WO2012014355A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2012014355A1
WO2012014355A1 PCT/JP2011/002539 JP2011002539W WO2012014355A1 WO 2012014355 A1 WO2012014355 A1 WO 2012014355A1 JP 2011002539 W JP2011002539 W JP 2011002539W WO 2012014355 A1 WO2012014355 A1 WO 2012014355A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
eye
lens
adapter
imaging device
Prior art date
Application number
PCT/JP2011/002539
Other languages
English (en)
French (fr)
Inventor
将道 井上
一政 田畑
隆宜 矢吹
永井 正
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/812,178 priority Critical patent/US20130169761A1/en
Priority to JP2012526276A priority patent/JPWO2012014355A1/ja
Priority to CN2011800365293A priority patent/CN103026716A/zh
Priority to EP11811962.7A priority patent/EP2600624A1/en
Publication of WO2012014355A1 publication Critical patent/WO2012014355A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/565Optical accessories, e.g. converters for close-up photography, tele-convertors, wide-angle convertors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • G03B35/10Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/218Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • Patent Document 1 discloses a 3D adapter (stereoscopic image capturing camera lens adapter) and an imaging device to which the adapter can be attached.
  • This imaging apparatus can adjust the attachment state of the 3D adapter by rotating the attached 3D adapter around the optical axis.
  • the adapter cap having a slit is attached to the 3D adapter for adjustment.
  • the user can recognize how much the 3D adapter is rotated about the optical axis with respect to the image capturing apparatus based on the rotation state of the captured image.
  • the imaging device disclosed in Patent Document 1 when adjusting the imaging positions of the left-eye image and the right-eye image on the imaging device, the left-eye image and the right-eye image are arranged in the horizontal direction. Therefore, it is difficult to accurately recognize the positional deviation between the two images in the vertical direction.
  • the 3D adapter disclosed in Patent Document 1 when adjusting the imaging position of the left-eye image and the right-eye image on the imaging device, both the left-eye image and the right-eye image simultaneously move in opposite directions. Therefore, fine adjustment is difficult. As described above, in the imaging apparatus disclosed in Patent Document 1, it is difficult to accurately adjust the attachment state of the 3D adapter.
  • An object of the present invention is to provide an imaging device capable of adjusting the attachment state of the 3D adapter with high accuracy.
  • the position in the vertical direction can be individually adjusted for both the left-eye image and the right-eye image. Therefore, the attachment state of the 3D adapter can be adjusted with high accuracy.
  • Schematic diagram showing the configuration of the optical system of the 3D conversion lens 500 and the digital video camera 100 The top view which looked at the inside of the adjustment mechanism storage part 530 from the upper direction in the state which opened the adjustment mechanism storage part 530 The perspective view which shows the state which looked at the lens cap 570 from the inside, and the perspective view which shows the state which looked at the lens cap 570 from the outside.
  • the block diagram which shows the structure of the digital video camera 100 A flowchart showing an operation when the digital video camera 100 detects the attachment of the 3D conversion lens 500.
  • Schematic diagram for explaining display contents of liquid crystal monitor 270 at the time of initial setting The schematic diagram for demonstrating the display content of the liquid crystal monitor 270 when inquiring whether to adjust the 3D conversion lens 500
  • Schematic diagram for explaining the display content of the liquid crystal monitor 270 when adjusting the 3D conversion lens 500 Flow chart for explaining the operation of the digital video camera 100 when the power is turned on
  • Embodiment 1 A first embodiment in which the present invention is applied to a digital video camera will be described with reference to the drawings.
  • the digital video camera 100 has a mounting portion 640 for mounting the 3D conversion lens 500.
  • the attachment portion 640 has a female screw inside.
  • the 3D conversion lens 500 has a male screw that engages with a female screw included in the mounting portion 640.
  • the user can attach the 3D conversion lens 500 to the digital video camera 100 by engaging the male screw of the 3D conversion lens 500 with the female screw of the attachment portion 640.
  • the digital video camera 100 can magnetically detect that the 3D conversion lens 500 is attached by a detection switch 800 (see FIG. 8 described later).
  • FIG. 3 is a diagram illustrating the configuration of the optical system 501 of the 3D conversion lens 500 and the optical system 101 of the digital video camera 100.
  • the optical system 501 of the 3D conversion lens 500 includes a right-eye lens 600 that introduces light for forming an image for the right eye in a 3D (three-dimensions) image, and a left-eye that introduces light for forming an image for the left eye.
  • a common lens 610 in which the left eye and the right eye for guiding the light introduced into the right eye lens 600 and the left eye lens 620 to the optical system 101 of the digital video camera 100 are integrated.
  • Light incident on the right-eye lens 600 and the left-eye lens 620 of the 3D conversion lens 500 is introduced into the optical system 101 of the digital video camera 100 via the common lens 610, and the CCD image sensor 180 (described later) of the digital video camera 100.
  • the image is formed as a side-by-side image as shown in FIG.
  • the right-eye lens 600 and the left-eye lens 620 are configured to be individually movable up and down and left and right (in a direction perpendicular to the optical axis) within the 3D conversion lens 500.
  • the 3D conversion lens 500 includes an adjustment mechanism storage unit 530.
  • the adjustment mechanism storage unit 530 stores adjustment dials such as a horizontal adjustment dial, a first vertical adjustment dial, and a second vertical adjustment dial, which will be described later.
  • the user can adjust the positions of the right-eye lens 600 and the left-eye lens 620 in the 3D conversion lens 500 by operating various adjustment dials.
  • the positions of the right-eye lens 600 and the left-eye lens 620 in the 3D conversion lens 500 are adjusted, the light incident on the 3D conversion lens 500 is adjusted on the CCD image sensor 180 of the digital video camera 100.
  • the image is formed at a position corresponding to
  • the digital video camera 100 has a function for easily performing adjustment after the 3D conversion lens 500 is attached.
  • FIG. 5 is a top view of the inside of the adjustment mechanism storage unit 530 as viewed from above with the adjustment mechanism storage unit 530 opened.
  • the horizontal adjustment dial 540 is a dial for adjusting the horizontal position of the right-eye lens 600 and the left-eye lens 620.
  • the first vertical adjustment dial 550 is a dial for adjusting the vertical position of the right-eye lens 600 and the left-eye lens 620.
  • the second vertical adjustment dial 560 is a dial for adjusting the vertical position of the left-eye lens 620.
  • the horizontal adjustment dial 540, the first vertical adjustment dial 550, and the second vertical adjustment dial 560 are gear-shaped.
  • the horizontal adjustment dial 540 and the second vertical adjustment dial 560 are held so as to be rotatable in the arrow direction by a shaft (not shown) provided in a direction perpendicular to the arrow direction.
  • the user can rotate the horizontal adjustment dial 540 and the second vertical adjustment dial 560 in the arrow direction.
  • the first vertical adjustment dial 550 is held so as to be rotatable in the arrow direction (that is, in the circumferential direction) by an axis provided in the normal direction of the surface of the adjustment mechanism storage unit 530.
  • the user can rotate the first vertical adjustment dial 550 in the direction of the arrow.
  • the right-eye lens 600 and the left-eye lens 620 move in the horizontal direction within the 3D conversion lens 500.
  • the first vertical adjustment dial 550 is operated by the user
  • the right-eye lens 600 and the left-eye lens 620 move in the vertical direction within the 3D conversion lens 500.
  • the second vertical adjustment dial 560 is operated by the user, the left-eye lens 620 moves in the vertical direction in the 3D conversion lens 500.
  • the user operates the horizontal adjustment dial 540, the first vertical adjustment dial 550, and the second vertical adjustment dial 560, so that the light incident through the right-eye lens 600 and the left-eye lens 620 can be reduced.
  • the imaging position on the CCD image sensor 180 can be adjusted.
  • the lens cap 570 can be attached to the 3D conversion lens 500.
  • the lens cap 570 makes it possible to adjust the optical system 501 of the 3D conversion lens 500 while being attached to the 3D conversion lens 500.
  • the lens cap 570 will be described with reference to FIGS.
  • the lens cap 570 can be attached to the lens cap attachment portion 520.
  • FIG. 6A is a perspective view showing a state in which the lens cap 570 is viewed from the inner surface side.
  • FIG. 6B is a perspective view showing a state in which the lens cap 570 is viewed from the outer surface side.
  • FIG. 7 is a schematic diagram showing the configuration of the lens cap 570 as viewed from the surface facing the lens cap mounting portion 520 when the lens cap 570 is mounted on the lens cap mounting portion 520.
  • the inner surface of the lens cap 570 is provided with a structure for defining a mounting position with respect to the 3D conversion lens 500 and preventing the rotation of the lens cap 570 with respect to the 3D conversion lens 500.
  • protrusions 680 are formed on the left and right sides of the inner surface of the lens cap 570.
  • grooves 670 are provided on the left and right sides of the outer periphery of the tip of the 3D conversion lens 500. Then, when the lens cap 570 is attached to the 3D conversion lens 500, the protrusion 680 of the lens cap 570 and the groove 670 of the 3D conversion lens 500 are engaged. Accordingly, the mounting position of the lens cap 570 with respect to the 3D conversion lens 500 is defined, and the rotation of the lens cap 570 with respect to the 3D conversion lens 500 can be prevented.
  • the lens cap 570 is provided with a pattern as shown in FIGS. Specifically, a reference line 580 made of a straight line extending in the horizontal direction is attached to the lens cap 570.
  • the lens cap 570 is provided with a pattern 590 formed of two triangles arranged symmetrically with respect to the reference line 580.
  • the pattern 590 is arranged symmetrically about the midpoint of the reference line 580.
  • the region 610 is made of a resin that transmits light. Therefore, the digital video camera 100 can capture the pattern shown in FIG. 7 with the lens cap 570 attached to the lens cap attaching portion 520. Since the pattern 590 is a pattern composed of two triangles, it has a line extending in an oblique direction. Therefore, the pattern 590 has an advantage that it can be easily focused in the contrast AF method. Note that the pattern need not be triangular as long as it has lines extending obliquely.
  • FIG. 8 is a block diagram showing the configuration of the digital video camera 100.
  • the digital video camera 100 includes an optical system 101, a CCD image sensor 180, an image processing unit 190, a liquid crystal monitor 270, a detector 120, a zoom motor 130, an OIS actuator 150, a detector 160, a memory 200, a zoom lever 260, and an operation member 250. , An internal memory 280, a gyro sensor 220, and a card slot 230.
  • the digital video camera 100 captures a subject image formed by the optical system 101 with a CCD image sensor 180.
  • the video data generated by the CCD image sensor 180 is subjected to various processes by the image processing unit 190 and stored in the memory card 240.
  • the video data stored in the memory card 240 can be displayed on the liquid crystal monitor 270.
  • the configuration of the digital video camera 100 will be described in detail.
  • the optical system 101 of the digital video camera 100 includes a zoom lens 110, an OIS 140, and a focus lens 170.
  • the zoom lens 110 can enlarge or reduce the subject image by moving along the optical axis of the optical system 101.
  • the focus lens 170 adjusts the focus of the subject image by moving along the optical axis of the optical system 101.
  • the OIS 140 has a correction lens that can move in a plane perpendicular to the optical axis.
  • the OIS 140 reduces the shake of the subject image by driving the correction lens in a direction that cancels the shake of the digital video camera 100.
  • the zoom motor 130 drives the zoom lens 110.
  • the zoom motor 130 may be realized by a pulse motor, a DC motor, a linear motor, a servo motor, or the like.
  • the zoom motor 130 may drive the zoom lens 110 via a mechanism such as a cam mechanism or a ball screw.
  • the detector 120 detects where the zoom lens 110 exists on the optical axis.
  • the detector 120 outputs a signal related to the position of the zoom lens by a switch such as a brush in accordance with the movement of the zoom lens 110 in the optical axis direction.
  • the OIS actuator 150 drives the correction lens in the OIS 140 in a plane perpendicular to the optical axis.
  • the OIS actuator 150 can be realized by a planar coil or an ultrasonic motor.
  • the detector 160 detects the amount of movement of the correction lens within the OIS 140.
  • the CCD image sensor 180 captures a subject image formed by the optical system 101 including the zoom lens 110 and generates video data.
  • the CCD image sensor 180 performs various operations such as exposure, transfer, and electronic shutter.
  • the image processing unit 190 performs various processes on the video data generated by the CCD image sensor 180 to generate video data to be displayed on the liquid crystal monitor 270 or to store the video data on the memory card 240 again. Or generate data. For example, the image processing unit 190 performs various processes such as gamma correction, white balance correction, and flaw correction on the video data generated by the CCD image sensor 180. Further, the image processing unit 190 applies H.264 to the video data generated by the CCD image sensor 180. The video data is compressed by a compression format compliant with the H.264 standard or the MPEG2 standard.
  • the image processing unit 190 can be realized by a DSP or a microcomputer.
  • the controller 210 is a control means for controlling the whole.
  • the controller 210 can be realized by a semiconductor element or the like.
  • the controller 210 may be configured only by hardware, or may be realized by combining hardware and software.
  • the controller 210 can be realized by a microcomputer or the like.
  • the memory 200 functions as a work memory for the image processing unit 190 and the controller 210.
  • the memory 200 can be realized by, for example, a DRAM or a ferroelectric memory.
  • the liquid crystal monitor 270 can display an image indicated by the video data generated by the CCD image sensor 180 or an image indicated by the video data read from the memory card 240.
  • a touch panel is provided on the liquid crystal monitor 270. The user can operate the digital video camera 100 by touching an icon displayed on the liquid crystal monitor 270.
  • the gyro sensor 220 is composed of a vibration material such as a piezoelectric element.
  • the gyro sensor 220 obtains angular velocity information by converting a force generated by a Coriolis force when a vibrating material such as a piezoelectric element is vibrated at a constant frequency into a voltage.
  • the digital video camera 100 obtains angular velocity information from the gyro sensor 220 and drives a correction lens in the OIS in a direction that cancels out the shaking, thereby correcting camera shake by the user.
  • the memory card 240 is detachable from the card slot 230.
  • the card slot 230 can be mechanically and electrically connected to the memory card 240.
  • the memory card 240 includes a flash memory, a ferroelectric memory, and the like, and can store data.
  • the internal memory 280 is composed of a flash memory or a ferroelectric memory.
  • the internal memory 280 stores a control program for controlling the entire digital video camera 100 and the like.
  • the operation member 250 is a member that receives an operation from the user.
  • the zoom lever 260 is a member that receives a zoom magnification change instruction from the user.
  • the detection switch 800 can magnetically detect that the 3D conversion lens 500 is attached to the digital video camera 100. When detecting that the 3D conversion lens 500 is attached, the detection switch 800 notifies the controller 210 of a signal to that effect. Thereby, the controller 210 can detect that the 3D conversion lens 500 is attached to and removed from the digital video camera 100.
  • the 3D conversion lens 500 is an example of a 3D conversion lens.
  • the CCD image sensor 180 is an example of an imaging unit.
  • the liquid crystal monitor 270 is an example of a display unit.
  • the controller 210 is an example of an adjusting unit that performs control for adjusting the position of the optical system of the 3D conversion lens.
  • FIG. 9A to FIG. 12 show the operation when the digital video camera 100 detects that the 3D conversion lens 500 is attached. It explains using.
  • FIG. 9A is a flowchart showing an operation when the digital video camera 100 detects that the 3D conversion lens 500 is attached.
  • FIG. 9B is a flowchart showing an operation when the digital video camera 100 is powered off.
  • FIG. 10 is a schematic diagram for explaining the display contents of the liquid crystal monitor 270 at the time of initial setting.
  • FIG. 11 is a schematic diagram for explaining the display content of the liquid crystal monitor 270 when inquiring whether to adjust the 3D conversion lens 500.
  • FIG. 12 is a schematic diagram for explaining the display content of the liquid crystal monitor 270 when the 3D conversion lens 500 is adjusted.
  • the controller 210 detects that the 3D conversion lens 500 is attached based on the detection signal from the detection switch 800 (S100).
  • the controller 210 controls the liquid crystal monitor 270 to display the message shown in FIG. 10 (S110). Specifically, the message “Initial setting for 3D shooting” is displayed. Further, in conjunction with displaying the message on the liquid crystal monitor 270, the controller 210 controls the digital video camera 100 to start the initial setting in the 3D mode (S110). Specifically, as an initial setting, the controller 210 moves the zoom lens 110 to the telephoto end, or sets the image processing method to be different from the 2D image shooting mode.
  • the message displayed in FIG. 10 is an example. The content of the message may be different as long as it has the same purpose. The same applies to FIGS. 11, 12, and 14.
  • the controller 210 controls the liquid crystal monitor 270 to display the message shown in FIG. 11 (S120). Specifically, the controller 210 inquires whether to adjust the position of the 3D conversion lens 500, for example, “Do you want to adjust the 3D conversion lens 500? Please attach the lens cap when adjusting.” When adjusting, a message prompting you to attach the lens cap is displayed. Further, the controller 210 controls the liquid crystal monitor 270 to display the OSD as shown in FIG. Specifically, the controller 210 controls the liquid crystal monitor 270 to display the horizontal reference line 910 and the vertical reference line 900. Further, the controller 210 controls the liquid crystal monitor 270 to display an OSD 920 indicating “adjustment” and an OSD 930 indicating “end” for accepting an operation by the user.
  • the controller 210 controls the liquid crystal monitor 270 to display the message shown in FIG. 11 (S120). Specifically, the controller 210 inquires whether to adjust the position of the 3D conversion lens 500, for example, “Do you want to adjust the 3D conversion lens 500? Please
  • the controller 210 waits until the user touches the OSD 920 indicating “adjustment” or the OSD 930 indicating “end” (see FIG. 11). S130).
  • the controller 210 shifts to a shooting mode (S140) and waits until a shooting start instruction is received from the user.
  • the OSD 920 indicating “adjustment” is selected by the user while the image shown in FIG. 11 is displayed
  • the controller 210 shifts to the adjustment mode.
  • the first adjustment mode for adjusting the position at which one of the image for the left eye and the image for the right eye is formed, and one image adjusted in the first mode are And a second mode for aligning the vertical position where the other image is formed with respect to the vertical position where it is formed.
  • the position where the image for the right eye is formed is adjusted in the first mode and the position in the vertical direction where the image for the left eye is formed is adjusted in the second mode will be described.
  • the position where the image for the left eye is formed may be adjusted in the first mode, and the position in the vertical direction where the image for the right eye is formed may be adjusted in the second mode.
  • the controller 210 executes the first adjustment mode. That is, the liquid crystal monitor 270 is controlled to display the image shown in FIG. 12A (S150). It is assumed that the user attaches the lens cap 570 to the digital video camera 100 after recognizing the image shown in FIG. 11 when adjusting the position of the 3D conversion lens 500. Specifically, the controller 210 controls the liquid crystal monitor 270 to display two vertical reference lines 940. Further, the controller 210 controls the liquid crystal monitor 270 to display the left-eye image 970L and the right-eye image 970R captured by the CCD image sensor 180. In addition, the controller 210 controls the liquid crystal monitor 270 to display a message “Please adjust in the horizontal direction”.
  • the user operates the horizontal adjustment dial 540 to move the image 970L for the left eye and the image 970R for the right eye, so that the region 950, which is an area existing between these images 970L and 970R, is leveled. Can move in the direction.
  • the user can adjust the horizontal position of the right-eye lens 600 and the left-eye lens 620 by moving the region 950 between the two vertical reference lines 940.
  • the digital video camera 100 captures the pattern 590.
  • the digital video camera 100 can focus on the pattern 590 by contrast AF. As a result, the digital video camera 100 can also focus on the reference line 580.
  • the controller 210 touches the OSD 990 indicating “next” or the OSD 980 indicating “return” by the user. (S160).
  • the controller 210 controls the liquid crystal monitor 270 to display the image shown in FIG. 11 again (return to S120).
  • the controller 210 controls the liquid crystal monitor 270 to display the image shown in FIG. 12B (S170).
  • the controller 210 controls the liquid crystal monitor 270 to display two horizontal reference lines 960.
  • the controller 210 controls the liquid crystal monitor 270 so as to display only the right-eye image 970 ⁇ / b> R among images captured by the CCD image sensor 180.
  • the controller 210 controls the liquid crystal monitor 270 to display a message “Please adjust in the vertical direction”.
  • the user can move the image 970R for the right eye in the vertical direction by operating the second vertical adjustment dial 560.
  • the user can adjust the vertical position of the right-eye lens 600 by moving the reference line 580 between the two horizontal reference lines 960.
  • the controller 210 touches the OSD 990 indicating “next” or the OSD 980 indicating “return” by the user. (S180).
  • the controller 210 controls the liquid crystal monitor 270 again to display the image shown in FIG. 12A (return to S150).
  • the controller 210 executes the second adjustment mode. That is, the controller 210 controls the liquid crystal monitor 270 to display the image shown in FIG. 12C (S190). Specifically, the controller 210 controls the liquid crystal monitor 270 to display a message “Please remove the lens cap. Please photograph a subject 1.2 to 2.0 m away”.
  • the controller 210 touches the OSD 990 indicating “next” or the OSD 980 indicating “return” by the user. (S200).
  • the controller 210 controls the liquid crystal monitor 270 again to display the image shown in FIG. 12B (return to S170).
  • the controller 210 controls the liquid crystal monitor 270 to display the image shown in FIG. 12D (S210). Specifically, the controller 210 extends the image 995L for the left eye and the image 995R for the right eye in the horizontal direction and the vertical direction to a size corresponding to the number of pixels of the liquid crystal monitor 270, and superimposes the respective images.
  • the liquid crystal monitor 270 is controlled to display.
  • the controller 210 controls the liquid crystal monitor 270 to display a message “Please adjust the vertical displacement of the image.”
  • the user can move the image 995L for the left eye in the vertical direction by operating the second vertical adjustment dial 560.
  • the user can adjust the vertical position of the left-eye lens 620 by moving the vertical position of the left-eye image 995L to the vertical position of the right-eye image 995R. That is, the user can adjust the vertical shift between the left-eye image 995L and the right-eye image 995R, which are caused by the inclination of the 3D conversion lens 500 with respect to the CCD image sensor 180, in this way.
  • the 3D conversion lens 500 is attached to the digital video camera 100 in a tilted state, the captured image is also tilted.
  • This tilt causes the left eye image and the right eye to be viewed when the user visually recognizes the image. This is a vertical displacement of the image for use. As a result, the user who views the 3D image is tired. However, in the present embodiment, such a problem can be prevented by adopting the above configuration.
  • the controller 210 touches the OSD 990 indicating “next” or the OSD 980 indicating “return” by the user. (S220).
  • the controller 210 controls the liquid crystal monitor 270 to display the image shown in FIG. 12C again (S190).
  • the controller 210 controls the entire digital video camera 100 to shift to the shooting mode (S230).
  • the controller 210 determines whether the user has instructed to turn off the power of the digital video camera 100 (S240). If it is determined that the user has instructed to turn off the power, the controller 210 determines whether or not the 3D conversion lens 500 is attached to the digital video camera 100 (S250). If the controller 210 determines that the 3D conversion lens 500 is not attached, the controller 210 sends information indicating that the 3D conversion lens 500 is not attached when the power is turned off (for example, a flag indicating that the 3D conversion lens 500 is not attached) to the internal memory 280. Record (S260).
  • the controller 210 when determining that the 3D conversion lens 500 is attached, stores information indicating that the 3D conversion lens 500 is attached when the power is turned off (for example, a flag indicating that the 3D conversion lens 500 is attached) in the internal memory. It is recorded in 280 (S270). When information regarding the attachment / detachment state of the 3D conversion lens 500 when the power is turned off is recorded in the internal memory 280, the controller 210 controls the entire digital video camera 100 to turn off the power (S280).
  • FIG. 13 is a flowchart for explaining the operation of the digital video camera 100 when the power is turned on.
  • the controller 210 determines whether or not the 3D conversion lens 500 is attached when the power is turned on based on the detection signal from the detection switch 800 (S310). If it is determined that the 3D conversion lens 500 is not attached, the controller 210 controls the entire digital video camera 100 to shift to the 2D shooting mode (S320). On the other hand, when determining that the 3D conversion lens 500 is attached, the controller 210 determines whether or not information indicating that the 3D conversion lens 500 was attached when the power was last turned off is stored in the internal memory 280. (S330).
  • FIG. 14 is a diagram illustrating the display content of the liquid crystal monitor 270 when it is detected that the 3D conversion lens 500 is attached both when the power is turned off and when the power is turned on after the power is turned off.
  • a warning display for prompting the adjustment is displayed, “If the 3D conversion lens 500 is removed between the previous use and the current use, please adjust the 3D conversion lens 500.”
  • the internal memory 280 stores information indicating that the 3D conversion lens 500 was attached when the power was turned off the last time, and it was determined that the 3D conversion lens 500 was attached when the power was turned on this time.
  • the 3D conversion lens 500 is once removed during the power-off state and then attached again. In such a case, the attached state of the 3D conversion lens 500 may not be appropriate. Therefore, even when it is detected that the 3D conversion lens 500 is attached both when the power is turned off and when the power is turned on after the power is turned off, a warning display prompting adjustment of the 3D conversion lens 500 is performed. .
  • the controller 210 controls the entire digital video camera 100 to shift to the 3D shooting mode (S350).
  • the controller 210 proceeds to step S100 in FIG. 9A (S340), and thereafter the flowchart of FIG. 9A.
  • the process shown in is performed. It should be noted that a step for determining whether or not adjustment is necessary by the user is provided between step S345 and step S350, and if the necessity for adjustment is determined by the user, the process proceeds to step S100 and the subsequent processing is performed. On the other hand, if the user determines that adjustment is unnecessary, the process may proceed to step S350.
  • the digital video camera 100 adjusts the optical system in the 3D conversion lens 500
  • the image formation position in the vertical direction of the image 995L for the left eye and the image for the right eye are specifically described.
  • the user adjusts the deviation of the image 995R from the vertical imaging position, as shown in FIG. 12D
  • the left-eye image 995L and the right-eye image 995R captured by the CCD image sensor 180 are displayed.
  • the liquid crystal monitor 270 As a result, the user can visually recognize a deviation between the vertical image formation position of the left-eye image 995L and the vertical image formation position of the right-eye image 995R. Therefore, the attachment state of the 3D conversion lens 500 can be adjusted with high accuracy.
  • the digital video camera 100 allows the user to confirm and adjust the imaging position of one image, and then the other image.
  • the user determines the image forming position. Accordingly, the user can easily adjust the deviation between the imaging position of the left-eye image 995L and the imaging position of the right-eye image 995R.
  • the digital video camera 100 displays a message prompting the user to attach the lens cap 570 to the liquid crystal monitor 270 when the user determines the image formation position of one image. indicate.
  • the digital video camera 100 causes the user to adjust the imaging position of the other image in relation to the imaging position of the image whose imaging position has already been determined, as shown in FIG.
  • a message prompting the user to remove the lens cap 570 is displayed on the liquid crystal monitor 270. This is due to the following reason. If the 3D conversion lens 500 is inclined with respect to the CCD image sensor 180, the lens cap 570 is also inclined with respect to the CCD image sensor 180 together with the 3D conversion lens 500.
  • the user can accurately adjust the vertical shift between the left-eye image and the right-eye image while preventing the problem that the 3D conversion lens 500 is inclined with respect to the CCD image sensor 180 as described above. be able to.
  • the user can easily determine the imaging position of one image, and the imaging position of the other image is related to the imaging position of the image whose imaging position has already been determined. Easy to adjust.
  • the digital video camera 100 stores information indicating whether or not the 3D conversion lens 500 is attached when the power is turned off in the internal memory 280. Thereby, the digital video camera 100 can recognize whether or not the 3D conversion lens 500 was attached when the power was turned on the last time when the power was turned on. As a result, if the 3D conversion lens 500 was attached when the power was turned off last time, the control from step S100 in FIG. 9A, that is, the control when the attachment of the 3D conversion lens is detected is not performed. This is because the adjustment of the 3D conversion lens 500 has already been completed in many cases when the 3D conversion lens 500 was attached when the power was turned off last time.
  • the digital video camera 100 does not perform control when the attachment of the 3D conversion lens is detected when the 3D conversion lens 500 is attached when the power is turned off last time. .
  • Embodiment 2 in which the present invention is applied to a digital video camera will be described with reference to the drawings. Note that description of portions common to the first embodiment is omitted.
  • the digital video camera according to the second embodiment adjusts the display (the vertical position of the left-eye image and the vertical position of the right-eye image) of the digital video camera according to the first embodiment as shown in FIG. The display area is different. This will be described below.
  • FIG. 15 is a diagram illustrating an image displayed on the liquid crystal monitor 270 when the vertical position of the left-eye image and the vertical position of the right-eye image are adjusted.
  • the left-eye image is set to the number of pixels of the liquid crystal monitor 270.
  • the image enlarged to the corresponding size and the image obtained by extending the right-eye image to the size corresponding to the number of pixels of the liquid crystal monitor 270 are alternately displayed on the liquid crystal monitor 270 in terms of time.
  • the left-eye image and the right-eye image are alternately displayed every 1/30 seconds.
  • the user can move the image for the left eye in the vertical direction by operating the second vertical adjustment dial 560.
  • the user can adjust the vertical position of the left-eye lens 620 by moving the vertical position of the left-eye image to the vertical position of the right-eye image. Accordingly, the user can easily adjust the deviation between the image formation position of the image for the left eye and the image formation position of the image for the right eye.
  • Embodiment 3 Embodiment 3 in which the present invention is applied to a digital video camera will be described with reference to the drawings. Note that description of portions common to the first embodiment is omitted.
  • the digital video camera according to the third embodiment adjusts the display in FIG. 12D of the digital video camera according to the first embodiment (the vertical position of the left-eye image and the vertical position of the right-eye image). The display area is different. This will be described below.
  • FIG. 16 is a schematic diagram of display on the liquid crystal monitor 270 when adjusting the vertical position of the left-eye image and the vertical position of the right-eye image.
  • the digital video camera 100 is an image obtained by stretching the left-eye image in the vertical direction when aligning the vertical position of the left-eye image and the vertical position of the right-eye image to the user.
  • 997L and an image 997R obtained by enlarging the right-eye image in the vertical direction are displayed side by side on the liquid crystal monitor 270 at the same time.
  • the user can move the image 997L for the left eye in the vertical direction by operating the first vertical adjustment dial 550.
  • the user can adjust the vertical position of the left-eye lens 620 by moving the vertical position of the left-eye image 997L to the vertical position of the right-eye image 997R. Accordingly, the user can easily adjust the imaging position of the image 997L for the left eye and the imaging position of the image 997R for the right eye.
  • Embodiment 3 since the image for the left eye and the image for the right eye are each stretched in the vertical direction, it is easy to adjust the position in the vertical direction and to ensure adjustment accuracy.
  • FIG. 8 illustrates an optical system having a three-group configuration, but a lens configuration having another group configuration may be used.
  • each lens may be composed of one lens or a lens group composed of a plurality of lenses.
  • the CCD image sensor 180 is exemplified as the imaging means, but the present invention is not limited to this.
  • the imaging means may be configured with a CMOS image sensor or an NMOS image sensor.
  • the liquid crystal monitor 270 is controlled to display an image in which the left-eye image and the right-eye image are superimposed when adjusting the mounting state of the 3D conversion lens 500.
  • the liquid crystal monitor 270 may be controlled to display an image in which a left-eye image and a right-eye image are superimposed. This allows the user to recognize the degree of parallax between the left-eye image and the right-eye image on the 2D-compatible liquid crystal monitor.
  • the present invention can be applied to an imaging apparatus such as a digital video camera or a digital still camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Indication In Cameras, And Counting Of Exposures (AREA)
  • Accessories Of Cameras (AREA)

Abstract

撮像装置は、左目用の画像を形成するための光と右目用の画像を形成するための光とを集光可能な光学系を有する3Dアダブタを接続可能であり、光学系の調整を行うための調整モードに設定可能である。撮像装置は、3Dアダブタを介して集光された光に基づいて形成された画像を撮像する撮像手段と、撮像手段により撮像された画像を表示する表示手段と、を備える。表示手段は、自装置が調整モードに設定されている際、撮像手段により撮像された左目用の画像と右目用の画像とを重畳して表示する。

Description

撮像装置
 本発明は撮像装置に関し、特に、3Dコンバージョンレンズを取り付け可能な撮像装置に関する。
 特許文献1は、3Dアダプタ(立体画像撮像用カメラレンズアダプタ)と、そのアダプタを取り付け可能な撮像装置とを開示している。この撮像装置は、取り付けられた3Dアダプタを光軸を中心として回転させることにより、3Dアダプタの取り付け状態を調整できる。この撮像装置においては、3Dアダプタの取り付け状態を調整する際、スリットの入ったアダプタキャップを3Dアダプタに取り付けて調整を行うように構成されている。
 この状態で被写体像を撮像することにより、使用者は、3Dアダプタが撮像装置に対して光軸を中心としてどれだけ回転した状態にあるかを、撮像した像の回転状態により認識できる。
特開2003-50438号公報
 上記特許文献1に開示されている撮像装置では、左目用画像及び右目用画像の撮像素子上での結像位置を調整する際、左目用画像と右目用画像が横方向に並べられた状態となっているので、両画像の垂直方向の位置ずれを精度よく認識しにくい。また、特許文献1の3Dアダプタでは、その構造上、左目用画像及び右目用画像の撮像素子上での結像位置を調整する際、左目用画像及び右目用画像の両方が同時に反対方向に動くため、微妙な調整が困難である。このように、特許文献1の撮像装置では、3Dアダプタの取り付け状態の精度のよい調整は困難である。
 本発明は、3Dアダプタの取り付け状態の調整を高精度に行うことができる撮像装置を提供することを目的とする。
 第1の態様の撮像装置は、左目用の画像を形成するための光と右目用の画像を形成するための光とを集光可能な光学系を有する3Dアダプタを接続可能であり、光学系の調整を行うための調整モードに設定可能な撮像装置であって、3Dアダプタを介して集光された光に基づいて形成された画像を撮像する撮像手段と、撮像手段により撮像された画像を表示する表示手段と、を備え、表示手段は、自装置が調整モードに設定されている際、撮像手段により撮像された左目用の画像と右目用の画像とを重畳して表示する。
 第2の態様の撮像装置は、左目用の画像を形成するための光と右目用の画像を形成するための光とを集光可能な光学系を有する3Dアダプタを接続可能であり、光学系の調整を行う調整モードに設定可能な撮像装置であって、3Dアダプタを介して集光された光に基づいて形成された画像を撮像する撮像手段と、を備え、調整モードには、左目用の画像、及び右目用の画像の何れか一方の画像が形成される位置を調整するための第1のモードと、第1のモードにおいて調整された一方の画像が形成される垂直方向の位置に対して、他方の画像が形成される垂直方向の位置を揃えるための第2のモードと、が含まれる。
 第1の態様の撮像装置によれば、3Dアダプタの取り付け状態の調整時、撮像手段により撮像された左目用の画像と右目用の画像とが重畳して表示されるので、調整に際し、左目用の画像の結像位置と右目用の画像の結像位置のずれを使用者が認識しやすい。したがって、3Dアダプタの取り付け状態の調整を高精度に行うことができる。
 第2の態様の撮像装置によれば、3Dアダプタの取り付け状態の調整時、左目用の画像と右目用の画像の両方について垂直方向の位置を個別に調整できる。したがって、3Dアダプタの取り付け状態の調整を高精度に行うことができる。
デジタルビデオカメラ100に3Dコンバージョンレンズ500を取り付けた状態を示す斜視図 デジタルビデオカメラ100から3Dコンバージョンレンズ500を取り外した状態を示す斜視図 3Dコンバージョンレンズ500を取り付けた状態のデジタルビデオカメラ100が撮像する画像データを説明するための模式図 3Dコンバージョンレンズ500及びデジタルビデオカメラ100の光学系の構成を示す模式図 調整機構格納部530を開放した状態で調整機構格納部530内を上方から見た上面図 レンズキャップ570を内側から見た状態を示す斜視図、及びレンズキャップ570を外側から見た状態を示す斜視図 レンズキャップ570をレンズキャップ取付部520に取り付けた際に、レンズキャップ取付部520に対向する面から見たレンズキャップ570の構成を示す模式図 デジタルビデオカメラ100の構成を示すブロック図 デジタルビデオカメラ100が3Dコンバージョンレンズ500の取り付けを検出した場合の動作を示すフローチャート デジタルビデオカメラ100の電源をOFFした場合の動作を示すフローチャート 初期設定時の液晶モニタ270の表示内容を説明するための模式図 3Dコンバージョンレンズ500の調整をするかを問い合わせる際の液晶モニタ270の表示内容を説明するための模式図 3Dコンバージョンレンズ500の調整時の液晶モニタ270の表示内容を説明するための模式図 デジタルビデオカメラ100における電源ON時の動作を説明するためのフローチャート 電源OFF時及びこの電源OFFの後の電源ON時の両方において3Dレンズが取り付けられていることが検出されたときの液晶モニタ270の表示内容を説明するための模式図 左目用画像の垂直方向の位置と右目用画像の垂直方向の位置とを調整する際の液晶モニタ270の表示の模式図 左目用画像の垂直方向の位置と右目用画像の垂直方向の位置とを調整する際の液晶モニタ270の表示の模式図
1.実施の形態1
 本発明をデジタルビデオカメラに適用した場合の実施の形態1について図面を用いて説明する。
1-1.概要
 本実施の形態にかかるデジタルビデオカメラ100の概要について図1~3を用いて説明する。図1は、デジタルビデオカメラ100に3Dコンバージョンレンズ500を取り付けた状態を示す斜視図である。図2は、デジタルビデオカメラ100から3Dコンバージョンレンズ500を取り外した状態を示す斜視図である。
 図1に示すように、デジタルビデオカメラ100は、3Dコンバージョンレンズ500を取り付けるための取付部640を有している。取付部640は、内側に雌ネジを有している。一方、3Dコンバージョンレンズ500は、取付部640が有する雌ネジに係合する雄ネジを有している。使用者は、3Dコンバージョンレンズ500が有する雄ネジを取付部640が有する雌ネジに係合させることで、3Dコンバージョンレンズ500をデジタルビデオカメラ100に取り付けることができる。なお、デジタルビデオカメラ100は、3Dコンバージョンレンズ500が取り付けられたことを検出スイッチ800(後述する図8参照)により磁気的に検出できる。
 図3は、3Dコンバージョンレンズ500の光学系501及びデジタルビデオカメラ100の光学系101の構成を説明した図である。3Dコンバージョンレンズ500の光学系501は、3D(three dimensions)画像における右目用の像を形成するための光を導入する右目用レンズ600と、左目用の像を形成するための光を導入する左目用レンズ620と、右目用レンズ600及び左目用レンズ620に導入された光をデジタルビデオカメラ100の光学系101に導くための左目用と右目用とが一体化された共用レンズ610とを有する。3Dコンバージョンレンズ500の右目用レンズ600及び左目用レンズ620に入射した光は、それぞれ共用レンズ610を介してデジタルビデオカメラ100の光学系101に導入され、デジタルビデオカメラ100のCCDイメージセンサー180(後述する図8参照)に、例えば図4に示すようなサイドバイサイド形式の画像として結像される。右目用レンズ600及び左目用レンズ620は、3Dコンバージョンレンズ500内で個別に上下左右に(光軸に対して垂直な方向に)移動可能に構成されている。
 図1に戻り、3Dコンバージョンレンズ500は、調整機構格納部530を有する。調整機構格納部530内には後述する水平調整ダイヤル、第1垂直調整ダイヤル、第2垂直調整ダイヤル等の調整ダイヤルが格納されている。
 使用者は、各種調整ダイヤルを操作することにより、右目用レンズ600及び左目用レンズ620の3Dコンバージョンレンズ500内での位置をそれぞれ調整できる。右目用レンズ600及び左目用レンズ620の3Dコンバージョンレンズ500内での位置がそれぞれ調整されると、3Dコンバージョンレンズ500に入射した光は、デジタルビデオカメラ100のCCDイメージセンサー180上に上記調整の内容に応じた位置で結像される。
 本実施の形態にかかるデジタルビデオカメラ100は、3Dコンバージョンレンズ500の取り付け後の調整を容易に行うための機能を有する。
1-2.調整ダイヤル
 調整機構格納部530に収納されている各種調整ダイヤルについて図5を用いて説明する。図5は、調整機構格納部530を開放した状態で調整機構格納部530内を上方から見た上面図である。調整機構格納部530内には、水平調整ダイヤル540、第1垂直調整ダイヤル550、及び第2垂直調整ダイヤル560が収納されている。水平調整ダイヤル540は、右目用レンズ600及び左目用レンズ620の水平方向の位置を調整するためのダイヤルである。第1垂直調整ダイヤル550は、右目用レンズ600及び左目用レンズ620の垂直方向の位置を調整するためのダイヤルである。第2垂直調整ダイヤル560は、左目用レンズ620の垂直方向の位置を調整するためのダイヤルである。水平調整ダイヤル540、第1垂直調整ダイヤル550及び第2垂直調整ダイヤル560は、ギヤ形状をしている。水平調整ダイヤル540、及び第2垂直調整ダイヤル560は、矢印方向と垂直な方向に設けられた不図示の軸により矢印方向に回転可能に保持されている。使用者は、水平調整ダイヤル540、及び第2垂直調整ダイヤル560を矢印方向に回転操作できる。また、第1垂直調整ダイヤル550は、調整機構格納部530の面の法線方向に設けられた軸により矢印方向(すなわち、円周方向)に回転可能に保持されている。使用者は、第1垂直調整ダイヤル550を矢印方向に回転操作できる。
 使用者により水平調整ダイヤル540が操作されると、右目用レンズ600及び左目用レンズ620は、3Dコンバージョンレンズ500内において水平方向に移動する。使用者により第1垂直調整ダイヤル550が操作されると、右目用レンズ600と左目用レンズ620とは、3Dコンバージョンレンズ500内において垂直方向に移動する。使用者により第2垂直調整ダイヤル560が操作されると、左目用レンズ620は、3Dコンバージョンレンズ500内において垂直方向に移動する。
 このような構成により、使用者は、水平調整ダイヤル540、第1垂直調整ダイヤル550及び第2垂直調整ダイヤル560を操作することにより、右目用レンズ600及び左目用レンズ620を介して入射する光のCCDイメージセンサー180上における結像位置を調整できる。
1-3.レンズキャップの構成
 本実施の形態では、3Dコンバージョンレンズ500にレンズキャップ570が装着可能である。特に、このレンズキャップ570は、3Dコンバージョンレンズ500に装着された状態において3Dコンバージョンレンズ500の光学系501の調整を行うことを可能とする。以下、このレンズキャップ570について図6、図7を用いて説明する。レンズキャップ570は、レンズキャップ取付部520に取り付け可能である。図6(a)は、レンズキャップ570を内面側から見た状態を示す斜視図である。図6(b)は、レンズキャップ570を外面側から見た状態を示す斜視図である。図7は、レンズキャップ570をレンズキャップ取付部520に取り付けた際に、レンズキャップ取付部520に対向する面から見たレンズキャップ570の構成を示す模式図である。
 レンズキャップ570の内面には、3Dコンバージョンレンズ500に対する取り付け位置を規定するとともに、レンズキャップ570の3Dコンバージョンレンズ500に対する回転を防止するための構造が設けられている。具体的には、レンズキャップ570の内面の左右には突起680が形成されている。また、3Dコンバージョンレンズ500の先端部外周の左右には、図1に示すように、溝670が設けられている。そして、レンズキャップ570を3Dコンバージョンレンズ500に取り付けるときに、レンズキャップ570の突起680と3Dコンバージョンレンズ500の溝670とを係合させる。これにより、レンズキャップ570の3Dコンバージョンレンズ500に対する取り付け位置が規定されるとともに、レンズキャップ570の3Dコンバージョンレンズ500に対する回転を防止することができる。
 レンズキャップ570には、図6(a)、図7に示すようなパターンが付されている。具体的には、レンズキャップ570には、水平方向に延びる直線からなる基準線580が付されている。また、レンズキャップ570には、基準線580に線対称に配置された2つの三角形からなるパターン590が付されている。また、このパターン590は、基準線580の中点を中心として左右対称に配置されている。領域610は、光を透過する樹脂で構成されている。従って、レンズキャップ570をレンズキャップ取付部520に取り付けた状態で、デジタルビデオカメラ100は、図7に示す模様を撮像できる。パターン590は、2つの三角形からなるパターンであるので、斜め方向に延びる線を有している。そのため、パターン590は、コントラストAF方式において合焦させやすいというメリットがある。なお、斜め方向に延びる線を有していれば、パターンは三角形である必要はない。
1-4.デジタルビデオカメラの電気的構成
 本実施の形態にかかるデジタルビデオカメラ100の電気的構成について、図8を用いて説明する。図8は、デジタルビデオカメラ100の構成を示すブロック図である。デジタルビデオカメラ100は、光学系101、CCDイメージセンサー180、画像処理部190、液晶モニタ270、検出器120、ズームモータ130、OISアクチュエータ150、検出器160、メモリ200、ズームレバー260、操作部材250、内部メモリ280、ジャイロセンサー220、及びカードスロット230を有する。デジタルビデオカメラ100は、光学系101により形成された被写体像をCCDイメージセンサー180で撮像する。CCDイメージセンサー180で生成された映像データは、画像処理部190で各種処理が施され、メモリカード240に格納される。また、メモリカード240に格納された映像データは、液晶モニタ270で表示可能である。以下、デジタルビデオカメラ100の構成を詳細に説明する。
 デジタルビデオカメラ100の光学系101は、ズームレンズ110、OIS140、フォーカスレンズ170を含む。ズームレンズ110は、光学系101の光軸に沿って移動することにより、被写体像を拡大又は縮小可能である。また、フォーカスレンズ170は、光学系101の光軸に沿って移動することにより、被写体像のピントを調整する。
 OIS140は、内部に光軸に垂直な面内で移動可能な補正レンズを有する。OIS140は、デジタルビデオカメラ100の振れを相殺する方向に補正レンズを駆動することにより、被写体像の振れを低減する。
 ズームモータ130は、ズームレンズ110を駆動する。ズームモータ130は、パルスモータやDCモータ、リニアモータ、サーボモータなどで実現してもよい。ズームモータ130は、カム機構やボールネジなどの機構を介してズームレンズ110を駆動するようにしてもよい。検出器120は、ズームレンズ110が光軸上でどの位置に存在するのかを検出する。検出器120は、ズームレンズ110の光軸方向への移動に応じて、ブラシ等のスイッチによりズームレンズの位置に関する信号を出力する。
 OISアクチュエータ150は、OIS140内の補正レンズを光軸と垂直な面内で駆動する。OISアクチュエータ150は、平面コイルや超音波モータなどで実現できる。検出器160は、OIS140内における補正レンズの移動量を検出する。
 CCDイメージセンサー180は、ズームレンズ110等からなる光学系101で形成された被写体像を撮像して、映像データを生成する。CCDイメージセンサー180は、露光、転送、電子シャッタなどの各種動作を行う。
 画像処理部190は、CCDイメージセンサー180で生成された映像データに対して各種の処理を施し、液晶モニタ270に表示するための映像データを生成したり、メモリカード240に再格納するための映像データを生成したりする。例えば、画像処理部190は、CCDイメージセンサー180で生成された映像データに対してガンマ補正やホワイトバランス補正、傷補正などの各種処理を行う。また、画像処理部190は、CCDイメージセンサー180で生成された映像データに対して、H.264規格やMPEG2規格に準拠した圧縮形式等により映像データを圧縮する。画像処理部190は、DSPやマイコンなどで実現可能である。
 コントローラー210は、全体を制御する制御手段である。コントローラー210は、半導体素子などで実現可能である。コントローラー210は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。コントローラー210は、マイコンなどで実現できる。
 メモリ200は、画像処理部190及びコントローラー210のワークメモリとして機能する。メモリ200は、例えば、DRAM、強誘電体メモリなどで実現できる。
 液晶モニタ270は、CCDイメージセンサー180で生成された映像データが示す画像や、メモリカード240から読み出した映像データが示す画像を表示可能である。また、液晶モニタ270上にはタッチパネルが設けられている。使用者は、液晶モニタ270上に表示されたアイコンをタッチすることで、デジタルビデオカメラ100を操作できる。
 ジャイロセンサー220は、圧電素子等の振動材等で構成される。ジャイロセンサー220は、圧電素子等の振動材を一定周波数で振動させたときのコリオリ力による力を電圧に変換して角速度情報を得る。デジタルビデオカメラ100は、ジャイロセンサー220から角速度情報を得て、この揺れを相殺する方向にOIS内の補正レンズを駆動させることにより、使用者による手振れを補正する。
 カードスロット230は、メモリカード240を着脱可能である。カードスロット230は、機械的及び電気的にメモリカード240と接続可能である。メモリカード240は、フラッシュメモリや強誘電体メモリなどを内部に含み、データを格納可能である。
 内部メモリ280は、フラッシュメモリや強誘電体メモリなどで構成される。内部メモリ280は、デジタルビデオカメラ100全体を制御するための制御プログラム等を格納する。
 操作部材250は、使用者から操作を受け付ける部材である。ズームレバー260は、使用者からズーム倍率の変更指示を受け付ける部材である。
 検出スイッチ800は、3Dコンバージョンレンズ500がデジタルビデオカメラ100に取り付けられたことを磁気的に検出できる。検出スイッチ800は、3Dコンバージョンレンズ500が取り付けられたことを検出すると、その旨の信号をコントローラー210に通知する。これにより、コントローラー210は、デジタルビデオカメラ100に3Dコンバージョンレンズ500が取り付けられたこと、及び取り外されたことを検出できる。
1-5.本発明との対応
 3Dコンバージョンレンズ500は、3Dコンバージョンレンズの一例である。CCDイメージセンサー180は、撮像手段の一例である。液晶モニタ270は、表示手段の一例である。コントローラー210は、3Dコンバージョンレンズの光学系の位置を調整するための制御を行う調整手段の一例である。
1-6.動作
1-6-1.3Dコンバージョンレンズが取り付けられていることを検出した場合の動作
 デジタルビデオカメラ100が、3Dコンバージョンレンズ500が取り付けられたことを検出した場合の動作について図9A~図12を用いて説明する。図9Aは、デジタルビデオカメラ100が、3Dコンバージョンレンズ500が取り付けられていることを検出した場合の動作を示すフローチャートである。図9Bは、デジタルビデオカメラ100の電源をOFFした場合の動作を示すフローチャートである。図10は、初期設定時の液晶モニタ270の表示内容を説明するための模式図である。図11は、3Dコンバージョンレンズ500の調整をするかを問い合わせる際の液晶モニタ270の表示内容を説明するための模式図である。図12は、3Dコンバージョンレンズ500の調整時の液晶モニタ270の表示内容を説明するための模式図である。
 使用者により3Dコンバージョンレンズ500がデジタルビデオカメラ100に取り付けられると、コントローラー210は、検出スイッチ800からの検出信号に基づき、3Dコンバージョンレンズ500が取り付けられたことを検出する(S100)。3Dコンバージョンレンズ500が取り付けられたことを検出すると、コントローラー210は、図10に示すメッセージを表示するよう液晶モニタ270を制御する(S110)。具体的には、「3D撮影の初期設定を行っています。」とのメッセージを表示する。また、液晶モニタ270にメッセージを表示させるのに併せて、コントローラー210は、3Dモードにおける初期設定を開始するようデジタルビデオカメラ100を制御する(S110)。具体的には、コントローラー210は、初期設定として、ズームレンズ110を望遠端に移動させたり、画像処理の方法を2D画像の撮影モードとは異なる方法にするよう設定したりする。なお、図10に表示したメッセージは一例である。メッセージの内容は、同様の主旨である限り異なる内容でも構わない。図11、図12、図14においても同様である。
 初期設定が完了すると、コントローラー210は、図11に示すメッセージを表示するよう液晶モニタ270を制御する(S120)。具体的には、コントローラー210は、例えば「3Dコンバージョンレンズ500の調整をしますか? 調整する場合にはレンズキャップを取り付けてください」というように、3Dコンバージョンレンズ500の位置調整を行うかを問合せて、調整する場合にはレンズキャップを取り付けるよう促すメッセージを表示する。また、コントローラー210は、図11に示すようなOSDを表示するよう液晶モニタ270を制御する。具体的には、コントローラー210は、水平方向基準線910及び垂直方向基準線900を表示するよう液晶モニタ270を制御する。また、コントローラー210は、使用者による操作を受け付けるための「調整」を示すOSD920、及び「終了」を示すOSD930を表示するよう液晶モニタ270を制御する。
 図11に示される画像を表示するよう液晶モニタ270を制御すると、コントローラー210は、使用者により「調整」を示すOSD920がタッチされるか、「終了」を示すOSD930がタッチされるまで待機する(S130)。
 使用者により「終了」を示すOSD930が選択されると、コントローラー210は、撮影モードに移行し(S140)、使用者から撮影開始指示を受け付けるまで待機する。一方、図11に示される画像を表示している際に、使用者により「調整」を示すOSD920が選択されると、コントローラー210は、調整モードに移行する。この調整モードは、左目用の画像、及び右目用の画像の何れか一方の画像が形成される位置を調整するための第1の調整モードと、第1のモードにおいて調整された一方の画像が形成される垂直方向の位置に対して、他方の画像が形成される垂直方向の位置を揃えるための第2のモードとを含む。本実施の形態では、第1のモードにおいて右目用の画像が形成される位置を調整し、第2のモードにおいて左目用の画像が形成される垂直方向の位置を調整する場合について説明するが、第1のモードにおいて左目用の画像が形成される位置を調整し、第2のモードにおいて右目用の画像が形成される垂直方向の位置を調整してもよい。
 まず、コントローラー210は、第1の調整モードを実行する。すなわち、図12(a)に示される画像を表示するよう液晶モニタ270を制御する(S150)。なお、使用者は、3Dコンバージョンレンズ500の位置を調整するときに、図11に示される画像を認識した後、レンズキャップ570をデジタルビデオカメラ100に取り付けるものとする。具体的には、コントローラー210は、垂直方向基準線940を2本表示するよう液晶モニタ270を制御する。また、コントローラー210は、CCDイメージセンサー180により撮像された左目用の画像970L及び右目用の画像970Rを表示するよう液晶モニタ270を制御する。また、コントローラー210は、「水平方向に調整して下さい。」というメッセージを表示するよう液晶モニタ270を制御する。使用者は、水平調整ダイヤル540を操作することにより、左目用の画像970Lと右目用の画像970Rを移動させ、これにより、これらの画像970Lと970Rの間に存在する領域である領域950を水平方向に移動できる。使用者は、領域950を2本の垂直方向基準線940の間に移動させることで、右目用レンズ600及び左目用レンズ620の水平方向の位置を調整できる。また、デジタルビデオカメラ100は、パターン590を撮像している。デジタルビデオカメラ100は、コントラスト方式のAFによりパターン590に合焦させることができる。その結果、デジタルビデオカメラ100は、基準線580にも合焦させることができる。
 図12(a)に示される画像を表示するよう液晶モニタ270を制御すると、コントローラー210は、使用者により「次へ」を示すOSD990がタッチされるか、「戻る」を示すOSD980がタッチされるまで待機する(S160)。
 使用者により「戻る」を示すOSD980がタッチされると、コントローラー210は、再度図11に示される画像を表示するよう液晶モニタ270を制御する(S120に戻る)。一方、「次へ」を示すOSD990がタッチされると、コントローラー210は、図12(b)に示される画像を表示するよう液晶モニタ270を制御する(S170)。具体的には、コントローラー210は、水平方向基準線960を2本表示するよう液晶モニタ270を制御する。また、コントローラー210は、CCDイメージセンサー180により撮像された画像のうち右目用の画像970Rのみを表示するよう液晶モニタ270を制御する。右目用の画像970Rのみを表示するのは、右目用の画像970Rと左目用の画像970Lの両方を表示すると、使用者がどちらの画像について調整すればよいかわからなくなる虞があるからである。また、コントローラー210は、「垂直方向に調整して下さい。」というメッセージを表示するよう液晶モニタ270を制御する。使用者は、第2垂直調整ダイヤル560を操作することにより、右目用の画像970Rを垂直方向に移動できる。使用者は、基準線580を2本の水平方向基準線960の間に移動させることで、右目用レンズ600の垂直方向の位置を調整できる。
 図12(b)に示される画像を表示するよう液晶モニタ270を制御すると、コントローラー210は、使用者により「次へ」を示すOSD990がタッチされるか、「戻る」を示すOSD980がタッチされるまで待機する(S180)。
 使用者により「戻る」を示すOSD980がタッチされると、コントローラー210は、再度図12(a)に示される画像を表示するよう液晶モニタ270を制御する(S150に戻る)。一方、「次へ」を示すOSD990がタッチされると、コントローラー210は、第2の調整モードを実行する。すなわち、コントローラー210は、図12(c)に示される画像を表示するよう液晶モニタ270を制御する(S190)。具体的には、コントローラー210は、「レンズキャップを外してください。1.2m~2.0m離れた被写体を写してください」というメッセージを表示するよう液晶モニタ270を制御する。
 図12(c)に示される画像を表示するよう液晶モニタ270を制御すると、コントローラー210は、使用者により「次へ」を示すOSD990がタッチされるか、「戻る」を示すOSD980がタッチされるまで待機する(S200)。
 使用者により「戻る」を示すOSD980がタッチされると、コントローラー210は、再度図12(b)に示される画像を表示するよう液晶モニタ270を制御する(S170に戻る)。一方、「次へ」を示すOSD990がタッチされると、コントローラー210は、図12(d)に示される画像を表示するよう液晶モニタ270を制御する(S210)。具体的には、コントローラー210は、左目用の画像995Lと、右目用の画像995Rとを水平方向、及び垂直方向に液晶モニタ270の画素数に対応する大きさまで引き伸ばし、それぞれの画像を重畳して表示するよう液晶モニタ270を制御する。また、コントローラー210は、「画像の垂直方向のズレを調整して下さい。」というメッセージを表示するよう液晶モニタ270を制御する。使用者は、第2垂直調整ダイヤル560を操作することにより、左目用の画像995Lを垂直方向に移動できる。使用者は、左目用の画像995Lの垂直方向の位置を右目用の画像995Rの垂直方向の位置に移動させることで、左目用レンズ620の垂直方向の位置を調整できる。つまり、使用者は、このようにすることで、CCDイメージセンサー180に対する3Dコンバージョンレンズ500の傾きにより生じる左目用画像995Lと右目用画像995Rとの垂直方向のズレを調整できる。3Dコンバージョンレンズ500がデジタルビデオカメラ100に対して傾いた状態で取り付けられると、撮像された画像も傾くこととなるが、この傾きは、使用者が画像を視認する際、左目用の画像と右目用の画像の上下方向のずれとなる。その結果、3D画像を視る使用者を疲れさせる。しかし、本実施形態では、上記のような構成を採用したことにより、このような不具合を防止することができる。
 図12(d)に示される画像を表示するよう液晶モニタ270を制御すると、コントローラー210は、使用者により「次へ」を示すOSD990がタッチされるか、「戻る」を示すOSD980がタッチされるまで待機する(S220)。
 使用者により「戻る」を示すOSD980がタッチされると、コントローラー210は、再度図12(c)に示される画像を表示するよう液晶モニタ270を制御する(S190)。一方、「次へ」を示すOSD990がタッチされると、コントローラー210は、撮影モードに移行するようデジタルビデオカメラ100全体を制御する(S230)。
1-6-2 電源OFF時の動作
 撮影モードに移行後、コントローラー210は、使用者によりデジタルビデオカメラ100の電源をOFFする指示がなされたかを判断する(S240)。使用者により電源をOFFする指示がなされたと判断すると、コントローラー210は、デジタルビデオカメラ100に3Dコンバージョンレンズ500が取り付けられているか否かを判断する(S250)。3Dコンバージョンレンズ500が取り付けられていないと判断すると、コントローラー210は、電源OFF時に3Dコンバージョンレンズ500が取り付けられていない旨を示す情報(例えば、取り付けられていないことを示すフラグ)を内部メモリ280に記録する(S260)。一方、3Dコンバージョンレンズ500が取り付けられていると判断すると、コントローラー210は、電源OFF時に3Dコンバージョンレンズ500が取り付けられている旨を示す情報(例えば、取り付けられていることを示すフラグ)を内部メモリ280に記録する(S270)。電源OFF時の3Dコンバージョンレンズ500の着脱状態に関する情報を内部メモリ280に記録すると、コントローラー210は、電源をOFFするようデジタルビデオカメラ100全体を制御する(S280)。
1-6-3.電源ON時の動作
 デジタルビデオカメラ100における電源ON時の動作について図13を用いて説明する。図13は、デジタルビデオカメラ100における電源ON時の動作を説明するためのフローチャートである。
 使用者による電源ONの操作を受け付けると(S300)、コントローラー210は検出スイッチ800からの検出信号に基づき、電源ON時に3Dコンバージョンレンズ500が取り付けられているか否かを判断する(S310)。3Dコンバージョンレンズ500が取り付けられていないと判断すると、コントローラー210は、2D撮影モードに移行するようデジタルビデオカメラ100全体を制御する(S320)。一方、3Dコンバージョンレンズ500が取り付けられていると判断すると、コントローラー210は、内部メモリ280内に前回の電源OFF時に3Dコンバージョンレンズ500が取り付けられていた旨の情報が記憶されているか否かを判断する(S330)。
 電源ON時に3Dコンバージョンレンズ500が取り付けられている状態において、この電源ONの前の電源OFF時に3Dコンバージョンレンズ500が取り付けられていた旨の情報が記憶されていると判断すると、コントローラー210は、警告を表示する(S345)。図14は、電源OFF時及びこの電源OFFの後の電源ON時の両方において3Dコンバージョンレンズ500が取り付けられていることが検出されたときの液晶モニタ270の表示内容を説明した図である。具体的には、「前回使用時と今回使用時との間に3Dコンバージョンレンズ500を取り外した場合は、3Dコンバージョンレンズ500の調整を行ってください。」と調整を促す警告表示を行う。内部メモリ280内に前回の電源OFF時に3Dコンバージョンレンズ500が取り付けられていた旨の情報が記憶されており、かつ今回の電源ON時に3Dコンバージョンレンズ500が取り付けられていると判断された場合であっても、電源OFF状態の間に3Dコンバージョンレンズ500が一旦取り外され、その後再度取り付けられている可能性がある。このような場合、3Dコンバージョンレンズ500の取り付け状態が適切でない可能性がある。そこで、電源OFF時及びこの電源OFFの後の電源ON時の両方において3Dコンバージョンレンズ500が取り付けられていることが検出された場合であっても、3Dコンバージョンレンズ500の調整を促す警告表示を行う。
 警告表示から例えば所定時間経過後、コントローラー210は、3Dの撮影モードに移行するようデジタルビデオカメラ100全体を制御する(S350)。一方、ステップS330において、3Dコンバージョンレンズ500が取り付けられていなかった旨の情報が記憶されていると判断すると、コントローラー210は、図9AにおけるステップS100に移行し(S340)、以後、図9Aのフローチャートに示す処理を行う。なお、ステップS345とステップS350との間に使用者による調整要否の判定を行うステップを設け、使用者により調整要の判定がなされた場合は、ステップS100に移行して以後の処理を行い、一方、使用者により調整不要の判定がなされた場合は、ステップS350に移行するようにしてもよい。
1-7.まとめ
 このように本実施の形態にかかるデジタルビデオカメラ100は、3Dコンバージョンレンズ500内の光学系の調整を行う際、具体的には左目用の画像995Lの垂直方向の結像位置と右目用の画像995Rの垂直方向の結像位置とのズレを使用者に調整させる際、図12(d)に示すように、CCDイメージセンサー180により撮像された左目用の画像995Lと右目用の画像995Rとを重畳して液晶モニタ270に表示する。これにより、使用者は、左目用の画像995Lの垂直方向の結像位置と右目用の画像995Rの垂直方向の結像位置とのズレを視覚的に認識できる。したがって、3Dコンバージョンレンズ500の取り付け状態の調整を高精度に行うことができる。
 また、本実施の形態にかかるデジタルビデオカメラ100は、図12(a)、図12(b)に示すように、一方の画像の結像位置を使用者に確定調整させた後に、他方の画像の結像位置を使用者に確定させる。これにより、使用者は、左目用の画像995Lの結像位置と右目用の画像995Rの結像位置とのズレを容易に調整できる。
 また、本実施の形態にかかるデジタルビデオカメラ100は、図11に示すように、一方の画像の結像位置を使用者に確定させる際に、レンズキャップ570を取り付けるよう促すメッセージを液晶モニタ270に表示する。また、デジタルビデオカメラ100は、他方の画像の結像位置を既に結像位置を確定した画像の結像位置との関係で使用者に調整させる際に、図12(c)に示すように、レンズキャップ570を取り外すよう促すメッセージを液晶モニタ270に表示する。これは、以下の理由による。仮に3Dコンバージョンレンズ500がCCDイメージセンサー180に対して傾いていたとすると、レンズキャップ570も3Dコンバージョンレンズ500と共に、CCDイメージセンサー180に対して傾いてしまう。この傾いた状態では、CCDイメージセンサー180で撮像された左右の三角形のパターン590の垂直方向の位置にズレが生じる。このようにずれた状態において、左右の三角形のパターン590の垂直方向のズレがなくなるように調整すると、レンズキャップ570を取り外した状態で被写体を撮影したときに、被写体の垂直方向の位置がずれることとなる。したがって、CCDイメージセンサー180に対する3Dコンバージョンレンズ500の傾きにより生じる左目用画像と右目用画像との垂直方向のズレの調整は、レンズキャップ570を取り外した状態で行う必要がある。そこで、CCDイメージセンサー180に対する3Dコンバージョンレンズ500の傾きにより生じる左目用画像と右目用画像との垂直方向のズレを調整する際には、レンズキャップ570を取り外すように使用者に促す。これにより、上記のように3Dコンバージョンレンズ500がCCDイメージセンサー180に対して傾いてしまうという不具合を防止しつつ、左目用画像と右目用画像との垂直方向のズレを使用者に正確に調整させることができる。これにより、使用者は、一方の画像の結像位置の確定を容易に行うことができ、かつ、他方の画像の結像位置を既に結像位置を確定した画像の結像位置との関係で容易に調整できる。
 また、本実施の形態にかかるデジタルビデオカメラ100は、電源OFF時に3Dコンバージョンレンズ500が取り付けられていたか否かを示す情報を内部メモリ280に記憶する。これにより、デジタルビデオカメラ100は、電源ON時に前回の電源OFF時に3Dコンバージョンレンズ500が取り付けられていたか否かを認識できる。その結果、前回の電源OFF時に3Dコンバージョンレンズ500が取り付けられていた場合には図9AにおけるステップS100からの制御、すなわち3Dコンバージョンレンズの取り付けが検出された場合の制御を行わない。これは、前回の電源OFF時に3Dコンバージョンレンズ500が取り付けられていた場合には、既に3Dコンバージョンレンズ500の調整が完了している場合が多いからである。既に3Dコンバージョンレンズ500の調整が完了しているにも関わらず、上記3Dコンバージョンレンズの取り付けが検出された場合の制御が行われると使用者にとって煩わしい。そこで、本実施の形態にかかるデジタルビデオカメラ100は、前回の電源OFF時に3Dコンバージョンレンズ500が取り付けられていた場合には上記3Dコンバージョンレンズの取り付けが検出された場合の制御を行わないこととしている。
2.実施の形態2
 本発明をデジタルビデオカメラに適用した実施の形態2について図面を用いて説明する。なお、実施の形態1と共通の部分については説明を省略する。実施の形態2にかかるデジタルビデオカメラは、実施の形態1にかかるデジタルビデオカメラにおける図12(d)の表示(左目用画像の垂直方向の位置と右目用画像の垂直方向の位置とを調整する際の表示)にかかる部分が異なる。以下、その点について説明する。
 本実施の形態における左目用画像の垂直方向の位置と右目用画像の垂直方向の位置とを調整する際の液晶モニタ270の表示について図15を用いて説明する。図15は、左目用画像の垂直方向の位置と右目用画像の垂直方向の位置とを調整する際に液晶モニタ270に表示される画像を説明した図である。
 本実施の形態にかかるデジタルビデオカメラ100は、左目用画像の垂直方向の位置と右目用画像の垂直方向の位置とを使用者に揃えさせる際に、左目用画像を液晶モニタ270の画素数に対応する大きさに引き伸ばした画像と、右目用画像を液晶モニタ270の画素数に対応する大きさに引き伸ばした画像とを時間的に交互に液晶モニタ270に表示する。例えば、本実施の形態においては、左目用画像と右目用画像とを1/30秒おきに交互に表示する。
 使用者は、実施の形態1と同様、第2垂直調整ダイヤル560を操作することにより、左目用の画像を垂直方向に移動できる。使用者は、左目用の画像の垂直方向の位置を右目用の画像の垂直方向の位置に移動させることで、左目用レンズ620の垂直方向の位置を調整できる。これにより、使用者は、左目用の画像の結像位置と右目用の画像の結像位置とのズレを容易に調整できる。
3.実施の形態3
 本発明をデジタルビデオカメラに適用した実施の形態3について図面を用いて説明する。なお、実施の形態1と共通の部分については説明を省略する。実施の形態3にかかるデジタルビデオカメラは、実施の形態1にかかるデジタルビデオカメラにおける図12(d)の表示(左目用画像の垂直方向の位置と右目用画像の垂直方向の位置とを調整する際の表示)にかかる部分が異なる。以下、その点について説明する。
 本実施の形態における左目用画像の垂直方向の位置と右目用画像の垂直方向の位置とを調整する際の液晶モニタ270の表示について図16を用いて説明する。図16は、左目用画像の垂直方向の位置と右目用画像の垂直方向の位置とを調整する際の液晶モニタ270の表示の模式図である。
 本実施の形態にかかるデジタルビデオカメラ100は、左目用画像の垂直方向の位置と右目用画像の垂直方向の位置とを使用者に揃えさせる際に、左目用の画像を垂直方向に引き伸ばした画像997Lと右目用の画像を垂直方向に引き伸ばした画像997Rとを左右に並べて同時に液晶モニタ270に表示する。
 使用者は、実施の形態1同様、第1垂直調整ダイヤル550を操作することにより、左目用の画像997Lを垂直方向に移動できる。使用者は、左目用の画像997Lの垂直方向の位置を右目用の画像997Rの垂直方向の位置に移動させることで、左目用レンズ620の垂直方向の位置を調整できる。これにより、使用者は、左目用の画像997Lの結像位置と右目用の画像997Rの結像位置とを容易に調整できる。
 実施の形態3では、左目用の画像及び右目用の画像をそれぞれ垂直方向に引き伸ばしているので、垂直方向の位置の調整を行い易くなるとともに、調整精度を確保しやすくなる。
4.他の実施の形態
 以上、本発明の実施の形態として、実施の形態1~3を説明した。しかし、本発明は、これらには限定されない。以下、本発明の他の実施の形態を説明する。
 本実施の形態にかかるデジタルビデオカメラ100の光学系及び駆動系は、図8に示すものに限定されない。例えば、図8では3群構成の光学系を例示しているが、他の群構成のレンズ構成としてもよい。また、それぞれのレンズは、1つのレンズで構成してもよく、複数のレンズから構成されるレンズ群として構成してもよい。
 また、実施の形態1~3では、撮像手段として、CCDイメージセンサー180を例示したが、本発明はこれに限定されない。例えば、撮像手段をCMOSイメージセンサーで構成してもよく、NMOSイメージセンサーで構成してもよい。
 また、実施の形態1~3では、左目用画像と右目用画像のCCDイメージセンサー180における水平方向の結像位置の調整、及び右目用画像のCCDイメージセンサー180における垂直方向の結像位置の調整をレンズキャップ570を取り付けた状態で使用者に行わせている。しかしながら、必ずしもこのような構成には限定されない。レンズキャップ570を取り付けていない状態で、左目用画像と右目用画像のCCDイメージセンサー180における水平方向の結像位置の調整、及び右目用画像のCCDイメージセンサー180における垂直方向の結像位置の調整を使用者に行わせるような構成であってもよい。
 また、実施の形態1では、3Dコンバージョンレンズ500の取付状態の調整時に左目用画像と右目用画像とを重畳した画像を表示するよう液晶モニタ270を制御した。しかしながら、必ずしもこのような構成には限定されない。例えば、3D画像を再生し、液晶モニタ270に表示させる際に、左目用画像と右目用画像とを重畳した画像を表示するよう液晶モニタ270を制御してもよい。これにより、左目用画像と右目用画像との視差がどの程度であるかを2D対応の液晶モニタ上で使用者に認識させることができる。
 本実施形態では、上述のように、3Dコンバージョンレンズ500の取付状態の調整時に液晶モニタ270に左目用画像と右目用画像とを重畳(合成)した画像を表示する。この重畳(合成)の態様の一例として図12(d)を示したが、2つの画像が同時に表示され、液晶モニタ270上において左目用画像及び右目用画像の垂直方向の位置がそれぞれ認識可能である限り、如何なる態様であってもよい。例えば、半透明な左目用画像と右目用画像を重ねて表示してもよい。また、不透明な左目用画像と右目用画像を重ねて表示してもよい。なお、左目用画像と右目用画像の重畳は、両画像を合成することにより行うこともできる。
 本発明は、デジタルビデオカメラやデジタルスチルカメラ等の撮像装置に適用できる。
 100 デジタルビデオカメラ
 110 ズームレンズ
 120 検出器
 130 ズームモータ
 140 OIS
 150 OISアクチュエータ
 160 検出器
 170 フォーカスレンズ
 180 CCDイメージセンサー
 190 画像処理部
 200 メモリ
 210 コントローラー
 220 ジャイロセンサー
 230 カードスロット
 240 メモリカード
 250 操作部材
 260 ズームレバー
 270 液晶モニタ
 280 内部メモリ

Claims (8)

  1.  左目用の画像を形成するための光と右目用の画像を形成するための光とを集光可能な光学系を有する3Dアダブタを接続可能であり、前記光学系の調整を行うための調整モードに設定可能な撮像装置であって、
     前記3Dアダブタを介して集光された光に基づいて形成された画像を撮像する撮像手段と、
     前記撮像手段により撮像された画像を表示する表示手段と、を備え、
     前記表示手段は、自装置が前記調整モードに設定されている際、前記撮像手段により撮像された左目用の画像と右目用の画像とを重畳して表示する、
     撮像装置。
  2.  前記調整モードは、前記左目用の画像が形成される垂直方向の位置と前記右目用の画像が形成される垂直方向の位置とを揃えるためのモードである、
     請求項1に記載の撮像装置。
  3.  左目用の画像を形成するための光と右目用の画像を形成するための光とを集光可能な光学系を有する3Dアダブタを接続可能であり、前記光学系の調整を行う調整モードに設定可能な撮像装置であって、
     前記3Dアダブタを介して集光された光に基づいて形成された画像を撮像する撮像手段を備え、
     前記調整モードには、
      前記左目用の画像、及び右目用の画像の何れか一方の画像が前記撮像手段上に形成される位置を調整するための第1のモードと、
      前記第1のモードにおいて調整された一方の画像が前記撮像手段上に形成される垂直方向の位置に対して、他方の画像が前記撮像手段上に形成される垂直方向の位置を揃えるための第2のモードと、が含まれる、
     撮像装置。
  4.  メッセージを表示する表示手段をさらに備え、
     前記表示手段は、前記第1のモードに入る前に前記3Dアダブタにレンズキャップを取り付けるよう使用者に促すメッセージを表示し、前記第2のモードに入る前に前記レンズキャップを取り外すよう使用者に促すメッセージを表示する、
     請求項3に記載の撮像装置。
  5.  前記レンズキャップは、撮像装置の水平方向に対して斜めに交差するパターンを有する、
     請求項4に記載の撮像装置。
  6.  自装置の電源OFF時に、前記3Dアダプタが取り付けられているか否かを検出する第1の検出手段と、
     前記第1の検出手段の検出結果を示す情報を記録する情報記録手段と、
     自装置の電源ON時に、前記3Dアダプタが取り付けられているか否かを検出する第2の検出手段と、
     前記情報記録手段に記録されている情報と前記第2の検出手段の検出結果とに基づいて、前記調整モードに設定するか否かを決定する決定手段と、をさらに備える、
     請求項1から請求項5のいずれかに記載の撮像装置。
  7.  自装置の電源OFF時に前記情報記録手段で記録された情報が、前記3Dアダプタが取り付けられていることを示す情報であり、この電源OFFの後の自装置の電源ON時における前記第2の検出手段の検出結果が、前記3Dアダプタが取り付けられていることを示すものであるときは、前記3Dアダプタの調整を促す警告を表示する、
     請求項6に記載の撮像装置。
  8.  撮像装置に取り付けられる3Dアダプタに装着され、前記3Dアダプタを構成するレンズの位置を調整するためのレンズキャップであって、
     前記3Dアダプタに装着された状態において、前記撮像装置の水平方向に対して斜めに交差するレンズ位置調整用パターンが形成されている、レンズキャップ。
PCT/JP2011/002539 2010-07-27 2011-05-02 撮像装置 WO2012014355A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/812,178 US20130169761A1 (en) 2010-07-27 2011-05-02 Image capturing device
JP2012526276A JPWO2012014355A1 (ja) 2010-07-27 2011-05-02 撮像装置
CN2011800365293A CN103026716A (zh) 2010-07-27 2011-05-02 摄像装置
EP11811962.7A EP2600624A1 (en) 2010-07-27 2011-05-02 Image capturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-167984 2010-07-27
JP2010167984 2010-07-27

Publications (1)

Publication Number Publication Date
WO2012014355A1 true WO2012014355A1 (ja) 2012-02-02

Family

ID=45529593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002539 WO2012014355A1 (ja) 2010-07-27 2011-05-02 撮像装置

Country Status (5)

Country Link
US (1) US20130169761A1 (ja)
EP (1) EP2600624A1 (ja)
JP (1) JPWO2012014355A1 (ja)
CN (1) CN103026716A (ja)
WO (1) WO2012014355A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024142698A1 (ja) * 2022-12-26 2024-07-04 富士フイルム株式会社 付帯情報生成方法、撮像システム及び付帯情報生成プログラム
JP7543214B2 (ja) 2021-06-11 2024-09-02 キヤノン株式会社 レンズ装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102860016A (zh) * 2010-04-19 2013-01-02 松下电器产业株式会社 立体图像拍摄装置以及立体图像拍摄方法
US20150215530A1 (en) * 2014-01-27 2015-07-30 Microsoft Corporation Universal capture
US10931933B2 (en) * 2014-12-30 2021-02-23 Eys3D Microelectronics, Co. Calibration guidance system and operation method of a calibration guidance system
CN108737735B (zh) * 2018-06-15 2019-09-17 Oppo广东移动通信有限公司 图像校正方法、电子设备及计算机可读存储介质
JP2022168781A (ja) * 2021-04-26 2022-11-08 キヤノン株式会社 電子機器、その制御方法、プログラムおよび記憶媒体
US20220397816A1 (en) * 2021-06-11 2022-12-15 Canon Kabushiki Kaisha Lens apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322725A (ja) * 1997-05-19 1998-12-04 Sony Corp 立体撮影像位置決め装置
JP2002218507A (ja) * 2001-01-18 2002-08-02 Olympus Optical Co Ltd 撮像装置
JP2003050438A (ja) 2001-08-06 2003-02-21 Sony Corp 立体画像撮像用カメラレンズアダプタ、および撮影装置
JP2003061116A (ja) * 2001-08-09 2003-02-28 Olympus Optical Co Ltd 立体映像表示装置
JP2003114371A (ja) * 2002-08-19 2003-04-18 Sony Corp 撮影装置
JP2006187032A (ja) * 2002-01-16 2006-07-13 Olympus Corp ステレオ撮影装置及びステレオ撮影装置の撮影方法
JP2009016994A (ja) * 2007-07-02 2009-01-22 Nikon Corp 撮像装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276419A (ja) * 1992-03-27 1993-10-22 Sony Corp レンズキャップ
US5532777A (en) * 1995-06-06 1996-07-02 Zanen; Pieter O. Single lens apparatus for three-dimensional imaging having focus-related convergence compensation
US6434265B1 (en) * 1998-09-25 2002-08-13 Apple Computers, Inc. Aligning rectilinear images in 3D through projective registration and calibration
EP1110413A1 (en) * 1999-06-11 2001-06-27 Emile Hendriks Acquisition of 3-d scenes with a single hand held camera
US7717708B2 (en) * 2001-04-13 2010-05-18 Orametrix, Inc. Method and system for integrated orthodontic treatment planning using unified workstation
US7170677B1 (en) * 2002-01-25 2007-01-30 Everest Vit Stereo-measurement borescope with 3-D viewing
US8369607B2 (en) * 2002-03-27 2013-02-05 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
JP3635540B2 (ja) * 2002-08-29 2005-04-06 オリンパス株式会社 キャリブレーションパターンユニット
JP2004287857A (ja) * 2003-03-20 2004-10-14 Sanyo Electric Co Ltd プログラム、記録媒体、サーバ装置および画像フィルタ
US20070146478A1 (en) * 2005-07-14 2007-06-28 Butler-Smith Bernard J Stereoscopic 3D rig calibration and viewing device
JP4638784B2 (ja) * 2005-07-19 2011-02-23 オリンパスイメージング株式会社 画像出力装置及びプログラム
JP5114024B2 (ja) * 2005-08-31 2013-01-09 オリンパス株式会社 光イメージング装置
JP4693900B2 (ja) * 2006-04-07 2011-06-01 シャープ株式会社 画像処理装置
CN100582924C (zh) * 2007-10-22 2010-01-20 鸿富锦精密工业(深圳)有限公司 投影装置
US8294762B2 (en) * 2008-10-10 2012-10-23 Fujifilm Corporation Three-dimensional shape measurement photographing apparatus, method, and program
US8694919B2 (en) * 2008-12-24 2014-04-08 Panasonic Corporation Menu display device, method for displaying menu, and imaging apparatus
US8780185B2 (en) * 2009-11-25 2014-07-15 Olympus Imaging Corp. Image pickup apparatus having a display controlled using interchangeable lens information and/or finder information
CN102640488A (zh) * 2010-05-14 2012-08-15 松下电器产业株式会社 照相机主体、可换镜头单元、摄像装置、照相机主体的控制方法、可换镜头单元的控制方法、程序以及记录有程序的记录介质
US20120026300A1 (en) * 2010-07-27 2012-02-02 Kakiuchi Kenji Imaging apparatus
TWI441093B (zh) * 2010-10-29 2014-06-11 Altek Corp 立體影像產生方法及立體成像系統
JP2012198075A (ja) * 2011-03-18 2012-10-18 Ricoh Co Ltd ステレオカメラ装置、画像補整方法
US9191649B2 (en) * 2011-08-12 2015-11-17 Qualcomm Incorporated Systems and methods to capture a stereoscopic image pair

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322725A (ja) * 1997-05-19 1998-12-04 Sony Corp 立体撮影像位置決め装置
JP2002218507A (ja) * 2001-01-18 2002-08-02 Olympus Optical Co Ltd 撮像装置
JP2003050438A (ja) 2001-08-06 2003-02-21 Sony Corp 立体画像撮像用カメラレンズアダプタ、および撮影装置
JP2003061116A (ja) * 2001-08-09 2003-02-28 Olympus Optical Co Ltd 立体映像表示装置
JP2006187032A (ja) * 2002-01-16 2006-07-13 Olympus Corp ステレオ撮影装置及びステレオ撮影装置の撮影方法
JP2003114371A (ja) * 2002-08-19 2003-04-18 Sony Corp 撮影装置
JP2009016994A (ja) * 2007-07-02 2009-01-22 Nikon Corp 撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7543214B2 (ja) 2021-06-11 2024-09-02 キヤノン株式会社 レンズ装置
WO2024142698A1 (ja) * 2022-12-26 2024-07-04 富士フイルム株式会社 付帯情報生成方法、撮像システム及び付帯情報生成プログラム

Also Published As

Publication number Publication date
EP2600624A1 (en) 2013-06-05
CN103026716A (zh) 2013-04-03
JPWO2012014355A1 (ja) 2013-09-09
US20130169761A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
WO2012014355A1 (ja) 撮像装置
CN107026973B (zh) 图像处理装置、图像处理方法与摄影辅助器材
US9769384B2 (en) Imaging apparatus capable of detecting position of movable image pickup device at first resolving power and at second resolving power higher than first resolving power and, at which second resolving power, deviation amount is less than or equal to pixel shift amount
JP5789793B2 (ja) 3次元撮像装置、レンズ制御装置、およびプログラム
JP2007114311A (ja) 像振れ補正装置及び撮像装置の像振れ補正方法
JP5877406B2 (ja) 撮像装置及び撮像システム
JP5830662B2 (ja) 撮像装置
US20130050536A1 (en) Compound-eye imaging device
JP2012063751A (ja) 撮像装置
JP2013046292A (ja) 複眼撮像装置
JP6548211B2 (ja) 撮像装置及び撮像方法
US9621799B2 (en) Imaging apparatus
JP2011112809A (ja) カメラシステム
JP2006323121A (ja) 撮像装置
JP2015017999A (ja) 撮像装置
JP2019113630A (ja) レンズ装置、撮像装置及びカメラシステム
WO2012017585A1 (ja) 撮像装置
JP2011071712A (ja) 立体撮像装置及び立体撮像方法
JP2013145372A (ja) 撮像装置
JP5279518B2 (ja) 撮像装置及びその制御方法
JP2015119299A (ja) 撮像装置
JP2011135374A (ja) 3次元デジタルカメラ
US9106899B2 (en) Image pickup apparatus
JP5914900B1 (ja) 撮像装置及び撮像システム
JP2011077819A (ja) 複眼撮像装置及びその輻輳角制御方法並びに撮像画像表示方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036529.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526276

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011811962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13812178

Country of ref document: US