WO2012011527A1 - 積層型電子部品の製造方法および積層型電子部品 - Google Patents

積層型電子部品の製造方法および積層型電子部品 Download PDF

Info

Publication number
WO2012011527A1
WO2012011527A1 PCT/JP2011/066560 JP2011066560W WO2012011527A1 WO 2012011527 A1 WO2012011527 A1 WO 2012011527A1 JP 2011066560 W JP2011066560 W JP 2011066560W WO 2012011527 A1 WO2012011527 A1 WO 2012011527A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated
laminate
stick
electronic component
conductors
Prior art date
Application number
PCT/JP2011/066560
Other languages
English (en)
French (fr)
Inventor
一成 木村
美咲 田端
重光 戸蒔
晃 中村
勇雄 阿部
則之 齋藤
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201180036187.5A priority Critical patent/CN103026621B/zh
Priority to US13/811,167 priority patent/US8864925B2/en
Publication of WO2012011527A1 publication Critical patent/WO2012011527A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/68Forming laminates or joining articles wherein at least one substrate contains at least two different parts of macro-size, e.g. one ceramic substrate layer containing an embedded conductor or electrode
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/80Joining the largest surface of one substrate with a smaller surface of the other substrate, e.g. butt joining or forming a T-joint
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation

Definitions

  • the present invention relates to a method for manufacturing a multilayer electronic component and a multilayer electronic component, and more particularly to an electronic component including a plurality of ceramic laminates having different lamination directions of internal conductor layers.
  • multilayer electronic components are provided in which circuit elements such as circuit elements and connection conductors are distributed and arranged in a plurality of wiring layers of the multilayer body.
  • circuit elements circuit elements, connection conductors, etc.
  • circuit elements circuit elements, connection conductors, etc.
  • Deterioration is likely to occur.
  • a component structure that prevents mutual interference between circuit elements, such as an electronic component constituted by a plurality of laminated bodies having different lamination directions (see, for example, Patent Documents 1 to 4 below).
  • Patent Document 1 Japanese Patent Laid-Open No. 11-195873
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-31743
  • Patent Document 3 Japanese Patent Laid-Open No. 2009-170737
  • Patent Document 4 Japanese Patent No. 3425065
  • each laminated body constituting the electronic component is separately fired and bonded so that the laminating direction is different.
  • Each electronic component is produced by bonding with an agent (see paragraphs 0038 to 0039 of Patent Document 2 and Patent Document 3). Accordingly, the structures described in these documents have a problem that they require labor for production and are inferior in mass productivity.
  • the individual chip sizes are currently about 1 mm, 0.5 mm, and 0.35 mm in height and width, respectively, and laminates having smaller dimensions are bonded to each other.
  • the positioning error becomes relatively large and high-accuracy positioning becomes much more difficult. Therefore, it is not easy to perform the bonding operation one by one for each part and perform the bonding work.
  • the structure is not a realistic structure for mass-produced products.
  • an object of the present invention is to obtain a new component structure of a multilayer electronic component including a plurality of ceramic laminates having different lamination directions that can easily obtain good electrical characteristics even when miniaturized.
  • the object is to efficiently manufacture a multilayer electronic component.
  • a manufacturing method of a multilayer electronic component according to the present invention includes (1) one or more insulating functional layers mainly composed of an unfired ceramic material, and a circuit element.
  • One or more insulating functional layers mainly composed of the above and one or more conductor layers in which a plurality of conductors constituting at least part of the circuit element are two-dimensionally arranged in the vertical direction and the horizontal direction are laminated.
  • a step of producing a second laminated sheet and (3) cutting the first laminated sheet into a stick shape so as to include a plurality of conductors arranged in either the longitudinal direction or the transverse direction, whereby a plurality Obtaining a first laminated stick of (4) and (4 Cutting the second laminated sheet into a stick shape so as to include a plurality of conductors arranged in either the vertical direction or the horizontal direction, thereby obtaining a plurality of second laminated sticks; (5)
  • the second laminated stick is disposed so as to be sandwiched between the first laminated stick and the first laminated stick in a state in which the second laminated stick is rotated by 90 ° around the longitudinal axis of the second laminated stick.
  • the method for manufacturing a multilayer electronic component according to the present invention is a method for manufacturing an electronic component having a structure in which two or more ceramic laminates having different stacking directions are joined.
  • the laminated bodies in a rod-like aggregated state including multiple identical laminated bodies) as laminated sticks (first laminated stick and second laminated stick) are thermocompression-bonded (heated)
  • laminates having different lamination directions are joined together and the laminates (first laminate and second laminate) having different lamination directions are in an aggregated state (a plurality of sets of laminates having different lamination directions).
  • a third laminated sheet that is in a gathered state is prepared.
  • the temperature at which the third laminated sheet is produced is set to a temperature lower than the firing temperature (eg, 700 to 1600 ° C.) performed after the first laminated stick and the second laminated stick are joined.
  • the specific heating temperature at the time of producing the third laminated sheet differs depending on the insulating functional layer and the material of the conductor and cannot be specified unconditionally. For example, it may be about 30 to 200 ° C.
  • the “insulating functional layer” is typically an insulating layer formed of a dielectric ceramic material, but is not limited to this.
  • a magnetic ceramic material or a semiconductor corresponding to an element disposed in a multilayer substrate is used. It may be a material layer made of various insulating ceramic materials such as a ceramic material.
  • insulating functional layers of different materials can be mixed in one laminate.
  • the number of laminated bodies constituting the electronic component is not limited to two (only the first laminated body and the second laminated body).
  • the electronic component may be constituted by three laminated bodies, or a structure in which four or more laminated bodies are joined can be employed.
  • a third laminated stick or more in addition to the first laminated stick and the second laminated stick, a third laminated stick or more (fourth, fifth,... )
  • the third laminated sheet may be prepared by similarly forming laminated sticks and combining them appropriately.
  • the stacking direction of the stacked body included in the electronic component does not necessarily have to have a different stacking direction, for example, the first stacked body, the second stacked body, and the third stacked body.
  • the first laminated body and the third laminated body have the same lamination direction (for example, the horizontal direction or the vertical direction).
  • a plurality of stacked bodies having the same stacking direction such as different stacking directions (for example, a vertical direction or a horizontal direction) may be included.
  • the method for producing the first laminated sheet and the second laminated sheet is not particularly limited.
  • at least a part of the circuit element is formed on the surface of the ceramic green sheet mainly composed of an unfired ceramic material.
  • a plurality of printed first ceramic sheets are printed so that the conductors constituting the two-dimensional arrangement in the vertical direction and the horizontal direction are made, and these first ceramic sheets are superposed and thermocompression bonded together.
  • the first laminated sheet is produced by converting the structure.
  • two conductors constituting at least a part of the circuit element are arranged in the vertical direction and the horizontal direction on the surface of the ceramic green sheet mainly composed of an unfired ceramic material. If a plurality of second ceramic sheets are printed so as to be dimensionally arranged, and the second laminated sheet is prepared by stacking and integrating the plurality of second ceramic sheets by thermocompression bonding. good.
  • the method for producing the laminated sheets (first laminated sheet and second laminated sheet) in the present invention includes, for example, a conductor paste for forming a conductor and an insulator paste for forming an insulating functional layer. It is also possible to use other methods such as alternately printing and laminating.
  • the multilayer electronic component according to the present invention includes a first laminate in which one or more insulating functional layers mainly composed of a ceramic material and one or more conductor layers are laminated, and a ceramic material as a main component.
  • An electronic component comprising a second laminate in which one or more insulating functional layers and one or more conductor layers are laminated and joined to the first laminate, wherein the first laminate is The laminating direction of the second laminated body and the laminating direction of the second laminated body intersect each other, and the first laminated body and the second laminated body are integrated by firing.
  • the lamination direction of the conductor layer of the first laminate and the lamination direction of the second laminate are substantially orthogonal to each other.
  • the component structure includes a plurality of laminated bodies having different lamination directions as described above, for example, when an inductor is disposed in each of the first laminated body and the second laminated body, electromagnetic coupling between them can be prevented, Good electrical characteristics can be obtained by preventing mutual interference between circuit elements included in the electronic component, such as reducing parasitic capacitance generated between circuit elements arranged in the one laminated body and the second laminated body.
  • the insulating functional layer of the first laminated body and the insulating functional layer of the second laminated body are made of the same material.
  • the joining surface of the insulating functional layer and the insulating functional layer of the second laminated body forms a continuous sintered body.
  • the insulating functional layer of the first laminated body and the insulating functional layer of the second laminated body are made of different materials, and these first laminated bodies There exists an interface at the bonding surface between the insulating functional layer and the insulating functional layer of the second laminate.
  • the insulating property of the first laminate is formed on the bonding surface between the insulating functional layer of the first laminate and the insulating functional layer of the second laminate.
  • a diffusion layer in which one or both of the material constituting the functional layer and the material constituting the insulating functional layer of the second laminate is diffused is formed.
  • the bond between the first laminate and the second laminate is further strengthened, and the difference in thermal expansion coefficient between the first laminate and the second laminate is increased.
  • the first layered product and the second layered product are cracked or peeled off due to temperature changes after being relaxed by the diffusion layer and incorporated into various products as a later manufacturing process or component. It is possible to prevent a failure such as damage to the general connection.
  • the insulating functional layers of different materials are mixed in one laminate as described above, that is, one or both of the first laminate and the second laminate are two or more different materials.
  • the interface or the diffusion layer may be present at a part of the joint surface between the first laminate and the second laminate.
  • mode of the multilayer electronic component which concerns on this invention, by joining the 1st laminated body and the 2nd laminated body, in the said junction surface, of the conductors contained in a 1st laminated body The ends of one or more conductors abut on the surface of one or more conductors of the conductors included in the second laminate, whereby the conductors included in the first laminate and the conductors included in the second laminate are Are electrically connected.
  • a conductor connection structure for example, a circuit element (for example, an inductor) included in one laminated body to be joined and a circuit element (for example, a capacitor) included in the other laminated body are directly connected. Or one laminated body without via vias or connecting conductors such as connecting conductor lines, such as directly connecting a ground electrode contained in one laminated body and a circuit element contained in the other laminated body. Since the various circuit elements included in and the various circuit elements included in the other laminate can be electrically connected to each other, it is possible to prevent deterioration of electrical characteristics due to the interposition of the connection conductor.
  • “laminated electronic component” typically refers to a composite electronic component including a plurality of circuit elements.
  • the “circuit element” include passive elements such as an inductor, a capacitor, a resistor, and a varistor.
  • an active element such as a transistor and an FET, an integrated circuit including an active element such as an IC, or
  • Various circuit elements such as connection conductors such as conductor lines and interlayer connection conductors (vias, through holes, etc.), ground electrodes, and terminal electrodes may be included in the multilayer electronic component (the manufacturing method of the present invention) The same applies to the above).
  • the multilayer electronic component referred to in the present invention is grasped from the functional aspect (component type), for example, a filter such as a band pass filter, a low pass filter and a high pass filter, a duplexer, a diplexer, a power amplifier module, and a high frequency superposition module.
  • a filter such as a band pass filter, a low pass filter and a high pass filter
  • a duplexer such as a duplexer, a diplexer, a power amplifier module, and a high frequency superposition module.
  • Various electronic components or electronic modules such as isolators and sensors are included in the multilayer electronic component referred to in the present invention.
  • the method for manufacturing a multilayer electronic component and the multilayer electronic component according to the present invention it is possible to efficiently manufacture a multilayer electronic component including a plurality of ceramic laminates having different stacking directions.
  • FIG. 1 is a perspective view schematically showing steps of a method for manufacturing a multilayer electronic component according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 3 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 4 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 5 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 6 is a view schematically showing a cross section (cross section AA in FIG. 5) of the first laminated stick in the embodiment.
  • FIG. 7 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 1 is a perspective view schematically showing steps of a method for manufacturing a multilayer electronic component according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 3 is
  • FIG. 8 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 9 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 10 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 11 is a view schematically showing a cross section (BB cross section in FIG. 0) of the second laminated stick in the embodiment.
  • FIG. 12 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 13 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 14 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 15 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 16 is a view schematically showing a cross section (DD cross section of FIG. 15) of the third laminated sheet in the embodiment.
  • FIG. 17 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 18 is a perspective view schematically showing the steps of the manufacturing method according to the embodiment.
  • FIG. 19 is a view schematically showing a cross section (a state after firing) of a chip produced by cutting the third laminated sheet in the embodiment.
  • FIG. 20A is a diagram schematically illustrating a cross section (a state after firing) of a chip manufactured by cutting the third laminated sheet in the modification of the embodiment.
  • FIG. 20B is a diagram schematically illustrating a cross section (a state after firing) of a chip manufactured by cutting the third laminated sheet in another modification of the embodiment.
  • FIG. 20C is a view schematically showing a cross section (a state after firing) of a chip manufactured by cutting the third laminated sheet in still another modification of the embodiment.
  • FIG. 21A is a diagram schematically showing a chip cross section (a state before firing) of still another modified example of the embodiment.
  • FIG. 21B is a sectional view schematically showing a state after firing of the chip shown in FIG. 21A.
  • FIG. 22A is a view schematically showing a chip cross section (a state before firing) of still another modified example of the embodiment.
  • FIG. 22B is a cross-sectional view schematically showing a state after firing of the chip shown in FIG. 22A.
  • FIG. 23A is a view schematically showing a chip cross section (a state before firing) of still another modified example of the embodiment.
  • FIG. 23B is a cross-sectional view schematically showing a state after firing of the chip shown in FIG. 23A.
  • FIG. 24 is a perspective view schematically showing an electronic component (filter) manufactured by applying the manufacturing method of the embodiment in a transparent state.
  • FIG. 25 is a cross-sectional view schematically showing another example of the third laminated sheet produced by applying the manufacturing method of the embodiment, similarly to FIG.
  • FIG. 1 and the subsequent drawings three-dimensional coordinates including an x axis, a y axis, and a z axis that are orthogonal to each other are shown as appropriate.
  • the x axis The direction will be described as the horizontal direction (horizontal direction / left-right direction), the y-axis direction as the vertical direction (horizontal direction / front-back direction), and the z-axis direction as the height direction (vertical direction / vertical direction).
  • each wiring layer (inner conductor 12) is stacked in the vertical direction, in other words, each wiring layer includes an xy plane (including an x axis and a y axis).
  • the first laminated bodies 51 and 52 that extend horizontally in parallel to the plane) and each wiring layer (inner conductor 22) are laminated in the horizontal direction on the contrary, in other words, each wiring layer has a yz plane (y-axis).
  • a multilayer electronic component 41 (hereinafter, sometimes referred to as a chip) that includes a second laminated body 53 that extends perpendicularly in parallel to the plane including the z-axis).
  • the first laminates 51 and 52 include a left first laminate 51 joined to the left side of the second laminate 53 and a right first laminate 52 joined to the right side of the second laminate 53. .
  • first, an unfired green sheet 11 formed of a ceramic material mainly composed of alumina is prepared.
  • the first ceramic sheets 11a, 11b, 11c, 11d, 11e, and 11f are applied by applying a conductive paste on the surface and printing a predetermined conductor pattern 12 corresponding to each wiring layer of the first laminates 51 and 52. , 11g (see FIG. 2).
  • the conductor patterns 12 printed on the first ceramic sheets 11a to 11g are formed so as to be arranged in a matrix in the vertical and horizontal directions corresponding to the number of chips 41 to be manufactured.
  • the first ceramic sheets 11a to 11g need an interlayer connection conductor such as a via hole in addition to the conductor pattern 12 corresponding to the circuit element to be arranged in each wiring layer of the first laminate as described above.
  • the second ceramic sheets 21a to 21d described later with reference to FIG. 7 are also formed.
  • various ceramic materials such as ferrite (especially with an inductor), barium titanate (especially with a capacitor), and zinc oxide (especially with a varistor) can be used as the ceramic material constituting the green sheet. Materials can be included.
  • the first ceramic sheets 11a to 11g are aligned in a predetermined order while being aligned as shown in FIG. 2, and these are integrated by thermocompression bonding, as shown in FIG. A sheet 13 is obtained.
  • the first laminated sheet 13 is cut into strips to obtain a first laminated stick 13a.
  • the first laminated stick 13a has a cross section (AA cross section in FIG. 5) as shown in FIG.
  • the conductor pattern 12 is formed and laminated so that the laminated bodies 51 are arranged.
  • a plurality of sets of conductor patterns 12 constituting the right first laminated body 52 and the left first laminated body 51 are arranged. It is equipped as such.
  • the second laminated stick is produced.
  • an unfired green sheet is prepared in the same manner as in the production of the first laminated sheet, and a predetermined paste corresponding to each wiring layer of the second laminated body 53 is applied by applying a conductive paste to the surface.
  • the second ceramic sheets 21 a, 21 b, 21 c, and 21 d printed with the conductor pattern 22 are prepared in a number corresponding to each wiring layer of the second laminate 53.
  • the conductor patterns 22 of the second ceramic sheets 21a to 21d are arranged in a matrix form in the vertical and horizontal directions by the number corresponding to the number of chips to be produced. Form.
  • FIG. 23 shows a cross section (cross section BB in FIG. 10) of the second laminated stick 23a.
  • FIG. 16 shows an enlarged cross section of the third laminated sheet 33.
  • adjacent first laminated sticks 13a and second laminated sticks 23a are joined, and the conductor 12 included in the first laminated stick 13a and the conductor 22 included in the second laminated stick 23a are electrically connected. It is connected.
  • the conductors 12 and 22 shown in the drawings of the present application are for illustrating the concept of the present invention, and the conductor pattern in the present invention is not limited to the illustrated example. Of course, various shapes, the number of arrangements, and connection forms of conductors may be provided.
  • the third laminated sheet 33 is cut in a grid shape (division shape) in the vertical direction and the horizontal direction at the cutting line 40, and the chip 41 is formed as shown in FIG. obtain.
  • the entire chip 41 becomes a single sintered body having a continuous ceramic layer (insulating functional layer).
  • external electrodes terminal electrodes
  • the first laminates 51 and 52 and the second laminate 53 are made of different materials, as a whole (as a whole laminate) or partially (a part of the ceramic layers of the laminate).
  • the diffusion layer 45 may be formed on the joint surface between the two laminates formed of different materials.
  • the diffusion layer is formed of the first laminated body 51, 52 and the second laminated body as shown in FIG. 20A depending on the material constituting the ceramic layers of the first laminated body and the second laminated body. 53, each material contained in 53 is diffused toward the other laminate (the second laminate 53 for the first laminate 51, 52 and the first laminate 51, 52 for the second laminate 53).
  • the material included in the first laminates 51 and 52 may be a diffusion layer diffused toward the second laminate 53 as shown in FIG. 20B, or conversely, As shown in FIG. 20C, there may be a diffusion layer in which the material included in the second stacked body 53 is diffused toward the first stacked bodies 51 and 52.
  • 20A to 20C conceptually show the case where the materials of the first laminated bodies 51 and 52 and the second laminated body 53 are made different for the entire laminated bodies, and the portions between the laminated bodies are partially shown.
  • the diffusion layer 45 continuous from the upper surface of the chip to the lower surface of the chip is not formed in the height direction as shown in FIG. 20, but is partially (discontinuous in the height direction).
  • a diffusion layer or an interface may be formed only at a portion where different materials are in contact with each other.
  • the first laminates 51 and 52 are divided into a first ceramic layer 81 made of a first ceramic material and a second different from the first ceramic material.
  • the second laminated body 53 has a structure in which the first ceramic layer 81 made of the first ceramic material is laminated, and the second ceramic layer 82 made of the ceramic material is laminated.
  • an interface or a diffusion layer may be partially formed in the height direction of the chip.
  • FIG. 22A when the layer of the second laminate 53 in contact with the first laminates 51 and 52 is the second ceramic layer 82, or as shown in FIG. 23A (before firing).
  • the layer of the second laminate 53 in contact with the first laminates 51 and 52 is the first ceramic layer 81
  • FIGS. 22B and 23B a portion in the height direction of the chip is shown as shown in FIGS. 22B and 23B, respectively.
  • an interface or a diffusion layer is formed (portion where the first ceramic layer 81 and the second ceramic layer 82 are in contact). The same applies when three or more types of ceramic layers are laminated.
  • FIG. 24 shows a configuration example of a filter chip manufactured based on the above embodiment.
  • the conductor for example, inductor conductor 61
  • the stacked conductors for example, the capacitor electrode 62
  • the inductor conductor 61 of the first multilayer body 51, 52 and the capacitor electrode 62 of the second multilayer body 53 are electrically connected directly or at a short distance.
  • FIG. 25 shows another configuration example of the third laminated sheet.
  • the center of the first laminated stick 13a portion in the third laminated sheet 33 is cut in the longitudinal direction to produce individual chips 41.
  • the 73a portion along the cutting line 40 is also possible to cut the 73a portion along the cutting line 40 to form a chip 44 composed of only two stacked bodies.
  • the second laminated stick 73a similarly to the first laminated stick 13a, the second laminated stick 73a has a pair of conductor patterns 22 symmetrically (conducting conductors on the left and right portions of the second laminated stick 73a, respectively). A pattern 22) may be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Filters And Equalizers (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 未焼成のセラミック材料からなる絶縁性機能層と、回路素子の一部を構成する導体を縦横に複数配列した導体層とを積層した第一積層シートを作る工程、同様に第二積層シートを作る工程、第一積層シートを棒状に切断し第一積層スティックを得る工程、第二積層シートを同様に切断し第二積層スティックを得る工程、第二積層スティックを90°回転させ第一積層スティックと第一積層スティックとの間に挟むように配置しこれらを熱圧着して一体化し第三積層シートを得る工程、第一積層スティックの一部である第一積層体と第二積層スティックの一部である第二積層体とが各々に含まれるように第三積層シートを縦横に切断し第三積層シートをチップ化する工程、及びチップ化した未焼成チップを焼成し第一積層体と第二積層体が一体化した焼結体を得る工程を含む。

Description

積層型電子部品の製造方法および積層型電子部品
 本発明は、積層型電子部品の製造方法および積層型電子部品に係り、特に、内部導体層の積層方向が異なる複数のセラミック積層体を含む電子部品に関する。
 様々な回路機能を実現するため、回路素子や接続導体等の回路要素を積層体の複数の配線層に分散して配置した積層型の電子部品が提供されている。
 一方、電子機器の小型・多機能化の進展に伴い、これを構成する電子部品にも小型・薄型(低背)化ならびに多機能・高集積化の強い要請がある。例えば、携帯電話機や無線LAN装置の主要構成部品のひとつである積層セラミック電子部品のフィルタには、薄い誘電体(積層体)に電極を形成し、それらを重ねてインダクタやキャパシタを形成することにより構成されたセラミック積層体が利用され、小型低背化に有利である。また、セラミック積層体は、樹脂系のガラスエポキシ積層体等と比較して、耐熱性、熱膨張、熱伝導率、耐薬品性等において優れた特性を備えており、特に高集積化が要求される電子部品の配線用としても利用されている。このようにセラミック積層体を含む電子部品は、様々な高機能を要する高周波電子部品に広く利用されている。
 他方、電子部品を小型すればその分、内部に設けられた回路要素(回路素子や接続導体等)同士が必然的に接近することとなり、浮遊容量や望ましくない電磁界結合によって当該電子部品の特性劣化が生じやすくなる。このため、積層方向が異なる複数の積層体によって電子部品を構成するなど、回路要素同士の相互干渉を防ぐ部品構造の提案がなされている(例えば下記特許文献1~4参照)。
 特許文献1:特開平11-195873号公報
 特許文献2:特開2004-31743号公報
 特許文献3:特開2009-170737号公報
 特許文献4:特許第3425065号公報
 ところで、前記特許文献記載の構造は、部品内部で導体の積層方向を変える工夫が施されているものの、電子部品を構成する各積層体は別々に焼成され、これらを積層方向が異なるように接着剤で接着して個々の電子部品を作製するものである(特許文献2,特許文献3の段落0038~0039等参照)。したがって、これら文献記載の構造は、製造に手間を要し量産性に劣る面がある。
 例えば、チップフィルタを製造することを想定すると、個々のチップサイズは現状で縦横高さの寸法がそれぞれ例えば1mm,0.5mm,0.35mm程度であり、さらに小さな寸法となる積層体同士を接着してチップを作製することは現実には困難を伴うと考えられる。なぜなら、単純に積層体同士が接着されれば良いというものではなく、両積層体に含まれる導体同士を電気的に接続する必要もあるから、接着にあたっては正確な位置決め固定が必要であり、しかも対象物(チップサイズ)が小さくなるほど位置決め誤差は相対的に大きくなり高精度の位置決めは格段に難しくなるから、これを部品ひとつひとつについて逐一行い、接着作業を行うことは容易ではなく、上記文献記載の構造は量産品として現実的な構造とは言えない。
 また、個々の積層体を焼成するのは取扱いが煩雑であるばかりでなく、集合状態のときと比較して形状の安定性が低下する。特に、小型に構成された個々の積層体を焼成したときに変形が生じ、積層体同士を接合するときに内部電極同士の接続がずれて接続不良を生じるおそれがある。したがって従来の部品構造では、積層方向が異なる複数のセラミック積層体を含む積層型電子部品を、歩留り・生産性ともに良好に製造することは難しい。
 したがって、本発明の目的は、小型化しても良好な電気特性を得やすい積層方向の異なる複数のセラミック積層体を含む積層型電子部品の新たな部品構造を得る点にあり、特に、このような積層型電子部品を効率良く製造することにある。
 前記課題を解決し目的を達成するため、本発明に係る積層型電子部品の製造方法は、(1)未焼成のセラミック材料を主成分とする1層以上の絶縁性機能層と、回路素子の少なくとも一部を構成する導体を縦方向と横方向とに二次元的に複数配列した1層以上の導体層とを積層した第一積層シートを作製する工程と、(2)未焼成のセラミック材料を主成分とする1層以上の絶縁性機能層と、回路素子の少なくとも一部を構成する導体を縦方向と横方向とに二次元的に複数配列した1層以上の導体層とを積層した第二積層シートを作製する工程と、(3)前記縦方向および横方向のいずれかに配列された複数の導体が含まれるように前記第一積層シートをスティック状に切断し、これにより複数本の第一積層スティックを得る工程と、(4)前記縦方向および横方向のいずれかに配列された複数の導体が含まれるように前記第二積層シートをスティック状に切断し、これにより複数本の第二積層スティックを得る工程と、(5)前記第二積層スティックを、当該第二積層スティックの長手方向の軸周りに90°回転させた状態で前記第一積層スティックと前記第一積層スティックとの間に挟むように配置し、これら第一積層スティックおよび第二積層スティックを熱圧着して一体化することにより第三積層シートを作製する工程と、(6)前記第一積層スティックの一部である第一積層体と前記第二積層スティックの一部である第二積層体とが各々に含まれるように前記第三積層シートを縦方向と横方向とに切断することにより当該第三積層シートをチップ化する工程と、(7)当該チップ化した未焼成のチップを焼成することにより前記第一積層体と前記第二積層体とが一体化した焼結体を得る工程とを含む。
 本発明に係る積層型電子部品の製造方法は、積層方向が異なる2以上のセラミック積層体を接合した構造を有する電子部品を製造する方法であるが、従来提案されているように焼成後の個々の積層体を接合するのではなく、積層スティック(第一積層スティックおよび第二積層スティック)として棒状の集合状態(同一の積層体を複数含んだ状態)となった積層体同士を熱圧着(加熱および加圧)により接合し、積層方向が異なる積層体が接合されかつこれら積層方向が異なる積層体(第一積層体および第二積層体)が集合状態(積層方向が異なる積層体の組が複数集まった状態)となった第三積層シートを作製する。なお、この第三積層シートを作製するときの温度は、第一積層スティックと第二積層スティックとが接合されるが後に行う焼成温度(例えば700~1600℃)より低い温度とする。この第三積層シート作製時の具体的な加熱温度は、絶縁性機能層や導体の材料によっても異なり一概に規定することは出来ないが、例えば30~200℃程度とすれば良い。
 このように本発明では、電子部品を構成する複数の積層体(第一積層体,第二積層体)を接合するときに個々の積層体を取り扱う必要がなく、集合状態でまとめて接合を行うことが出来るから、作業性に優れ、生産性も良好である。また、焼成は積層体を接合した後に行うから、焼成による形状誤差の発生も抑えることが出来る。
 上記「絶縁性機能層」は、典型的には、誘電体セラミック材料により形成した絶縁層であるが、これに限らず、例えば積層基板内に配置する素子に対応して磁性体セラミック材料や半導体セラミック材料など様々な絶縁性セラミック材料からなる材料層であって良い。また、ひとつの積層体に異なる材料の絶縁性機能層を混在させることも出来る。
 また、本発明において電子部品を構成する積層体は、2つ(第一積層体と第二積層体のみ)に限られるものではない。例えば、3個の積層体により当該電子部品を構成しても良いし、4個以上の積層体を接合した構造とすることも出来る。なお、このように3個以上の積層体を含む場合には、上記第一積層スティックおよび第二積層スティックに加えて、第三の積層スティック、あるいはそれ以上の(第四、第五、…の)積層スティックを同様に形成してこれらを適宜組み合わせて上記第三積層シートを作製すれば良い。
 さらに、本発明において電子部品に含まれる積層体の積層方向は、総ての積層体が異なる積層方向を有している必要は必ずしもなく、例えば、第一積層体、第二積層体および第三積層体の3つの積層体がこの順に一列に接合された電子部品において、第一積層体と第三積層体とは積層方向が等しく(例えば水平方向または垂直方向)、これらと第二積層体の積層方向が異なる(例えば垂直方向または水平方向)など、同一の積層方向の積層体が複数含まれていても構わない。
 また前記第一積層シート並びに前記第二積層シートを作製する方法は特に問わないが、一例を述べれば、未焼成のセラミック材料を主成分とするセラミックグリーンシートの表面に、回路素子の少なくとも一部を構成する導体を縦方向と横方向とに二次元的に配列されるように複数印刷した第一セラミックシートを複数枚作製し、これら複数枚の第一セラミックシートを重ね合わせて熱圧着し一体化することにより前記第一積層シートを作製する。同様に第二積層シートを作製するには、例えば、未焼成のセラミック材料を主成分とするセラミックグリーンシートの表面に、回路素子の少なくとも一部を構成する導体を縦方向と横方向とに二次元的に配列されるように複数印刷した第二セラミックシートを複数枚作製し、これら複数枚の第二セラミックシートを重ね合わせて熱圧着し一体化することにより前記第二積層シートを作製すれば良い。
 なお、本発明において積層シート(第一積層シートおよび第二積層シート)を作製する方法は上記以外にも、例えば、導体を形成する導体ペーストと、絶縁性機能層を形成する絶縁体ペーストとを交互に印刷して積層するなど、他の方法によることも可能である。
 一方、本発明に係る積層型電子部品は、セラミック材料を主成分とする1層以上の絶縁性機能層と1層以上の導体層とが積層された第一積層体と、セラミック材料を主成分とする1層以上の絶縁性機能層と1層以上の導体層とが積層されかつ前記第一積層体と接合された第二積層体とを備えた電子部品であって、前記第一積層体の積層方向と前記第二積層体の積層方向とが互いに交差し、前記第一積層体と前記第二積層体とが、焼成により一体化した焼結体となっている。
 また、前記第一積層体の導体層の積層方向と、前記第二積層体の積層方向とが、互いに略直交している場合がある。
 このように積層方向が異なる複数の積層体を含む部品構造とすれば、例えば、第一積層体と第二積層体とにそれぞれインダクタを配置する場合にこれらの間の電磁結合を防いだり、第一積層体と第二積層体とにそれぞれ配置した回路要素間に生じる寄生容量を低減するなど、当該電子部品に含まれる回路要素間の相互干渉を防いで良好な電気特性を得ることが出来る。
 また、上記本発明に係る積層型電子部品の一態様では、第一積層体の絶縁性機能層と、第二積層体の絶縁性機能層とが、同一材料からなり、これら第一積層体の絶縁性機能層と第二積層体の絶縁性機能層の接合面は連続した焼結体を成している。
 さらに、本発明に係る積層型電子部品の別の一態様では、第一積層体の絶縁性機能層と、第二積層体の絶縁性機能層とが、異なる材料からなり、これら第一積層体の絶縁性機能層と第二積層体の絶縁性機能層の接合面に界面が存在する。
 さらに、本発明に係る積層型電子部品のさらに別の一態様では、第一積層体の絶縁性機能層と第二積層体の絶縁性機能層との接合面に、第一積層体の絶縁性機能層を構成する材料および前記第二積層体の絶縁性機能層を構成する材料のうちのいずれか一方または双方の材料が拡散した拡散層が形成されている。
 このような拡散層が形成された部品構造によれば、第一積層体と第二積層体の結合がより強固になると共に、第一積層体と第二積層体間の熱膨張率の差が当該拡散層によって緩和され、後の製造工程や部品として各種製品に組み込まれた後における温度変化によって第一積層体と第二積層体との間に亀裂や剥離が生じたり両積層体間の電気的な接続に損傷を受けるなどの障害が生じることを防ぐことが出来る。
 なお、本発明では、前述のようにひとつの積層体に異なる材料の絶縁性機能層を混在させること、すなわち、第一積層体と第二積層体のいずれか一方または双方が2以上の異なる材料からなる絶縁性機能層を有することがあり、この場合には、当該第一積層体と第二積層体の接合面の一部に上記界面あるいは拡散層が存在することがある。
 また、本発明に係る積層型電子部品のさらに別の一態様では、第一積層体と第二積層体との間に、当該第一積層体に含まれる材料および第二積層体に含まれる材料以外の第三の材料、例えば接着材料(例えば熱を加えることにより接着作用を果たすことが可能な材料)が介在されておらず、これら第一積層体と第二積層体とが直接接合されている。
 また、本発明に係る積層型電子部品のさらに別の一態様では、第一積層体と第二積層体とが接合されることにより当該接合面において、第一積層体に含まれる導体のうちの1以上の導体の端部が第二積層体に含まれる導体のうちの1以上の導体の表面に当接し、これにより当該第一積層体に含まれる導体と第二積層体に含まれる導体とが電気的に接続されている。
 このような導体の接続構造を備えれば、例えば、接合される一方の積層体に含まれる回路素子(例えばインダクタ)と、他方の積層体に含まれる回路素子(例えばキャパシタ)とを直接接続したり、あるいは、一方の積層体に含まれるグランド電極と、他方の積層体に含まれる回路素子とを直接接続するなど、ビアや接続用の導体線路等の接続導体を介さずに一方の積層体に含まれる様々な回路要素と他方の積層体に含まれる様々な回路要素とを電気的に接続することが出来るから、接続導体が介在することによる電気特性の劣化を防ぐことが出来る。
 本発明における「積層型電子部品」とは、典型的には、複数の回路素子を含む複合電子部品を言う。「回路素子」としては、例えば、インダクタ、キャパシタ、抵抗、バリスタ等の受動素子が挙げられるが、そのほかにも、トランジスタやFETのような能動素子、ICのような能動素子を含む集積回路、あるいは、導体線路や層間接続導体(ビア、スルーホール等)のような接続導体、グランド電極、端子電極など、各種の回路要素が当該積層型電子部品に含まれることがある(前記本発明の製造方法においても同様)。
 さらに本発明に言う積層型電子部品を機能面(部品の種類)から捉えた場合には、例えば、バンドパスフィルタ、ローパスフィルタおよびハイパスフィルタ等のフィルタ、デュプレクサ、ダイプレクサ、パワーアンプモジュール、高周波重畳モジュール、アイソレータ、センサなど様々な電子部品ないし電子モジュールが本発明に言う積層型電子部品に含まれる。
 本発明に係る積層電子部品の製造方法および積層電子部品によれば、積層方向の異なる複数のセラミック積層体を含む積層型電子部品を効率良く製造することが可能となる。
 本発明の他の目的、特徴および利点は、図面に基づいて述べる以下の本発明の実施の形態の説明により明らかにする。なお、本発明は下記の実施形態に限定されるものではなく、請求の範囲に記載の範囲内で種々の変更を行うことができることは当業者に明らかである。また、各図中、同一の符号は、同一又は相当部分を示す。
図1は、本発明の一実施形態に係る積層型電子部品の製造方法の工程を示す模式的に示す斜視図である。 図2は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図3は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図4は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図5は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図6は、前記実施形態における第一積層スティックの断面(図5のA-A断面)を模式的に示す図である。 図7は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図8は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図9は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図10は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図11は、前記実施形態における第二積層スティックの断面(図0のB-B断面)を模式的に示す図である。 図12は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図13は、前記実施形態に係る製造方法の工程を模式的に示す斜図である。 図14は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図15は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図16は、前記実施形態における第三積層シートの断面(図15のD-D断面)を模式的に示す図である。 図17は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図18は、前記実施形態に係る製造方法の工程を模式的に示す斜視図である。 図19は、前記実施形態において第三積層シートを切断して作製したチップの断面(焼成後の状態)を模式的に示す図である。 図20Aは、前記実施形態の変形例において第三積層シートを切断して作製したチップの断面(焼成後の状態)を模式的に示す図である。 図20Bは、前記実施形態の別の変形例において第三積層シートを切断して作製したチップの断面(焼成後の状態)を模式的に示す図である。 図20Cは、前記実施形態のさらに別の変形例において第三積層シートを切断して作製したチップの断面(焼成後の状態)を模式的に示す図である。 図21Aは、前記実施形態のさらに別の変形例のチップ断面(焼成前の状態)を模式的に示す図である。 図21Bは、前記図21Aに示したチップの焼成後の状態を模式的に示す断面図である。 図22Aは、前記実施形態のさらに別の変形例のチップ断面(焼成前の状態)を模式的に示す図である。 図22Bは、前記図22Aに示したチップの焼成後の状態を模式的に示す断面図である。 図23Aは、前記実施形態のさらに別の変形例のチップ断面(焼成前の状態)を模式的に示す図である。 図23Bは、前記図23Aに示したチップの焼成後の状態を模式的に示す断面図である。 図24は、前記実施形態の製造方法を適用して作製した電子部品(フィルタ)を模式的に透視状態で示す斜視図である。 図25は、前記実施形態の製造方法を適用して作製した第三積層シートの別の例を前記図16と同様に模式的に示す断面図である。
 以下、図1から図19に基づいて本発明の一実施形態に係る積層型電子部品の製造方法を順に説明する。なお、図1および以降の図においては、互いに直交するx軸、y軸およびz軸からなる3次元座標を適宜示しており、これらの図ならびに本実施形態の説明ではこれら座標軸のうち、x軸方向を横方向(水平方向/左右方向)、y軸方向を縦方向(水平方向/前後方向)、z軸方向を高さ方向(垂直方向/上下方向)として説明を行う。
 また、本実施形態の製造方法は、図19に示すように、各配線層(内部導体12)が垂直方向に積層された、言い換えれば、各配線層がxy平面(x軸とy軸を含む平面)に平行に水平に広がる第一積層体51,52と、これとは逆に各配線層(内部導体22)が水平方向に積層された、言い換えれば、各配線層がyz平面(y軸とz軸を含む平面)に平行に垂直に広がる第二積層体53とからなる積層型電子部品41(以下、チップと言うことがある)を製造するものである。また、第一積層体51,52は、第二積層体53の左側に接合される左第一積層体51と、第二積層体53の右側に接合される右第一積層体52とからなる。
(1) 第一積層シート及び第一積層スティックの作製
 本実施形態の製造方法では、図1に示すようにまず、アルミナを主成分とするセラミック材料により形成した未焼成のグリーンシート11を用意し、その表面に導電性ペーストを塗布して第一積層体51,52の各配線層に対応した所定の導体パターン12を印刷することにより第一セラミックシート11a,11b,11c,11d,11e,11f,11gを作製する(図2参照)。これら第一セラミックシート11a~11gに印刷する導体パターン12は、作製するチップ41の数に対応した数だけ縦方向と横方向とにマトリックス状に配列するように形成する。
 なおこのとき、第一セラミックシート11a~11gには、上記のように第一積層体の各配線層に配置すべき回路要素に対応した導体パターン12のほか、ビアホール等の層間接続導体を必要であれば形成する(後に図7を参照して述べる第二セラミックシート21a~21dについても同様)。また上記グリーンシートを構成するセラミック材料には、アルミナのほか、例えばフェライト(特にインダクタを備える場合)やチタン酸バリウム(特にキャパシタを備える場合)、酸化亜鉛(特にバリスタを備える場合)など様々なセラミック材料を含めることが可能である。
 次に、上記第一セラミックシート11a~11gを図2に示すように位置合わせしつつ所定の順序で重ね合わせ、これらを熱圧着して一体化することにより、図3に示すように第一積層シート13を得る。
 そして、図4~図5に示すように上記第一積層シート13を短冊状に切断し、第一積層スティック13aを得る。この第一積層スティック13aは、図6にその断面(図5のA-A断面)を示すように、左半分には前述した右第一積層体52が、右半分には前述した左第一積層体51がそれぞれ配置されるように導体パターン12の形成および積層を行う。なお、当該第一積層スティック13aの長さ方向(縦方向/y軸方向)には、当該右第一積層体52および左第一積層体51を構成する導体パターン12の組が複数配列されるように備えられている。
(2) 第二積層シート及び第二積層スティックの作製
 同様に、第二積層スティックの作製を行う。図7に示すように、前記第一積層シート作製時と同様に未焼成のグリーンシートを用意し、その表面に導電性ペーストを塗布することにより第二積層体53の各配線層に対応した所定の導体パターン22を印刷した第二セラミックシート21a,21b,21c,21dを第二積層体53の各配線層に対応した枚数作製する。これら各第二セラミックシート21a~21dの導体パターン22は、前記第一積層シート13と同様に、作製するチップの数に対応した数だけ縦方向と横方向とにそれぞれマトリックス状に配列するように形成する。
 次に、第二セラミックシート21a~21dを図7に示すように位置合わせしつつ所定の順序で重ね合わせ、これらを熱圧着して一体化することにより、図8に示すように第二積層シート23を作製する。その後、図9~図10に示すように第二積層シート23を短冊状に切断し、第二積層スティック23aを得る。この第二積層スティック23aの断面(図10のB-B断面)を図11に示す。
(3) 第三積層シートの作製(積層シートの再編)
 そして、図12に示すように第二積層スティック23aの各配線層22が垂直に立つように第二積層スティック23aを長手方向(y軸)の周りに90°回転させ、この状態で図13に示すように第一積層スティック13aの間に第二積層スティック23aを挟み込むように第一積層スティック13aと第二積層スティック23aとを交互に配置し、図14に示すようにこれら第一積層スティック13aと第二積層スティック23aとを熱圧着して一体化することにより、図15に示すように第三積層シート33を作製する。
 図16はこの第三積層シート33の断面を拡大して示すものである。この図に示すように隣り合う第一積層スティック13aと第二積層スティック23aとが接合され、第一積層スティック13aに含まれる導体12と第二積層スティック23aに含まれる導体22とが電気的に接続されている。なお、本願の図面に示した各導体12,22は本発明の概念を示すためのものであって、本発明における導体パターンは図示の例に限定されるものではなく、作製する電子部品の種類に応じて様々な形状や配設数、導体相互の接続形態を有していて良いことは勿論である。
(4) チップ化
 図16および図17に示すように切断線40において第三積層シート33を縦方向と横方向とに方眼状(さいの目状)に切断し、図18に示すようにチップ41を得る。
 その後、個々のチップを焼成する。これにより、図19に示すように第一積層体(左第一積層体51および右第一積層体52)と第二積層体53とが焼結して両積層体51~53の界面が消滅して、チップ41全体としてセラミック層(絶縁性機能層)が連続したひとつの焼結体となる。チップ焼成後には、チップ41の外表面に外部電極(端子電極)を形成する。
 なお、前に述べたように第一積層体51,52と第二積層体53とを全体的に(積層体全体として)又は部分的に(積層体の一部のセラミック層を)異なる材料により形成することも可能であり、この場合には、図20Aに示すように異なる材料により形成した両積層体の接合面に拡散層45が形成されることがある。またこの拡散層は、第一積層体および第二積層体のセラミック層を構成する材料をどのようなものとするかによって、図20Aに示すように第一積層体51,52と第二積層体53に含まれる各材料が互いに相手方の積層体(第一積層体51,52にとっては第二積層体53、第二積層体53にとっては第一積層体51,52)に向けそれぞれ拡散したものとなっている場合もあるし、図20Bに示すように第一積層体51,52に含まれる材料が第二積層体53に向け拡散した拡散層となっている場合もあるし、あるいは逆に、図20Cに示すように第二積層体53に含まれる材料が第一積層体51,52に向け拡散した拡散層となっている場合もある。
 なお、上記図20A~図20Cは、第一積層体51,52と第二積層体53について各積層体全体として材料を異ならせた場合を概念的に示すものであり、両積層体間で部分的に材料を異ならせた場合には、図20に示すように高さ方向にチップ上面からチップ下面まで連続した拡散層45が形成されるのではなく、部分的に(高さ方向に途切れ途切れに/異なる材料が接する部分のみに)拡散層や界面が形成されることがある。
 具体的には、図21A(チップ焼成前)に示すように第一積層体51,52を、第一のセラミック材料からなる第一セラミック層81と、この第一のセラミック材料とは異なる第二のセラミック材料からなる第二セラミック層82とを積層した構造とすると共に、第二積層体53を前記第一のセラミック材料からなる第一セラミック層81を積層した構造としたような場合には、チップ焼成後には図21Bに示すように、チップの高さ方向について部分的に界面や拡散層が形成されることがある。
 同様に、図22A(焼成前)に示すように第二積層体53の第一積層体51,52に接する層を第二セラミック層82とした場合や、あるいは図23A(焼成前)に示すように第二積層体53の第一積層体51,52に接する層を第一セラミック層81とした場合には、焼成後には、図22Bおよび図23Bにそれぞれ示すようにチップの高さ方向について部分的に(第一セラミック層81と第二セラミック層82とが接する部分)に界面や拡散層が形成される。なお、3種類以上のセラミック層を積層した場合も同様である。
 図24は上記実施形態に基づいて作製したフィルタチップの構成例を示すものである。この図に示すように第一積層体(左第一積層体51および右第一積層体52)の内部配線層に形成した導体(例えばインダクタ導体61)と第二積層体53の内部配線層に配した導体(例えばキャパシタ電極62)の積層方向を直交させ、あるいは、当該第一積層体51,52のインダクタ導体61と第二積層体53のキャパシタ電極62とを直接又は短距離で電気的に接続することにより当該フィルタ43を小型低背化しても良好な電気特性を確保することが出来る。
 さらに、図25は第三積層シートの別の構成例を示すものである。前記実施形態(図16)では、縦方向について第三積層シート33内の第一積層スティック13a部分の中央を切断して個々のチップ41を作製したが、図25に示すように第二積層スティック73a部分についても切断線40において切断を行い、2つの積層体のみからなるチップ44を構成することも可能である。なおこの場合には、第二積層スティック73aにも前記第一積層スティック13aと同様に、左右対称に導体パターン22の組を(当該第二積層スティック73aの左側部分と右側部分とにそれぞれに導体パターン22を)形成しておけば良い。
 さらに、これら図25および図16に示した以外にも、本発明を適用すれば、様々な本数・配列順序で積層スティックを組み合わせて第三積層シートを作製し、チップを構成することが可能であることは当業者に明らかである。
 11 セラミックグリーンシート
 11a,11b,11c,11d,11e,11f,11g 第一セラミックシート
 12,22,61,62 内部導体
 13 第一積層シート
 13a 第一積層スティック
 21a,21b,21c,21d 第二セラミックシート
 23 第二積層シート
 23a,73a 第二積層スティック
 33 第三積層シート
 40 チップ化のための切断線
 41,42,43,44 積層型電子部品(チップ)
 45 拡散層
 51 第一積層体(左第一積層体)
 52 第一積層体(右第一積層体)
 53 第二積層体
 81 第一セラミック層
 82 第二セラミック層

Claims (9)

  1.  未焼成のセラミック材料を主成分とする1層以上の絶縁性機能層と、回路素子の少なくとも一部を構成する導体を縦方向と横方向とに二次元的に複数配列した1層以上の導体層とを積層した第一積層シートを作製する工程と、
     未焼成のセラミック材料を主成分とする1層以上の絶縁性機能層と、回路素子の少なくとも一部を構成する導体を縦方向と横方向とに二次元的に複数配列した1層以上の導体層とを積層した第二積層シートを作製する工程と、
     前記縦方向および横方向のいずれかに配列された複数の導体が含まれるように、前記第一積層シートをスティック状に切断し、これにより複数本の第一積層スティックを得る工程と、
     前記縦方向および横方向のいずれかに配列された複数の導体が含まれるように、前記第二積層シートをスティック状に切断し、これにより複数本の第二積層スティックを得る工程と、
     前記第二積層スティックを、当該第二積層スティックの長手方向の軸周りに90°回転させた状態で前記第一積層スティックと前記第一積層スティックとの間に挟むように配置し、これら第一積層スティックおよび第二積層スティックを熱圧着して一体化することにより第三積層シートを作製する工程と、
     前記第一積層スティックの一部である第一積層体と前記第二積層スティックの一部である第二積層体とが各々に含まれるように前記第三積層シートを縦方向と横方向とに切断することにより当該第三積層シートをチップ化する工程と、
     当該チップ化した未焼成のチップを焼成することにより前記第一積層体と前記第二積層体とが一体化した焼結体を得る工程と
     を含むことを特徴とする積層型電子部品の製造方法。
  2.  前記第一積層シートを作製する工程は、
     未焼成のセラミック材料を主成分とするセラミックグリーンシートの表面に、回路素子の少なくとも一部を構成する導体を縦方向と横方向とに二次元的に配列されるように複数印刷した第一セラミックシートを複数枚作製する工程と、
     前記複数枚の第一セラミックシートを重ね合わせて熱圧着し一体化することにより前記第一積層シートを得る工程と
     を含み、
     前記第二積層シートを作製する工程は、
     未焼成のセラミック材料を主成分とするセラミックグリーンシートの表面に、回路素子の少なくとも一部を構成する導体を縦方向と横方向とに二次元的に配列されるように複数印刷した第二セラミックシートを複数枚作製する工程と、
     前記複数枚の第二セラミックシートを重ね合わせて熱圧着し一体化することにより前記第二積層シートを得る工程と
     を含む
     請求項1に記載の積層型電子部品の製造方法。
  3.  セラミック材料を主成分とする1層以上の絶縁性機能層と、1層以上の導体層とが積層された第一積層体と、
     セラミック材料を主成分とする1層以上の絶縁性機能層と、1層以上の導体層とが積層され、かつ、前記第一積層体と接合された第二積層体と、
     を備えた電子部品であって、
     前記第一積層体の積層方向と前記第二積層体の積層方向とが、互いに交差し、
     前記第一積層体と前記第二積層体とが、焼成により一体化した焼結体となっている
     ことを特徴とする積層型電子部品。
  4.  前記第一積層体の導体層の積層方向と、前記第二積層体の積層方向とが、互いに略直交している
     請求項3に記載の積層型電子部品。
  5.  前記第一積層体の絶縁性機能層と、前記第二積層体の絶縁性機能層とが、同一材料からなり、
     当該前記第一積層体の絶縁性機能層と第二積層体の絶縁性機能層の接合面は連続した焼結体となっている
     請求項3または4に記載の積層型電子部品。
  6.  前記第一積層体の絶縁性機能層と、前記第二積層体の絶縁性機能層とが、異なる材料からなり、
     当該前記第一積層体の絶縁性機能層と第二積層体の絶縁性機能層の接合面に界面が存在する
     請求項3または4に記載の積層型電子部品。
  7.  前記第一積層体の絶縁性機能層と前記第二積層体の絶縁性機能層との接合面に、前記第一積層体の絶縁性機能層を構成する材料および前記第二積層体の絶縁性機能層を構成する材料のうちのいずれか一方または双方の材料が拡散した拡散層が形成されている
     請求項3または4に記載の積層型電子部品。
  8.  前記第一積層体と前記第二積層体との間に接着材料が介在されていない
     ことを特徴とする請求項3から7のいずれか一項に記載の積層型電子部品。
  9.  前記第一積層体と前記第二積層体とが接合されることにより当該接合面において、前記第一積層体に含まれる導体のうちの1以上の導体の端部が前記第二積層体に含まれる導体のうちの1以上の導体の表面に当接し、これにより当該第一積層体に含まれる導体と第二積層体に含まれる導体とが電気的に接続されている
     請求項3から8のいずれか一項に記載の積層型電子部品。
PCT/JP2011/066560 2010-07-22 2011-07-21 積層型電子部品の製造方法および積層型電子部品 WO2012011527A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180036187.5A CN103026621B (zh) 2010-07-22 2011-07-21 层叠型电子部件的制造方法以及层叠型电子部件
US13/811,167 US8864925B2 (en) 2010-07-22 2011-07-21 Method for producing laminated electronic component, and laminated electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-165398 2010-07-22
JP2010165398A JP5305042B2 (ja) 2010-07-22 2010-07-22 積層型電子部品の製造方法

Publications (1)

Publication Number Publication Date
WO2012011527A1 true WO2012011527A1 (ja) 2012-01-26

Family

ID=45496945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066560 WO2012011527A1 (ja) 2010-07-22 2011-07-21 積層型電子部品の製造方法および積層型電子部品

Country Status (4)

Country Link
US (1) US8864925B2 (ja)
JP (1) JP5305042B2 (ja)
CN (1) CN103026621B (ja)
WO (1) WO2012011527A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192225A (ja) * 2013-03-26 2014-10-06 Ngk Spark Plug Co Ltd 配線基板
JP6179480B2 (ja) * 2013-09-20 2017-08-16 株式会社村田製作所 コンデンサ素子の製造方法および製造装置
KR101514554B1 (ko) * 2013-10-18 2015-04-22 삼성전기주식회사 복합 전자부품 및 그 실장 기판
US9327923B1 (en) * 2014-11-17 2016-05-03 Quintin S. Marx Portable heated ramp and method
JP6578719B2 (ja) 2015-04-14 2019-09-25 Tdk株式会社 コイルとコンデンサを含む積層複合電子部品
KR102306719B1 (ko) * 2015-04-22 2021-09-30 삼성전기주식회사 인쇄회로기판, 그 제조방법, 및 전자부품 모듈
KR102527717B1 (ko) 2018-11-27 2023-05-02 삼성전기주식회사 커패시터 부품
CN110379624B (zh) * 2019-06-27 2021-08-03 成都宏科电子科技有限公司 一种多层芯片电容器的模块化制备方法
JP6977754B2 (ja) 2019-11-13 2021-12-08 Tdk株式会社 アンテナ装置及びこれを備える回路基板
CN116454577A (zh) * 2023-04-07 2023-07-18 大连麻利那电子有限公司 环形器中心导体加工工艺及环形器中心导体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363291A (ja) * 2003-06-04 2004-12-24 Murata Mfg Co Ltd 積層型電子部品およびその製造方法
JP2005203629A (ja) * 2004-01-16 2005-07-28 Murata Mfg Co Ltd 電子部品
JP2009059888A (ja) * 2007-08-31 2009-03-19 Murata Mfg Co Ltd 積層セラミックコンデンサ
JP2009170737A (ja) * 2008-01-18 2009-07-30 Murata Mfg Co Ltd 電子部品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227648B2 (ja) * 1997-01-06 2001-11-12 株式会社村田製作所 多層回路基板及びその製造方法
JP3322199B2 (ja) 1998-01-06 2002-09-09 株式会社村田製作所 多層セラミック基板およびその製造方法
US6228196B1 (en) * 1998-06-05 2001-05-08 Murata Manufacturing Co., Ltd. Method of producing a multi-layer ceramic substrate
JP2004031743A (ja) * 2002-06-27 2004-01-29 Kyocera Corp セラミック部品
JP2007234829A (ja) * 2006-02-28 2007-09-13 Tdk Corp 積層型セラミック電子部品の製造方法
US7808770B2 (en) * 2007-06-27 2010-10-05 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitor
JP4586831B2 (ja) 2007-08-08 2010-11-24 Tdk株式会社 セラミックグリーンシート構造、及び、積層セラミック電子部品の製造方法
US8194391B2 (en) * 2007-12-21 2012-06-05 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363291A (ja) * 2003-06-04 2004-12-24 Murata Mfg Co Ltd 積層型電子部品およびその製造方法
JP2005203629A (ja) * 2004-01-16 2005-07-28 Murata Mfg Co Ltd 電子部品
JP2009059888A (ja) * 2007-08-31 2009-03-19 Murata Mfg Co Ltd 積層セラミックコンデンサ
JP2009170737A (ja) * 2008-01-18 2009-07-30 Murata Mfg Co Ltd 電子部品

Also Published As

Publication number Publication date
CN103026621B (zh) 2015-01-07
JP5305042B2 (ja) 2013-10-02
CN103026621A (zh) 2013-04-03
JP2012029015A (ja) 2012-02-09
US20130115411A1 (en) 2013-05-09
US8864925B2 (en) 2014-10-21
US20130266758A2 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5305042B2 (ja) 積層型電子部品の製造方法
JP5692502B2 (ja) インダクタを含む積層型電子部品
JP5668627B2 (ja) 回路モジュール
JP4020159B2 (ja) 高周波モジュール
US10811194B2 (en) Composite electronic component and resistor
KR101083983B1 (ko) 적층 콘덴서의 제조 방법
TWI612866B (zh) 多層基板及其製造方法
JP6531845B2 (ja) 多層配線基板およびこれを備えるプローブカード
JP2008147323A (ja) 熱電変換モジュールおよびその製造方法
JP4821302B2 (ja) セラミック多層基板及びその製造方法
US9961768B2 (en) Multilayer wiring substrate, manufacturing method therefor, and substrate for probe card
JP4618362B2 (ja) 積層コンデンサの製造方法
WO2013141339A1 (ja) 多層配線基板およびその製造方法
JP2002271038A (ja) 複合多層基板およびその製造方法ならびに電子部品
JP5207854B2 (ja) 部品内蔵セラミックス基板およびその製造方法
JP2000068149A (ja) 積層電子部品及びその製造方法
JP2008251850A (ja) 半導体装置および半導体装置の製造方法
JP5245645B2 (ja) 積層型コイル部品の製造方法
JP3064751B2 (ja) 多層型ジャンパーチップの製造方法
JP5846187B2 (ja) 部品内蔵モジュール
US11854742B2 (en) Capacitor intergated structure.capacitor unit and manufacturing process thereof
JP6888668B2 (ja) 配線基板および電子モジュール
JPH11135945A (ja) 多層セラミック基板の製造方法
JP4396745B2 (ja) 高周波モジュール
JP2006351757A (ja) 半導体装置の製造方法および半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036187.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13811167

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809697

Country of ref document: EP

Kind code of ref document: A1