WO2012006782A1 - 测定镉的电热蒸发原子荧光光谱法及光谱仪 - Google Patents

测定镉的电热蒸发原子荧光光谱法及光谱仪 Download PDF

Info

Publication number
WO2012006782A1
WO2012006782A1 PCT/CN2010/075178 CN2010075178W WO2012006782A1 WO 2012006782 A1 WO2012006782 A1 WO 2012006782A1 CN 2010075178 W CN2010075178 W CN 2010075178W WO 2012006782 A1 WO2012006782 A1 WO 2012006782A1
Authority
WO
WIPO (PCT)
Prior art keywords
cadmium
atomic fluorescence
bracket
evaporation
electrode
Prior art date
Application number
PCT/CN2010/075178
Other languages
English (en)
French (fr)
Inventor
刘霁欣
冯礼
Original Assignee
北京吉天仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京吉天仪器有限公司 filed Critical 北京吉天仪器有限公司
Priority to EP10854575.7A priority Critical patent/EP2594921A4/en
Priority to PCT/CN2010/075178 priority patent/WO2012006782A1/zh
Priority to US13/810,147 priority patent/US8969832B2/en
Publication of WO2012006782A1 publication Critical patent/WO2012006782A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • G01N2001/4033Concentrating samples by thermal techniques; Phase changes sample concentrated on a cold spot, e.g. condensation or distillation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Definitions

  • the invention relates to an electrothermal evaporation atomic fluorescence spectrometer and a spectrometer for determining cadmium. Background technique
  • Cd cadmium
  • the atomic spectroscopy method for realizing the direct introduction of heavy metals in soil and agricultural products is electrothermal evaporation (ETV) or laser ablation (LA), in which the more mature electrothermal evaporation-inductively coupled plasma optical emission spectroscopy (ETV-ICPOES), Both mass spectrometry (ETV-ICPMS) or graphite furnace atomic absorption (GFAAS) have been reported for direct injection detection.
  • ETV-ICPOES electrothermal evaporation-inductively coupled plasma optical emission spectroscopy
  • GFAAS graphite furnace atomic absorption
  • electrothermal evaporation direct injection technology is getting closer to practical use. However, it is applied in the field of rapid detection of soil and agricultural products.
  • the above technology can suppress matrix interference to a certain extent, it is still difficult to completely overcome, and it is still difficult for a more complex substrate. Therefore, after using electrothermal evaporation as a sample introduction means, the above detection problem is actually to develop a method capable of eliminating matrix
  • Atomic fluorescence spectroscopy is a kind of atomic spectroscopy technology developed rapidly in China. Because the atomic fluorescence spectrum is simple and the spectral line overlap is small, the non-dispersive detection method can be used, which greatly simplifies the instrument structure and is easy to implement. Miniaturized, with the possibility of on-site inspection. However, the commonly used atomic fluorescence spectrometers are based on hydride generation (HG) sample introduction technology. Electrothermal evaporation atomic fluorescence reported in the literature uses a graphite furnace as an evaporation and atomization device for measuring lead in solution, and based on tungsten wire. Electrothermal evaporation-atomic fluorescence (ETV-AFS) of (TC) is used to measure heavy metals in solution after digestion. Both of these devices have the potential for direct injection of ETV, but it is still difficult to completely solve the problem of matrix interference.
  • ETV-AFS Electrothermal evaporation-atomic fluorescence
  • Matrix interference has always been a major problem plaguing direct injection atomic spectroscopy, albeit through the matrix Correction can be mitigated, but it does not solve the problem fundamentally, but requires additional thinking.
  • the atomic absorption-based solid mercury measurement technology developed since the 1990s gives a good idea. This technology uses the combustion of samples in pure oxygen or air and further catalytic combustion to oxidize and decompose organic matter while In the atomic state, the mercury in the atomic state is captured by the gold-loaded adsorbent and separated from the matrix. Finally, the adsorbent is heated to release the trapped mercury and is carried into the atomic absorption spectrometer for detection.
  • An object of the present invention is to provide an electrothermal evaporation atomic fluorescence spectrometry and spectrometer for the determination of cadmium which effectively eliminates matrix interference.
  • the electrothermal evaporation atomic fluorescence spectrometer for measuring cadmium comprises a sample introduction system, a light source, an atomizer, an optical path system, a detection system and a display device, wherein: the sample introduction system comprises an electrothermal evaporation device and a trap
  • the trap is composed of a tungsten wire or a molybdenum wire, a bracket, a cover and a power source, and the outer cover and the bracket form a sealed space, and the tungsten wire or the molybdenum wire is disposed on the bracket, and the tungsten wire or the molybdenum wire is formed on the outer cover and the bracket In the sealed space, the outer cover is provided with an inlet and an outlet.
  • the electrothermal evaporation device comprises a shield cover, an evaporation boat, an electrode, an electrode bracket and a power source; the electrode is located at a lower portion of the evaporation boat and is connected to the evaporation boat, and the electrode is disposed at On the electrode holder, the power source is electrically connected to the electrode, the shielding cover forms a sealed space with the electrode bracket, the evaporation boat is located in the sealed space, the shielding cover is movably connected with the electrode bracket, and the shielding cover is provided with an inlet and an outlet. The outlet of the shield is connected to the inlet of the housing of the trap through a tee.
  • the electrothermal evaporation atomic fluorescence spectrometer for measuring cadmium wherein: a main switching valve is disposed on a main pipe of the tee pipe, and a second switching valve is disposed on a branch pipe of the three-way pipe.
  • the electrothermal evaporation atomic fluorescence spectrometry for determining cadmium comprises the following steps: drying and ashing the sample to be tested in the air to obtain ash;
  • the electrothermal evaporation atomic fluorescence spectrometry for measuring cadmium according to the present invention, wherein: in the hydrogen and argon atmosphere, the volume percentage of hydrogen is 10 to 90%.
  • FIG. 1 is a schematic view showing the structure of a sample introduction system for measuring cadmium by electrothermal evaporation atomic fluorescence spectrometer.
  • the electrothermal evaporation atomic fluorescence spectrometer for measuring cadmium of the invention comprises a sample introduction system, a light source, an atomizer, an optical path system, a detection system and a display device; a light source, an atomizer, an optical path system, a detection system and a display device are all present Some fluorescence spectrometers are the same; the connection and positional relationship between the light source, the optical path system, the detection system, the display device, and the atomizer are the same as those of the existing atomic fluorescence spectrometer. Only the structure of the injection system is different, and the injection system includes electrothermal evaporation.
  • the electrothermal evaporation device is composed of a shield 4, an evaporation boat 1, an electrode 3, an electrode holder 5 and a power source 16; the electrode 3 is located at a lower portion of the evaporation boat 1, and is connected to the evaporation boat 1, and the electrode holder 5 is supported
  • the electrode 3, the power source 16 is electrically connected to the electrode 3, and the shield cover 4 is fastened to the electrode holder 5 to form a sealed space;
  • the evaporation boat 1 is disposed in the sealed space, and the shield cover 4 is movably connected to the electrode holder 5, and the shield 4 is When opened, the evaporation boat 1 is exposed to the air, and the shield 4 is provided with an inlet 10 and an outlet 1 1;
  • the trap is made of tungsten Or a molybdenum wire 6, a bracket 15, a cover 7 and a power source 17, the outer cover 7 and the bracket 15 are snap-fitted to form a sealed space;
  • the bracket 15 supports a tungsten wire or a mo
  • the outer cover 7 is provided with an inlet 12 and an outlet 13; the outlet 11 of the shield 4 and the inlet 13 of the outer cover 7 are connected by a three-way pipe, and a first switching valve 8 is provided on the main pipe, and the branch pipe is provided The second switching valve 9.
  • the sample is placed in the evaporation boat 1 of the atomic fluorescence spectrometer for measuring cadmium of the present invention, and the shield cover 4 is opened to expose the evaporation boat 1 to the air, and the evaporation boat 1 is heated to make the temperature of the evaporation boat 1 reach 450-600 ° C, and the sample is dried.
  • the shield 4 forms a sealed space with the electrode bracket 5, argon gas enters from the inlet 10 of the shield 4, the first switching valve 8 is opened, the second switching valve 9 is closed, and the temperature of the boat 1 is evaporated At 2000 ° C, the Cd in the sample is released as free Cd atoms, entering the trap, and the tungsten or molybdenum wire 6 captures Cd free atoms with high selectivity; then the first switching valve 8 is closed, the second switching valve 9 open, mixed gas of hydrogen (10% ⁇ 90%) and argon (10% ⁇ 90%) enters through the branch line, tungsten wire or The temperature of the molybdenum wire 6 reaches 1600 ⁇ 2000 °C, and the Cd atom is released again. It is excited by the hollow cathode lamp around the atomizer, and emits a fluorescent signal. The signal is focused by the lens and detected by the detection system through the optical path system. .
  • the cadmium in the sample is determined by the atomic fluorescence spectrometer for measuring cadmium of the present invention to be 41 ⁇ g/kg, and the standard value of the standard substance is 35 ⁇ 6 ⁇ g/kg, high and medium.
  • the recoveries of low (20, 40, 80 ⁇ g/kg) levels were between 90 and 110%.
  • the cadmium in the sample was determined to be 7.8 ⁇ g/kg by using the cadmium atomic fluorescence spectrometer of the present invention, and the standard value of the standard substance was 9 ⁇ 4 ⁇ g/kg.
  • the spiked recoveries of high, medium and low (20, 40, 80 ⁇ g/kg) were between 90 and 105%.
  • the electrothermal evaporation atomic fluorescence spectrometry and spectrometer for measuring cadmium of the invention utilizes a cadmium free atom trap to capture cadmium free atoms with high selectivity, and then release the trapped cadmium again in a reducing atmosphere, which can effectively eliminate matrix interference. , to achieve accurate measurement of cadmium.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种测定镉的电热蒸发原子荧光光谱仪,由进样系统、光源、原子化器、光路系统、检测系统和显示装置组成。其中,所述进样系统包括电热蒸发装置和捕集阱。所述捕集阱由钨丝或钼丝(6)、支架(15)、外罩(7)和电源(17)组成。所述钨丝或钼丝(6)设置在支架(15)上并位于由外罩(7)和支架(15)形成的密封空间中。外罩(7)上设有进口(12)和出口(13)。此外,一种测定镉的电热蒸发原子荧光光谱法,包括:(1)在空气中将待测定样品干燥、灰化,得到灰分;(2)在氩气气氛下,将所述灰分升温到1600〜2000°C,得到的蒸气与钨丝或钼丝接触捕获其中的镉原子;(3)在氢气和氩气气氛下,将所述钨丝或钼丝的温度升高到1600〜2000°C,释放出镉原子,并以原子荧光光谱仪分析镉的含量。

Description

测定镉的电热蒸发原子荧光光谱法及光谱仪 技术领域
本发明涉及一种测定镉的电热蒸发原子荧光光谱法及光谱仪。 背景技术
由于大量污水灌溉和滥用肥料, 我国受到了严重的镉 (Cd)污染, 部分地区已 经发展到生产 "镉米 "的程度: 沈阳某污灌区生产的稻米中 Cd浓度高达 0.4-1.0毫 克 /公斤, 已经达到或超过诱发 "骨痛病"的平均含 Cd浓度。 有鉴于此, Cd的速 测技术近年来受到了广泛的重视, 开发了基于生物传感器、 比色法、 酶抑制、 电 化学和原子光谱等一系列速测方法。 但其中大多数方法仅能对溶液中重金属离子 进行检测, 仍然不能避免耗时费力的样品前处理过程; 且由于基体的影响很难实 现准确测量, 误报率较高, 虽然能在很大程度上简化土壤和农产品中的重金属测 量, 但无法彻底解决这一难题。 真正能够实现土壤和农产品中重金属直接检测的 还是电热蒸发 (ETV)或激光烧蚀 (LA)实现样品导入的原子光谱方法, 其中较为成 熟电热蒸发-电感耦合等离子体发射光谱 (ETV-ICPOES)、 质谱 (ETV-ICPMS)或石 墨炉原子吸收 (GFAAS)技术都有用于直接进样检测的报道, 随着背景校正技术和 连续光源技术的发展, 电热蒸发直接进样技术越来越接近实用化。 但应用在土壤 和农产品快速检测领域, 上述技术虽然在一定程度上能够抑制基体干扰, 但仍难 以完全克服, 对于较为复杂的基体依然力所难及。 所以, 在使用电热蒸发作为样 品导入手段后, 上述的检测问题实际就是开发一种能够消除基体干扰的方法, 以 适应样品的各种复杂基体。
原子荧光光谱 (AFS)法是我国发展较快的一种原子光谱技术, 由于原子荧光 光谱简单, 谱线重叠少, 所以可以使用无色散的检测方式, 这就使其仪器结构大 大简化, 容易实现小型化, 具备现场检测的可能。 但目前常用的原子荧光光谱仪 是基于氢化物发生 (HG)样品导入技术的, 见于文献报道的电热蒸发原子荧光有使 用石墨炉作为蒸发和原子化装置用于测量溶液中的铅, 及基于钨丝 (TC)的电热蒸 发-原子荧光 (ETV-AFS)用于测量消解后溶液中重金属的报道。 以上两种装置都具 备了 ETV直接进样的潜力, 但仍难以彻底解决基体干扰问题。
基体干扰一直是困扰着直接进样原子光谱技术的一大难题, 虽然在经过基体 校正后可以得到减轻, 但并不能从根本上解决这一问题, 而需要采取另外的思 路。 上世纪 90年代以来发展的基于原子吸收的固体测汞技术给出了一个良好的 启示, 该技术利用样品在纯氧或空气中的燃烧和进一步的催化燃烧, 在有机物氧 化分解的同时将汞以原子态释放, 原子态的汞被负载金的吸附剂捕获而与基体分 离, 最后再加热吸附剂, 使捕获的汞释出并被载气带入原子吸收仪中进行检测。 该技术利用了选择性很强的贵金属捕获阱实现了汞与基体的分离, 从而完全消除 了基体干扰, 这说明在线捕集技术应该是非常有效的基体干扰消除手段。 目前见 于文献报道的在线捕集技术用于 Cd测量时, 大都只能捕获氢化物或是火焰中形 成的自由原子, 而捕获电热蒸发导入的 Cd还未见报道, 这主要是由于通常情况 下电热蒸发形成的 Cd大都以纳米粒子形式存在, 无法被有效捕集。 发明公开
本发明的目的是提供一种有效消除基体干扰的测定镉的电热蒸发原子荧光 光谱法及光谱仪。
本发明所提供的测定镉的电热蒸发原子荧光光谱仪, 由进样系统、 光源、 原子化器、 光路系统、 检测系统、 显示装置组成, 其中: 所述进样系统包括电 热蒸发装置和捕集阱; 所述捕集阱由钨丝或钼丝、 支架、 外罩和电源组成, 外罩 和支架形成密封空间, 钨丝或钼丝设置在支架上, 所述钨丝或钼丝位于外罩和支 架形成的密封空间中, 外罩上设有进口和出口。
本发明的测定镉的电热蒸发原子荧光光谱仪, 其中: 所述电热蒸发装置由 屏蔽罩、 蒸发舟、 电极、 电极托架与电源组成; 电极位于蒸发舟的下部, 与蒸发 舟连接, 电极设置在电极托架上, 电源与电极电连接, 屏蔽罩与电极托架形成密 封空间, 所述蒸发舟位于所述密封空间中, 屏蔽罩与电极托架活动式连接, 屏蔽 罩上设有进口和出口, 屏蔽罩的出口与捕集阱的外罩的进口通过三通管相连。
本发明的测定镉的电热蒸发原子荧光光谱仪, 其中: 所述三通管的主管路 上设有第一切换阀, 所述三通管的支管路上设有第二切换阀。
本发明所提供的测定镉的电热蒸发原子荧光光谱法, 包括如下步骤: 空气中将待测样品干燥、 灰化, 得到灰分;
在氩气气氛下, 将所述灰分升温到 1600~2000°C, 得到的蒸汽与钨丝或钼丝 接触; 在氢气和氩气气氛下, 将所述钨丝或钼丝的温度升高到 1600~2000°C, 释放 出镉原子, 荧光光谱分析镉的含量。
本发明的测定镉的电热蒸发原子荧光光谱法, 其中: 所述氢气和氩气气氛 下, 氢气的体积百分比为 10~90%。
附图说明
图 1 为本发明的测定镉的电热蒸发原子荧光光谱仪的进样系统的结构示意 图。
实施发明的最佳方式
本发明的测定镉的电热蒸发原子荧光光谱仪, 由进样系统、 光源、 原子化 器、 光路系统、 检测系统、 显示装置组成; 光源、 原子化器、 光路系统、 检测 系统、 显示装置均与现有的荧光光谱仪相同; 光源、 光路系统、 检测系统、 显 示装置、 原子化器之间的连接与位置关系与现有的原子荧光光谱仪相同, 仅进 样系统的结构不同, 进样系统包括电热蒸发装置和捕集阱, 电热蒸发装置由屏蔽 罩 4、 蒸发舟 1、 电极 3、 电极托架 5与电源 16组成; 电极 3位于蒸发舟 1的下 部, 与蒸发舟 1连接, 电极托架 5支撑电极 3, 电源 16与电极 3电连接, 屏蔽罩 4与电极托架 5扣合连接, 形成密封空间; 蒸发舟 1设置密封空间中, 屏蔽罩 4 与电极托架 5活动式连接, 屏蔽罩 4打开时, 蒸发舟 1暴露于空气中, 屏蔽罩 4 上设有进口 10和出口 1 1 ; 捕集阱由钨丝或钼丝 6、 支架 15、 外罩 7和电源 17组 成, 外罩 7和支架 15扣合连接, 形成密封空间; 支架 15支撑钨丝或钼丝 6, 钨 丝或钼丝 6位于外罩 7和支架 15形成的密封空间中, 外罩 7上设有进口 12和出 口 13 ; 屏蔽罩 4的出口 1 1与外罩 7的进口 13通过三通管相连, 主管路上设有第 一切换阀 8, 支管路上设有第二切换阀 9。
样品置于本发明的测定镉的原子荧光光谱仪蒸发舟 1中, 屏蔽罩 4打开蒸发 舟 1暴露于空气中, 加热蒸发舟 1, 使蒸发舟 1温度达到 450~600°C, 将样品干 燥、 灰化, 然后关闭屏蔽罩 4, 屏蔽罩 4与电极托架 5形成密封空间, 氩气从屏 蔽罩 4的进口 10进入, 第一切换阀 8打开, 第二切换阀 9关闭, 蒸发舟 1温度 达到 2000°C, 样品中的 Cd以自由 Cd原子的形式释出, 进入捕集阱, 钨丝或钼 丝 6高选择性的捕获 Cd 自由原子; 然后第一切换阀 8关闭, 第二切换阀 9打 开, 氢气 (10%~90% ) 和氩气 (10%~90% ) 的混合气体由支管路进入, 钨丝或 钼丝 6的温度达到 1600~2000°C, Cd原子再次释出, 被围绕在原子化器周围的 空心阴极灯激发, 发射出荧光信号, 该信号经过透镜聚焦后, 经光路系统被检 测系统检测。
以 10mg白菜 (国标物 GBW10014)为例, 用本发明的测定镉的原子荧光光谱 仪测定样品中镉为 41微克 /公斤, 在该标准物质的标准值 35±6微克 /公斤之内, 高、 中、 低 (20, 40 ,80微克 /公斤)水平的加标回收率均在 90~110%之间。
以 10mg米粉 (国标物 GBW(E)080684)为例, 用本发明的测定镉的原子荧光 光谱仪测定样品中镉为 7.8微克 /公斤, 在该标准物质的标准值 9±4微克 /公斤之 内, 高、 中、 低 (20, 40 ,80微克/公斤)水平的加标回收率均在90~105%之间。
上述两例说明该方法可以准确测得固体样品中的 Cd。
以上的实施例仅仅是对本发明的优选实施方式进行描述, 并非对本发明的范 围进行限定, 在不脱离本发明设计精神的前提下, 本领域普通工程技术人员对本 发明的技术方案作出的各种变形和改进, 均应落入本发明的权利要求书确定的保 护范围内。 工业应用
本发明的测定镉的电热蒸发原子荧光光谱法及光谱仪, 利用镉自由原子捕 集阱高选择性的捕获镉自由原子, 然后在还原性气氛中将捕获的镉再次释出, 能 有效消除基体干扰, 实现镉的准确测量。

Claims

权利要求
1、 测定镉的电热蒸发原子荧光光谱仪, 由进样系统、 光源、 原子化器、 光 路系统、 检测系统、 显示装置组成, 其特征在于: 所述进样系统包括电热蒸发 装置和捕集阱; 所述捕集阱由钨丝或钼丝 (6) 、 支架 (15) 、 外罩 (7) 和电源 (17) 组成, 外罩 (7) 和支架 (15) 形成密封空间, 钨丝或钼丝 (6) 设置在支 架 (15) 上, 所述钨丝或钼丝 (6) 位于外罩 (7) 和支架 (15) 形成的密封空间 中, 外罩 (7) 上设有进口 (12) 和出口 (13) 。
2、 根据权利要求 1 所述的测定镉的电热蒸发原子荧光光谱仪, 其特征在 于: 所述电热蒸发装置由屏蔽罩 (4) 、 蒸发舟 (1) 、 电极 (3) 、 电极托架
(5) 与电源 (16) 组成; 电极 (3) 位于蒸发舟 (1) 的下部, 与蒸发舟 (1) 连 接, 电极 (3) 设置在电极托架 (5) 上, 电源 (16) 与电极 (3) 电连接, 屏蔽 罩 (4) 与电极托架 (5) 形成密封空间, 所述蒸发舟 (1) 位于所述密封空间 中, 屏蔽罩 (4) 与电极托架 (5) 活动式连接, 屏蔽罩 (4) 上设有进口 (10) 和出口 (11) , 屏蔽罩 (4) 的出口 (11) 与捕集阱的外罩 (7) 的进口 (12) 通 过三通管相连。
3、 根据权利要求 1或 2所述的测定镉的电热蒸发原子荧光光谱仪, 其特征 在于: 所述三通管的主管路上设有第一切换阀 (8) , 所述三通管的支管路上设 有第二切换阀 (9) 。
4、 测定镉的电热蒸发原子荧光光谱法, 包括如下步骤:
空气中将待测样品干燥、 灰化, 得到灰分;
在氩气气氛下, 将所述灰分升温到 1600~2000°C, 得到的蒸气与钨丝或钼丝 接触捕获其中的镉原子;
在氢气和氩气气氛下, 将所述钨丝或钼丝的温度升高到 1600~2000°C, 释放 出镉原子, 并以原子荧光光谱分析镉的含量。
5、 根据权利要求 4所述的电热蒸发原子荧光光谱法, 其特征在于: 所述氢 气和氩气气氛下, 氢气的体积百分比为 10~90%。
PCT/CN2010/075178 2010-07-15 2010-07-15 测定镉的电热蒸发原子荧光光谱法及光谱仪 WO2012006782A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10854575.7A EP2594921A4 (en) 2010-07-15 2010-07-15 SPECTRAL METHOD OF ATOMIC FLUORESCENCE BY ELECTROTHERMAL VAPORIZATION AND SPECTROMETER FOR DETERMINING CADMIUM
PCT/CN2010/075178 WO2012006782A1 (zh) 2010-07-15 2010-07-15 测定镉的电热蒸发原子荧光光谱法及光谱仪
US13/810,147 US8969832B2 (en) 2010-07-15 2010-07-15 Electrothermal vaporization atomic fluorescence spectroscopy and spectrometer for determination of cadmium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075178 WO2012006782A1 (zh) 2010-07-15 2010-07-15 测定镉的电热蒸发原子荧光光谱法及光谱仪

Publications (1)

Publication Number Publication Date
WO2012006782A1 true WO2012006782A1 (zh) 2012-01-19

Family

ID=45468881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075178 WO2012006782A1 (zh) 2010-07-15 2010-07-15 测定镉的电热蒸发原子荧光光谱法及光谱仪

Country Status (3)

Country Link
US (1) US8969832B2 (zh)
EP (1) EP2594921A4 (zh)
WO (1) WO2012006782A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503500A (ja) * 2012-11-13 2016-02-04 北京吉天儀器有限公司 有る試料を直接導入すると同時に水銀とカドミウムを測定する方法と計器の技術

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9406490B1 (en) * 2014-05-02 2016-08-02 Elemental Scientific, Inc. Determination of metal and metalloid concentrations using ICPMS
CN110579564B (zh) 2019-10-29 2021-03-23 长沙开元弘盛科技有限公司 一种同时测定汞、镉、锌、铅的装置和方法
WO2022024505A1 (ja) * 2020-07-29 2022-02-03 株式会社島津製作所 原子吸光分光光度計
CN113702310A (zh) * 2021-09-14 2021-11-26 长沙开元弘盛科技有限公司 一种用于土壤中镉分析的热释试剂以及使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418044A (en) * 1987-07-13 1989-01-20 Shimadzu Corp Analysis of trace cadmium by flameless atomic absorption
US4833322A (en) * 1986-05-02 1989-05-23 Shell Oil Company Method and apparatus for analysis of material
CN2856989Y (zh) * 2005-08-11 2007-01-10 北京吉天仪器有限公司 检测汞、铅、镉和六价铬的原子荧光光谱仪
CN1920531A (zh) * 2005-08-24 2007-02-28 四川大学 钨丝电热蒸发/氩-氢火焰原子荧光光谱分析法
CN201107273Y (zh) * 2007-11-28 2008-08-27 成都理工大学 一种原子荧光光谱仪
WO2009090608A1 (en) * 2008-01-15 2009-07-23 Tshwane University Of Technology Atomic absorption spectrometry
CN201732064U (zh) * 2010-07-15 2011-02-02 北京吉天仪器有限公司 测定镉的电热蒸发原子荧光光谱仪

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660976A (en) * 1984-05-04 1987-04-28 Jenoptik Jena Gmbh Method and device for electrothermal atomization of a sample material
DE3923983C2 (de) * 1989-07-20 1999-02-25 Hermann R Trabert Vorrichtung zur Aufbereitung einer Probe für eine Vorrichtung zur Bestimmung von Elementen mittels Atomabsorptionsverfahren oder Röntgenfluoreszenzverfahren
DE4022061A1 (de) * 1990-07-11 1992-01-16 Wollnik Hermann Analysenvorrichtung mit elektrothermischem atomisator und massenspektrometer zur atom- und molekuelanalyse
US5424832A (en) * 1992-09-11 1995-06-13 Shimadzu Corporation Flameless atomic absorption spectrophotometer
US5316955A (en) * 1993-06-14 1994-05-31 Govorchin Steven W Furnace atomization electron ionization mass spectrometry
GB9316742D0 (en) * 1993-08-12 1993-09-29 Univ Waterloo Imtroduction of samples do inductively coupled plasma
TW200407328A (en) * 2002-09-19 2004-05-16 Shinetsu Chemical Co Liquid organometallic compound vaporizing/feeding system
JP3821227B2 (ja) * 2002-09-19 2006-09-13 信越化学工業株式会社 有機金属化合物の気化供給装置
US7460225B2 (en) * 2004-03-05 2008-12-02 Vassili Karanassios Miniaturized source devices for optical and mass spectrometry

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833322A (en) * 1986-05-02 1989-05-23 Shell Oil Company Method and apparatus for analysis of material
JPS6418044A (en) * 1987-07-13 1989-01-20 Shimadzu Corp Analysis of trace cadmium by flameless atomic absorption
CN2856989Y (zh) * 2005-08-11 2007-01-10 北京吉天仪器有限公司 检测汞、铅、镉和六价铬的原子荧光光谱仪
CN1920531A (zh) * 2005-08-24 2007-02-28 四川大学 钨丝电热蒸发/氩-氢火焰原子荧光光谱分析法
CN201107273Y (zh) * 2007-11-28 2008-08-27 成都理工大学 一种原子荧光光谱仪
WO2009090608A1 (en) * 2008-01-15 2009-07-23 Tshwane University Of Technology Atomic absorption spectrometry
CN201732064U (zh) * 2010-07-15 2011-02-02 北京吉天仪器有限公司 测定镉的电热蒸发原子荧光光谱仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2594921A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503500A (ja) * 2012-11-13 2016-02-04 北京吉天儀器有限公司 有る試料を直接導入すると同時に水銀とカドミウムを測定する方法と計器の技術
EP2921844A4 (en) * 2012-11-13 2016-07-20 Beijing Jitian Instr Co Ltd METHOD AND INSTRUMENT FOR SIMULTANEOUS MEASUREMENT OF MERCURY AND CADMIUM BY DIRECT SAMPLE INJECTION

Also Published As

Publication number Publication date
EP2594921A4 (en) 2016-01-13
EP2594921A1 (en) 2013-05-22
US8969832B2 (en) 2015-03-03
US20130119271A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
CN102338745B (zh) 测定镉的电热蒸发原子荧光光谱法及光谱仪
CN102967590B (zh) 一种直接进样同时测定汞和镉的方法和仪器
Pandey et al. Measurement techniques for mercury species in ambient air
Fan et al. Dithizone–chloroform single drop microextraction system combined with electrothermal atomic absorption spectrometry using Ir as permanent modifier for the determination of Cd in water and biological samples
WO2012006782A1 (zh) 测定镉的电热蒸发原子荧光光谱法及光谱仪
CN102305779B (zh) 固体进样-非色散原子荧光光度计连用装置及分析方法
Liu et al. Determination of trace cadmium in rice by liquid spray dielectric barrier discharge induced plasma− chemical vapor generation coupled with atomic fluorescence spectrometry
Qian et al. Highly sensitive determination of cadmium and lead in whole blood by electrothermal vaporization-atmospheric pressure glow discharge atomic emission spectrometry
Zeng et al. Ultrasensitive determination of cobalt and nickel by atomic fluorescence spectrometry using APDC enhanced chemical vapor generation
Yuan et al. Point discharge microplasma for the determination of mercury in Traditional Chinese Medicines by chemical vapor generation atomic emission spectrometry
Matsumoto et al. Determination of cadmium by an improved double chamber electrothermal vaporization inductively coupled plasma atomic emission spectrometry
Fan et al. Determination of platinum, palladium and rhodium in biological and environmental samples by low temperature electrothermal vaporization inductively coupled plasma atomic emission spectrometry with diethyldithiocarbamate as chemical modifier
Butcher Recent advances in optical analytical atomic spectrometry
Wang et al. Direct determination of trace mercury and cadmium in food by sequential electrothermal vaporization atomic fluorescence spectrometry using tungsten and gold coil traps
CN201732064U (zh) 测定镉的电热蒸发原子荧光光谱仪
Zeng et al. Chemical vapor generation of bismuth in non-aqueous phase based on cloud point extraction coupled with thermospray flame furnace atomic absorption spectrometric determination
CN201107273Y (zh) 一种原子荧光光谱仪
Borowska et al. Photochemical vapor generation combined with headspace solid phase microextraction for determining mercury species by microwave-induced plasma optical emission spectrometry
Frentiu et al. A novel analytical system with a capacitively coupled plasma microtorch and a gold filament microcollector for the determination of total Hg in water by cold vapour atomic emission spectrometry
Yao et al. Sensitivity enhancement of inorganic arsenic analysis by in situ microplasma preconcentration coupled with liquid chromatography atomic fluorescence spectrometry
Yu et al. Improvement of analytical performance of liquid cathode glow discharge for the determination of bismuth using formic acid as a matrix modifier
JP2022508981A (ja) 水銀、カドミウム、亜鉛、鉛を同時に測定する装置及び方法
He et al. High-yield sample introduction using nebulized film dielectric barrier discharge assisted chelate vapor generation for trace rare earth elements determination by inductively coupled plasma mass spectrometry
CN102374980B (zh) 检测Cr(VI)的原子荧光光谱法
Liu et al. Ultraviolet assisted liquid spray dielectric barrier discharge plasma-induced vapor generation for sensitive determination of arsenic by atomic fluorescence spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854575

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010854575

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13810147

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE