WO2012013093A1 - 一种基于表面等离子体共振与生物传感的水芯片 - Google Patents

一种基于表面等离子体共振与生物传感的水芯片 Download PDF

Info

Publication number
WO2012013093A1
WO2012013093A1 PCT/CN2011/075453 CN2011075453W WO2012013093A1 WO 2012013093 A1 WO2012013093 A1 WO 2012013093A1 CN 2011075453 W CN2011075453 W CN 2011075453W WO 2012013093 A1 WO2012013093 A1 WO 2012013093A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
right angle
gold film
film
prism
Prior art date
Application number
PCT/CN2011/075453
Other languages
English (en)
French (fr)
Inventor
王晓萍
黄子昊
詹舒越
刘旭
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2012013093A1 publication Critical patent/WO2012013093A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Definitions

  • the invention relates to the field of surface plasmon resonance technology and environmental monitoring, in particular to a water chip based on surface plasmon resonance and biosensing.
  • SPR Surface Plasmon Resonance
  • the basic principle of SPR is that the incident p-light is totally internally reflected at the interface between the prism and the metal film, and the evanescent wave generated causes surface electrons on the surface of the metal film to generate surface ions.
  • the evanescent wave and the surface plasmon wave have the same frequency and wave number, Both will resonate.
  • the energy of the incident light drops sharply, and the minimum intensity value appears on the reflected spectrum.
  • the conditions under which the SPR resonance occurs are related to the refractive index of the medium on the other side of the metal film, and the refractive index of the medium on the other side of the metal film can be accurately measured by detecting the reflection spectrum.
  • the medium on the other side of the metal film is a solution, and corresponding chemical bio-modification of the surface of the metal film against a certain impurity or molecule in the solution, a certain impurity or molecule reacts with the modified layer to refract the surface solution of the metal film.
  • the rate changes to change the reflectance spectrum.
  • SPR has the advantages of high sensitivity, less samples required, no need for labeling, real-time monitoring and rapid detection, so it is widely used in life sciences, chemistry, medicine, environmental monitoring and other fields.
  • high-throughput SPR detection methods that can analyze a large number of samples in a short time include a light emphasis method and a phase modulation method.
  • the phase modulation method has a high sensitivity, and it measures the change in phase by observing the change of the interference pattern to determine the refractive index of the sample.
  • high-precision real-time detection of the wavefront phase is difficult, and the optical path of the system is complicated, the mechanical precision is high, and the production is difficult.
  • the ordinary light intensity detection method uses parallel light incident at a fixed incident angle to measure the refractive index of the sample by monitoring the distribution of the change in reflected light intensity. This method has a simple system structure and a simple measurement algorithm, but the measurement accuracy is low.
  • the invention aims at the problem that the concentration of various pollutants in the water body cannot be quickly detected in the water body detection, and provides a water chip based on surface plasmon resonance and biosensing, which can simultaneously detect by using a specific biochemical modification layer and SPR principle.
  • the concentration of various pollutants in the effluent is a water chip based on surface plasmon resonance and biosensing, which can simultaneously detect by using a specific biochemical modification layer and SPR principle.
  • a water chip based on surface plasmon resonance and biosensing comprising a light emitting component, a light reflecting component, a light polarization state modulation component, a light receiving component, and a biosensing film;
  • the light emitting component is composed of a light source and a beam expanding mirror, and the light emitted by the light source is converted into parallel light by the beam expanding mirror;
  • the light reflecting component comprises an isosceles right angle prism and a gold film on the oblique side surface thereof, and the reflective surface of the gold film faces the isosceles right angle prism, and the thickness is generally several tens of nanometers; the gold film is a dot matrix gold film ;
  • the optical polarization modulation component comprises a polarizer located between the beam expander and the incident right angle plane of the isosceles right angle prism and a quarter wave plate and an analyzer after the isosceles right angle prism exits the right angle plane;
  • the light receiving component includes an imaging lens and an area array CCD behind the analyzer;
  • the non-reflective surface of the gold film is provided with a bio-sensitive film to form a plurality of detection points.
  • the lower surface of the bio-sensitive membrane is a matrix layer coupled to the gold membrane by covalent or ionic bonding, and the matrix layer is bovine serum albumin (BSA) or dextran (CM5).
  • BSA bovine serum albumin
  • CM5 dextran
  • the upper surface of the bio-sensitive membrane is an antigen or an antibody of a pollutant to be tested, and can specifically adsorb with the pollutant to be tested.
  • the preparation of antigens or antibodies of different pollutants at different points of the lattice gold film can simultaneously realize real-time detection of various pollutants.
  • the matrix layer on the gold film can be selected from bovine serum albumin (BSA), and the sensitive membrane is a microcapsule toxin antibody with specific adsorption (when using biological direct Detection method) or microcystins antigen (when bioassay detection method is used).
  • BSA bovine serum albumin
  • the role of the matrix layer is to avoid direct contact of the molecule to be tested with the gold membrane and to couple the microcystins antibody or antigen to the surface of the chip.
  • the light source uses a red light source.
  • the polarizing angle of the polarizer, the fast axis direction of the quarter wave plate and the analyzer angle of the analyzer are adjusted so that the reflected light passing through the ungolded film on the prism is in the area array.
  • An extinction point appears on the CCD, indicating that the ungolded position on the prism reflecting surface of the water chip has completely extinguished.
  • the light emitted by the light source may be set to be perpendicularly incident on the beam expander, the polarizer, the quarter wave plate, the analyzer, the imaging lens, and the area array CCD, and A certain angle is incident on the isosceles right angle prism from the right angle plane, and is incident on the oblique side surface of the prism at an incident angle greater than the critical angle, and total internal reflection occurs.
  • the light emitted by the light source is diverged into parallel light by the beam expander.
  • the parallel beam is oscillated by the polarizer, it becomes linearly polarized light containing both p and s light, and the incident of linearly polarized light from the isosceles right angle prism
  • the right angle plane is incident and is refracted by the isosceles right angle prism to the oblique side of the isosceles right angle prism.
  • the reflected light is an elliptically polarized light of known polarization state, and the elliptically polarized light is from an isosceles right-angle prism.
  • the exiting right angle surface is emitted, and the quarter wave plate is adjusted so that the fast axis direction of the quarter wave plate is consistent with the long axis direction of the elliptically polarized light, and after the quarter wave plate is passed, the elliptically polarized light is changed.
  • the reflected light intensity at the dot matrix gold film on the surface of the water chip has a nearly linear monotonically increasing relationship (refractive index-reflected light intensity calibration curve) within a range of the refractive index of the measured aqueous solution.
  • the segment will shift to the right on the index axis.
  • the starting point of the curve can be adjusted to the vicinity of the refractive index of 1.33 (that is, near the refractive index of the water body) to be suitable for the detection of water.
  • the water chip When the water chip is used for the detection of the concentration of pollutants in the solution, it is necessary to establish a standard curve of the concentration C of each pollutant and the intensity I of the reflected light.
  • the specific adsorption of the measured pollutants in the measured solution on the dot matrix gold film and the detection of sensitive membranes leads to a change in the refractive index of the surface of the sensitive membrane of the chip.
  • the concentration of the pollutants C and the sensitivity of the chip are sensitive.
  • the refractive index n of the film surface is monotonically increasing, so the curve of the pollutant concentration C and the reflected light intensity I at this time is also a monotonically increasing curve, which can be used to determine the pollutant concentration C by measuring the reflected light intensity I.
  • the light reflected by different gold film spots is imaged on the CCD to form corresponding light spots (that is, the corresponding reflected light intensity is obtained).
  • different detection sensitive films are prepared on each gold film point. By detecting the intensity of the corresponding spot on the CCD, the corresponding components and concentrations in the aqueous solution to be tested can be analyzed.
  • the calibration data contains the fluctuation error of the light source intensity when the measurement is performed twice, and the normalization can reduce the influence of the light intensity fluctuation of the two measurements.
  • the results of other gold film points with the sample solution added and the calibration data of these gold film points carry information such as the isosceles right angle prism and the surface defects of the dot matrix gold film point, which can be normalized. Eliminating the influence of the above factors on the detection results can improve the test accuracy.
  • the invention utilizes the SPR detection technology and the biological immune sensing technology to realize the simultaneous measurement of the concentration of various pollutants in the water body, converts the polarization state change in the SPR reflected light into the light intensity change, and simplifies the optical system, the mechanical structure and the measuring method. Easy to design into on-site, real-time water quality analysis and analysis instruments.
  • Figure 1 is a schematic view of the structure of the present invention
  • FIG. 2 is a schematic structural view of a dot matrix gold film of the present invention.
  • Figure 3 is a refractive index-light intensity curve of the sucrose solution experimentally measured
  • Figure 4 is a graph showing the concentration-light intensity curve of the OA antibody solution measured experimentally.
  • a water chip based on surface plasmon resonance and biosensing comprises a light emitting component, a light reflecting component, a light polarization state modulation component, a light receiving component, and a biosensing film;
  • the light emitting component is composed of a light source 1 and a beam expanding mirror 2, and the light source 1 adopts a red light source, and the light emitted by the light source 1 is converted into parallel light by the beam expanding mirror;
  • the light reflecting component comprises an isosceles right angle prism 4 and a lattice gold film 5 on the oblique side thereof, and the reflective surface of the dot matrix gold film 5 faces the isosceles right angle prism 4, and the thickness of the dot matrix gold film 5 is about 35 nm. ;
  • the light polarization modulation assembly comprises a polarizer 3 between the beam expander 2 and the isosceles right angle prism 4, a quarter wave plate 7 located behind the isosceles right angle prism 4, and an analyzer 8;
  • the light receiving assembly includes an imaging lens 9 and an area array CCD 10 located behind the analyzer 8.
  • the bio-sensitive film 11 is prepared on the surface of the dot matrix gold film 5.
  • the ELISA kit was dropped onto the surface of the matrix gold film 5 and reacted for 24 hours to form a strong Au-S covalent bond between the MC-LR-BSA and the gold atom on the surface of the lattice gold film 5 through the thiol group (-SH).
  • a self-assembled monolayer is formed on the surface of the lattice gold film to form a bio-sensitive film 11 covering the dot matrix gold film 5.
  • the matte adjustment of the unplated film on the prism reflecting surface is first performed; the image formed by the reflecting surface of the prism is observed by the CCD, and the polarizer 3, the quarter wave plate 7 and the analyzer 8 are adjusted to make the surface
  • the uncoated portion of the array CCD 10 is matted.
  • the refractive index of the solution to be tested is measured to be 1.33 to 1.37. As long as the refractive index of the solution to be tested dropped on the lattice gold film 5 is within this range, the optical path need not be adjusted, which simplifies the measurement process.
  • the concentration of the MC-LR (microcystins-LR) antibody-light intensity standard curve was calibrated.
  • the calibration method is as follows: different concentrations of MC-LR antibody solutions are prepared and added to different lattice biosensors 11 respectively, and different light intensity signals corresponding to different concentration solutions are obtained on the array CCD10. From this measurement, a standard curve of the concentration-light intensity of the MC-LR antibody can be plotted. As shown in Fig. 3, the horizontal axis represents the concentration of the MC-LR antibody in the MC-LR antibody solution, and the vertical axis represents the light intensity corresponding to the solution of different concentrations. In the experiment, the relative light intensity of the solutions of different concentrations was measured with a reference light intensity as a reference. It can be seen that the greater the concentration of the solution, the greater the corresponding light intensity.
  • the sample of the test solution containing the MC-LR antibody is sedimented and separated, and diluted with distilled water (the dilution ratio depends on the specific condition of the sample solution, so that the refractive index of the diluted solution falls within the measurement range of 1.33 to 1.37), Adding to the unused dot matrix sensitive film 11 and measuring the corresponding light intensity on the area array CCD 10, and comparing with the drawn standard concentration-light intensity curve, the MC-LR antibody in the solution can be obtained.
  • the concentration of the MC-LR antibody of the original sample solution can be obtained by converting the concentration into a dilution factor.
  • the structure of this embodiment is the same as that of the first embodiment, and the composition of the biosensor film in this embodiment is different from that of the first embodiment.
  • the gold film 5 was immersed in the mixed solution for 12 hours to remove impurities on the surface of the lattice gold film 5.
  • the concentration-light intensity curve of the OA antibody solution measured in the experiment is shown in Fig. 4. As can be seen from the figure, similar to the result of detecting the MC-LR antibody of Example 1, the greater the concentration of the OA antibody solution, the corresponding light intensity The bigger.

Description

一种基于表面等离子体共振与生物传感的水芯片 技术领域
本发明涉及表面等离子共振技术和环境监测领域,尤其涉及一种基于表面等离子体共振与生物传感的水芯片。
背景技术
表面等离子体共振(Surface Plasmon Resonance, SPR)技术是一种高灵敏度检测技术。SPR的基本原理是入射的p光在棱镜与金属薄膜交界面发生全内反射,产生的倏逝波会引起金属薄膜表面自由电子产生表面等离子,当倏逝波和表面等离子波的频率和波数相等时两者会发生共振。共振发生时,入射光的能量急剧下降,反射光谱上出现最小光强值。SPR共振发生的条件与金属薄膜另一面的介质折射率有关,通过检测反射光谱可精确测得金属薄膜另一面的介质折射率。
如果金属薄膜另一面的介质是一种溶液,并针对溶液中某种杂质或分子对金属膜表面进行相应的化学生物修饰,使某种杂质或分子与修饰层发生反应,使金属膜表面溶液折射率改变,从而改变反射光谱。通过表面等离子体共振传感器检测此反射光谱则可精确测得该种杂质或分子的浓度。SPR相对于其他检测技术,具有灵敏度高、所需样品少、样品无需标记、实时监控和快速检测的优点,因此被广泛应用于生命科学、化学、医学、环境监测等领域。
目前,可短时间内分析大量样本的高通量SPR检测方法有光强调制法和相位调制法。相位调制法具有很高的灵敏度,它通过观察干涉图样的变化来测定相位的变化,从而测定样品的折射率。但是这种方法中实现波面相位的高精度实时检测较困难,并且系统的光路复杂,机械精度要求较高,制作困难。普通的光强检测法采用入射角固定的平行光入射,通过监视反射光强的变化分布来测定样品的折射率。这种方法系统结构简单,测量算法简便,但是测量精度低。
在现今的水质检测分析项目中,经常涉及到检测水样品中某几种特定物质的含量。现有的分析方法大多是化学方法,需要在实验室条件下完成,从取样到获得数据耗时较长,且一次只能检测出一种指标,无法满足快速精确、多参数测量的水体检测需求。
技术问题
本发明针对水体检测中无法快速检测出水体中多种污染物浓度的问题,提供一种基于表面等离子体共振与生物传感的水芯片,采用特定的生物化学修饰层和SPR原理,能够同时检测出水体中多种污染物的浓度。
技术解决方案
一种基于表面等离子体共振与生物传感的水芯片,包括光发射组件、光反射组件、光偏振态调制组件、光接收组件、生物敏感膜;
所述的光发射组件由光源、扩束镜组成,光源发出的光线经扩束镜后变为平行光线;
所述的光反射组件包括等腰直角棱镜及其斜边面上的金膜,金膜的反光面朝向等腰直角棱镜,厚度一般为几十纳米;所述的金膜为点阵式金膜;
所述的光偏振态调制组件包括位于扩束镜与等腰直角棱镜入射直角面之间的起偏器和位于等腰直角棱镜出射直角面之后的四分之一波片、检偏器;
所述的光接收组件包括位于检偏器之后的成像透镜和面阵CCD;
所述的金膜的非反光面上设有生物敏感膜,形成若干个检测点。
所述的生物敏感膜的下表面为通过共价键或离子键方式与金膜偶联的基质层,所述的基质层为牛血清蛋白(BSA)或葡聚糖(CM5)。
所述的生物敏感膜的上表面为待测污染物的抗原或抗体,能与待测污染物发生特异性吸附。在点阵式金膜不同的点上制备不同污染物的抗原或抗体,可以同时实现多种污染物的实时检测。
例如,检测水溶液中的微囊藻毒素(MC-LR),金膜上的基质层可选用牛血清蛋白(BSA),检测敏感膜是具有特异性吸附的微囊藻毒素抗体(当采用生物直接检测法时)或微囊藻毒素抗原(当采用生物抑制检测法时)。基质层的作用是避免待测分子直接接触金膜,并将微囊藻毒素抗体或抗原偶联于芯片表面。
所述的光源采用红光光源。在测量时,调整所述的起偏器的起偏角度、四分之一波片的快轴方向和检偏器的检偏角度组合,使经过棱镜上未镀金膜处的反射光线在面阵CCD上出现消光点,此时表示水芯片的棱镜反射面上未镀金的位置已经完全消光。为简化光路结构和调整过程,可将光源发出的光线设置为垂直入射于所述的扩束镜、起偏器、四分之一波片、检偏器、成像透镜和面阵CCD,并以一定的角度从直角面入射等腰直角棱镜,并在棱镜的斜边面上以大于临界角的入射角入射,发生全内反射。
由光源发出的光线,经扩束镜发散成平行光,此平行光束经起偏器起振后,变成同时包含p光和s光的线偏振光,线偏振光从等腰直角棱镜的入射直角面入射,被等腰直角棱镜折射至等腰直角棱镜斜边面。由于在等腰直角棱镜的斜边上未镀膜处发生全反射,p光和s光有着不同的相位变化,则反射光是偏振态可知的椭圆偏振光,此椭圆偏振光从等腰直角棱镜的出射直角面出射,调整四分之一波片,使得四分之一波片的快轴方向与此椭圆偏振光的长轴方向一致,则经过四分之一波片后,此椭圆偏振光变成为线偏振光,再经过与此线偏振光正交放置的检偏器,则可以在面阵CCD上得到棱镜斜面上未镀膜处都消光的图像。
此时水芯片表面点阵式金膜处的反射光强与被测水溶液折射率存在一段范围内近似线性单调递增关系(折射率-反射光强校准曲线)。入射角增加时,该段曲线会在折射率轴上右移。通过调整入射角可以将此段曲线起点调整至折射率1.33附近(即水体折射率附近),以适用于水体的检测。
当水芯片用于溶液中污染物浓度的检测时,需要建立每种污染物浓度C与反射光强I的标准曲线。点阵式金膜上滴加被测溶液里的被测污染物与检测敏感膜发生特异性吸附导致芯片敏感膜表面折射率改变,当污染物在一定浓度范围时,污染物浓度C和芯片敏感膜表面折射率n是单调递增的,故此时污染物浓度C和反射光强I的曲线也是一段单调递增的曲线,可以用来通过测定反射光强I来测定污染物浓度C。
经过不同金膜点反射的光线在CCD上成像成相应的光点(即得到相应的反射光强),当分析被测溶液成分和浓度时,每个金膜点上制备不同的检测敏感膜,通过检测CCD上相应光点强度,可以分析被测水溶液中相应的成分和浓度。
为了进一步提高系统检测灵敏度,减小光源光强波动,及等腰直角棱镜、金膜表面缺陷对检测结果的影响,可以将所有点阵式金膜附近为空气(即不滴加待测溶液)时的测量结果作为校准数据,同时在对样品溶液进行测量时保留一个金膜点为参考点,这个点的测试数据作为参比通道数据。则校准数据与参比通道数据含有两次测量时光源光强波动误差,通过归一化可以减小两次测量时光源光强波动的影响。其他滴加有样品溶液的金膜点所测得的结果与这些金膜点的校准数据都携带有等腰直角棱镜及点阵式金膜点的表面缺陷等信息,通过归一化方法便可消除上述因素对检测结果的影响,可提高测试精度。
有益效果
本发明利用SPR检测技术及生物免疫传感技术实现了水体中多种污染物浓度的同时测量,将SPR反射光中的偏振态变化转化为光强变化,简化了光学系统、机械结构以及测量方法;便于设计成现场、实时的水质检测分析仪器。
附图说明
图1为本发明的结构示意图;
图2为本发明点阵式金膜的结构示意图;
图3为实验测得的蔗糖溶液的折射率-光强曲线;
图4为实验测得的OA抗体溶液的浓度-光强曲线。
本发明的实施方式
实施例1
如图1所示,本发明一种基于表面等离子体共振与生物传感的水芯片,包括光发射组件、光反射组件、光偏振态调制组件、光接收组件、生物敏感膜;
光发射组件由光源1、扩束镜2组成,光源1采用红光光源,光源1发出的光线经扩束镜后变为平行光线;
光反射组件包括等腰直角棱镜4及其斜边面上的点阵式金膜5,点阵式金膜5的反光面朝向等腰直角棱镜4,点阵式金膜5的厚度约为35nm;
光偏振态调制组件包括位于扩束镜2与等腰直角棱镜4之间的起偏器3、位于等腰直角棱镜4之后的四分之一波片7和检偏器8;
光接收组件包括位于检偏器8之后的成像透镜9和面阵CCD10。
生物敏感膜11制备于点阵式金膜5的表面。
将98%(质量百分比)的浓硫酸和30%(质量百分比)的双氧水按照浓硫酸:双氧水=7:3的体积比配置成混合溶液,将等腰直角棱镜4斜边面上的点阵式金膜5在混合溶液中浸泡12h,以去除点阵式金膜5表面的杂质。取MC-LR-BSA溶液(微囊藻毒素-LR-牛血清蛋白溶液,该溶液采用北京伊普瑞斯科技有限公司微囊藻毒素Microcystin ELISA试剂盒)滴到点阵式金膜5表面,反应24h,使MC-LR-BSA通过巯基(—SH)与点阵式金膜5表面的金原子形成牢固的Au-S共价键,在点阵式金膜表面形成自组装单分子层,从而形成一层覆盖点阵式金膜5的生物敏感膜11。
实际测量时,先对棱镜反射面上未镀金膜处进行消光调节;用CCD观察棱镜反射面所成的像,调整起偏器3、四分之一波片7和检偏器8,使得面阵CCD10上未镀膜处达到消光。本实施例测量待测溶液的折射率范围为1.33~1.37,只要滴加在点阵式金膜5上的待测溶液折射率在此范围内,无需再调整光路,简化了测量过程。
标定MC-LR(微囊藻毒素-LR)抗体的浓度-光强标准曲线。标定方法为:配制不同浓度的MC-LR抗体溶液,分别滴加在不同的点阵式生物敏感膜11上,在面阵CCD10上得到不同浓度溶液所对应的不同的光强信号。由此测量结果可以绘制出定MC-LR抗体的浓度-光强的标准曲线。如图3所示,横轴表示MC-LR抗体溶液中MC-LR抗体的浓度,纵轴表示不同浓度的溶液所对应的光强。实验中以一个基准光强作为参照,测得不同浓度溶液的相对光强。可以看出,溶液的浓度越大,对应的光强越大。
将含有MC-LR抗体的待测溶液样品进行沉降分离,用蒸馏水稀释(稀释倍数视样品溶液的具体情况而定,使稀释后的溶液的折射率落在测量范围1.33~1.37之间),滴加在未使用过的点阵式敏感膜11上,在面阵CCD10上测得相应的光强,与绘制出的标准浓度-光强曲线比对即可得到此时溶液中MC-LR抗体的浓度,按稀释倍数换算即可得到原样品溶液的MC-LR抗体浓度。
实施例2
本实施例的结构与实施例1相同,本实施例中生物敏感膜的成分与实施例1不同。将98%(质量百分比)的浓硫酸和30%(质量百分比)的双氧水按照浓硫酸:双氧水=7:3的体积比配置成混合溶液,将等腰直角棱镜4斜边面上的点阵式金膜5在混合溶液中浸泡12h,以去除点阵式金膜5表面的杂质。取10mmol/L的11-巯基十一烷酸溶液滴在点阵式金膜5表面,反应3min,使11-巯基十一烷酸通过巯基(—SH)与点阵式金膜5表面的金原子形成牢固的Au-S共价键,在金膜表面形成自组装单分子层,作为基质层。取N-羟基琥珀酰亚胺(NHS)和二氯乙烷(EDC)的混合溶液50μL滴在基质层上,NHS在混合液中的浓度为50mmol/L,EDC在混合液中的浓度为 200mmol/L,反应5h,活化11-巯基十一烷酸的羧基。将大田软海绵酸(OA)溶液(美国Sigma公司产品)20μL滴在芯片表面,使得11-巯基十一烷酸的羧基与OA的氨基偶联,从而形成一层覆盖基质层的OA生物敏感膜,它能够与待测水溶液中的大田软海绵酸抗体发生特异性吸附,从而检测出待测水溶液中的大田软海绵酸抗体浓度。实验中测出的OA抗体溶液的浓度-光强曲线如图4所示,由图可看出,与实施例1检测MC-LR抗体的结果类似,OA抗体溶液浓度越大,对应的光强越大。

Claims (6)

  1. 一种基于表面等离子体共振与生物传感的水芯片,其特征在于:
    包括光发射组件、光反射组件、光偏振态调制组件、光接收组件、生物敏感膜;
    所述的光发射组件由光源、和位于光源之后的扩束镜组成;
    所述的光反射组件包括等腰直角棱镜及其斜边面上的金膜,金膜的反光面朝向等腰直角棱镜;
    所述的光偏振态调制组件包括位于扩束镜与等腰直角棱镜入射直角面之间的起偏器、位于等腰直角棱镜出射直角面之后的四分之一波片和检偏器;
    所述的光接收组件包括位于检偏器之后的成像透镜和面阵CCD;
    所述的生物敏感膜的下表面为通过共价键或离子键方式与金膜偶联的基质层,所述的生物敏感膜的上表面为待测污染物的抗原或抗体。
  2. 如权利要求1所述的基于表面等离子体共振与生物传感的水芯片,其特征在于:所述的光源采用红光光源。
  3. 如权利要求1所述的基于表面等离子体共振与生物传感的水芯片,其特征在于:所述的基质层为牛血清蛋白或葡聚糖。
  4. 如权利要求2所述的水芯片,其特征在于:所述的金膜为点阵式金膜。
  5. 如权利要求4所述的水芯片,其特征在于:所述的起偏器的起偏角度、四分之一波片的快轴方向和检偏器的检偏角度组合使经过棱镜上未镀金膜处的反射光线在面阵CCD上出现消光点。
  6. 如权利要求5所述的水芯片,其特征在于:由光源发出的光线对所述的扩束镜、起偏器、四分之一波片、检偏器、成像透镜和面阵CCD均为垂直入射,并以一定的角度从直角面入射等腰直角棱镜,并在棱镜的斜边面上以大于临界角的入射角入射,发生全内反射。
PCT/CN2011/075453 2010-07-29 2011-06-08 一种基于表面等离子体共振与生物传感的水芯片 WO2012013093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010239909.4 2010-07-29
CN 201010239909 CN101929956A (zh) 2010-07-29 2010-07-29 一种基于表面等离子体共振与生物传感的水芯片

Publications (1)

Publication Number Publication Date
WO2012013093A1 true WO2012013093A1 (zh) 2012-02-02

Family

ID=43369253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075453 WO2012013093A1 (zh) 2010-07-29 2011-06-08 一种基于表面等离子体共振与生物传感的水芯片

Country Status (2)

Country Link
CN (1) CN101929956A (zh)
WO (1) WO2012013093A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106996924A (zh) * 2017-04-24 2017-08-01 徐州医科大学 一种角度扫描型spr传感器系统
CN112304905A (zh) * 2020-10-22 2021-02-02 济南橘子智能科技有限公司 一种高性能波导传感系统及其制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929956A (zh) * 2010-07-29 2010-12-29 浙江大学 一种基于表面等离子体共振与生物传感的水芯片
CN102692393B (zh) * 2012-06-15 2014-08-13 南开大学 一种基于石墨烯偏振效应的折射率实时测定方法和装置
CN103512861A (zh) * 2012-06-20 2014-01-15 中国科学院电子学研究所 表面等离子体谐振图像检测芯片、系统及其使用方法
CN103454253B (zh) * 2013-06-25 2016-04-06 复旦大学 基于表面等离子体共振的有机磷检测方法
CN103604775B (zh) * 2013-07-04 2016-08-10 中国科学院苏州纳米技术与纳米仿生研究所 基于微流体芯片的微生物检测仪器及其spr检测方法
CN103439277A (zh) * 2013-09-02 2013-12-11 东北大学 基于表面增强的水质检测方法
CN104237170B (zh) * 2014-10-11 2017-01-18 重庆医科大学 一种表面等离子体共振成像传感检测系统
CN104792738A (zh) * 2015-04-08 2015-07-22 苏州微纳激光光子技术有限公司 表面等离子体共振透明液体折射率检测系统及检测方法
CN105300932B (zh) * 2015-11-13 2018-06-15 上海出入境检验检疫局工业品与原材料检测技术中心 一种邻苯二甲酸丁酯的表面等离子体共振快速检测方法
CN107219199A (zh) * 2017-07-24 2017-09-29 深圳大学 基于4f系统的新型角度调制spr成像系统
CN107941710B (zh) * 2017-08-16 2020-10-13 四川大学 基于量子弱测量的表面等离子体共振传感器及金属表面介质折射率测量方法
CN107764747A (zh) * 2017-11-10 2018-03-06 苏州优函信息科技有限公司 用于高效生物检测的spr‑pi传感器及其检测方法
CN110208547B (zh) * 2019-06-27 2022-07-08 北京柏海达科技有限公司 一种基于碳量子点的胃蛋白酶原免疫层析检测试剂盒及其制备方法
US11087497B2 (en) 2019-09-17 2021-08-10 International Business Machines Corporation Chemical detection system for water source
CN113777079A (zh) * 2021-09-09 2021-12-10 北京化工大学 一种一体化表面等离子共振芯片及其制备方法
CN114813654A (zh) * 2022-04-18 2022-07-29 北京英柏生物科技有限公司 自黏贴片式spr传感芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020295A2 (en) * 1999-09-15 2001-03-22 Proteoptics Ltd Plasmon resonance phase imaging
US20070081163A1 (en) * 2005-06-03 2007-04-12 Minhua Liang Method and apparatus for scanned beam microarray assay
CN101059436A (zh) * 2007-04-16 2007-10-24 浙江大学 非扫描式智能数字化集成spr检测器
CN101477044A (zh) * 2009-01-19 2009-07-08 浙江大学 一种表面等离子共振传感器
CN101929956A (zh) * 2010-07-29 2010-12-29 浙江大学 一种基于表面等离子体共振与生物传感的水芯片

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100487137C (zh) * 2004-12-30 2009-05-13 南开大学 基于片上pcr的多通道表面等离子共振影像传感器的检测方法
TWI249768B (en) * 2005-05-09 2006-02-21 Univ Nat Cheng Kung Method for detecting micro-fluid molecular imprinting polymer chip using surface plasmon resonance and the chip thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020295A2 (en) * 1999-09-15 2001-03-22 Proteoptics Ltd Plasmon resonance phase imaging
US20070081163A1 (en) * 2005-06-03 2007-04-12 Minhua Liang Method and apparatus for scanned beam microarray assay
CN101059436A (zh) * 2007-04-16 2007-10-24 浙江大学 非扫描式智能数字化集成spr检测器
CN101477044A (zh) * 2009-01-19 2009-07-08 浙江大学 一种表面等离子共振传感器
CN101929956A (zh) * 2010-07-29 2010-12-29 浙江大学 一种基于表面等离子体共振与生物传感的水芯片

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN YANYAN ET AL.: "Real-time Optical Protein Micro-array Biosensor.", NANOSCIENCE & NANOTECHNOLOGY., December 2006 (2006-12-01), pages 33 - 36 *
ZHANG YING ET AL.: "Research and Application Progress on Surface Plasmon Resonance Sensing technology based on polarization interfering angle modulation.", BIOTECHNOLOGY BULLETIN., 2008, pages 481 - 485 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106996924A (zh) * 2017-04-24 2017-08-01 徐州医科大学 一种角度扫描型spr传感器系统
CN106996924B (zh) * 2017-04-24 2023-12-19 徐州医科大学 一种角度扫描型spr传感器系统
CN112304905A (zh) * 2020-10-22 2021-02-02 济南橘子智能科技有限公司 一种高性能波导传感系统及其制备方法
CN112304905B (zh) * 2020-10-22 2022-11-04 吉林省兜率龙源实业集团有限公司 一种高性能波导传感系统及其制备方法

Also Published As

Publication number Publication date
CN101929956A (zh) 2010-12-29

Similar Documents

Publication Publication Date Title
WO2012013093A1 (zh) 一种基于表面等离子体共振与生物传感的水芯片
Jin et al. A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions
US8830481B2 (en) Polarization based interferometric detector
JP3579321B2 (ja) 2次元イメージング表面プラズモン共鳴測定装置および測定方法
WO2011062377A2 (en) Apparatus and method for quantifying binding and dissociation kinetics of molecular interactions
US8705033B2 (en) Multi-channel surface plasmon resonance sensor using beam profile ellipsometry
WO2019141287A1 (zh) 基于有序多孔纳米结构薄膜干涉效应的生物检测仪及其进行生物分子检测的方法
CN104155266A (zh) 一种多通道并行检测表面等离子体共振生物传感器及其制备和检测方法
WO2018101528A1 (ko) 사다리꼴 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치 및 측정방법
US20230194425A1 (en) Optical sensor of bio-molecules using interferometer
CN1963464A (zh) 全内反射式椭偏成像装置和成像方法
JP3778248B2 (ja) 偏光を用いたspr装置及びspr測定方法
EP1617203B1 (en) Differential surface plasmon resonance measuring device and its measuring method
Maigler et al. A new device based on interferometric optical detection method for label-free screening of C-reactive protein
JPH0658873A (ja) 光センサー、光センサーを用いた検出方法、及び光センサーに用いる分子認識機能膜の形成方法
US8932880B2 (en) Method for the direct measure of molecular interactions by detection of light reflected from multilayered functionalized dielectrics
JP2007271596A (ja) 光導波モードセンサー
JP2008122405A (ja) 反応解析方法
Han et al. An ellipsometric surface plasmon resonance system for quantitatively determining the normal of a sensor surface and multi-channel measurement
Liu et al. Surface plasmon resonance imaging of limited glycoprotein samples
Zhang et al. Smartphone surface plasmon resonance imaging for the simultaneous and sensitive detection of acute kidney injury biomarkers with noninvasive urinalysis
CN113758877B (zh) 一种频域量子弱测量生物分子传感器及其测量方法
US11402321B2 (en) High-sensitive biosensor chip using high extinction coefficient marker and dielectric substrate, measurement system, and measurement method
JP2007279027A (ja) バイオセンサー表面の検査方法
Wang et al. Ambient molecular water accumulation on silica surfaces detected by a reflectance interference optical balance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11811795

Country of ref document: EP

Kind code of ref document: A1