WO2012010067A1 - 一种无变压器的四象限高压变频器拓扑结构 - Google Patents

一种无变压器的四象限高压变频器拓扑结构 Download PDF

Info

Publication number
WO2012010067A1
WO2012010067A1 PCT/CN2011/077143 CN2011077143W WO2012010067A1 WO 2012010067 A1 WO2012010067 A1 WO 2012010067A1 CN 2011077143 W CN2011077143 W CN 2011077143W WO 2012010067 A1 WO2012010067 A1 WO 2012010067A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
inverter
voltage
high voltage
rectifier circuit
Prior art date
Application number
PCT/CN2011/077143
Other languages
English (en)
French (fr)
Inventor
左强
张其生
李旷
赵淑玉
王振
Original Assignee
荣信电力电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣信电力电子股份有限公司 filed Critical 荣信电力电子股份有限公司
Publication of WO2012010067A1 publication Critical patent/WO2012010067A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage

Definitions

  • the invention relates to a four-quad high-voltage frequency converter topology, in particular to a transformerless four-quad high-voltage frequency converter topology.
  • variable frequency speed control technology high-voltage variable frequency speed regulation technology as a large-capacity transmission has also been widely used.
  • the high-voltage inverter With its high efficiency, high power factor and high reliability, the high-voltage inverter has ended the energy and labor waste caused by the traditional method, prolonged the service life of motors, fans and pumps, improved the production process and improved production efficiency.
  • industries such as steel, petroleum, coal, water, and electricity.
  • the current high-voltage inverters are composed of control cabinets, transformer cabinets and power cabinets.
  • the transformer cabinet occupies a large proportion of cost and volume in the whole high-voltage inverter system, and the higher the capacity of the high-voltage inverter, the higher the capacity requirement of the transformer, so that the cost of the high-voltage inverter is also straight. rise. Summary of the invention
  • the object of the present invention is to provide a transformerless four-quadrant high-voltage frequency converter topology structure, which enables the four-quadrant high-voltage frequency converter to realize the purpose of frequency conversion speed regulation and four-quadrant operation of the motor without a transformer, and greatly reduces the high-voltage frequency converter.
  • the volume reduces the cost.
  • a transformerless four-quad high-voltage frequency converter topology includes a high-voltage charging circuit, an inductor, a rectifier circuit, and an inverter circuit.
  • the high-voltage power grid directly enters the high-voltage inverter rectifier circuit through a high-voltage charging circuit, a coupled or uncoupled inductor, and a rectifier circuit.
  • the controllable rectification system is composed of a plurality of rectifying units, wherein the rectified DC voltage is supplied to the inverter circuit, and the inverter output terminal is coupled to the coupled or uncoupled inductor; the rectifier circuit and the inverter circuit are connected in series by the power unit. composition.
  • the power unit of the rectifier circuit and the inverter circuit is a half bridge structure composed of two IGBT switching devices.
  • the power unit of the rectifier circuit and the inverter circuit is an H-bridge structure composed of four IGBT switching devices.
  • the rectifier circuit has the same structure as the power unit used in the inverter circuit and can be replaced by each other.
  • the rectifier circuit and the inverter circuit are three-phase, each phase is formed by connecting even number of n power units in series, and is divided into two groups.
  • the number of power units in each group is n/2, and the input end of each phase of the rectifier circuit is At the midpoint of the two sets of cells, and the input end and each set of cells are connected by a coupled or uncoupled inductor; the output end of each phase of the inverter circuit is at the midpoint of the two sets of cells, and the output end and each set of cells They are also connected by a coupled or uncoupled inductor.
  • the high-voltage inverter has no transformer, eliminating the transformer cabinet, and the cost of the high-voltage inverter is reduced by at least half;
  • the high-voltage inverter has no transformer, and the transformer cabinet is omitted.
  • the volume of the high-voltage inverter is reduced by at least half, and the floor space in the field is reduced by at least half;
  • the high-voltage inverter has no transformer, eliminating the transformer cabinet.
  • the weight of the high-voltage inverter is reduced by at least half, and the transportation cost is also reduced accordingly;
  • the high-voltage inverter has no transformer, and the transformer cabinet is omitted.
  • the structure of the high-voltage inverter is much simpler, and the production cycle is reduced by at least half, which is also conducive to on-site installation, commissioning and maintenance;
  • the high-voltage inverter has no transformer, which saves the transformer cabinet, saves the energy consumption of the transformer, and does not need to consider the temperature rise effect of the high-voltage inverter on the transformer;
  • the high-voltage inverter has no transformer, eliminating the transformer cabinet.
  • the high-voltage inverter has an absolute market competitive advantage.
  • the utility model relates to a transformerless four-quadrant high-voltage frequency converter topology, so that the four-quadrant high-voltage frequency converter can realize high-voltage frequency conversion speed regulation and return energy to the power grid without the need of a transformer, and achieve the purpose of operating the motor in four quadrants.
  • the four-quad high-voltage inverter using this topology can greatly reduce the overall size and cost of the high-voltage inverter, and has an absolute market competitive advantage.
  • Figure 1 is a topological structural diagram of a transformerless four-quad high-voltage inverter composed of a half-bridge power unit;
  • Figure 2 is a topological structural diagram of a transformerless four-quad high-voltage inverter composed of H-bridge power units;
  • Figure 3 is a current flow diagram in a half bridge power unit
  • FIG. 4 is a current flow diagram in an H-bridge power unit. detailed description
  • a transformerless four-quad high-voltage inverter topology including high-voltage charging circuit, inductor L, rectifier circuit, inverter circuit, high-voltage power grid directly after high-voltage charging circuit, coupled or uncoupled inductor L1 Entering the high-voltage inverter rectifier circuit, the rectifier circuit is a controllable rectification system composed of a plurality of rectifier units, the rectified DC voltage is supplied to the inverter circuit, and the inverter output terminal is coupled to the coupled or uncoupled inductor L2;
  • the rectifier circuit and the inverter circuit are composed of a power unit connected in series, and the high voltage charging circuit is composed of a charging resistor R and a switch KM in parallel.
  • the rectifier circuit is the same as the power unit used in the inverter circuit and can be replaced by each other; the power unit is a half bridge or an H bridge controllable structure.
  • the power unit of Figure 1 is a half-bridge structure, and the power unit of Figure 2 is an H-bridge structure.
  • the rectifier circuit and the inverter circuit are three-phase, each phase is formed by connecting even number of n power units in series, and is divided into two groups.
  • the number of power units in each group is n/2, and the input end of each phase of the rectifier circuit is The midpoint of the two sets of cells, and the input end and each set of cells are connected by a coupled or uncoupled inductor L1; the output end of each phase of the inverter circuit is at the midpoint of the two sets of cells, and the output end and each set of cells They are also connected by a coupled or uncoupled inductor L2.
  • the current flows from A to B via IGBT2, and the power unit output level of the half-bridge inverter circuit is "0".
  • the current flows through the freewheeling diode D2 from B to A, and the power unit output level of the half bridge inverter circuit is used. "0".
  • the current flows through the freewheeling diode D1, and then flows from A to B through the DC-side capacitor C.
  • the power unit output level of the half-bridge inverter circuit is "1".
  • the current flows through IGBT1 and then through DC-side capacitor C, from B to A.
  • the power unit output level of the half-bridge inverter circuit is "1".
  • the current flows through IGBT2, DC side capacitor C, IGBT3, from B to A, or current through freewheeling diode D3, DC side capacitor C, freewheeling diode D2, from A to B, at this time using H bridge
  • the power unit output level of the inverter circuit is "1".
  • the current flows through the freewheeling diode Dl, IGBT3, from B to A, or current through the freewheeling diode D3, IGBT1, from A to B, at this time using the H-bridge inverter circuit power unit output level "0".
  • the current flows through the freewheeling diode Dl, the DC side capacitor C, and the freewheeling diode D4, from B to A, or the current flows through the IGBT4, the DC side capacitor C, and the IGBT1, from A to B.
  • the H bridge is used.
  • the power unit output level of the inverter circuit is "-1".
  • the high voltage power grid directly enters the high voltage inverter rectifier circuit through the high voltage charging circuit and the coupled or uncoupled inductor; a three-phase controllable rectification system is composed of a plurality of power units, and the capacitance voltage of each power unit is constant; Coupling inductor or uncoupled inductor makes the output waveform more stable and smooth.
  • Each power unit inverter circuit can meet the requirements of PWM waveform generation by using half bridge or H bridge; the power unit used in rectifier circuit and inverter circuit The structure is completely consistent and can be called from each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

一种无变压器的四象限高压变频器拓扑结构 技术领域
本发明涉及一种四象限高压变频器拓扑结构,特别是一种无变压器的四象限高压变频器 拓扑结构。 背景技术
随着电气传动技术的发展,尤其是变频调速技术的发展,作为大容量传动的高压变频调 速技术也得到了广泛的应用。 高压变频器以其高效节能、 高功率因数及高可靠性等特点, 结 束了传统方法造成的能源和人力浪费, 延长了电机、 风机、 水泵等使用寿命, 改善了生产工 艺, 提高了生产效率, 在钢铁、 石油、 煤炭、 自来水、 电力等行业得到广泛应用。
目前, 高压变频器的市场迅速发展, 竞争更是十分激烈。 在同等条件下, 成本低、 体积 小高压变频器无疑将拥有绝对的市场竞争力优势, 给企业带来巨大的利益。
目前的高压变频器, 整体都是由控制柜、 变压器柜、 功率柜组成。
其中, 变压器柜在整个高压变频器系统里, 占据了很大比重的成本及体积, 并且容量越 大的高压变频器, 其对变压器的容量要求也越高, 这样使高压变频器的成本也直线上升。 发明内容
本发明的目的是提供一种无变压器的四象限高压变频器拓扑结构, 该拓扑结构使四象限 高压变频器无需变压器即可实现变频调速及四象限运行电机的目的,大大减少了高压变频器 的体积, 降低了成本。
为实现上述目的, 本发明通过以下技术方案实现:
一种无变压器的四象限高压变频器拓扑结构, 包括高压充电电路、 电感、 整流电路、 逆 变电路, 高压电网直接经过高压充电电路、 耦合或非耦合电感后进入高压变频器整流电路, 整流电路是由多个整流单元组成的可控整流系统, 经整流后的直流电压为逆变电路供电, 逆 变输出端接入耦合或非耦合电感; 所述的整流电路及逆变电路由功率单元串联组成。
所述的整流电路、 逆变电路的功率单元为两个 IGBT开关器件组成的半桥结构。
所述的整流电路、 逆变电路的功率单元为四个 IGBT开关器件组成的 H桥结构。
所述的整流电路与逆变电路采用的功率单元结构相同, 可相互替代。
整流电路与逆变电路均为三相, 每相由偶数 n个功率单元串联而成, 分为上下两组, 每 组的功率单元个数为 n/2个, 整流电路每相的输入端为两组单元的中点处, 且输入端与每组 单元之间以耦合或非耦合电感连接; 逆变电路每相的输出端为两组单元的中点处, 且输出端 与每组单元之间也以耦合或非耦合电感连接。
与现有技术相比, 本发明的新颖性和创造性体现在: 1 ) 高压变频器没有变压器, 省去了变压器柜, 高压变频器的成本至少减小一半;
2) 高压变频器没有变压器, 省去了变压器柜, 高压变频器的体积至少减小一半, 在现 场的占地面积也因此至少减小一半;
3 ) 高压变频器没有变压器, 省去了变压器柜, 高压变频器的重量至少减小一半, 运输 成本也相应减小;
4) 高压变频器没有变压器, 省去了变压器柜, 高压变频器的结构相比简单很多, 生产 周期至少减小一半, 也有利于现场的安装、 调试和维护;
5 ) 高压变频器没有变压器, 省去了变压器柜, 省去了在变压器的能耗, 也无需考虑高 压变频器在变压器上的温升效应;
6) 高压变频器没有变压器, 省去了变压器柜, 高压变频器具有绝对的市场竞争力优势。 本发明所涉及的一种无变压器的四象限高压变频器拓扑, 使四象限高压变频器无需变压 器即可实现高压变频调速以及将能量回馈到电网, 达到四象限运行电机的目的。使用此种拓 扑结构的四象限高压变频器能大大减少高压变频器的整体体积和成本,具有绝对的市场竞争 力优势。 附图说明
图 1是半桥式功率单元组成的无变压器的四象限高压变频器拓扑结构图;
图 2是 H桥式功率单元组成的无变压器的四象限高压变频器拓扑结构图;
图 3是半桥式功率单元内电流流向图;
图 4是 H桥式功率单元内电流流向图。 具体实施方式
见图 1、图 2,一种无变压器的四象限高压变频器拓扑结构,包括高压充电电路、 电感 L、 整流电路、 逆变电路, 高压电网直接经过高压充电电路、 耦合或非耦合电感 L1后进入高压 变频器整流电路, 整流电路是由多个整流单元组成的可控整流系统, 经整流后的直流电压为 逆变电路供电, 逆变输出端接入耦合或非耦合电感 L2; 所述的整流电路及逆变电路由功率 单元串联组成, 高压充电电路由充电电阻 R与开关 KM并联组成。
整流电路与逆变电路采用的功率单元相同, 可相互替代; 所述的功率单元为半桥或 H桥 可控结构。 图 1的功率单元为半桥结构, 图 2的功率单元为 H桥结构。
整流电路与逆变电路均为三相, 每相由偶数 n个功率单元串联而成, 分为上下两组, 每 组的功率单元个数为 n/2个, 整流电路每相的输入端为两组单元的中点处, 且输入端与每组 单元之间以耦合或非耦合电感 L1连接; 逆变电路每相的输出端为两组单元的中点处, 且输 出端与每组单元之间也以耦合或非耦合电感 L2连接。
见图 3-1, 电流经 IGBT2从 A流向 B, 采用半桥式逆变电路的功率单元输出电平 "0"。 见图 3-2, 电流经续流二极管 D2从 B流向 A,采用半桥式逆变电路的功率单元输出电平 "0"。
见图 3-3, 电流经续流二极管 Dl, 再通过直流侧电容 C, 从 A流向 B, 采用半桥式逆变 电路的功率单元输出电平 " 1 "。
见图 3-4, 电流经 IGBT1 , 再通过直流侧电容 C, 从 B流向 A, 采用半桥式逆变电路的 功率单元输出电平 " 1 "。
见图 4-1, 电流经 IGBT2、 直流侧电容 C、 IGBT3, 从 B流向 A, 或电流经续流二极管 D3、 直流侧电容 C、 续流二极管 D2, 从 A流向 B, 此时采用 H桥式逆变电路的功率单元输 出电平 " 1 "。
见图 4-2,电流经续流二极管 Dl、 IGBT3,从 B流向 A,或电流经续流二极管 D3、 IGBT1 , 从 A流向 B, 此时采用 H桥式逆变电路的功率单元输出电平 "0"。
见图 4-3, 电流经 IGBT2、 续流二极管 D4, 从 B流向 A, 或电流经 IGBT4、 续流二极管 D2, 从 A流向 B, 此时采用 H桥式逆变电路的功率单元输出电平 "0"。
见图 4-4, 电流经续流二极管 Dl、 直流侧电容 C、 续流二极管 D4, 从 B流向 A, 或电 流经 IGBT4、直流侧电容 C、 IGBT1 , 从 A流向 B, 此时采用 H桥式逆变电路的功率单元输 出电平 "-1 "。
高压电网直接经过高压充电电路和耦合或非耦合电感进入高压变频器整流电路; 由多个 功率单元组成一个三相可控整流系统, 恒定每个功率单元的电容电压; 高压变频器输出端接 入耦合电感或非耦合电感, 使输出波形更加稳定平滑; 每个功率单元逆变电路, 采用半桥式 或 H桥式均可满足 PWM波形生成的需求;整流电路和逆变电路所采用的功率单元结构完全 一致, 可相互调用。

Claims

^ ^
1、 一种无变压器的四象限高压变频器拓扑结构, 其特征在于, 包括高压充电电路、 电 感、 整流电路、 逆变电路, 高压电网直接经过高压充电电路、 耦合或非耦合电感后进入高压 变频器整流电路, 整流电路是由多个整流单元组成的可控整流系统, 经整流后的直流电压为 逆变电路供电, 逆变输出端接入耦合或非耦合电感; 所述的整流电路及逆变电路由功率单元 串联组成。
2、 根据权利要求 1所述的一种无变压器的四象限高压变频器拓扑结构, 其特征在于, 所述的整流电路、 逆变电路的功率单元为两个 IGBT开关器件组成的半桥结构。
3、 根据权利要求 1所述的一种无变压器的四象限高压变频器拓扑结构, 其特征在于, 所述的整流电路、 逆变电路的功率单元为四个 IGBT开关器件组成的 H桥结构。
4、 根据权利要求 2或 3所述的一种无变压器的四象限高压变频器拓扑结构, 其特征在 于, 所述的整流电路与逆变电路采用的功率单元结构相同, 可相互替代。
5、 根据权利要求 2或 3所述的一种无变压器的四象限高压变频器拓扑结构, 其特征在 于, 整流电路与逆变电路均为三相, 每相由偶数 n个功率单元串联而成, 分为上下两组, 每 组的功率单元个数为 n/2个, 整流电路每相的输入端为两组单元的中点处, 且输入端与每组 单元之间以耦合或非耦合电感连接; 逆变电路每相的输出端为两组单元的中点处, 且输出端 与每组单元之间也以耦合或非耦合电感连接。
PCT/CN2011/077143 2010-07-22 2011-07-14 一种无变压器的四象限高压变频器拓扑结构 WO2012010067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010233678.6 2010-07-22
CN2010102336786A CN102013813A (zh) 2010-07-22 2010-07-22 一种无变压器的四象限高压变频器拓扑结构

Publications (1)

Publication Number Publication Date
WO2012010067A1 true WO2012010067A1 (zh) 2012-01-26

Family

ID=43843868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077143 WO2012010067A1 (zh) 2010-07-22 2011-07-14 一种无变压器的四象限高压变频器拓扑结构

Country Status (2)

Country Link
CN (1) CN102013813A (zh)
WO (1) WO2012010067A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2858227A1 (en) * 2013-10-04 2015-04-08 ABB Technology AG Parallel modular multilevel converters
WO2015028665A3 (en) * 2013-08-30 2015-08-20 Abb Technology Ag Parallel modular multilevel converters and protection system
RU2579009C1 (ru) * 2015-03-06 2016-03-27 Закрытое акционерное общество "НТЦ Приводная Техника" Высоковольтный преобразователь частоты с накопителем энергии
CN108551267A (zh) * 2018-06-25 2018-09-18 中国大唐集团科学技术研究院有限公司华中分公司 功率单元组成的高压变频装置
CN110165909A (zh) * 2019-06-05 2019-08-23 天地科技股份有限公司上海分公司 采煤机牵引部用变频器
RU194007U1 (ru) * 2018-06-23 2019-11-25 Дмитрий Валерьевич Хачатуров Модульное высоковольтное электротехническое устройство

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013813A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种无变压器的四象限高压变频器拓扑结构
CN102055347A (zh) * 2010-07-22 2011-05-11 荣信电力电子股份有限公司 基于mmc无变压器的四象限高压变频电源拓扑结构
JP6099951B2 (ja) * 2012-11-29 2017-03-22 株式会社東芝 電力変換装置
CN104811057A (zh) * 2015-04-23 2015-07-29 广东明阳龙源电力电子有限公司 基于mmc结构的四象限高压变频器装置
CN112838769A (zh) * 2021-03-08 2021-05-25 中国矿业大学(北京) 一种无变压器隔离的星接中高压变频调速系统及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040388A1 (en) * 2008-10-07 2010-04-15 Abb Technology Ag Multilevel converter and method for compensating active and reactive power in a high voltage network
CN201774460U (zh) * 2010-07-22 2011-03-23 荣信电力电子股份有限公司 一种无变压器的四象限高压变频器拓扑结构
CN102013813A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种无变压器的四象限高压变频器拓扑结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040388A1 (en) * 2008-10-07 2010-04-15 Abb Technology Ag Multilevel converter and method for compensating active and reactive power in a high voltage network
CN201774460U (zh) * 2010-07-22 2011-03-23 荣信电力电子股份有限公司 一种无变压器的四象限高压变频器拓扑结构
CN102013813A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种无变压器的四象限高压变频器拓扑结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KONSTANTINOU, G. S. ET AL.: "Performance Evaluation of Half-Bridge Cascaded Multilevel Converters Operated with Multicarrier Sinusoidal PWM Techniques", INDUSTRIAL ELECTRONICS AND APPLICATIONS, 2009. ICIEA 2009, 4TH IEEE CONFERENCE., 30 June 2009 (2009-06-30), pages 3399 - 3401 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015028665A3 (en) * 2013-08-30 2015-08-20 Abb Technology Ag Parallel modular multilevel converters and protection system
US9722502B2 (en) 2013-08-30 2017-08-01 Abb Schweiz Ag Converter arrangement
EP2858227A1 (en) * 2013-10-04 2015-04-08 ABB Technology AG Parallel modular multilevel converters
RU2579009C1 (ru) * 2015-03-06 2016-03-27 Закрытое акционерное общество "НТЦ Приводная Техника" Высоковольтный преобразователь частоты с накопителем энергии
RU194007U1 (ru) * 2018-06-23 2019-11-25 Дмитрий Валерьевич Хачатуров Модульное высоковольтное электротехническое устройство
CN108551267A (zh) * 2018-06-25 2018-09-18 中国大唐集团科学技术研究院有限公司华中分公司 功率单元组成的高压变频装置
CN108551267B (zh) * 2018-06-25 2024-03-08 中国大唐集团科学技术研究院有限公司华中分公司 功率单元组成的高压变频装置
CN110165909A (zh) * 2019-06-05 2019-08-23 天地科技股份有限公司上海分公司 采煤机牵引部用变频器

Also Published As

Publication number Publication date
CN102013813A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2012010067A1 (zh) 一种无变压器的四象限高压变频器拓扑结构
CN103001573B (zh) 中压变频驱动系统
CN101540580B (zh) 一种电能回馈装置
CN102055347A (zh) 基于mmc无变压器的四象限高压变频电源拓扑结构
CN201774458U (zh) 基于mmc无变压器的四象限高压变频电源拓扑结构
CN101534063B (zh) 一种级联型多相变流器
WO2012010065A1 (zh) 一种无变压器的单象限高压变频器拓扑结构
CN100486075C (zh) 兆瓦级风力发电用三电平中压变流器
CN102263414A (zh) 电能变换装置与系统
CN102594191A (zh) 使用耦合电感的有源钳位三电平零电压软开关变流器
CN103023362A (zh) 一种无桥逆变电路与太阳能无桥逆变器
CN202395465U (zh) 一种大功率风力发电机专用三电平全功率变流器组
CN101615884A (zh) 移相斩波的高功率因数串级调速装置
WO2012010054A1 (zh) 基于模块化多电平变换器的无变压器太阳能逆变器拓扑结构
WO2012010063A1 (zh) 基于h桥的无变压器风力发电并网拓扑结构
CN1738172B (zh) 一种矩阵式中、高压变频电源
CN104242345A (zh) 一种大功率直驱风电变流器电路拓扑结构及其应用
CN201956961U (zh) 基于功率单元级联型高压变频器的能量回馈装置
WO2012010068A1 (zh) 一种无变压器水轮发电机发电并网拓扑结构
CN201025674Y (zh) 兆瓦级风力发电用三电平中压变流器
CN102055354B (zh) 一种交流直流转换器以及一种变频器
CN204144996U (zh) 一种带超级电容的群控电梯能量馈网装置
CN201528280U (zh) 全功率直驱式风电机组柔性并网变流器
WO2012010066A1 (zh) 一种无变压器的高压直流输电拓扑结构
CN101447678A (zh) 一种多绕组风力发电机接入电网的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809255

Country of ref document: EP

Kind code of ref document: A1