WO2012008226A1 - 汚泥の脱窒反応強度の評価方法 - Google Patents

汚泥の脱窒反応強度の評価方法 Download PDF

Info

Publication number
WO2012008226A1
WO2012008226A1 PCT/JP2011/061931 JP2011061931W WO2012008226A1 WO 2012008226 A1 WO2012008226 A1 WO 2012008226A1 JP 2011061931 W JP2011061931 W JP 2011061931W WO 2012008226 A1 WO2012008226 A1 WO 2012008226A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated sludge
denitrification
sludge
standing
time
Prior art date
Application number
PCT/JP2011/061931
Other languages
English (en)
French (fr)
Inventor
小川尊夫
Original Assignee
株式会社小川環境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小川環境研究所 filed Critical 株式会社小川環境研究所
Publication of WO2012008226A1 publication Critical patent/WO2012008226A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for controlling the operation of a wastewater purification apparatus, and more particularly to a method for managing the strength of denitrification of sludge in wastewater treatment using aerobic microorganisms.
  • activated sludge treatment is the most general wastewater treatment method.
  • the basic process of the activated sludge treatment method is as follows. That is, waste water is put into an activated sludge mixed solution containing aerobic microorganisms at a high concentration, and dissolved oxygen dissolved in the mixed solution by aeration is used to decompose and purify contaminants in the waste water. Furthermore, it isolate
  • sludge sedimentation management is extremely important for operation control. Sludge sedimentation varies depending on various factors, but as a typical factor that develops into trouble, nitrate ions cause a denitrification reaction in the sedimentation tank, and sludge becomes poorly settled due to the generated fine nitrogen gas. There are cases where sludge emerges.
  • nitrate ions in raw water or nitrifying bacteria in a nitrification tank for aerobic treatment are used.
  • the nitrate ions produced by the action are reduced to nitrogen gas by the action of denitrifying bacteria in the presence of a BOD source in an anaerobic state.
  • Requirement common to both in terms of operation management is how to evaluate the denitrification reaction of the mixture.
  • it is sufficient to measure the nitrate ion and nitrite ion in the mixed solution before and after the denitrification reaction and evaluate the difference between before and after.
  • it is not easy to accurately measure nitrate ions and nitrite ions in an activated sludge mixed liquid containing various interfering substances.
  • the measurement in activated sludge is actually difficult.
  • the instrument which automated the official method has a problem that it is expensive and difficult to handle.
  • Patent Documents 1 to 3 a method for evaluating the denitrification reaction by a simple method has been proposed (for example, Patent Documents 1 to 3).
  • the oxygen utilization rate (Nt-Rr) associated with the denitrification reaction in the activated sludge mixture and the value obtained by subtracting Nt-Rr from the total oxygen utilization rate in the mixture (ATU-Rr) are measured.
  • Nt-Rr and ATU-Rr are disclosed, and a method for determining whether or not the mixed liquid in the sedimentation tank is in a state where sludge floating phenomenon is likely to occur is disclosed.
  • Patent Document 2 the liquid mixture before entering the settling tank is quantitatively collected in a cylinder, allowed to stand for a set time, and then the position of the sludge phase is measured to detect whether the sludge has floated.
  • a method for evaluating the risk of denitrification and floating of sludge is disclosed.
  • Patent Document 3 in a reaction system using a microorganism in which carbon dioxide gas and a gas having low solubility in water such as nitrogen gas or methane gas are simultaneously generated, the measurement target liquid is charged in a sealed container, The liquid to be measured in the container is deaerated under reduced pressure, left for a predetermined time after deaeration, the amount of pressure change in the container due to the gas generated during the standing is measured, and the increase in the space volume of the container A method for evaluating the reactivity by calculating the amount of generated gas based on the pressure change amount is disclosed.
  • any of the above methods is a detection method that assumes a denitrification reaction strength that is large enough to cause sludge levitation, and is not appropriate as a method for evaluating a relatively small denitrification reaction strength that affects the sedimentation property of sludge.
  • no method has been found to evaluate the denitrification reaction intensity over a wide range at low cost and with high accuracy.
  • the first invention is A method for evaluating the degree of denitrification reactivity of an activated sludge mixture in an activated sludge or biological denitrification process.
  • the activated sludge mixed solution is allowed to stand in a cylinder, and SV1 and SV2, which are SV values after standing for a short time (t1) and standing for a long time (t2) (where t2> t1), are measured. It is characterized by evaluating the degree of denitrification reactivity by comparing SV1 and SV2.
  • the SV value refers to the ratio (h2 / h1 ⁇ 100 (%)) of the sludge layer liquid surface height (h2) after standing with respect to the liquid surface height (h1) of the activated sludge mixed liquid.
  • the second invention is a method for evaluating the degree of denitrification reactivity of the activated sludge mixed solution in the activated sludge treatment or biological denitrification process, wherein the activated sludge mixed solution is left in the first cylinder.
  • the SV value (SV1) after standing for a short time (t1) was measured, and the BOD solution was added in advance to the second cylinder containing the activated sludge mixed solution, and then left standing for a long time.
  • the later SV value (SV2s) is measured, and the magnitude of denitrification reactivity is evaluated by comparing SV1 and SV2s.
  • the first cylinder and the second cylinder are not necessarily separate cylinders.
  • the mixture is discarded after the SV1 measurement, and the SV2s measurement is performed by the above procedure using the same cylinder. It may be.
  • the third invention is characterized in that, in each of the above inventions, the short-time standing (t1) is 20 minutes to 40 minutes, and the long-time standing (t2) is 60 minutes to 150 minutes.
  • the operation of the first invention is as follows.
  • an SV value (hereinafter referred to as a short time SV value) at a short standing time (t1 minutes) is referred to as SV1
  • an SV value (hereinafter referred to as a long time SV value) at a long standing time (t2 minutes) is referred to as SV2.
  • SV1 minutes an SV value at a short standing time
  • SV2 minutes an SV value at a long standing time
  • the denitrification reaction requires the presence of nitrate ions and a BOD source in an anaerobic state.
  • the denitrification reaction is unlikely to occur even if nitrate ions are present, and the denitrification reaction intensity is not necessarily the amount of residual nitrate nitrogen in the activated sludge mixture Is not proportional.
  • the purpose of the denitrification process is to determine whether denitrification is normal, it is inconvenient for the result to change depending on the amount of residual BOD. For this reason, in order to prevent the shortage of the BOD source, a sufficient amount of BOD source (such as methanol) is added in advance to the denitrification reaction, and the mixture is stirred and left standing. Thereafter, SV2s is measured, and the denitrification reaction intensity is further evaluated by (SV2s / SV1). Since this strength is proportional to the amount of nitrate nitrogen in the mixed solution, it becomes a management index for determining whether the denitrification step of the biological denitrification process is normally performed.
  • BOD source such as methanol
  • the first and second inventions compare SV1 which is a short-time SV value and SV2 which is a long-time SV value, and evaluate denitrification reactivity. It is necessary to set the time appropriately.
  • t1 is preferably a standing time with less error and less influence by the denitrification reaction after transferring to compaction than the rapid sedimentation process.
  • the sludge sedimentation shifts from rapid sedimentation to consolidation in about 15 to 45 minutes after standing.
  • the activated sludge in which aerobic microorganisms are the main treatment and the denitrification reaction in the biological denitrification process are due to the action of denitrifying bacteria that are facultative anaerobic bacteria.
  • the short standing time is set to about 15 to 45 minutes, there is little error and there is no practical problem.
  • the shortest possible time is about 20 to 40 minutes.
  • the long standing time t2 should be set in a range in which a denitrification reaction that affects the sedimentation property of the sludge can be detected and a decay reaction due to anaerobic does not occur.
  • the denitrification reaction that affects the sedimentation property of the sludge can be sufficiently detected when about 1 hour or more has passed since the start of standing.
  • t2 is suitably from 50 minutes to 180 minutes, preferably from 60 minutes to 150 minutes.
  • FIG. 2 shows the relationship between the amount of residual nitrate nitrogen in the mixed solution and the denitrification reaction intensity (SV2 / SV1) under the condition that the BOD source is sufficiently present in the mixed solution.
  • the amount of residual nitrate nitrogen and the denitrification reaction intensity are generally proportional to each other in the range where the amount of residual nitrate nitrogen in the mixture is relatively small (see the figure). Proportional area).
  • the denitrification reaction strength of the activated sludge mixed liquid which is important for managing sludge settling in the settling tank, managing the reaction state of the denitrification step in the biological denitrification process, and the like, It becomes possible to evaluate by a simple method.
  • FIG. 3 is a diagram showing a denitrification reaction measuring apparatus 10 for evaluating a denitrification reaction according to the present invention.
  • the sampling sludge 1 samples the activated sludge mixed liquid from the vicinity of the outlet of the aeration tank (not shown), and charges the SV measuring tank 2 (hereinafter referred to as the SV tank) having an actual volume of 1 liter with a certain amount.
  • a predetermined amount of the additive solution in the additive solution tank 3 is added to the charged mixture solution by the addition pump 4, and the mixture is stirred and mixed by the stirring pump 5.
  • the additive solution supplies a carbon source necessary for denitrifying bacteria to reduce nitrate ions.
  • a methanol solution or an acetic acid solution can be used. Whether it is actually added depends on the purpose of use. That is, the additive liquid is not used for the purpose of managing the settling / rising risk of sludge in the activated sludge settling tank.
  • an additive solution is added for the purpose of managing the denitrification reaction in the biological denitrification process. The measurement is performed in two stages.
  • the sampled mixed solution is allowed to stand in a SV tank for a preset time (for example, about 30 minutes) without adding the additive solution, and the volume SV1 of the settled sludge phase after standing is measured.
  • the mixed solution is discarded, and a new activated sludge mixed solution is sampled by the sampling pump 1, and an additive solution is added as necessary in accordance with the above purpose.
  • the volume or height of the sedimentation sludge phase in the SV tank can be measured by measuring the sludge concentration while moving the sensor of the MLSS meter in the depth direction of the SV tank and obtaining the sludge concentration distribution in the SV tank. is there.
  • an absorptiometer 6 is provided at the lower outlet of the SV tank, and a discharge metering pump 7 or the like is used to adjust the absorptiometer at a flow rate that does not disturb the sludge interface in the SV tank.
  • FIG. 4 and FIG. 5 are diagrams showing the sedimentation state and absorbance change of the sludge in the SV tank by this method, respectively.
  • the computer 8 manages the measurement data of the operation and absorbance of all the devices including the pump.
  • FIG. 4 (a) shows a state in which sludge does not float and settles normally in the absence of nitrate ions
  • FIG. 4 (b) shows a case in which sludge does not float completely when there is a little more nitrate ions.
  • FIG. 4 (a) shows a state in which sludge does not float and settles normally in the absence of nitrate ions
  • FIG. 4 (b) shows a case in which sludge does not float completely when there is a little more nitrate ions.
  • FIG. 4 (a) shows a state in which sludge does not float and settles normally in the absence of nitrate ions
  • FIG. 4 (b) shows a case
  • FIG. 4 (c) shows a state in which the sludge is completely levitated when a large amount of nitrate ions are present.
  • Fig.5 (a) is a figure which shows the intensity
  • SV1 and SV2 were measured using one cylindrical SV tank.
  • the sludge from which SV1 is measured is not the same as the sludge from which SV2 is measured.
  • the time delay is about 30 minutes, so that it can be evaluated as the same sludge.
  • two cylindrical SV tanks may be used and measurement may be performed with completely the same sludge.
  • the stationary state may be continued and SV2 may be measured. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

【課題】活性汚泥や生物脱窒プロセスにおける活性汚泥混合液の脱窒反応強度を管理する方法を提供する。 【解決手段】シリンダーによる沈降性テストであって、シリンダー内の活性汚泥混合液の液面の高さと静置後の汚泥層の液面の高さの比をSVとするとき、静置時間の短いSV値をSV1とし、静置時間の長いSV値をSV2とし、SV2とSV1を比較することにより、活性汚泥混合液の脱窒反応性の大きさを評価する。また、静置時間の長いほうのシリンダー内の活性汚泥混合液に、予めBOD液を添加混合してから静置し、SV2sを測定し、SV2sとSV1を比較することにより、活性汚泥混合液中の硝酸性窒素の量に対応する脱窒反応強度を評価する。

Description

汚泥の脱窒反応強度の評価方法
 本発明は廃水浄化装置の運転制御方法に係り、特に好気性微生物を用いた排水処理での汚泥の脱窒反応強度を管理する方法に関する。
 微生物を利用する工学的分野は多岐に亘っているが、代表的な分野として廃水処理があり、なかでも活性汚泥処理法は最も汎用的な廃水処理法である。活性汚泥処理法の基本プロセスは以下の通りである。すなわち、好気性微生物を高濃度に含む活性汚泥混合液に廃水を入れ、曝気により混合液中に溶解した溶存酸素を利用して、微生物に廃水中の汚濁物を分解浄化させる。さらに、沈殿槽内で汚泥と上澄水に分離して、沈殿した汚泥は返送汚泥として曝気槽に戻し、上澄み水は、処理水として排出する。
 活性汚泥混合液の固液分離方法としては重力による沈殿処理が多く用いられており、この場合、汚泥の沈降性管理が運転制御上、極めて重要である。
汚泥の沈降性は種々の要因で変化するが、トラブルに発展する代表的な要因として、沈殿槽内で硝酸イオンが脱窒反応を起こし、生成した細かい窒素ガスにより、汚泥が沈降不良になったり、汚泥が浮上するケースがある。
 また活性汚泥と同様に微生物を用いて好気処理と嫌気処理を組み合わせてBODと窒素を同時除去する生物脱窒プロセスにおいては、原水中の硝酸性イオンまたは好気処理する硝化槽において硝化菌の作用で生成した硝酸性イオンを、嫌気状態でBOD源の存在下で、脱窒菌の作用で硝酸性イオンを窒素ガスに還元するものである。
 運転管理上、両者に共通する必要事項は、混合液の脱窒反応をどのように評価するかである。原理的には、脱窒反応前後の混合液中の硝酸イオンや亜硝酸イオンを測定して、前後の差を評価すれば良いことになる。しかしながら、各種の妨害物質を含有する活性汚泥混合液中の硝酸イオンや亜硝酸イオンを、精度よく測定することは容易ではない。例えばイオン電極法では、活性汚泥中での測定は、実用的には困難というのが実態である。また、公定法を自動化した計器は、高価であり扱いにくいという問題がある。
 このため、従来、簡便な方法で脱窒反応を評価する方法が提案されている(例えば特許文献1乃至3)。
 特許文献1では、活性汚泥混合液における脱窒反応に伴う酸素利用速度(Nt-Rr)と、前記混合液における全酸素利用速度からNt-Rrを減じた値(ATU-Rr)とを測定し、Nt-Rr及びATU-Rrの各値に基づいて沈澱槽内における前記混合液が汚泥浮上現象が起こり易い状態にあるかどうかを判定する方法が開示されている。
 また、特許文献2では、沈殿槽に入る前の混合液をシリンダーに定量採取し、設定時間静置後、汚泥相の位置を測定し、汚泥が浮上しているかどうかを検知し、沈殿槽での汚泥の脱窒浮上の危険性を評価する方法が開示されている。
 また、特許文献3では、炭酸ガスと、窒素ガス又はメタンガスなどの水への溶解度の小さいガスが同時に発生する微生物を利用した反応系において、密閉化された容器に測定対象液をチャージし、前記容器内の測定対象液を減圧下で脱気し、脱気後に所定の時間放置し、放置中に発生するガスによる前記容器内の圧力変化量を測定し、前記容器の空間容積の増加量と前記圧力変化量とに基づいて発生ガス量を演算する、ことにより反応性を評価する方法が開示されている。
特開平6-304591 特開2006-175357 特開2005-238089
 上記いずれの方法も、汚泥浮上を起こすほどの大きい脱窒反応強度を想定した検知方法であり、汚泥の沈降性に影響する程度の比較的小さな脱窒反応強度の評価方法としては妥当ではなく、脱窒反応強度を広いレンジにわたり、安価、かつ、精度良く評価する方法は見出されていないのが現状である。
 本発明者は鋭意研究の結果、広範囲にわたり脱窒反応強度を簡便、かつ、精度よく測定できる方法を見出し、以下の発明を完成させた。
すなわち、第1の発明は、
 活性汚泥や生物脱窒プロセスにおける活性汚泥混合液の脱窒反応性の大きさを評価する方法であって、 
 活性汚泥混合液をシリンダー内に静置して、短時間静置(t1)及び長時間静置(t2)(但し、t2>t1)後のSV値である、SV1及びSV2を測定し、
 SV1とSV2を比較することにより、脱窒反応性の大きさを評価することを特徴とする。
 ここにSV値とは、活性汚泥混合液の液面高さ(h1)に対する静置後における汚泥層液面高さ(h2)の割合(h2/h1×100(%))をいう。
 第2の発明は、活性汚泥処理や生物脱窒プロセスにおける活性汚泥混合液の脱窒反応性の大きさを評価する方法であって、活性汚泥混合液を第一のシリンダー内に静置して、短時間静置(t1)後のSV値(SV1)を測定し、該活性汚泥混合液を入れた第二のシリンダーに、予め、BOD液を添加した後に静置して、長時間静置後のSV値(SV2s)を測定し、SV1とSV2sを比較することにより、脱窒反応性の大きさを評価することを特徴とする。
 なお、第一のシリンダーと第二のシリンダーとは、必ずしも別個のシリンダーである必要はなく、例えば、SV1測定後に混合液を廃棄して、同一シリンダーを用いて、上記手順によりSV2s測定を行うものであってもよい。
第3の発明は、上記各発明において、前記短時間静置(t1)が20分乃至40分であり、前記長時間静置(t2)が60分乃至150分であることを特徴とする。
 第一の発明の作用は以下の通りである。シリンダーに活性汚泥混合液を入れ、静置すると、図1に示すように、時間とともに汚泥と上澄み液は分離していく。ここに、短い静置時間(t1分)におけるSV値(以下、短時間SV値という)をSV1とし、長い静置時間(t2分)におけるSV値(以下、長時間SV値という)をSV2とする。脱窒による作用がなければ、通常、同図の(a)に示すように時間経過とともに沈降が進行してSV値は低下していき、SV2<SV1となる。
ところが、混合液中に硝酸イオンまたは亜硝酸イオンが存在し、炭素源としてBOD成分が存在している場合には、静置時間中にシリンダーの汚泥層内が嫌気環境になり、脱窒菌の作用で硝酸イオンが窒素ガスに還元される。これにより汚泥に細かい窒素ガスが発生し、汚泥に付着し浮力が生じるため、同図の(b)のようにSV2>SV1となる。さらに多量の脱窒反応が起こると、同図の(c)のように汚泥が浮上して、SV2は測定不能となる。
 以上のことから、短時間SV値(SV1)と長時間SV値(SV2)との比較により、活性汚泥混合液の脱窒反応強度評価が可能となる。
 次に、第二の発明の作用は以下の通りである。脱窒反応には、嫌気状態において硝酸性イオンとBOD源の存在が必要である。活性汚泥混合液のBOD処理が良好で残留BODが少ない場合には、硝酸イオンが存在しても脱窒反応は起きにくく、脱窒反応強度は必ずしも活性汚泥混合液中の残留硝酸性窒素の量とは比例しない。
 活性汚泥沈殿槽での沈降性を評価する場合は、沈殿槽での沈降性や汚泥浮上の危険性を評価するものであるから、残留BODの影響作用を含めた評価で支障ないが、生物脱窒プロセスでは、脱窒が正常か否かの判定が目的であるため、残留BODの量により結果が変化することは不都合である。このため、BOD源不足が生じないように、予め脱窒反応に十分な量のBOD源(メタノールなど)を添加し、攪拌・静置する。その後SV2sを測定し、さらに(SV2s/SV1)により脱窒反応強度を評価する。この強度は、混合液中の硝酸性窒素の量に比例するものであるから、生物脱窒プロセスの脱窒工程が正常におこなわれているかどうかの管理指標になる。
 次に、第三の発明の作用は以下の通りである。
 第一、第二の発明は短時間SV値であるSV1と長時間SV値であるSV2とを比較して、脱窒反応性を評価するものであるから、t1及びt2を最も現象の変化を的確にとらえる時間に設定することが必要である。
t1としては、急速な沈降過程より圧密に移行してからのほうが誤差が少なく、脱窒反応による影響が少ない静置時間が好ましい。
 汚泥の沈降が、急速な沈降から圧密に移行するのは、静置後15分~45分程度である。
 また、好気性微生物が処理の主体である活性汚泥や生物脱窒プロセスにおける脱窒反応は、通性嫌気性菌である脱窒菌の作用によるものであり、好気状態にある活性汚泥混合液がシリンダーにサンプリングされ、溶存酸素を消費して嫌気状態になり、脱窒菌が溶存酸素の取り込みから硝酸イオンから酸素を取り込みに変化させ、さらに汚泥の沈降性に影響するほどの窒素ガスを発生させるまでになるには、通常1時間程度以上を必要とするのが一般的である。図1の(b)に示すような静置時間30分程度では、(a)に示す脱窒反応をおこさない混合液のSV値との差はわずかである。
 もちろん、汚泥浮上となるような大きな脱窒反応を起こす混合液の場合には、静置30分程度でも図1の(c)に示すようにSV1でも大きな差となるが、このような場合には、長時間SVは、汚泥が浮上するので、SV2/SV1の比較をするまでもなく、脱窒反応強度を評価できる。
したがって、短い静置時間を15分~45分程度に設定すれば、誤差は少なく実用上支障ない範囲であり、その範囲で、できるだけ短い20分から40分程度が妥当であり、また過去の活性汚泥の歴史のなかで、静置時間30分のときのSV値をSV30として、運転操作の重要な指標にしてきた経緯があることを考慮して、30分とするのが最も好ましい。
 また、長静置時間t2は、汚泥の沈降性に影響がでる脱窒反応が検知でき、かつ、嫌気による腐敗反応が起きない範囲に設定すべきである。汚泥の沈降性に影響がでる脱窒反応は、静置開始から1時間程度以上経過すれば十分検知可能になる。また腐敗は活性汚泥混合液の性状や、同伴するBODなどにより大きな幅があるが、通常180分以内であれば腐敗状況にはならない。また一般に、活性汚泥の沈殿槽内の汚泥相の滞留時間が180分程度であることも考慮すれば、t2は50分から180分、好ましくは、60分から150分が適当である。
 図2に、混合液中にBOD源が十分に存在する条件下での、混合液中の残留硝酸性窒素量と脱窒反応強度(SV2/SV1)との関係を示す。活性汚泥混合液の性状やMLSSなどにより異なるが、混合液中の残留硝酸性窒素の量が比較的少ない範囲では、残留硝酸性窒素量と脱窒反応強度は概ね比例関係にある(同図の比例領域)。残留硝酸性窒素の量が多く、汚泥が浮上するような場合は、そもそもSVが測定できないので、(SV2/SV1)で評価することはできない(同図の汚泥浮上領域)。
 本発明によれば、活性汚泥においては沈殿槽での汚泥の沈降性の管理、生物脱窒プロセスでは脱窒工程の反応状態の管理、などに重要な活性汚泥混合液の脱窒反応強度を、簡便な方法で評価できるようになる。
混合液の脱窒反応強度とSV値時間的変化の関係を示す図である。 活性汚泥混合液中の残留硝酸性窒素の量と脱窒反応性強度の関係を説明する図である。 本発明の実施形態に係る脱窒反応測定装置10を示す図である。 実施形態におけるシリンダー状SV槽内の汚泥の沈殿状態を示す図である。 図4の場合の汚泥沈降状態と吸光度変化の関係を示す図である。
 以下、本発明の実施形態について、さらに詳細に説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。
図3は、本発明による脱窒反応評価のための脱窒反応測定装置10を示す図である。
 サンプリングポンプ1により、曝気槽(不図示)出口近傍から活性汚泥混合液をサンプリングし、実容積1リットルのSV測定槽2(以下、SV槽)に一定量チャージする。チャージした混合液に、添加ポンプ4により添加液タンク3内の添加液を一定量混合液に添加し、攪拌ポンプ5で攪拌混合する。ここに、添加液は硝酸イオンを脱窒菌が還元する際に必要とする炭素源を供給するものであり、例えば、メタノール溶液や酢酸溶液などを用いることができる。実際に添加するかどうかは、使用目的による。すなわち、活性汚泥の沈殿槽における汚泥の沈降性・浮上危険性を管理する目的であれば、添加液は使用しない。一方、生物脱窒プロセスにおける脱窒反応を管理する目的であれば、添加液を添加する。
 測定は2段階でおこなう。第一段階は、添加液を加えることなく、サンプリングした混合液を、SV槽で予め設定した時間(例えば30分程度)静置し、静置後の沈降汚泥相の容積SV1を測定する。
 測定後、混合液を廃棄し、新たに活性汚泥混合液をサンプリングポンプ1でサンプリングし、上記目的に合わせて必要に応じて添加液を添加する。攪拌後、予め設定した時間(例えば90分程度)静置し、静置後の沈降汚泥相の容積SV2を測定する。静置中に、汚泥が浮上した場合は、測定データに浮上状態であることの印を付し、SV2=100とする。
 SV槽の沈降汚泥相の容積または高さの測定は、MLSS計のセンサーを、SV槽の深さ方向に移動させつつ汚泥濃度を測定し、SV槽内の汚泥濃度分布を求めることにより可能である。また、図3の装置のように、SV槽の下部出口に吸光光度計6を設け、排出定量ポンプ7などを使って、SV槽内の汚泥界面が乱れない程度の流速で、吸光光度計のセルの間を排出させつつ、吸光度の変化を測定し、排出流量と吸光度の変化から、汚泥相の位置や、汚泥相の濃度を特定することもできる。図4及び図5は、それぞれこの方法によるSV槽の汚泥の沈降状態及び吸光度の変化を表す図である。ポンプを含め、全ての機器の作動や吸光度の測定データは、コンピュータ8で管理する。
 図4(a)は硝酸イオンのない場合において、汚泥は浮上せず正常に沈降している状態、図4(b)は硝酸イオンがやや多く存在する場合において、汚泥は完全に浮上しないまでも汚泥相のあいだに上澄み相が生成している状態、さらに図4(c)は硝酸イオンが多く存在している場合において、汚泥は完全に浮上している状態である。
 図5(a)は、図4(a)のSV槽の混合液を排出したときの透過光の強度変化を示す図である。汚泥相通過時の透過光と上澄み相通過時の透過光には大きな変化があるので、コンピュータで解析することにより、容易に汚泥相の位置や状態が特定できる。
 本実施形態では、1本のシリンダー状SV槽を使ってSV1、SV2を測定した。SV1を測定した汚泥とSV2を測定した汚泥は同一ではないが、SV1を測定後、SV2用の汚泥をサンプリングすれば、時間遅れは30分程度なので、同一の汚泥と評価して支障ない。
 もちろん2本のシリンダー状SV槽を使って、完全に同一の汚泥で測定してもよい。
また、第1の発明による測定方法では、1本のシリンダー状SV槽を用いて汚泥相の静置状態を乱すことなくSV1を測定後、そのまま静置を継続してSV2を測定してもよい。
1・・・・サンプリングポンプ
2・・・・SV測定槽(SV槽)
3・・・・添加液タンク
4・・・・添加ポンプ
5・・・・攪拌ポンプ
6・・・・吸光光度計
7・・・・排出定量ポンプ
8・・・・コンピュータ
10・・・脱窒反応測定装置

Claims (3)

  1.  活性汚泥処理や生物脱窒プロセスにおける活性汚泥混合液の脱窒反応性の大きさを評価する方法であって、 
     活性汚泥混合液をシリンダー内に静置して、短時間静置(t1)及び長時間静置(t2)(但し、t2>t1)後のSV値である、SV1及びSV2を測定し、
     SV1とSV2を比較することにより、脱窒反応性の大きさを評価することを特徴とする活性汚泥混合液の脱窒反応強度評価方法。
  2.  活性汚泥処理や生物脱窒プロセスにおける活性汚泥混合液の脱窒反応性の大きさを評価する方法であって、
     活性汚泥混合液を第一のシリンダー内に静置して、短時間静置(t1)後のSV値(SV1)を測定し、
     該活性汚泥混合液を入れた第二のシリンダーに、予め、BOD液を添加した後に静置して、長時間静置後のSV値(SV2s)を測定し、
     SV1とSV2sを比較することにより、脱窒反応性の大きさを評価することを特徴とする活性汚泥混合液の脱窒反応強度評価方法。
  3.  請求項1又は2において、前記短時間静置(t1)が20分乃至40分であり、前記長時間静置(t2)が60分乃至150分であることを特徴とする活性汚泥混合液の脱窒反応強度評価方法。
     
PCT/JP2011/061931 2010-07-14 2011-05-25 汚泥の脱窒反応強度の評価方法 WO2012008226A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010159590A JP2012020225A (ja) 2010-07-14 2010-07-14 汚泥の脱窒反応強度の評価方法
JP2010-159590 2010-07-14

Publications (1)

Publication Number Publication Date
WO2012008226A1 true WO2012008226A1 (ja) 2012-01-19

Family

ID=45469237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061931 WO2012008226A1 (ja) 2010-07-14 2011-05-25 汚泥の脱窒反応強度の評価方法

Country Status (2)

Country Link
JP (1) JP2012020225A (ja)
WO (1) WO2012008226A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183577A1 (ja) * 2019-03-11 2020-09-17 株式会社 ゴーダ水処理技研 排水処理施設の試験方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845318B2 (ja) * 1977-08-24 1983-10-08 三郎 松井 活性汚泥法の沈澱池滞留汚泥量の制御方法
JPH10194724A (ja) * 1997-01-16 1998-07-28 Keiji Nagashima 固体液体混合物
JPH11183365A (ja) * 1997-12-24 1999-07-09 Hiyoshi:Kk 汚泥容量測定装置
JP2001255319A (ja) * 2000-03-09 2001-09-21 Ogawa Kankyo Kenkyusho:Kk 廃水処理試験方法
JP2005238089A (ja) * 2004-02-26 2005-09-08 Ogawa Kankyo Kenkyusho:Kk 反応性評価方法及び装置
JP2006205111A (ja) * 2005-01-31 2006-08-10 Kurita Water Ind Ltd 汚泥性状診断装置
JP2007319787A (ja) * 2006-06-01 2007-12-13 Asahi Organic Chem Ind Co Ltd 不溶性物質含有廃水の処理方法及び処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4276933B2 (ja) * 2003-12-24 2009-06-10 株式会社バイオキャリアテクノロジー フロック形成剤とバルキング予防方法及び活性汚泥処理方法
JP2010271090A (ja) * 2009-05-20 2010-12-02 Hiyoshi:Kk 活性汚泥特性測定装置及び活性汚泥特性測定方法
JP2011005354A (ja) * 2009-06-23 2011-01-13 Ogawa Kankyo Kenkyusho:Kk Bodと窒素を同時処理可能な活性汚泥の運転方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845318B2 (ja) * 1977-08-24 1983-10-08 三郎 松井 活性汚泥法の沈澱池滞留汚泥量の制御方法
JPH10194724A (ja) * 1997-01-16 1998-07-28 Keiji Nagashima 固体液体混合物
JPH11183365A (ja) * 1997-12-24 1999-07-09 Hiyoshi:Kk 汚泥容量測定装置
JP2001255319A (ja) * 2000-03-09 2001-09-21 Ogawa Kankyo Kenkyusho:Kk 廃水処理試験方法
JP2005238089A (ja) * 2004-02-26 2005-09-08 Ogawa Kankyo Kenkyusho:Kk 反応性評価方法及び装置
JP2006205111A (ja) * 2005-01-31 2006-08-10 Kurita Water Ind Ltd 汚泥性状診断装置
JP2007319787A (ja) * 2006-06-01 2007-12-13 Asahi Organic Chem Ind Co Ltd 不溶性物質含有廃水の処理方法及び処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Haisui no Kassei Odei Shori, revised new edition, Koseisha Koseikaku edition", 15 April 1986, article MAKIO NAKASHIO, pages: 255 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183577A1 (ja) * 2019-03-11 2020-09-17 株式会社 ゴーダ水処理技研 排水処理施設の試験方法

Also Published As

Publication number Publication date
JP2012020225A (ja) 2012-02-02

Similar Documents

Publication Publication Date Title
Ziyang et al. Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages
Reuschenbach et al. A critical comparison of respirometric biodegradation tests based on OECD 301 and related test methods
Szabó et al. Significance of design and operational variables in chemical phosphorus removal
Amanatidou et al. Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time
Nor-Anuar et al. Strength characteristics of aerobic granular sludge
Yuan et al. Study on the effect of landfill leachate on nutrient removal from municipal wastewater
Gatti et al. Wastewater COD characterization: analysis of respirometric and physical‐chemical methods for determining biodegradable organic matter fractions
JPS6221600B2 (ja)
CN108414716B (zh) 一种污水有机质组分的检测装置及方法
Lie et al. A method for determination of the readily fermentable organic fraction in municipal wastewater
WO2012008226A1 (ja) 汚泥の脱窒反応強度の評価方法
Chowdhury et al. Effect of dynamic loading on biological nutrient removal in a pilot-scale liquid-solid circulating fluidized bed bioreactor
JP2011005354A (ja) Bodと窒素を同時処理可能な活性汚泥の運転方法
Louzeiro et al. Process control and design considerations for methanol‐induced denitrification in a sequencing batch reactor
JP2005238089A (ja) 反応性評価方法及び装置
JP4190177B2 (ja) 生物学的脱窒素処理における有機炭素源添加方法および装置
JPH067792A (ja) 有機性排水の処理方法及びメタン発酵処理装置
Koziollek et al. A dynamic river model for biodegradability studies: Investigations with selected aromatic compounds at low concentrations and comparison with aquatic batch tests
Roesler et al. Variables to be measured in wastewater treatment plant monitoring and control
JP7438484B1 (ja) 活性汚泥の処理水codの取得方法
CN115047157B (zh) 垃圾渗沥液水质理化性质分析方法
JPH091172A (ja) 生物処理装置
Sahlin Evaluating the suitability of carbon source from fermenta tion of primary filter sludge for biological nutrient removal
JPS5814997A (ja) 生物学的脱窒素プロセスの制御方法
Ilinykh et al. Review of effective tools for monitoring the performance of membrane bioreactors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806557

Country of ref document: EP

Kind code of ref document: A1