WO2012009925A1 - 一种铁基磨削废料的无污染再利用方法 - Google Patents

一种铁基磨削废料的无污染再利用方法 Download PDF

Info

Publication number
WO2012009925A1
WO2012009925A1 PCT/CN2010/079769 CN2010079769W WO2012009925A1 WO 2012009925 A1 WO2012009925 A1 WO 2012009925A1 CN 2010079769 W CN2010079769 W CN 2010079769W WO 2012009925 A1 WO2012009925 A1 WO 2012009925A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
powder
alloy powder
based alloy
grinding waste
Prior art date
Application number
PCT/CN2010/079769
Other languages
English (en)
French (fr)
Inventor
张深根
刘波
田建军
潘德安
李彬
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2012009925A1 publication Critical patent/WO2012009925A1/zh
Priority to US13/587,450 priority Critical patent/US9796022B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F8/00Manufacture of articles from scrap or waste metal particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the invention relates to a method for non-polluting and reusing treatment of iron-based grinding waste generated during grinding or milling, and belongs to the technical field of circular economy.
  • Powder metallurgy is a process in which metal powders (or mixtures of metal powders and non-metal powders) are used as raw materials to form metal materials, composite materials, and various types of articles through a forming and sintering process.
  • Iron powder is widely used as an important metal raw material powder in the powder metallurgy industry. However, with the development of science and technology, the requirements for materials are getting higher and higher. Materials prepared using pure iron powder are no longer sufficient for people's needs.
  • the iron-based prealloyed powder has uniform composition and structure, which not only greatly improves the compressive and flexural strength of the iron-based powder metallurgy material, but also reduces the sintering temperature and shortens the sintering time. Therefore, iron-based prealloyed powders are increasingly used in powder metallurgy manufacturing.
  • the preparation method of the iron-based prealloyed powder includes: a chemical coprecipitation-co-reduction method, an atomization method, a mechanical alloying method, and an electrolysis method.
  • the chemical coprecipitation-co-reduction method can produce powders having a particle size of less than ten micrometers, and the powder has good fluidity, compactability and sintering properties.
  • the chemical coprecipitation-co-reduction method has complicated production process control, high cost and high product price.
  • the pre-alloyed powder is prepared by atomization method, and the metal material of each element of the alloy powder is first smelted through a vacuum induction furnace, and then high-pressure mist is used.
  • the medium water or gas is atomized and pulverized by an atomizing nozzle, and the pulverized droplets are solidified by cooling to form a powder.
  • the pre-alloyed powder produced by the atomization method has high alloying degree, excellent sintering performance, large productivity and low production cost, but the powder pressing performance is poor, and the control of particle size, impurities and oxygen content has certain randomness, which is difficult to guarantee. stable quality.
  • the preparation of prealloyed powders by mechanical alloying and electrolysis also has limitations. Therefore, the process of preparing an iron-based prealloyed powder is simple, low-cost, and non-polluting. Very meaningful.
  • Iron-based grinding materials usually contain a large amount of iron alloy particles, but the abrasives, grinding wheel additives and iron alloy particles are embedded in each other during processing, which makes subsequent sorting difficult and difficult to reuse.
  • China's machinery processing industry and metallurgical industry treat these iron-based grinding materials as waste materials, which not only occupy the land, pollute the environment, but also cause great waste of resources.
  • SHS Self-propagating High-temperature Synthesis
  • the principle is to use the exothermic reaction between aluminum and iron oxide, and the reaction can be maintained by the exothermic reaction. At the same time, the reaction products iron and alumina are instantaneously melted. Under the action of centrifugal force, the light-weight alumina is distributed on the inner surface of the steel pipe. The large iron is distributed between the steel pipe and the ceramic layer and combines the steel pipe and the ceramic layer.
  • the main raw materials for common SHS-lined steel pipes are Fe 2 0 3 powder, AI powder and some additives.
  • Chinese Patent No. 90107244.3 discloses a corrosion-resistant and wear-resistant ceramic steel pipe manufacturing technology in which an additive SiO 2 and one or two alkali metal oxides are simultaneously added to an Al + Fe 2 O 3 (or Fe 3 0 4 ) material (in Na 2 0, K 2 0, Li 2 0 selected) and one or two alkaline earth metal oxides R0 (selected among MgO, CaO, BaO, ZnO);
  • Raw materials for preparing ceramic composite steel pipes include main materials Al, Fe 2 0 3 and auxiliary material Si0 2 , feldspar fine powder, quartz fine powder, fluorite fine powder, and simultaneously add 0.5-1.5% of Al 2 0 3 in the raw material;
  • Chinese Patent No. 01139227.4 discloses A method for manufacturing a ceramic-lined steel pipe is prepared by using an acid slag (produced by iron or
  • Part of the AI powder is added to the iron-based prealloyed powder obtained by the iron-based grinding waste treatment, and the mixed powder after mixing and drying can be used as a raw material instead of the Fe 2 0 3 (or Fe 3 0 4 ) powder.
  • SHS lined with steel pipe Compared with Chinese patents 90107244.3 and 200510136673.0, the raw material cost of SHS ceramic-lined steel pipes is greatly reduced.
  • the iron-based prealloyed powder has a higher iron content than the acid slag, and the composition is simpler.
  • the iron-based prealloyed powder also contains a certain amount of Al 2 0 3 and SiO 2 .
  • Al 2 0 3 can be absorbed by heat absorption, can control excessive temperature, increase the thickness of the ceramic lining of the steel pipe, and prevent deformation of the steel pipe. .
  • Si0 2 is beneficial to reduce the crystallization temperature of the primary phase of Al 2 0 3 , increase the existence time of the ceramic melt, promote the escape of the gas phase, and thereby improve the quality of the ceramic layer.
  • Structural parts are mainly involved in mechanical operation, and are subjected to comprehensive stresses such as stretching, compression, distortion, and impact during operation, and interact with the dual parts.
  • powder metallurgy technology is mass producing such structural parts.
  • the structural parts produced by using iron powder extreme alloy powder as the main raw material are iron-based structural parts, which is the largest output of powder metallurgy machinery parts. The most widely used products with the widest variety.
  • Chinese Patent No. 200710098524.9 discloses a method for preparing a high-performance laser-based pre-alloyed powder for laser splicing.
  • An iron-based prealloyed powder was prepared by a precipitation-precursor reduction method and a mechanical alloying method.
  • Chinese Patent No. 200710098524.9 discloses a method for preparing a high-performance laser-based pre-alloyed powder for laser splicing.
  • An iron-based prealloyed powder was prepared by a precipitation-precursor reduction method and a mechanical alloying method.
  • Chinese Patent No. 200710098524.9 discloses a method for preparing a high-performance laser-based pre-alloyed powder for laser splicing.
  • An iron-based prealloyed powder was prepared by a precipitation-precursor reduction method and a mechanical alloying method.
  • Chinese Patent No. 200710098524.9 discloses a method for preparing a high-performance laser-based pre-alloyed powder for laser splicing.
  • 200510048519.8 discloses a method for preparing prealloyed powder, which is subjected to deep freezing treatment at -50 ° C to -198 ° C, and then the alloy subjected to deep freezing treatment is broken in gas protection jaw.
  • the machine is pulverized into a block having a diameter of 3 to 5 cm, and then enters a gas shielded belt ball mill to be ground to a desired particle size.
  • the method of the invention can obtain a prealloyed powder at a lower processing cost, and the processing cost is only a metal material. 1.1 to 1.3 times.
  • a cobalt-based prealloyed powder is prepared by using scrap as a raw material.
  • 200910043135.5 discloses a regenerated metal using recycled synthetic diamond waste powder catalyst as a main raw material, supplemented with an appropriate amount of metal cobalt and iron, and then subjected to electrolysis and hydrogen reduction to prepare cobalt. A method of prealloying powder. There have been no reports on the preparation of iron-based prealloyed powders from iron-based grinding wastes.
  • the invention treats iron-based grinding waste to obtain iron-based prealloyed powder, which is used for powder metallurgy structural parts, and has the characteristics of wide source of raw materials, low cost, and favorable utilization of green recycling of metallurgical by-products. Have good economic and social benefits.
  • Magnetic grinding is a kind of magnetic field developed by applying magnetic field to traditional grinding technology.
  • New Technology A processing technique in which a magnetic abrasive is used for precise grinding by the action of an external magnetic field. It has advantages not found in other grinding techniques, such as grinding the three-dimensional free surface of the mold, polishing the surface of complex workpieces, etc. It also has the advantages of small temperature rise and deformation, high processing precision and high processing efficiency during processing. Therefore, magnetic grinding technology has broad application prospects.
  • Magnetic abrasives consist primarily of a matrix and abrasive particles.
  • Chinese patent 200710075464.9 The main raw materials for the preparation of magnetic abrasives are: steel needles (diameter 0.5mm ⁇ 2mm, length 5mm ⁇ 20mm), steel balls (diameter 0.5mm ⁇ 2mm), ceramic powder (corundum, kaolin, silicon micropowder), The raw materials used in this method are costly.
  • Chinese Patent No. 200810031570.1 discloses a method for preparing a magnetic abrasive using the following materials: The granular magnetic material is wrapped as a core with a ceramic layer or a plastic layer.
  • Thermal spraying is a surface strengthening technique that uses a heat source (such as an electric arc, plasma spray, or a combustion flame) to heat a powdered or filamentous metal or non-metal material into a molten or semi-molten state, and then by means of the flame stream itself or A technique in which compressed air is sprayed onto the surface of a pretreated substrate at a rate to deposit a surface coating having various functions.
  • a heat source such as an electric arc, plasma spray, or a combustion flame
  • Thermal spray powders play an important role in the entire thermal spray material. At present, there are mainly two methods for preparing the thermal spray powder, and one is to directly spray the powder of various elements according to the formula. One is to first alloy the various ingredients and then atomize the alloy to obtain a powder that can be used for thermal spraying. Thermal spray alloy powder mainly includes nickel base and iron base And cobalt-based alloy powder, according to different coating hardness, respectively, for the repair and protection of mechanical parts.
  • Nickel-based self-fluxing alloy powder is composed of nickel element and added with elements such as chromium, boron, silicon, carbon, copper and molybdenum.
  • the alloy powder has low melting point and good self-fluxing, and has corrosion resistance, wear resistance and heat resistance. Antioxidant and other properties, it is currently the most widely used self-fluxing sneezing alloy powder.
  • iron-based prealloyed powders there are two kinds of iron-based prealloyed powders, one is stainless steel and contains more nickel and chromium; the other is high chromium cast iron, which contains high chromium and carbon.
  • Cobalt-based self-fluxing alloy powder is composed of cobalt element, adding chromium, tin, nickel, boron, silicon and other elements. It has excellent high temperature performance, good red hardness, wear resistance and oxidation resistance. Table 1 shows the chemical composition of the currently common nickel-based, iron-based thermal spray alloy powders.
  • a portion of Ni 6 is added to the iron-based prealloyed powder after treatment with the iron-based grinding waste.
  • a raw material powder for thermal spraying after mixing it has three main characteristics compared with the commonly used raw material powder: 1.
  • the iron-based prealloyed powder contains a large amount of iron alloy particles, compared with the thermal spray powder prepared after alloying treatment. The cost is saved; 2.
  • the iron-based prealloyed powder contains some fine abrasives, and the abrasive particles and the iron-based particles are embedded and dropped during the grinding process, compared with the abrasives added after other thermal spraying materials, the iron-based pre-
  • the abrasive grains in the alloy powder are more evenly distributed in the sprayed coating, so that the coating has good wear resistance and saves cost; 3.
  • Ni 6 added The powder contains low-melting element boron, silicon, etc., which is a beneficial supplement to the iron-based prealloyed powder, which makes the sprayed coating better bonded to the substrate. Compared to the use of pure Ni 6 . Powder is more economical as a thermal spray material. Summary of the invention
  • an iron-based prealloyed powder which can be used for SHS lining steel pipes, powder metallurgy structural parts, magnetic grinding, and thermal spraying is obtained.
  • the technical problems to be solved by the present invention are: removal of oil and fat components in iron-based grinding waste, treatment of iron-based prealloyed powder, and utilization of iron-based prealloyed powder.
  • the specific method includes the following steps:
  • the surfactant used for the degreasing in the step (1) is sodium octyl sulfonate, and the amount added is 1% to 3% of the amount of the iron-based grinding waste.
  • the ratio of the iron-based alloy powder to the aluminum powder in the step (4) is 3:1 to 5:1, and is used for the SHS-lined steel pipe.
  • the iron-based alloy powder in the step (4) is combined and used for powder metallurgy structural parts after being pressed and sintered, and the batch ratio is expressed by weight percentage: -240 ⁇ +400, the iron-based alloy powder is 20% ⁇ 45%, -160 ⁇ +240 mesh iron-based alloy powder is 30% ⁇ 60%, -80-+160 mesh iron-based alloy powder is 10% ⁇ 15%, -40-+80 mesh iron-based alloy powder It is 5% ⁇ 10%.
  • the iron-based alloy powder in the step (4) is subjected to an abrasive ratio for magnetic grinding, and the abrasive is any one of alumina and silicon carbide or a mixture thereof, and the mass ratio of the abrasive to the iron-based prealloyed powder is 1:4 ⁇ 1:8.
  • the powder ratio is 4:1 ⁇ 6:1.
  • the mixed powder is used for thermal spraying.
  • the iron-based grinding waste is treated by a simple process, and the iron-based prealloyed powder is obtained, which has the characteristics of wide source of raw materials and low cost.
  • the iron-based prealloyed powder obtained by the invention can be completely utilized in the subsequent process without complete sorting, thereby reducing the processing cost, and has the characteristics of utilizing no secondary pollution, high recycling efficiency, and wide application.
  • the iron-based prealloyed powder obtained by treating the iron-based grinding waste material is used as a raw material for the production of powder metallurgy structural parts, and has the characteristics of wide source of raw materials, low cost, favorable green recycling of metallurgical by-products, and good Economic and social benefits.
  • the iron-based alloy powder obtained by treating the iron-based grinding waste according to the invention replaces Fe 2 0 3 as the main raw material of the SHS-lined steel pipe, thereby greatly reducing the raw material cost.
  • the iron-based alloy powder contains a certain amount of Al 2 O 3 and Si0 2 , and in the preparation process of the SHS-lined steel pipe, Al 2 0 3 is melted due to absorption of heat, thereby suppressing an excessively high reaction temperature, thereby increasing The thickness of the inner lining of the steel tube prevents the deformation of the steel tube.
  • 510 2 is beneficial to reduce the crystallization temperature of the primary phase of Al 2 0 3 , increase the existence time of the ceramic melt, promote the escape of the gas phase, and improve the quality of the ceramic layer.
  • the method of preparing magnetic abrasives using iron-based grinding waste as raw material has not been reported.
  • the iron-based alloy powder obtained by treating the iron-based grinding waste as the raw material for preparing the magnetic abrasive has a significant price advantage compared with the current various preparation methods.
  • the present invention adds a part of Ni 6 to the iron-based alloy powder obtained by treating the iron-based grinding waste.
  • Powder, mixed as a raw material powder for thermal spraying has three main advantages compared with the currently used thermal spraying materials: (1) The iron-based alloy powder contains a large amount of iron alloy particles, compared with the thermal spraying prepared after alloying treatment.
  • the iron-based alloy powder contains some fine abrasives, and the abrasive particles and the iron-based particles are embedded and dropped during the grinding process, compared with the abrasives added after other thermal spraying materials, iron The abrasive grains in the base alloy powder are more evenly distributed in the sprayed coating, so that the coating has good wear resistance, and at the same time Saves cost; (3) Added Ni 6 .
  • the powder contains low-melting element boron, silicon, etc., which is a beneficial supplement to the iron-based alloy powder, which makes the sprayed coating better bonded to the substrate. Compared to the use of pure Ni 6 . Powder is more economical as a thermal spray material.
  • Figure 1 shows the static hysteresis loop and basic magnetization curve of an iron-based prealloyed powder.
  • the iron-based grinding waste is uniformly mixed with the surfactant sodium octyl sulfonate, and the mass ratio is iron-based grinding waste: sodium octyl sulfonate is 100:1.
  • water was added to the mixed powder, and the mixture was thoroughly stirred and washed.
  • the iron-based grinding waste is uniformly mixed with the surfactant sodium octyl sulfonate, and the mass ratio is iron-based grinding waste: sodium octyl sulfonate is 100:3.
  • water is added to the mixed powder, and the mixture is thoroughly stirred and washed.
  • the iron-based grinding waste is uniformly mixed with the surfactant sodium octyl sulfonate, and the mass ratio is iron-based grinding waste: sodium octyl sulfonate is 100:1.
  • water was added to the mixed powder, and the mixture was thoroughly stirred and washed.
  • the reducing agent AI powder and the sieved iron-based alloy powder are uniformly mixed at a mass ratio of 1:3; the mixed powder is used as a raw material of the SHS-lined steel pipe to be ⁇ 80 mm, wall thickness 4 mm, length 150 mm
  • the steel pipe is fixed on the pipe making machine, the pipe making machine is started, and the material is ignited by the tungsten wire. After the reaction, the inner wall of the steel pipe was formed with a ceramic coating having a smooth surface and no cracks.
  • the reducing agent AI powder and the sieved iron-based alloy powder are uniformly mixed at a mass ratio of 1:4; the mixed powder is used as a raw material of the SHS-lined steel pipe to be ⁇ 80 mm, the wall thickness is 4 mm, and the length is 150 mm.
  • the steel pipe is fixed on the pipe making machine, the pipe making machine is started, and the material is ignited by the tungsten wire. After the reaction, the inner wall of the steel pipe was formed with a ceramic coating having a smooth surface and no cracks.
  • the iron-based grinding waste is uniformly mixed with the surfactant sodium octyl sulfonate, and the mass ratio is iron-based grinding waste: sodium octyl sulfonate is 100:1.
  • water was added to the mixed powder, and the mixture was thoroughly stirred and washed.
  • an iron-based alloy powder of -200 to 300 mesh is obtained.
  • the reducing agent AI powder and the sieved iron-based alloy powder were uniformly mixed at a mass ratio of 1:5.
  • the mixed powder was placed in a steel pipe of ⁇ 80 mm, wall thickness 4 mm and length 150 mm as a raw material of the SHS lining steel pipe, the steel pipe was fixed on the pipe making machine, the pipe making machine was started, and the material was ignited by the tungsten wire. After the reaction, the inner wall of the steel pipe was formed with a ceramic coating having a smooth surface and no cracks.
  • the iron-based grinding waste is uniformly mixed with the surfactant sodium octyl sulfonate, and the mass ratio is iron-based grinding waste: sodium octyl sulfonate is 100:1.
  • water was added to the mixed powder, and the mixture was thoroughly stirred and washed.
  • the above iron-based alloy powders of different particle diameters are batched as follows: -40 ⁇ +80 mesh iron-based alloy powder is 5%, -80-+160 mesh iron-based alloy powder is 10%, -160- +240 target iron-based alloy powder is 50%, -240-+400 The target iron-based alloy powder is 35%.
  • the batched powder is pressed and sintered
  • the iron-based grinding waste is uniformly mixed with the surfactant sodium octyl sulfonate, and the mass ratio is iron-based grinding waste: sodium octyl sulfonate is 100:1.
  • water is added to the mixed powder, and the mixture is thoroughly stirred and washed.
  • the above iron-based alloy powders of different particle diameters are batched as follows: -40 ⁇ +80 mesh iron-based alloy powder is 5%, -80-+160 mesh iron-based alloy powder is 15%, -160- The +240 target iron-based alloy powder is 40%, and the -240-+400 target iron-based alloy powder is 40%.
  • the batched powder is pressed and sintered
  • the iron-based grinding waste is uniformly mixed with the surfactant sodium octyl sulfonate, and the mass ratio is iron-based grinding waste: sodium octyl sulfonate is 100:3.
  • water was added to the mixed powder, and the mixture was thoroughly stirred and washed.
  • the above iron-based alloy powders of different particle diameters are batched as follows: -40 ⁇ +80
  • the iron-based alloy powder is 10%
  • the -80-+160 target iron-based alloy powder is 10%
  • the iron-based alloy powder of 240 mesh is 60%
  • the iron-based alloy powder of -240 to +400 is 20%.
  • the iron-based grinding waste is uniformly mixed with the surfactant sodium octyl sulfonate, and the mass ratio thereof is iron-based grinding waste: sodium octyl sulfonate is 100:3.
  • water was added to the mixed powder, and the mixture was thoroughly stirred and washed.
  • the above iron-based alloy powders of different particle diameters are batched as follows: -40 ⁇ +80
  • the iron-based alloy powder is 10%
  • the -80-+160 target iron-based alloy powder is 15%
  • the iron-based alloy powder of 240 mesh is 30%
  • the iron-based alloy powder of -240 to +400 is 45%.
  • the iron-based grinding waste is uniformly mixed with the surfactant sodium octyl sulfonate, and the mass ratio is iron-based grinding waste: sodium octyl sulfonate is 50:1.
  • water was added to the mixed powder, and the mixture was thoroughly stirred and washed.
  • the iron-based prealloyed powder obtained after the iron-based grinding waste treatment contains two main raw materials required for preparing the magnetic abrasive: ferromagnetic powder, abrasive (Al 2 0 3 , SiC), iron-based prealloyed under an external magnetic field.
  • the powder has good magnetic properties, as shown in Figure 1. Therefore, it is only necessary to add a part of the large-particle abrasive to the alloy powder as needed to process the magnetic abrasive, which has obvious price advantage compared with the raw materials used in various preparation methods.
  • the iron-based alloy powder of +140 mesh was obtained by sieving, and the Al 2 0 3 powder of the abrasive powder +400 mesh was uniformly mixed at a mass ratio of 4:1. Then, the mixed powder was wet-mixed in a mixer for 2 hours using anhydrous ethanol as a medium. After the powder after completion of the wet mixing is dried, a binder epoxy resin and a curing agent polyamide resin are added thereto.
  • the amount of the epoxy resin added is ⁇ of the total weight of the iron-based alloy powder and the Al 2 O 3 powder, and the amount of the polyamide resin added is ⁇ of the amount of the epoxy resin added.
  • the mixture of the iron-based alloy powder, the Al 2 O 3 powder, the epoxy resin, and the polyamide resin was uniformly stirred and pressed into a block shape.
  • the curing time of the briquettes at room temperature was 24 h. After the compact is sufficiently cured, it is pulverized to obtain a magnetic abrasive.
  • the iron-based grinding waste is uniformly mixed with the surfactant sodium octyl sulfonate, and the mass ratio is iron-based grinding waste: sodium octyl sulfonate is 50:1.
  • water was added to the mixed powder, and the mixture was thoroughly stirred and washed.
  • an iron-based alloy powder of +140 mesh was obtained, and the SiC powder (400 mesh) of the abrasive powder + 400 mesh was uniformly mixed at a mass ratio of 5:1.
  • the mixed powder was wet-mixed in a mixer for 2 hours using anhydrous ethanol as a medium.
  • a binder epoxy resin and a curing agent polyamide resin are added thereto.
  • the amount of the epoxy resin added is the total weight of the iron-based alloy powder and the SiC powder, and the amount of the polyamide resin added is ⁇ of the amount of the epoxy resin added.
  • the mixture of the iron-based alloy powder, the SiC powder, the epoxy resin, and the polyamide resin was uniformly stirred and pressed into a block shape.
  • the curing time of the briquettes at room temperature was 24 h. After the compact is sufficiently cured, it is pulverized to obtain a magnetic abrasive.
  • the iron-based grinding waste is uniformly mixed with the surfactant sodium octyl sulfonate, and the mass ratio is iron-based grinding waste: sodium octyl sulfonate is 50:1.
  • water was added to the mixed powder, and the mixture was thoroughly stirred and washed.
  • an iron-based alloy powder of +140 mesh is obtained, which is uniformly mixed with abrasive powder +400 mesh SiC powder (400 mesh) and +400 mesh Al 2 0 3 powder (400 mesh).
  • the mass ratio is iron-based alloy powder: SiC Powder: Al 2 0 3 powder is 20: 2: 1.
  • the mixed powder was wet-mixed in a mixer for 2 hours using anhydrous ethanol as a medium. After the powder after completion of the wet mixing is dried, a binder epoxy resin and a curing agent polyamide resin are added thereto.
  • the amount of the epoxy resin added is the total weight of the iron-based alloy powder and the Al 2 O 3 powder, and the amount of the polyamide resin added is ⁇ of the epoxy resin added amount.
  • a mixture of iron-based alloy powder, Al 2 O 3 powder, SiC powder, epoxy resin, and polyamide resin was uniformly stirred and pressed into a block shape. The curing time of the briquettes at room temperature was 24 h. After the compact is sufficiently cured, it is pulverized to obtain a magnetic abrasive.
  • the 45 steel plate is cut into a steel block of 30 mm x 15 mm > ⁇ 4 mm.
  • the oxide layer on the surface of the steel plate is removed by sand blasting, and then the surface of the steel plate is cleaned.
  • the rust-removed and cleaned steel plate is used as a base for thermal spraying.
  • the iron-based alloy powder of -200 ⁇ 300 mesh is obtained by sieving. -200 ⁇ 300 mesh iron-based alloy powder with Ni 6 .
  • the powder was uniformly mixed in a mass ratio of 4:1. Take iron-based alloy powder with Ni 6 .
  • the mixed powder of the powder is a spray of thermal spray, which is sprayed on the base steel plate by a supersonic spraying (HVOF) method. After the spraying is completed, a well-bonded sprayed layer is formed on the surface of the steel sheet.
  • HVOF supersonic spraying
  • the 45 steel plate is cut into a steel block of 30 mm x 15 mm > ⁇ 4 mm.
  • the oxide layer on the surface of the steel plate is removed by sand blasting, and then the surface of the steel plate is cleaned.
  • the rust-removed and cleaned steel plate is used as a base for thermal spraying.
  • the iron-based alloy powder of -200 ⁇ 300 mesh is obtained by sieving. -200 ⁇ 300 mesh iron-based alloy powder with Ni 6 .
  • the powder was uniformly mixed in a mass ratio of 5:1. Take iron-based alloy powder with Ni 6 .
  • the mixed powder of the powder is a spray of thermal spray, which is sprayed on the base steel plate by a supersonic spraying (HVOF) method. After the spraying is completed, a well-bonded sprayed layer is formed on the surface of the steel sheet.
  • HVOF supersonic spraying
  • the 45 steel plate is cut into a steel block of 30 mm x 15 mm > ⁇ 4 mm, and the oxide layer on the surface of the steel plate is first removed by sand blasting, and then the surface of the steel plate is cleaned.
  • the rust-removed and cleaned steel plate is used as a base for thermal spraying.
  • the iron-based alloy powder of -200 ⁇ 300 mesh is obtained by sieving. -200 ⁇ 300 mesh iron-based alloy powder with Ni 6 .
  • the powder was uniformly mixed in a mass ratio of 6:1. Take iron-based alloy powder with Ni 6 .
  • Powder mixed powder is The spray of thermal spray is sprayed onto the base steel plate by supersonic spraying (HVOF). After the spraying is completed, a well-bonded sprayed layer is formed on the surface of the steel sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

一种铁基磨削废料的无污染再利用方法
技术领域
本发明涉及一种对磨削或铣削加工时产生的铁基磨削废料进行 无污染再利用处理的方法, 属于循环经济技术领域。
背景技术
粉末冶金是用金属粉末 (或金属粉末与非金属粉末的混合物)作 为原料, 经过成形和烧结工艺来制造金属材料、 复合材料以及各种类 型制品的工艺过程。铁粉作为粉末冶金行业中一种重要的金属原料粉 末,被广泛的应用。但随着科学技术的发展,对材料的要求越来越高。 使用纯铁粉制备的材料已经不能满足人们的需要。
铁基预合金粉末成分和组织均匀, 不仅能大大提高铁基粉末冶金 材料的抗压、 抗弯强度, 而且能降低其烧结温度、 缩短烧结时间。 因 此, 铁基预合金粉在粉末冶金制造业中的应用越来越广泛。 铁基预合 金粉末的制备方法有: 化学共沉淀 -共还原法、 雾化法、 机械合金化 法、 电解法。 化学共沉淀-共还原法可生产粒度在十微米以下的粉末, 粉末具有良好的流动性、 压制性和烧结性能。 但化学共沉淀-共还原 法的生产工艺控制复杂、 成本高、 产品价格贵; 雾化法制备预合金粉 末, 是将合金粉末各元素的金属材料, 先经过真空感应炉熔炼, 然后 采用高压雾化介质水或气体通过雾化喷嘴将熔融金属流雾化粉碎, 粉 碎液滴经冷却固化形成粉末。 雾化法生产的预合金粉末合金化程度 高、 具有优异的烧结性能、 产能大、 生产成本低, 但粉末压制性能较 差, 粒度, 杂质, 含氧量的控制具有一定的随机性, 难以保证质量稳 定。机械合金化法和电解法制备预合金粉末,也都存在局限性。因此, 寻求一种工序简单、 成本低廉、 无污染的制备铁基预合金粉的工艺是 十分有意义的。
铁基磨削料中通常含有大量的铁合金颗粒, 但因加工过程中磨 料、 砂轮添加物与铁合金颗粒相互嵌附, 造成后续分选十分困难, 不 易被再利用。 目前, 我国的机械加工业和冶金行业, 把这些铁基磨削 料当废料处理, 既占用土地、 污染环境, 又造成了资源的极大浪费。
自蔓延高温合成 ( Self-propagating High-temperature Synthesis, 缩写 SHS),是利用化学反应自身放热制备材料的新技术。其原理是利 用铝与氧化铁发生放热反应, 依靠放热反应可以维持反应进行, 同时 反应产物铁和氧化铝瞬时熔融, 在离心力的作用下, 比重轻的氧化铝 分布在钢管内表面, 比重大的铁分布在钢管和陶瓷层中间并将钢管和 陶瓷层结合起来。 常见的 SHS内衬钢管的主要原料为 Fe203粉、 AI粉 和部分添加剂。
现有的 SHS内衬钢管方向的研究和专利大多集中在添加剂的种类 和加入量、原料成本控制上。如中国专利 90107244.3公开了一种耐蚀 耐磨陶瓷钢管制造技术, 在 Al+Fe203 (或 Fe304)物料中同时加入添加 剂 Si02和一种或两种碱金属氧化物 (在 Na20、 K20、 Li20中选择)及 一种或两种碱土金属氧化物 R0 (在 MgO、 CaO、 BaO、 ZnO中选择); 中国专利 200510136673.0 制备陶瓷复合钢管的原料包括主料 Al、 Fe203和辅料 Si02、 长石精粉、石英石精粉、萤石精粉, 并且在原料中 同时加入原料重量 0.5-1.5%的 Al203; 中国专利 01139227.4公开了一 种陶瓷内衬钢管的制造方法, 以酸渣料 (铁矿选矿产生) 与 Al、 Si02 为原料, 在钢管内壁制备了致密的陶瓷镀层。
向铁基磨削废料处理后得到的铁基预合金粉末中加入部分 AI粉, 混匀、 干燥后的混合粉末, 可代替 Fe203 (或 Fe304) 粉料作为原料, 用于 SHS内衬钢管。 与中国专利 90107244.3和 200510136673.0的相 比, 大大降低了 SHS 陶瓷内衬钢管的原料成本。 与专利 01139227.4 相比, 铁基预合金粉末具有比酸渣料的含铁量更高, 成分更简单的特 点; 铁基预合金粉末中还含有一定量的 Al203和 Si02, Al203存在可以 吸收热量而被熔化, 可以控制过高的温度, 增加钢管陶瓷内衬厚度, 防止钢管变形。 Si02有利于降低 Al203初晶相结晶温度,增加陶瓷熔体 存在时间, 促进气相逸出, 从而提高陶瓷层的质量。
结构零件主要是参与机械运转,在运转中承受拉伸、压缩、扭曲、 冲击等综合应力, 并与对偶零件发生相互摩擦等作用。 粉末冶金技术 作为一种少、 无切削加工技术, 正在大量生产此类结构零件, 以铁粉 极其合金粉作为主要原料生产的结构零件, 即是铁基结构零件, 是粉 末冶金机械零件中产量最大, 品种最多, 应用面最广的一类制品。
目前, 大多数文献和专利的研究集中在改进合金配方, 以上述的 方法来制备预合金粉末,如中国专利 200710098524.9公开了一种高性 能激光悍接用铁基预合金化粉末的制备方法,采用沉淀-前驱体还原法 和机械合金化法制备了铁基预合金化粉末。 也有一些学者试图从降低 成本角度, 对现有制备方法进行改进。 如中国专利 200510048519.8 公开了一种制备预合金粉的方法, 将合金材料在 -50°C~-198°C条件下 进行深度冷冻处理, 然后将经过深度冷冻处理的合金, 在气体保护鄂 式破碎机中粉碎至直径 3~5cm大小的块状,再进入气体保护带筛球磨 机中, 磨至所需粒度, 此发明的方法可用较低的加工成本获得预合金 粉末, 其加工成本仅为金属材料的 1.1~1.3倍。 以废料为原料来制备 钴基预合金粉末,如中国专利 200910043135.5公开了一种利用回收的 合成金刚石废弃粉末触媒等再生金属为主要原料, 补充适量的金属钴 和铁后进行电解、 氢气还原制备钴预合金粉末的方法。 目前未见以铁 基磨削废料为原料来制备铁基预合金粉末的方报道。
本发明将铁基磨削废料进行处理得到铁基预合金粉, 用于粉末冶 金结构件, 具有原料来源广、 成本低、 利于冶金副产物绿色循环再利 用的特点。 有很好的经济和社会效益。
磁力研磨就是将磁场应用于传统的研磨技术而开发出来的一种 新工艺。利用磁性磨料在外加磁场的作用进行精密研磨的一种加工工 艺。 它拥有其它研磨技术所没有的优点, 如可以对模具的三维自由表 面进行研磨, 对复杂工件的表面进行抛光等, 同时它还具有在加工当 中工件升温变形小、 加工精度高、 加工效率高等优点, 因此磁力研磨 技术具有广阔的应用前景。 磁性磨料主要由基体和磨粒构成。
在现有的磁性磨料方向的文献或专利报道中, 研究者采用的原料 基本上都为铁磁性材料和磨料。中国专利 200710075464.9制备磁性磨 料的主要原料为:钢针(直径为 0.5mm~2mm、 长度为 5mm~20mm)、 钢球 (直径为 0.5mm~2mm)、 陶瓷粉 (刚玉、 高岭土、 硅微粉), 这 种方法使用的原料成本较高。中国专利 200810031570.1公开了一种磁 性磨料的制备方法, 使用的原料为: 颗粒状的磁性材料作为内核包裹 有一层陶瓷层或一层塑料层。 由此构成的磁性磨料使用时, 由于其磁 性材料包裹有一层非磁性材料而提高了磁力研磨加工磁性材料的去 除效率, 并在一定程度上解决了磨粒细化与残留的问题。 与传统磁性 磨料相比, 残留现象大大减少, 磨粒刷的加工性能大大改善, 并可显 著提高磁力研磨对磁性材料的加工效率。中国专利 00136573.8公开了 一种利用热压烧结法制备磁性磨料的方法, 使用的原料为: 铁粉、 棕 刚玉粉、 白刚玉粉、 CBN和金刚石微粉等超硬磨料。 以铁基磨削废料 为原料来制备磁性磨料的方法未见报道。
热喷涂是一种表面强化技术, 利用某种热源(如电弧、 等离子喷 涂或燃烧火焰等)将粉末状或丝状的金属或非金属材料加热到熔融或 半熔融状态, 然后借助焰流本身或压缩空气以一定速度喷射到预处理 过的基体表面, 沉积而形成具有各种功能的表面涂层的一种技术。
热喷涂粉末在整个热喷涂材料中占据十分重要的地位。 目前热喷 涂粉末的制备主要有两种方法, 一种是按配方将各种元素的粉末混匀 后直接喷涂。 一种是先将各种配料制成合金, 然后将合金进行雾化处 理, 得到可用于热喷涂的粉末。 热喷涂合金粉末主要包括镍基、 铁基 和钴基合金粉, 按不同的涂层硬度, 分别应用于机械零部件的修理和 防护。
镍基自熔性合金粉末是以镍元素为基体, 添加铬、 硼、 硅、 碳、 铜、 钼等元素组成, 合金粉末熔点低, 自熔性好, 具有耐蚀、 耐磨、 耐热、抗氧化等性能,是目前使用最广泛的一种自熔性喷悍合金粉末。 铁基预合金粉末分为两种,一种是不锈钢型,含有较多的镍和铬元素; 另一种是高铬铸铁型, 含有较高的铬和碳元素。 钴基自熔性合金粉末 是以钴元素为基体, 添加铬、 锡、 镍、 硼、 硅等元素组成, 具有优越 的高温性能, 良好的红硬性、 耐磨性和抗氧化性能。 表 1为目前常见 的镍基、 铁基热喷涂合金粉末的化学成分。
表 1 常见的镍基、 铁基热喷涂合金粉末的化学成分
Figure imgf000007_0001
经铁基磨削废料处理后得到铁基预合金粉末中加入部分 Ni6。, 混 匀后作为热喷涂的原料粉末, 相比目前常用的原料粉末主要有三个特 点: 1、 铁基预合金粉末中含有大量的铁合金颗粒, 相比经过合金化 处理后制备的热喷涂粉末, 节省了成本; 2、 铁基预合金粉末中含有 部分细小的磨料, 在磨削加工时磨料颗粒与铁基颗粒相互嵌附而掉 落, 相比其他热喷涂原料后加入的磨料, 铁基预合金粉末中的磨粒在 喷涂后的涂层中分布更均匀, 使涂层具有良好的耐磨性, 同时节省了 成本; 3、 添加的 Ni6。粉末中含有低熔点的元素硼、 硅等, 对铁基预 合金粉末是一个有益的补充, 使喷涂后的涂层与基体结合更好。 相比 使用纯 Ni6。粉末作为热喷涂原料更加经济。 发明内容
本发明目的在于提供一种铁基磨削废料的无污染再利用方法。 是 将铁基磨削废料经过前期处理后, 得到可用于 SHS内衬钢管、 粉末冶 金结构件、 磁性研磨、 热喷涂的铁基预合金粉末。 本发明需要解决的 技术问题是: 铁基磨削废料中油脂成份的去除、 铁基预合金粉末的处 理、 铁基预合金粉末的利用方向。 具体方法包括以下步骤:
( 1) 除油: 将铁基磨削废料用表面活性剂除去铁基磨削废料中的 油脂成份;
( 2) 热处理: 经除油的铁基磨削废料在 200°C~800°C下进行热处 理后,进行干燥、有机物脱除及回收,得到铁基预合金粉末;
( 3) 筛分: 将铁基预合金粉末进行 -40~+400目筛分;
(4) 再利用: 根据 SHS内衬钢管、 粉末冶金结构件、 磁性研磨、 热喷涂对的要求, 对粉末分别进行铝粉配比、 合批、 磨料配比、 Ni6。 粉末配比等处理。
所述步骤 (1)中除油所用的表面活性剂是辛丁酯磺酸钠,添加量为 铁基磨削废料量的 1%~3%。
所述步骤 (4)中的铁基合金粉末与铝粉的配比为 3:1~5:1,用于 SHS 内衬钢管。
所述步骤 (4)中的铁基合金粉末进行合批后, 经过压制、烧结用于 粉末冶金结构件, 所述合批比例按重量百分比计为: -240~+400 目的 铁基合金粉末为 20%~45%, -160~+240目的铁基合金粉末为 30%~60%, -80-+160目的铁基合金粉末为 10%~15%, -40-+80目的铁基合金粉末 为 5%~10%。
所述步骤 (4)中的铁基合金粉末进行磨料配比用于磁性研磨,所述 磨料为氧化铝、 碳化硅中的任一种或其混合物, 磨料与铁基预合金粉 末的质量比为 1:4~1:8。
所述步骤 (4)中的铁基合金粉末与 Ni6。粉末配比质量比为 4:1~6:1, 混合后的粉末用于热喷涂。
本发明优点是:
1. 用流程简单的方法处理铁基磨削废料, 得到铁基预合金粉末, 具有原料来源广泛、 成本低廉的特点。
2. 本发明得到的铁基预合金粉末无需进行完全分选就可以在后 续工艺中完全利用, 降低了处理成本, 同时具有利用无二次污染、 循 环再利用率高、 用途广泛的特点。
3. 本发明将铁基磨削废料处理后得到的铁基预合金粉作为粉末 冶金结构件的生产原料, 具有原料来源广、 成本低、 利于冶金副产物 绿色循环再利用的特点, 具有很好的经济和社会效益。
4. 本发明将铁基磨削废料进行处理得到的铁基合金粉, 代替 Fe203作为 SHS 内衬钢管的主要原料, 大大降低了原料成本。 同时铁 基合金粉末中含有一定量的 Al203和 Si02, 在 SHS内衬钢管制备过程 中 Al203由于吸收热量而被熔化, 因而可以抑制过高的反应温度, 从 而起到增加钢管陶瓷内衬厚度, 防止钢管变形的作用。 5102有利于降 低 Al203初晶相结晶温度, 增加陶瓷熔体存在时间, 促进气相逸出, 提高陶瓷层的质量。
5. 以铁基磨削废料为原料来制备磁性磨料的方法未见报道。本发 明将铁基磨削废料进行处理后得到的铁基合金粉末作为制备磁性磨 料的原料, 相比目前各种制备方法具有明显的价格优势。
6. 本发明向铁基磨削废料经处理后得到的铁基合金粉末中加入 部分 Ni6。粉末, 混匀后作为热喷涂的原料粉末, 相比目前常用的热喷 涂原料主要有三个优点: (1)铁基合金粉末中含有大量的铁合金颗粒, 相比经过合金化处理后制备的热喷涂粉末, 节省了成本; (2)铁基合金 粉末中含有部分细小的磨料, 在磨削加工时磨料颗粒与铁基颗粒相互 嵌附而掉落, 相比其他热喷涂原料后加入的磨料, 铁基合金粉末中的 磨粒在喷涂后的涂层中分布更均匀, 使涂层具有良好的耐磨性, 同时 节省了成本; (3)添加的 Ni6。粉末中含有低熔点的元素硼、 硅等, 对铁 基合金粉末是一个有益的补充, 使喷涂后的涂层与基体结合更好。 相 比使用纯 Ni6。粉末作为热喷涂原料更加经济。
说明书附图
图 1是铁基预合金粉末静态磁滞回线和基本磁化曲线。
具体实施例
实施例 1:
将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量比 为铁基磨削废料: 辛丁酯磺酸钠为 100: 1。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗涤。将洗涤好的磨削废料捞出后在烘箱中 20CTC 下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末。
实施例 2:
将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量比 为铁基磨削废料: 辛丁酯磺酸钠为 100: 3。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗漆。将洗涤好的磨削废料捞出后在烘箱中 80CTC 下烘烤 0.5h, 得到 TFe%=70.2%的铁基合金粉末。
实施例 3:
将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量比 为铁基磨削废料: 辛丁酯磺酸钠为 100: 1。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗涤。将洗涤好的磨削废料捞出后在烘箱中 20CTC 下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末, 经筛分得到 -40~+400 目铁基合金粉末。将还原剂 AI粉与筛分后的铁基合金粉末以质量比为 1: 3的比例混合均匀;将混合粉末作为 SHS内衬钢管的原料装入 Φ 80 mm, 壁厚 4 mm、 长 150 mm的钢管内, 将钢管固定在制管机上, 开 动制管机,用钨丝点燃物料。反应结束后,钢管内壁形成了表面光滑、 无裂纹的陶瓷镀层。
实施例 4: 将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量比 为铁基磨削废料: 辛丁酯磺酸钠为 100: 3。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗漆。将洗涤好的磨削废料捞出后在烘箱中 80CTC 下烘烤 0.5h,得到 TFe%=70.2%的铁基合金粉末, 经筛分得到 -40~+400 目铁基合金粉末。将还原剂 AI粉与筛分后的铁基合金粉末按质量比为 1: 4的比例混合均匀;将混合粉末作为 SHS内衬钢管的原料装入 Φ 80 mm, 壁厚 4 mm、 长 150 mm的钢管内, 将钢管固定在制管机上, 开 动制管机,用钨丝点燃物料。反应结束后,钢管内壁形成了表面光滑、 无裂纹的陶瓷镀层。
实施例 5:
将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量比 为铁基磨削废料: 辛丁酯磺酸钠为 100: 1。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗涤。将洗涤好的磨削废料捞出后在烘箱中 20CTC 下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末。 经筛分得到 -200~300 目铁基合金粉末。将还原剂 AI粉与筛分后的铁基合金粉末按质量比为 1: 5的比例混合均匀。将混合粉末作为 SHS内衬钢管的原料装入 Φ 80 mm, 壁厚 4 mm、 长 150 mm的钢管内, 将钢管固定在制管机上, 开 动制管机,用钨丝点燃物料。反应结束后,钢管内壁形成了表面光滑、 无裂纹的陶瓷镀层。
实施例 6:
将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量 比为铁基磨削废料: 辛丁酯磺酸钠为 100: 1。 混合均匀后, 向混合粉 末中加水后充分搅拌、 洗涤。 将洗涤好的磨削废料捞出后在烘箱中 20CTC下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末。经筛分后得到不 同粒度的铁基合金粉末。然后将上述不同粒径的铁基合金粉末按如下 质量百分比进行合批: -40~+80目的铁基合金粉末为 5%, -80-+160目 的铁基合金粉末为 10%, -160-+240 目的铁基合金粉末为 50%, -240-+400 目的铁基合金粉末为 35%。 合批后的粉末经过压制、 烧结
(氢气气氛下) 后, 得到了粉末冶金结构件。
实施例 7:
将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量 比为铁基磨削废料: 辛丁酯磺酸钠为 100: 1。 混合均匀后, 向混合粉 末中加水后充分搅拌、 洗涤。 将洗涤好的磨削废料捞出后在烘箱中 20CTC下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末。经筛分后得到不 同粒度的铁基合金粉末。然后将上述不同粒径的铁基合金粉末按如下 质量百分比进行合批: -40~+80目的铁基合金粉末为 5%, -80-+160目 的铁基合金粉末为 15%, -160-+240 目的铁基合金粉末为 40%, -240-+400 目的铁基合金粉末为 40%。 合批后的粉末经过压制、 烧结
(氢气气氛下) 后, 得到了粉末冶金结构件。
实施例 8:
将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量比 为铁基磨削废料: 辛丁酯磺酸钠为 100: 3。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗涤。将洗涤好的磨削废料捞出后在烘箱中 20CTC 下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末。 经筛分后得到不同粒 度的铁基合金粉末。然后上述不同粒径的铁基合金粉末按如下质量百 分比进行合批: -40~+80 目的铁基合金粉末为 10%, -80-+160 目的铁 基合金粉末为 10%, -160-+240目的铁基合金粉末为 60%, -240~+400 目的铁基合金粉末为 20%。 合批后的粉末经过压制、 烧结 (氢气气氛 下) 后, 得到了粉末冶金结构件。
实施例 9:
将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量比 为铁基磨削废料: 辛丁酯磺酸钠为 100: 3。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗涤。将洗涤好的磨削废料捞出后在烘箱中 20CTC 下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末。 经筛分后得到不同粒 度的铁基合金粉末。然后上述不同粒径的铁基合金粉末按如下质量百 分比进行合批: -40~+80 目的铁基合金粉末为 10%, -80-+160 目的铁 基合金粉末为 15%, -160-+240目的铁基合金粉末为 30%, -240~+400 目的铁基合金粉末为 45%。 合批后的粉末经过压制、 烧结 (氢气气氛 下) 后, 得到了粉末冶金结构件。
实施例 10:
将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量比 为铁基磨削废料: 辛丁酯磺酸钠为 50: 1。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗涤。将洗涤好的磨削废料捞出后在烘箱中 20CTC 下烘烤 2h, 得到 TFe%=81.6%的铁基预合金粉末。 铁基磨削废料处理 后得到的铁基预合金粉末中同时含有制备磁性磨料所需的两大主要 原料: 铁磁性粉、磨料 (Al203、 SiC) , 在外加磁场下铁基预合金粉末具 有良好的磁性能, 如图 1所示。 因此, 只需根据需要向合金粉末中加 入部分大颗粒的磨料即可加工成磁性磨料, 相比目前各种制备方法采 用的原料具有明显的价格优势。
经筛分得到 +140目的铁基合金粉末, 与磨料粉 +400目的 Al203粉 末按质量比为 4: 1 的比例混合均匀。 然后以无水乙醇为介质, 在混 粉机里将混合粉末湿混 2h。湿混完成后的粉末干燥后, 向其中加入粘 接剂环氧树脂和固化剂聚酰胺树脂。环氧树脂的加入量为铁基合金粉 末与 Al203粉总重量的 β , 聚酰胺树脂的加入量为环氧树脂加入量的 β。 将铁基合金粉末、 Al203粉、 环氧树脂和聚酰胺树脂的混合物搅 拌均匀后压制成块状。 压块常温下的固化时间为 24h。 待压块充分固 化后, 将其粉碎得到磁性磨料。
实施例 11:
将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量比 为铁基磨削废料: 辛丁酯磺酸钠为 50: 1。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗涤。将洗涤好的磨削废料捞出后在烘箱中 20CTC 下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末。 经筛分得到 +140目的 铁基合金粉末, 与磨料粉 +400目的 SiC粉(400目) 按质量比为 5 : 1 的比例混合均匀 。 然后以无水乙醇为介质, 在混粉机里将混合粉末 湿混 2h。湿混完成后的粉末干燥后, 向其中加入粘接剂环氧树脂和固 化剂聚酰胺树脂。 环氧树脂的加入量为铁基合金粉末与 SiC粉总重量 的 ^, 聚酰胺树脂的加入量为环氧树脂加入量的 β。 将铁基合金粉 末、 SiC粉、 环氧树脂和聚酰胺树脂的混合物搅拌均匀后压制成块状。 压块常温下的固化时间为 24h。 待压块充分固化后, 将其粉碎得到磁 性磨料。
实施例 12:
将铁基磨削废料与表面活性剂辛丁酯磺酸钠混合均匀, 其质量比 为铁基磨削废料: 辛丁酯磺酸钠为 50: 1。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗涤。将洗涤好的磨削废料捞出后在烘箱中 20CTC 下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末。 经筛分得到 +140目的 铁基合金粉末, 与磨料粉 +400目的 SiC粉 (400目)、 +400目的 Al203 粉 (400 目) 混合均匀, 其质量比为铁基合金粉末: SiC粉: Al203粉 为 20: 2: 1。 然后以无水乙醇为介质, 在混粉机里将混合粉末湿混 2h。 湿混完成后的粉末干燥后, 向其中加入粘接剂环氧树脂和固化剂 聚酰胺树脂。 环氧树脂的加入量为铁基合金粉末与 Al203粉总重量的 , 聚酰胺树脂的加入量为环氧树脂加入量的 β。 将铁基合金粉末、 Al203粉、 SiC粉、 环氧树脂和聚酰胺树脂的混合物搅拌均匀后压制成 块状。 压块常温下的固化时间为 24h。 待压块充分固化后, 将其粉碎 得到磁性磨料。
实施例 13 :
将 45钢钢板切割成 30mmxl5mm><4mm的钢块,首先使用喷砂法 去除钢板表面的氧化层, 然后清洁钢板的表面。 经过除锈、 清洁后的 钢板作为热喷涂的基体待用。将铁基磨削废料与表面活性剂辛丁酯磺 酸钠按质量比为 100: 1 的比例混合均匀。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗涤。将洗涤好的磨削废料捞出后在烘箱中 20CTC 下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末。 经筛分得到 -200~300 目的铁基合金粉末。将 -200~300目的铁基合金粉末与 Ni6。粉末按质量 比为 4: 1的比例混合均匀。 以铁基合金粉末与 Ni6。粉的混合粉末为 热喷涂的喷料, 采用超音速喷涂 (HVOF)法喷在基体钢板上。 喷涂完成 后, 钢板表面形成了结合良好的喷涂层。
实施例 14:
将 45钢钢板切割成 30mmxl5mm><4mm的钢块,首先使用喷砂法 去除钢板表面的氧化层, 然后清洁钢板的表面。 经过除锈、 清洁后的 钢板作为热喷涂的基体待用。将铁基磨削废料与表面活性剂辛丁酯磺 酸钠按质量比为 100: 1 的比例混合均匀。 混合均匀后, 向混合粉末 中加水后充分搅拌、洗涤。将洗涤好的磨削废料捞出后在烘箱中 20CTC 下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末。 经筛分得到 -200~300 目的铁基合金粉末。将 -200~300目的铁基合金粉末与 Ni6。粉末按质量 比为 5:1的比例混合均匀。 以铁基合金粉末与 Ni6。粉的混合粉末为热 喷涂的喷料,采用超音速喷涂 (HVOF)法喷在基体钢板上。喷涂完成后, 钢板表面形成了结合良好的喷涂层。
实施例 15:
将 45钢钢板切割成 30mmxl5mm><4mm的钢块, 首先使用喷砂法去 除钢板表面的氧化层, 然后清洁钢板的表面。 经过除锈、 清洁后的钢 板作为热喷涂的基体待用。将铁基磨削废料与表面活性剂辛丁酯磺酸 钠按质量比为 100: 1的比例混合均匀。 混合均匀后, 向混合粉末中 加水后充分搅拌、 洗涤。 将洗涤好的磨削废料捞出后在烘箱中 20CTC 下烘烤 2h, 得到 TFe%=81.6%的铁基合金粉末。 经筛分得到 -200~300 目的铁基合金粉末。将 -200~300目的铁基合金粉末与 Ni6。粉末按质量 比为 6: 1的比例混合均匀。 以铁基合金粉末与 Ni6。粉的混合粉末为 热喷涂的喷料, 采用超音速喷涂 (HVOF)法喷在基体钢板上。 喷涂完成 后, 钢板表面形成了结合良好的喷涂层。

Claims

权 利 要 求 书
1. 一种铁基磨削废料的无污染再利用方法, 包括除油、 热处理、 有机物脱除及回收、 筛分、 配料、 混料, 其特征在于: 以铁基磨削废 料为原料, 经除油、 热处理、 筛分后, 得到铁基合金粉末, 对得到的 铁基合金粉末进行处理后用于 SHS内衬钢管、 粉末冶金结构件、 磁性 研磨、 热喷涂。
2. 根据权利要求 1所述的铁基磨削废料的无污染再利用方法, 其特征在于: 包括以下步骤:
( 1) 除油: 将铁基磨削废料用表面活性剂除去铁基磨削废料中的 油脂成份;
( 2) 热处理: 经除油的铁基磨削废料在 200°C~800°C下进行热处 理后, 进行干燥、 有机物脱除及回收, 得到铁基合金粉末;
( 3) 筛分: 将铁基合金粉末进行 -40~+400目筛分;
(4) 再利用: 根据 SHS内衬钢管、 粉末冶金结构件、 磁性研磨、 热喷涂对原料的要求, 对铁基合金粉末分别进行铝粉配比、 合批、 磨料配比、 Ni6。粉末配比处理。
3. 根据权利要求 2所述的铁基磨削废料的无污染再利用方法, 其特征在于: 所述步骤 (1)中除油所用的表面活性剂是辛丁酯磺酸钠, 添加量为铁基磨削废料量的 1%~3%。
4. 根据权利要求 2或 3所述的铁基磨削废料的无污染再利用方 法, 其特征在于: 所述步骤 (4)中的铁基合金粉末与铝粉的配比为 3:1~5:1, 用于 SHS内衬钢管。
5. 根据权利要求 2或 3所述的铁基磨削废料的无污染再利用方 法, 其特征在于: 所述步骤 (4)中的铁基合金粉末进行合批后, 经过压 制、 烧结用于粉末冶金结构件, 所述合批比例按重量百分比计为- -240-+400目的铁基合金粉末为 20%~45%,-160~+240目的铁基合金粉 末为 30%~60%, -80-+160目的铁基合金粉末为 10%~15%, -40~+80目 的铁基合金粉末为 5%~10%。
6. 根据权利要求 2或 3所述的铁基磨削废料的无污染再利用方 法, 其特征在于: 所述步骤 (4)中的对铁基合金粉末进行磨料配比用于 磁性研磨, 所述磨料为氧化铝、 碳化硅中的任一种或其混合物, 所述 磨料与铁基预合金粉末的质量比为 1:4~1:8。
7. 根据权利要求 2或 3所述的铁基磨削废料的无污染再利用方 法,其特征在于:所述步骤 (4)中的铁基合金粉末与 Ni6。粉末的配比按 质量比计为 4:1~6:1, 混合后的粉末用于热喷涂。
PCT/CN2010/079769 2010-07-19 2010-12-14 一种铁基磨削废料的无污染再利用方法 WO2012009925A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/587,450 US9796022B2 (en) 2010-07-19 2012-08-16 Pollution-free method for recycling iron-based grinding waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010230531.1 2010-07-19
CN2010102305311A CN101898247B (zh) 2010-07-19 2010-07-19 一种铁基磨削废料的无污染再利用方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/587,450 Continuation US9796022B2 (en) 2010-07-19 2012-08-16 Pollution-free method for recycling iron-based grinding waste

Publications (1)

Publication Number Publication Date
WO2012009925A1 true WO2012009925A1 (zh) 2012-01-26

Family

ID=43224360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079769 WO2012009925A1 (zh) 2010-07-19 2010-12-14 一种铁基磨削废料的无污染再利用方法

Country Status (3)

Country Link
US (1) US9796022B2 (zh)
CN (1) CN101898247B (zh)
WO (1) WO2012009925A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898247B (zh) * 2010-07-19 2012-06-06 北京科技大学 一种铁基磨削废料的无污染再利用方法
CN102773491A (zh) * 2012-08-10 2012-11-14 昆山乔锐金属制品有限公司 一种高性能钢基涂层粉料的制备方法
CN103230922A (zh) * 2013-04-15 2013-08-07 河北钢铁股份有限公司邯郸分公司 纤维状轧辊磨屑的回收方法
CN104339278A (zh) * 2013-08-07 2015-02-11 辽宁黄海砂轮制造有限公司 一种磨盘及其制备方法和应用
CN104959218B (zh) * 2015-06-26 2018-03-16 山东坚烽硬质合金有限公司 一种油泥提纯铁粉生产铸件的方法
CN105817640A (zh) * 2016-03-28 2016-08-03 无锡市飞云球业有限公司 一种钢球磨削铁泥制造还原铁粉的生产工艺
CN107151025B (zh) * 2017-04-20 2018-08-21 江苏耐锐特磨料磨具股份有限公司 一种重负荷砂轮中的磨料回收方法
CN110241304B (zh) * 2019-06-26 2020-12-11 中国科学院过程工程研究所 一种切削含油铁泥再生回用的方法
CN110919002B (zh) * 2019-12-26 2024-04-16 西安铂力特增材技术股份有限公司 一种间接增材制造设备及其增材制造方法
CN113262921B (zh) * 2021-06-24 2022-04-19 漳州市芗城昌盛家俱有限公司 一种金属椅子加工生产的智能化喷涂工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997014760A1 (en) * 1995-10-17 1997-04-24 Chesapeake Specialty Products Method for processing iron-containing materials and products produced thereby
CN101003093A (zh) * 2007-01-22 2007-07-25 孙爱军 基于从工业含铁尾矿中提取铁精粉的工艺
CN101015859A (zh) * 2007-02-15 2007-08-15 山西汇镪磁性材料制作有限公司 烧结钕铁硼永磁体机械加工后所产生粉削再生利用的处理方法
CN101898247A (zh) * 2010-07-19 2010-12-01 北京科技大学 一种铁基磨削废料的无污染再利用方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1498359A (en) * 1975-06-06 1978-01-18 Ford Motor Co Method for making sintered parts
FR2412615A1 (fr) * 1977-12-22 1979-07-20 Renault Procede de traitement de dechets metalliques et dispositif de mise en oeuvre
JPS645916A (en) * 1987-06-29 1989-01-10 Nippon Seiko Kk Magnetic material
CN1029352C (zh) 1990-09-01 1995-07-19 北京科技大学 耐蚀耐磨陶瓷内衬钢管制造技术
CN1131290C (zh) 2000-12-20 2003-12-17 太原理工大学 热压烧结法制备磁性磨料
CN1195100C (zh) * 2001-12-26 2005-03-30 宝钢集团上海梅山有限公司 陶瓷内衬钢管的制造方法
JP4295239B2 (ja) * 2005-04-11 2009-07-15 トーカロ株式会社 高温部材搬送用ロールおよびその製造方法と溶射材料
CN100418673C (zh) 2005-11-11 2008-09-17 河南卡斯通科技有限公司 用于制备预合金粉的方法
CN1800090A (zh) 2005-12-30 2006-07-12 孙金龙 一种陶瓷复合钢管的制造工艺
CN101288904A (zh) 2007-04-19 2008-10-22 北京有色金属研究总院 高性能激光焊接用铁基预合金化粉末及其应用和制备方法
CN101353566B (zh) 2007-07-25 2011-06-15 比亚迪股份有限公司 一种磁力研磨磨料及其制备方法
CN101294061A (zh) 2008-06-25 2008-10-29 湖南大学 一种磁性磨料
CN101525758B (zh) 2009-04-17 2011-03-23 湖南伏龙江超硬材料有限公司 一种用再生金属制备代钴预合金粉末的方法
CN101575675B (zh) * 2009-05-25 2011-08-10 刘嵘 利用硬质合金磨削废料生产铸造碳化钨的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997014760A1 (en) * 1995-10-17 1997-04-24 Chesapeake Specialty Products Method for processing iron-containing materials and products produced thereby
CN101003093A (zh) * 2007-01-22 2007-07-25 孙爱军 基于从工业含铁尾矿中提取铁精粉的工艺
CN101015859A (zh) * 2007-02-15 2007-08-15 山西汇镪磁性材料制作有限公司 烧结钕铁硼永磁体机械加工后所产生粉削再生利用的处理方法
CN101898247A (zh) * 2010-07-19 2010-12-01 北京科技大学 一种铁基磨削废料的无污染再利用方法

Also Published As

Publication number Publication date
CN101898247A (zh) 2010-12-01
US9796022B2 (en) 2017-10-24
CN101898247B (zh) 2012-06-06
US20130091987A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
WO2012009925A1 (zh) 一种铁基磨削废料的无污染再利用方法
CN101914767B (zh) 纳米颗粒增强双金属复合材料制备工艺及设备
CN103467118B (zh) 一种高利用率再生镁碳砖及其制造方法
CN111168057A (zh) 一种增材制造用纳米陶瓷增强高熵合金复合粉末及其制备方法和应用
CN102990060B (zh) 硅化物颗粒增强激光熔覆高耐磨镍基合金粉末的制备方法
CN101122018A (zh) 激光快速成形专用铁基粉料
CN109439995B (zh) 高熵非晶合金涂层及其制备方法
CN110016601B (zh) 一种镍铬-金刚石合金复合粉末及其制备方法和用途
CN104759614A (zh) 一种皮带轮粉末冶金配方及工艺
CN113579208A (zh) 一种高铬铸铁基陶瓷复合磨辊的制备方法
CN107311455A (zh) 一种利用含砷废渣制备含砷固化玻璃的方法
CN108585803B (zh) 一种不结圈球团回转窑内衬的制备方法
CN102965590A (zh) 一种改性硬质合金及其制备
CN103567892B (zh) 不锈钢专用超薄片砂轮及制备方法
CN104141027B (zh) 一种综合利用炼钢转炉风淬渣的方法
CN101684528A (zh) 一种制备铁铝合金多孔材料的方法
CN103170619A (zh) 硅化物颗粒增强激光熔覆合金粉末及其制备方法
CN103302235B (zh) 一种铸件表面反应熔覆氧化铝基涂层的方法
CN101838752B (zh) 利用粉末状原料制作铁铝金属间化合物均质多孔材料的方法
CN109663900A (zh) 一种钢铁基复合板锤及其制备方法
CN103465176A (zh) 一种金属基金刚石磨轮的配方
CN110819864A (zh) 一种磨削黑色金属的金属结合剂金刚石砂轮及制备工艺
CN106041759A (zh) 超硬材料制品用添加剂原料组合物,添加剂及其制备方法,复合结合剂及超硬材料制品
CN107723484B (zh) 一种铬铁合金的制备方法及应用于该方法中的坩埚
CN109402443A (zh) 一种钢铁基复合耐磨件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854955

Country of ref document: EP

Kind code of ref document: A1