WO2012011589A1 - 脂溶性生理活性物質の製造方法 - Google Patents

脂溶性生理活性物質の製造方法 Download PDF

Info

Publication number
WO2012011589A1
WO2012011589A1 PCT/JP2011/066764 JP2011066764W WO2012011589A1 WO 2012011589 A1 WO2012011589 A1 WO 2012011589A1 JP 2011066764 W JP2011066764 W JP 2011066764W WO 2012011589 A1 WO2012011589 A1 WO 2012011589A1
Authority
WO
WIPO (PCT)
Prior art keywords
fat
extraction
organic solvent
physiologically active
coenzyme
Prior art date
Application number
PCT/JP2011/066764
Other languages
English (en)
French (fr)
Inventor
健登 金谷
鈴木 康之
彰久 神田
和哉 横江
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US13/811,049 priority Critical patent/US9006493B2/en
Priority to DK11809759.1T priority patent/DK2597156T3/en
Priority to ES11809759.1T priority patent/ES2676369T3/es
Priority to JP2011550163A priority patent/JP5016734B2/ja
Priority to EP11809759.1A priority patent/EP2597156B1/en
Priority to CN201180035870.7A priority patent/CN103025881B/zh
Publication of WO2012011589A1 publication Critical patent/WO2012011589A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/80Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/66Preparation of oxygen-containing organic compounds containing the quinoid structure
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0288Applications, solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B61/00Dyes of natural origin prepared from natural sources, e.g. vegetable sources

Definitions

  • the present invention relates to a method for producing a fat-soluble physiologically active substance. Specifically, the present invention relates to a method for producing a fat-soluble physiologically active substance by extracting a fat-soluble physiologically active substance from an aqueous suspension of a microbial cell containing a fat-soluble physiologically active substance or a microbial cell disruption product thereof.
  • coenzyme Q is an essential component widely distributed in the living body from bacteria to mammals, and is known as a component of mitochondrial electron transport system in cells in the living body.
  • Coenzyme Q plays a role as a transfer component in the electron transport system by repeating oxidation and reduction in mitochondria, and it is known that reduced coenzyme Q of coenzyme Q has an antioxidant effect. It has been.
  • coenzyme Q10 having 10 repeating side chains of coenzyme Q is the main component, and in vivo, about 40 to 90% is usually present as a reduced form.
  • Examples of the physiological action of coenzyme Q include activation of energy production by mitochondrial activation action, activation of cardiac function, stabilization effect of cell membrane, protection effect of cells by antioxidant action, and the like.
  • the oxidized coenzyme Q10 has been conventionally used as a congestive heart failure drug or a health food.
  • a reduced coenzyme Q10 having a higher physiological activity has become known.
  • a fat-soluble physiologically active substance such as coenzyme Q10 can be obtained, for example, by synthesis, fermentation, extraction from a natural product, or the like. If necessary, the obtained extract can be purified by chromatography or crystallized by crystallization to obtain a product with higher purity.
  • a method is generally employed in which a microorganism that produces coenzyme Q10 is cultured and coenzyme Q10 in the microorganism is extracted from the suspension of the microorganism using an organic solvent. .
  • an aqueous suspension of cultured microorganisms is dehydrated to form wet cells, and then contacted with an organic solvent.
  • an organic solvent There are known a method of further drying after dehydration and bringing the cells into contact with an organic solvent as dried cells, and a method of bringing an aqueous suspension into contact with an organic solvent as it is and extracting between the liquid and the liquid.
  • Patent Document 1 a suspension of cultured Phaffia yeast is centrifuged to recover the cells, and the recovered cells are spray-dried, and then astaxanthin in the cells while being crushed with a mixed solvent such as hexane and ethanol.
  • a mixed solvent such as hexane and ethanol.
  • Other examples include culturing Mortierella cells, dehydrating and drying the cell suspension, and then extracting arachidonic acid-containing oil with hexane (Patent Document 2), culturing Mucor cells
  • Patent Document 3 An example (Patent Document 3) is known in which ⁇ -linolenic acid is extracted with a solvent such as hexane after the liquid is crushed and freeze-dried. In these extraction methods, dry cells and an organic solvent that is an extraction solvent are mixed, and after the extraction operation is completed, solid-liquid separation is performed to remove cell residues, thereby obtaining an organic phase containing the target substance. it can.
  • Patent Document 4 after wet cells or dried cells of a coenzyme Q10-containing microorganism are brought into contact with methanol at a low temperature and removing impurities inside and outside the cells, the next is brought into contact with methanol at a high temperature, An example in which coenzyme Q10 is extracted is disclosed.
  • a solid-liquid extraction operation since the specific gravity difference between the bacterial cells and the extraction solvent is large, solid-liquid separation after extraction is easy, and there is an advantage that extraction with high efficiency is possible with little loss of the target substance. .
  • the disrupted suspension of cultured microorganisms was directly contacted with an organic solvent such as hexane or 2-propanol to extract coenzyme Q10 in the cells.
  • an organic solvent such as hexane or 2-propanol
  • the target substance can be extracted with a high yield and a large throughput without dehydrating and drying the microorganisms.
  • the present invention reduces the yield of a lipid-soluble physiologically active substance from microbial cells containing a fat-soluble physiologically active substance without using special dehydration and drying equipment, and by the deterioration of the separation between the solvent and the bacterial cell component. It aims at providing the manufacturing method which can extract without incurring and can industrially produce efficiently.
  • a specific surfactant is present in an aqueous suspension of microbial cells or microbial cell disruptions containing a fat-soluble physiologically active substance, and an organic solvent is used.
  • an organic solvent is used.
  • the oil-water separation proceeds rapidly after mixing and standing, and the fat-soluble physiologically active substance can be extracted efficiently.
  • the present invention was completed by finding that it is suitable for industrial production.
  • the present invention is as follows.
  • the addition amount of the nonionic surfactant is 0.01% by weight or more with respect to the aqueous suspension of microbial cells or microbial cell disruptions
  • the conventional method for extracting useful components from microbial cells has problems in equipment, production cost, and operational stability, and has the same problem as a method for producing fat-soluble physiologically active substances.
  • the fat-soluble physiologically active substance can be efficiently extracted by the liquid-liquid extraction operation, which is suitable for industrial production.
  • the preferred specific surfactant found in the present invention during the liquid-liquid extraction operation, the dispersed phase containing the target substance at the time of extraction is finely dispersed in the extraction solvent, and the target substance is extracted into the extraction solvent.
  • the oil-water separation when the organic phase and the aqueous phase are allowed to stand still can be performed quickly.
  • Loss of the extraction solvent due to the transfer of the organic phase to can also be suppressed. Further, conventionally, in order to obtain a target substance with a higher yield, even when a plurality of types of extraction solvents are required for the extraction operation, the present invention performs a high yield operation using only a single solvent. Therefore, the apparatus and operation can be simplified, and effects such as reduction of energy required for solvent recovery and reduction of environmental load can be obtained.
  • an organic solvent is mixed from an aqueous suspension of microbial cells or microbial cell disruptions containing a fat-soluble physiologically active substance in the presence of a specific nonionic surfactant described later, and the organic solvent phase is mixed with fat.
  • a method for producing a fat-soluble physiologically active substance characterized by extracting a soluble physiologically active substance.
  • the fat-soluble physiologically active substance to be extracted is a physiologically active substance that is produced in microbial cells, has affinity for organic solvents (lipid soluble), and is useful for living organisms. If there is, it will not be specifically limited.
  • Specific examples thereof include coenzymes Q such as coenzyme Q10, vitamins such as vitamin A, vitamin D, vitamin E and vitamin K, carotenoids such as carotene, astaxanthin and fucoxanthin, fat-soluble polyphenols, Examples include flavonoids, sterols such as ergosterol, ⁇ -lipoic acid, L-carnitine and the like. Of these, coenzyme Q10, astaxanthin, ergosterol and the like are preferable, and coenzyme Q10 is particularly preferable.
  • coenzyme Q10 has an oxidized type and a reduced type.
  • the present invention targets both the oxidized coenzyme Q10 and the reduced coenzyme Q10 as the coenzyme Q10, but the coenzyme Q10 containing the reduced coenzyme Q10, ie, the reduced coenzyme Q10 alone, It is preferable to target coenzyme Q10 which is a mixture of reduced coenzyme Q10 and oxidized coenzyme Q10.
  • coenzyme Q10 which is a mixture of reduced coenzyme Q10 and oxidized coenzyme Q10.
  • the microorganism containing the fat-soluble physiologically active substance used in the present invention is a microorganism that produces the target fat-soluble physiologically active substance or its precursor in the cell or a microorganism originally containing a certain amount or more of the substance. Any of bacteria, yeast and mold can be used without limitation. Of these, microorganisms that produce the fat-soluble physiologically active substance in the cells are preferred.
  • microorganism examples include, for example, the genus Agrobacterium, the genus Aspergillus, the genus Acetobacter, the genus Aminobacter, the genus Agromonas, the acidiphyllum ( Acidiphilium, Bulleromyces, Bullera, Brevundimonas, Cryptococcus, Chionosphaera, Candida, Cerinosterus, Cerinosterus, Cerinosterus, Cerinosterus Exisophiala genus, Exobasidium genus, Fellomyces genus, Filobabasidiella genus, Filobasidium genus, Geotrichum genus, Graphiola genus, Gluconobacter genus , Kokkobaela Kockovaella genus, Kurtzmanomyces genus, Lalaria genus, Leucosporidium genus, Legionella genus, Methylobacterium genus
  • bacteria or yeasts are preferable, and bacteria are more preferably non-photosynthetic bacteria.
  • Agrobacterium, Gluconobacter, and Methylobacterium are particularly preferably the genus Schizosaccharomyces, the genus Saitoella, the Phaffia genus, etc.
  • a microorganism that produces a fat-soluble physiologically active substance outside the cells, that is, produces the substance in the culture solution is also encompassed in the present invention.
  • microorganisms that produce fat-soluble physiologically active substances include not only wild strains of the above-mentioned microorganisms, but also, for example, transcription and translational activity or expression of genes involved in the biosynthesis of the target lipid-soluble physiologically active substances of the above-mentioned microorganisms. Mutants and recombinants in which the enzyme activity of the protein is modified or improved can also be preferably used. By culturing the microorganism, microbial cells containing a fat-soluble physiologically active substance such as coenzyme Q10 can be obtained.
  • the culture method is not particularly limited, and a culture method suitable for the target microorganism or suitable for production of the target fat-soluble physiologically active substance can be appropriately selected.
  • the culture period is not particularly limited as long as a desired amount of the desired fat-soluble physiologically active substance is produced in the microbial cells.
  • the production amount (content) of the fat-soluble physiologically active substance in that case is not particularly limited depending on the purpose.
  • the content of the fat-soluble physiologically active substance per medium is, for example, 0.5 ⁇ g / mL or more, preferably 1 ⁇ g. / ML or more, more preferably 2 ⁇ g / mL or more.
  • the fat-soluble physiologically active substance when extracting the fat-soluble physiologically active substance from the microorganism cell containing the fat-soluble physiologically active substance, it can be directly extracted from the microorganism cell. It can also be used as a microbial cell disruption product and extracted from the disruption product.
  • Cell disruption contributes to efficient extraction of fat-soluble bioactive substances produced and accumulated in microbial cells.
  • the cell disruption treatment may not always be necessary for bacteria, but when using yeast or mold cells, it is particularly preferable to perform the cell disruption treatment. When yeast or mold cells are used, if the cells are not disrupted, the recovery efficiency of the fat-soluble physiologically active substance produced and accumulated in the cells is lowered. Needless to say, cell disruption and extraction may be performed simultaneously.
  • the surface structure such as the cell wall is damaged to the extent that extraction of the desired fat-soluble physiologically active substance is possible, and the microbial cells are not necessarily broken or fragmented. There is no need.
  • microbe cell or microbial cell disruption aqueous suspension refers to a microbial cell or microbial cell disruption suspended in an aqueous solvent such as water, physiological saline, buffer, or culture medium. Preferably, it is suspended in water and / or medium.
  • the form of the microbial cell to be subjected to cell disruption is an aqueous suspension of a microbial cell, a culture solution, a concentrated culture solution, a microbial cell collected from the culture solution as a wet cell, or a washed product thereof.
  • a solvent for example, including water, physiological saline, buffer solution, etc.
  • dried cells obtained by drying the wet cells dried cells with a solvent (for example, water, (Including physiological saline, buffer solution, etc.) may be used, but preferably, an aqueous suspension of microbial cells, a culture solution, a concentrated culture solution, or a washed product thereof.
  • a culture solution, a solution obtained by concentrating the culture solution, or a solution obtained by washing them are preferably, a culture solution, a solution obtained by concentrating the culture solution, or a solution obtained by washing them.
  • the disruption of the microbial cells is performed by performing one or several of the following disruption methods in an arbitrary order.
  • the crushing method include physical treatment, chemical treatment, enzymatic treatment, heat treatment, autolysis, osmotic pressure dissolution, protoplast dissolution, and the like.
  • Examples of the physical treatment include the use of a high-pressure homogenizer, a rotary blade homogenizer, an ultrasonic homogenizer, a French press, a ball mill, or a combination thereof.
  • Examples of the chemical treatment include treatment using an acid such as hydrochloric acid and sulfuric acid (preferably a strong acid), treatment using a base such as sodium hydroxide and potassium hydroxide (preferably a strong base), and combinations thereof. Can be mentioned.
  • an acid such as hydrochloric acid and sulfuric acid (preferably a strong acid)
  • a base such as sodium hydroxide and potassium hydroxide (preferably a strong base)
  • combinations thereof can be mentioned.
  • Examples of the enzymatic treatment include methods using lysozyme, zymolyase, glucanase, novozyme, protease, cellulase, etc., and these may be used in combination as appropriate.
  • Examples of the heat treatment include a treatment at 60 to 140 ° C. for about 30 minutes to 3 hours.
  • Examples of the self-digestion include treatment with a solvent such as ethyl acetate.
  • treatment with a solution different from the intracellular salt concentration can cause osmotic lysis or protoplast lysis of the cells.
  • this method since this method alone often has an insufficient cell disruption effect, it is preferably used in combination with the physical treatment, chemical treatment, enzymatic treatment, heat treatment, self-digestion and the like as described above.
  • the cell disruption method as a pretreatment for extraction / recovery of a fat-soluble physiologically active substance includes physical treatment, chemical treatment (especially acid treatment, preferably strong acid (for example, in an aqueous solution) among the disruption methods described above. (Acid having a pKa of 2.5 or less) and heat treatment are preferred, and physical treatment is more preferred from the viewpoint of crushing efficiency.
  • a microbial cell containing a fat-soluble physiologically active substance, or a pulverized product of a microbial cell containing a fat-soluble physiologically active substance obtained as described above, in the state of an aqueous suspension is fat-soluble. Extract physiologically active substances.
  • the method for preparing an aqueous suspension of microbial cells or microbial cell disruptions is not particularly limited.
  • a culture solution after culturing a microorganism that produces a fat-soluble physiologically active substance It is prepared by suspending washed or wet cells or dried cells of the microbial cells in water or an aqueous solvent.
  • an aqueous suspension of microbial cells can be prepared by crushing by the above method.
  • the concentration of microbial cells in the aqueous suspension of microbial cells or microbial cell disruptions to be extracted is not particularly limited, but is usually 1 to 25 weights in terms of the dry weight of the microbial cells. It is preferable to carry out in the range of 10 to 20% by weight economically.
  • an aqueous suspension of microbial cells or microbial cell disruptions containing the fat-soluble physiologically active substance and an organic solvent are mixed, and a liquid-
  • a liquid- By extracting the fat-soluble physiologically active substance into the organic solvent phase by liquid extraction, preferably without leaving the step of forced oil-water separation, the mixture is left to stand for oil-water separation, and the fat is separated from the separated organic solvent phase.
  • the soluble physiologically active substance is collected. That is, the substance can be efficiently obtained by continuously performing a step of extracting the fat-soluble physiologically active substance from the mixed solution of the aqueous suspension and the organic solvent, and a step of allowing the mixture to stand and separating the oil and water. You can also.
  • glycerin fatty acid esters sucrose fatty acid esters, sorbitan fatty acid esters, polyether polyol type surfactants, polyoxyethylene alkyl ether type interfaces are used as nonionic surfactants used during extraction. It is necessary to use an activator, a polyoxyethylene-polyoxypropylene block copolymer type surfactant or an alkyl ether type surfactant. Two or more of these nonionic surfactants can be used in combination, or these nonionic surfactants and other surfactants may be used in combination.
  • glycerin fatty acid esters include partial glycerides of fatty acids, polyglycerin fatty acid esters, polyglycerin condensed ricinoleic acid esters, and the like.
  • partial glycerides of fatty acids include monoglycerol monocaprylate, monoglycerol monocaprate, monoglycerol dicaprylate, monoglycerol dicaprate, monoglycerol dilaurate, monoglycerol dimyristate, Monoglycerin fatty acid esters such as monoglyceryl distearate, monoglycerin dioleate, monoglycerin dierucate, monoglycerin dibehenate; monoglycerin caprylic acid succinate, monoglycerin stearate citrate, Monoglycerol stearate acetate, monoglycerol stearate succinate, monoglycerol stearate lactate, monoglycerol ester Phosphoric
  • polyglycerin fatty acid ester examples include polyglycerin mainly composed of polyglycerin having a polymerization degree of 2 to 10, and fatty acid having 6 to 22 carbon atoms each esterified to one or more hydroxyl groups of polyglycerin. Is mentioned.
  • hexaglycerin monocaprylic acid ester hexaglycerin dicaprylic acid ester, decaglycerin monocaprylic acid ester, triglycerin monolauric acid ester, tetraglycerin monolauric acid ester, pentaglycerin monolauric acid ester, hexaglycerin monolauric acid ester , Decaglycerol monolaurate, triglycerol monomyristate, pentaglycerol monomyristate, pentaglycerol trimyristate, hexaglycerol monomyristate, decaglycerol monomyristate, diglycerol monooleate, tri Glycerol monooleate, tetraglycerin monooleate, pentaglycerin Monooleic acid ester, hexaglycerin monooleic acid ester, decaglycerin monooleic acid ester,
  • polyglycerin condensed ricinoleic acid ester examples include those having an average degree of polymerization of polyglycerin of 2 to 10 and an average degree of condensation of polyricinoleic acid (average of the number of condensation of ricinoleic acid) of 2 to 4, for example. Tetraglycerin condensed ricinoleic acid ester, pentaglycerin condensed ricinoleic acid ester, hexaglycerin condensed ricinoleic acid ester and the like.
  • sucrose fatty acid esters examples include those obtained by esterifying one or more hydroxyl groups of sucrose with fatty acids having 6 to 18, preferably 6 to 12 carbon atoms. Specific examples include sucrose palmitate and sucrose stearate.
  • sorbitan fatty acid esters examples include those obtained by esterifying one or more hydroxyl groups of sorbitans with fatty acids having 6 to 18 carbon atoms, preferably 6 to 12 carbon atoms. Specific examples include sorbitan monostearate and sorbitan monooleate.
  • polyether polyol type surfactant examples include Adecanol LG series (LG-109, LG-126, LG-294, LG-295S, LG-299, LG-805) manufactured by ADEKA Corporation. It is done.
  • polyoxyethylene alkyl ether type surfactants those obtained by addition polymerization of ethylene oxide to aliphatic alcohols having 12 to 22 carbon atoms are preferable.
  • Emulgen series (103, 104P) manufactured by Kao Corporation. , 105, 106, 108, 109P, 120, 123P, 147, 150, 210, 220, 306P, 320P, 350, 404, 408, 409PV, 420, 430, 705, 707, 709, 1108).
  • polyoxyethylene-polyoxypropylene block copolymer type surfactant examples include propylene oxide (PO) between ethylene oxide (EO) chains, which are block copolymers obtained by adding ethylene oxide to both ends of polypropylene glycol.
  • PO propylene oxide
  • EO ethylene oxide
  • EOxPOyEOz reverse type polyoxyethylene-polyoxypropylene block copolymer
  • ethylenediamine type polyoxyethylene-polyoxypropylene block copolymer and the like are also included.
  • Examples of the polyoxyethylene-polyoxypropylene block copolymer having a propylene oxide (PO) chain between the ethylene oxide (EO) chains include, for example, Pluronic L series (L-31, L-34, L-44, L-61, L-62, L-64, L-71, L-72, L-101, L-121), Pluronic P series (P-65, P-84, P-85, P -103, P-105, P-123), Pluronic F series (F-68, F-108, F-127), and Pluronic PE series manufactured by BASF.
  • Pluronic L series L-31, L-34, L-44, L-61, L-62, L-64, L-71, L-72, L-101, L-121
  • Pluronic P series P-65, P-84, P-85, P -103, P-105, P-123
  • Pluronic F series F-68, F-108, F-127
  • Examples of the reverse type polyoxyethylene-polyoxypropylene block copolymer include Pluronic R series (25R-1, 25R-2, 17R-2, 17R-3, 17R-4) manufactured by ADEKA Corporation, and BASF Corporation. Examples include the Pluronic RPE series made by the company.
  • ethylenediamine-type polyoxyethylene-polyoxypropylene block copolymer examples include, for example, Pluronic TR series (TR-701, TR-702, TR-704) manufactured by ADEKA Corporation, and Tetronic series (poloxamine) manufactured by BASF Corporation. Is mentioned.
  • a triblock copolymer type surfactant having a butylene oxide (BO) chain between two ethylene oxide (EO) chains having a structure similar to that of a polyoxyethylene-polyoxypropylene block copolymer type surfactant.
  • the agent EOxBOyEOz
  • the agent can also be used in the production method of the present invention.
  • surfactants having a weight average molecular weight in the range of 500 to 8000 are preferred, and a weight average molecular weight of 1000 to A surfactant in the range of 4000 is more preferred.
  • alkyl ether type nonionic surfactant examples include ADEKA LB series (LB-53B, LB-720, LB-820, LB-54C, LB-83, LB-93, LB) manufactured by ADEKA Corporation. -103, LB-1220, LB-1520), Adekator LA series (LA-675B, LA-775, LA-875, LA-975, LA-1275) and the like.
  • nonionic surfactants two or more of the nonionic surfactants shown here may be used in combination.
  • the nonionic surfactants it is preferable to use at least a polyoxyethylene-polyoxypropylene block copolymer type surfactant.
  • one polyoxyethylene-polyoxypropylene block copolymer type surfactant can be used alone, but two or more polyoxyethylene-polyoxypropylene block copolymer type surfactants are used in combination.
  • Nonionic surfactants to be combined with polyoxyethylene-polyoxypropylene block copolymer type surfactants include the nonionic surfactants described above, that is, glycerin fatty acid esters, sucrose fatty acid esters, sorbitan Examples include fatty acid esters, polyether polyol type surfactants, polyoxyethylene alkyl ether type surfactants, and alkyl ether type surfactants. Among them, a combination of two types of polyoxyethylene-polyoxypropylene block copolymer type surfactants and a combination of polyoxyethylene-polyoxypropylene block copolymer type surfactants and sucrose fatty acid esters are preferable.
  • More preferred is a combination of two polyoxyethylene-polyoxypropylene block copolymer type surfactants, and a polyoxyethylene-polyoxypropylene block copolymer having a propylene oxide (PO) chain between ethylene oxide (EO) chains and
  • PO propylene oxide
  • EO ethylene oxide
  • the combination of ethylenediamine type polyoxyethylene-polyoxypropylene block copolymer is particularly preferred.
  • the amount of polyoxyethylene-polyoxypropylene block copolymer type surfactant used is the other amount. More than nonionic surfactants are preferred, for example, preferably 50% by weight or more, more preferably 60% by weight or more, and more preferably 75% by weight or more based on the total amount of nonionic surfactants used. preferable.
  • a dispersed phase containing a fat-soluble physiologically active substance as a target substance can be finely dispersed in an organic solvent as an extraction solvent during extraction. it can.
  • the contact efficiency between the extraction solvent and the fat-soluble physiologically active substance is improved, and the transfer of the fat-soluble physiologically active substance to the organic solvent phase is promoted.
  • a surfactant is conventionally used for liquid-liquid extraction, the affinity between the aqueous phase and the organic solvent phase increases due to the interfacial effect.
  • a solvent for dissolving the surfactant when a paste-like or flake-like nonionic surfactant is used, it is preferable to use a solvent for dissolving the surfactant. Even when a liquid surfactant is used, it is preferable to use a solvent when the viscosity is high.
  • a solvent used in that case water and alcohols are desirable, and they may be used alone or as a mixed solvent of water and alcohol.
  • the amount of the specific nonionic surfactant used during the extraction operation is 0.01% by weight or more as the concentration with respect to the aqueous suspension of microbial cells or microbial cell disruptions. Preferably, it is in the range of 0.01 to 10% by weight, more preferably in the range of 0.1 to 5% by weight, and in the range of 0.5 to 5% by weight. It is particularly preferred.
  • the amount of the surfactant added is 0.01% by weight or less, the fine dispersion of the aqueous suspension in the organic solvent does not proceed and sufficient extraction efficiency cannot be ensured.
  • the amount of the surfactant added exceeds 10% by weight, the affinity between the organic solvent and the aqueous suspension becomes higher than necessary, so that the fine dispersion of the aqueous suspension in the organic solvent is promoted.
  • the oil-water separation property may be deteriorated when the organic solvent and the aqueous suspension in a mixed state are left standing.
  • the method for performing extraction in the presence of the specific nonionic surfactant is not particularly limited, and a predetermined amount of surfactant is contained in the mixture of the aqueous suspension and the organic solvent at the time of extraction.
  • a method of adding a surfactant to an aqueous suspension of microbial cells or microbial cell disruption before extraction, and a surfactant to an organic solvent used for extraction In addition to the method of adding a surfactant to a mixture of an organic solvent and an aqueous suspension, a surfactant is added in advance during or before preparation of an aqueous suspension of microbial cells or microbial cell disruptions. Or a method in which the surfactant used for disrupting the microbial cells is used as it is during extraction.
  • organic solvents used for extraction include hydrocarbons, fatty acid esters, ethers, alcohols, fatty acids, ketones, nitrogen compounds (including nitriles and amides), sulfur compounds And the like.
  • the hydrocarbons are not particularly limited, and examples thereof include aliphatic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons. Of these, aliphatic hydrocarbons and aromatic hydrocarbons are preferable, and aliphatic hydrocarbons are more preferable.
  • the aliphatic hydrocarbon is not particularly limited regardless of whether it is cyclic or non-cyclic, or saturated or unsaturated, but saturated hydrocarbons are generally preferably used. Usually, those having 3 to 20 carbon atoms, preferably 5 to 12 carbon atoms, more preferably 5 to 8 carbon atoms are used.
  • the aromatic hydrocarbon is not particularly limited, but usually an aromatic hydrocarbon having 6 to 20 carbon atoms, preferably 6 to 12 carbon atoms, more preferably 7 to 10 carbon atoms is used. Specific examples include, for example, benzene, toluene, xylene, o-xylene, m-xylene, p-xylene, ethylbenzene, cumene, mesitylene, tetralin, butylbenzene, p-cymene, cyclohexylbenzene, diethylbenzene, pentylbenzene, dipentylbenzene. , Dodecylbenzene, styrene and the like.
  • the halogenated hydrocarbon is not particularly limited regardless of whether it is cyclic or non-cyclic, or saturated or unsaturated, but generally non-cyclic hydrocarbons are preferably used. More preferred are chlorinated hydrocarbons and fluorinated hydrocarbons, and even more preferred are chlorinated hydrocarbons. Further, those having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms are suitably used. Specific examples include, for example, dichloromethane, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,1,2, and the like.
  • dichloromethane chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1-dichloroethylene, 1,2-dichloroethylene Trichloroethylene, chlorobenzene, 1,1,1,2-tetrafluoroethane and the like. More preferred are dichloromethane, chloroform, 1,2-dichloroethylene, trichloroethylene, chlorobenzene, 1,1,1,2-tetrafluoroethane and the like.
  • the fatty acid esters are not particularly limited, and examples thereof include propionic acid esters, acetic acid esters, and formic acid esters. Preferred are acetate esters and formate esters, and more preferred are acetate esters.
  • the ester group is not particularly limited, but is usually an alkyl ester having 1 to 8 carbon atoms, an aralkyl ester having 7 to 12 carbon atoms, preferably an alkyl ester having 1 to 6 carbon atoms, more preferably 1 to 1 carbon atom. 4 alkyl esters are used.
  • propionic acid ester examples include, for example, methyl propionate, ethyl propionate, butyl propionate, isopentyl propionate, and the like. Preferred is ethyl propionate.
  • acetate ester examples include, for example, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, pentyl acetate, isopentyl acetate, sec-hexyl acetate, cyclohexyl acetate, benzyl acetate and the like. Can be mentioned.
  • formate ester examples include, for example, methyl formate, ethyl formate, propyl formate, isopropyl formate, butyl formate, isobutyl formate, sec-butyl formate, pentyl formate, and the like.
  • Preferred are methyl formate, ethyl formate, propyl formate, butyl formate, isobutyl formate, pentyl formate, and the like. Most preferred is ethyl formate.
  • Ethers are not particularly limited, regardless of whether they are cyclic or non-cyclic, and saturated or unsaturated. In general, saturated ones are preferably used. Usually, those having 3 to 20 carbon atoms, preferably 4 to 12 carbon atoms, more preferably 4 to 8 carbon atoms are used.
  • Specific examples include, for example, diethyl ether, methyl tert-butyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, anisole, phenetole, butyl phenyl ether, methoxy toluene, dioxane, furan, 2 -Methyl furan, tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether and the like.
  • diethyl ether methyl tert-butyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, anisole, phenetol, butyl phenyl ether, methoxytoluene, dioxane, 2-methylfuran, tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether
  • Ethylene glycol diethyl ether ethylene glycol dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and the like.
  • Alcohols are not particularly limited regardless of whether they are cyclic or non-cyclic, or saturated or unsaturated, but saturated alcohols are generally preferably used. Usually, it has 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms. Of these, monohydric alcohols having 1 to 5 carbon atoms, dihydric alcohols having 2 to 5 carbon atoms, and trihydric alcohols having 3 carbon atoms are preferable.
  • these alcohols include, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3 -Pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl- 2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, 1-nonanol, 1-decanol, 1 -Undecanol, 1-Dodecano Monohydric alcohols such as sodium, allyl alcohol,
  • the monohydric alcohol is preferably methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pen Tanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2- Pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, 1-nonanol, 1-decanol, 1-undecanol 1-Dodecanol, Be Benzyl alcohol, cyclohexanol, 1-methylcyclo
  • Particularly preferred are methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, 2-methyl-1-butanol, isopentyl alcohol, etc.
  • 2-propanol. is there.
  • 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol and the like are preferable, and 1,2-ethanediol is most preferable.
  • trihydric alcohol glycerin is preferable.
  • fatty acids examples include formic acid, acetic acid, propionic acid, and the like. Preferred are formic acid and acetic acid, and most preferred is acetic acid.
  • the ketones are not particularly limited, and those having 3 to 6 carbon atoms are preferably used. Specific examples include acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, and the like. Preferred are acetone and methyl ethyl ketone, and most preferred is acetone.
  • Nitriles are not particularly limited regardless of whether they are cyclic or non-cyclic, saturated or unsaturated, but saturated ones are generally preferably used. Usually, those having 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms, more preferably 2 to 8 carbon atoms are used.
  • Specific examples include, for example, acetonitrile, propionitrile, malononitrile, butyronitrile, isobutyronitrile, succinonitrile, valeronitrile, glutaronitrile, hexanenitrile, heptyl cyanide, octyl cyanide, undecane nitrile, dodecane nitrile, tridecane.
  • nitrogen compounds other than nitriles include amides such as formamide, N-methylformamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, nitromethane, triethylamine, pyridine and the like. be able to.
  • sulfur compounds include dimethyl sulfoxide and sulfolane.
  • the boiling point can be moderately heated to increase the solubility, and from the viewpoint of easy removal of the solvent from the wet body and recovery of the solvent from the crystallization filtrate, etc.
  • the melting point is preferably in the range of 30 to 150 ° C., and the melting point is about 20 ° C. or less, preferably about 10 ° C. or less, more preferably from the viewpoint of being hard to solidify when handled at room temperature and when cooled to below room temperature. Is about 0 ° C. or lower, and the viscosity is preferably as low as about 10 cp at 20 ° C., for example.
  • organic solvents for the purpose of extracting and recovering fat-soluble physiologically active substances from aqueous suspensions of microbial cells or microbial cell disruptions, extraction is performed from the viewpoint of performing liquid-liquid extraction in a two-phase system. It is preferable to use a hydrophobic organic solvent or a solvent containing a hydrophobic organic solvent as the solvent.
  • the hydrophobic organic solvent used in this case is not particularly limited, and among the above-mentioned organic solvents, a hydrophobic solvent which is not completely miscible with water and becomes a two-phase system can be used.
  • a hydrophobic solvent which is not completely miscible with water and becomes a two-phase system can be used.
  • Fatty acid esters, ethers and other hydrophobic organic solvents more preferably hydrocarbons, more preferably aliphatic hydrocarbons. Of the aliphatic hydrocarbons, those having 5 to 8 carbon atoms are preferably used.
  • aliphatic hydrocarbons having 5 to 8 carbon atoms include, for example, pentane, 2-methylbutane, hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, 2 -Methylhexane, 3-methylhexane, 2,3-dimethylpentane, 2,4-dimethylpentane, octane, 2,2,3-trimethylpentane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane Etc. Particularly preferred are hexane, heptane and methylcyclohexane, and most preferred are hexane and heptane.
  • a hydrophilic organic solvent can be supplementarily used in combination to further improve the aqueous suspension in the organic solvent. It is more preferable since it can promote the refinement and can improve the stability of high oil / water separation at the time of standing.
  • the hydrophilic organic solvent used in combination with the hydrophobic organic solvent is not particularly limited, and a hydrophilic one of the above-mentioned organic solvents can be used. is there.
  • the alcohols monohydric alcohols having 1 to 5 carbon atoms are preferably used. Specific examples thereof include, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, and 3-pen.
  • Examples include butanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, and the like. Particularly preferred are methanol, ethanol, 1-propanol and 2-propanol, and most preferred is 2-propanol.
  • the amount of the hydrophobic organic solvent used as the extraction solvent is not particularly limited, but the concentration at the time of extraction may be the total solution of the extraction system (microorganism cells or aqueous suspension of the cell debris). It is preferably used in the range of 25 to 80% by volume, more preferably in the range of 50 to 75% by volume with respect to the volume of the mixed solution of turbid liquid, extraction solvent, nonionic surfactant, etc. preferable.
  • the amount of the hydrophilic organic solvent used when the hydrophilic organic solvent is used in combination as described above is not particularly limited as long as the two-phase system can be maintained.
  • the hydrophilic organic solvent used is preferably used in the range of 50% by volume, more preferably in the range of 0.1 to 10% by volume, and still more preferably in the range of 0.2 to 5% by volume. Even if the amount of the hydrophilic organic solvent used is a very small amount such as 0.2 to 2% by volume with respect to the total solution volume, the effect can be exhibited in the present invention.
  • the method of adding each solvent when using a hydrophilic organic solvent and a hydrophobic organic solvent in combination is not particularly limited, and the extraction solvent is obtained by appropriately mixing the hydrophilic organic solvent and the hydrophobic organic solvent.
  • a hydrophobic organic solvent may be added after adding a hydrophilic organic solvent to an aqueous suspension of microorganism cells or disrupted microorganism cells, or vice versa.
  • the temperature at the time of extraction is not particularly limited, but it can be generally 0 to 60 ° C., preferably 20 to 50 ° C.
  • the extraction method either batch extraction or continuous extraction can be performed, but industrially preferable is continuous extraction in terms of productivity, and countercurrent multistage extraction is particularly preferable among continuous extractions.
  • the stirring time for batch extraction is not particularly limited, but is usually 5 minutes or longer, and the average residence time for continuous extraction is not particularly limited, but is usually 10 minutes or longer.
  • an aqueous suspension of a microbial cell or cell disrupted product, an organic solvent, and the surfactant described above are mixed for extraction for a predetermined time, and then the mixture is allowed to stand. , Separate the water phase from the organic solvent phase containing the fat-soluble physiologically active substance, but if separation at the oil-water interface is extremely slow, forcefully use a centrifuge, continuous centrifuge, hydrocyclone, etc. It can also be separated.
  • the extraction rate in the production method of the present invention is usually 70% or more, more preferably 80% or more, and further preferably 90% or more.
  • the extraction rate here refers to the fat-soluble physiologically active substance contained in the extract after the completion of the extraction operation with respect to the total amount of the fat-soluble physiologically active substance contained in the aqueous suspension of microbial cells or microbial cell crushed material before extraction. It can be calculated
  • a fat-soluble physiologically active substance is obtained by extracting a fat-soluble physiologically active substance in an organic solvent from a microbial cell or a microbial cell lysate containing the fat-soluble physiologically active substance by the above operation. Can be isolated and recovered.
  • the obtained organic solvent solution containing the fat-soluble physiologically active substance can be used as it is or can be further purified by subjecting it to a conventional purification method. For example, after purification with an adsorbent such as activated carbon or clay, the organic solvent can be distilled off to obtain an extract containing a fat-soluble physiologically active substance or a purified product of a fat-soluble physiologically active substance.
  • the target fat-soluble physiologically active substance can also be obtained as a crystal body by crystallization operation.
  • coenzyme Q10 when the target fat-soluble physiologically active substance is coenzyme Q10, coenzyme Q10 is introduced into an organic solvent from a microbial cell containing coenzyme Q10 or a microbial cell lysate thereof by the production method of the present invention.
  • the extract containing the coenzyme Q10 obtained by extraction can be purified by a method known per se to obtain coenzyme Q10.
  • purification is performed using an adsorbent treatment such as activated carbon or white clay, column chromatography, etc., and before or after that, oxidation or reduction treatment is performed as necessary, and crystallization operation is used to obtain high-purity coenzyme Q10. Crystals can be obtained.
  • an aqueous suspension of a microbial cell containing a fat-soluble physiologically active substance or a microbial cell disruption product thereof is used as a polyoxyethylene-polyoxypropylene block copolymer type surfactant, sucrose fatty acid ester. , Glycerin fatty acid esters, sorbitan fatty acid esters, polyether polyol type surfactants, polyoxyethylene alkyl ether type surfactants and alkyl ether type surfactants.
  • a method for purifying a fat-soluble physiologically active substance is characterized by mixing with an organic solvent in the presence of a surfactant and extracting the fat-soluble physiologically active substance.
  • Example 1 Saitoella complicata IFO10748 strain producing coenzyme Q10 is used in 10 L medium (peptone 5 g / L, yeast extract 3 g / L, malto extract 3 g / L, glucose 20 g / L, pH 6.0). And aerobically cultured at 25 ° C. for 72 hours. The obtained culture solution containing microbial cells was crushed twice with a pressure homogenizer (manufactured by Runny) at a crushing pressure of 80 MPa to prepare a microbial cell disruption solution containing coenzyme Q10.
  • a polyoxyethylene-polyoxypropylene block copolymer type surfactant (Pluronic L-62, manufactured by ADEKA) was added to a concentration of 3.3% by weight. Then, 70 parts by volume of hexane was mixed, and batch extraction was performed at 45 ° C. for 60 minutes. When the mixture was allowed to stand after mixing for a predetermined time, rapid oil-water separation was confirmed, and the volume ratio of the extraction residue (the aqueous phase portion containing the lower microorganism-derived solid matter) to the total amount of the mixture was 0.37. there were. When the separated hexane phase was collected as an extract and analyzed by HPLC, the extraction rate of coenzyme Q10 was 90.8%.
  • Example 2 A polyoxyethylene-polyoxypropylene block copolymer type surfactant (Pluronic L-62, manufactured by ADEKA) was added to the cell disruption solution prepared in the same manner as in Example 1 to a concentration of 1.3% by weight. 30 parts by volume of hexane was mixed with 69 parts by volume of hexane and 1 part by volume of 2-propanol, and batch extraction was performed at 45 ° C. for 60 minutes. When the mixture was allowed to stand after mixing for a predetermined time, rapid oil-water separation was confirmed, and the volume ratio of the extraction residue to the total liquid amount was 0.33. When the separated hexane phase was collected as an extract and analyzed by HPLC, the extraction rate of coenzyme Q10 was 92.5%.
  • Pluronic L-62 manufactured by ADEKA
  • Example 3 A polyether polyol type surfactant (Adecanol LG-126, manufactured by ADEKA) was added to the cell disruption solution prepared in the same manner as in Example 1 to a concentration of 3.3% by weight. Then, 70 parts by volume of hexane was mixed, and batch extraction was performed at 45 ° C. for 60 minutes. When the mixture was allowed to stand after mixing for a predetermined time, rapid oil / water separation was confirmed, and the volume ratio of the extraction residue to the total liquid volume was 0.39. The separated hexane phase was collected as an extract and analyzed by HPLC. As a result, the extraction rate of coenzyme Q10 was 79.5%.
  • Example 4 To 30 parts by volume of a cell disruption solution prepared in the same manner as in Example 1, an alkyl ether type surfactant (Adecatol LA-775, manufactured by ADEKA) was added to a concentration of 3.3% by weight. 70 parts by volume of hexane was mixed, and batch extraction was performed at 45 ° C. for 60 minutes. When the mixture was allowed to stand after mixing for a predetermined time, rapid oil-water separation was confirmed, and the volume ratio of the extraction residue to the total liquid volume was 0.35. The separated hexane phase was collected as an extract and analyzed by HPLC. As a result, the extraction rate of coenzyme Q10 was 85.3%.
  • an alkyl ether type surfactant (Adecatol LA-775, manufactured by ADEKA) was added to a concentration of 3.3% by weight. 70 parts by volume of hexane was mixed, and batch extraction was performed at 45 ° C. for 60 minutes. When the mixture was allowed to stand after mixing for a predetermined time, rapid
  • Example 5 30 parts by volume of a microbial cell disruption solution prepared in the same manner as in Example 1 was added with an alkyl ether type surfactant (Adecatol LA-1275, manufactured by ADEKA) to a concentration of 0.3% by weight. Then, 70 parts by volume of hexane was mixed, and batch extraction was performed at 45 ° C. for 60 minutes. After mixing for a predetermined time, the mixture was allowed to stand, and then forced oil / water separation was performed using a centrifuge. When the separated hexane phase was collected as an extract and analyzed by HPLC, the extraction rate of coenzyme Q10 was 71.3%.
  • an alkyl ether type surfactant Alkyl LA-1275, manufactured by ADEKA
  • Example 6 To a cell disruption solution prepared in the same manner as in Example 1, 1.3% by weight of polyoxyethylene-polyoxypropylene block copolymer type surfactant (Pluronic L-62, manufactured by ADEKA), sucrose stearate ( S-1670 (manufactured by Mitsubishi Chemical Foods) to a concentration of 0.3% by weight was mixed with 30 parts by volume of hexane, 70 parts by volume of hexane, and batch extraction was performed at 45 ° C. for 60 minutes. . When the mixture was allowed to stand after mixing for a predetermined time, rapid oil-water separation was confirmed, and the volume ratio of the extraction residue to the total liquid volume was 0.32. When the separated hexane phase was collected as an extract and analyzed by HPLC, the extraction rate of coenzyme Q10 was 84.6%.
  • Pluronic L-62 polyoxyethylene-polyoxypropylene block copolymer type surfactant
  • S-1670 manufactured by Mitsubishi Chemical Foods
  • Example 7 In a cell disruption solution prepared in the same manner as in Example 1, 1.3% by weight of polyoxyethylene-polyoxypropylene block copolymer type surfactant (Pluronic L-62, manufactured by ADEKA), ethylenediamine-type polyoxyethylene- Polyoxypropylene block polymer type surfactant (Pluronic TR-702, manufactured by ADEKA) was added to a concentration of 0.3% by weight, and 30 parts by volume of hexane was mixed with 45 parts by volume. A batch extraction operation for 60 minutes was performed. When the mixture was allowed to stand after mixing for a predetermined time, rapid oil-water separation was confirmed, and the volume ratio of the extraction residue to the total liquid volume was 0.30. The separated hexane phase was collected as an extract and analyzed by HPLC. As a result, the extraction rate of coenzyme Q10 was 83.0%.
  • Pluronic L-62 polyoxyethylene-polyoxypropylene block copolymer type surfactant
  • Pluronic TR-702
  • Example 8 In a cell disruption solution prepared in the same manner as in Example 1, 1.3% by weight of polyoxyethylene-polyoxypropylene block copolymer type surfactant (Pluronic L-62, manufactured by ADEKA), ethylenediamine-type polyoxyethylene- Polyoxypropylene block polymer type surfactant (Pluronic TR-701, manufactured by ADEKA) was added to a concentration of 0.3% by weight, and 30 parts by volume of hexane was mixed with 45 parts by volume at 45 ° C. A batch extraction operation for 60 minutes was performed. When the mixture was allowed to stand after mixing for a predetermined time, rapid oil-water separation was confirmed, and the volume ratio of the extraction residue to the total liquid volume was 0.31. The separated hexane phase was collected as an extract and analyzed by HPLC. As a result, the extraction rate of coenzyme Q10 was 89.9%.
  • Pluronic L-62 polyoxyethylene-polyoxypropylene block copolymer type surfactant
  • Example 9 Saccharomyces cerevisiae IFO0309 strain producing ergosterol is used with 10 L medium (peptone 5 g / L, yeast extract 3 g / L, malto extract 3 g / L, glucose 20 g / L, pH 6.0). Cultured aerobically at 28 ° C. for 72 hours. The obtained microbial cells were crushed twice with a crushing pressure of 80 MPa using a pressure homogenizer (manufactured by Runny) to prepare a microbial cell disruption solution containing ergosterol.
  • 10 L medium peptone 5 g / L, yeast extract 3 g / L, malto extract 3 g / L, glucose 20 g / L, pH 6.0. Cultured aerobically at 28 ° C. for 72 hours. The obtained microbial cells were crushed twice with a crushing pressure of 80 MPa using a pressure homogenizer (manufactured by Runny) to prepare a microbial cell disruption solution containing ergosterol.
  • a polyoxyethylene-polyoxypropylene block copolymer type surfactant (Pluronic L-62, manufactured by ADEKA) was added to a concentration of 3.3% by weight. Then, 70 parts by volume of hexane was mixed, and batch extraction was performed at 45 ° C. for 60 minutes. When the mixture was allowed to stand after mixing for a predetermined time, rapid oil-water separation was confirmed, and the volume ratio of the extraction residue to the total liquid volume was 0.35. The separated hexane phase was collected as an extract and analyzed by HPLC. As a result, the extraction rate of ergosterol was 89.1%.
  • Comparative Example 1 70 parts by volume of hexane was mixed with 30 parts by volume of the cell disruption solution prepared in the same manner as in Example 1, and batch extraction was performed at 45 ° C. for 60 minutes. When the mixture was allowed to stand after mixing for a predetermined time, rapid oil-water separation was confirmed, and the volume ratio of the extraction residue to the total liquid volume was 0.35, but the separated hexane phase was collected as an extract, and HPLC As a result, the extraction rate of coenzyme Q10 was 60.2%.
  • Comparative Example 2 70 parts by volume of hexane was mixed with 30 parts by volume of lysolecithin (manufactured by Degussa) to a concentration of 0.7% by weight, which was prepared in the same manner as in Example 1. A batch extraction operation for 60 minutes was performed. After mixing for a predetermined time, the mixture was allowed to stand, but oil / water separation did not proceed. The separated hexane phase was collected as an extract and analyzed by HPLC. As a result, the extraction rate of coenzyme Q10 was 62.2%.
  • Table 1 shows the charging conditions, extraction rates of fat-soluble physiologically active substances, and volume ratios of extraction residues in Examples 1 to 9, Comparative Examples 1 to 3, and Reference Example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

 脂溶性生理活性物質を含有する微生物細胞又は微生物細胞破砕物の水性懸濁液から、特定の界面活性剤存在下に、有機溶媒を混合して、有機溶媒相に脂溶性生理活性物質を抽出することを特徴とする脂溶性生理活性物質の製造方法を提供する。当該製造方法によれば、特殊な脱水、乾燥設備を用いることなく、また溶媒と菌体成分との分離性悪化による収率低下を招くことなく抽出し、効率的に工業生産できる。

Description

脂溶性生理活性物質の製造方法
 本発明は、脂溶性生理活性物質の製造方法に関する。詳しくは、脂溶性生理活性物質を含有する微生物細胞又はその微生物細胞破砕物の水性懸濁液から脂溶性生理活性物質を抽出することによる脂溶性生理活性物質の製造方法に関する。
 生体に有用な脂溶性生理活性物質は数多く知られている。そのうち、補酵素Qは、細菌から哺乳動物まで広く生体に分布する必須成分であり、生体内の細胞中におけるミトコンドリアの電子伝達系構成成分として知られている。補酵素Qは、ミトコンドリア内において酸化と還元を繰り返すことで、電子伝達系における伝達成分としての機能を担っているほか、補酵素Qのうち還元型補酵素Qは抗酸化作用を持つことが知られている。ヒトでは補酵素Qの側鎖が繰り返し構造を10個持つ補酵素Q10が主成分であり、生体内においては、通常、40~90%程度が還元型として存在している。補酵素Qの生理的作用としては、ミトコンドリア賦活作用によるエネルギー生産の活性化、心機能の活性化、細胞膜の安定化効果、抗酸化作用による細胞の保護効果等が挙げられている。
 補酵素Q10のうち、酸化型補酵素Q10は、従来、鬱血性心不全薬や健康食品として用いられており、近年では、より高い生理活性作用を持つ還元型補酵素Q10が知られるようになってきている。
 補酵素Q10などの脂溶性生理活性物質は、例えば、合成、発酵、天然物から抽出することなどによって得ることができる。また必要に応じ、得られた抽出物を、クロマトグラフィーにより精製したり、晶析により結晶化してより純度の高いものを得ることもできる。例えば、補酵素Q10を得るにあたっては、補酵素Q10を産生する微生物を培養し、その微生物の懸濁液から有機溶媒を用いて微生物中の補酵素Q10を抽出する方法が一般的となっている。
 従来、微生物細胞中に含まれている有用成分を抽出する操作においては、培養した微生物の水性懸濁液を脱水し、湿菌体としたうえで有機溶媒に接触させる方法、水性懸濁液を脱水後さらに乾燥し、乾燥菌体として有機溶媒に接触させる方法、水性懸濁液をそのまま有機溶媒に接触させ、液-液間で抽出する方法が知られている。
 特許文献1では、培養したファフィア酵母の懸濁液を遠心処理して菌体を回収し、回収した菌体を噴霧乾燥した後、ヘキサン、エタノール等の混合溶媒で破砕しながら菌体中のアスタキサンチンを抽出した例が記載されている。その他にも、モルティエレラ属の菌体を培養し、菌体懸濁液を脱水、乾燥した後にヘキサンによりアラキドン酸含有油を抽出した例(特許文献2)、ムコール属の菌体を培養した培養液を破砕し、凍結乾燥した後、ヘキサン等の溶媒によりγ-リノレン酸を抽出した例(特許文献3)が知られている。これらの抽出方法では、乾燥菌体と抽出溶剤である有機溶媒を混合し、抽出操作が完了した後に固液分離して菌体残渣を除去し、目的物質の含まれた有機相を得ることができる。
 特許文献4では、補酵素Q10含有微生物の湿菌体、又は乾燥菌体を低温下でメタノールと接触させ、菌体内外の夾雑物を除去した後に、次は、高温下でメタノールと接触させ、補酵素Q10を抽出した例が開示されている。このような固-液抽出操作においては、菌体と抽出溶剤との比重差が大きいため、抽出後の固液分離が容易であり、目的物質のロスが少なく、高い効率で抽出できる利点を持つ。
 しかし、これらの方法では、抽出前に、培養した微生物の水性懸濁液から大量の水分を、遠心分離、スプレードライヤー、凍結乾燥機等の装置により脱水、乾燥する工程が必要となるうえ、菌体中に残存する含水率によっては十分な抽出率が得られない場合があるほか、装置コスト、運転コストが大きくなる等の問題があった。
 微生物の水性懸濁液を脱水、乾燥することなく抽出した例として、培養した微生物の破砕懸濁液をそのままヘキサン、2-プロパノール等の有機溶媒と接触させ、菌体内の補酵素Q10を抽出した例が知られている(特許文献5)。このような液-液抽出操作においては、微生物を脱水、乾燥することなく、高い収率、大きな処理量にて目的物質の抽出が可能であるが、微生物細胞又は該細胞破砕物の水性懸濁液、特に該細胞破砕物の水性懸濁液、とりわけ物理的処理による該細胞破砕物の水性懸濁液から有機溶媒を用いて抽出する場合、一部タンパク質等の細胞成分の存在により乳化現象等が生じやすく、微生物細胞の破砕懸濁液中に、目的物質を含んだ有機相が多量にトラップされ、有機相が効率良く分離できなくなり、収率低下を招くだけでなく、使用した抽出溶媒の回収率が低いという問題がある。また、疎水性有機溶媒の他にも親水性有機溶媒をある程度以上の量を使用する必要がある等、操作の煩雑化、コストの増大が問題であった。
 また従来、界面活性剤を液-液抽出に使用した場合では、界面効果により水相と有機溶媒相の親和性が高くなるため、均相化が生じやすく、水相と有機溶媒相の分離に長時間を要したり、又は時間をかけても分離しないことが多く、場合によっては遠心分離等の操作により強制的に分離させる必要があった。そのため、一般的な液-液抽出では、抽出工程における界面活性剤の使用は好ましくないと考えられていた。
特開平7-41687号公報 特開2009-120840号公報 特開平5-17796号公報 特許第4275621号公報 特開2008-253271号公報
 上述したように、従来の微生物細胞中からの脂溶性生理活性物質などの有用成分の抽出操作においては、抽出前に微生物の脱水や乾燥等に特殊な設備が必要であったり、抽出後において有用成分を含んだ溶媒と菌体成分との分離性が悪く、収率が不十分であったりするほか、複数の溶媒の使用が必要であるなど、操作の煩雑化、コストの増大を招くという問題があった。
 本発明は、脂溶性生理活性物質を含有する微生物細胞中から、脂溶性生理活性物質を、特殊な脱水、乾燥設備を用いることなく、また溶媒と菌体成分との分離性悪化による収率低下を招くことなく抽出し、効率的に工業生産できる製造法を提供することを目的とする。
 上記課題を解決するために鋭意検討を行った結果、脂溶性生理活性物質を含有した微生物細胞又は微生物細胞破砕物の水性懸濁液に、特定の界面活性剤を存在させて、有機溶媒を用いて抽出操作を行うことで、有機溶媒と水性懸濁液の親和性が向上するだけでなく、混合・静置後には、油水分離が速やかに進み、脂溶性生理活性物質を効率的に抽出でき、工業生産にも適していることを見出し、本発明を完成させた。
 すなわち本発明は、以下の通りである。
[1]脂溶性生理活性物質を含有する微生物細胞又はその微生物細胞破砕物の水性懸濁液を、
ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型界面活性剤、ショ糖脂肪酸エステル類、グリセリン脂肪酸エステル類、ソルビタン脂肪酸エステル類、ポリエーテルポリオール型界面活性剤、ポリオキシエチレンアルキルエーテル型界面活性剤及びアルキルエーテル型界面活性剤からなる群より選択される少なくとも1種類の非イオン性界面活性剤存在下に、
有機溶媒と混合し、
脂溶性生理活性物質を抽出することを特徴とする脂溶性生理活性物質の製造方法。
[2]脂溶性生理活性物質が、補酵素Q10であることを特徴とする[1]に記載の製造方法。
[3]補酵素Q10が、還元型補酵素Q10、又は、還元型補酵素Q10と酸化型補酵素Q10の混合物であることを特徴とする[2]に記載の製造方法。
[4]非イオン性界面活性剤が、少なくともポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤であることを特徴とする[1]~[3]のいずれか1項に記載の製造方法。
[5]非イオン性界面活性剤の添加量が、微生物細胞又は微生物細胞破砕物の水性懸濁液に対して、0.01重量%以上であることを特徴とする[1]~[4]のいずれか1項に記載の製造方法。
[6]有機溶媒が、疎水性有機溶媒であることを特徴とする[1]~[5]のいずれか1項に記載の製造方法。
[7]さらに親水性有機溶媒を併用することを特徴とする[6]に記載の製造方法。
[8]抽出は、連続抽出であることを特徴とする[1]~[7]のいずれか1項に記載の製造方法。
[9]脂溶性生理活性物質を含有する微生物細胞又はその微生物細胞破砕物の水性懸濁液を、
ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型界面活性剤、ショ糖脂肪酸エステル類、グリセリン脂肪酸エステル類、ソルビタン脂肪酸エステル類、ポリエーテルポリオール型界面活性剤、ポリオキシエチレンアルキルエーテル型界面活性剤及びアルキルエーテル型界面活性剤からなる群より選択される少なくとも1種類の非イオン性界面活性剤存在下に、
有機溶媒と混合し、
脂溶性生理活性物質を抽出することを特徴とする脂溶性生理活性物質の精製方法。
[10]脂溶性生理活性物質が、補酵素Q10であることを特徴とする[9]に記載の精製方法。
[11]補酵素Q10が、還元型補酵素Q10、又は、還元型補酵素Q10と酸化型補酵素Q10の混合物であることを特徴とする[10]に記載の精製方法。
[12]非イオン性界面活性剤が、少なくともポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤であることを特徴とする[9]~[11]のいずれか1項に記載の精製方法。
[13]非イオン性界面活性剤の添加量が、微生物細胞又は微生物細胞破砕物の水性懸濁液に対して、0.01重量%以上であることを特徴とする[9]~[12]のいずれか1項に記載の精製方法。
[14]有機溶媒が、疎水性有機溶媒であることを特徴とする[9]~[13]のいずれか1項に記載の精製方法。
[15]さらに親水性有機溶媒を併用することを特徴とする[14]に記載の精製方法。
[16]抽出は、連続抽出であることを特徴とする[9]~[15]のいずれか1項に記載の精製方法。
 従来の微生物細胞中からの有用成分の抽出法では、設備、製造コスト面、操作安定性に課題があり、脂溶性生理活性物質の製造方法としても同様の問題を有しているが、本発明の製造方法によれば、液-液抽出操作によって脂溶性生理活性物質の抽出を効率的に行うことができ、工業生産にも適している。
 更に、本発明で見出した好ましい特定の界面活性剤を液-液抽出操作時に用いることで、抽出時に目的物質を含んだ分散相を抽出溶媒中に微細分散化させ、目的物質の抽出溶媒中への移動を促進するとともに、有機相と水相を静置した際の油水分離も速やかに行えるため、安定的に高い収率で脂溶性生理活性物質の製造が可能となるだけでなく、水相への有機相の移行による抽出溶媒の損失も抑制できる。また、従来、より高収率で目的物質を得るためには抽出操作に複数種の抽出溶媒が必要であった場合に対しても、本発明では単一溶媒のみでも高収率の操作を行うことができるため、装置、操作の簡素化が図れるうえ、溶媒回収にかかるエネルギーの削減、環境負荷低減等の効果も得ることができる。
 以下に本発明の実施形態を詳細に説明する。
 本発明は、脂溶性生理活性物質を含有する微生物細胞又は微生物細胞破砕物の水性懸濁液から、後述する特定の非イオン性界面活性剤存在下に有機溶媒を混合し、有機溶媒相に脂溶性生理活性物質を抽出することを特徴とする脂溶性生理活性物質の製造方法である。
 本発明の製造方法において、抽出の対象となる脂溶性生理活性物質としては、微生物細胞中に産出され、有機溶媒に対して親和性を有し(脂溶性)、生体にとって有用な生理活性物質であれば、特に限定されない。その具体例としては、例えば、補酵素Q10などの補酵素Q類、ビタミンA、ビタミンD、ビタミンEやビタミンKなどのビタミン類、カロチン、アスタキサンチンやフコキサンチンなどのカロテノイド類、脂溶性ポリフェノール類、フラボノイド類、エルゴステロールなどのステロール類、α-リポ酸、L-カルニチンなどが挙げられる。なかでも、補酵素Q10やアスタキサンチン、エルゴステロールなどが好ましく、補酵素Q10が特に好ましい。
 補酵素Q10には、上述したように、酸化型と還元型が存在する。本発明は、補酵素Q10として、酸化型補酵素Q10、還元型補酵素Q10のいずれをも対象とするが、還元型補酵素Q10を含む補酵素Q10、すなわち、還元型補酵素Q10単独か、還元型補酵素Q10と酸化型補酵素Q10の混合物である補酵素Q10を対象とするのが好ましい。なお、本明細書において、補酵素Q10とのみ記載した場合は、酸化型補酵素Q10、還元型補酵素Q10を問わず、両者が混在する場合には混合物全体も表すものである。
 本発明で用いる脂溶性生理活性物質を含有する微生物としては、目的とする脂溶性生理活性物質又はその前駆体を菌体内に産生する微生物又は該物質をもともと一定量以上含んでいる微生物であれば、細菌、酵母、カビのいずれも制限無く使用することができる。なかでも該脂溶性生理活性物質を菌体内に産生する微生物が好ましい。
 上記微生物としては、具体的には、例えば、アグロバクテリウム(Agrobacterium)属、アスペルギルス(Aspergillus)属、アセトバクター(Acetobacter)属、アミノバクター(Aminobacter)属、アグロモナス(Agromonas)属、アシディフィラム(Acidiphilium)属、ブレロミセス(Bulleromyces)属、ブレラ(Bullera)属、ブレブンジモナス(Brevundimonas)属、クリプトコッカス(Cryptococcus)属、キオノスファエラ(Chionosphaera)属、カンジタ(Candida)属、セリノステルス(Cerinosterus)属、エキソフィアラ(Exisophiala)属、エキソバシジウム(Exobasidium)属、フィロミセス(Fellomyces)属、フィロバシジエラ(Filobasidiella)属、フィロバシジウム(Filobasidium)属、ゲオトリカム(Geotrichum)属、グラフィオラ(Graphiola)属、グルコノバクター(Gluconobacter)属、コッコバエラ(Kockovaella)属、クルツマノミセス(Kurtzmanomyces)属、ララリア(Lalaria)属、ロイコスポリジウム(Leucosporidium)属、レギオネラ(Legionella)属、メチロバクテリウム(Methylobacterium)属、ミコプラナ(Mycoplana)属、オースポリジウム(Oosporidium)属、シュードモナス(Pseudomonas)属、シュドジマ(Psedozyma)属、パラコッカス(Paracoccus)属、ペトロミセス(Petromyces)属、ロドトルラ(Rhodotorula)属、ロドスポリジウム(Rhodosporidium)属、リゾモナス(Rhizomonas)属、ロドビウム(Rhodobium)属、ロドプラネス(Rhodoplanes)属、ロドシュードモナス(Rhodopseudomonas)属、ロドバクター(Rhodobacter)属、スポロボロミセス(Sporobolomyces)属、スポリジオボラス(Sporidiobolus)属、サイトエラ(Saitoella)属、シゾサッカロミセス(Schizosaccharomyces)属、スフィンゴモナス(Sphingomonas)属、スポロトリクム(Sporotrichum)属、シンポジオミコプシス(Sympodiomycopsis)属、ステリグマトスポリジウム(Sterigmatosporidium)属、タファリナ(Tapharina)属、トレメラ(Tremella)属、トリコスポロン(Trichosporon)属、チレチアリア(Tilletiaria)属、チレチア(Tilletia)属、トリポスポリウム(Tolyposporium)属、チレチオプシス(Tilletiopsis)属、ウスチラゴ(Ustilago)属、ウデニオミセス(Udeniomyces)属、キサントフィロミセス(Xanthophllomyces)属、キサントバクター(Xanthobacter)属、ペキロマイセス(Paecilomyces)属、アクレモニウム(Acremonium)属、ハイホモナス(Hyhomonus)属、リゾビウム(Rhizobium)属、ファフィア(Phaffia)属、ヘマトコッカス(Haematococcus)属等の微生物を挙げることができる。培養の容易さや生産性の観点からは、細菌又は酵母が好ましく、細菌では非光合成細菌がより好ましく、さらには、アグロバクテリウム(Agrobacterium)属、グルコノバクター(Gluconobacter)属、メチロバクテリウム(Methylobacterium)属、シュードモナス(Pseudomonas)属、パラコッカス(Paracoccus)属、ロドバクター(Rhodobacter)属等が、酵母ではシゾサッカロミセス(Schizosaccharomyces)属、サイトエラ(Saitoella)属、ファフィア(Phaffia)属等が特に好ましい例として挙げられる。
 なお脂溶性生理活性物質を菌体外に産生する、すなわち培養液中に当該物質を産生する微生物も本発明に包含される。
 脂溶性生理活性物質を産生する微生物としては、上記微生物の野生株のみならず、例えば、上記の微生物の目的とする脂溶性生理活性物質の生合成に関与する遺伝子の転写及び翻訳活性、或いは発現蛋白質の酵素活性を、改変あるいは改良した変異体や組換え体も好ましく使用することができる。
 上記微生物を培養することで、補酵素Q10などの脂溶性生理活性物質を含有する微生物細胞を得ることができる。培養方法は特に限定されず、対象となる微生物に適した、あるいは目的とする脂溶性生理活性物質の産生に適した培養方法が適宜選択しうる。培養期間も特に限定されず、微生物細胞中に所望の量の目的とする脂溶性生理活性物質が産生されればよい。その場合の脂溶性生理活性物質の産生量(含有量)としては、目的により特に限定されないが、例えば培地あたりの脂溶性生理活性物質の含有量として、例えば0.5μg/mL以上、好ましくは1μg/mL以上、より好ましくは2μg/mL以上である。
 本発明の製造方法においては、上記脂溶性生理活性物質を含有する微生物細胞から脂溶性生理活性物質を抽出するに際して、微生物細胞から直接抽出することもできるが、所望により前記微生物細胞を破砕して微生物細胞破砕物とし、該破砕物から抽出することもできる。細胞の破砕は、微生物細胞中に産生・蓄積された脂溶性生理活性物質の効率的な抽出に寄与する。細胞破砕処理は、細菌では必ずしも必要ではない場合もあるが、酵母やカビの細胞を使用する場合、細胞破砕処理をするのが特に好ましい。酵母やカビの細胞を使用する場合、細胞が破砕されていないと、細胞中に産生・蓄積された脂溶性生理活性物質の回収効率は低下する。言うまでもなく、細胞の破砕と抽出とを同時に行っても良い。
 なお、本発明の「破砕」においては、目的とする脂溶性生理活性物質の抽出が可能となる程度に細胞壁等の表面構造が損傷を受ければよく、必ずしも微生物細胞が破れる、あるいは断片化される必要はない。
 本願において、「微生物細胞又はその微生物細胞破砕物の水性懸濁液」とは、微生物細胞又はその微生物細胞破砕物が、水、生理食塩水、緩衝液、培地などの水性溶媒に懸濁されたものであり、好ましくは、水及び/又は培地に懸濁されたものである。
 上記細胞破砕の対象となる微生物細胞の形態は、微生物細胞の水性懸濁液、培養液、培養液を濃縮したもの、培養液から微生物細胞を湿菌体として採取したもの、これらを洗浄したもの、湿菌体を溶媒(例えば、水、生理食塩水、緩衝液等も含む)に懸濁したもの、前記の湿菌体を乾燥させた乾燥菌体、乾燥菌体を溶媒(例えば、水、生理食塩水、緩衝液等も含む)に懸濁したもの等であってもよいが、好ましくは微生物細胞の水性懸濁液、培養液、培養液を濃縮したものや、これらを洗浄したものであり、操作性等の面から、より好ましくは、培養液、培養液を濃縮したものや、これらを洗浄したものである。
 上記微生物細胞の破砕は、以下の1つ又は幾つかの破砕方法を任意の順序で行うことにより行われる。破砕方法としては、例えば、物理的処理、化学的処理、酵素的処理の他、加熱処理、自己消化、浸透圧溶解、原形質溶解等を挙げることができる。
 上記物理的処理としては、例えば、高圧ホモジナイザー、回転刃式ホモジナイザー、超音波ホモジナイザー、フレンチプレス、ボールミル等の使用、あるいは、これらの組み合わせを挙げることができる。
 上記化学的処理としては、例えば、塩酸、硫酸等の酸(好ましくは強酸)を用いる処理、水酸化ナトリウムや水酸化カリウム等の塩基(好ましくは強塩基)を用いる処理等や、これらの組み合わせを挙げることができる。
 上記酵素的処理としては、例えば、リゾチーム、ザイモリアーゼ、グルカナーゼ、ノボザイム、プロテアーゼ、セルラーゼ等を用いる方法を挙げることができ、適宜これらを組み合わせて用いても良い。
 上記加熱処理としては、例えば、60~140℃で30分~3時間程度の処理を挙げることができる。
 上記自己消化としては、例えば、酢酸エチル等の溶媒による処理を挙げることができる。
 また、細胞内の塩濃度と異なる溶液で処理することにより、細胞の浸透圧溶解や原形質溶解を引き起こすこともできる。但し、この方法のみでは細胞破砕効果が不十分な場合が多いため、上記のような物理的処理、化学的処理、酵素的処理、加熱処理、自己消化等と合わせて用いるのが好ましい。
 本発明において、脂溶性生理活性物質の抽出・回収の前処理としての細胞破砕方法としては、上記破砕方法の中でも、物理的処理、化学的処理(特に酸処理、好ましくは強酸(例えば、水溶液中におけるpKaが2.5以下の酸)処理)や加熱処理が好ましく、破砕効率の点から物理的処理がより好ましい。
 本発明においては、脂溶性生理活性物質を含有する微生物細胞、または上記のようにして得られる脂溶性生理活性物質を含有する微生物細胞の破砕物を、水性懸濁液とした状態で、脂溶性生理活性物質の抽出を行う。本発明において、微生物細胞又は微生物細胞破砕物の水性懸濁液を調製する方法は特に限定されないが、例えば、脂溶性生理活性物質を産生する微生物の培養後の培養液、該培養液を濃縮及び/又は洗浄したものや、該微生物細胞の湿菌体や乾燥菌体を水や水性溶媒に懸濁させて調製する。あるいは微生物細胞の水性懸濁液を上記の方法によって破砕して調製することができる。
 本発明の製造方法において、抽出の対象となる微生物細胞又は微生物細胞破砕物の水性懸濁液中の菌体濃度は、特に制限されないが、菌体の乾燥重量に換算して通常1~25重量%の範囲であり、経済的には10~20重量%の範囲で実施するのが好ましい。
 本発明の製造方法では、特定の非イオン性界面活性剤存在下に、前記脂溶性生理活性物質を含有する微生物細胞又は微生物細胞破砕物の水性懸濁液と、有機溶媒を混合し、液-液抽出によって有機溶媒相に脂溶性生理活性物質を抽出することで、好ましくは強制油水分離の工程を必要とすることなく、混合液を静置して油水分離し、分離した有機溶媒相から脂溶性生理活性物質の回収を行う。すなわち、当該水性懸濁液と有機溶媒の混合液から脂溶性生理活性物質を抽出する工程、混合液を静置して油水分離する工程を連続して行うことにより効率的に該物質を得ることもできる。
 本発明の製造方法においては、抽出時に用いる非イオン性界面活性剤として、グリセリン脂肪酸エステル類、ショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類、ポリエーテルポリオール型界面活性剤、ポリオキシエチレンアルキルエーテル型界面活性剤、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型界面活性剤又はアルキルエーテル型界面活性剤を使用することが必要である。またこれらの非イオン性界面活性剤を2種以上併用することもできるし、これらの非イオン性界面活性剤とそれ以外の界面活性剤を併用してもかまわない。
 上記グリセリン脂肪酸エステル類としては、例えば、脂肪酸の部分グリセリド、ポリグリセリン脂肪酸エステル、ポリグリセリン縮合リシノレイン酸エステル等を挙げることができる。脂肪酸の部分グリセリドとしては、例えば、モノグリセリンモノカプリル酸エステル、モノグリセリンモノカプリン酸エステル、モノグリセリンジカプリル酸エステル、モノグリセリンジカプリン酸エステル、モノグリセリンジラウリン酸エステル、モノグリセリンジミリスチン酸エステル、モノグリセリンジステアリン酸エステル、モノグリセリンジオレイン酸エステル、モノグリセリンジエルカ酸エステル、モノグリセリンジベヘニン酸エステル等のモノグリセリン脂肪酸エステル;モノグリセリンカプリル酸コハク酸エステル、モノグリセリンステアリン酸クエン酸エステル、モノグリセリンステアリン酸酢酸エステル、モノグリセリンステアリン酸コハク酸エステル、モノグリセリンステアリン酸乳酸エステル、モノグリセリンステアリン酸ジアセチル酒石酸エステル、モノグリセリンオレイン酸クエン酸エステル等のモノグリセリン脂肪酸有機酸エステル等を挙げることができる。ポリグリセリン脂肪酸エステルとしては、例えば、重合度が2から10のポリグリセリンを主成分とするポリグリセリンに、ポリグリセリンの水酸基の1つ以上に炭素数が各々6~22の脂肪酸がエステル化したものが挙げられる。具体的には、例えば、ヘキサグリセリンモノカプリル酸エステル、ヘキサグリセリンジカプリル酸エステル、デカグリセリンモノカプリル酸エステル、トリグリセリンモノラウリン酸エステル、テトラグリセリンモノラウリン酸エステル、ペンタグリセリンモノラウリン酸エステル、ヘキサグリセリンモノラウリン酸エステル、デカグリセリンモノラウリン酸エステル、トリグリセリンモノミリスチン酸エステル、ペンタグリセリンモノミリスチン酸エステル、ペンタグリセリントリミリスチン酸エステル、ヘキサグリセリンモノミリスチン酸エステル、デカグリセリンモノミリスチン酸エステル、ジグリセリンモノオレイン酸エステル、トリグリセリンモノオレイン酸エステル、テトラグリセリンモノオレイン酸エステル、ペンタグリセリンモノオレイン酸エステル、ヘキサグリセリンモノオレイン酸エステル、デカグリセリンモノオレイン酸エステル、ジグリセリンモノステアリン酸エステル、トリグリセリンモノステアリン酸エステル、テトラグリセリンモノステアリン酸エステル、ペンタグリセリンモノステアリン酸エステル、ペンタグリセリントリステアリン酸エステル、ヘキサグリセリンモノステアリン酸エステル、ヘキサグリセリントリステアリン酸エステル、ヘキサグリセリンジステアリン酸エステル、デカグリセリンモノステアリン酸エステル、デカグリセリンジステアリン酸エステル、デカグリセリントリステアリン酸エステル等が挙げられる。ポリグリセリン縮合リシノレイン酸エステルとしては、例えば、ポリグリセリンの平均重合度が2~10、ポリリシノレイン酸の平均縮合度(リシノレイン酸の縮合数の平均)が2~4であるものが挙げられ、例えば、テトラグリセリン縮合リシノレイン酸エステル、ペンタグリセリン縮合リシノレイン酸エステル、ヘキサグリセリン縮合リシノレイン酸エステル等が挙げられる。
 上記ショ糖脂肪酸エステル類としては、ショ糖の水酸基の1つ以上に炭素数が各々6~18、好ましくは6~12の脂肪酸をエステル化したものが挙げられる。具体的には、ショ糖パルミチン酸エステル、ショ糖ステアリン酸エステル等が挙げられる。
 上記ソルビタン脂肪酸エステル類としては、ソルビタン類の水酸基の1つ以上に炭素数が各々6~18、好ましくは6~12の脂肪酸をエステル化したものが挙げられる。具体的には、ソルビタンモノステアリン酸エステル、ソルビタンモノオレイン酸エステル等が挙げられる。
 上記ポリエーテルポリオール型の界面活性剤としては、例えば、株式会社ADEKA製のアデカノールLGシリーズ(LG-109、LG-126、LG-294、LG-295S、LG-299、LG-805)等が挙げられる。
 上記ポリオキシエチレンアルキルエーテル型の界面活性剤としては、炭素数12~22の脂肪族アルコールに酸化エチレンを付加重合して得られるものが好ましく、例えば、花王株式会社製のエマルゲンシリーズ(103、104P、105、106、108、109P、120、123P、147、150、210、220、306P、320P、350、404、408、409PV、420、430、705、707、709、1108)等が挙げられる。
 上記ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤としては、ポリプロピレングリコールの両端に酸化エチレンを付加させて得られるブロックコポリマーである、エチレンオキサイド(EO)鎖の間に、プロピレンオキサイド(PO)鎖を有するもの(EOxPOyEOz)の他、リバースタイプのポリオキシエチレン-ポリオキシプロピレンブロックコポリマー、エチレンジアミン型ポリオキシエチレン-ポリオキシプロピレンブロックコポリマーなども含まれる。
 上記エチレンオキサイド(EO)鎖の間に、プロピレンオキサイド(PO)鎖を有するポリオキシエチレン-ポリオキシプロピレンブロックコポリマーとしては、例えば、株式会社ADEKA製のプルロニックLシリーズ(L-31、L-34、L-44、L-61、L-62、L-64、L-71、L-72、L-101、L-121)、プルロニックPシリーズ(P-65、P-84、P-85、P-103、P-105、P-123)、プルロニックFシリーズ(F-68、F-108、F-127)やBASF社製のプルロニックPEシリーズ等が挙げられる。
 上記リバースタイプのポリオキシエチレン-ポリオキシプロピレンブロックコポリマーとしては、例えば、株式会社ADEKA製のプルロニックRシリーズ(25R-1、25R-2、17R-2、17R-3、17R-4)やBASF社製のプルロニックRPEシリーズ等が挙げられる。
 上記エチレンジアミン型ポリオキシエチレン-ポリオキシプロピレンブロックコポリマーとしては、例えば、株式会社ADEKA製のプルロニックTRシリーズ(TR-701、TR-702、TR-704)やBASF社製のテトロニックシリーズ(ポロキサミン)等が挙げられる。
 さらに、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤と類似の構造を持つ、2つのエチレンオキサイド(EO)鎖の間に、ブチレンオキサイド(BO)鎖を有するトリブロックコポリマー型の界面活性剤(EOxBOyEOz)も、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤と同様、本発明の製造方法において使用できる。
 上記これらのポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤(及びその類似体)のなかでも、質量平均分子量が500~8000の範囲にある界面活性剤が好ましく、質量平均分子量が1000~4000の範囲にある界面活性剤がより好ましい。
 上記アルキルエーテル型の非イオン性界面活性剤としては、例えば、株式会社ADEKA製のアデカトールLBシリーズ(LB-53B、LB-720、LB-820、LB-54C、LB-83、LB-93、LB-103、LB-1220、LB-1520)、アデカトールLAシリーズ(LA-675B、LA-775、LA-875、LA-975、LA-1275)等が挙げられる。
 言うまでもなく、ここで示した非イオン性界面活性剤は2種以上を合わせて使用することもできる。
 上記非イオン性界面活性剤の中でも、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤を少なくとも使用するのが好ましい。その場合、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤1種を単独で使用することもできるが、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤を2種以上組み合わせて使用するか、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤とそれ以外の非イオン性界面活性剤を組み合わせて使用するのが特に好ましい。ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤に組み合わせる非イオン性界面活性剤としては、上述したような非イオン性界面活性剤、すなわち、グリセリン脂肪酸エステル類、ショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類、ポリエーテルポリオール型界面活性剤、ポリオキシエチレンアルキルエーテル型界面活性剤、アルキルエーテル型界面活性剤が挙げられる。そのなかでも、2種のポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤の組み合わせや、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤とショ糖脂肪酸エステル類の組み合わせが好ましく、2種のポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤の組み合わせがより好ましく、エチレンオキサイド(EO)鎖の間にプロピレンオキサイド(PO)鎖を有するポリオキシエチレン-ポリオキシプロピレンブロックコポリマーとエチレンジアミン型ポリオキシエチレン-ポリオキシプロピレンブロックコポリマーの組み合わせが特に好ましい。
 ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤とそれ以外の非イオン性界面活性剤を組み合わせる場合、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤の使用量は、それ以外の非イオン性界面活性剤よりも多い方が好ましく、例えば、使用する非イオン性界面活性剤の合計量に対して50重量%以上が好ましく、60重量%以上がより好ましく、75重量%以上がさらに好ましい。
 このような界面活性剤を液-液抽出操作に用いることで、抽出時に、目的物質である脂溶性生理活性物質を含んだ分散相を、抽出溶剤である有機溶媒中に微細分散化させることができる。その結果、抽出溶剤と脂溶性生理活性物質との接触効率が向上し、脂溶性生理活性物質の有機溶媒相への移動が促進される。一方、従来、界面活性剤を液-液抽出に使用した場合では、界面効果により水相と有機溶媒相の親和性が高くなるため、均相化が生じやすく、水相と有機溶媒相の分離に長時間を要したり、又は時間をかけても分離しないことが多く、場合によっては遠心分離等の操作により強制的に分離させる必要があった。そのため、いままで、一般的な液-液抽出では、抽出工程における界面活性剤の使用は好ましくないと考えられていた。しかし、脂溶性生理活性物質を含有する微生物細胞又は微生物細胞破砕物の水性懸濁液から、有機溶媒を用いて、有機溶媒相に脂溶性生理活性物質を液―液抽出する場合、上記の特定の界面活性剤、特にポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤を抽出時に共存させると、有機溶媒と水性懸濁液の親和性が向上するだけでなく、混合・静置後には、油水分離が速やかに進むことが、本発明で初めて見出された。従って本発明の製造方法では、安定的に高い収率で目的物質である脂溶性生理活性物質の溶解した有機溶媒相を回収することができる。
 また、本発明の製造方法において、ペースト状及びフレーク状の非イオン性界面活性剤を使用する場合には、界面活性剤を溶解するための溶媒を使用するのが好ましい。また、液状の界面活性剤を使用する場合でも、その粘性が高い場合に溶媒を使用するのが好ましい。その際用いる溶媒としては、水やアルコール類が望ましく、それぞれ単独で用いてもよいし、水とアルコールの混合溶媒として用いてもよい。
 本発明の製造方法においては、抽出操作時における上記特定の非イオン性界面活性剤の使用量は、微生物細胞又は微生物細胞破砕物の水性懸濁液に対する濃度として、0.01重量%以上であることが好ましく、0.01~10重量%の範囲内にあることがさらに好ましく、0.1~5重量%の範囲内にあることがより好ましく、0.5~5重量%の範囲内であることが特に好ましい。上記界面活性剤の添加量が0.01重量%以下の場合、有機溶媒中における水性懸濁液の微細分散化が進まず、十分な抽出効率を確保できない。一方で、上記界面活性剤の添加量が10重量%を超える場合、有機溶媒と水性懸濁液の親和性が必要以上に高くなるため、有機溶媒中における水性懸濁液の微細分散化は促進されるものの、混合状態にある有機溶媒と水性懸濁液を静置した際の油水分離性が悪化することがある。
 本発明の製造方法において、上記特定の非イオン性界面活性剤存在下に抽出を行う方法としては特に限定されず、抽出時の水性懸濁液と有機溶媒の混合液中に所定量の界面活性剤が共存されうる方法であれば特に制限は無く、抽出前に微生物細胞又は微生物細胞破砕物の水性懸濁液に界面活性剤を添加する方法、抽出に使用する有機溶媒に界面活性剤を添加する方法、有機溶媒と水性懸濁液の混合液に界面活性剤を添加する方法の他、予め微生物細胞又は微生物細胞破砕物の水性懸濁液の調製時や調製前に界面活性剤を添加しておく方法、あるいは微生物細胞の破砕に使用した界面活性剤をそのまま抽出時にも利用する方法等が挙げられる。
 本発明の製造方法において、抽出に用いる有機溶媒としては、炭化水素類、脂肪酸エステル類、エーテル類、アルコール類、脂肪酸類、ケトン類、窒素化合物類(ニトリル類、アミド類を含む)、硫黄化合物類等を挙げることができる。
 炭化水素類としては、特に制限されないが、例えば、脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭化水素等を挙げることができる。このなかでも脂肪族炭化水素、芳香族炭化水素が好ましく、脂肪族炭化水素がより好ましい。
 脂肪族炭化水素としては、環状、非環状を問わず、又、飽和、不飽和を問わず、特に制限されないが、一般に、飽和のものが好ましく用いられる。通常、炭素数3~20、好ましくは炭素数5~12、より好ましくは炭素数5~8のものが用いられる。具体例としては、例えば、プロパン、ブタン、イソブタン、ペンタン、2-メチルブタン、ヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、ヘプタン異性体(例えば、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、2,4-ジメチルペンタン)、オクタン、2,2,3-トリメチルペンタン、イソオクタン、ノナン、2,2,5-トリメチルヘキサン、デカン、ドデカン、2-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、p-メンタン、シクロヘキセン等を挙げることができる。好ましくは、ペンタン、2-メチルブタン、ヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、オクタン、2,2,3-トリメチルペンタン、イソオクタン、ノナン、2,2,5-トリメチルヘキサン、デカン、ドデカン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、p-メンタン等である。より好ましくは、ペンタン、2-メチルブタン、ヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、オクタン、2,2,3-トリメチルペンタン、イソオクタン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等であり、さらに好ましくは、ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン等である。
 芳香族炭化水素としては、特に制限されないが、通常、炭素数6~20、好ましくは炭素数6~12、より好ましくは炭素数7~10のものが用いられる。具体例としては、例えば、ベンゼン、トルエン、キシレン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、クメン、メシチレン、テトラリン、ブチルベンゼン、p-シメン、シクロヘキシルベンゼン、ジエチルベンゼン、ペンチルベンゼン、ジペンチルベンゼン、ドデシルベンゼン、スチレン等を挙げることができる。好ましくは、トルエン、キシレン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、クメン、メシチレン、テトラリン、ブチルベンゼン、p-シメン、シクロヘキシルベンゼン、ジエチルベンゼン、ペンチルベンゼン等である。より好ましくは、トルエン、キシレン、o-キシレン、m-キシレン、p-キシレン、クメン、テトラリン等である。最も好ましくは、クメンである。
 ハロゲン化炭化水素としては、環状、非環状を問わず、又、飽和、不飽和を問わず、特に制限されないが、一般に、非環状のものが好ましく用いられる。より好ましくは塩素化炭化水素、フッ素化炭化水素であり、さらに好ましくは塩素化炭化水素である。また、炭素数1~6、好ましくは炭素数1~4、より好ましくは炭素数1~2のものが好適に用いられる。具体例としては、例えば、ジクロロメタン、クロロホルム、四塩化炭素、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、1,1-ジクロロエチレン、1,2-ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン、1,2-ジクロロプロパン、1,2,3-トリクロロプロパン、クロロベンゼン,1,1,1,2-テトラフルオロエタン等を挙げることができる。好ましくは、ジクロロメタン、クロロホルム、四塩化炭素、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1-ジクロロエチレン、1,2-ジクロロエチレン、トリクロロエチレン、クロロベンゼン、1,1,1,2-テトラフルオロエタン等である。より好ましくは、ジクロロメタン、クロロホルム、1,2-ジクロロエチレン、トリクロロエチレン、クロロベンゼン、1,1,1,2-テトラフルオロエタン等である。
 脂肪酸エステル類としては、特に制限されないが、例えば、プロピオン酸エステル、酢酸エステル、ギ酸エステル等を挙げることができる。好ましくは、酢酸エステル、ギ酸エステルであり、より好ましくは酢酸エステルである。エステル基としては、特に制限されないが、通常、炭素数1~8のアルキルエステル、炭素数7~12のアラルキルエステルが、好ましくは炭素数1~6のアルキルエステルが、より好ましくは炭素数1~4のアルキルエステルが用いられる。
 プロピオン酸エステルの具体例としては、例えば、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、プロピオン酸イソペンチル等を挙げることができる。好ましくはプロピオン酸エチル等である。
 酢酸エステルの具体例としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸ペンチル、酢酸イソペンチル、酢酸sec-ヘキシル、酢酸シクロヘキシル、酢酸ベンジル等を挙げることができる。好ましくは、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸ペンチル、酢酸イソペンチル、酢酸sec-ヘキシル、酢酸シクロヘキシル等である。より好ましくは、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル等であり、最も好ましくは、酢酸エチルである。
 ギ酸エステルの具体例としては、例えば、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソプロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸sec-ブチル、ギ酸ペンチル等を挙げることができる。好ましくは、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸ペンチル等である。最も好ましくは、ギ酸エチルである。
 エーテル類としては、環状、非環状を問わず、又、飽和、不飽和を問わず、特に制限されないが、一般に、飽和のものが好ましく用いられる。通常、炭素数3~20、好ましくは炭素数4~12、より好ましくは炭素数4~8のものが用いられる。具体例としては、例えば、ジエチルエーテル、メチルtert-ブチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、アニソール、フェネトール、ブチルフェニルエーテル、メトキシトルエン、ジオキサン、フラン、2-メチルフラン、テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等を挙げることができる。好ましくは、ジエチルエーテル、メチルtert-ブチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、アニソール、フェネトール、ブチルフェニルエーテル、メトキシトルエン、ジオキサン、2-メチルフラン、テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等である。より好ましくは、ジエチルエーテル、メチルtert-ブチルエーテル、アニソール、ジオキサン、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等である。さらに好ましくは、ジエチルエーテル、メチルtert-ブチルエーテル、アニソール等であり、最も好ましくは、メチルtert-ブチルエーテルである。
 アルコール類としては、環状、非環状を問わず、又、飽和、不飽和を問わず、特に制限されないが、一般に、飽和のものが好ましく用いられる。通常、炭素数1~20、好ましくは炭素数1~12、より好ましくは炭素数1~6である。なかでも、炭素数1~5の1価アルコール、炭素数2~5の2価アルコール、炭素数3の3価アルコールが好ましい。
 これらアルコール類の具体例としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、1-ノナノール、1-デカノール、1-ウンデカノール、1-ドデカノール、アリルアルコール、プロパルギルアルコール、ベンジルアルコール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、4-メチルシクロヘキサノール等の1価アルコール;1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール等の2価アルコール;グリセリン等の3価アルコールを挙げることができる。
 1価アルコールとしては、好ましくは、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、1-ノナノール、1-デカノール、1-ウンデカノール、1-ドデカノール、ベンジルアルコール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、4-メチルシクロヘキサノール等である。より好ましくは、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、シクロヘキサノール等である。さらに好ましくは、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール等である。特に好ましくは、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、2-メチル-1-ブタノール、イソペンチルアルコール等であり、最も好ましくは、2-プロパノールである。
 2価アルコールとしては、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール等が好ましく、1,2-エタンジオールが最も好ましい。3価アルコールとしては、グリセリンが好ましい。
 脂肪酸類としては、例えば、ギ酸、酢酸、プロピオン酸等を挙げることができる。好ましくは、ギ酸、酢酸であり、最も好ましくは酢酸である。
 ケトン類としては、特に制限されず、炭素数3~6のものが好適に用いられる。具体例としては、例えば、アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン等を挙げることができる。好ましくは、アセトン、メチルエチルケトンであり、最も好ましくはアセトンである。
 ニトリル類としては、環状、非環状を問わず、又、飽和、不飽和を問わず、特に制限されないが、一般に飽和のものが好ましく用いられる。通常、炭素数2~20、好ましくは炭素数2~12、より好ましくは炭素数2~8のものが用いられる。
 具体例としては、例えば、アセトニトリル、プロピオニトリル、マロノニトリル、ブチロニトリル、イソブチロニトリル、スクシノニトリル、バレロニトリル、グルタロニトリル、ヘキサンニトリル、ヘプチルシアニド、オクチルシアニド、ウンデカンニトリル、ドデカンニトリル、トリデカンニトリル、ペンタデカンニトリル、ステアロニトリル、クロロアセトニトリル、ブロモアセトニトリル、クロロプロピオニトリル、ブロモプロピオニトリル、メトキシアセトニトリル、シアノ酢酸メチル、シアノ酢酸エチル、トルニトリル、ベンゾニトリル、クロロベンゾニトリル、ブロモベンゾニトリル、シアノ安息香酸、ニトロベンゾニトリル、アニソニトリル、フタロニトリル、ブロモトルニトリル、メチルシアノベンゾエート、メトキシベンゾニトリル、アセチルベンゾニトリル、ナフトニトリル、ビフェニルカルボニトリル、フェニルプロピオニトリル、フェニルブチロニトリル、メチルフェニルアセトニトリル、ジフェニルアセトニトリル、ナフチルアセトニトリル、ニトロフェニルアセトニトリル、クロロベンジルシアニド、シクロプロパンカルボニトリル、シクロヘキサンカルボニトリル、シクロヘプタンカルボニトリル、フェニルシクロヘキサンカルボニトリル、トリルシクロヘキサンカルボニトリル等を挙げることができる。
 好ましくは、アセトニトリル、プロピオニトリル、スクシノニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、シアノ酢酸メチル、シアノ酢酸エチル、ベンゾニトリル、トルニトリル、クロロプロピオニトリルであり、より好ましくは、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリルであり、最も好ましくは、アセトニトリルである。
 ニトリル類を除く窒素化合物類としては、例えば、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類やニトロメタン、トリエチルアミン、ピリジン等を挙げることができる。
 硫黄化合物類としては、例えば、ジメチルスルホキシド、スルホラン等を挙げることができる。
 上記有機溶媒の中でも、沸点、融点、粘性等の性質を考慮して選定するのが好ましい。例えば、沸点としては、溶解度を高めるための適度な加温ができ、且つ、湿体からの溶媒の乾燥除去や晶析濾液等からの溶媒回収の行いやすさという観点から、1気圧下、約30~150℃の範囲であるのが好ましく、融点としては、室温での取り扱い時及び室温以下に冷却した時も固化しにくいという観点から、約20℃以下、好ましくは約10℃以下、より好ましくは約0℃以下であり、粘性としては、例えば20℃において約10cp以下など低い方が好ましい。
 上記有機溶媒のうち、微生物細胞又は微生物細胞破砕物の水性懸濁液から、脂溶性生理活性物質を抽出し回収する目的においては、2相系での液-液抽出を行うという観点から、抽出溶媒として疎水性有機溶媒又は疎水性有機溶媒を含有するものを用いるのが好ましい。
 この場合に使用される疎水性有機溶媒としては、特に制限されず、上述の有機溶媒のうち水と完全に混和せず2相系となる疎水性のものを使用できるが、好ましくは、炭化水素類、脂肪酸エステル類、エーテル類等の疎水性有機溶媒であり、さらに好ましくは炭化水素類、より好ましくは脂肪族の炭化水素類を用いることができる。脂肪族炭化水素類のなかでも、炭素数5~8のものが好適に用いられる。上記炭素数5~8の脂肪族炭化水素類の具体例としては、例えば、ペンタン、2-メチルブタン、ヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、オクタン、2,2,3-トリメチルペンタン、イソオクタン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等を挙げることができる。特に好ましくは、ヘキサン、ヘプタン、メチルシクロヘキサンであり、最も好ましくは、ヘキサン、ヘプタンである。
 本発明の製造方法では、界面活性剤存在下に抽出を行うことで、微生物細胞又は微生物細胞破砕物の水性懸濁液と上記疎水性有機溶媒との親和性を向上させ、十分な抽出効率を得ることが可能であるが、抽出時に使用される有機溶媒として上記疎水性有機溶媒に加えて、親水性有機溶媒を補助的に併用することで、有機溶媒中での水性懸濁液の更なる微細化の促進と、静置時においては高い油水分離の安定性向上を付加することができ、より好ましい。
 本発明の製造方法において、疎水性有機溶媒と組み合わせて用いられる親水性有機溶媒としては、特に制限されず、上述の有機溶媒のうち親水性のものを使用しうるが、好ましくは、アルコール類である。アルコール類のなかでも、炭素数1~5の1価アルコールが好適に用いられる。これらの具体例としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール等を挙げることができる。特に好ましくは、メタノール、エタノール、1-プロパノール、2-プロパノールであり、最も好ましくは、2-プロパノールである。
 本発明の製造方法において、抽出溶媒として使用する疎水性有機溶媒の使用量としては、特に制限はされないが、抽出時の濃度として、抽出系の全溶液(微生物細胞又は該細胞破砕物の水性懸濁液、抽出溶媒、非イオン性界面活性剤などの混合溶液)の容量に対して、25~80容量%の範囲で使用するのが好ましく、50~75容量%の範囲で使用するのがより好ましい。また、上記のように親水性有機溶媒を併用する場合の親水性有機溶媒の使用量は、2相系が維持できる範囲であれば特に限定されないが、全溶液の容量に対して0.1~50容量%の範囲で使用するのが好ましく、0.1~10容量%の範囲で使用するのがより好ましく、0.2~5容量%の範囲で使用するのがさらに好ましい。親水性有機溶媒の使用量が、全溶液の容量に対して0.2~2容量%といったごくわずかの量であっても、本発明においてはその効力を発揮しうる。
 本発明の製造方法において、親水性有機溶媒と疎水性有機溶媒を併用する場合のそれぞれの溶媒の添加方法は特に限定されず、親水性有機溶媒と疎水性有機溶媒を適宜混合してから抽出溶媒として使用しても良いし、微生物細胞又は微生物細胞破砕物の水性懸濁液に親水性有機溶媒を添加してから疎水性有機溶媒を添加してもよいし、その逆でも良い。
 本発明の製造方法において、抽出時の温度は、特に制限されないが、通常0~60℃、好ましくは20~50℃の範囲で実施できる。
 抽出方法としては、回分抽出、連続抽出のどちらの方法でも行うことができるが、工業的には連続抽出が生産性の面で好ましく、連続抽出の中でも向流多段抽出が特に好ましい。回分抽出の場合の撹拌時間は、特に制限されないが、通常5分以上であり、連続抽出の場合の平均滞留時間は、特に制限されないが、通常10分以上である。
 本発明の製造方法においては、通常、微生物細胞又は該細胞破砕物の水性懸濁液と有機溶媒、及び上記界面活性剤を所定時間混合して抽出を実施した後、これら混合液を静置させ、水相と、脂溶性生理活性物質を含んだ有機溶媒相とを分離させるが、油水界面の分離が著しく遅い場合においては、遠心分離機、連続遠心機、液体サイクロン等を用いて強制的に分離させることもできる。
 上記のような本発明の製造方法を採用することで、微生物細胞又は微生物細胞破砕物の水性懸濁液中に含まれる脂溶性生理活性物質を高い効率で抽出することが可能である。本発明の製造法における抽出率は、通常70%以上であり、より好ましくは80%以上であり、更に好ましくは90%以上である。
 ここでいう抽出率は、抽出前の微生物細胞又は微生物細胞破砕物の水性懸濁液中に含まれる脂溶性生理活性物質の総量に対する、抽出操作終了後の抽出液に含まれる脂溶性生理活性物質の量の割合であり、具体的には後述する実施例のようにして求めることができる。
 本発明の製造方法においては、以上の操作によって、脂溶性生理活性物質を含有する微生物細胞又は微生物細胞破砕物から、有機溶媒中に脂溶性生理活性物質を抽出することで脂溶性生理活性物質を単離・回収できる。得られた脂溶性生理活性物質を含む有機溶媒溶液は、そのまま利用することもできるし、引き続き通常の精製方法に付すことによりさらに高度に精製することができる。
 例えば、活性炭や白土等の吸着剤で精製した後、有機溶媒を留去して、脂溶性生理活性物質を含む抽出物あるいは脂溶性生理活性物質の精製物とすることもできる。また通常使用されるカラムクロマトグラフィーや液-液分配、その他水や有機溶媒による洗浄などの精製処理に付してもよい。なお、これらの精製処理は、単独もしくは数種組み合わせて行うこともできる。また必要に応じて、鹸化、酸化、還元、その他合成反応処理などの工程を加えることもできる。また晶析操作などで目的とする脂溶性生理活性物質を結晶体として得ることもできる。
 例えば、目的とする脂溶性生理活性物質が補酵素Q10の場合には、本発明の製造方法によって、補酵素Q10を含有する微生物細胞又はその微生物細胞破砕物から、有機溶媒中に補酵素Q10を抽出し、得られた補酵素Q10を含有する抽出液を自体公知の方法により精製し補酵素Q10を得ることができる。例えば、所望により活性炭や白土等の吸着剤処理やカラムクロマトグラフィー等を用いて精製し、その前後で必要に応じて酸化又は還元処理を行い、晶析操作を用いて、高純度の補酵素Q10の結晶を取得することができる。
 本発明の別の態様としては、脂溶性生理活性物質を含有する微生物細胞又はその微生物細胞破砕物の水性懸濁液を、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型界面活性剤、ショ糖脂肪酸エステル類、グリセリン脂肪酸エステル類、ソルビタン脂肪酸エステル類、ポリエーテルポリオール型界面活性剤、ポリオキシエチレンアルキルエーテル型界面活性剤及びアルキルエーテル型界面活性剤からなる群より選択される少なくとも1種類の非イオン性界面活性剤存在下に、有機溶媒と混合し、脂溶性生理活性物質を抽出することを特徴とする脂溶性生理活性物質の精製方法が挙げられる。各定義や条件等は上記に挙げたものと同様である。
 次に本発明を実施例により具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
 各実施例における抽出率は以下のようにして算出した。抽出を行う前の補酵素Q10含有微生物細胞破砕液1mLに、メタノール-クロロホルム(3:1)混合液を加えて総量50mLとし、25℃で30分攪拌後、菌体由来の固形物を固液分離し、得られた液層部分の補酵素Q濃度を下記HPLC条件で測定して、抽出対象の微生物細胞破砕液中に含まれていた補酵素Q量を算出した。同様に、抽出操作後の抽出液中の補酵素Q濃度を下記HPLC条件で測定し、抽出された補酵素Q量を算出し、以下の式により抽出率を求めた。
抽出率(%)=抽出液に含まれる補酵素Qの重量/抽出前の微生物細胞破砕液中に含まれていた補酵素Qの重量×100
 (HPLC分析条件)
カラム:YMC-Pack4.6×250mm(YMC.Co.,Ltd.製)
移動相:メタノール/n-ヘキサン=85/15
流速:1mL/分
検出:UV275nm
(実施例1)
 補酵素Q10を産生するサイトエラ・コンプリカタ(Saitoella complicata)IFO10748株を、10Lの培地(ペプトン5g/L、酵母エキス3g/L、マルトエキス3g/L、グルコース20g/L、pH6.0)を用いて、好気的に25℃で72時間培養した。得られた微生物菌体を含む培養液を、圧力式ホモジナイザー(ラニー社製)により破砕圧力80MPaで2回破砕し、補酵素Q10を含有する微生物細胞破砕液を調製した。
 得られた微生物細胞破砕液に、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型界面活性剤(プルロニックL-62、ADEKA社製)を3.3重量%の濃度となるよう添加したもの30容量部に、ヘキサン70容量部を混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたところ、速やかな油水分離が確認され、混合液の全液量に対する抽出残渣(下層の微生物由来固形物を含む水相部分)の容量比は0.37であった。分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は90.8%であった。
(実施例2)
 実施例1と同様に調製した菌体破砕液に、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型界面活性剤(プルロニックL-62、ADEKA社製)を1.3重量%の濃度となるよう添加したもの30容量部に、ヘキサン69容量部、2-プロパノール1容量部をそれぞれ混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたところ、速やかな油水分離が確認され、全液量に対する抽出残渣の容量比は0.33であった。分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は92.5%であった。
(実施例3)
 実施例1と同様に調製した菌体破砕液に、ポリエーテルポリオール型の界面活性剤(アデカノールLG-126、ADEKA社製)を3.3重量%の濃度となるよう添加したもの30容量部に、ヘキサン70容量部を混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたところ、速やかな油水分離が確認され、全液量に対する抽出残渣の容量比は0.39であった。分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は79.5%であった。
(実施例4)
 実施例1と同様に調製した菌体破砕液に、アルキルエーテル型の界面活性剤(アデカトールLA-775、ADEKA社製)を3.3重量%の濃度となるよう添加したもの30容量部に、ヘキサン70容量部を混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたところ、速やかな油水分離が確認され、全液量に対する抽出残渣の容量比は0.35であった。分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は85.3%であった。
(実施例5)
 実施例1と同様に調製した菌体破砕液に、アルキルエーテル型の界面活性剤(アデカトールLA-1275、ADEKA社製)を0.3重量%の濃度となるよう添加したものを30容量部に、ヘキサン70容量部を混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたのちに、遠心分離機による強制油水分離を実施した。分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は71.3%であった。
(実施例6)
 実施例1と同様に調製した菌体破砕液に、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型界面活性剤(プルロニックL-62、ADEKA社製)を1.3重量%、ショ糖ステアリン酸エステル(S-1670、三菱化学フーズ社製)を0.3重量%の濃度となるようそれぞれ添加したもの30容量部に、ヘキサン70容量部を混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたところ、速やかな油水分離が確認され、全液量に対する抽出残渣の容量比は0.32であった。分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は84.6%であった。
(実施例7)
 実施例1と同様に調製した菌体破砕液に、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型界面活性剤(プルロニックL-62、ADEKA社製)を1.3重量%、エチレンジアミン型ポリオキシエチレン-ポリオキシプロピレンブロックポリマー型界面活性剤(プルロニックTR-702、ADEKA社製)を0.3重量%の濃度となるようそれぞれ添加したもの30容量部に、ヘキサン70容量部を混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたところ、速やかな油水分離が確認され、全液量に対する抽出残渣の容量比は0.30であった。分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は83.0%であった。
(実施例8)
 実施例1と同様に調製した菌体破砕液に、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型界面活性剤(プルロニックL-62、ADEKA社製)を1.3重量%、エチレンジアミン型ポリオキシエチレン-ポリオキシプロピレンブロックポリマー型界面活性剤(プルロニックTR-701、ADEKA社製)を0.3重量%の濃度となるようそれぞれ添加したもの30容量部に、ヘキサン70容量部を混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたところ、速やかな油水分離が確認され、全液量に対する抽出残渣の容量比は0.31であった。分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は89.9%であった。
(実施例9)
 エルゴステロールを産生するサッカロミセス・セレビシエ(Saccharomyces cerevisiae)IFO0309株を、10Lの培地(ペプトン5g/L、酵母エキス3g/L、マルトエキス3g/L、グルコース20g/L、pH6.0)を用いて、好気的に28℃で72時間培養した。得られた微生物菌体を、圧力式ホモジナイザー(ラニー社製)により破砕圧力80MPaで2回破砕し、エルゴステロールを含有する微生物細胞破砕液を調製した。
 得られた微生物細胞破砕液に、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型界面活性剤(プルロニックL-62、ADEKA社製)を3.3重量%の濃度となるよう添加したもの30容量部に、ヘキサン70容量部を混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたところ、速やかな油水分離が確認され、全液量に対する抽出残渣の容量比は0.35であった。分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、エルゴステロールの抽出率は89.1%であった。
(比較例1)
 実施例1と同様に調製した菌体破砕液30容量部に、ヘキサン70容量部を混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたところ、速やかな油水分離を確認され、全液量に対する抽出残渣の容量比は0.35であったが、分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は60.2%であった。
(比較例2)
 実施例1と同様に調製した菌体破砕液に、リゾレシチン(デグサ社製)を0.7重量%の濃度となるよう添加したもの30容量部に、ヘキサン70容量部を混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたが、油水分離が進まなかったため、遠心分離機による強制油水分離を実施した。分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は62.2%であった。
(比較例3)
 実施例1と同様に調製した菌体破砕液に、ポリビニルアルコール(和光純薬社製)を3.3重量%の濃度となるよう添加したものを30容量部に、ヘキサン70容量部を混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたところ、速やかな油水分離が確認され、全液量に対する抽出残渣の容量比は0.35であったが、分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は61.9%であった。
(参考例)
 実施例1と同様に調製した菌体破砕液30容量部に、ヘキサン52容量部、2-プロパノール18容量部の割合で混合し、45℃で60分間の回分抽出操作を行った。所定時間混合の後、静置させたところ、速やかな油水分離が確認されたが、全液量に対する抽出残渣の容量比は0.48と、使用した抽出溶媒の水相への移行量がかなり多い結果となった。分離したヘキサン相を抽出液として採取し、HPLCによる分析を行ったところ、補酵素Q10の抽出率は91.5%であった。
 表1に実施例1~9、比較例1~3、及び参考例における仕込み条件と、脂溶性生理活性物質の抽出率、及び抽出残渣の容量比の結果を示す。
Figure JPOXMLDOC01-appb-T000001
 以上、本発明の具体的な態様のいくつかを詳細に説明したが、当業者であれば示された特定の態様には、本発明の教示と利点から実質的に逸脱しない範囲で様々な修正と変更をなすことは可能である。従って、そのような修正及び変更も、すべて後記の請求の範囲で請求される本発明の精神と範囲内に含まれるものである。
 本出願は日本で出願された特願2010-164531を基礎としており、その内容は本明細書に全て包含されるものである。
 

Claims (8)

  1. 脂溶性生理活性物質を含有する微生物細胞又はその微生物細胞破砕物の水性懸濁液を、
    ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型界面活性剤、ショ糖脂肪酸エステル類、グリセリン脂肪酸エステル類、ソルビタン脂肪酸エステル類、ポリエーテルポリオール型界面活性剤、ポリオキシエチレンアルキルエーテル型界面活性剤及びアルキルエーテル型界面活性剤からなる群より選択される少なくとも1種類の非イオン性界面活性剤存在下に、
    有機溶媒と混合し、
    脂溶性生理活性物質を抽出することを特徴とする、
    脂溶性生理活性物質の製造方法。
  2. 脂溶性生理活性物質が、補酵素Q10であることを特徴とする請求項1に記載の製造方法。
  3. 補酵素Q10が、還元型補酵素Q10、又は、還元型補酵素Q10と酸化型補酵素Q10の混合物であることを特徴とする請求項2に記載の製造方法。
  4. 非イオン性界面活性剤が、少なくともポリオキシエチレン-ポリオキシプロピレンブロックコポリマー型の界面活性剤であることを特徴とする請求項1~3のいずれか1項に記載の製造方法。
  5. 非イオン性界面活性剤の添加量が、微生物細胞又は微生物細胞破砕物の水性懸濁液に対して、0.01重量%以上であることを特徴とする請求項1~4のいずれか1項に記載の製造方法。
  6. 有機溶媒が、疎水性有機溶媒であることを特徴とする請求項1~5のいずれか1項に記載の製造方法。
  7. さらに親水性有機溶媒を併用することを特徴とする請求項6に記載の製造方法。
  8. 抽出は、連続抽出であることを特徴とする請求項1~7のいずれか1項に記載の製造方法。
     
     

     
     
PCT/JP2011/066764 2010-07-22 2011-07-22 脂溶性生理活性物質の製造方法 WO2012011589A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/811,049 US9006493B2 (en) 2010-07-22 2011-07-22 Method for manufacturing a fat-soluble bioactive substance
DK11809759.1T DK2597156T3 (en) 2010-07-22 2011-07-22 Process for the preparation of a fat-soluble bioactive substance
ES11809759.1T ES2676369T3 (es) 2010-07-22 2011-07-22 Método para la fabricación de una sustancia bioactiva liposoluble
JP2011550163A JP5016734B2 (ja) 2010-07-22 2011-07-22 脂溶性生理活性物質の製造方法
EP11809759.1A EP2597156B1 (en) 2010-07-22 2011-07-22 Method for manufacturing a fat-soluble bioactive substance
CN201180035870.7A CN103025881B (zh) 2010-07-22 2011-07-22 脂溶性生理活性物质的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-164531 2010-07-22
JP2010164531 2010-07-22

Publications (1)

Publication Number Publication Date
WO2012011589A1 true WO2012011589A1 (ja) 2012-01-26

Family

ID=45497006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066764 WO2012011589A1 (ja) 2010-07-22 2011-07-22 脂溶性生理活性物質の製造方法

Country Status (7)

Country Link
US (1) US9006493B2 (ja)
EP (1) EP2597156B1 (ja)
JP (1) JP5016734B2 (ja)
CN (1) CN103025881B (ja)
DK (1) DK2597156T3 (ja)
ES (1) ES2676369T3 (ja)
WO (1) WO2012011589A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659652A (zh) * 2012-04-12 2012-09-12 西北农林科技大学 从雨生红球藻中提取总虾青素的固相萃取方法
JP2015508906A (ja) * 2012-03-02 2015-03-23 バーグ エルエルシー コエンザイムq10を検出するための方法及びキット
JP2016208909A (ja) * 2015-05-08 2016-12-15 株式会社カネカ 脂溶性生理活性物質の製造方法
US9872112B2 (en) 2013-01-31 2018-01-16 Invensense, Inc. Noise mitigating microphone system
JPWO2018003974A1 (ja) * 2016-07-01 2019-04-25 株式会社カネカ 補酵素q10の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11338005B2 (en) 2013-06-28 2022-05-24 Arjuna Natural Private Limited Medicinal composition of amaranth origin for cardiovascular treatment
WO2019025993A2 (en) * 2017-08-02 2019-02-07 Benny Antony AMARANT MEDICINAL COMPOSITION FOR CARDIOVASCULAR TREATMENT
SG10201709264XA (en) 2013-06-28 2018-01-30 Benny Antony A medicinal composition of amaranth extract origin having enriched nitrate content and a method of preparing the same
CN103819326B (zh) * 2013-12-11 2016-08-17 湖南科源生物制品有限公司 一种从微生物中分离纯化辅酶q10的方法
CN111918970A (zh) * 2018-03-28 2020-11-10 株式会社钟化 辅酶q10的制造方法
CN112334205B (zh) * 2018-06-21 2022-09-06 Gs 加德士 天然物质提取用溶剂组合物
US12016957B2 (en) * 2018-11-27 2024-06-25 Avignon Universite Process for extracting substances of interest
US11471426B2 (en) 2019-10-16 2022-10-18 American River Nutrition, Llc Compositions comprising quinone and/or quinol and methods of preparations and use thereof
WO2021219465A1 (en) * 2020-04-27 2021-11-04 Basf Se A fermentation medium and method for eryhromycin fermentation production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056024A1 (fr) * 2001-12-27 2003-07-10 Kaneka Corporation Procedes de production de la co-enzyme q10
JP2009050237A (ja) * 2007-08-29 2009-03-12 Nippon Oil Corp カロテノイドの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728748B2 (ja) * 1986-02-28 1995-04-05 三菱瓦斯化学株式会社 メナキノン−4の製造法
DE69210892T2 (de) 1991-07-11 1996-10-02 Idemitsu Petrochemical Co Triglyceride enthaltende trockene Zellfragmente und Verfahren zu deren Herstellung
DE4205783C1 (en) * 1992-02-26 1993-07-22 Cassella Ag, 6000 Frankfurt, De Prepn. of liquid plant extracts, e.g. contg. pharmaceuticals or perfumes - involves use of an aq. soln. of a nonionic surfactant e.g. fatty acid glycerine polyethylene glycol ester
US5445949A (en) * 1992-05-19 1995-08-29 Gist-Brocades N.V. Large scale separation and purification of fermentation product
JPH0741687A (ja) 1993-07-24 1995-02-10 Food Design Gijutsu Kenkyu Kumiai 食品用濃縮天然赤色色素油の製造方法及び食品用濃縮天然赤色色素油
DE19531254A1 (de) * 1995-08-25 1997-02-27 Sueddeutsche Kalkstickstoff Verfahren zur Extraktion von Carotinfarbstoffen aus festen Naturstoffen
AU2956397A (en) 1996-05-15 1997-12-05 Gist-Brocades B.V. Sterol extraction with polar solvent to give low sterol, high triglyceride, microbial oil
RU2256651C2 (ru) * 2000-01-27 2005-07-20 ДСМ Ай Пи АССЕТС Б.В. Выделение каротиноидных кристаллов
JP2003267883A (ja) * 2002-03-12 2003-09-25 Nihon Yamaninjin Kenkyusho:Kk 糖尿病性合併症の予防又は治療剤及び健康食品
CA2478934A1 (en) * 2002-04-04 2003-10-16 Kaneka Corporation Process for producing oil and fat composition containing hydrophobic components of glycyrrhiza
JP4275621B2 (ja) 2002-07-25 2009-06-10 協和発酵バイオ株式会社 ユビキノン−10含有溶液の製造方法
DE60313631T2 (de) * 2002-09-27 2008-01-10 Dsm Ip Assets B.V. Produktion von zeaxanthin und beta-cryptoxanthin durch phaffia
JP4934272B2 (ja) * 2004-08-31 2012-05-16 富士化学工業株式会社 アスタキサンチン含有抽出物の製法およびその製法によって得られたアスタキサンチン含有抽出物
US8876583B2 (en) * 2009-12-02 2014-11-04 Cnh Industrial America Llc Regulator of residue flow for spreading devices on agricultural combines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056024A1 (fr) * 2001-12-27 2003-07-10 Kaneka Corporation Procedes de production de la co-enzyme q10
JP2009050237A (ja) * 2007-08-29 2009-03-12 Nippon Oil Corp カロテノイドの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAHA B. ET AL.: "A new method of plasmid DNA preparation by sucrose-mediated detergent lysis from Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive)", ANAL. BIOCHEM., vol. 176, 1989, pages 344 - 349, XP024823513 *
See also references of EP2597156A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508906A (ja) * 2012-03-02 2015-03-23 バーグ エルエルシー コエンザイムq10を検出するための方法及びキット
JP2018049023A (ja) * 2012-03-02 2018-03-29 バーグ エルエルシー コエンザイムq10を検出するための方法及びキット
CN102659652A (zh) * 2012-04-12 2012-09-12 西北农林科技大学 从雨生红球藻中提取总虾青素的固相萃取方法
US9872112B2 (en) 2013-01-31 2018-01-16 Invensense, Inc. Noise mitigating microphone system
JP2016208909A (ja) * 2015-05-08 2016-12-15 株式会社カネカ 脂溶性生理活性物質の製造方法
JPWO2018003974A1 (ja) * 2016-07-01 2019-04-25 株式会社カネカ 補酵素q10の製造方法
JP7022061B2 (ja) 2016-07-01 2022-02-17 株式会社カネカ 補酵素q10の製造方法

Also Published As

Publication number Publication date
CN103025881B (zh) 2016-03-30
US9006493B2 (en) 2015-04-14
ES2676369T3 (es) 2018-07-19
DK2597156T3 (en) 2018-10-08
US20130225868A1 (en) 2013-08-29
EP2597156B1 (en) 2018-06-27
EP2597156A1 (en) 2013-05-29
CN103025881A (zh) 2013-04-03
JP5016734B2 (ja) 2012-09-05
EP2597156A4 (en) 2016-08-17
JPWO2012011589A1 (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5016734B2 (ja) 脂溶性生理活性物質の製造方法
JP5074287B2 (ja) 補酵素q10の製造方法
US10837043B2 (en) Method for producing coenzyme Q10
US10239811B2 (en) Process for producing reduced coenzyme Q10
JP2016208909A (ja) 脂溶性生理活性物質の製造方法
JP7421471B2 (ja) 補酵素q10の製造方法
JP7539831B2 (ja) 補酵素q10の製造方法
WO2014104200A1 (ja) カロテノイド組成物の製造方法
Kanaya et al. Process for producing reduced coenzyme Q 10

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180035870.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011550163

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011809759

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13811049

Country of ref document: US