WO2012012926A1 - 电动复合多级离心压气机装置 - Google Patents

电动复合多级离心压气机装置 Download PDF

Info

Publication number
WO2012012926A1
WO2012012926A1 PCT/CN2010/002168 CN2010002168W WO2012012926A1 WO 2012012926 A1 WO2012012926 A1 WO 2012012926A1 CN 2010002168 W CN2010002168 W CN 2010002168W WO 2012012926 A1 WO2012012926 A1 WO 2012012926A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
cascade
wall
vane
motor
Prior art date
Application number
PCT/CN2010/002168
Other languages
English (en)
French (fr)
Inventor
王航
马超
朱智富
李永泰
宋丽华
郭锡禄
王聪聪
Original Assignee
Wang Hang
Ma Chao
Zhu Zhifu
Li Yongtai
Song Lihua
Guo Xilu
Wang Congcong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Hang, Ma Chao, Zhu Zhifu, Li Yongtai, Song Lihua, Guo Xilu, Wang Congcong filed Critical Wang Hang
Priority to EP10855154.0A priority Critical patent/EP2602488A1/en
Publication of WO2012012926A1 publication Critical patent/WO2012012926A1/zh
Priority to US13/749,654 priority patent/US9347450B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/127Multi-stage pumps with radially spaced stages, e.g. for contrarotating type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/024Multi-stage pumps with contrarotating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/007Conjoint control of two or more different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0292Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present invention relates to an internal combustion engine boosting device, and more particularly to an electric hybrid multi-stage centrifugal compressor device for a vehicle turbocharger.
  • the turbocharger centrifugal compressor has higher requirements, but it is limited by the size of the turbocharger.
  • the conventional turbocharger centrifugal compressor Only the first-stage centrifugal impeller is used to work on the inhaled fresh air. Under high-speed conditions, it is restricted by the strength of the impeller material. The way to increase the speed to achieve a higher pressure ratio is limited. Under low-speed conditions, the compressor responsiveness Poor, the pressure is relatively low. Therefore, the pressure ratio is increased by the conventional centrifugal compressor, and the intake pressure of the engine is greatly limited.
  • the centrifugal compressor part of the conventional turbocharger includes a compressor casing 1, a compressor centrifugal impeller 2, and a gas diffusing passage 9 in three parts.
  • the compressor centrifugal impeller 2 is in the turbine.
  • the shaft 13 is driven to rotate at a high speed, and the clean air is sucked from the compressor inlet 4 to perform centrifugal compression.
  • the compressed high-speed pressurized gas enters the gas diffusing passage 9 from the compressor impeller 11 and a part of the kinetic energy is converted into pressure energy.
  • the gas enters the compressor casing airflow passage 14 under the restriction of the gas diffusing passage 9, and is then fed into the engine combustion chamber through the pipeline connected to the outlet end of the compressor casing 1 to participate in combustion.
  • the problem to be solved by the present invention is to provide an electric hybrid multi-stage centrifugal compressor device capable of effectively increasing the compressor boost ratio and low speed responsiveness.
  • An electric composite multi-stage centrifugal compressor device comprises a compressor casing, wherein a compressor casing is provided with a compressor casing air flow passage and a compressor inlet, and a compressor centrifugal impeller is installed in the compressor casing, and the compressor casing is close to the gas compressor
  • the position of the tail of the centrifugal impeller is provided with a compressor impeller outlet, and the compressor impeller outlet is connected with the compressor casing airflow passage through a gas diffusion passage, and is characterized by:
  • a rotating wall of the compressor is arranged between the centrifugal impeller of the compressor and the compressor casing, and the front end of the rotating wall of the compressor is provided with a front row of cascades, and the front row of cascades is connected with the power driving device;
  • a rotary disc is disposed in the compressor casing near the gas diffusion passage, and a rear cascade vane is disposed on the rotary disc, and the rotary disc is fixedly connected to the rotating wall of the compressor.
  • the axial cross-sectional shape of the rotating wall of the compressor is a bell-shaped structure with large and small sides on both sides.
  • the rear portion of the rotating wall of the compressor has a rotating wall rear wall surface
  • the gas diffusing passage has a diffusing passage diffusing wall
  • the rear wall surface of the rotating wall is located in the gas diffusing passage and the diffusing wall of the diffusing passage
  • a sliding block is disposed between the rotating wall of the compressor and the compressor casing, wherein the sliding block has an inner wall of an arc-shaped sliding block which is curved in conformity with an outer wall of the rotating wall of the compressor, and the outer side thereof has a wall opposite to the inner wall of the compressed gas
  • the mating outer wall of the slider is fixedly connected to the compressor casing.
  • the power drive unit includes a motor mounted at the compressor inlet, and the motor includes a motor rotor and a motor
  • the stator of the motor is fixedly supported in the compressor inlet by a supporting device, and a motor shaft is arranged on the rotor of the motor.
  • the support device comprises a motor support plate and a motor fixing bracket mounted on the outside of the motor support plate.
  • the center of the support plate is provided with a support disk hub, and the motor stator is disposed on the support disk hub.
  • the front cascade includes a cascade hub coupled to the motor shaft, and a plurality of front axial flow vanes are disposed outside the cascade hub, and the other end of the front axial flow vane is fixedly coupled to the rotary wall of the compressor .
  • the front row of axial flow vanes is in the shape of a wing, and the front row of axial flow vanes includes a leading edge of the leading vane vane and a trailing edge of the leading vane vane, and the leading edge of the leading vane vane is in front of the turning direction of the vane hub
  • the curved setting and the trailing edge of the front row of blades are arranged in parallel along the axial direction of the blade hub.
  • the rear row of cascades includes a plurality of rear axial flow vanes fixedly disposed on the rotating disc, and the plurality of rear axial flow vanes are arranged in a rotating radial shape.
  • the rear axial flow blade has two sides of a windward surface and a leeward surface, and the windward surface is a curved surface and the leeward surface is a planar structure.
  • the rear axial flow vane includes a trailing cascade vane vane leading edge and a trailing cascade vane trailing edge, and a line connecting the leading edge of the trailing cascade vane and the center of the trailing vane trailing edge
  • the angle between the leading edge of the blade and the center of the rotating disk is 30 degrees to 70 degrees.
  • the working principle of the invention is:
  • the front cascade cascades the fresh air from the compressor inlet into the flow passage of the compressor under the action of the motor.
  • the centrifugal impeller rotates at high speed under the driving of the turbine shaft, performs the second-stage work on the air working through the front cascade cascade, and realizes the transition of the air from axial to radial flow, flowing out
  • the air of the centrifugal impeller passes through the rear cascade cascade driven by the motor to achieve the third-level work.
  • the air of the third-stage work flows into the internal combustion engine at a higher pressure to achieve the purpose of supercharging the internal combustion engine.
  • the three-stage work is realized under the condition that the overall size is the same as that of the conventional centrifugal compressor and the centrifugal wheel speed is the same, and the purpose of effectively increasing the pressure ratio of the compressor is achieved.
  • the centrifugal impeller speed of the compressor can be relatively low, which is of great significance for the future relief of the strength of the impeller material in the high pressure field.
  • the turbine cannot drive the centrifugal impeller to rotate at a high speed, and the internal combustion engine can be solved by controlling the rotational speed of the motor.
  • FIG. 1 is a schematic structural view of a turbocharger compressor in the background art of the present invention
  • FIG. 2 is a schematic structural view of an electric composite multi-stage centrifugal compressor according to Embodiment 1 of the present invention
  • FIG. 3 is a front row cascade, a rotating wall, a compressor centrifugal impeller, a rear cascade and a connection in Embodiment 1 of the present invention; Disk expansion wall space structure diagram;
  • Figure 4 is a view showing the space structure of the front row cascade, the rotating wall, the rear row cascade, and the rotating disk in the first embodiment of the present invention
  • Figure 5 is a schematic structural view of a rear row cascade and a rotating disk in Embodiment 1 of the present invention
  • Figure 6 is a schematic structural view of a front row cascade, a rotating wall and a rotating disk in Embodiment 1 of the present invention
  • Figure 7 is a rear view of Figure 5
  • Figure 8 is a view showing the space structure of the front cascade cascade, the rotating wall, the centrifugal centrifugal impeller, the rear cascade cascade and the diffuser wall of the connecting disc in the second embodiment of the present invention
  • Figure 9 is a view showing the space structure of the front row cascade, the rotating wall, the rear row cascade, and the rotating disk in the second embodiment of the present invention.
  • an electric composite multi-stage centrifugal compressor device includes a compressor casing 1, and a compressor casing 1 is provided with a compressor casing airflow passage 14 and a compressor inlet 4, and a compressor casing 1 is provided.
  • a turbine shaft 13 is mounted, and a compressor centrifugal impeller 2 is mounted on the turbine shaft 13, and a compressor impeller outlet 11 is provided at a position on the compressor casing 1 near the tail of the compressor centrifugal impeller 2, the compressor impeller outlet 11 and the compressor
  • the shell collecting passages 14 are connected by a gas diffusion passage 9 .
  • a compressor rotating wall 28 having an axial cross-sectional shape of a bell-and-bell structure having a large intermediate and small sides, and a front end of the rotating wall 28 of the compressor is provided with a front row of blades
  • the grid 21 is in driving connection with the power drive.
  • a rotating disc 24 is disposed in the compressor casing 1 at a position close to the gas diffusing passage 9, in the rotating disc
  • a rear row cascade 25 is provided on the 24, and the rotary disk 24 is fixedly coupled to the compressor rotating wall 28.
  • a venting wall 10 is disposed in the compressor casing 1 at a position close to the gas diffusing passage 9, and the louver diffusing wall 10 has a groove on a side close to the gas diffusing passage 9, and the rotating disk 24 Set in the groove.
  • One end of the rotating wall of the compressor extends gradually toward the inlet 4 of the compressor to form a front wall 32 of the rotating wall connected to the front cascade 21, and the other end extends in the radial direction to form a rotating wall corresponding to the rear cascade 25
  • the wall surface 7, the rotating wall front wall surface 32 is welded with the front row cascade 21,
  • the gas diffusing passage 9 has a diffuser passage diffusing wall 8, and the rotating wall rear wall surface 7 is located in the gas diffusing passage 9
  • the inner surface of the wall of the rear wall of the rotating wall is controlled to be within 0.4 s. .
  • the power drive unit comprises a motor 27 mounted on the compressor inlet 4, the motor 27 comprising a motor rotor 17 and a motor stator 23, the motor stator 23 being fixedly supported in the compressor inlet 4 by a support device, and a motor shaft on the motor rotor 17 20.
  • the motor shaft 20 is connected to the motor 27 via a rolling bearing 26, bearing retaining rings are provided on both sides of the rolling bearing 26, and the rolling bearing 26 is provided with an independent lubrication and sealing mechanism.
  • the supporting device comprises a motor support disk 18 and four motor fixing brackets 29 mounted on the outside of the motor support disk 18.
  • the center of the support disk is provided with a support disk hub 30.
  • the motor stator 23 is disposed on the support disk hub 30.
  • a small hole is provided in the bracket hub 30 for mounting the bolt fixing motor 27.
  • the diameter of the compressor inlet 4 is 1. 5 to 2 times the diameter of the centrifugal impeller 2 of the compressor.
  • a slider 15 is arranged between the two blocks to form a circumference, and the slider is fixed to the compressor casing 1 by the slider fixing bolt 16.
  • the land expansion wall 10 of the connecting plate is provided with a boss 3, and the boss 3 has a ring shape.
  • the slider 15 has an arc-shaped slider inner wall 31 which is curved in conformity with the outer wall of the rotating wall 28 of the compressor, and has an outer wall 33 of the slider which cooperates with the inner wall of the compressor casing 1 on the outer side thereof, and the diameter of the outer wall 33 of the slider is ensured. Not less than the inlet diameter of the rotating wall of the compressor.
  • the gap between the compressor rotating wall 28 and the slider inner wall 31, the compressor casing 1 and the compressor centrifugal impeller 2, the gap size is less than 0.4 wake up.
  • the front cascade cascade 21 includes a cascade hub 22 that is drivingly coupled to the motor shaft 20.
  • a plurality of front axial flow blades 5 are disposed outside the cascade hub 22, the front The other end of the axial flow vane 5 is fixedly coupled to the compressor rotating wall 28.
  • the front row of axial flow vanes 5 are in the shape of a wing, and the front row of axial flow vanes 5 includes a front row of cascade vane leading edge 34 and a front row of vane vane trailing edge 35, said front row of cascade vane leading edge 34 along the cascade
  • the rotational direction of the hub 22 is forwardly curved, and the front cascade vane trailing edges 35 are disposed in parallel along the axial direction of the cascade hub 22.
  • the rear row cascade 25 includes a plurality of rear axial flow blades 12 fixedly disposed on the rotary disk 24, and the plurality of rear axial flow blades 12 are arranged in a rotating radial shape.
  • the outer diameter of the rotary disk 24 is not smaller than the outer diameter of the rear wall 7 of the rotary wall, and the rotary disk 24 and the rotary wall 28 of the compressor are positioned by the positioning pin 19.
  • the ratio of the motor speed to the turbine shaft speed is limited to between 0 and 1/3.
  • the turbine shaft 13 rotates in the Y2 direction, the front cascade cascade 21, the compressor rotating wall 28, The rear cascade 25 and the rotary disk 24 are rotated relative to the turbine shaft 13 by the motor shaft 20, and the rotation direction is Y1.
  • the rear axial flow vane 12 has two sides, a windward surface and a leeward surface, and the windward surface is a curved surface, and the leeward surface is a planar structure.
  • the rear axial blade 12 includes a rear cascade vane leading edge 36 and a rear cascade vane trailing edge 37, and the rear cascade vane leading edge 36 is obliquely disposed toward the rotational direction Y1.
  • the line between the center of the trailing blade leading edge 36 and the center of the trailing blade trailing edge 37 and the line between the leading edge of the trailing blade leading edge 36 and the center of the rotating disk 24 is 30 degrees. 70 degrees.
  • Embodiment 2 This embodiment differs from Embodiment 1 in that the mounting angles of the front row axial flow vanes 5 and the rear row axial flow vanes 12 are different, and the remaining portions are the same.
  • the front cascade cascade 21, the rotating wall 28, the rear cascade cascade 25, and the rotary disk 24 are rotated in the same direction as the turbine shaft by the motor shaft 20, and are adjusted to match the front.
  • the turbine shaft 13 rotates in the ⁇ 2 direction, and the front row axial flow blades 5, the rotating wall 28, the rear axial flow blades 12, and the rotary disk 24 rotate coaxially with the turbine shaft 13 by the motor shaft 20.
  • the direction of rotation is also ⁇ 2.
  • the blades of the front row cascade 21 are of an airfoil type, and the blades of the front row of axial blades 5 include a front row of cascades. a leading edge 34 of the blade and a trailing edge 35 of the leading blade, the leading edge 34 of the leading blade is forwardly curved in the direction of rotation of the blade hub 22, and the trailing edge 35 of the leading blade is along the blade hub 22 Axial parallel setting.
  • the rear axial flow vane 12 has two sides, a windward surface and a leeward surface, and the windward surface is a curved surface, and the leeward surface is a planar structure.
  • the trailing cascade vane leading edge 36 is disposed obliquely toward the rotational direction Y2, and the line between the center of the trailing cascade vane leading edge 36 and the center of the trailing cascade vane trailing edge 37 and the trailing cascade vane leading edge 36
  • the angle between the line and the center of the rotary disk 24 ? It is 30 degrees to 70 degrees.

Description

电动复合多级离心压气机装置
技术领域:
本发明涉及一种内燃机增压装置, 具体地说涉及一种用于车用涡轮增压器 的电动复合多级离心压气机装置。
背景技术:
近年来, 随着车用发动机功率的提升, 对涡轮增压器离心压气机的增压比 提出了更高的要求, 但受到涡轮增压器尺寸的制约, 传统的涡轮增压器离心压 气机仅仅使用一级离心叶轮对吸入的新鲜空气做功, 在高速工况下, 受到叶轮 材料强度的制约, 通过提升转速的来达到更高压比的方式受到限制; 在低速工 况下, 压气机响应性较差, 压比较低。 因此, 通过传统离心压气机提升压比, 提高发动机进气压力受到了极大限制。
•如图 1所示, 传统的涡轮增压器的离心压气机部分包括压气机壳 1、 压气 机离心叶轮 2、 气体扩压通道 9三个部分, 在正常工作下压气机离心叶轮 2在 涡轮轴 13的带动下高速旋转, 从压气机进口 4吸入洁净的空气进行离心压缩, 压缩后的高速增压气体从压气机叶轮出口 11处进入气体扩压通道 9,部分动能 转化为压力能,同时气体在气体扩压通道 9的约束下进入压气机壳集气流道 14, 然后通过与压气机壳 1的出气端连接的管路送入发动机燃烧室内部参与燃烧。 新鲜空气从压气机进口 4到压气机壳集气道 14的整个流动过程中,仅有压气机 离心叶轮 2对气体做功, 做功能力有限, 同时由于尺寸及匹配限制, 实施多级 增压技术仍有较大难度。 因此设计一种压气机装置, 在其尺寸与传统压气机相 当的前提下, 能有效提升压气机增压比, 提高低速响应性, 具有十分重要的意 义。
发明内容: 本发明要解决的问题是要提供一种能够有效提升压气机增压比和低速响应 性的电动复合多级离心压气机装置。
为了解决上述问题,本发明采用的技术方案是:
一种电动复合多级离心压气机装置, 包括压气机壳, 压气机壳上设有压气 机壳集气流道和压气机进口, 压气机壳内安装有压气机离心叶轮, 压气机壳上 靠近压气机离心叶轮尾部的位置设有压气机叶轮出口, 所述压气机叶轮出口与 压气机壳集气流道之间通过气体扩压通道连通, 其特征在于:
压气机离心叶轮与压气机壳之间设有压气机旋转壁, 所述压气机旋转壁的 前端设有前排叶栅, 该前排叶栅与动力驱动装置传动连接;
所述压气机壳内靠近气体扩压通道的位置设有旋转盘, 在旋转盘上设有后 排叶栅, 所述旋转盘与压气机旋转壁固定连接。
以下是本发明对上述方案的进一步改进:
所述压气机旋转壁的轴向截面形状为两边大中间小的桠铃状结构。
进一步改进:
所述压气机旋转壁的后部具有旋转壁后部壁面, 所述气体扩压通道内具有 扩压通道扩压壁, 旋转壁后部壁面位于气体扩压通道内并与扩压通道扩压壁的 壁面形状一致。
进一步改进:
所述压气机旋转壁与压气机壳之间设有滑块, 所述滑块内具有与压气机旋 转壁的外壁弧形一致的弧形滑块内壁, 其外侧具有与压气^ I壳内壁相配合的滑 块外壁, 所述滑块与压气机壳固定连接。
另一种改进:
动力驱动装置包括安装在压气机进口的电机, 电机包括电机转子和电机定 子, 所述电机定子通过支撑装置固定支撑在压气机进口内, 电机转子上设有电 机轴。
进一步改进. · 所述支撑装置包括电机支撑盘和安装在电机支撑盘外侧的电 机固定支架,支撑盘的中心设有支撑盘轮毂, 电动机定子设置在支撑盘轮毂上。
另一种改进:
所述前排叶栅包括与电机轴传动连接的叶栅轮毂, 在叶栅轮毂的外部设有 若干片前排轴流叶片, 所述前排轴流叶片的另一端与压气机旋转壁固定连接。
进一步改进:
所述前排轴流叶片呈机翼状, 前排轴流叶片包括前排叶栅叶片前缘和前排 叶栅叶片尾缘, 所述前排叶栅叶片前缘沿叶栅轮毂的转动方向前弯设置、 前排 叶栅叶片尾缘沿叶栅轮毂的轴向平行设置。
另一种改进:
所述后排叶栅包括固定设置在旋转盘上的若干片后排轴流叶片, 所述若干 片后排轴流叶片呈旋转放射状排列。
进一步改进:
所述后排轴流叶片具有迎风面和背风面两个侧面, 迎风面为弧面、 背风面 为平面结构。
进一步改进:
所述后排轴流叶片包括后排叶栅叶片前缘和后排叶栅叶片尾缘, 所述后排 叶栅叶片前缘中心和后排叶栅叶片尾缘中心之间的连线与后排叶栅叶片前缘和 旋转盘中心之间的连线夹角为 30度〜 70度。
本发明的工作原理是:
前排叶栅在电机带动下将压气机进口的新鲜空气吸入压气机内流道, 并实 现对新鲜空气的第一级做功, 离心叶轮在涡轮轴带动下高速旋转, 对经过前排 叶栅做功的空气进行第二级做功, 并实现了空气由轴向向径向流动的转变, 流 出离心叶轮的空气经过由电机带动的后排叶栅, 实现第三级做功, 最终经过三 级做功的空气, 以较高压力流入内燃机, 实现对内燃机增压的目的。
本发明在压气机高速工况时, 在整体尺寸与传统离心压气机相当且离心叶 轮转速相同的情况下, 实现了三级做功, 达到了有效提升压气机压比的目的。 同时与传统离心压气机相比, 若达到相同的压比, 则该压气机离心叶轮转速可 以相对较低, 对于未来高增压领域的叶轮材料强度问题的缓解具有重要意义。
由于本发明前排叶栅和后排叶栅由电机带动旋转, 与离心叶轮转动完全独 立, 因此在内燃机低工况, 涡轮无法带动离心叶轮高速旋转的情况下, 可以通 过控制电机转速, 解决内燃机低工况有效增压的难题, 同时提升压气机的瞬态 响应性。
下面结合附图和实施例对本发明进一步描述:
附图说明:
. 附图 1是本发明背景技术中涡轮增压器压气机的结构示意图;
附图 2是本发明实施例 1中电动复合多级离心压气机的结构示意图; 附图 3是本发明实施例 1中前排叶栅、 旋转壁、 压气机离心叶轮、 后排叶 栅和连接盘扩压壁空间结构图;
附图 4是本发明实施例 1中前排叶栅、 旋转壁、 后排叶栅、 旋转盘空间结 构图;
附图 5是本发明实施例 1中后排叶栅、 旋转盘的结构示意图;
附图 6是本发明实施例 1中前排叶栅、 旋转壁和旋转盘结构示意图; 附图 7是附图 5的后视图; 附图 8是本发明实施例 2中前排叶栅、 旋转壁、 压气机离心叶轮、 后排叶 栅和连接盘扩压壁空间结构图;
附图 9是本发明实施例 2中前排叶栅、 旋转壁、 后排叶栅、 旋转盘空间结 构图。
图中: 1-压气机壳; 2-压气机离心叶轮; 3-凸台; 4-压气机进口; 5-前排 轴流叶片; 7-旋转壁后部壁面; 8-扩压通道扩压壁; 9-气体扩压通道; 10-连接 盘扩压壁;' 11-压气机叶轮出口; 12-后排轴流叶片; 13-涡轮轴; 14-压气机壳 集气流道; 15-滑块; 16-滑块固定螺栓; 17-电机转子; .18-电机支撑盘; 19 - 定位销; 20-电机轴; 21-前排叶栅; 22-叶栅轮毂; 23-电机定子; 24-旋转盘; 25-后排叶栅; 26-滚动轴承; 27-电机; 28-压气机旋转壁 ; 29-电机固定支架; 30 -支撑盘轮毂; 31-滑块内壁 ; 32-旋转壁前部壁面; 33-滑块外壁; 34-前排叶 栅叶片前缘; 35-前排叶栅叶片尾缘; 36-后排叶栅叶片前缘; 37-后排叶栅叶片 尾缘。
具体实施方式
实施例 1 : 如图 2所示, 电动复合多级离心压气机装置, 包括压气机壳 1, 压气机壳 1上设有压气机壳集气流道 14和压气机进口 4,压气机壳 1内安装有 涡轮轴 13,涡轮轴 13上安装有压气机离心叶轮 2,压气机壳 1上靠近压气机离 心叶轮 2尾部的位置设有压气机叶轮出口 11 , 所述压气机叶轮出口 11与压气 机壳集气流道 14之间通过气体扩压通道 9连通。
压气机离心叶轮 2与压气机壳 1之间设有轴向截面形状为两边大中间小的 口亚铃状结构的压气机旋转壁 28,所述压气机旋转壁 28的前端设有前排叶栅 21, 该前排叶栅 21与动力驱动装置传动连接。
所述压气机壳 1 内靠近气体扩压通道 9 的位置设有旋转盘 24, 在旋转盘 24上设有后排叶栅 25, 所述旋转盘 24与压气机旋转壁 28固定连接。
所述压气机壳 1内靠近气体扩压通道 9的位置设有连接盘扩压壁 10,所述 连接盘扩压壁 10靠近气体扩压通道 9的一侧具有凹槽, 所述旋转盘 24设置在 该凹槽内。
压气机旋转壁一端向压气机进口 4方向渐扩延伸, 形成与前排叶栅 21相 连的旋转壁前部壁面 32, 另一端沿径向延伸, 形成与后排叶栅 25对应的旋转 壁后部壁面 7, 旋转壁前部壁面 32与前排叶栅 21焊接在一起, 所述气体扩压 通道 9内具有扩压通道扩压壁 8, 旋转壁后部壁面 7位于气体扩压通道 9内并 与扩压通道扩压壁 8的壁面形状一致,旋转壁后部壁面 7与后排叶栅 25叶顶间 隙控制在 0. 4薩以内。.
动力驱动装置包括安装在压气机进口 4的电机 27, 电机 27包括电机转子 17和电机定子 23,所述电机定子 23通过支撑装置固定支撑在压气机进口 4内, 电机转子 17上设有电机轴 20。
电机轴 20通过滚动轴承 26与电机 27相连, 滚动轴承 26两侧设置轴承挡 圈, 滚动轴承 26设置独立的润滑及密封机构。
为了保证电机转子 17的电机轴 20与涡轮轴 13同轴旋转, 支撑装置包括电 机支撑盘 18和安装在电机支撑盘 18外侧的四根电机固定支架 29,支撑盘的中 心设有支撑盘轮毂 30, 电动机定子 23设置在支撑盘轮毂 30上。
支架轮毂 30上设置小孔, 用于安装螺栓固定电机 27。
为了保证有足够的进气通道, 压气机进口 4直径为压气机离心叶轮 2直径 的 1. 5〜2倍。 '
为了保证压气机旋转壁 28顺利安装, 所述压气机旋转壁 28与压气机壳 1 之间设有滑块 15, 滑块分两块, 共形成一个圆周, 滑块通过滑块固定螺栓 16 固定在压气机壳 1上。
为了保证旋转盘 24与涡轮轴 13同轴旋转且相对转速较低, 连接盘扩压壁 10设置凸台 3, 凸台 3呈环柱状。
: 所述滑块 15 内具有与压气机旋转壁 28 的外壁弧形一致的弧形滑块内壁 31 , 其外侧具有与压气机壳 1内壁相配合的滑块外壁 33, 滑块外壁 33直径保 证不小于压气机旋转壁进口直径。
压气机旋转壁 28与滑块内壁 31、 压气机壳 1和压气机离心叶轮 2之间分 别形成间隙, 该间隙尺寸小于 0. 4醒。
如图 3、 图 4所示, 所述前排叶栅 21包括与电机轴 20传动连接的叶栅轮 毂 22, 在叶栅轮毂 22的外部设有若干片前排轴流叶片 5, 所述前排轴流叶片 5 的另一端与压气机旋转壁 28固定连接。
所述前排轴流叶片 5呈机翼状,前排轴流叶片 5包括前排叶栅叶片前缘 34 和前排叶栅叶片尾缘 35,所述前排叶栅叶片前缘 34沿叶栅轮毂 22的转动方向 前弯设置、 前排叶栅叶片尾缘 35沿叶栅轮毂 22的轴向平行设置。
如图 5所示, 所述后排叶栅 25包括固定设置在旋转盘 24上的若干片后排 轴流叶片 12, 所述若干片后排轴流叶片 12呈旋转放射状排列。
如图 6所示, 旋转盘 24外径不小于旋转壁后部壁面 7的外径, 旋转盘 24 与压气机旋转壁 28之间通过定位销 19定位。
为了保证后排叶栅 25出口气流绝对速度旋向与离心叶轮 2旋转方向相同,. 电机转速与涡轮轴转速之比限制在 0— 1/3之间。
如图 3所示, 涡轮轴 13沿 Y2方向旋转, 前排叶栅 21、 压气机旋转壁 28、 后排叶栅 25和旋转盘 24在电机轴 20带动下与涡轮轴 13伺轴相对旋转, 旋转 方向为 Yl。
所述后排轴流叶片 12具有迎风面和背风面两个侧面, 迎风面为弧面、 背 风面为平面结构。
如图 5所示, 所述后排轴流叶片 12包括后排叶栅叶片前缘 36和后排叶栅 叶片尾缘 37, 后排叶栅叶片前缘 36朝转动方向 Y1倾斜设置, 所述后排叶栅叶 片前缘 36中心和后排叶栅叶片尾缘 37中心之间的连线与后排叶栅叶片前缘 36 和旋转盘 24中心之间的连线夹角&为30度〜70度。
本实施例在现有离心压气机尺寸变化不大的前提下, 实现了前排叶栅 21 与压气机离心叶轮 2对转以及压气机离心叶轮 2与后排叶栅 25对转的结构改 进,实现了对新鲜空气两级对转三级做功的目的,有效地提升了压气机的压比。 该类型电动复合多级离心压气机工艺简单, 可以采用同类材料和现有的铸造及 加工技术完成。
实施例 2 : 本实施例与实施例 1不同之处在于前排轴流叶片 5和后排轴流 叶片 12的安装角度不同, 其余部分相同。
如图 7所示, 本实施例中前排叶栅 21、 旋转壁 28、 后排叶栅 25和旋转盘 24在电机轴 20带动下旋转方向与涡轮轴同向, 与之相适应调整了前排叶栅 21 和后排叶栅 25各自叶片的安装角度。 其余与实施例 1完全相同。
如图 8所示, 涡轮轴 13沿 Υ2方向旋转, 前排轴流叶片 5、 旋转壁 28、 后 排轴流叶片 12和旋转盘 24在电机轴 20带动下与涡轮轴 13同轴同向旋转, 旋 转方向也为 Υ2。
如图 9所示, 前排叶栅 21叶片呈机翼型, 前排轴流叶片 5包括前排叶栅 叶片前缘 34和前排叶栅叶片尾缘 35,所述前排叶栅叶片前缘 34沿叶栅轮毂 22 的转动方向前弯设置、 前排叶栅叶片尾缘 35沿叶栅轮毂 22的轴向平行设置。
所述后排轴流叶片 12 具有迎风面和背风面两个侧面, 迎风面为弧面、 背 风面为平面结构。
后排叶栅叶片前缘 36朝转动方向 Y2倾斜设置,所述后排叶栅叶片前缘 36 中心和后排叶栅叶片尾缘 37中心之间的连线与后排叶栅叶片前缘 36和旋转盘 24中心之间的连线夹角?为 30度〜 70度。
本实施例在现有离心压气机尺寸变化不大的前提下, 实现了前排叶栅 21、 压气机离心叶轮 2以及后排叶栅 25三级做功的目的,有效 ¾k提升了压气机的压 比。 该类型电动复合多级离心压气机工艺简单, 可以采用同类材料和现有的铸 造及加工技术完成。

Claims

权利要求
1、 一种电动复合多级离心压气机装置, 包括压气机壳 (1), 压气机壳(1) 上设有压气机壳集气流道(14)和压气机进口 (4), 压气机壳(1) 内安装有压 气机离心叶轮 (2), 压气机壳 (1) 上靠近压气机离心叶轮 (2) 尾部的位置设 有压气机叶轮出口(11), 所述压气机叶轮出口(11)与压气机壳集气流道(14) 之间通过气体扩压通道 (9) 连通, 其特征在于:
压气机离心叶轮 (2) 与压气机壳 (1) 之间设有压气机旋转壁 (28), 所 述压气机旋转壁(28) 的前端设有前排叶栅(21), 该前排叶栅(21) 与动力驱 动装置传动连接;
所述压气机壳 (1) 内靠近气体扩压通道 (9) 的位置设有旋转盘 (24), 在旋转盘(24)上设有后排叶栅(25),.所述旋转盘(24)与压气机旋转壁(28) 固定连接。
2、 根据权利要求 1 所述的电动复合多级离心压气机裝置, 其特征在于: 所述压气机旋转壁 (28) 的轴向截面形状为两边大中间小的哑铃状结构。
3、 根据权利要求 1或 2所述的电动复合多级离心压气机装置, 其特征在 于:. 所述压气机旋转壁 (28) 的后部具有旋转壁后部壁面 (7), 所述气体扩压 通道 (9) 内具有扩压通道扩压壁 (8), 旋转壁后部壁面 (7) 位于气体扩压通 道 (9) 内并与扩压通道扩压壁 (8) 的壁面形状一致。
4、 根据权利要求 3 所述的电动复合多级离心压气机装置, 其特征在于: 动力驱动装置包括安装在压气机进口 (4) 的电机 (27), 电机 (27) 包括电机 转子 (17)和电机定子 (23), 所述电机定子 (23)通过支撑装置固定支撑在压 气机进口 (4) 内, 电机转子 (17) 上设有电机轴 (20)。
5、 根据权利要求 4 所述的电动复合多级离心压气机装置, 其特征在于: 所述前排叶栅(21 )包括与电机轴(20)传动连接的叶栅轮毂(22 ), 在叶栅轮 毂(22 )的外部设有若干片前排轴流叶片(5), 所述前排轴流叶片(5) 的另一 端与压气机旋转壁 (28) 固定连接。
6、 根据权利要求 5所述的电动复合多级离心压气机装置, 其特征在于: 所述前排轴流叶片 (5) 呈机翼状, 前排轴流叶片 (5 )包括前排叶栅叶片前缘
( 34)和前排叶栅叶片尾缘(35),所述前排叶栅叶片前缘 (34)沿叶栅轮毂(22) 的转动方向前弯设置、 前排叶栅叶片尾缘(35 ) 沿叶栅轮毂(22) 的轴向平行 设置。 '
7、 根据权利要求 4所述的电动复合多级离心压气机装置, 其特征在于: 所述后排叶栅(25 )包括固定设置在旋转盘(24)上的若干片后排轴流叶片(12), 所述若干片后排轴流叶片 (12 ) 呈旋转放射状排列。
8、 根据权利要求 7所述的电动复合多级离心压气机装置, 其特征在于- 所述后排轴流叶片 (12) 具有迎风面和背风面两个侧面, 迎风面为弧面、 背风 面为平面结构。
9、 根据权利要求 8所述的电动复合多级离心压气机装置, 其特征在于: 所述后排轴流叶片(12 )包括后排叶栅叶片前缘 (36 )和后排叶栅叶片尾缘(37), 所述后排叶栅叶片前缘(36) 中心和后排叶栅叶片尾缘 (37 ) 中心之间的连线 与后排叶栅叶片前缘 (36)和旋转盘 (24) 中心之间的连线夹角为 30度〜 70
10、根据权利要求 4所述的电动复合多级离心压气机装置,其特征在于: 所 述支撑装置包括电机支撑盘 (18)和安装在电机支撑盘(18) 外侧的电机固定 支架 (29), 支撑盘的中心设有支撑盘轮毂 (30), 电动机定子 (23 )设置在支 撑盘轮毂(30 )上。
11、 根据权利要求 3所述的电动复合多级离心压气机装置, 其特征在于: 所述压气机旋转壁(28) 与压气机壳(1)之间设有滑块(15), 所述滑块 (15) 内具有与压气机旋转壁(28) 的外壁弧形一致的弧形的滑块内壁(31), 其外侧 具有与压气机壳 (1) 内壁相配合的滑块外壁 (33), 所述滑块 (15) 与压气机 壳 (1) 固定连接。
PCT/CN2010/002168 2010-07-28 2010-12-27 电动复合多级离心压气机装置 WO2012012926A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10855154.0A EP2602488A1 (en) 2010-07-28 2010-12-27 Electric composite multi-stage centrifugal compressor device
US13/749,654 US9347450B2 (en) 2010-07-28 2013-01-24 Centrifugal compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102381565A CN101922459B (zh) 2010-07-28 2010-07-28 电动复合多级离心压气机装置
CN201010238156.5 2010-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/749,654 Continuation-In-Part US9347450B2 (en) 2010-07-28 2013-01-24 Centrifugal compressor

Publications (1)

Publication Number Publication Date
WO2012012926A1 true WO2012012926A1 (zh) 2012-02-02

Family

ID=43337587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/002168 WO2012012926A1 (zh) 2010-07-28 2010-12-27 电动复合多级离心压气机装置

Country Status (4)

Country Link
US (1) US9347450B2 (zh)
EP (1) EP2602488A1 (zh)
CN (1) CN101922459B (zh)
WO (1) WO2012012926A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028803A (zh) * 2021-04-29 2021-06-25 江西斯米克陶瓷有限公司 一种用于陶瓷砖干燥处理的干燥装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922459B (zh) * 2010-07-28 2012-06-13 康跃科技股份有限公司 电动复合多级离心压气机装置
FR2975733B1 (fr) * 2011-05-23 2015-12-18 Turbomeca Rouet de compresseur centrifuge
JP5369198B2 (ja) * 2012-01-05 2013-12-18 トヨタ自動車株式会社 コンプレッサハウジング
US9500198B2 (en) * 2013-02-15 2016-11-22 Ford Global Technologies, Llc Multiple spool turbocharger
WO2015061242A1 (en) * 2013-10-24 2015-04-30 Borgwarner Inc. Axial compressor with a magnetic stepper or servo motor
CN105332930A (zh) * 2014-08-08 2016-02-17 北京湍动节能技术有限公司 一种一端轴向进气对转离心气泵
JP6336134B2 (ja) * 2015-01-29 2018-06-06 三菱重工コンプレッサ株式会社 遠心圧縮機のケーシング、及び、遠心圧縮機
DE102015203171A1 (de) * 2015-02-23 2016-08-25 Ford Global Technologies, Llc Abgasturboaufgeladene Brennkraftmaschine umfassend einen Radialverdichter mit im Diffusor angeordneter Leiteinrichtung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
ITUB20153948A1 (it) * 2015-09-28 2017-03-28 Dab Pumps Spa Struttura perfezionata di elettropompa centrifuga e voluta per una simile elettropompa
US10436211B2 (en) * 2016-08-15 2019-10-08 Borgwarner Inc. Compressor wheel, method of making the same, and turbocharger including the same
CN106402001B (zh) * 2016-10-17 2018-11-20 宁波方太厨具有限公司 一种风机动力系统
CN106382258A (zh) * 2016-12-06 2017-02-08 深圳福世达动力科技有限公司 离心对转冲压压气机
CN106939824A (zh) * 2017-05-11 2017-07-11 大连依勒斯涡轮增压技术有限公司 一种复合动力轴径流压气机
CN107542675A (zh) * 2017-09-20 2018-01-05 北京航空航天大学 一种轴流离心串联式自冷却制冷压缩机
US11346366B2 (en) * 2019-02-11 2022-05-31 Carrier Corporation Rotating diffuser in centrifugal compressor
JP2021124101A (ja) * 2020-02-07 2021-08-30 三菱重工コンプレッサ株式会社 圧縮機の製造方法及び圧縮機
CN111255748A (zh) * 2020-02-10 2020-06-09 韩刚 抗失速扩压器
CN112360765B (zh) * 2020-09-22 2021-11-30 东风汽车集团有限公司 涡轮增压器
CN112815454A (zh) * 2021-01-05 2021-05-18 深圳市康弘环保技术有限公司 一种新型高效离心式风轮结构及其空气净化器
CN114562477A (zh) * 2022-03-22 2022-05-31 重庆江增船舶重工有限公司 一种空气悬浮离心空压机的控制方法及系统
CN114704479B (zh) * 2022-04-12 2023-11-28 中国科学院空天信息创新研究院 一种用于平流层的离心风机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799694A (en) * 1972-11-20 1974-03-26 Gen Motors Corp Variable diffuser
US20090205362A1 (en) * 2008-02-20 2009-08-20 Haley Paul F Centrifugal compressor assembly and method
CN101634305A (zh) * 2009-08-13 2010-01-27 寿光市康跃增压器有限公司 旋转扩压壁式可调压气机装置
JP2010106746A (ja) * 2008-10-30 2010-05-13 Toyota Industries Corp 遠心圧縮機
CN101922459A (zh) * 2010-07-28 2010-12-22 寿光市康跃增压器有限公司 电动复合多级离心压气机装置
CN201757065U (zh) * 2010-07-27 2011-03-09 康跃科技股份有限公司 一种电动复合多级离心压气机装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122668A (en) * 1976-07-22 1978-10-31 General Motors Corporation Iris control for gas turbine engine air brake
CH678352A5 (zh) * 1988-06-23 1991-08-30 Sulzer Ag
US7014418B1 (en) * 2004-12-03 2006-03-21 Honeywell International, Inc. Multi-stage compressor and housing therefor
JP2007309299A (ja) * 2006-05-22 2007-11-29 Toyota Motor Corp 可変ディフューザ付き遠心圧縮機
CN101021179A (zh) * 2007-03-06 2007-08-22 中国兵器工业集团第七○研究所 一种涡轮增压器轴径流压气机结构
CN101298871A (zh) * 2008-05-15 2008-11-05 寿光市康跃增压器有限公司 旋叶式有叶扩压压气机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799694A (en) * 1972-11-20 1974-03-26 Gen Motors Corp Variable diffuser
US20090205362A1 (en) * 2008-02-20 2009-08-20 Haley Paul F Centrifugal compressor assembly and method
JP2010106746A (ja) * 2008-10-30 2010-05-13 Toyota Industries Corp 遠心圧縮機
CN101634305A (zh) * 2009-08-13 2010-01-27 寿光市康跃增压器有限公司 旋转扩压壁式可调压气机装置
CN201757065U (zh) * 2010-07-27 2011-03-09 康跃科技股份有限公司 一种电动复合多级离心压气机装置
CN101922459A (zh) * 2010-07-28 2010-12-22 寿光市康跃增压器有限公司 电动复合多级离心压气机装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028803A (zh) * 2021-04-29 2021-06-25 江西斯米克陶瓷有限公司 一种用于陶瓷砖干燥处理的干燥装置

Also Published As

Publication number Publication date
EP2602488A1 (en) 2013-06-12
US20130136587A1 (en) 2013-05-30
US9347450B2 (en) 2016-05-24
CN101922459A (zh) 2010-12-22
CN101922459B (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
WO2012012926A1 (zh) 电动复合多级离心压气机装置
WO2011000182A1 (zh) 涡轮增压器双层流道变截面涡轮机
WO2013166626A1 (zh) 双驱并联顺序增压压气机
WO2012034347A1 (zh) 可变截面双流道进气涡轮
CN101949305B (zh) 涡轮增压器复合喷嘴装置
WO2012034258A1 (zh) 可变截面复合涡轮装置
CN101694178A (zh) 非对称双流道变截面涡轮增压器
CN102080578A (zh) 可变截面轴径流复合涡轮增压装置
CN203603984U (zh) 涡轮增压器
CN111894872A (zh) 一种两级增压式低噪音风机
CN201443420U (zh) 一种涡轮增压器双层流道变截面涡轮机
CN108172867A (zh) 一种燃料电池用电辅助单级涡轮增压系统
WO2011017857A1 (zh) 旋转扩压壁式可调压气机装置
CN201802444U (zh) 一种可变截面复合涡轮装置
CN201582198U (zh) 气流纺机工艺用离心风机
JP2015031237A (ja) 可変ノズルユニット及び可変容量型過給機
CN201757065U (zh) 一种电动复合多级离心压气机装置
CN201794621U (zh) 一种涡轮增压器复合喷嘴装置
JP3239525B2 (ja) エネルギー回収装置を持つターボチャージャ
JP5985807B2 (ja) ターボ機能付き風力発電装置
CN201794626U (zh) 一种可变截面双流道进气涡轮
CN201908694U (zh) 一种可变截面轴径流复合涡轮增压装置
JP5915394B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP5565159B2 (ja) 可変容量タービン
CN201554544U (zh) 一种非对称双流道变截面涡轮增压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010855154

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010855154

Country of ref document: EP