導波路3の途中から分岐するように形成したが、図28に示すように、スライダ浮上面17に対して斜めに光が入射するように、近接場光素子1に光を導入するための導波路3を配置し、スライダ浮上面17で反射した光をパワーモニタ用導波路43で光検出器40に導いてもよい。このようにすることにより、近接場光素子1に光を導入するための導波路3の途中を分岐させる必要がないので、近接場光素子1に導入する光の量を多くすることが出来、光利用効率を上げることができる。
 図29A,29Bは、半導体レーザ30が搭載されたマウント32をスライダ5の側面に取り付けるための装置(アライメント装置)の実施例を示す。図29Aはアライメントマークの配置例を示す図、図29Bは部品の保持方法を示す図である。
 サブマウント32及びスライダ5は、それぞれ真空吸着ステージ49の上に固定した。レーザ光の出射位置及び導波路入口の位置を知るために、アライメントマークを、半導体レーザ30の表面とスライダの上面近くに形成した。半導体レーザのアライメントマーク56としては、幅が30μm×30μmの正方形のアライメントマークを用い、それを2つ、間隔L23が100μmとなるように出射位置付近に形成した。レーザ光の出射位置は、2つのアライメントマークの中心線上となるようにした。アライメントマーク56は、半導体レーザのリッジ100及びミラー101をエッチングにより形成する際、同時に形成した。スライダ5のアライメントマーク57は、スライダ上面付近に形成された長方形の金属のパターンとし、スライダの上面から見たときのx方向の幅を5μm、y方向の幅を30μm、スライダ上面に対して垂直な方向(z方向)の幅D4を10μmとした。アライメントマークと導波路中心の距離L24が5μmとなるマークを2つ、互いの間隔L25が100μmとなるように形成した。スライダ上面からアライメントマークまでの距離D3は約5μm、アライメントマークから導波路中心までの距離は5μmとなるようにした。
 アライメントは次の手順で行った。
(1) スライダ5の上面からCCDカメラによりアライメントマーク57を観察し、導波路3の向きとx方向の位置を求める。すなわち、導波路3とアライメントマーク57の位置関係が分かっているので、アライメントマーク57の位置から導波路3の位置を求める。
(2) 半導体レーザ30上のアライメントマーク56より、レーザ光の進む向きとx方向の位置を求める。
(3) 半導体レーザ30の上面及びスライダ5上のアライメントマーク57の上面にレーザ測長計からのレーザ光58,59を照射することで、それぞれのz方向の位置を求める。その結果から、半導体レーザ30から出射するレーザ光のz方向の位置、及びスライダ5中の導波路3のz方向の位置を求める。
(4) 半導体レーザ30の出射側の側面のエッジ65と、スライダ5の側面のエッジをCCDカメラで観察することにより、半導体レーザ30とスライダ5の距離を求める。
(5) 上記位置情報から、レーザ光が導波路入口の中心に入射するように、半導体レーザの搭載された真空吸着ステージ49、もしくはスライダの搭載された真空吸着ステージ49の位置を調整する。
(6) 予め塗布しておいた接着剤37を、光照射、もしくは加熱により硬化させる。
 なお、上記アライメントマークの形状及び寸法は、あくまでも一例であり、他の形状や寸法にしてもよい。
 上記アライメント方法では、アライメントマークを元に位置合わせを行ったが、スライダ中の導波路3に結合した光のパワーをモニタしながら位置を微調整してもよい。すなわち、アライメント中に半導体レーザに電流を供給し、発光させた状態で真空吸着ステージ49を動かす。このとき、導波路3の出口(近接場光素子がついた出口)、もしくはパワーモニタ用の導波路43の出口から出射する光の強度をフォトダイオードもしくは光電子増倍管などの光検出器を用いて検出する。この光強度が最大となるように、位置を調整してから接着剤37を硬化させる。このように位置合わせを行うことにより、位置合わせ精度を更に高くすることが出来る。なお、光強度をモニタしながら行う位置合わせにおいても、まずアライメントマークを用いた位置合わせを行ってから、最後に強度をモニタしながら位置合わせを行う方が、アライメントに要する時間を短くすることが出来る。
 上記実施例では、半導体レーザをスライダの側面に配置したが、図30A~30Cに示すように、半導体レーザをスライダ上部に配置してもよい。図30Aは側面側から見た断面図、図30Bは他の側面側から見た図、図30Cはスライダ上部における配線方法を示す図である。
 この場合、スライダ中の導波路3の入口は、スライダの上部に位置するようにし、半導体レーザ30からの出射光がスライダ中の導波路に直接結合するようにした。半導体レーザ30とスライダの間隔は、0~10μmとした。半導体レーザ30は、スライダ上に配置したサブマウント32の側面に配置した。サブマウントの大きさはスライダ5の上面に収まる大きさかスライダ5から若干はみ出る大きさにし、サブマウントの厚さL30は100~150μmとした。サブマウント32及び半導体レーザ30は、スライダ上面の片側のみを覆うため、その反対側において、スライダ5サスペンション10の間にスペースが開いてしまう。そのスペースを埋めるために、サスペンション上面の片側には厚さがサブマウントの厚さL30に等しいスペーサ132を配置した。サブマウント32の上面及び側面には、半導体レーザへ電流を供給するための金属の電極33を形成し、側面の電極33の上に半導体レーザ30を半田で固定した。スペーサ132の上面及び側面にも金属の電極60を形成し、スペーサの側面の電極と半導体レーザのもう一方の電極とを導電性接着剤37で接合させた。サブマウント上の電極33、及びスペーサ上の電極60の上には、フレキシブルプリント基板上の半導体レーザのドライバにつながった配線13を配置し、2つの電極と配線13とを導電性接着剤もしくは半田で接合させた。スライダ上に形成された磁気ヘッド用の電極34は、サスペンション10から離れてしまうが、図30Aに示すように、サスペンション上のフレキシブルプリント基板35を折り曲げて、浮上面側に下げることで磁気ヘッド用の配線78を磁気ヘッド用の電極34につないだ。配線78と電極34は半田36を用いて接合させた。
 このように、本発明のミラーが形成された半導体レーザをスライダ上に配置した場合、ミラーにより半導体レーザ中の光路が折れ曲がっているため、全体の高さが高くなることがない。また、半導体レーザの出射面とスライダの間にサブマウントが存在しないため、半導体レーザとスライダの間隔を小さくすることが出来る。その結果、半導体レーザからの出射する光が導波路に結合する効率を大きくすることが出来る。また、図4に示す近接場光発生素子を用いるためには、入射光の偏光方向が記録トラックに対して平行な方向になるようにする必要があるが、本発明の配置方法では、通常用いられるTEモードレーザを用いてそのような偏光方向となった入射光を発生させることが出来る。
 サブマウント32上に形成した半導体レーザ用の電極33及びスペーサ132上に形成した半導体レーザ用の電極60は、図31B及び図31Cに示すように、側面に露出させ、フレキシブルプリント基板35上の配線13と側面において半田36により接合させてもよい。この場合、サブマウント32及びスペーサ132の側面には、図31A、図31Bに示すように、磁気ヘッド用の電極79を形成し、フレキシブルプリント基板上の配線78と半田36により接合させた。この電極79とスライダ上の電極34とを、さらに半田36により接合させた。
 上記実施例では、サブマウント32の幅L32は、スライダの幅のほぼ半分となるようにしたが、それよりも大きくなるようにしてもよい。例えば、本実施例では、スライダの側面から近接場光発生素子1までの距離L31がスライダの幅の半分よりも大きくなるようにする、もしくは近接場光発生素子1の位置はスライダの中央付近に配置した状態で、スライダ中の導波路の入口が側面側に寄るようにスライダ中の導波路を曲げることで、サブマウント32の幅L32が広くなるようにした。このようにサブマウント32の幅L32を広げることにより、サブマウントとスライダの接触面積が増えるので、半導体レーザにおいて発生した熱がスライダ側に逃げやすくなり、半導体レーザにおける温度上昇を小さくすることが出来る。
 図32に、本発明の熱アシスト集積ヘッドを用いた記録装置の全体図を示す。浮上スライダ5はサスペンション56に固定し、ボイスコイルモータ51からなるアクチュエータによって磁気ディスク14上の所望トラック位置に位置決めした。ヘッド表面には浮上用パッドを形成し、磁気ディスク14の上を浮上量5nm以下で浮上させた。磁気ディスク14は、モータによって回転駆動されるスピンドル53に固定し回転させた。半導体レーザ及びサブマウント55は、スライダ5の側面に配置した。半導体レーザ及びサブマウント55は、スピンドル53の軸にぶつからないように、ディスクの外周側に配置した。半導体レーザの駆動電流はフレキシブルプリント基板50を通して供給し、その駆動用ICは、回路基板52上に配置した。記録信号は、信号処理用LSI54で発生させ、記録信号及び半導体レーザ用電源は、フレキシブルプリント基板50を通して半導体レーザ用ドライバに供給した。記録の瞬間、浮上スライダ5中に設けたコイルにより記録磁界を発生すると同時に、半導体レーザを発光させ、磁気記録媒体14の記録層に記録マークを形成した。磁気記録媒体14上に記録されたデータは、浮上スライダ5中に形成された磁気再生素子(GMR又はTMR素子)で再生した。再生信号の信号処理は信号処理回路54により行った。
 上記実施例では、本発明のミラーが形成された半導体レーザは、スライダの上に配置したが、図34に示すように、スライダ5の外に配置してもよい。本実施例では、半導体レーザとしては、図16に示すように曲面ミラーが形成されたものを用い、それをサスペンションのテール部の端付近に配置した。半導体レーザ30から出射した光は、光ファイバもしくはポリマ導波路125に結合させ、スライダ5の方向へ光を導いた。スライダ中の導波路の入口は、スライダの上面に位置するようにし、光ファイバもしくはポリマ導波路125を伝わる光は、ミラー126により反射させ、スライダ中の導波路3に結合するようにした。このように、光ファイバもしくはポリマ導波路に半導体レーザの光を導入する場合、光の結合効率を上げるには、半導体レーザからの出射光は収束光となるようにした方がよい。レンズなどにより光を収束してもよいが、レンズの分コストが高くなってしまう。これに対して、本発明の曲面ミラーを用いた半導体レーザを用いれば、活性層の積層方向に平行な方向のみであるが、出射光を収束光にすることが出来るので、レンズを用いずに半導体レーザの光を、光ファイバもしくはポリマ導波路125に導入する場合において、光の結合効率を大きくすることが出来る。
 本発明の半導体レーザは、熱アシスト記録以外の記録装置に用いてもよく、例えば相変化媒体を用いた記録装置に用いてもよい。本実施例では、記録ヘッドとして図28のように、フォトダイオード40が配置された記録ヘッドを用い、フォトダイオード40を記録データの再生に用いた。すなわち、半導体レーザ30からの光を近接場光発生素子1で集光し、その光で相変化媒体を局所的に加熱し記録データを書き込んだ。再生時は、半導体レーザ30から発生する光の強度を弱くした状態で近接場光を発生させた。近接場光と相変化媒体が相互作用して散乱光が発生するとき、記録ビットの状態により、散乱光強度が変化する。この散乱光を導波路43によりフォトダイオード40に導き、その強度変化を検出することで、記録データを再生した。
 本発明の半導体レーザは、記録装置以外の装置に用いてもよく、例えば光通信や光配線に用いてもよい。光通信や光配線では、図34の場合と同様に、半導体レーザからの光を光ファイバやポリマ導波路に導入する必要があるが、このとき形状が曲面となったミラーが形成された半導体レーザを用いることで、レンズを用いなくても、半導体レーザと光ファイバもしくはポリマ導波路の間の結合効率を大きくすることが出来る。
1 近接場光発生素子(金属構造体)
2 主磁極
3 導波路コア
4 再生素子
5 スライダ
6 磁気ヘッド
7 コイル
8 リターンポール
9 シールド
10 フレクシャー
11 ロードビーム
12 ディンプル
13 配線
14 磁気記録媒体
14’記録層
15 導波路クラッド
16 導波路入口
17 スライダ浮上面
18 スポット径変換用コア
19 スポットサイズコンバータ
20 近接場光が発生する頂点部
21 金属構造体の上部
22 金属構造体の下部
25 散乱体表面のリセス部
26 金属構造体のテーパ部
27 コイルで発生した磁束を伝える磁極
28 主磁極上部
29 金属構造体の導波路側の側面
30 半導体レーザ
31 活性層
32 サブマウント
33 レーザ用電極
34 磁気ヘッド用電極
35 フレキシブルプリント基板
36 半田
37 導電性接着剤
38 ミラー
40 光検出器
41 光検出器用電極
42 受光面
43 パワーモニタ用導波路
44 フォトダイオード用配線
45 半導体レーザ上の電極
46 導電性接着剤又は半田
49 真空吸着ステージ
50 ドライバ用フレキシブルプリント基板
51 ボイスコイルモータ
52 ドライバ用回路基板
53 スピンドル
54 信号処理用LSI
55 半導体レーザ及びサブマウント
56 半導体レーザ上のアライメントマーク
57 スライダ上のアライメントマーク
58 半導体レーザ表面に照射されるアライメント用レーザ
59 アライメントマークに照射されるアライメント用レーザ
60 スペーサ上の半導体レーザ用の電極
61 反射防止膜
62 溝
63 スライダの側面
64 偏光方向
65 半導体レーザの側面
66 サブマウントの側面
67 サブマウントの段差部の側面
70 光透過性樹脂
71 絶縁材
72 配線露出部
73 ポリイミド
76 重り
77 スライダ側面
78 磁気ヘッド用配線
79 磁気ヘッド用電極
100 ストライプ構造(リッジ)
101 ミラー
102 上部クラッド層
103 下部クラッド層
104 絶縁層
105 基板
106 クラッド層
107 深溝
108 ミラー面表面に形成した誘電体膜
109 反射率を調整するための誘電体膜
110 出射光
111 別材料の導波路(コア)
112 別材料の導波路(クラッド)
113 出射側の側面に対し直交する側面
114 ミラーと半導体レーザの側面の間に形成された導波路
115 ドープ領域
116 深溝
117 グレーティング
118 ミラー面
119 リッジ終端部の幅が広くなった部分
120 第2のマスクにより覆う部分
121 電極パッド
122 ステンレスの薄い板
124 シリンドリカルレンズ
125 光ファイバもしくはポリマ導波路
126 反射ミラー
132 スペーサ

Claims (16)

  1.  活性層を含む光増幅領域、及び2つの反射面により構成された共振器を有する半導体レーザと、
     記録磁界を発生する磁極、近接場光発生素子、及び前記半導体レーザからの出射光を前記近接場光発生素子に導く導波路が設けられたスライダとを備え、
     前記半導体レーザは、前記共振器内部において、前記活性層の膜面内方向に光路が屈曲しており、
     前記半導体レーザの側面から出射した出射光が前記スライダに設けられた前記導波路に結合することを特徴とする熱アシスト集積ヘッド。
  2.  請求項1記載の熱アシスト集積ヘッドにおいて、前記半導体レーザの前記共振器内部に、光路を曲げるためのミラーが形成されていることを特徴とする熱アシスト集積ヘッド。
  3.  請求項2記載の熱アシスト集積ヘッドにおいて、前記ミラーは、前記光増幅領域の両端もしくは片側に形成されていることを特徴とする熱アシスト集積ヘッド。
  4.  請求項1記載の熱アシスト集積ヘッドにおいて、前記共振器を構成する2つの反射面は前記半導体レーザの互いに対向する2つの側面にそれぞれ設けられていることを特徴とする熱アシスト集積ヘッド。
  5.  請求項1記載の熱アシスト集積ヘッドにおいて、前記共振器を構成する2つの反射面は前記半導体レーザの一つの側面に設けられていることを特徴とする熱アシスト集積ヘッド。
  6.  請求項1記載の熱アシスト集積ヘッドにおいて、前記半導体レーザの前記光増幅領域に光を閉じ込めるための構造が形成され、前記光路の屈曲部周辺において、前記光を閉じ込めるための構造の幅が広くなっていることを特徴とする熱アシスト集積ヘッド。
  7.  請求項2記載の熱アシスト集積ヘッドにおいて、ミラーは曲面ミラーであることを特徴とする熱アシスト集積ヘッド。
  8.  請求項7記載の熱アシスト集積ヘッドにおいて、前記ミラーの反射面は、放物面、球面もしくは楕円面であることを特徴とする熱アシスト集積ヘッド。
  9.  請求項7記載の熱アシスト集積ヘッドにおいて、前記半導体レーザからの出射光が平行光であることを特徴とする熱アシスト集積ヘッド。
  10.  請求項7記載の熱アシスト集積ヘッドにおいて、前記半導体レーザからの出射光が前記導波路の入口に収束していることを特徴とする熱アシスト集積ヘッド。
  11.  請求項7記載の熱アシスト集積ヘッドにおいて、前記ミラーにより反射した光が、前記半導体レーザの出射側の側面に収束していることを特徴とする熱アシスト集積ヘッド。
  12.  請求項2記載の熱アシスト集積ヘッドにおいて、前記ミラーと前記半導体レーザの側面との間に導波路が形成されていることを特徴とする熱アシスト集積ヘッド。
  13.  請求項2記載の熱アシスト集積ヘッドにおいて、前記ミラーと前記半導体レーザの側面との間の光が伝播する領域のエネルギーバンド幅が、前記光増幅領域におけるエネルギーバンド幅よりも大きいことを特徴とする熱アシスト集積ヘッド。
  14.  請求項1記載の熱アシスト集積ヘッドにおいて、前記半導体レーザが前記スライダの側面に形成され、前記導波路の向きが前記スライダの中で変化していることを特徴とする熱アシスト集積ヘッド。
  15.  請求項1記載の熱アシスト集積ヘッドにおいて、前記半導体レーザが前記スライダの浮上面と反対側の面に形成されていることを特徴とする熱アシスト集積ヘッド。
  16.  磁気記録媒体と、
     前記磁気記録媒体を駆動する媒体駆動部と、
     前記磁気記録媒体に対して記録磁界と共に近接場光を照射して記録マークを書き込む記録ヘッドと、
     前記記録ヘッドを前記磁気記録媒体上の所望位置に位置合わせするための記録ヘッド駆動部とを有する熱アシスト記録装置において、
     前記記録ヘッドは、活性層を含む光増幅領域及び2つの反射面により構成された共振器を有する半導体レーザと、記録磁界を発生する磁極、近接場光発生素子及び前記半導体レーザからの出射光を前記近接場光発生素子に導く導波路が設けられたスライダとを備え、前記半導体レーザは、前記共振器内部において、前記活性層の膜面内方向に光路が屈曲しており、前記半導体レーザの側面から出射した出射光が前記スライダに設けられた前記導波路に結合することを特徴とする熱アシスト記録装置。
PCT/JP2011/062944 2010-07-28 2011-06-06 熱アシスト集積ヘッド及び熱アシスト記録装置 WO2012014569A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-169422 2010-07-28
JP2010169422A JP5379759B2 (ja) 2010-07-28 2010-07-28 熱アシスト集積ヘッド及び熱アシスト記録装置

Publications (1)

Publication Number Publication Date
WO2012014569A1 true WO2012014569A1 (ja) 2012-02-02

Family

ID=45529789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062944 WO2012014569A1 (ja) 2010-07-28 2011-06-06 熱アシスト集積ヘッド及び熱アシスト記録装置

Country Status (2)

Country Link
JP (1) JP5379759B2 (ja)
WO (1) WO2012014569A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150213819A1 (en) * 2014-01-24 2015-07-30 Seagate Technology Llc Laser mounted on edge
JP2022547350A (ja) * 2020-02-28 2022-11-11 ウェスタン デジタル テクノロジーズ インコーポレーテッド 信頼性を向上させるためのnft上の光学的透明ビルドアップを支援するhamr媒体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018005067A (ja) * 2016-07-06 2018-01-11 日本電気株式会社 アライメント用光学測定素子及び該光学測定素子を用いた光プローブのアライメント方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326420A (ja) * 2000-05-15 2001-11-22 Fuji Xerox Co Ltd 半導体レーザ、浮上ヘッドおよびディスク装置
JP2003045004A (ja) * 2001-07-27 2003-02-14 Fuji Xerox Co Ltd 光アシスト磁気ヘッド及び光アシスト磁気ディスク装置
JP2009004030A (ja) * 2007-06-21 2009-01-08 Hitachi Ltd 光素子集積ヘッド
JP2010027185A (ja) * 2008-07-24 2010-02-04 Toshiba Storage Device Corp ヘッドジンバルアセンブリおよび情報記憶装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059645A (ja) * 2006-08-30 2008-03-13 Hitachi Ltd 記録用ヘッド
JP4836966B2 (ja) * 2008-01-18 2011-12-14 株式会社日立製作所 ヘッドジンバルアセンブリ及び情報記録装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326420A (ja) * 2000-05-15 2001-11-22 Fuji Xerox Co Ltd 半導体レーザ、浮上ヘッドおよびディスク装置
JP2003045004A (ja) * 2001-07-27 2003-02-14 Fuji Xerox Co Ltd 光アシスト磁気ヘッド及び光アシスト磁気ディスク装置
JP2009004030A (ja) * 2007-06-21 2009-01-08 Hitachi Ltd 光素子集積ヘッド
JP2010027185A (ja) * 2008-07-24 2010-02-04 Toshiba Storage Device Corp ヘッドジンバルアセンブリおよび情報記憶装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150213819A1 (en) * 2014-01-24 2015-07-30 Seagate Technology Llc Laser mounted on edge
US9202489B2 (en) * 2014-01-24 2015-12-01 Seagate Technology Llc Laser mounted on edge of a slider
JP2022547350A (ja) * 2020-02-28 2022-11-11 ウェスタン デジタル テクノロジーズ インコーポレーテッド 信頼性を向上させるためのnft上の光学的透明ビルドアップを支援するhamr媒体
JP7252420B2 (ja) 2020-02-28 2023-04-04 ウェスタン デジタル テクノロジーズ インコーポレーテッド 信頼性を向上させるためのnft上の光学的透明ビルドアップを支援するhamr媒体

Also Published As

Publication number Publication date
JP5379759B2 (ja) 2013-12-25
JP2012033211A (ja) 2012-02-16

Similar Documents

Publication Publication Date Title
US8243561B2 (en) Head for thermal assisted magnetic recording device, and thermal assisted magnetic recording device
JP5001394B2 (ja) スライダに固定されたレーザダイオードを備えた熱アシスト磁気記録ヘッド
JP5025708B2 (ja) 熱アシスト記録用ヘッド、熱アシスト記録装置及び近接場光発生装置
JP5008101B2 (ja) 収束レンズを備えた熱アシスト磁気記録ヘッド
US7921436B2 (en) Optical device integrated head
US8395971B2 (en) Heat-assisted magnetic recording head with laser diode fixed to slider
US8102736B2 (en) Near-field light generator comprising waveguide with inclined end surface
US8200054B1 (en) High efficiency grating coupling for light delivery in EAMR
US8054571B2 (en) Thermally assisted magnetic recording head and magnetic recording apparatus
US8107192B2 (en) Heat-assisted magnetic recording head with laser diode fixed to slider
US9245554B2 (en) Tilted structures to reduce reflection in laser-assisted TAMR
US8351308B2 (en) Thermally assisted magnetic recording head having V-shaped plasmon generator
JP4958318B2 (ja) 内部ミラーを備えた熱アシスト磁気記録ヘッド
JP2008059645A (ja) 記録用ヘッド
JP2012159822A (ja) 光導波路およびそれを含む熱アシスト磁気記録ヘッド
US8437237B2 (en) Light source unit including a photodetector, and thermally-assisted magnetic recording head
KR20090037803A (ko) 헤드 슬라이더
US8139448B1 (en) Slider with integrated thermally-assisted recording (TAR) head and vertical-cavity surface-emitting laser (VCSEL) with angled external cavity
JP5611407B2 (ja) 熱アシスト記録用ヘッド及び熱アシスト記録装置
JP5379759B2 (ja) 熱アシスト集積ヘッド及び熱アシスト記録装置
JP2013004148A (ja) 光伝送モジュール、並びにその製造装置及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812162

Country of ref document: EP

Kind code of ref document: A1