WO2012007673A1 - Adsorbeur avec revêtement interne - Google Patents

Adsorbeur avec revêtement interne Download PDF

Info

Publication number
WO2012007673A1
WO2012007673A1 PCT/FR2011/051603 FR2011051603W WO2012007673A1 WO 2012007673 A1 WO2012007673 A1 WO 2012007673A1 FR 2011051603 W FR2011051603 W FR 2011051603W WO 2012007673 A1 WO2012007673 A1 WO 2012007673A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorber
reaction chamber
gas
coating
adsorbent
Prior art date
Application number
PCT/FR2011/051603
Other languages
English (en)
Inventor
Ivan Sanchez-Molinero
Serge Moreau
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/809,571 priority Critical patent/US8679432B2/en
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to EP11743301.1A priority patent/EP2593216A1/fr
Priority to KR1020137003846A priority patent/KR20130045907A/ko
Priority to CN201180044302.3A priority patent/CN103118775B/zh
Publication of WO2012007673A1 publication Critical patent/WO2012007673A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0245Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of synthetic organic material

Definitions

  • An adsorber comprising an adsorbent for at least partially drying a gas, and comprising a coating for protecting said column of hot acidic liquids that can form temporarily during use and a purification process of a feed gas stream containing C0 2 and water, and at least one impurity selected from NOx and SOx, implementing said adsorption column.
  • the gases to be treated derived from the oxyfuel combustion of fossil fuels, contain compounds of the type NO, NO 2 , SO 2 , SO 3 , H 2 O, CO, CO 2 , O 2 , Ar and N 2 .
  • Figure 1 shows that the corrosion loss rates of steel in the presence of acid solutions are high, and they increase strongly with temperature.
  • ultra-pure special steels with very strict chemical composition specifications, in particular with respect to compounds such as carbon or phosphorus.
  • the disadvantage of these materials is that they are not available and much more expensive than ordinary steels.
  • a steel capable of withstanding such conditions is, for example, 304 NAG, the price of which is 3 to 5 times more expensive than ordinary steel.
  • ordinary steel will be used in contrast to these special steels.
  • ordinary steels are carbon steel and type 304 or 316L stainless steels.
  • Another solution is to coat enamel the inner wall of the adsorber. This operation has a high cost and the coating thus obtained is fragile (little impact resistance).
  • Drying gases of the type for example, resulting from oxy-fuel combustion as mentioned above, in a TSA-type adsorption process (Swing Adsorption Temperature) corresponds to a particular new type of corrosion risk.
  • the acid phase can be stabilized by interaction with the adsorbent, for example by hydrogen bonding, which leads to accelerate and shift its gas phase formation reaction.
  • the adsorbents can catalyze certain oxidation-reduction reactions, which means that gaseous substances that are not very adsorbable can also be sensitive to the presence of adsorbents.
  • the catalytic effects depend on the adsorbent and its surface properties: Si-OH groups, Al-OH, cations, organic functions (acids, alcohols, ketones, lactones, aldehydes), surface defects.
  • the different adsorbents can therefore have different properties: activated carbon, zeolites, silica gels, activated alumina or calcined.
  • activated carbon zeolites
  • silica gels activated alumina or calcined.
  • the acids formed can optionally be neutralized with bases present in the gas, and lead to corrosive salts, such as chlorides or phosphates.
  • the regeneration of the adsorbent by a hot gas involves the desorption against the current of the adsorbed water, which will then pass over the impregnated area of the strong acids previously cumulated. Under these conditions, the regenerative hot gas loaded with moisture will condense part of the water it contains on these hygroscopic acid compounds.
  • the hot regeneration gas at the outlet of the adsorbent bed will be periodically saturated with water and acidic vapors which will condense on the bottom of the colder adsorber.
  • a solution of the invention is an adsorber comprising:
  • an adsorbent having adsorption properties allowing the at least partial elimination of water from a gaseous flow comprising NOx and / or SOx, and
  • a coating consisting essentially of a polymeric material on at least a portion of the metal inner wall of the reaction chamber, said polymer being resistant to acid liquids at temperatures above 150 ° C, preferably above 200 ° C.
  • Adsorption properties of an adsorbent for the preferential removal of a constituent are understood to mean that the adsorbent has an equilibrium adsorption capacity and an adsorption kinetics such that it is possible to remove most of this component of a gas stream and thereby at least partially purify said gas stream in this component.
  • Acidic liquids are understood to mean any solution comprising acid compounds derived from the simultaneous adsorption of water and SOx and / or NOx.
  • the adsorber according to the invention may have one or other of the following characteristics:
  • the coating is applied to the lower part of the reaction chamber, the inlet side of the gas stream;
  • the adsorber comprises a reaction chamber comprising a bottom bottom 2, an upper bottom 3 and a shell 1; and an inlet pipe 4 of the gas stream in the reaction chamber; and wherein said coating covers the weld 21 between the bottom bottom 2 and the shell 1 and / or the weld 22 located between the bottom bottom 2 and the pipe 4;
  • the coating is a fluoropolymer, preferably selected from polytetrafluoroethylene, perfluoroalkoxy, and perfluoro (ethylene-propylene); These 3 fluoropolymers will be grouped under the name "Teflon”.
  • the walls of the reaction chamber are made of standard stainless steel, preferably 316L or 304L type steel;
  • the adsorbent material consists of silica gel or zeolites resistant to acids, preferably of the mordenite, ferrierite, erionite or offretite type.
  • the tfion is sprayed cold on at least a portion of the inner wall of the boiler room of the reaction chamber and the assembly is heated to a temperature between 330 and 400 ° C.
  • the thickness of the coating after drying is preferably between 40 and 500 microns.
  • the present invention also relates to a process for purifying a feed gas stream containing CO 2 , water and at least one impurity selected from SOx and / or NOx, comprising:
  • drying and / or purification step being able to take place before, after or during the compression step.
  • the step of drying and / or purifying other impurities of this gas flow can be carried out by means of an adsorber according to the invention, aimed at eliminating:
  • the water so as to have a water content in the treated gas stream of less than 500 ppm of water, preferably less than 50 ppm, and more particularly still less than 5 ppm, and optionally
  • This step can be carried out at the pressure of provision of the gas to be treated, generally between atmospheric pressure - even slight depression due to pressure losses in upstream equipment - and 4 bar absolute. It can also be performed after compression or intermediate output of a compression stage, 6 to 15 bar abs for example.
  • the process according to the invention preferably comprises a step of recovering a stream of purified gas enriched in C0 2 in the liquid, gaseous or supercritical state.
  • the gas flow can be:
  • the feed gas stream preferably corresponds to oxy-combustion fumes.
  • the adsorbent is regenerated against the current according to the type of process (TSA or VSA or PSA or a combination), a gas flow rate at a temperature between 80 and 200 ° C, preferably between 100 and 180 ° C.
  • oxygen is understood to mean combustion during which the coal is burned in a fluid that is low in nitrogen, which may range from pure oxygen (> 95%) to a fluid containing the same quantity of oxygen as air (about 21%) obtained by mixing pure oxygen (> 95%) with recycled fumes rich in C0 2 .
  • the adsorbent used can be regenerated countercurrently depending on the type of process (TSA or VSA or PSA or a combination), with a gas flow rate of
  • FIG. 2 shows an adsorber according to the invention.
  • the adsorber consists of a ferrule 1, a bottom bottom 2 and an upper bottom 3, an inlet pipe 4 of the gas to be dried and an outlet pipe 5 of the purified gas.
  • the adsorbent bed 6 is supported by a grid 7.
  • the tubing 4 may have a low point 8 purgeable.
  • the gas to be treated 1 1 enters the adsorber at the bottom through the inlet pipe 4 and the purified gas 12 exits at the top via the outlet pipe 5.
  • the regeneration gas 13 enters the upper part and leaves the adsorber at the bottom.
  • the operating conditions in the adsorption phase range from atmospheric pressure - even a slight depression - to about sixty bar, a temperature of the order of 5 ° C up to 50 ° C.
  • a temperature level generally of between 100 and 300 ° C., preferably between 150 and 250 ° C., is used.
  • the regeneration pressure can range from atmospheric pressure to several tens of bars according to the overall process in which said purification is inserted.
  • any liquids may be recovered at the low point 8.
  • a liquid phase loaded with acid may appear in the lower part 21 of the wall of the adsorber, at the level of the support grid 7 and on the wall of the bottom bottom 2 of the adsorber.
  • the lower part of the adsorber comprises welds such as those making the junction 21 between the ferrule 1 and the bottom bottom 2 or the junction 22 between said bottom and the tubing 4.
  • welds are the weak link of the adsorber vis-à-vis corrosion problems. According to the invention, they will be protected by a Teflon coating.
  • the welds will be leveled, subjected to a surface treatment (for example washing, sandblasting, microblasting, blowing), the teflon will be applied all along and the adsorber or parts thus joined heated adequately (cooking for example by baking).
  • the seaming of the welds is carried out in order to obtain the most possible flat surfaces in order to avoid any risk of micro-accumulation of liquid.
  • the final choice of the coating preferably a fluoropolymer, and preferably polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), or fluoroethylene propylene (FEP) will be carried out depending on the operating conditions, in particular the maximum temperature that the Wrapping.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy
  • FEP fluoroethylene propylene
  • Weld protection is the minimum protection. It may be interesting to also protect the zone 20 which cyclically sees aggressive liquids. More precisely, it is possible to opt for an over-thickness of corrosion to take into account the time during which this zone is subjected to contact with hot acidic liquids. Generally, two adsorbers are used, one being in adsorption and the other in regeneration. The regeneration comprises at least one heating phase and one cooling phase. In practice, the most aggressive conditions occur only during a fraction of the warm-up stage, usually less than a quarter of the time. It can be said that the corrosion conditions are extreme for only 10 to 20% of the time of the cycle time, that is to say for a unit operating continuously for 10 to 20% of the life of said unit. It is this factor specific to a TSA purification that makes it possible to use less noble materials than special steels and coatings cheaper than enamel.
  • Figure 3 shows a variation of a portion of the adsorber.
  • the adsorbent bed is isolated from the wall 1 of the adsorber by an inner wall 9, for example by a sealed metal blade on the input side of the wet gas and open gas side purified.
  • this wall is not subjected to pressure and can be easily oversized in its thickness or because of its small thickness be provided in more noble metal resistant to corrosion.
  • FIG. 4 represents a device making it possible to carry out a method according to the present invention characterized by the location of the drying step at the end of the compression cycle.
  • the method according to the invention may comprise a first pretreatment step (a) for treating the fumes using known methods forming part of the state of the art. Washings are commonly used which use different liquids (or solvents) such as water, alcohols (methanol for example, amine solutions, basic solutions ... these are the most conventional ones but there are some many others, or desuliurisation units, or filtration units. This first step makes it possible to eliminate an impurity.
  • the gas resulting from the pre-treatment step (a) may in general contain:
  • NOx nitrogen oxides
  • SOx sulfur oxides
  • incondensables vis-à-vis the CO 2 nitrogen, argon, oxygen and rare gases mainly from the air inlets on the oxy-combustion boiler and the purity of oxygen; compounds derived from heavy metals: AsCl 3 , AsO, AsH 3 , AsN; B (OH) 3 , HB0 2 , BH 3 ; BaCl 2 , BaO; Be (OH) 2 ; CdO, CdS, CdSO 4 , CdCl 2 ; CoCl 2 , CoO, Co 2 [(CO) 4 ] 2 ; CuCl 2 , CuCl, CuO, CuH; HgO, HgCl 2 , CH 3 HgCl, HgH, HgS, HgSe; MoO, MoO 2 , MoO 3 , MoCl 2 , Mo (CO) 6 ; MO, NiCl 2 , Ni (CO) 4 ; P 2 0 5, P0 2, PC1 3, P 4 0 6; P
  • the gas flow is compressed to a sufficient pressure level so as to be able on the one hand to separate a part of the undesirable compounds in this way (separators generally located immediately after each step of compression followed by a heat exchange to cool the flow of gas to remove the condensables that appeared during this cooling: water for example) and on the other hand to bring the gas under the right conditions (temperature and pressure) in order to Prepare the removal of other impurities in the following steps.
  • the third step (c) consists in purifying and drying the compressed stream in an adsorber according to the invention.
  • the water is removed to a level compatible with the transport and / or liquefaction of CO 2 (usually a dew point between -20 and -50 ° C, or lower).
  • CO 2 usually a dew point between -20 and -50 ° C, or lower.
  • Other constituents may be totally or partially removed from the main flow, in the same adsorber or in different adsorbers:
  • NOx nitrogen oxides
  • SOx sulfur oxides
  • the fourth step (d) then aims to recover a stream of purified gas, enriched in C0 2 .
  • An adsorber according to the present invention may also be implemented at the end of step (a), in order to totally or partially remove the following constituents:
  • NOx nitrogen oxides
  • SOx sulfur oxides
  • an adsorber according to the invention would be placed before the compression step (b), or after partial compression, less than 10 bar (a).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Drying Of Gases (AREA)

Abstract

Adsorbeur comprenant: une enceinte réactionnelle, un adsorbant présentant des propriétés d'adsorption permettant l'élimination au moins partielle de l'eau d'un flux gazeux comprenant des NOx et/ou des SOx, et un revêtement constitué essentiellement d'un matériau polymèresur au moins une partie de la paroi interne métallique de l'enceinte réactionnelle, ledit polymère étant résistant aux liquides acides à des températures supérieures à 150°C.

Description

Adsorbeur avec revêtement interne
L'invention porte sur un adsorbeur comprenant un adsorbant permettant de sécher au moins partiellement un gaz, et comprenant un revêtement permettant de protéger la dite colonne de liquides acides chauds pouvant se former temporairement en cours d'utilisation et sur un procédé de purification d'un flux de gaz d'alimentation contenant du C02 et de l'eau, et au moins une impureté choisie parmi les NOx et les SOx, mettant en œuvre ladite colonne d'adsorption.
Les gaz à traiter, issus de l'oxycombustion de combustibles fossiles contiennent des composés du genre NO, N02, S02, S03, H20, CO, C02, 02, Ar et N2.
La présence dans ce type de gaz de traces de gaz dits acides du genre N02 ou S02 en phase gazeuse ne pose pas de problèmes particuliers en ce qui concerne la corrosion des matériaux.. En effet, l'homme du métier est capable d'effectuer parmi les aciers ordinaires un choix adéquat de la nuance à retenir en fonction des conditions opératoires. En présence d'eau vapeur, il n'y a pas non plus de problèmes de corrosion, au-dessus du point de rosée. L'acier carbone par exemple peut être retenu si les conditions sont favorables.
Au contraire, le traitement de fluides contenant des liquides acides, de type acide nitrique et/ou acide sulfurique, en particulier à température supérieure à l'ambiante pose des problèmes de corrosion.
La figure 1 montre que les taux de perte de masse de l'acier par corrosion en présence de solutions acides sont élevés, et qu'ils augmentent fortement avec la température.
Dans ce cas, il est connu d'utiliser des aciers spéciaux dits ultra-purs avec des spécifications de composition chimique très strictes en particulier vis-à-vis de composés tels que le carbone ou le phosphore. L'inconvénient de ces matériaux est qu'ils sont peu disponibles et beaucoup plus chers que les aciers ordinaires. Un acier capable de résister à de telles conditions est par exemple le 304 NAG dont le prix est de 3 à 5 fois plus cher qu'un acier ordinaire.
Par la suite, on utilisera le terme d'acier ordinaire par opposition à ces aciers spéciaux. Parmi les aciers ordinaires on mettra par exemple l'acier carbone et les aciers inoxydables du type 304 ou 316L.
Une autre solution consiste à revêtir d'émail la paroi interne de l'adsorbeur. Cette opération a un coût élevée et le revêtement ainsi obtenu est fragile (peu de résistance aux chocs).
Néanmoins l'une ou l'autre solution est utilisée dès lors qu'on se trouve en présence continue de liquides acides chauds.
Le séchage des gaz du type par exemple issu d'oxycombustion comme cité plus haut, dans un procédé d'adsorption de type TSA (température Swing Adsorption) correspond à un nouveau type particulier de risque de corrosion.
Bien que l'on ne traite que des gaz contenant des traces d'impuretés (NOx, SOx) sous forme de vapeur, il peut se former dans l'adsorbeur des liquides acides chauds mais, et c'est ce qui est particulier, seulement de façon localisée et pendant des périodes de temps limitées.
En effet, adsorption simultanée d'eau et des gaz acides conduit à la formation de composés acides, par exemple par les réactions suivantes, notamment en présence d'oxygène :
H20 + S02 + ½ 02 -> H2S04
Figure imgf000004_0001
2 HNO2 -> H20 + NO + NO2
NO + ½ 02 -> N02
S02 + ½ 02 S03
Et d'autres réactions incluant le passage du soufre et de l'azote à des degrés d'oxydation plus élevés, ou bien à des dismutations. Ces réactions ont lieu de manière préférentielle dans l'adsorbant à cause de la concentration rencontrée, et conduisent à la formation d'une phase aqueuse acide.
La phase acide peut être stabilisée par l'interaction avec l'adsorbant, par exemple par liaisons hydrogène, ce qui conduit à accélérer et déplacer sa réaction de formation en phase gazeuse.
A noter aussi que les adsorbants peuvent catalyser certaines réactions d'oxydo- réduction, ce qui fait que des corps gazeux assez peu adsorbables peuvent aussi être sensibles à la présence d'adsorbants. Les effets catalytiques dépendent de l'adsorbant et de ses propriétés de surface : groupements Si-OH, Al-OH, cations, fonctions organiques (acides, alcools, cétones, lactones, aldéhydes), défauts de surface. Les différents adsorbants peuvent donc avoir des propriétés différentes : charbon actifs, zeolites, gels de silice, alumine activée ou calcinée. Pour un même type d'adsorbant, il existe aussi des variations importantes résultant de sa préparation, de sa composition chimique et de sa structure poreuse.
Il faut noter que les acides forts ainsi générés, et spécialement l'acide sulfurique, sont peu volatiles et sont hygroscopiques. Ainsi, ces acides vont s'accumuler au cours des cycles car les conditions de régénération propres aux procédés de séchage par adsorption ne sont pas suffisantes pour les désorber en totalité.
Du fait de leur faible volatilité, des éléments en trace peuvent conduire à l'accumulation d'acide auxquels on ne pense pas immédiatement. Par exemple, des traces de composés phosphorés peuvent conduire à la formation d'acide phosphorique H3PO4 stable et très peu volatile. La liste de ces composés acides peut être établie à partir des températures d'ébullition que l'on trouve dans les tables.
Les acides formés peuvent éventuellement être neutralisés par des bases présentes dans le gaz, et conduire à des sels corrosifs, comme les chlorures ou phosphates.
La régénération de l'adsorbant par un gaz chaud, généralement sec, fait intervenir la désorption à contre-courant de l'eau adsorbée, qui va alors passer sur la zone imprégnée des acides forts cumulés auparavant. Dans ces conditions, le gaz chaud de régénération chargé d'humidité va condenser une partie de l'eau qu'il contient sur ces composés acides hygroscopiques.
Ceci va conduire à une solution acide qui va remplir la porosité de l'adsorbant, jusqu'à la formation d'une phase aqueuse excédentaire. Cette phase aqueuse et très acide va se trouver au contact des parois des adsorbeurs, voire va même finir par ruisseller. Puis , le front de chaleur passant, ces liquides vont se vaporiser pour l'essentiel et / ou se retrouver à température ambiante.
Le gaz de régénération chaud en sortie de lit d'adsorbant va se retrouver périodiquement saturé en eau et vapeurs acides qui vont se condenser sur le fond de l'adsorbeur plus froid. Là également, on va se retrouver cycliquement en présence de liquides acides chauds. Partant de là, un problème qui se pose est de limiter la corrosion des adsorbeurs lors du séchage par TSA d'un flux de gaz d'alimentation comprenant au moins de l'eau, des SOx et des NOx sans avoir à utiliser les solutions coûteuses qui prévalent en présence continue d'acides sous forme liquide et à haute température..
Une solution de l'invention est un adsorbeur comprenant :
- une enceinte réactionnelle,
- un adsorbant présentant des propriétés d'adsorption permettant l'élimination au moins partielle de l'eau d'un flux gazeux comprenant des NOx et/ou des SOx, et
- un revêtement constitué essentiellement d'un matériau polymère sur au moins une partie de la paroi interne métallique de l'enceinte réactionnelle, ledit polymère étant résistant aux liquides acides à des températures supérieures à 150°C, de préférence supérieure à 200°C.
On entend par propriétés d'adsorption d'un adsorbant permettant l'élimination préférentielle d'un constituant le fait que l'adsorbant présente une capacité d'adsorption à l'équilibre et une cinétique d'adsorption telle qu'il est possible de retirer l'essentiel de ce constituant d'un flux gazeux et de ce fait d'épurer au moins partiellement ledit flux gazeux en ce constituant.
Par liquides acides, on entend toutes solutions comprenant des composés acides issus de l'adsorption simultanée d'eau et des SOx et/ou NOx.
Selon le cas, l'adsorbeur selon l'invention peut présenter l'une ou l'autre des caractéristiques suivantes :
- le revêtement est appliqué sur la partie inférieure de l'enceinte réactionnelle, coté entrée du flux gazeux ;
- l'adsorbeur comprend une enceinte réactionnelle comprenant un fond inférieur 2, un fond supérieur 3 et une virole 1 ; et une tubulure 4 d'entrée du flux gazeux dans l'enceinte réactionnelle ; et dans lequel ledit revêtement recouvre la soudure 21 située entre le fond inférieur 2 et la virole 1 et/ou la soudure 22 située entre le fond inférieur 2 et la tubulure 4 ;
- les dites soudures 21 et 22 ont été préalablement arasées.
le revêtement est un fiuoropolymère, de préférence choisi parmi le polytétrafluoroéthylène, le perfluoroalkoxy, et le Perfluoro(éthylène-propylène) ; Ces 3 fiuoropolymère seront regroupés sous le nom de « téflon ». - les parois de l'enceinte réactionnelle sont en acier inoxydable standard, de préférence en acier de type 316L ou 304L ;
- la matière adsorbante est constituée de gel de silice ou de zéolites résistants aux acides, de préférence du type mordenite, ferrierite, erionite ou offretite.
L'adsorbeur est de préférence un adsorbeur de type TSA (température swing adsorption = adsorption avec modulation de la température).
Pour réaliser le revêtement, le téfion est projeté à froid sur au moins une partie de la paroi interne de la pièce chaudronnée de l'enceinte réactionnelle puis l'ensemble est chauffé à une température comprise entre 330 et 400°C. L'épaisseur du revêtement après séchage est de préférence comprise entre 40 et 500 microns.
La présente invention a également pour objet un procédé de purification d'un flux de gaz d'alimentation contenant du C02, de l'eau et au moins une impureté choisie parmi les SOx et/ou les NOx, comprenant :
- une étape de compression du flux de gaz jusqu'à une pression comprise entre 6 et 50 bars, et
- une étape de séchage et/ou de purification mettant en jeu au moins un adsorbeur selon l'invention;
ladite étape de séchage et/ ou de purification pouvant avoir lieu avant, après ou au cours de l'étape de compression.
L'étape de séchage et/ou de purification en d'autres impuretés de ce flux de gaz peut être effectuée au moyen d'un adsorbeur selon l'invention, visant à éliminer :
- l'eau de manière à avoir une teneur en eau dans le flux gazeux traité inférieure à 500 ppm d'eau, préférentiellement inférieure à 50 ppm, et plus particulièrement encore inférieure à 5 ppm, et éventuellement
- au moins une autre impureté.
Cette étape peut s'effectuer à la pression de mise à disposition du gaz à traiter, généralement entre la pression atmosphérique -voire en légère dépression du fait des pertes de charge dans des équipements amont- et 4 bar absolus. Elle peut également s'effectuer après compression ou en sortie intermédiaire d'un étage de compression, de 6 à 15 bar abs par exemple. Le procédé selon l'invention comprend de préférence une étape de récupération d'un flux de gaz purifié, enrichi en C02 à l'état liquide, gazeux ou supercritique.
Après l'étape de récupération, le flux de gaz peut être :
- à l'état liquide et stocké et/ou transporté ; ou
- à l'état supercritique et transporté et/ou stocké ; ou
- à l'état gazeux et transporté.
Le flux de gaz d'alimentation correspond de préférence à des fumées d'oxy- combustion.
- l'adsorbant est régénéré à contre-courant selon le type de procédé (TSA ou VSA ou PSA ou une combinaison), par un débit gazeux à une température comprise entre 80 et 200°C, préférentiellement entre 100 et 180°C.
On entend par le terme « oxycombustion » une combustion au cours de laquelle le charbon est brûlé dans un fluide pauvre en azote pouvant aller de l'oxygène pur (>95%) à un fluide contenant la même quantité d'oxygène que l'air (environ 21%) obtenu par mélange d'oxygène pur (>95%) avec des fumées recyclées riches en C02.
L'adsorbant mis en œuvre peut être régénéré à contre-courant selon le type de procédé (TSA ou VSA ou PSA ou une combinaison), par un débit gazeux à une
température comprise entre 80 et 200°C, préférentiellement entre 100 et 180°C.
L'invention va à présent être décrite plus en détail à l'aide des figures 2 et 3.
La Figure 2 représente un adsorbeur selon l'invention. L'adsorbeur est constitué d'une virole 1 , d'un fond inférieur 2 et d'un fond supérieur 3, d'une tubulure d'entrée 4 du gaz à sécher et d'une tubulure de sortie 5 du gaz épuré. Le lit d'adsorbant 6 est supporté par une grille 7. La tubulure 4 peut présenter un point bas 8 purgeable.
Le gaz à traiter 1 1 entre dans l'adsorbeur en partie basse via la tubulure d'entrée 4 et le gaz épuré 12 sort en partie haute via la tubulure de sortie 5. Lors de l'étape de régénération, le gaz de régénération 13 entre en partie haute et sort de l'adsorbeur en partie basse.
Les conditions opératoires en phase d'adsorption vont de la pression atmosphérique -voire d'une légère dépression- jusqu'à une soixantaine de bar, d'une température de l'ordre de 5°C jusqu'à 50°C. En phase de régénération, on utilise un niveau de température généralement compris entre 100 et 300°C, préférentiellement compris entre 150 et 250°C. La pression de régénération peut aller de la pression atmosphérique à plusieurs dizaines de bars suivant le procédé global dans lequel ladite épuration est insérée.
Les éventuels liquides peuvent être récupérés au niveau du point bas 8. Lors de la phase de régénération de la zone d'adsorbant chargée en eau, une phase liquide chargée en acide peut apparaître en partie basse 21 de la paroi de l'adsorbeur, au niveau de la grille support 7 et sur la paroi du fond inférieur 2 de l'adsorbeur.
La partie inférieure de l'adsorbeur comporte des soudures telles que celles faisant la jonction 21 entre la virole 1 et le fond inférieur 2 ou la jonction 22 entre le dit fond et la tubulure 4.
Ces soudures constituent le maillon faible de l'adsorbeur vis-à-vis des problèmes de corrosion. Selon l'invention, elles seront protégées par un revêtement de téflon. Plus en détail, les soudures seront arasées, subiront un traitement de surface ( par exemple lavage, sablage, micro-sablage, soufflage), le téflon sera appliqué tout du long et l'adsorbeur ou les pièces ainsi jointes chauffées de façon adéquate ( cuisson par exemple par passage au four). L'arasage des soudures est effectué afin d'obtenir des surfaces les plus planes possibles afin d'éviter tout risque de micro-accumulation de liquide. Le choix final du revêtement, préférentiellement un fluoropolymère, et préferentiellement encore du polytétrafluoroéthylène (PTFE), du perfluoroalkoxy (PFA), ou du fluoroéthylène propylène (FEP) sera effectué en fonction des conditions opératoires, en particulier de la température maximale que devra supporter le teflonage.
La protection des soudures représente la protection minimale. Il peut être intéressant de protéger également la zone 20 qui voit cycliquement des liquides agressifs. Plus précisément, on peut opter pour une sur-épaisseur de corrosion pour prendre en compte la durée pendant laquelle cette zone est soumise au contact de liquides acides chauds. Généralement, on utilise 2 adsorbeurs, un étant en adsorption et l'autre en régénération. La régénération comprend au moins une phase de chauffage et une phase de refroidissement. En pratique, les conditions les plus agressives ne se produisent que lors d'une fraction de l'étape de réchauffement, généralement moins d'un quart du temps. On peut dire que les conditions de corrosion sont extrêmes pendant seulement 10 à 20% du temps du temps de cycle c'est-à-dire pour une unité fonctionnant en continu pendant 10 à 20% de la durée de vie de la dite unité. C'est ce facteur propre à une épuration TSA qui permet d'utiliser des matériaux moins nobles que les aciers spéciaux et des revêtements moins coûteux que l'émail.
La figure 3 représente une variation d'une partie de l'adsorbeur. En effet, dans cette variante, le lit d'adsorbant est isolé de la paroi 1 de l'adsorbeur par une paroi interne 9, par exemple par une lame métallique étanche côté entrée du gaz humide et ouverte côté gaz épuré. De la sorte, cette paroi n'est pas soumise à la pression et peut être aisément surdimensionnée quant à son épaisseur ou du fait de sa faible épaisseur être prévu en métal plus noble résistant à la corrosion.
La figure 4 représente un dispositif permettant d'effectuer un procédé selon la présente invention caractérisé par la localisation de l'étape de séchage en fin du cycle de compression.
Le procédé selon l'invention peut comprendre une première étape (a) de prétraitement visant à traiter les fumées en utilisant des procédés connus faisant partie de l'état de la technique. On trouve couramment des lavages qui mettent en œuvre différents liquides (ou solvants) tels que l'eau, les alcools (méthanol par exemple, les solutions d'amines, les solutions basiques...ce sont les plus classiques mais il y en a bien d'autres, ou bien des unités de désuliuration, ou encore des unités de fîltration. Cette première étape permet d'éliminer une impureté.
Le gaz issu de l'étape de prétraitement (a) peut contenir en général :
- une grande majorité de C02 (en général supérieur à 80%) ;
des oxydes d'azote, appelés NOx, tels que NO, N02, 2Û4. . . ;
des oxydes de soufre, appelés SOx, tels que S02, SO3, ELSO4... ;
de l'eau à la saturation. En effet, les procédés de traitement en première étape imposent presque tous la mise en contact du gaz avec une solution aqueuse ;
- de l'oxygène à hauteur de quelques pourcents (issu de l'excès par rapport à la stœchiométrie nécessaire à assurer une bonne efficacité d'oxy-combustion) ;
du CO (imbrulés de combustion) ;
des incondensables vis-à-vis du C02 : azote, argon, oxygène et gaz rares provenant majoritairement des entrées d'air sur la chaudière d'oxy-combustion et de la pureté de l'oxygène; les composés issus de métaux lourds : AsCl3, AsO, AsH3, AsN ; B(OH)3, HB02, BH3 ; BaCl2, BaO ; Be(OH)2 ; CdO, CdS, CdS04, CdCl2 ; CoCl2, CoO, Co2[(CO)4]2 ; CuCl2, CuCl, CuO, CuH ; HgO, HgCl2, CH3HgCl, HgH, HgS, HgSe ; MoO, Mo02, Mo03, MoCl2, Mo(CO)6 ; MO, NiCl2, Ni(CO)4 ; P205, P02, PC13, P406 ; PbCl2, PbO, PbS, PbCl ; Sb203, SbCl, SbH3, H3Sb04, HSb03 ; SeO, Se02, Se03, H2Se, COSe ; SnO, SnS, SnH ; SrCl2 ; V205, V(CO)4 ; ZnCl2, ZnS les composés organiques volatils (COV), et les hydrocarbures imbrulés. les composés organiques volatils sont de préférence choisis parmi le formaldéhyde, l'acétaldéhyde, l'acide formique, l'acroléine, et l'acide acétique.
Ensuite, lors de l'étape de compression (b) le flux de gaz est comprimé jusqu'à un niveau de pression suffisante pour pouvoir d'une part séparer une partie des composés indésirables ce faisant (séparateurs en général situés immédiatement après chaque étape de compression suivie d'un échange de chaleur pour refroidir le flux de gaz pour éliminer les condensables apparus lors de ce refroidissement : eau par exemple) et d'autre part pour amener le gaz dans les bonnes conditions (de température et de pression) afin de préparer l'élimination des autres impuretés au cours des étapes suivantes.
Dans un procédé selon l'invention, la troisième étape (c) consiste à purifier et sécher le flux comprimé dans un adsorbeur selon l'invention. Dans cette étape, l'eau est éliminée jusqu'à un niveau compatible avec le transport et/ou la liquéfaction de C02 (usuellement, un point de rosée entre -20 et -50°C, ou inférieur). D'autres constituants peuvent être totalement ou partiellement éliminés du débit principal, dans le même adsorbeur ou dans des adsorbeurs différents :
des oxydes d'azote, appelés NOx, tels que NO, N02, N204... ;
des oxydes de soufre, appelés SOx, tels que S02, S03, H2S04... ;
- du H2S, CS2, HCN, HC1, CHC13, HF ;
du CO (imbrulés de combustion) ;
les composés issus de métaux lourds : AsCl3, AsO, AsH3, AsN ; B(OH)3, HB02, BH3 ; BaCl2, BaO ; Be(OH)2 ; CdO, CdS, CdS04, CdCl2 ; CoCl2, CoO, Co2[(CO)4]2 ; CuCl2, CuCl, CuO, CuH ; HgO, HgCl2, CH3HgCl, HgH, HgS, HgSe ; MoO, Mo02, Mo03, MoCl2, Mo(CO)6 ; NiO, NiCl2, Ni(CO)4 ; P205, P02, PC13, P406 ; PbCl2, PbO, PbS, PbCl ; Sb203, SbCl, SbH3, H3Sb04, HSb03 ; SeO, Se02, Se03, H2Se, COSe ; SnO, SnS, SnH ; SrCl2 ; V205, V(CO)4 ; ZnCl2, ZnS les composés organiques volatils (COV), et les hydrocarbures imbrulés. les composés organiques volatils sont de préférence choisis parmi le formaldéhyde, l'acétaldéhyde, l'acide formique, l'acroléine, et l'acide acétique.
La quatrième étape (d) vise alors à récupérer un flux de gaz purifié, enrichi en C02. Un adsorbeur selon la présente invention peut également être implémenté en fin de l'étape (a), afin d'enlever de façon totale ou partielle les constituants suivants :
des oxydes d'azote, appelés NOx, tels que NO, N02, N204... ;
des oxydes de soufre, appelés SOx, tels que S02, S03, H2S04... ;
- du H2S, CS2, HCN, HC1, CHC13, HF ;
du CO (imbrulés de combustion) ;
les composés issus de métaux lourds : AsCl3, AsO, AsH3, AsN ; B(OH)3, HB02, BH3 ; BaCl2, BaO ; Be(OH)2 ; CdO, CdS, CdS04, CdCl2 ; CoCl2, CoO, Co2[(CO)4]2 ; CuCl2, CuCl, CuO, CuH ; HgO, HgCl2, CH3HgCl, HgH, HgS, HgSe ; MoO, Mo02, Mo03, MoCl2, Mo(CO)6 ; MO, NiCl2, Ni(CO)4 ; P205, P02, PC13, P406 ; PbCl2, PbO, PbS, PbCl ; Sb203, SbCl, SbH3, H3Sb04, HSb03 ; SeO, Se02, Se03, H2Se, COSe ; SnO, SnS, SnH ; SrCl2 ; V205, V(CO)4 ; ZnCl2, ZnS les composés organiques volatils (COV), et les hydrocarbures imbrulés. les composés organiques volatils sont de préférence choisis parmi le formaldéhyde, l'acétaldéhyde, l'acide formique, l'acroléine, et l'acide acétique.
Dans ce cas, un adsorbeur selon l'invention se placerait avant l'étape (b) de compression, ou après une compression partielle, inférieur à 10 bar (a).

Claims

Revendications
1. Adsorbeur comprenant :
- une enceinte réactionnelle,
- un adsorbant présentant des propriétés d'adsorption permettant l'élimination au moins partielle de l'eau d'un flux gazeux comprenant des NOx et/ou des SOx, et
- un revêtement constitué essentiellement d'un matériau polymère sur au moins une partie de la paroi interne métallique de l'enceinte réactionnelle, ledit polymère étant résistant aux liquides acides à des températures supérieures à 150°C.
2. Adsorbeur selon la revendication 1 , caractérisé en ce que le revêtement est appliqué sur la partie inférieure de l'enceinte réactionnelle, coté entrée du flux gazeux.
3. Adsorbeur selon l'une des revendications 1 ou 2, caractérisé en ce que l'adsorbeur comprend :
- une enceinte réactionnelle comprenant un fond inférieur (2), un fond supérieur (3) et une virole (1) ; et
- une tubulure (4) d'entrée du flux gazeux dans l'enceinte réactionnelle ; et
dans lequel ledit revêtement recouvre la soudure (21) située entre le fond inférieur (2) et la virole(l) et/ou la soudure (22) située entre le fond inférieur (2) et la tubulure (4).
4. Adsorbeur selon la revendication 3 caractérisé en ce que les dites soudures ont été préalablement arasées.
5. Adsorbeur selon une des revendications 1 à 4 caractérisé en ce que le revêtement est un fluoropolymère, de préférence choisi parmi le polytétrafiuoroéthylène, le perfluoroalkoxy, et le Perfiuoro(éthylène-propylène).
6. Adsorbeur selon l'une des revendications 1 à 5 caractérisé en ce que les parois de l'enceinte réactionnelle sont en acier inoxydable standard.
7. Adsorbeur selon l'une des revendications 1 à 5, caractérisé en ce que la matière adsorbante est constituée de gel de silice ou de zéolites résistants aux acides.
8. Procédé de purification d'un flux de gaz d'alimentation contenant du C02, de l'eau et au moins une impureté choisie parmi les SOx et/ou les NOx, comprenant :
- une étape de compression du flux de gaz jusqu'à une pression comprise entre 6 et 50 bars, et
- une étape de séchage et/ou de purification mettant en jeu au moins un adsorbeur selon l'une des revendications 1 à 7 ;
ladite étape de séchage et/ ou de purification pouvant avoir lieu avant, après ou au cours de l'étape de compression.
9. Procédé selon la revendication 8, caractérisé en ce que ledit procédé comprend une étape de récupération d'un flux de gaz purifié, enrichi en C02, à l'état liquide, gazeux ou supercritique.
10. Procédé selon la revendication 9, caractérisé en ce qu'après l'étape de récupération, le flux de gaz est :
- à l'état liquide et stocké et/ou transporté ; ou
- à l'état supercritique et transporté et/ou stocké ; ou
- à l'état gazeux et transporté.
11. Procédé selon l'une des revendications 8 à 10, caractérisé en ce que le flux de gaz d'alimentation correspond à des fumées d'oxy-combustion.
PCT/FR2011/051603 2010-07-16 2011-07-06 Adsorbeur avec revêtement interne WO2012007673A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/809,571 US8679432B2 (en) 2010-07-16 2011-07-05 Adsorber having inner coating
EP11743301.1A EP2593216A1 (fr) 2010-07-16 2011-07-06 Adsorbeur avec revêtement interne
KR1020137003846A KR20130045907A (ko) 2010-07-16 2011-07-06 내부 코팅을 갖는 흡착기
CN201180044302.3A CN103118775B (zh) 2010-07-16 2011-07-06 具有内涂层的吸附塔

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1055784A FR2962663B1 (fr) 2010-07-16 2010-07-16 Adsorbeur avec revetement interne
FR1055784 2010-07-16

Publications (1)

Publication Number Publication Date
WO2012007673A1 true WO2012007673A1 (fr) 2012-01-19

Family

ID=43413933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051603 WO2012007673A1 (fr) 2010-07-16 2011-07-06 Adsorbeur avec revêtement interne

Country Status (6)

Country Link
US (1) US8679432B2 (fr)
EP (1) EP2593216A1 (fr)
KR (1) KR20130045907A (fr)
CN (1) CN103118775B (fr)
FR (1) FR2962663B1 (fr)
WO (1) WO2012007673A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104507550A (zh) * 2012-07-25 2015-04-08 乔治洛德方法研究和开发液化空气有限公司 用于净化含有co2和nox的湿气体流的装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019060B1 (fr) * 2014-03-28 2017-12-08 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procede de purification par adsorption d'un flux gazeux comprenant une impurete corrosive
CN106706383A (zh) * 2016-12-01 2017-05-24 清华大学 一种制备放射性石墨中碳‑14液体样品的实验装置
CN106855473A (zh) * 2016-12-01 2017-06-16 清华大学 一种制备放射性石墨中碳‑14液体样品的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2189409A (en) * 1986-04-18 1987-10-28 Cannon Ind Ltd Protective coatings for metals
US20040101448A1 (en) * 2002-11-21 2004-05-27 Ulsan Chemical Co., Ltd. Reactor for producing hydrofluorocarbon compound
FR2908328A1 (fr) * 2006-11-14 2008-05-16 Arkema France Reacteurs revetus, leur procede de fabrication et leurs utilisations.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515520A (en) * 1967-02-13 1970-06-02 Universal Oil Prod Co Reactor with internal protective sleeve for corrosive systems
US3849179A (en) * 1973-08-27 1974-11-19 Goodrich Co B F Internally coated reaction vessel and process for coating the same
US4166536A (en) * 1977-03-16 1979-09-04 The Carborundum Company Corrosive chemical containment system
EP1526916B1 (fr) * 2002-08-09 2006-04-05 Hatch Ltd. Inserts isolants destines a des recipients de traitement haute temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2189409A (en) * 1986-04-18 1987-10-28 Cannon Ind Ltd Protective coatings for metals
US20040101448A1 (en) * 2002-11-21 2004-05-27 Ulsan Chemical Co., Ltd. Reactor for producing hydrofluorocarbon compound
FR2908328A1 (fr) * 2006-11-14 2008-05-16 Arkema France Reacteurs revetus, leur procede de fabrication et leurs utilisations.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104507550A (zh) * 2012-07-25 2015-04-08 乔治洛德方法研究和开发液化空气有限公司 用于净化含有co2和nox的湿气体流的装置
CN104507550B (zh) * 2012-07-25 2018-05-08 乔治洛德方法研究和开发液化空气有限公司 用于净化含有co2和nox的湿气体流的装置

Also Published As

Publication number Publication date
FR2962663A1 (fr) 2012-01-20
CN103118775A (zh) 2013-05-22
FR2962663B1 (fr) 2012-08-31
EP2593216A1 (fr) 2013-05-22
CN103118775B (zh) 2015-08-05
US20130115155A1 (en) 2013-05-09
KR20130045907A (ko) 2013-05-06
US8679432B2 (en) 2014-03-25

Similar Documents

Publication Publication Date Title
CA2693034C (fr) Procede de purification d'un gaz contenant du co2 par integration d'unite de purification par adsorption
EP3122439B1 (fr) Installation et procede de purification par adsorption d'un flux gazeux comprenant une impurete corrosive
WO2009010690A2 (fr) Procede de purification d'un gaz contenant du co2
CA2712643C (fr) Procede de combustion de combustibles carbones avec filtration des fumees de combustion avant compression
FR2949553A1 (fr) Procede de production d'au moins un gaz pauvre en co2 et d'un ou plusieurs fluides riches en co2
WO2012007673A1 (fr) Adsorbeur avec revêtement interne
EP2477720B1 (fr) Procede de purification d'un flux gazeux comprenant du mercure
FR2836058A1 (fr) Procede de separation d'un melange gazeux et installation de mise en oeuvre d'un tel procede
EP2435163B1 (fr) Epuration d'un gaz contenant des oxydes d'azote
FR2944217A1 (fr) Procede de captage du dioxyde de carbone avec integration thermique de la regeneration avec la chaine de compression
FR2919813A1 (fr) Procede de desoxygenation de fumees et installation pour sa mise en oeuvre
WO2023134998A1 (fr) Installation de récupération de co2 contenu dans un flux gazeux d'alimentation
EP2877270B1 (fr) Installation de purification d'un flux gazeux humide, contenant du co2 et des nox
WO2021115719A1 (fr) Procédé et un dispositif de purification de gaz
EP3664917A1 (fr) Procédé et Installation de purification d'un flux gazeux d'alimentation comprenant au moins 90% de CO2
FR2950820A1 (fr) Lavage oxydo-acide de fumees de combustion

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044302.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11743301

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011743301

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13809571

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137003846

Country of ref document: KR

Kind code of ref document: A