WO2012005361A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2012005361A1
WO2012005361A1 PCT/JP2011/065716 JP2011065716W WO2012005361A1 WO 2012005361 A1 WO2012005361 A1 WO 2012005361A1 JP 2011065716 W JP2011065716 W JP 2011065716W WO 2012005361 A1 WO2012005361 A1 WO 2012005361A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
light emitting
layer
carbon atoms
Prior art date
Application number
PCT/JP2011/065716
Other languages
English (en)
French (fr)
Inventor
雄一郎 板井
伊勢 俊大
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020137003189A priority Critical patent/KR20130044317A/ko
Priority to US13/808,904 priority patent/US9907140B2/en
Priority to KR1020187015856A priority patent/KR20180065036A/ko
Priority to KR1020197013243A priority patent/KR20190053287A/ko
Publication of WO2012005361A1 publication Critical patent/WO2012005361A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an organic electroluminescent element (hereinafter also referred to as “element” or “organic EL element”). More specifically, the present invention relates to an organic electroluminescence device containing a specific dibenzothiophene compound and a carbazole compound having a specific structure.
  • an organic electroluminescent element is composed of an organic layer including a light emitting layer and a pair of electrodes sandwiching the organic layer. Electrons injected from the cathode and holes injected from the anode are recombined in the light emitting layer. The energy of generated excitons is used for light emission.
  • Patent Document 1 discloses a compound containing a benzothiophene structure and a triphenylene structure as a host material used together with a phosphorescent material, and a high current density (a current of 25 mA / cm 2 or more is obtained by using the material.
  • Patent Document 2 discloses a compound having a benzothiophene structure or a compound having a carbazole structure and a triazine structure as a material used for an organic layer, and by using the material particularly for a light emitting layer or a hole transport layer, It is disclosed that an organic electroluminescent device excellent in luminous efficiency and durability can be obtained.
  • an organic electroluminescent device using a specific compound containing a benzothiophene structure and a triphenylene structure as a host material in a light emitting layer includes a carbazole structure and a phenylpyridine or phenylpyrimidine structure.
  • this material as an electron transport material for at least one organic layer (for example, an electron transport layer) between the light emitting layer and the cathode, durability in a high current density region is improved, and at a low driving voltage. It was found that high luminous efficiency can be obtained.
  • Patent Document 2 does not clearly describe the function of the material used for the organic layer, and specifically describes the case where the above-described specific material is used for the light emitting layer or the hole transport layer. However, specific guidelines regarding the material of the electron transport layer are not described. Furthermore, the present inventors have found that in the organic electroluminescence device having the configuration of the present invention, in addition to the above characteristics, a change in chromaticity before and after driving in a high current density region can also be suppressed. Patent Documents 1 and 2 do not describe this characteristic.
  • An organic electroluminescent device having a pair of electrodes consisting of an anode and a cathode, a light emitting layer between the electrodes, and having at least one organic layer between the light emitting layer and the cathode,
  • the light emitting layer contains at least one compound represented by the following general formula (I):
  • An organic electroluminescence device comprising at least one compound represented by the following general formula (II) in at least one organic layer between the light emitting layer and the cathode.
  • R 11 to R 15 are each independently an alkyl group, an alkoxy group, an aryl group, an aromatic heterocyclic group, an alkenyl group, an alkynyl group, —OAr 11 , —N (R 16 ) (R 17 ), or —N (Ar 11 ) (Ar 12 ), R 16 and R 17 each independently represent a hydrogen atom or a substituent, Ar 11 and Ar 12 each independently represent an aryl group or aromatic hetero L represents a cyclic group, L represents a single bond, an arylene group, a divalent aromatic heterocyclic group, or a combination thereof, n11, n12 and n15 each independently represents an integer of 0 to 4; And n14 each independently represents an integer of 0 to 3.) (In General Formula (II), X 3 , X 4 and X 5 are each independently a nitrogen atom, a hydrogen atom or a carbon atom to which a substituent is bonded, and the
  • R 11 ⁇ R 15, L, and n11 ⁇ n15 have the same meanings as R 11 ⁇ R 15, L, and n11 ⁇ n15 in formula (I).
  • [4] The organic electroluminescence device according to any one of the above [1] to [3], wherein R 11 to R 15 are each independently an aryl group or an aromatic heterocyclic group.
  • [5] The organic electroluminescence device according to any one of the above [1] to [4], wherein L is an arylene group.
  • Organic electroluminescent element Any one of [1] to [6], wherein at least one of the light emitting layer and the other organic layer existing between the anode and the cathode is formed by a solution coating process.
  • Organic electroluminescent element [8] A light-emitting device using the organic electroluminescent element according to any one of [1] to [6] above.
  • an organic electroluminescence device having high luminous efficiency, low driving voltage, high durability in a high current density region, and small chromaticity change before and after driving in a high current density region. Can do.
  • the hydrogen atom in the description of each general formula includes an isotope (deuterium atom and the like), and further, the atom constituting the substituent includes the isotope.
  • substituent group A and the substituent group B are defined as follows.
  • An alkyl group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, neopentyl, etc.), alkenyl groups (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms) For example, vinyl, allyl, 2-butenyl, 3-pentenyl, etc.), alkynyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms) For example, vinyl, allyl, 2-buteny
  • it has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • phenyloxy, 1-naphthyloxy, 2-naphthyloxy, etc. a heterocyclic oxy group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms).
  • pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. an acyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, For example, acetyl, benzoyl, formyl, pivaloyl, etc.), an alkoxycarbonyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms).
  • aryloxycarbonyl group ( The number of carbon atoms is preferably 7 to 30, more preferably 7 to 20, and particularly preferably 7 to 12, and examples thereof include phenyloxycarbonyl. ), An acyloxy group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, particularly preferably 2-10 carbon atoms, and examples thereof include acetylamino, benzoylamino and the like, and alkoxycarbonylamino groups (preferably having 2-2 carbon atoms).
  • an aryloxycarbonylamino group preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, for example phenyloxycarbonyl And sulfonylamino groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino).
  • an aryloxycarbonylamino group preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, for example phenyloxycarbonyl And sulfonylamino groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino).
  • a sulfamoyl group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenyl Sulfamoyl, etc.), carbamoyl groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl, methylcarbamoyl, diethylcarbamoyl, Phenylcarbamoyl etc.), alkylthio group ( Preferably, it has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, ethylthio, etc.), an arylthio group (preferably 6 to 30 carbon atoms).
  • Rufinyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfinyl and benzenesulfinyl. ), A ureido group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), phosphoric acid An amide group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as diethyl phosphoric acid amide and phenyl phosphoric acid amide), a hydroxy group , Mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carb
  • Is for example, a nitrogen atom, oxygen atom, sulfur atom, phosphorus atom, silicon atom, selenium atom, tellurium atom, specifically pyridyl, pyrazinyl, pyrimidyl, pyridazinyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, oxazolyl, thiazolyl, And isoxazolyl, isothiazolyl, quinolyl, furyl, thienyl, selenophenyl, tellurophenyl, piperidyl, piperidino, morpholino, pyrrolidyl, pyrrolidino, benzoxazolyl, benzoimidazolyl, benzothiazolyl, carbazolyl group, azepinyl group, silolyl group and the like.
  • a silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, and examples thereof include trimethylsilyl and triphenylsilyl).
  • a aryloxy group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, such as trimethylsilyloxy, triphenylsilyloxy, etc.), phosphoryl group (for example, A diphenylphosphoryl group, a dimethylphosphoryl group, etc.).
  • These substituents may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above.
  • alkyl group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.
  • alkenyl groups preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl , Allyl, 2-butenyl, 3-pentenyl, etc.
  • alkynyl group preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms such as propargyl , 3-pentynyl, etc.
  • aryl groups preferably having 6 to 30 carbon atoms, preferably 1
  • substituents may be further substituted, and examples of the further substituent include a group selected from the substituent group B. Moreover, the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group B described above. Moreover, the substituent substituted by the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group B described above.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device having a pair of electrodes composed of an anode and a cathode, a light emitting layer between the electrodes, and at least one organic layer between the light emitting layer and the cathode.
  • the light emitting layer contains at least one compound represented by the general formula (I) described below, and at least one organic layer between the light emitting layer and the cathode is represented by the general formula (II) described below. Containing at least one compound.
  • the compound represented by the general formula (II) has not only an electron transport property but also a hole transport property
  • the light emitting layer using the compound represented by the general formula (I) and the general formula (II) When combined with a layer using a compound represented (at least one organic layer between the light-emitting layer and the cathode, for example, an electron transport layer), the deterioration of the light-emitting layer is suppressed and driving in a high current density region is performed.
  • the layer using the compound represented by the general formula (II) can pass holes to some extent, thereby maintaining the light emission efficiency and promoting the low voltage and high durability. As a result, it is presumed that chromaticity change before and after driving is also suppressed.
  • R 11 to R 15 are each independently an alkyl group, an alkoxy group, an aryl group, an aromatic heterocyclic group, an alkenyl group, an alkynyl group, —OAr 11 , —N (R 16 ) (R 17 ), Or —N (Ar 11 ) (Ar 12 ).
  • R 16 and R 17 each independently represents a hydrogen atom or a substituent.
  • Ar 11 and Ar 12 each independently represents an aryl group or an aromatic heterocyclic group.
  • L represents a group consisting of a single bond, an arylene group, a divalent aromatic heterocyclic group or a combination thereof.
  • n11, n12 and n15 each independently represents an integer of 0 to 4, and n13 and n14 each independently represents an integer of 0 to 3.
  • the alkyl group represented by R 11 to R 15 is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
  • methyl group, ethyl group, n-propyl group, isopropyl group, isobutyl group, t-butyl group, n-butyl group, cyclopropyl group and the like can be mentioned.
  • the alkoxy group represented by R 11 to R 15 is preferably an alkoxy group having 1 to 10 carbon atoms, and more preferably an alkoxy group having 1 to 4 carbon atoms.
  • the aryl group represented by R 11 to R 15 is preferably an aryl group having 6 to 18 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms. Examples thereof include a phenyl group, a biphenyl group, a naphthyl group, a triphenyl group, a tolyl group, and a xylyl group.
  • a phenyl group, a biphenyl group, or a triphenyl group is preferable, and a phenyl group is more preferable.
  • the aromatic heterocyclic group represented by R 11 to R 15 is preferably an aromatic heterocyclic group having 4 to 12 carbon atoms.
  • Examples of the aromatic heterocyclic ring that forms the aromatic heterocyclic group represented by R 11 to R 15 include pyridine, pyrimidine, furan, thiophene, benzofuran, benzothiophene, carbazole, dibenzofuran, dibenzothiophene, and the like. Preferred is carbazole or dibenzothiophene, and more preferred is dibenzothiophene.
  • the alkenyl group represented by R 11 to R 15 is preferably an alkenyl group having 2 to 10 carbon atoms, and more preferably an alkenyl group having 2 to 6 carbon atoms.
  • vinyl group, n-propenyl group, isopropenyl group, isobutenyl group, n-butenyl group and the like can be mentioned.
  • the alkynyl group represented by R 11 to R 15 is preferably an alkynyl group having 2 to 10 carbon atoms, and more preferably an alkynyl group having 2 to 6 carbon atoms. Examples include ethynyl group, propynyl group, propargyl group, butynyl group, isobutynyl group and the like.
  • Examples of the substituent represented by R 16 or R 17 include an alkyl group, an aryl group, and an aromatic heterocyclic group. Preferable examples and specific examples of these groups include those described as the alkyl group, aryl group and aromatic heterocyclic group represented by R 11 to R 15 described above. Preferred examples and specific examples of the aryl group and aromatic heterocyclic group represented by Ar 11 or Ar 12 include those described as the aryl group and aromatic heterocyclic group represented by the aforementioned R 11 to R 15. Can be mentioned.
  • the arylene group represented by L is preferably an arylene group having 6 to 18 carbon atoms, and more preferably an arylene group having 6 to 12 carbon atoms. Examples thereof include a phenylene group, a biphenylene group, a naphthylene group, a tolylene group, and xylylene. A phenylene group or a biphenylene group is preferable, and a biphenylene group is more preferable.
  • the divalent aromatic heterocyclic group represented by L is preferably a divalent aromatic heterocyclic group having 4 to 12 carbon atoms.
  • Examples of the aromatic heterocyclic ring that forms the divalent aromatic heterocyclic group represented by L include pyridine, pyrimidine, pyridazine, triazine, furan, pyran, and thiophene. Preferably, it is pyridine.
  • each group represented by R 11 to R 17 , Ar 11 , Ar 12 , and L may further have a substituent.
  • substituents include an alkyl group, an aryl group, and an aromatic heterocyclic group.
  • Preferable examples and specific examples of these groups include those described as the alkyl group, aryl group and aromatic heterocyclic group represented by R 11 to R 15 described above.
  • Particularly preferred is a triphenyl group or a dibenzothienyl group.
  • R 11 to R 15 are preferably an aryl group, an aromatic heterocyclic group, or —N (Ar 11 ) (Ar 12 ) [Ar 11 and Ar 12 are an aryl group], and an aryl group or an aromatic heterocyclic group Are more preferable, a phenyl group, a carbazolyl group, or a dibenzothienyl group is more preferable, and a phenyl group or a dibenzothienyl group is still more preferable.
  • Ar 11 and Ar 12 an aryl group is preferable, and a phenyl group is more preferable.
  • L is preferably a single bond or an arylene group, more preferably an arylene group.
  • L is preferably a single bond, a phenylene group, a biphenylene group, a pyridinylene group, or a group consisting of a combination thereof, more preferably a single bond, a phenylene group, or a biphenylene group, and even more preferably a phenylene group or a biphenylene group.
  • a biphenylene group is more preferred.
  • n11, n12 and n15 each independently represents an integer of 0 to 4, preferably 0 to 2, more preferably 0 or 1.
  • n13 and n14 each independently represents an integer of 0 to 3, preferably 0 or 1, more preferably 0.
  • n11 to n15 is 0, it means that the compound represented by the general formula (I) does not have the corresponding group represented by R 11 to R 15 .
  • the compound represented by the general formula (I) is preferably a compound represented by the following general formula (I-1).
  • R 11 ⁇ R 15, L, and n11 ⁇ n15 have the same meanings as R 11 ⁇ R 15, L, and n11 ⁇ n15 in formula (I).
  • R 11 ⁇ R 15, L, and n11 ⁇ n15 of the general formula have the same meanings as R 11 ⁇ R 15, L, and n11 ⁇ n15 in (I), and preferred ones are also the same.
  • the compound represented by the general formula (I) is preferably a compound represented by the following general formula (I-2).
  • R 11 ⁇ R 15, L, and n11 ⁇ n15 have the same meanings as R 11 ⁇ R 15, L, and n11 ⁇ n15 in formula (I).
  • R 11 ⁇ R 15, L, and n11 ⁇ n15 of the general formula have the same meanings as R 11 ⁇ R 15, L, and n11 ⁇ n15 in (I), and preferred ones are also the same.
  • the compounds exemplified as the compound represented by the general formula (I) can be synthesized by a synthesis method described in International Publication No. 2009/021126.
  • the compound represented by the general formula (I) is contained in the light emitting layer, but its application is not limited and may be further contained in any layer in the organic layer.
  • Examples of the introduction layer of the compound represented by the general formula (I) include any of a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an exciton block layer, and a charge block layer. be able to.
  • the compound represented by the general formula (I) is preferably contained in an amount of 0.1 to 99% by mass, more preferably 1 to 95% by mass, with respect to the total mass of the light emitting layer. More preferably.
  • the compound represented by the general formula (I) is further contained in a layer other than the light emitting layer, it is preferably contained in an amount of 70 to 100% by mass, preferably 85 to 100% by mass, based on the total mass of the layer. Is more preferable.
  • X 3 , X 4 and X 5 are each independently a nitrogen atom, a hydrogen atom or a carbon atom to which a substituent is bonded, and the ring containing X 3 , X 4 and X 5 is pyridine or L ′ represents a single bond or a benzene ring, and R 1 to R 5 each independently represents a fluorine atom, a methyl group, a phenyl group, a cyano group, a pyridyl group, a pyrimidyl group, a silyl group, a carbazolyl group, or and represents a tert-butyl group, n1 to n5 each independently represents 0 or 1, and p ′ and q ′ each independently represent 1 or 2.
  • X 3 , X 4 and X 5 are each independently a nitrogen atom, a hydrogen atom or a carbon atom, and the ring containing X 3 , X 4 and X 5 is pyridine or pyrimidine.
  • X 3 is preferably a nitrogen atom.
  • X 4 is preferably a carbon atom to which a hydrogen atom is bonded, and X 5 is preferably a nitrogen atom.
  • the ring containing X 3 , X 4 and X 5 is more preferably a pyrimidine.
  • L ′ represents a single bond or a benzene ring, and is preferably a benzene ring (in the case of divalent, a phenylene group). L ′ is linked to the benzene ring in the nitrogen-containing heteroaromatic structure in the general formula (II).
  • R 1 to R 5 each independently represents a fluorine atom, a methyl group, a phenyl group, a cyano group, a pyridyl group, a pyrimidyl group, a silyl group, a carbazolyl group, or a tert-butyl group.
  • R 3 is more preferably a pyrimidyl group, and more preferably a pyrimidyl group having a phenyl group as a substituent.
  • n1 to n5 each independently represents 0 or 1, and is preferably 0.
  • p ′ and q ′ each independently represent 1 or 2, and it is preferable that p ′ is 1 and q ′ is 1.
  • Each group represented by R 1 to R 5 and L ′ may further have a substituent, if possible.
  • substituents include halogen atoms such as fluorine, chlorine, bromine and iodine, Carbazolyl group, hydroxyl group, substituted or unsubstituted amino group, nitro group, cyano group, silyl group, trifluoromethyl group, carbonyl group, carboxyl group, substituted or unsubstituted alkyl group, substituted or unsubstituted alkenyl group, Substituted or unsubstituted arylalkyl group, substituted or unsubstituted aromatic group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted aryloxy group, substituted or unsubstituted And alkyloxy groups.
  • fluorine atom methyl group, perfluorophenylene group, phenyl group, naphthyl group, pyridyl group, pyrazyl group, pyrimidyl group, adamantyl group, benzyl group, nitro group, cyano group, silyl group, trifluoromethyl group
  • a group consisting of a carbazolyl group and a combination thereof is preferable, and a fluorine atom, a methyl group, a phenyl group, a pyridyl group, a pyrimidyl group, a cyano group, a silyl group, a carbazolyl group, and a group consisting of only these are more preferable.
  • a group consisting of a group, a pyridyl group, a pyrimidyl group, a carbazolyl group, and a combination thereof alone is more preferred, and a phenyl group is most preferred.
  • this substituent may couple
  • Examples of the substituent in the case where X 3 , X 4 or X 5 is a carbon atom to which a substituent is bonded include the above groups.
  • the compound represented by the general formula (II) is most preferably composed of only carbon atoms, hydrogen atoms and nitrogen atoms.
  • the molecular weight of the compound represented by the general formula (II) is preferably 400 or more and 1000 or less, more preferably 450 or more and 800 or less, and further preferably 500 or more and 700 or less.
  • the lowest excited triplet (T 1 ) energy in the film state of the compound represented by the general formula (II) is preferably 2.61 eV (62 kcal / mol) or more and 3.51 eV (80 kcal / mol) or less. More preferably, it is not less than .69 eV (63.5 kcal / mol) and not more than 3.51 eV (80 kcal / mol), and still more preferably not less than 2.76 eV (65 kcal / mol) and 3.51 eV (80 kcal / mol).
  • the glass transition temperature (Tg) of the compound represented by the general formula (II) is preferably 80 ° C. or higher and 400 ° C. or lower, more preferably 100 ° C. or higher and 400 ° C. or lower, and 120 ° C. or higher and 400 ° C. or lower. More preferably it is.
  • an isotope such as a deuterium atom
  • all hydrogen atoms in the compound may be replaced with isotopes, or a mixture in which a part is a compound containing an isotope may be used.
  • Ph represents a phenyl group.
  • the compounds exemplified as the compound represented by the above general formula (II) are the method described in International Publication No. 03/080760, the method described in International Publication No. 03/078541, pamphlet, International Publication No. 05/085387. It can be synthesized by various methods such as the method described in the pamphlet.
  • the above exemplified compound (a-3) uses m-bromobenzaldehyde as a starting material, and pamphlet [0074]-[0075] of WO 05/085387 (page 45, line 11 to page 46, 18 Line).
  • the above exemplified compound (a-17) is synthesized by the method described in International Publication No.
  • sublimation purification After the synthesis, it is preferable to purify by sublimation purification after purification by column chromatography, recrystallization or the like.
  • sublimation purification not only can organic impurities be separated, but inorganic salts and residual solvents can be effectively removed.
  • the introduction layer of the compound represented by the general formula (II) is not particularly limited as long as it is an organic layer between the light emitting layer and the cathode, but an electron transport layer, an electron injection layer, an exciton block layer, a charge block A layer (for example, a hole blocking layer). Among these, an electron transport layer is preferable.
  • the content of the compound in the layer containing the compound represented by the general formula (II) is preferably 70 to 100% by mass, and 85 to 100% by mass with respect to the total mass of the layer. It is more preferable.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device having a pair of electrodes composed of an anode and a cathode, a light emitting layer between the electrodes, and at least one organic layer between the light emitting layer and the cathode.
  • the light emitting layer contains at least one compound represented by the general formula (I), and at least one compound represented by the general formula (II) is included in at least one organic layer between the light emitting layer and the cathode. Contains one.
  • the light emitting layer is an organic layer, and further includes at least one organic layer between the light emitting layer and the cathode, but may further have an organic layer.
  • at least one of the anode and the cathode is preferably transparent or translucent.
  • FIG. 1 shows an example of the configuration of an organic electroluminescent device according to the present invention.
  • a light emitting layer 6 is sandwiched between an anode 3 and a cathode 9 on a support substrate 2.
  • a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, a hole block layer 7, and an electron transport layer 8 are laminated in this order between the anode 3 and the cathode 9.
  • Anode / hole transport layer / light-emitting layer / electron transport layer / cathode Anode / hole transport layer / light-emitting layer / block layer / electron transport layer / cathode
  • the substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic layer.
  • a substrate that does not scatter or attenuate light emitted from the organic layer In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.
  • the anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials.
  • the anode is usually provided as a transparent anode.
  • the cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light-emitting element.
  • the electrode material can be selected as appropriate.
  • Organic layer in the present invention will be described.
  • each organic layer is preferably formed by any one of a dry coating method such as a vapor deposition method and a sputtering method, a solution coating process such as a transfer method, a printing method, a spin coating method, and a bar coating method. Can be formed.
  • a dry coating method such as a vapor deposition method and a sputtering method
  • a solution coating process such as a transfer method, a printing method, a spin coating method, and a bar coating method.
  • a solution coating process such as a transfer method, a printing method, a spin coating method, and a bar coating method. It is preferable.
  • the light-emitting layer receives holes from the anode, the hole injection layer, or the hole transport layer when an electric field is applied, receives electrons from the cathode, the electron injection layer, or the electron transport layer, and recombines holes and electrons. It is a layer which has the function to provide and to emit light.
  • the substrate, anode, cathode, organic layer, and light emitting layer are described in detail in, for example, Japanese Patent Application Laid-Open No. 2008-270736 and Japanese Patent Application Laid-Open No. 2007-266458, and the matters described in these documents can be applied to the present invention.
  • the light emitting layer may include a material that does not have charge transporting properties and does not emit light.
  • Luminescent material As the light emitting material in the present invention, any of phosphorescent light emitting materials, fluorescent light emitting materials and the like can be used.
  • the light emitting layer in the present invention can contain two or more kinds of light emitting materials in order to improve the color purity and broaden the light emission wavelength region. At least one of the light emitting materials is preferably a phosphorescent light emitting material.
  • the light emitting material of the present invention further satisfies the relationship of 1.2 eV> ⁇ Ip> 0.2 eV and / or 1.2 eV> ⁇ Ea> 0.2 eV with the host material. It is preferable from the viewpoint.
  • ⁇ Ip means a difference in Ip value (ionization potential) between the host material and the light emitting material
  • ⁇ Ea means a difference in Ea value (electron affinity) between the host material and the light emitting material.
  • At least one of the light emitting materials is preferably a platinum complex material or an iridium complex material, and more preferably an iridium complex material.
  • the fluorescent light-emitting material and the phosphorescent light-emitting material are described in detail in paragraph numbers [0100] to [0164] of JP-A-2008-270736 and paragraph numbers [0088] to [0090] of JP-A-2007-266458, for example. The matters described in these publications can be applied to the present invention.
  • a phosphorescent material is preferable.
  • phosphorescent light-emitting materials that can be used in the present invention include US Pat. / 19373A2, JP-A No. 2001-247859, JP-A No. 2002-302671, JP-A No. 2002-117978, JP-A No. 2003-133074, JP-A No. 2002-1235076, JP-A No. 2003-123984, JP-A No. 2002-170684, EP No. 121157, JP-A No.
  • Examples of the light-emitting dopant include Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Ru complex, Pd complex, Os complex, Eu complex, and Tb complex. Gd complex, Dy complex, and Ce complex are mentioned.
  • an Ir complex, a Pt complex, or a Re complex among which an Ir complex or a Pt complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond. Or Re complexes are preferred. Furthermore, from the viewpoints of luminous efficiency, driving durability, chromaticity and the like, an Ir complex and a Pt complex are particularly preferable, and an Ir complex is most preferable.
  • the platinum complex is preferably a platinum complex represented by the following general formula (C-1).
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represent a ligand coordinated to Pt.
  • L 1 , L 2 and L 3 are each independently a single bond or a divalent linking group. Represents.
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represent a ligand coordinated to Pt.
  • the bond between Q 1 , Q 2 , Q 3 and Q 4 and Pt may be any of a covalent bond, an ionic bond, a coordinate bond, and the like.
  • a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, and a phosphorus atom are preferable, and in Q ⁇ 1 >, Q ⁇ 2 >, Q ⁇ 3 > and Q ⁇ 4 >
  • a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, and a phosphorus atom are preferable, and in Q ⁇ 1 >, Q ⁇ 2 >, Q ⁇ 3 > and Q ⁇ 4 >
  • at least one is preferably a carbon atom, more preferably two are carbon atoms, particularly preferably two are carbon atoms and two are nitrogen atoms.
  • Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt by a carbon atom may be an anionic ligand or a neutral ligand, and the anionic ligand is a vinyl ligand, Aromatic hydrocarbon ring ligand (eg benzene ligand, naphthalene ligand, anthracene ligand, phenanthrene ligand etc.), heterocyclic ligand (eg furan ligand, thiophene ligand, pyridine) Ligand, pyrazine ligand, pyrimidine ligand, pyridazine ligand, triazine ligand, thiazole ligand, oxazole ligand, pyrrole ligand, imidazole ligand, pyrazole ligand, triazole And a condensed ring containing them (for example, quinoline ligand, benzothiazole ligand, etc.).
  • a carbene ligand is mentioned as a neutral ligand.
  • Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with a nitrogen atom may be neutral ligands or anionic ligands, and as neutral ligands, nitrogen-containing aromatic hetero Ring ligand (pyridine ligand, pyrazine ligand, pyrimidine ligand, pyridazine ligand, triazine ligand, imidazole ligand, pyrazole ligand, triazole ligand, oxazole ligand, Examples include thiazole ligands and condensed rings containing them (for example, quinoline ligands, benzimidazole ligands), amine ligands, nitrile ligands, and imine ligands.
  • anionic ligands include amino ligands, imino ligands, nitrogen-containing aromatic heterocyclic ligands (pyrrole ligands, imidazole ligands, triazole ligands, and condensed rings containing them) (For example, indole ligand, benzimidazole ligand, etc.)).
  • Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with an oxygen atom may be neutral ligands or anionic ligands, and neutral ligands are ether ligands, Examples include ketone ligands, ester ligands, amide ligands, oxygen-containing heterocyclic ligands (furan ligands, oxazole ligands and condensed rings containing them (benzoxazole ligands, etc.)). It is done.
  • the anionic ligand include an alkoxy ligand, an aryloxy ligand, a heteroaryloxy ligand, an acyloxy ligand, a silyloxy ligand, and the like.
  • Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with a sulfur atom may be neutral ligands or anionic ligands, and neutral ligands include thioether ligands, Examples include thioketone ligands, thioester ligands, thioamide ligands, sulfur-containing heterocyclic ligands (thiophene ligands, thiazole ligands and condensed rings containing them (such as benzothiazole ligands)). It is done.
  • the anionic ligand include an alkyl mercapto ligand, an aryl mercapto ligand, and a heteroaryl mercapto ligand.
  • Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with a phosphorus atom may be neutral ligands or anionic ligands, and neutral ligands include phosphine ligands, Examples include phosphate ester ligands, phosphite ester ligands, and phosphorus-containing heterocyclic ligands (phosphinin ligands, etc.).
  • Anionic ligands include phosphino ligands and phosphinyl ligands.
  • phosphoryl ligands The groups represented by Q 1 , Q 2 , Q 3, and Q 4 may have a substituent, and those listed as the substituent group A can be appropriately applied as the substituent.
  • substituents may be connected to each other (when Q 3 and Q 4 are connected, a Pt complex of a cyclic tetradentate ligand is formed).
  • the group represented by Q 1 , Q 2 , Q 3 and Q 4 is preferably an aromatic hydrocarbon ring ligand bonded to Pt with a carbon atom, and an aromatic heterocyclic ligand bonded to Pt with a carbon atom.
  • L 1 , L 2 and L 3 represent a single bond or a divalent linking group.
  • the divalent linking group represented by L 1 , L 2 and L 3 include alkylene groups (methylene, ethylene, propylene, etc.), arylene groups (phenylene, naphthalenediyl), heteroarylene groups (pyridinediyl, thiophenediyl, etc.) ), Imino group (—NR—) (such as phenylimino group), oxy group (—O—), thio group (—S—), phosphinidene group (—PR—) (such as phenylphosphinidene group), silylene group (—SiRR′—) (dimethylsilylene group, diphenylsilylene group, etc.), or a combination thereof.
  • alkylene groups methylene, ethylene, propylene, etc.
  • arylene groups phenylene, naphthalenediyl
  • heteroarylene groups pyridined
  • R and R ′ each independently include an alkyl group, an aryl group, and the like. These linking groups may further have a substituent.
  • L 1 , L 2 and L 3 are preferably a single bond, an alkylene group, an arylene group, a heteroarylene group, an imino group, an oxy group, a thio group or a silylene group. More preferably a single bond, an alkylene group, an arylene group or an imino group, still more preferably a single bond, an alkylene group or an arylene group, still more preferably a single bond, a methylene group or a phenylene group, still more preferably.
  • Single bond, disubstituted methylene group more preferably single bond, dimethylmethylene group, diethylmethylene group, diisobutylmethylene group, dibenzylmethylene group, ethylmethylmethylene group, methylpropylmethylene group, isobutylmethylmethylene group, diphenyl Methylene group, methylphenylmethylene group, cyclohexanediyl group, A lopentanediyl group, a fluorenediyl group, and a fluoromethylmethylene group.
  • L 1 is particularly preferably a dimethylmethylene group, a diphenylmethylene group, or a cyclohexanediyl group, and most preferably a dimethylmethylene group.
  • L 2 and L 3 are most preferably a single bond.
  • platinum complexes represented by the general formula (C-1) a platinum complex represented by the following general formula (C-2) is more preferable.
  • L 21 represents a single bond or a divalent linking group.
  • a 21 and A 22 each independently represents a carbon atom or a nitrogen atom.
  • Z 21 and Z 22 each independently represent a nitrogen-containing aromatic heterocyclic ring.
  • Z 23 and Z 24 each independently represents a benzene ring or an aromatic heterocycle.
  • L 21 has the same meaning as L 1 in formula (C-1), and the preferred range is also the same.
  • a 21 and A 22 each independently represent a carbon atom or a nitrogen atom. Of A 21, A 22, Preferably, at least one is a carbon atom, it A 21, A 22 are both carbon atoms are preferred from the standpoint of emission quantum yield stability aspects and complexes of the complex .
  • Z 21 and Z 22 each independently represent a nitrogen-containing aromatic heterocycle.
  • the nitrogen-containing aromatic heterocycle represented by Z 21 and Z 22 include a pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadiazole ring, Examples include thiadiazole rings.
  • the ring represented by Z 21 and Z 22 is preferably a pyridine ring, a pyrazine ring, an imidazole ring or a pyrazole ring, more preferably a pyridine ring.
  • the nitrogen-containing aromatic heterocycle represented by Z 21 and Z 22 may have a substituent, and the substituent group A is a substituent on a carbon atom, and the substituent on a nitrogen atom is The substituent group B can be applied.
  • the substituent on the carbon atom is preferably an alkyl group, a perfluoroalkyl group, an aryl group, an aromatic heterocyclic group, a dialkylamino group, a diarylamino group, an alkoxy group, a cyano group, or a fluorine atom.
  • the substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of shortening the wavelength, an electron donating group, a fluorine atom, and an aromatic ring group are preferable.
  • an alkyl group, a dialkylamino group, an alkoxy group, A fluorine atom, an aryl group, an aromatic heterocyclic group and the like are selected.
  • an electron withdrawing group is preferable, and for example, a cyano group, a perfluoroalkyl group, or the like is selected.
  • the substituent on the nitrogen atom is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex.
  • the substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like.
  • Z 23 and Z 24 each independently represent a benzene ring or an aromatic heterocycle.
  • the nitrogen-containing aromatic heterocycle represented by Z 23 and Z 24 include pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadi Examples include an azole ring, a thiadiazole ring, a thiophene ring, and a furan ring.
  • the ring represented by Z 23 and Z 24 is preferably a benzene ring, a pyridine ring, a pyrazine ring, an imidazole ring, a pyrazole ring, or a thiophene ring, More preferred are a benzene ring, a pyridine ring and a pyrazole ring, and still more preferred are a benzene ring and a pyridine ring.
  • the benzene ring and nitrogen-containing aromatic heterocycle represented by Z 23 and Z 24 may have a substituent.
  • the substituent group A is substituted on the nitrogen atom.
  • the substituent group B can be applied as the group.
  • the substituent on carbon is preferably an alkyl group, a perfluoroalkyl group, an aryl group, an aromatic heterocyclic group, a dialkylamino group, a diarylamino group, an alkoxy group, a cyano group, or a fluorine atom.
  • the substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of increasing the wavelength, an electron donating group and an aromatic ring group are preferable, for example, an alkyl group, a dialkylamino group, an alkoxy group, an aryl group, An aromatic heterocyclic group or the like is selected.
  • an electron withdrawing group is preferable, and for example, a fluorine atom, a cyano group, a perfluoroalkyl group, and the like are selected.
  • the substituent on the nitrogen atom is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex.
  • the substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like.
  • platinum complexes represented by the general formula (C-2) one of the more preferred embodiments is a platinum complex represented by the following general formula (C-4).
  • a 401 to A 414 each independently represents C—R or a nitrogen atom.
  • R represents a hydrogen atom or a substituent.
  • L 41 represents a single bond or a divalent linking group.
  • a 401 to A 414 each independently represents C—R or a nitrogen atom.
  • R represents a hydrogen atom or a substituent.
  • substituent represented by R those exemplified as the substituent group A can be applied.
  • a 401 to A 406 are preferably C—R, and Rs may be connected to each other to form a ring.
  • R in A 402 and A 405 is preferably a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom, or a cyano group.
  • R in A 401 , A 403 , A 404 and A 406 is preferably a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom or a cyano group, more preferably a hydrogen atom or an amino group.
  • L 41 has the same meaning as L 1 in formula (C-1), and the preferred range is also the same.
  • the number of N is preferably 0 to 2, and more preferably 0 to 1.
  • a 408 or A 412 is preferably a nitrogen atom, and both A 408 and A 412 are more preferably nitrogen atoms.
  • R in A 408 and A 412 is preferably a hydrogen atom, alkyl group, perfluoroalkyl group, aryl group, amino group, alkoxy group, aryloxy group, fluorine atom A cyano group, more preferably a hydrogen atom, a perfluoroalkyl group, an alkyl group, an aryl group, a fluorine atom or a cyano group, and particularly preferably a hydrogen atom, a phenyl group, a perfluoroalkyl group or a cyano group.
  • R in A 407 , A 409 , A 411 and A 413 is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom or a cyano group, more preferably Is a hydrogen atom, a perfluoroalkyl group, a fluorine atom or a cyano group, particularly preferably a hydrogen atom, a phenyl group or a fluorine atom.
  • R in A 410 and A 414 is preferably a hydrogen atom or a fluorine atom, and more preferably a hydrogen atom.
  • platinum complex represented by the general formula (C-1) include [0143] to [0152], [0157] to [0158], and [0162] to [0168] of JP-A-2005-310733.
  • Examples of the platinum complex compound represented by the general formula (C-1) include Journal of Organic Chemistry 53,786, (1988), G.S. R. Newkome et al. ), Page 789, method described in left column 53 to right column 7, line 790, method described in left column 18 to 38, method 790, method described in right column 19 to 30 and The combination, Chemische Berichte 113, 2749 (1980), H.C. Lexy et al.), Page 2752, lines 26 to 35, and the like.
  • a ligand or a dissociated product thereof and a metal compound are mixed with a solvent (for example, a halogen solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a nitrile solvent, an amide solvent, a sulfone solvent,
  • a solvent for example, a halogen solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a nitrile solvent, an amide solvent, a sulfone solvent
  • a base inorganic and organic bases such as sodium methoxide, t-butoxypotassium, triethylamine, potassium carbonate, etc.
  • a base inorganic and organic bases such as sodium methoxide, t-butoxypotassium, triethylamine, potassium carbonate, etc.
  • the content of the compound represented by formula (C-1) in the light emitting layer of the present invention is preferably 1 to 30% by mass, more preferably 3 to 25% by mass in the light emitting layer. More preferably, it is 20 mass%.
  • the iridium complex is preferably an iridium complex represented by the following general formula (T-1). [Compound represented by formula (T-1)] The compound represented by formula (T-1) will be described.
  • R T3 ′, R T3 , R T4 , R T5 and R T6 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, —CN, a perfluoroalkyl group, Represents a trifluorovinyl group, —CO 2 R T , —C (O) R T , —N (R T ) 2 , —NO 2 , —OR T , a fluorine atom, an aryl group or a heteroaryl group, and further a substituent You may have T.
  • Q is a 5-membered or 6-membered aromatic heterocyclic ring or condensed aromatic heterocyclic ring containing one or more nitrogen atoms.
  • R T3 , R T4 , R T5 and R T6 may be any two adjacent to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl or hetero It is aryl, and the condensed 4- to 7-membered ring may further have a substituent T.
  • the substituents T are each independently a fluorine atom, —R ′, —OR ′, —N (R ′) 2 , —SR ′, —C (O) R ′, —C (O) OR ′, —C ( O) represents N (R ′) 2 , —CN, —NO 2 , —SO 2 , —SOR ′, —SO 2 R ′, or —SO 3 R ′, and each R ′ independently represents a hydrogen atom, alkyl Represents a group, a perfluoroalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • (XY) represents a ligand.
  • m represents an integer of 1 to 3
  • n represents an integer of 0 to 2.
  • m + n is 3.
  • the alkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent T.
  • the alkyl group represented by R T3 ′, R T3 , R T4 , R T5 and R T6 is preferably an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms. Groups such as a methyl group, an ethyl group, an i-propyl group, a cyclohexyl group, and a t-butyl group.
  • the cycloalkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent T.
  • the cycloalkyl group represented by R T3 ′, R T3 , R T4 , R T5 , and R T6 is preferably a cycloalkyl group having 4 to 7 ring members, and more preferably a cycloalkyl group having 5 to 6 total carbon atoms.
  • Examples of the alkyl group include a cyclopentyl group and a cyclohexyl group.
  • the alkenyl group represented by R T3 ′, R T3 , R T4 , R T5 and R T6 preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms. Examples thereof include vinyl, allyl, 1-propenyl, 1-isopropenyl, 1-butenyl, 2-butenyl, 3-pentenyl and the like.
  • the alkynyl group represented by R T3 ′, R T3 , R T4 , R T5 , R T6 is preferably a group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms. For example, ethynyl, propargyl, 1-propynyl, 3-pentynyl and the like.
  • Examples of the heteroalkyl group represented by R T3 ′, R T3 , R T4 , R T5 , and R T6 include groups in which at least one carbon of the alkyl group is replaced with O, NR T , or S.
  • the aryl group represented by R T3 ′, R T3 , R T4 , R T5 , and R T6 is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group. Groups and the like.
  • the heteroaryl group represented by R T3 ′, R T3 , R T4 , R T5 , and R T6 is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituent.
  • an unsubstituted heteroaryl group for example, pyridyl group, pyrazinyl group, pyridazinyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, quinazolinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, pyrrolyl group, indolyl group , Furyl group, benzofuryl group, thienyl group, benzothienyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group, isothiazolyl group, benzisothiazolyl group , Thiadiazolyl group, a Examples include a soxazolyl group, a benzisoxazo
  • R T3 ′, R T3 , R T4 , R T5 and R T6 are preferably hydrogen atom, alkyl group, cyano group, trifluoromethyl group, perfluoroalkyl group, dialkylamino group, fluorine atom, aryl group, heteroaryl More preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a fluorine atom or an aryl group, and still more preferably a hydrogen atom, an alkyl group or an aryl group.
  • substituent T an alkyl group, an alkoxy group, a fluorine atom, a cyano group, and a dialkylamino group are preferable, and a hydrogen atom is more preferable.
  • R T3 , R T4 , R T5 and R T6 may be any two adjacent to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl or hetero It is aryl, and the condensed 4- to 7-membered ring may further have a substituent T.
  • the definition and preferred range of the cycloalkyl, aryl and heteroaryl formed are the same as the cycloalkyl group, aryl group and heteroaryl group defined by R T3 ′, R T3 , R T4 , R T5 and R T6 .
  • Examples of the aromatic heterocyclic ring represented by ring Q include a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, an oxadiazole ring, a thiazole ring, and a thiadiazole ring.
  • a pyridine ring and a pyrazine ring are preferable, and a pyridine ring is more preferable.
  • Examples of the condensed aromatic heterocycle represented by ring Q include a quinoline ring, an isoquinoline ring, and a quinoxaline ring. Preferred are a quinoline ring and an isoquinoline ring, and more preferred is a quinoline ring.
  • M is preferably 1 to 3, and more preferably 2 or 3. That is, n is preferably 0 or 1. It is preferable that the kind of ligand in a complex is comprised from 1 or 2 types, More preferably, it is 1 type. When introducing a reactive group into the complex molecule, it is also preferred that the ligand consists of two types from the viewpoint of ease of synthesis.
  • the metal complex represented by the general formula (T-1) includes a ligand represented by the following general formula (T-1-A) in the general formula (T-1) or a tautomer thereof, and (X -Y) or a combination with a tautomer thereof, or all of the ligands of the metal complex are represented by the following general formula (T-1-A) Or a tautomer thereof.
  • R T3 ′, R T3 , R T4 , R T5 , R T6 and Q are the same as R T3 ′, R T3 , R T4 , (It is synonymous with R T5 , R T6 and Q. * represents the coordination position to iridium.)
  • a ligand used for forming a conventionally known metal complex
  • a ligand also referred to as a coordination compound
  • XY a ligand represented by (XY). You may do it.
  • ligands used in conventionally known metal complexes.
  • ligands eg, halogen ligands (preferably chlorine ligands), etc., published in 1987, published by Yersin, “Organometallic Chemistry-Fundamentals and Applications-”
  • Nitrogen heteroaryl ligands for example, bipyridyl, phenanthroline, etc.
  • diketone ligands for example, acetylacetone, etc.
  • the ligand represented by (XY) is preferably a diketone or a picolinic acid.
  • the derivative is most preferably acetylacetonate (acac) shown below from the viewpoint of obtaining stability of the complex and high luminous efficiency.
  • Rx, Ry and Rz each independently represents a hydrogen atom or a substituent.
  • substituent include a substituent selected from the substituent group A.
  • Rx and Rz are each independently an alkyl group, a perfluoroalkyl group, a fluorine atom or an aryl group, more preferably an alkyl group having 1 to 4 carbon atoms or a perfluoroalkyl having 1 to 4 carbon atoms.
  • Ry is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, a fluorine atom, or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an optionally substituted phenyl group. And most preferably a hydrogen atom or a methyl group.
  • Rx, Ry, and Rz may be any chemically stable substituent, and the effects of the present invention can be achieved. Also has no effect. Since complex synthesis is easy, (I-1), (I-4) and (I-5) are preferred, and (I-1) is most preferred. Complexes having these ligands can be synthesized in the same manner as in known synthesis examples by using corresponding ligand precursors. For example, in the same manner as described in International Publication No. 2009-073245, page 46, it can be synthesized by the following method using commercially available difluoroacetylacetone.
  • a monoanionic ligand represented by the general formula (I-15) can also be used as the ligand.
  • R T7 to R T10 in general formula (I-15) have the same meanings as R T3 to R T6 in general formula (T-1), and the preferred ranges are also the same.
  • R T7 ′ to R T10 ′ have the same meaning as R T3 ′, and the preferred range is also the same as R T3 ′. * Represents a coordination position to iridium.
  • the compound represented by the general formula (T-1) is preferably a compound represented by the following general formula (T-2).
  • R T3 ′ to R T6 ′ and R T3 to R T6 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, —CN, a perfluoroalkyl group, trifluoro Represents a vinyl group, —CO 2 R T , —C (O) R T , —N (R T ) 2 , —NO 2 , —OR T , a fluorine atom, an aryl group or a heteroaryl group; You may have.
  • R T3 , R T4 , R T5 and R T6 may be combined with each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring further has a substituent T. It may be.
  • a ring may be formed by linking with a linking group selected from —O—C (R T ) 2 —, —NR T —C (R T ) 2 —, and —N ⁇ CR T —.
  • R T each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group, or a heteroaryl group, and may further have a substituent T.
  • the substituents T are each independently a fluorine atom, —R ′, —OR ′, —N (R ′) 2 , —SR ′, —C (O) R ′, —C (O) OR ′, —C ( O) represents N (R ′) 2 , —CN, —NO 2 , —SO 2 , —SOR ′, —SO 2 R ′, or —SO 3 R ′, and each R ′ independently represents a hydrogen atom, alkyl Represents a group, a perfluoroalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • (XY) represents a ligand.
  • m represents an integer of 1 to 3
  • n represents an integer of 0 to 2.
  • m + n is 3.
  • R T4 ′ is preferably a hydrogen atom, an alkyl group, an aryl group, or a fluorine atom, and more preferably a hydrogen atom.
  • R T5 ′ and R T6 ′ represent a hydrogen atom or are preferably bonded to each other to form a condensed 4- to 7-membered cyclic group, and the condensed 4- to 7-membered cyclic group includes cycloalkyl, cyclohetero More preferred is alkyl, aryl, or heteroaryl, and even more preferred is aryl.
  • substituent T in R T4 ′ to R T6 ′ an alkyl group, an alkoxy group, a fluorine atom, a cyano group, an alkylamino group, and a diarylamino group are preferable, and an alkyl group is more preferable.
  • One of preferable forms of the compound represented by the general formula (T-2) is R T3 ′, R T4 ′, R T5 ′, R T6 ′, R T3 , R T4 in the general formula (T-2). , R T5 and R T6 , any two adjacent groups are not bonded to each other to form a condensed ring.
  • T-2 One preferred form of the compound represented by the general formula (T-2) is a case represented by the following general formula (T-3).
  • R T3 ' ⁇ R T6' in the general formula (T3) R T3 ⁇ R T6 is, R T3 in the general formula (T-2) ' ⁇ R T6', have the same meaning as R T3 ⁇ R T6, preferably The range is the same.
  • R T7 to R T10 have the same meanings as R T3 to R T6 , and preferred ranges are also the same.
  • R T7 ′ to R T10 ′ have the same meanings as R T3 ′ to R T6 ′, and preferred ranges are also the same.
  • T-2 Another preferred embodiment of the compound represented by the general formula (T-2) is a compound represented by the following general formula (T-4).
  • R T3 ′ to R T6 ′, R T3 to R T6 , (XY), m and n in the general formula (T-4) are R T3 ′ to R T6 ′ and R in the general formula (T-2). It is synonymous with T3 to R T6 , (XY), m and n, and the preferred range is also the same.
  • R T3 ′ to R T6 ′ and R T3 to R T6 it is particularly preferred that 0 to 2 are alkyl groups or phenyl groups and the rest are all hydrogen atoms, and R T3 ′ to R T6 ′ and R T3 to R More preferably, one or two of T6 are alkyl groups and the rest are all hydrogen atoms.
  • T-2 Another preferred embodiment of the compound represented by the general formula (T-2) is a compound represented by the following general formula (T-5).
  • R T3 ′ to R T7 ′, R T3 to R T6 , (XY), m and n in the general formula (T-5) are R T3 ′ to R T6 ′ and R in the general formula (T-2).
  • T3 to R T6 have the same meanings as (XY), m and n, and the preferred ones are also the same.
  • T-1 Another preferred embodiment of the compound represented by the general formula (T-1) is a case represented by the following general formula (T-6).
  • R 1a to R 1i are the same as those in R T3 to R T6 in general formula (T-1). Further, it is particularly preferable that 0 to 2 of R 1a to R 1i are alkyl groups or aryl groups and the rest are all hydrogen atoms.
  • the definitions and preferred ranges of (XY), m, and n are the same as (XY), m, and n in formula (T-1).
  • the compounds exemplified as the compound represented by the general formula (T-1) can be synthesized by the method described in JP2009-99783A or various methods described in US Pat. No. 7,279,232. After synthesis, it is preferable to purify by sublimation purification after purification by column chromatography, recrystallization or the like. By sublimation purification, not only can organic impurities be separated, but inorganic salts and residual solvents can be effectively removed.
  • the compound represented by the general formula (T-1) is contained in the light emitting layer, but its use is not limited and may be further contained in any layer in the organic layer.
  • a compound represented by the following general formula (T-7) or a compound having a carbene as a ligand can also be preferably used.
  • R T11 to R T17 have the same meanings as R T3 to R T6 in the general formula (T-2), and preferred ranges thereof are also the same.
  • (XY), n, and m have the same meanings as (XY), n, and m in formula (T-2), and the preferred ranges are also the same.
  • the light emitting material in the light emitting layer is generally contained in the light emitting layer in an amount of 0.1% by mass to 50% by mass with respect to the total mass of the compound forming the light emitting layer. From the viewpoint of durability and external quantum efficiency.
  • the content is preferably 1% by mass to 50% by mass, and more preferably 2% by mass to 40% by mass.
  • the thickness of the light emitting layer is not particularly limited, but is usually preferably 2 nm to 500 nm, and more preferably 3 nm to 200 nm, and more preferably 5 nm to 100 nm from the viewpoint of external quantum efficiency. More preferably.
  • the light emitting layer in the element of the present invention may have a mixed layer of a host material and a light emitting material.
  • the light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, and the dopant may be one kind or two or more kinds.
  • the host material is preferably a charge transport material.
  • the host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed.
  • the light emitting layer may include a material that does not have charge transporting properties and does not emit light.
  • the light emitting layer may be a single layer or a multilayer of two or more layers. In addition, each light emitting layer may emit light with different emission colors.
  • the host material used in the present invention is preferably a compound represented by formula (I).
  • the host material used in the present invention, in addition to the compound represented by the general formula (I), the following compounds may be contained.
  • the host material include an electron transport material and a hole transport material, and a charge transport material is preferable.
  • the host material may be one type or two or more types, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed.
  • pyrrole indole, carbazole (eg, CBP (4,4′-di (9-carbazolyl) biphenyl), 3,3′-di (9-carbazolyl) biphenyl)), azaindole, azacarbazole, triazole, oxazole, Oxadiazole, pyrazole, imidazole, thiophene, polyarylalkane, pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone, hydrazone, stilbene, silazane, aromatic tertiary amine compound, styrylamine compound , Porphyrin compounds, polysilane compounds, poly (N-vinylcarbazole), aniline copolymers, thiophene oligomers, conductive polymer oligomers such as polythiophene,
  • the host material triplet lowest excitation energy (T 1 energy) is preferably higher than the T 1 energy of the phosphorescent light emitting material in terms of color purity, light emission efficiency, and driving durability.
  • the content of the host compound in the present invention is not particularly limited, but from the viewpoint of light emission efficiency and driving voltage, it is 15% by mass to 95% by mass with respect to the total compound mass forming the light emitting layer. Preferably there is.
  • the charge transport layer is a layer in which charge transfer occurs when a voltage is applied to the organic electroluminescent element.
  • Specific examples include a hole injection layer, a hole transport layer, an electron block layer, a light emitting layer, a hole block layer, an electron transport layer, and an electron injection layer.
  • a hole injection layer, a hole transport layer, and an electron block layer are preferable, and this makes it possible to produce an organic electroluminescent element with low cost and high efficiency.
  • the hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.
  • the thickness of the hole transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the thickness of the hole injection layer is preferably from 0.1 nm to 200 nm, more preferably from 0.5 nm to 100 nm, and even more preferably from 1 nm to 100 nm.
  • the hole injection layer and the hole transport layer are described in detail, for example, in JP-A-2008-270736 and JP-A-2007-266458, and the matters described in these publications can be applied to the present invention.
  • the electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the electron injection material and the electron transport material used for these layers may be a low molecular compound or a high molecular compound.
  • the thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 5 nm to 100 nm.
  • the thickness of the electron injection layer is preferably from 0.1 nm to 200 nm, more preferably from 0.2 nm to 100 nm, and even more preferably from 0.5 nm to 50 nm.
  • the electron transport layer preferably contains a compound represented by the general formula (II). Two or more electron transport layers may be provided. In that case, it is preferable that at least one electron transport layer contains the compound represented by the general formula (II).
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side.
  • a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
  • Examples of the organic compound constituting the hole blocking layer include the compound represented by the general formula (1) in the present invention, aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate ( Aluminum complexes such as Aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (abbreviated as BAlq)), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ( And phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (abbreviated as BCP)), triphenylene derivatives, and carbazole derivatives.
  • aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate Aluminum complexes such as Aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (abbreviated as BAlq)
  • triazole derivatives 2,9-dimethyl-4,7-diphenyl-1,10-phenanthro
  • the thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side.
  • an electron blocking layer can be provided as an organic layer adjacent to the light emitting layer on the anode side.
  • the thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the entire organic EL element may be protected by a protective layer.
  • a material contained in the protective layer any material may be used as long as it has a function of preventing materials that promote device deterioration such as moisture and oxygen from entering the device.
  • the protective layer the matters described in JP-A-2008-270736, paragraphs [0169] to [0170] can be applied to the present invention.
  • the element of this invention may seal the whole element using a sealing container.
  • a sealing container the matters described in paragraph [0171] of JP-A-2008-270736 can be applied to the present invention.
  • a moisture absorbent or an inert liquid may be sealed in a space between the sealing container and the light emitting element.
  • a moisture absorber For example, barium oxide, sodium oxide, potassium oxide, calcium oxide, sodium sulfate, calcium sulfate, magnesium sulfate, phosphorus pentoxide, calcium chloride, magnesium chloride, copper chloride Cesium fluoride, niobium fluoride, calcium bromide, vanadium bromide, molecular sieve, zeolite, magnesium oxide and the like.
  • the inert liquid is not particularly limited, and examples thereof include paraffins, liquid paraffins, fluorinated solvents such as perfluoroalkane, perfluoroamine, and perfluoroether, chlorinated solvents, and silicone oils. It is done.
  • the organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode.
  • a direct current which may include an alternating current component as necessary
  • the driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234585, and JP-A-8-2441047.
  • the driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429 and 6,023,308 can be applied.
  • the external quantum efficiency of the organic electroluminescent element of the present invention is preferably 5% or more, more preferably 7% or more.
  • the value of the external quantum efficiency should be the maximum value of the external quantum efficiency when the device is driven at 20 ° C., or the value of the external quantum efficiency near 100 to 300 cd / m 2 when the device is driven at 20 ° C. Can do.
  • the internal quantum efficiency of the organic electroluminescence device of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 70% or more.
  • the internal quantum efficiency of the device is calculated by dividing the external quantum efficiency by the light extraction efficiency. In a normal organic EL element, the light extraction efficiency is about 20%.
  • the organic electroluminescent element of the present invention preferably has a maximum emission wavelength (maximum intensity wavelength of emission spectrum) of 500 nm to 700 nm, more preferably 500 nm to 600 nm, and still more preferably 500 nm to 550 nm.
  • the light-emitting element of the present invention can be suitably used for light-emitting devices, pixels, display elements, displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, optical communications, and the like .
  • it is preferably used for a device driven in a region having a high light emission luminance, such as a lighting device and a display device.
  • FIG. 2 is a cross-sectional view schematically showing an example of the light emitting device of the present invention.
  • the light-emitting device 20 of FIG. 2 is comprised by the board
  • FIG. 1 is a cross-sectional view schematically showing an example of the light emitting device of the present invention.
  • the light-emitting device 20 of FIG. 2 is comprised by the board
  • the organic electroluminescent device 10 is configured by sequentially laminating an anode (first electrode) 3, an organic layer 11, and a cathode (second electrode) 9 on a substrate 2.
  • a protective layer 12 is laminated on the cathode 9, and a sealing container 16 is provided on the protective layer 12 with an adhesive layer 14 interposed therebetween.
  • a part of each electrode 3 and 9, a partition, an insulating layer, etc. are abbreviate
  • the adhesive layer 14 a photocurable adhesive such as an epoxy resin or a thermosetting adhesive can be used, and for example, a thermosetting adhesive sheet can also be used.
  • the use of the light-emitting device of the present invention is not particularly limited, and for example, it can be a display device such as a television, a personal computer, a mobile phone, and electronic paper in addition to a lighting device.
  • FIG. 3 is a cross-sectional view schematically showing an example of a lighting device according to an embodiment of the present invention.
  • the illumination device 40 according to the embodiment of the present invention includes the organic EL element 10 and the light scattering member 30 described above. More specifically, the lighting device 40 is configured such that the substrate 2 of the organic EL element 10 and the light scattering member 30 are in contact with each other.
  • the light scattering member 30 is not particularly limited as long as it can scatter light.
  • the light scattering member 30 is a member in which fine particles 32 are dispersed on a transparent substrate 31.
  • a glass substrate can be preferably cited.
  • the fine particles 32 transparent resin fine particles can be preferably exemplified.
  • the glass substrate and the transparent resin fine particles known ones can be used. In such an illuminating device 40, when light emitted from the organic electroluminescent element 10 enters the light incident surface 30A of the light scattering member 30, the incident light is scattered by the light scattering member 30, and the scattered light is scattered by the light emitting surface 30B. Is emitted as illumination light.
  • the compound represented by the general formula (I) was synthesized with reference to International Publication No. 2009/021126.
  • Compound A used below was synthesized by the method of Synthesis Example described on page 37 of WO2009 / 021126.
  • Compound B was synthesized by the method of the synthesis example described on page 30 of WO2009 / 021126.
  • Compound C was synthesized by the method of the synthesis example described in International Publication No. 2009/021126, pages 32 to 33.
  • Exemplified compound (a-3) and exemplified compound (a-57) are disclosed in WO03 / 080760, WO03 / 078541, WO05 / 085387, and WO05 / 022962. No. pamphlet etc. was synthesized as a reference.
  • Compound Illustrative Compound (a-3) uses m-bromobenzaldehyde as a starting material, International Publication No. 05/085387 pamphlet [0074] to [0075] (45 pages, 11 lines to 46 pages, 18 lines). ).
  • Example 1 ⁇ Production of organic electroluminescence device> A glass substrate (ITO film thickness is 100 nm) having an indium tin oxide (ITO) film with a thickness of 0.7 mm and a 2.5 cm square is placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then UV-ozone for 30 minutes. Processed. The following layers were deposited on this glass substrate by a vacuum deposition method using a vacuum deposition apparatus (Small-ELVESS, manufactured by Tokki Co., Ltd.).
  • a vacuum deposition apparatus Small-ELVESS, manufactured by Tokki Co., Ltd.
  • a vapor deposition rate is 0.2 nm / sec unless there is particular notice.
  • the deposition rate was measured using a quartz resonator.
  • the pressure is 1 ⁇ 10 ⁇ 4 Pa or less.
  • the thickness of each layer below was measured using a quartz resonator.
  • a film was formed on the anode (ITO) by vacuum deposition of 2-TNATA as a hole injection layer (HIL) to a thickness of 10 nm.
  • N, N′-dinaphthyl-N, N′-diphenyl- [1,1′-biphenyl] -4,4′-diamine ( ⁇ -) is formed as a hole transport layer (HTL).
  • NPD was deposited by vacuum deposition so as to have a thickness of 30 nm.
  • an electron transport layer (ETL) was formed on the light emitting layer by vacuum deposition of the compound (a-3) to a thickness of 5 nm. Further, on this electron transport layer, Alq 3 was deposited by vacuum deposition so as to have a thickness of 40 nm as another electron transport layer (ETL2). Next, LiF is deposited as an electron injection layer (EIL) on the electron transport layer (ETL2) by vacuum deposition so that the thickness is 0.5 nm, and a mask patterned as a cathode is formed thereon. (A mask having a light emitting area of 2 mm ⁇ 2 mm) was installed, and a film was formed by vacuum vapor deposition of metal aluminum so as to have a thickness of 100 nm.
  • EIL electron injection layer
  • the laminate produced as described above was placed in a glove box substituted with argon gas, and sealed using a glass sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
  • XNR5516HV ultraviolet curable adhesive
  • (D) Durability at high current density The organic electroluminescent device was made to emit light by applying a DC voltage at a constant current density (25 mA / cm 2 ) so that the luminance was 5000 cd / m 2 . The time until the luminance decreased to 80% of 5000 cd / m 2 was measured and used as an index of durability at high current density. The larger this value, the better and the better.
  • Examples 2 to 7, Comparative Examples 1 to 10 A device was prepared and evaluated in the same manner as in Example 1 except that the compounds used in each layer were changed as shown in Table 1 below. The evaluation results are shown in Table 2 below. In Table 2, the durability at a high current density is described as a relative value when the value of Comparative Example 7 is 1.0.
  • a specific compound containing a benzothiophene structure and a triphenylene structure represented by the general formula (I) is used as a host material in the light-emitting layer, and the carbazole represented by the general formula (II)
  • the device of the present invention using a specific material containing a structure and a phenylpyridine or phenylpyrimidine structure as an electron transport material in an electron transport layer is more external than a device of a comparative example that does not use either or both of them. It can be seen that the quantum efficiency is high, low voltage driving is possible, durability in a high current density region is high, and chromaticity change before and after driving is extremely small.
  • the light emitting element of the present invention is designed to increase the light emission efficiency in such a case. Therefore, it can be used advantageously.
  • the organic electroluminescent device of the present invention has high luminous efficiency, low driving voltage, high durability in a high current density region, and small change in chromaticity before and after driving in a high current density region. For this reason, it can be preferably used for various light emitting devices, pixels, display elements, displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, or optical communication. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 発光効率が高く、駆動電圧が低く、高電流密度領域での耐久性が高く、高電流密度領域での駆動前後での色度変化が小さい有機電界発光素子を提供すること。 陽極及び陰極からなる一対の電極と、該電極間に発光層を有し、該発光層と該陽極の間に少なくとも一層の有機層を有する有機電界発光素子であって、該発光層に例えば下記(化合物A)を含有し、該発光層と該陰極の間の少なくとも一層の有機層に例えば下記(a-3)を含有する有機電界発光素子。

Description

有機電界発光素子
 本発明は、有機電界発光素子(以下、「素子」、「有機EL素子」ともいう)に関する。より具体的には、特定のジベンゾチオフェン系化合物と、特定構造のカルバゾール系化合物とを含有する有機電界発光素子に関する。
 有機電界発光素子は、低電圧駆動で高輝度の発光が得られることから、近年活発な研究開発が行われている。一般に有機電界発光素子は、発光層を含む有機層及び該有機層を挟んだ一対の電極から構成されており、陰極から注入された電子と陽極から注入された正孔が発光層において再結合し、生成した励起子のエネルギーを発光に利用するものである。
 近年、燐光発光材料を用いることにより、素子の高効率化が進んでいる。例えば、燐光発光材料としてイリジウム錯体や白金錯体などを用い、発光効率及び耐熱性が向上した有機電界発光素子が研究されている。
 また、発光材料をホスト材料中にドープした発光層を用いるドープ型素子が広く採用されている。
 例えば、特許文献1には、燐光発光材料とともに用いるホスト材料としてベンゾチオフェン構造とトリフェニレン構造とを含む化合物が開示されており、該材料を用いることで、高電流密度(25mA/cm以上の電流密度。特許文献1の実施例では40mA/cm。)にて駆動する場合でも高い耐久性の有機電界発光素子が得られることが開示されている。
 また、特許文献2には、有機層に用いる材料としてベンゾチオフェン構造を有する化合物やカルバゾール構造とトリアジン構造とを有する化合物が開示され、該材料を特に発光層又は正孔輸送層に用いることで、発光効率及び耐久性に優れる有機電界発光素子が得られることが開示されている。
国際公開第09/021126号 日本国特開2009-117850号公報
 しかしながら、特許文献1に記載の有機電界発光素子は、高電流密度領域での耐久性が高いものの、駆動電圧が高く、また発光効率も不十分であった。本発明者らは、検討した結果、ベンゾチオフェン構造とトリフェニレン構造とを含む特定の化合物をホスト材料として発光層に用いた有機電界発光素子において、カルバゾール構造とフェニルピリジン又はフェニルピリミジン構造とを含む特定の材料を電子輸送材料として、発光層と該陰極の間の少なくとも一層の有機層(例えば、電子輸送層)に用いることで、高電流密度領域での耐久性が改善され、しかも低駆動電圧で、高い発光効率を得られることを見出した。特許文献2には、有機層に用いる材料の機能が明瞭には記載されておらず、また、具体的には前述の特定材料を発光層又は正孔輸送層に用いた場合を記載しているのみで、電子輸送層の材料に関する具体的な指針は記載されていない。
 更に、本発明者らは、本発明の構成の有機電界発光素子においては、上記の特性に加えて、高電流密度領域で駆動する前後での色度変化も抑えられることを見出した。特許文献1及び2に、この特性についての記載はない。
 即ち、本発明の目的は、発光効率が高く、駆動電圧が低く、高電流密度領域での耐久性が高く、高電流密度領域での駆動前後での色度変化が小さい有機電界発光素子を提供することである。
 また、本発明の別の目的は有機電界発光素子を含む発光装置、表示装置及び照明装置を提供することである。
 本発明の上記目的は下記の手段により達成することができる。
[1]
 陽極及び陰極からなる一対の電極と、該電極間に発光層を有し、該発光層と該陰極の間に少なくとも一層の有機層を有する有機電界発光素子であって、
 該発光層に下記一般式(I)で表される化合物を少なくとも一つ含有し、
 該発光層と該陰極の間の少なくとも一層の有機層に下記一般式(II)で表される化合物を少なくとも一つ含有する、有機電界発光素子。
Figure JPOXMLDOC01-appb-C000005
(一般式(I)中、R11~R15はそれぞれ独立にアルキル基、アルコキシ基、アリール基、芳香族ヘテロ環基、アルケニル基、アルキニル基、-OAr11、-N(R16)(R17)、又は-N(Ar11)(Ar12)を表す。R16及びR17はそれぞれ独立に水素原子又は置換基を表す。Ar11及びAr12はそれぞれ独立にアリール基又は芳香族へテロ環基を表す。Lは、単結合、アリーレン基、2価の芳香族ヘテロ環基又はこれらの組合せからなる基を表す。n11、n12及びn15はそれぞれ独立に0~4の整数を表し、n13及びn14はそれぞれ独立に0~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000006
(一般式(II)中、X、X及びXはそれぞれ独立に窒素原子又は水素原子若しくは置換基が結合した炭素原子であり、X、X及びXを含む環はピリジン又はピリミジンである。L’は、単結合又はベンゼン環を表す。R~Rはそれぞれ独立にフッ素原子、メチル基、フェニル基、シアノ基、ピリジル基、ピリミジル基、シリル基、カルバゾリル基、又はtert-ブチル基を表す。n1~n5はそれぞれ独立に0又は1を表し、p’及びq’はそれぞれ独立に1又は2を表す。)
[2]
 前記一般式(I)で表される化合物が、下記一般式(I-1)で表される化合物である、上記[1]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000007
(一般式(I-1)中、R11~R15、L、及びn11~n15は、一般式(I)におけるR11~R15、L、及びn11~n15と同義である。)
[3]
 前記一般式(I)で表される化合物が、下記一般式(I-2)で表される化合物である、上記[1]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000008
(一般式(I-2)中、R11~R15、L、及びn11~n15は、一般式(I)におけるR11~R15、L、及びn11~n15と同義である。)
[4]
 R11~R15がそれぞれ独立にアリール基又は芳香族ヘテロ環基である、上記[1]~[3]のいずれか1項に記載の有機電界発光素子。
[5]
 Lがアリーレン基である、上記[1]~[4]のいずれか1項に記載の有機電界発光素子。
[6]
 前記発光層が、燐光発光材料を少なくとも1つ含有する、上記[1]~[5]のいずれか1項に記載の有機電界発光素子。
[7]
 前記発光層、及び前記陽極と前記陰極の間に存在するその他の有機層のうちいずれか少なくとも1層が溶液塗布プロセスにより形成された、上記[1]~[6]のいずれか1項に記載の有機電界発光素子。
[8]
 上記[1]~[6]のいずれか1項に記載の有機電界発光素子を用いた発光装置。
[9]
 上記[1]~[6]のいずれか1項に記載の有機電界発光素子を用いた表示装置。
[10]
 上記[1]~[6]のいずれか1項に記載の有機電界発光素子を用いた照明装置。
 本発明によれば、発光効率が高く、駆動電圧が低く、高電流密度領域での耐久性が高く、高電流密度領域での駆動前後での色度変化が小さい有機電界発光素子を提供することができる。
本発明に係る有機EL素子の層構成の一例(第1実施形態)を示す概略図である。 本発明に係る発光装置の一例(第2実施形態)を示す概略図である。 本発明に係る照明装置の一例(第3実施形態)を示す概略図である。
 本明細書においては、各一般式の説明における水素原子は同位体(重水素原子等)も含み、また更に置換基を構成する原子は、その同位体も含んでいることを表す。
 本明細書において、置換基群A及び置換基群Bを下記のように定義する。
(置換基群A)
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメチル、エチル、イソプロピル、t-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシル、ネオペンチルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニル、4-メチルフェニル、2,6-ジメチルフェニルなどが挙げられる。)、アミノ基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(芳香族ヘテロ環基も包含し、好ましくは炭素数1~30、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレノフェニル、テルロフェニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、ホスホリル基(例えばジフェニルホスホリル基、ジメチルホスホリル基などが挙げられる。)が挙げられる。これらの置換基は更に置換されてもよく、更なる置換基としては、以上に説明した置換基群Aから選択される基を挙げることができる。
(置換基群B)
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメチル、エチル、イソプロピル、t-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニル、p-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、シアノ基、ヘテロ環基(芳香族ヘテロ環基も包含し、好ましくは炭素数1~30、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレノフェニル、テルロフェニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)。これらの置換基は更に置換されてもよく、更なる置換基としては、前記置換基群Bから選択される基を挙げることができる。また、置換基に置換した置換基は更に置換されてもよく、さらなる置換基としては、以上に説明した置換基群Bから選択される基を挙げることができる。また、置換基に置換した置換基に置換した置換基は更に置換されてもよく、さらなる置換基としては、以上に説明した置換基群Bから選択される基を挙げることができる。
 本発明の有機電界発光素子は、陽極及び陰極からなる一対の電極と、該電極間に発光層を有し、発光層と陰極の間に少なくとも一層の有機層を有する有機電界発光素子であって、発光層に以下で説明する一般式(I)で表される化合物を少なくとも一つ含有し、発光層と陰極の間の少なくとも一層の有機層に以下で説明する一般式(II)で表される化合物を少なくとも一つ含有する。
 上記構成により、発光効率が高く、駆動電圧が低く、高電流密度領域での耐久性が高く、駆動前後での色度変化が小さい有機光電変換素子が得られる理由は定かではないが、次のように推測している。
 即ち、一般式(II)で表される化合物は電子輸送性のみならず正孔輸送性も有するので、一般式(I)で表される化合物を用いた発光層と、一般式(II)で表される化合物を用いた層(発光層と該陰極の間の少なくとも一層の有機層で、例えば電子輸送層)とを組み合わせることで、発光層の劣化を抑え、高電流密度領域で駆動した際に一般式(II)で表される化合物を用いた層が正孔をある程度受け流すことができ、これにより発光効率を維持し、低電圧化と高耐久性化が促されていると考えられる。また、その結果として、駆動前後での色度変化の抑制も図られていると推測している。
〔一般式(I)で表される化合物〕
 以下に、一般式(I)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000009
 一般式(I)中、R11~R15はそれぞれ独立にアルキル基、アルコキシ基、アリール基、芳香族ヘテロ環基、アルケニル基、アルキニル基、-OAr11、-N(R16)(R17)、又は-N(Ar11)(Ar12)を表す。R16及びR17はそれぞれ独立に水素原子又は置換基を表す。Ar11及びAr12はそれぞれ独立にアリール基又は芳香族へテロ環基を表す。Lは、単結合、アリーレン基、2価の芳香族ヘテロ環基又はこれらの組合せからなる基を表す。n11、n12及びn15はそれぞれ独立に0~4の整数を表し、n13及びn14はそれぞれ独立に0~3の整数を表す。
 R11~R15で表されるアルキル基は、好ましくは炭素数1~10のアルキル基であり、より好ましくは炭素数1~6のアルキル基である。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、イソブチル基、t-ブチル基、n-ブチル基、シクロプロピル基等が挙げられる。
 R11~R15で表されるアルコキシ基は、好ましくは炭素数1~10のアルコキシ基であり、より好ましくは炭素数1~4のアルコキシ基である。例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、イソブトキシ基、t-ブトキシ基、n-ブトキシ基、シクロプロピルオキシ基等が挙げられる。
 R11~R15で表されるアリール基は、好ましくは炭素数6~18のアリール基であり、より好ましくは炭素数6~12のアリール基である。例えば、フェニル基、ビフェニル基、ナフチル基、トリフェニル基、トリル基、キシリル基等が挙げられる。好ましくはフェニル基、ビフェニル基、又はトリフェニル基であり、より好ましくはフェニル基である。
 R11~R15で表される芳香族へテロ環基は、好ましくは炭素数4~12の芳香族ヘテロ環基である。R11~R15で表される芳香族へテロ環基を形成する芳香族へテロ環としては、ピリジン、ピリミジン、フラン、チオフェン、ベンゾフラン、ベンゾチオフェン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン等が挙げられる。好ましくは、カルバゾール又はジベンゾチオフェンであり、より好ましくはジベンゾチオフェンである。
 R11~R15で表されるアルケニル基としては、好ましくは炭素数2~10のアルケニル基であり、より好ましくは炭素数2~6のアルケニル基である。例えばビニル基、n-プロペニル基、イソプロペニル基、イソブテニル基、n-ブテニル基等が挙げられる。
 R11~R15で表されるアルキニル基としては、好ましくは炭素数2~10のアルキニル基であり、より好ましくは炭素数2~6のアルキニル基である。例えばエチニル基、プロピニル基、プロパルギル基、ブチニル基、イソブチニル基等が挙げられる。
 R16又はR17で表される置換基としては、アルキル基、アリール基、芳香族ヘテロ環基等が挙げられる。これらの基の好ましいもの及び具体例としては、前述のR11~R15で表されるアルキル基、アリール基、芳香族ヘテロ環基として説明したものが挙げられる。
 Ar11又はAr12で表されるアリール基及び芳香族ヘテロ環基の好ましいもの及び具体例としては、前述のR11~R15で表されるアリール基及び芳香族ヘテロ環基として説明したものが挙げられる。
 Lで表されるアリーレン基としては、好ましくは炭素数6~18のアリーレン基であり、より好ましくは炭素数6~12のアリーレン基である。例えば、フェニレン基、ビフェニレン基、ナフチレン基、トリレン基、キシリレン等が挙げられる。好ましくはフェニレン基又はビフェニレン基であり、より好ましくはビフェニレン基である。
 Lで表される2価の芳香族ヘテロ環基としては、好ましくは炭素数4~12の2価の芳香族ヘテロ環基である。Lで表される2価の芳香族へテロ環基を形成する芳香族へテロ環としては、ピリジン、ピリミジン、ピリダジン、トリアジン、フラン、ピラン、チオフェン等が挙げられる。好ましくは、ピリジンである
 R11~R17、Ar11、Ar12、及びLで表される各基は、可能な場合には、更に置換基を有していてもよい。置換基としては、アルキル基、アリール基、芳香族ヘテロ環基等が挙げられる。これらの基の好ましいもの及び具体例としては、前述のR11~R15で表されるアルキル基、アリール基、芳香族ヘテロ環基として説明したものが挙げられる。特に好ましくは、トリフェニル基又はジベンゾチエニル基である。
 R11~R15としては、アリール基、芳香族ヘテロ環基、又は-N(Ar11)(Ar12)[Ar11及びAr12がアリール基]が好ましく、アリール基又は芳香族へテロ環基がより好ましく、フェニル基、カルバゾリル基又はジベンゾチエニル基が更に好ましく、フェニル基又はジベンゾチエニル基が更に好ましい。
 Ar11及びAr12としては、アリール基が好ましく、フェニル基がより好ましい。
 Lとしては、単結合、又はアリーレン基が好ましく、アリーレン基がより好ましい。また、Lとしては、単結合、フェニレン基、ビフェニレン基、ピリジニレン基、又はこれらの組合せからなる基が好ましく、単結合、フェニレン基、又はビフェニレン基がより好ましく、フェニレン基又はビフェニレン基が更に好ましく、ビフェニレン基が更に好ましい。
 n11、n12及びn15はそれぞれ独立に0~4の整数を表し、0~2が好ましく、0又は1がより好ましい。
 n13及びn14はそれぞれ独立に0~3の整数を表し、0又は1が好ましく、0がより好ましい。
 なお、n11~n15が0であるとき、対応するR11~R15で表される基を一般式(I)で表される化合物が有さないことを意味する。
 高電流密度領域での耐久性向上の観点から、一般式(I)で表される化合物は、下記一般式(I-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(一般式(I-1)中、R11~R15、L、及びn11~n15は、一般式(I)におけるR11~R15、L、及びn11~n15と同義である。)
 R11~R15、L、及びn11~n15は、一般式(I)におけるR11~R15、L、及びn11~n15と同義であり、好ましいものも同じである。
 また、駆動前後での色度変化抑制の観点から、一般式(I)で表される化合物が、下記一般式(I-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
(一般式(I-2)中、R11~R15、L、及びn11~n15は、一般式(I)におけるR11~R15、L、及びn11~n15と同義である。)
 R11~R15、L、及びn11~n15は、一般式(I)におけるR11~R15、L、及びn11~n15と同義であり、好ましいものも同じである。
 以下に、一般式(I)で表される化合物の具体例を例示するが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 一般式(I)で表される化合物として例示した化合物は、国際公開第2009/021126号に記載の合成方法等により合成することができる。
 本発明において、一般式(I)で表される化合物は、発光層に含有されるが、その用途が限定されることはなく、有機層内のいずれの層に更に含有されてもよい。一般式(I)で表される化合物の導入層としては、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層のいずれかを挙げることができる。
 一般式(I)で表される化合物は発光層の全質量に対して0.1~99質量%含ませることが好ましく、1~95質量%含ませることがより好ましく、10~95質量%含ませることがより好ましい。一般式(I)で表される化合物を発光層以外の層に更に含有させる場合は、該層の全質量に対して70~100質量%含まれることが好ましく、85~100質量%含まれることがより好ましい。
〔一般式(II)で表される化合物〕
 以下、一般式(II)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000019
(一般式(II)中、X、X及びXはそれぞれ独立に窒素原子又は水素原子若しくは置換基が結合した炭素原子であり、X、X及びXを含む環はピリジン又はピリミジンである。L’は、単結合又はベンゼン環を表す。R~Rはそれぞれ独立にフッ素原子、メチル基、フェニル基、シアノ基、ピリジル基、ピリミジル基、シリル基、カルバゾリル基、又はtert-ブチル基を表す。n1~n5はそれぞれ独立に0又は1を表し、p’及びq’はそれぞれ独立に1又は2を表す。)
 X、X及びXはそれぞれ独立に窒素原子又は水素原子若しくは炭素原子であり、X、X及びXを含む環はピリジン又はピリミジンである。Xが窒素原子であることが好ましい。Xは水素原子が結合した炭素原子であることが好ましく、Xは窒素原子であることが好ましい。また、X、X及びXを含む環はピリミジンであることがより好ましい。
 L’は、単結合又はベンゼン環を表し、ベンゼン環(2価の場合は、フェニレン基)が好ましい。L’は、一般式(II)中の含窒素ヘテロ芳香族構造においてベンゼン環と連結している。
 R~Rはそれぞれ独立にフッ素原子、メチル基、フェニル基、シアノ基、ピリジル基、ピリミジル基、シリル基、カルバゾリル基、又はtert-ブチル基を表す。Rはピリミジル基であることがより好ましく、フェニル基を置換基として有するピリミジル基が更に好ましい。
 R~Rが複数のとき、複数のR~Rはそれぞれ同一でも異なっていてもよい。
 n1~n5はそれぞれ独立に0又は1を表し、0であることが好ましい。
 p’及びq’はそれぞれ独立に1又は2を表し、p’が1でq’が1であることが好ましい。
 R~R及びL’で表される各基は、可能な場合には、更に置換基を有してもよく、該置換基としては、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、カルバゾリル基、ヒドロキシル基、置換若しくは無置換のアミノ基、ニトロ基、シアノ基、シリル基、トリフルオロメチル基、カルボニル基、カルボキシル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のアリールアルキル基、置換若しくは無置換の芳香族基、置換若しくは無置換の芳香族ヘテロ環基、置換若しくは無置換のアラルキル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアルキルオキシ基等が挙げられる。これらのうち、フッ素原子、メチル基、パーフルオロフェニレン基、フェニル基、ナフチル基、ピリジル基、ピラジル基、ピリミジル基、アダマンチル基、ベンジル基、ニトロ基、シアノ基、シリル基、トリフルオロメチル基、カルバゾリル基及びこれらのみの組み合わせからなる基が好ましく、フッ素原子、メチル基、フェニル基、ピリジル基、ピリミジル基、シアノ基、シリル基、カルバゾリル基、及びこれらのみの組み合わせからなる基がより好ましく、フェニル基、ピリジル基、ピリミジル基、カルバゾリル基、及びこれらのみの組み合わせからなる基が更に好ましく、フェニル基が最も好ましい。また、置換基を複数有する場合、該置換基は互いに結合して環を形成してもよい。
 X、X又はXが、置換基が結合した炭素原子の場合の該置換基としても、上記基が挙げられる。
 一般式(II)で表される化合物は、炭素原子、水素原子及び窒素原子のみからなる場合が最も好ましい。
 一般式(II)で表される化合物の分子量は400以上1000以下であることが好ましく、450以上800以下であることがより好ましく、500以上700以下であることが更に好ましい。
 一般式(II)で表される化合物の膜状態での最低励起三重項(T)エネルギーは2.61eV(62kcal/mol)以上3.51eV(80kcal/mol)以下であることが好ましく、2.69eV(63.5kcal/mol)以上3.51eV(80kcal/mol)以下であることがより好ましく、2.76eV(65kcal/mol)以上3.51eV(80kcal/mol)であることが更に好ましい。
 一般式(II)で表される化合物のガラス転移温度(Tg)は80℃以上400℃以下であることが好ましく、100℃以上400℃以下であることがより好ましく、120℃以上400℃以下であることが更に好ましい。
 一般式(II)が水素原子を有する場合、同位体(重水素原子等)も含む。この場合化合物中の全ての水素原子が同位体に置き換わっていてもよく、また一部が同位体を含む化合物である混合物でもよい。
 以下に、一般式(II)で表される化合物の具体例を例示するが、本発明はこれらに限定されるものではない。なお、下記具体例中のPhはフェニル基を表す。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 上記一般式(II)で表される化合物として例示した化合物は、国際公開第03/080760号パンフレットに記載の方法や、国際公開第03/078541号パンフレットに記載の方法、国際公開第05/085387号パンフレットに記載の方法等、種々の方法で合成できる。
 例えば、上記例示化合物(a-3)は、m-ブロモベンゾアルデヒドを出発原料に用い、国際公開第05/085387号パンフレット段落[0074]-[0075](45頁、11行~46頁、18行)に記載の方法で合成することができる。上記例示化合物(a-17)は、3,5-ジブロモベンゾアルデヒドを出発原料に用い、国際公開第03/080760号パンフレットの46頁、9行~46頁、12行に記載の方法で合成することができる。また、上記例示化合物(a-36)は、N-フェニルカルバゾールを出発原料に用い、国際公開第05/022962号パンフレットの137頁、10行~139頁、9行に記載の方法で合成することができる。
 合成後、カラムクロマトグラフィー、再結晶等による精製を行った後、昇華精製により精製することが好ましい。昇華精製により、有機不純物を分離できるだけでなく、無機塩や残留溶媒等を効果的に取り除くことができる。
 一般式(II)で表される化合物の導入層としては、発光層と陰極との間にある有機層であれば特に限定されないが、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層(例えば正孔ブロック層)などを挙げることができる。なかでも、電子輸送層が好ましい。
 一般式(II)で表される化合物を含有する層中での該化合物の含有量は、該層の全質量に対して70~100質量%含まれることが好ましく、85~100質量%含まれることがより好ましい。
〔有機電界発光素子〕
 本発明の素子について詳細に説明する。
 本発明の有機電界発光素子は、陽極及び陰極からなる一対の電極と、該電極間に発光層を有し、発光層と陰極の間に少なくとも一層の有機層を有する有機電界発光素子であって、発光層に前紀一般式(I)で表される化合物を少なくとも一つ含有し、発光層と陰極の間の有機層の少なくとも一層に前記一般式(II)で表される化合物を少なくとも一つ含有する。
 本発明の有機電界発光素子において、発光層は有機層であり、発光層と陰極の間に更に少なくとも一層の有機層を含むが、更に有機層を有していてもよい。
 発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明若しくは半透明であることが好ましい。
 図1は、本発明に係る有機電界発光素子の構成の一例を示している。
 図1に示される本発明に係る有機電界発光素子10は、支持基板2上において、陽極3と陰極9との間に発光層6が挟まれている。具体的には、陽極3と陰極9との間に正孔注入層4、正孔輸送層5、発光層6、正孔ブロック層7、及び電子輸送層8がこの順に積層されている。
<有機層の構成>
 前記有機層の層構成としては、特に制限はなく、有機電界発光素子の用途、目的に応じて適宜選択することができるが、前記透明電極上に又は前記背面電極上に形成されるのが好ましい。この場合、有機層は、前記透明電極又は前記背面電極上の前面又は一面に形成される。
 有機層の形状、大きさ、及び厚み等については、特に制限はなく、目的に応じて適宜選択することができる。
 具体的な層構成として、下記が挙げられるが本発明はこれらの構成に限定されるものではない。
 ・陽極/正孔輸送層/発光層/電子輸送層/陰極
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/陰極
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極
 ・陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/陰極
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極
 有機電界発光素子の素子構成、基板、陰極及び陽極については、例えば、特開2008-270736号公報に詳述されており、該公報に記載の事項を本発明に適用することができる。
<基板>
 本発明で使用する基板としては、有機層から発せられる光を散乱又は減衰させない基板であることが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
<陽極>
 陽極は、通常、有機層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
<陰極>
 陰極は、通常、有機層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
 基板、陽極、陰極については、特開2008-270736号公報の段落番号〔0070〕~〔0089〕に記載の事項を本発明に適用することができる。
<有機層>
 本発明における有機層について説明する。
〔有機層の形成〕
 本発明の有機電界発光素子において、各有機層は、蒸着法やスパッタ法等の乾式成膜法、転写法、印刷法、スピンコート法、バーコート法等の溶液塗布プロセスのいずれによっても好適に形成することができる。本発明の素子において、発光層、該発光層と陰極の間の有機層、及び前記陽極と前記陰極の間に存在するその他の有機層のうちいずれか少なくとも1層が溶液塗布プロセスにより形成されることが好ましい。
〔発光層〕
 発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
 基板、陽極、陰極、有機層、発光層については、例えば、特開2008-270736、特開2007-266458に詳述されており、これらの公報に記載の事項を本発明に適用することができる。更に、発光層中に電荷輸送性を有さず、発光しない材料を含んでいても良い。
(発光材料)
 本発明における発光材料としては、燐光発光材料、蛍光発光材料等いずれも用いることができる。
 本発明における発光層は、色純度を向上させるためや発光波長領域を広げるために2種類以上の発光材料を含有することができる。発光材料の少なくとも一種が燐光発光材料であることが好ましい。
 本発明における発光材料は、更に前記ホスト材料との間で、1.2eV>△Ip>0.2eV、及び/又は1.2eV>△Ea>0.2eVの関係を満たすことが駆動耐久性の観点で好ましい。ここで、△Ipは、ホスト材料と発光材料のIp値(イオン化ポテンシャル)の差を、△Eaはホスト材料と発光材料のEa値(電子親和力)の差を意味する。
 前記発光材料の少なくとも一種が白金錯体材料又はイリジウム錯体材料であることが好ましく、イリジウム錯体材料であることがより好ましい。
 蛍光発光材料、燐光発光材料については、例えば、特開2008-270736の段落番号〔0100〕~〔0164〕、特開2007-266458の段落番号〔0088〕~〔0090〕に詳述されており、これらの公報に記載の事項を本発明に適用することができる。
 発光効率等の観点からは、燐光発光材料が好ましい。本発明に使用できる燐光発光材料としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、WO05/19373A2、特開2001-247859、特開2002-302671、特開2002-117978、特開2003-133074、特開2002-235076、特開2003-123982、特開2002-170684、EP1211257、特開2002-226495、特開2002-234894、特開2001-247859、特開2001-298470、特開2002-173674、特開2002-203678、特開2002-203679、特開2004-357791、特開2006-256999、特開2007-19462、特開2007-84635、特開2007-96259等の特許文献に記載の燐光発光化合物などが挙げられ、中でも、更に好ましい発光性ドーパントとしては、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、及びCe錯体が挙げられる。特に好ましくは、Ir錯体、Pt錯体、又はRe錯体であり、中でも金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、又はRe錯体が好ましい。更に、発光効率、駆動耐久性、色度等の観点で、Ir錯体、Pt錯体が特に好ましく、Ir錯体が最も好ましい。
 白金錯体として好ましくは、下記一般式(C-1)で表される白金錯体である。
Figure JPOXMLDOC01-appb-C000025
(式中、Q、Q、Q及びQはそれぞれ独立にPtに配位する配位子を表す。L、L及びLはそれぞれ独立に単結合又は二価の連結基を表す。)
 一般式(C-1)について説明する。Q、Q、Q及びQはそれぞれ独立にPtに配位する配位子を表す。この時、Q、Q、Q及びQとPtの結合は、共有結合、イオン結合、配位結合などいずれであっても良い。Q、Q、Q及びQ中のPtに結合する原子としては、炭素原子、窒素原子、酸素原子、硫黄原子、リン原子が好ましく、Q、Q、Q及びQ中のPtに結合する原子の内、少なくとも一つが炭素原子であることが好ましく、二つが炭素原子であることがより好ましく、二つが炭素原子で、二つが窒素原子であることが特に好ましい。
 炭素原子でPtに結合するQ、Q、Q及びQとしては、アニオン性の配位子でも中性の配位子でもよく、アニオン性の配位子としてはビニル配位子、芳香族炭化水素環配位子(例えばベンゼン配位子、ナフタレン配位子、アントラセン配位子、フェナントレン配位子など)、ヘテロ環配位子(例えばフラン配位子、チオフェン配位子、ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子及び、それらを含む縮環体(例えばキノリン配位子、ベンゾチアゾール配位子など))が挙げられる。中性の配位子としてはカルベン配位子が挙げられる。
 窒素原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としては含窒素芳香族ヘテロ環配位子(ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子、オキサゾール配位子、チアゾール配位子及びそれらを含む縮環体(例えばキノリン配位子、ベンゾイミダゾール配位子など))、アミン配位子、ニトリル配位子、イミン配位子が挙げられる。アニオン性の配位子としては、アミノ配位子、イミノ配位子、含窒素芳香族ヘテロ環配位子(ピロール配位子、イミダゾール配位子、トリアゾール配位子及びそれらを含む縮環体(例えはインドール配位子、ベンゾイミダゾール配位子など))が挙げられる。
 酸素原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはエーテル配位子、ケトン配位子、エステル配位子、アミド配位子、含酸素ヘテロ環配位子(フラン配位子、オキサゾール配位子及びそれらを含む縮環体(ベンゾオキサゾール配位子など))が挙げられる。アニオン性の配位子としては、アルコキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、アシルオキシ配位子、シリルオキシ配位子などが挙げられる。
 硫黄原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはチオエーテル配位子、チオケトン配位子、チオエステル配位子、チオアミド配位子、含硫黄ヘテロ環配位子(チオフェン配位子、チアゾール配位子及びそれらを含む縮環体(ベンゾチアゾール配位子など))が挙げられる。アニオン性の配位子としては、アルキルメルカプト配位子、アリールメルカプト配位子、ヘテロアリールメルカプト配位子などが挙げられる。
 リン原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはホスフィン配位子、リン酸エステル配位子、亜リン酸エステル配位子、含リンヘテロ環配位子(ホスフィニン配位子など)が挙げられ、アニオン性の配位子としては、ホスフィノ配位子、ホスフィニル配位子、ホスホリル配位子などが挙げられる。
 Q、Q、Q及びQで表される基は、置換基を有していてもよく、置換基としては前記置換基群Aとして挙げたものが適宜適用できる。また置換基同士が連結していても良い(QとQが連結した場合、環状四座配位子のPt錯体になる)。
 Q、Q、Q及びQで表される基として好ましくは、炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子、アルキルオキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、シリルオキシ配位子であり、より好ましくは、炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子、アリールオキシ配位子であり、更に好ましくは炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子である。
 L、L及びLは、単結合又は二価の連結基を表す。L、L及びLで表される二価の連結基としては、アルキレン基(メチレン、エチレン、プロピレンなど)、アリーレン基(フェニレン、ナフタレンジイル)、ヘテロアリーレン基(ピリジンジイル、チオフェンジイルなど)、イミノ基(-NR-)(フェニルイミノ基など)、オキシ基(-O-)、チオ基(-S-)、ホスフィニデン基(-PR-)(フェニルホスフィニデン基など)、シリレン基(-SiRR’-)(ジメチルシリレン基、ジフェニルシリレン基など)、又はこれらを組み合わせたものが挙げられる。ここで、R及びR’としては各々独立してアルキル基、アリール基等が挙げられる。これらの連結基は、更に置換基を有していてもよい。
 錯体の安定性及び発光量子収率の観点から、L、L及びLとして好ましくは単結合、アルキレン基、アリーレン基、ヘテロアリーレン基、イミノ基、オキシ基、チオ基、シリレン基であり、より好ましくは単結合、アルキレン基、アリーレン基、イミノ基であり、更に好ましくは単結合、アルキレン基、アリーレン基であり、更に好ましくは、単結合、メチレン基、フェニレン基であり、更に好ましくは単結合、ジ置換のメチレン基であり、更に好ましくは単結合、ジメチルメチレン基、ジエチルメチレン基、ジイソブチルメチレン基、ジベンジルメチレン基、エチルメチルメチレン基、メチルプロピルメチレン基、イソブチルメチルメチレン基、ジフェニルメチレン基、メチルフェニルメチレン基、シクロヘキサンジイル基、シクロペンタンジイル基、フルオレンジイル基、フルオロメチルメチレン基である。
 Lは特に好ましくはジメチルメチレン基、ジフェニルメチレン基、シクロヘキサンジイル基であり、最も好ましくはジメチルメチレン基である。
 L及びLとして最も好ましくは単結合である。
 一般式(C-1)で表される白金錯体のうち、より好ましくは下記一般式(C-2)で表される白金錯体である。
Figure JPOXMLDOC01-appb-C000026
(式中、L21は単結合又は二価の連結基を表す。A21、A22はそれぞれ独立に炭素原子又は窒素原子を表す。Z21、Z22はそれぞれ独立に含窒素芳香族ヘテロ環を表す。Z23、Z24はそれぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。)
 一般式(C-2)について説明する。L21は、前記一般式(C-1)中のLと同義であり、また好ましい範囲も同様である。
 A21、A22はそれぞれ独立に炭素原子又は窒素原子を表す。A21、A22の内、少なくとも一方は炭素原子であることが好ましく、A21、A22が共に炭素原子であることが、錯体の安定性の観点及び錯体の発光量子収率の観点から好ましい。
 Z21、Z22は、それぞれ独立に含窒素芳香族ヘテロ環を表す。Z21、Z22で表される含窒素芳香族ヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環などが挙げられる。錯体の安定性、発光波長制御及び発光量子収率の観点から、Z21、Z22で表される環として好ましくは、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環であり、より好ましくはピリジン環、イミダゾール環、ピラゾール環であり、更に好ましくはピリジン環、ピラゾール環であり、特に好ましくはピリジン環である。
 前記Z21、Z22で表される含窒素芳香族ヘテロ環は置換基を有していてもよく、炭素原子上の置換基としては前記置換基群Aが、窒素原子上の置換基としては前記置換基群Bが適用できる。炭素原子上の置換基として好ましくはアルキル基、パーフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、フッ素原子である。置換基は発光波長や電位の制御のために適宜選択されるが、短波長化させる場合には電子供与性基、フッ素原子、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、フッ素原子、アリール基、芳香族ヘテロ環基などが選択される。また長波長化させる場合には電子求引性基が好ましく、例えばシアノ基、パーフルオロアルキル基などが選択される。窒素原子上の置換基として好ましくは、アルキル基、アリール基、芳香族ヘテロ環基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。
 Z23、Z24は、それぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。Z23、Z24で表される含窒素芳香族ヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環、チオフェン環、フラン環などが挙げられる。錯体の安定性、発光波長制御及び発光量子収率の観点からZ23、Z24で表される環として好ましくは、ベンゼン環、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環、チオフェン環であり、より好ましくはベンゼン環、ピリジン環、ピラゾール環であり、更に好ましくはベンゼン環、ピリジン環である。
 前記Z23、Z24で表されるベンゼン環、含窒素芳香族ヘテロ環は置換基を有していてもよく、炭素原子上の置換基としては前記置換基群Aが、窒素原子上の置換基としては前記置換基群Bが適用できる。炭素上の置換基として好ましくはアルキル基、パーフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、フッ素原子である。置換基は発光波長や電位の制御のために適宜選択されるが、長波長化させる場合には電子供与性基、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、アリール基、芳香族ヘテロ環基などが選択される。また短波長化させる場合には電子求引性基が好ましく、例えばフッ素原子、シアノ基、パーフルオロアルキル基などが選択される。窒素原子上の置換基として好ましくは、アルキル基、アリール基、芳香族ヘテロ環基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。
 一般式(C-2)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C-4)で表される白金錯体である。
Figure JPOXMLDOC01-appb-C000027
(一般式(C-4)中、A401~A414はそれぞれ独立にC-R又は窒素原子を表す。Rは水素原子又は置換基を表す。L41は単結合又は二価の連結基を表す。)
 一般式(C-4)について説明する。
 A401~A414はそれぞれ独立にC-R又は窒素原子を表す。Rは水素原子又は置換基を表す。
 Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。
 A401~A406として好ましくはC-Rであり、R同士が互いに連結して環を形成していても良い。A401~A406がC-Rである場合に、A402、A405のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、シアノ基であり、より好ましくは水素原子、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子であり、特に好ましくは水素原子、フッ素原子である。A401、A403、A404、A406のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、シアノ基であり、より好ましくは水素原子、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子であり、特に好ましく水素原子である。
 L41は、前記一般式(C-1)中のLと同義であり、また好ましい範囲も同様である。
 A407~A414としては、A407~A410とA411~A414のそれぞれにおいて、N(窒素原子)の数は、0~2が好ましく、0~1がより好ましい。発光波長を短波長側にシフトさせる場合、A408及びA412のいずれかが窒素原子であることが好ましく、A408とA412が共に窒素原子であることが更に好ましい。
 A407~A414がC-Rを表す場合に、A408、A412のRとして好ましくは水素原子、アルキル基、パーフルオロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、シアノ基であり、より好ましくは水素原子、パーフルオロアルキル基、アルキル基、アリール基、フッ素原子、シアノ基であり、特に好ましくは、水素原子、フェニル基、パーフルオロアルキル基、シアノ基である。A407、A409、A411、A413のRとして好ましくは水素原子、アルキル基、パーフルオロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、シアノ基であり、より好ましくは水素原子、パーフルオロアルキル基、フッ素原子、シアノ基であり、特に好ましく水素原子、フェニル基、フッ素原子である。A410、A414のRとして好ましくは水素原子、フッ素原子であり、より好ましくは水素原子である。A407~A409、A411~A413のいずれかがC-Rを表す場合に、R同士が互いに連結して環を形成していても良い。
 一般式(C-1)で表される白金錯体として具体的には、特開2005-310733号公報の〔0143〕~〔0152〕、〔0157〕~〔0158〕、〔0162〕~〔0168〕に記載の化合物、特開2006-256999号公報の〔0065〕~〔0083〕に記載の化合物、特開2006-93542号公報の〔0065〕~〔0090〕に記載の化合物、特開2007-73891号公報の〔0063〕~〔0071〕に記載の化合物、特開2007-324309号公報の〔0079〕~〔0083〕に記載の化合物、特開2006-93542号公報の〔0065〕~〔0090〕に記載の化合物、特開2007-96255号公報の〔0055〕~〔0071〕に記載の化合物、特開2006-313796号公報の〔0043〕~〔0046〕が挙げられ、その他以下に例示する白金錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 一般式(C-1)で表される白金錯体化合物は、例えば、Journal of Organic Chemistry 53,786,(1988)、G.R.Newkome et al.)の、789頁、左段53行~右段7行に記載の方法、790頁、左段18行~38行に記載の方法、790頁、右段19行~30行に記載の方法及びその組み合わせ、Chemische Berichte 113,2749(1980)、H.Lexyほか)の、2752頁、26行~35行に記載の方法等、種々の手法で合成できる。
 例えば、配位子、又はその解離体と金属化合物を溶媒(例えば、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ニトリル系溶媒、アミド系溶媒、スルホン系溶媒、スルホキサイド系溶媒、水などが挙げられる)の存在下、若しくは、溶媒非存在下、塩基の存在下(無機、有機の種々の塩基、例えば、ナトリウムメトキシド、t-ブトキシカリウム、トリエチルアミン、炭酸カリウムなどが挙げられる)、若しくは、塩基非存在下、室温以下、若しくは加熱し(通常の加熱以外にもマイクロウェーブで加熱する手法も有効である)得ることができる。
 本発明の発光層における一般式(C-1)で表される化合物の含有量は発光層中1~30質量%であることが好ましく、3~25質量%であることがより好ましく、5~20質量%であることが更に好ましい。
 イリジウム錯体として好ましくは、下記一般式(T-1)で表されるイリジウム錯体である。
 〔一般式(T-1)で表される化合物〕
 一般式(T-1)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000031
 (一般式(T-1)中、RT3’、RT3、RT4、RT5及びRT6はそれぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、-CN、パーフルオロアルキル基、トリフルオロビニル基、-CO、-C(O)R、-N(R、-NO、-OR、フッ素原子、アリール基又はヘテロアリール基を表し、更に置換基Tを有していてもよい。
 Qは窒素を1つ以上含む5員又は6員の芳香族複素環又は縮合芳香族複素環である。
 RT3、RT4、RT5及びRT6は隣り合う任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基Tを有していてもよい。
 RT3’とRT6は、-C(R-C(R-、-CR=CR-、-C(R-、-O-、-NR-、-O-C(R-、-NR-C(R-及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rはそれぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基、又はヘテロアリール基を表し、更に置換基Tを有していてもよい。
 置換基Tはそれぞれ独立に、フッ素原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、又は-SOR’を表し、R’はそれぞれ独立に、水素原子、アルキル基、パーフルオロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 (X-Y)は、配位子を表す。mは1~3の整数、nは0~2の整数を表す。m+nは3である。)
 アルキル基としては、置換基を有していてもよく、飽和であっても不飽和であってもよく、置換してもよい基としては、前述の置換基Tを挙げることができる。RT3’、RT3、RT4、RT5、RT6で表されるアルキル基として、好ましくは総炭素原子数1~8のアルキル基であり、より好ましくは総炭素原子数1~6のアルキル基であり、例えばメチル基、エチル基、i-プロピル基、シクロヘキシル基、t-ブチル基等が挙げられる。
 シクロアルキル基としては、置換基を有していてもよく、飽和であっても不飽和であってもよく、置換してもよい基としては、前述の置換基Tを挙げることができる。RT3’、RT3、RT4、RT5、RT6で表されるシクロアルキル基として、好ましくは環員数4~7のシクロアルキル基であり、より好ましくは総炭素原子数5~6のシクロアルキル基であり、例えばシクロペンチル基、シクロヘキシル基等が挙げられる。
 RT3’、RT3、RT4、RT5、RT6で表されるアルケニル基としては好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、1-プロペニル、1-イソプロペニル、1-ブテニル、2-ブテニル、3-ペンテニルなどが挙げられる。
 RT3’、RT3、RT4、RT5、RT6で表されるアルキニル基としては、好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばエチニル、プロパルギル、1-プロピニル、3-ペンチニルなどが挙げられる。
 RT3’、RT3、RT4、RT5、RT6で表されるヘテロアルキル基は前記アルキル基の少なくとも1つの炭素がO、NR、又はSに置き換わった基を挙げることができる。
 RT3’、RT3、RT4、RT5、RT6で表されるアリール基としては、好ましくは、炭素数6から30の置換若しくは無置換のアリール基、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。
 RT3’、RT3、RT4、RT5、RT6で表されるヘテロアリール基としては、好ましくは、炭素数5~8のヘテロアリール基であり、より好ましくは、5又は6員の置換若しくは無置換のヘテロアリール基であり、例えば、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、イミダゾリジニル基、チアゾリニル基、スルホラニル基、カルバゾリル基、ジベンゾフリル基、ジベンゾチエニル基、ピリドインドリル基などが挙げられる。好ましい例としては、ピリジル基、ピリミジニル基、イミダゾリル基、チエニル基であり、より好ましくは、ピリジル基、ピリミジニル基である。
 RT3’、RT3、RT4、RT5及びRT6として好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、パーフルオロアルキル基、ジアルキルアミノ基、フッ素原子、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フッ素原子、アリール基であり、更に好ましくは、水素原子、アルキル基、アリール基である。置換基Tとしては、アルキル基、アルコキシ基、フッ素原子、シアノ基、ジアルキルアミノ基が好ましく、水素原子がより好ましい。
 RT3、RT4、RT5及びRT6は隣り合う任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基Tを有していてもよい。形成されるシクロアルキル、アリール、ヘテロアリールの定義及び好ましい範囲はRT3’、RT3、RT4、RT5、RT6で定義したシクロアルキル基、アリール基、ヘテロアリール基と同じである。
 環Qが表す芳香族複素環としては、ピリジン環、ピラジン環、ピリミジン環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環、等が挙げられる。好ましくはピリジン環、ピラジン環であり、より好ましくはピリジン環である。
 環Qが表す縮合芳香族複素環としては、キノリン環、イソキノリン環、キノキサリン環等が挙げられる。好ましくはキノリン環、イソキノリン環であり、より好ましくはキノリン環である。
 mは1~3であることが好ましく、2又は3であることがより好ましい。すなわち、nは0又は1であることが好ましい。錯体中の配位子の種類は1又は2種類から構成されることが好ましく、更に好ましくは1種類である。錯体分子内に反応性基を導入する際には合成容易性という観点から配位子が2種類からなることも好ましい。
 一般式(T-1)で表される金属錯体は、一般式(T-1)における下記一般式(T-1-A)で表される配位子若しくはその互変異性体と、(X-Y)で表される配位子若しくはその互変異性体との組み合わせを含んで構成されるか、該金属錯体の配位子の全てが下記一般式(T-1-A)で表される配位子又はその互変異性体のみで構成されていてもよい。
Figure JPOXMLDOC01-appb-C000032
(一般式(T-1-A)中、RT3’、RT3、RT4、RT5、RT6及びQは、一般式(T-1)における、RT3’、RT3、RT4、RT5、RT6及びQと同義である。*はイリジウムへの配位位置を表す。)
 更に従来公知の金属錯体形成に用いられる、所謂配位子として当該業者が周知の配位子(配位化合物ともいう)を必要に応じて(X-Y)で表される配位子として有していてもよい。
 従来公知の金属錯体に用いられる配位子としては、種々の公知の配位子があるが、例えば、「Photochemistry and Photophysics of Coordination Compounds」Springer-Verlag社 H.Yersin著 1987年発行、「有機金属化学-基礎と応用-」裳華房社 山本明夫著 1982年発行等に記載の配位子(例えば、ハロゲン配位子(好ましくは塩素配位子)、含窒素ヘテロアリール配位子(例えば、ビピリジル、フェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)が挙げられる。(X-Y)で表される配位子として好ましくは、ジケトン類あるいはピコリン酸誘導体であり、錯体の安定性と高い発光効率が得られる観点から以下に示されるアセチルアセトネート(acac)であることが最も好ましい。
Figure JPOXMLDOC01-appb-C000033
 *はイリジウムへの配位位置を表す。
 以下に、(X-Y)で表される配位子の例を具体的に挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000034
 上記(X-Y)で表される配位子の例において、*は一般式(T-1)におけるイリジウムへの配位位置を表す。Rx、Ry及びRzはそれぞれ独立に水素原子又は置換基を表す。該置換基としては前記置換基群Aから選ばれる置換基が挙げられる。好ましくは、Rx、Rzはそれぞれ独立にアルキル基、パーフルオロアルキル基、フッ素原子、アリール基のいずれかであり、より好ましくは炭素数1~4のアルキル基、炭素数1~4のパーフルオロアルキル基、フッ素原子、置換されていても良いフェニル基であり、最も好ましくはメチル基、エチル基、トリフルオロメチル基、フッ素原子、フェニル基である。Ryは好ましくは水素原子、アルキル基、パーフルオロアルキル基、フッ素原子、アリール基のいずれかであり、より好ましくは水素原子、炭素数1~4のアルキル基、置換されていても良いフェニル基であり、最も好ましくは水素原子、メチル基のいずれかである。これら配位子は素子中で電荷を輸送したり励起によって電子が集中する部位ではないと考えられるため、Rx、Ry、Rzは化学的に安定な置換基であれば良く、本発明の効果にも影響を及ぼさない。
 錯体合成が容易であるため好ましくは(I-1)、(I-4)、(I-5)であり、最も好ましくは(I-1)である。これらの配位子を有する錯体は、対応する配位子前駆体を用いることで公知の合成例と同様に合成できる。例えば国際公開2009-073245号46ページに記載の方法と同様に、市販のジフルオロアセチルアセトンを用いて以下に示す方法で合成する事ができる。
Figure JPOXMLDOC01-appb-C000035
 また、配位子として一般式(I‐15)に示すモノアニオン性配位子を用いる事もできる。
Figure JPOXMLDOC01-appb-C000036
 一般式(I‐15)におけるRT7~RT10は、一般式(T-1)におけるRT3~RT6と同義であり、好ましい範囲も同様である。RT7’~R T10’は、RT3’と同義であり、好ましい範囲もRT3’と同様である。*はイリジウムへの配位位置を表す。
 前記一般式(T-1)で表される化合物は、好ましくは下記一般式(T-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000037
(一般式(T-2)中、RT3’~ RT6’及びRT3~RT6はそれぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、-CN、パーフルオロアルキル基、トリフルオロビニル基、-CO、-C(O)R、-N(R、-NO、-OR、フッ素原子、アリール基又はヘテロアリール基を表し、更に置換基Tを有していてもよい。
 RT3、RT4、RT5及びRT6は隣り合う任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は更に置換基Tを有していてもよい。
 RT3’とRT6は、-C(R-C(R-、-CR=CR-、-C(R-、-O-、-NR-、-O-C(R-、-NR-C(R-及び-N=CR-から選択される連結基によって連結されて環を形成してもよい。
 Rはそれぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基、又はヘテロアリール基を表し、更に置換基Tを有していてもよい。
 置換基Tはそれぞれ独立に、フッ素原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、又は-SOR’を表し、R’はそれぞれ独立に、水素原子、アルキル基、パーフルオロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 (X-Y)は、配位子を表す。mは1~3の整数、nは0~2の整数を表す。m+nは3である。)
 一般式(T-2)におけるRT3’、RT3~RT6、(X-Y)、m及びnの好ましい範囲は、一般式(T-1)におけるRT3’、RT3~RT6、(X-Y)、m及びnの好ましい範囲と同様である。
 RT4’は水素原子、アルキル基、アリール基、フッ素原子が好ましく、水素原子がより好ましい。
 RT5’及びRT6’は水素原子を表すか、又は互いに結合して縮合4~7員環式基を形成することが好ましく、該縮合4~7員環式基は、シクロアルキル、シクロヘテロアルキル、アリール、又はヘテロアリールであることがより好ましく、アリールであることが更に好ましい。
 RT4’~R T6’における置換基Tとしてはアルキル基、アルコキシ基、フッ素原子、シアノ基、アルキルアミノ基、ジアリールアミノ基が好ましく、アルキル基がより好ましい。
 前記一般式(T-2)で表される化合物の好ましい形態の一つは、一般式(T-2)においてRT3’、RT4’、RT5’、RT6’、RT3、RT4、RT5及びRT6のうち、隣り合う任意の2つが互いに結合して縮合環を形成しない場合である。
 前記一般式(T-2)で表される化合物の好ましい形態の一つは、下記一般式(T-3)で表される場合である。
Figure JPOXMLDOC01-appb-C000038
 一般式(T-3)におけるRT3’~R T6’、RT3~RT6は、一般式(T-2)におけるRT3’~RT6’、RT3~RT6と同義であり、好ましい範囲も同様である。
 RT7~RT10は、RT3~RT6と同義であり、好ましい範囲も同様である。RT7’~R T10’は、RT3’~RT6’と同義であり、好ましい範囲も同様である。
 前記一般式(T-2)で表される化合物の好ましい別の形態は、下記一般式(T-4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000039
 一般式(T-4)におけるRT3’~R T6’、RT3~RT6、(X-Y)、m及びnは、一般式(T-2)におけるRT3’~RT6’、RT3~RT6、(X-Y)、m及びnと同義であり、好ましい範囲も同様である。RT3’~RT6’及びRT3~RT6のうち、0~2つがアルキル基又はフェニル基で残りが全て水素原子である場合が特に好ましく、RT3’~RT6’及びRT3~RT6のうち、1つ又は2つがアルキル基で残りが全て水素原子である場合が更に好ましい。
 前記一般式(T-2)で表される化合物の好ましい別の形態は、下記一般式(T-5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000040
 一般式(T-5)におけるRT3’~R T7’、RT3~RT6、(X-Y)、m及びnは、一般式(T-2)におけるRT3’~RT6’、RT3~RT6、(X-Y)、m及びnと同義であり、好ましいものも同様である。
 一般式(T-1)で表される化合物の好ましい別の形態は、下記一般式(T-6)で表される場合である。
Figure JPOXMLDOC01-appb-C000041
 一般式(T-6)中、R1a~R1iの定義や好ましい範囲は一般式(T-1)におけるRT3~RT6におけるものと同様である。またR1a~R1iのうち、0~2つがアルキル基又はアリール基で残りが全て水素原子である場合が特に好ましい。(X-Y)、m、及びnの定義や好ましい範囲は一般式(T-1)における(X-Y)、m、及びnと同様である。
 一般式(T-1)で表される化合物の好ましい具体例を以下に列挙するが、以下に限定されるものではない。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 上記一般式(T-1)で表される化合物として例示した化合物は、特開2009-99783号公報に記載の方法や、米国特許7279232号等に記載の種々の方法で合成できる。合成後、カラムクロマトグラフィー、再結晶等による精製を行った後、昇華精製により精製することが好ましい。昇華精製により、有機不純物を分離できるだけでなく、無機塩や残留溶媒等を効果的に取り除くことができる。
 一般式(T-1)で表される化合物は、発光層に含有されるが、その用途が限定されることはなく、更に有機層内のいずれの層に更に含有されてもよい。
 イリジウム錯体として、一般式(T-1)で表される化合物以外に、下記一般式(T-7)で表される化合物や、カルベンを配位子として有するものも好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000045
 一般式(T-7)中、RT11~RT17は、一般式(T-2)におけるRT3~RT6と同義であり、好ましい範囲も同様である。また、(X-Y)、n、及びmは一般式(T-2)における(X-Y)、n、及びmと同義であり、好ましい範囲も同様である。
 これらの好ましい具体例を以下に列挙するが、以下に限定されるものではない。
Figure JPOXMLDOC01-appb-C000046
 発光層中の発光材料は、発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%~50質量%含有されるが、耐久性、外部量子効率の観点から1質量%~50質量%含有されることが好ましく、2質量%~40質量%含有されることがより好ましい。
 発光層の厚さは、特に限定されるものではないが、通常、2nm~500nmであるのが好ましく、中でも、外部量子効率の観点で、3nm~200nmであるのがより好ましく、5nm~100nmであるのが更に好ましい。
 本発明の素子における発光層は、ホスト材料と発光材料の混合層とした構成でも良い。発光材料は蛍光発光材料でも燐光発光材料であっても良く、ドーパントは一種であっても二種以上であっても良い。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は一種であっても二種以上であっても良く、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。更に、発光層中に電荷輸送性を有さず、発光しない材料を含んでいても良い。
 また、発光層は一層であっても二層以上の多層であってもよい。また、それぞれの発光層が異なる発光色で発光してもよい。
<ホスト材料>
 本発明に用いられるホスト材料は、一般式(I)で表される化合物であるが好ましい。
 本発明に用いられるホスト材料として、一般式(I)で表される化合物の他、以下の化合物を含有していても良い。
 ホスト材料は電子輸送材料及びホール輸送性材料を挙げることができ、電荷輸送材料であることが好ましい。ホスト材料は1種であっても2種以上であっても良く、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。
 例えば、ピロール、インドール、カルバゾール(例えばCBP(4,4’-ジ(9-カルバゾリル)ビフェニル)、3,3’-ジ(9-カルバゾリル)ビフェニル))、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ-ル、オキサゾ-ル、オキサジアゾ-ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、8-キノリノ-ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ-ルやベンゾチアゾ-ルを配位子とする金属錯体に代表される各種金属錯体及びそれらの誘導体(置換基や縮環を有していてもよい)等を挙げることができる。
 本発明における発光層において、前記ホスト材料三重項最低励起エネルギー(Tエネルギー)が、前記燐光発光材料のTエネルギーより高いことが色純度、発光効率、駆動耐久性の点で好ましい。
 また、本発明におけるホスト化合物の含有量は、特に限定されるものではないが、発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上95質量%以下であることが好ましい。
(電荷輸送層)
 電荷輸送層とは、有機電界発光素子に電圧を印加した際に電荷移動が起こる層をいう。具体的には正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層又は電子注入層が挙げられる。塗布法により形成される電荷輸送層としては、正孔注入層、正孔輸送層、電子ブロック層が好ましく、これにより低コストかつ高効率な有機電界発光素子の製造が可能となる。
(正孔注入層、正孔輸送層)
 正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
 正孔輸送層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。また、正孔注入層の厚さとしては、0.1nm~200nmであるのが好ましく、0.5nm~100nmであるのがより好ましく、1nm~100nmであるのが更に好ましい。
 正孔注入層、正孔輸送層については、例えば、特開2008-270736、特開2007-266458に詳述されており、これらの公報に記載の事項を本発明に適用することができる。
(電子注入層、電子輸送層)
 電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
 電子輸送層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、5nm~100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm~200nmであるのが好ましく、0.2nm~100nmであるのがより好ましく、0.5nm~50nmであるのが更に好ましい。
 電子注入層、電子輸送層については、例えば、特開2008-270736、特開2007-266458に詳述されており、これらの公報に記載の事項を本発明に適用することができる。
 本発明の素子においては、電子輸送層には前記一般式(II)で表される化合物を含有することが好ましい。
 また、電子輸送層は2層以上設けてもよく、その場合、少なくとも1層の電子輸送層に前記一般式(II)で表される化合物を含有することが好ましい。
(正孔ブロック層)
 正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
 正孔ブロック層を構成する有機化合物の例としては、本発明における一般式(1)で表される化合物のほか、アルミニウム(III)ビス(2-メチル-8-キノリナト)4-フェニルフェノレート(Aluminum (III)bis(2-methyl-8-quinolinato)4-phenylphenolate(BAlqと略記する))等のアルミニウム錯体、トリアゾール誘導体、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCPと略記する))等のフェナントロリン誘導体、トリフェニレン誘導体、カルバゾール誘導体等が挙げられる。
 正孔ブロック層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 正孔ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(電子ブロック層)
 電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機層として、電子ブロック層を設けることができる。
 電子ブロック層を構成する有機化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
 電子ブロック層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 電子ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(保護層)
 本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
 保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
 保護層については、特開2008-270736号公報の段落番号〔0169〕~〔0170〕に記載の事項を本発明に適用することができる。
(封止容器)
 本発明の素子は、封止容器を用いて素子全体を封止してもよい。
 封止容器については、特開2008-270736号公報の段落番号〔0171〕に記載の事項を本発明に適用することができる。
 また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、シリコーンオイル類が挙げられる。
(駆動)
 本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト~15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
 本発明の有機電界発光素子の駆動方法については、特開平2-148687号、同6-301355号、同5-29080号、同7-134558号、同8-234685号、同8-241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書等に記載の駆動方法を適用することができる。
 本発明の有機電界発光素子の外部量子効率としては、5%以上が好ましく、7%以上がより好ましい。外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、若しくは、20℃で素子を駆動したときの100~300cd/m付近での外部量子効率の値を用いることができる。
 本発明の有機電界発光素子の内部量子効率は、30%以上であることが好ましく、50%以上が更に好ましく、70%以上が更に好ましい。素子の内部量子効率は、外部量子効率を光取り出し効率で除して算出される。通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能である。
 本発明の有機電界発光素子は、500nm以上700nm以下に極大発光波長(発光スペクトルの最大強度波長)を有するものが好ましく、より好ましくは500nm以上600nm以下、更に好ましくは500nm以上550nm以下である。
(本発明の発光素子の用途)
 本発明の発光素子は、発光装置、ピクセル、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、又は光通信等に好適に利用できる。特に、照明装置、表示装置等の発光輝度が高い領域で駆動されるデバイスに好ましく用いられる。
(発光装置)
 次に、図2を参照して本発明の発光装置について説明する。
 本発明の発光装置は、前記有機電界発光素子を用いてなる。
 図2は、本発明の発光装置の一例を概略的に示した断面図である。
 図2の発光装置20は、基板(支持基板)2、有機電界発光素子10、封止容器16等により構成されている。
 有機電界発光素子10は、基板2上に、陽極(第一電極)3、有機層11、陰極(第二電極)9が順次積層されて構成されている。また、陰極9上には、保護層12が積層されており、更に、保護層12上には接着層14を介して封止容器16が設けられている。なお、各電極3、9の一部、隔壁、絶縁層等は省略されている。
 ここで、接着層14としては、エポキシ樹脂等の光硬化型接着剤や熱硬化型接着剤を用いることができ、例えば熱硬化性の接着シートを用いることもできる。
 本発明の発光装置の用途は特に制限されるものではなく、例えば、照明装置のほか、テレビ、パーソナルコンピュータ、携帯電話、電子ペーパ等の表示装置とすることができる。
(照明装置)
 次に、図3を参照して本発明の実施形態に係る照明装置について説明する。
 図3は、本発明の実施形態に係る照明装置の一例を概略的に示した断面図である。
 本発明の実施形態に係る照明装置40は、図3に示すように、前述した有機EL素子10と、光散乱部材30とを備えている。より具体的には、照明装置40は、有機EL素子10の基板2と光散乱部材30とが接触するように構成されている。
 光散乱部材30は、光を散乱できるものであれば特に制限されないが、図3においては、透明基板31に微粒子32が分散した部材とされている。透明基板31としては、例えば、ガラス基板を好適に挙げることができる。微粒子32としては、透明樹脂微粒子を好適に挙げることができる。ガラス基板及び透明樹脂微粒子としては、いずれも、公知のものを使用できる。このような照明装置40は、有機電界発光素子10からの発光が光散乱部材30の光入射面30Aに入射されると、入射光を光散乱部材30により散乱させ、散乱光を光出射面30Bから照明光として出射するものである。
 以下に実施例を挙げて本発明を更に具体的に説明するが、本発明の範囲は以下の具体例に制限されるものではない。
 一般式(I)で表される化合物は、国際公開第2009/021126号を参考に合成した。以下で使用した化合物Aは国際公開第2009/021126号の37頁に記載の合成例の方法で合成した。化合物Bは国際公開第2009/021126号の30頁に記載の合成例の方法で合成した。化合物Cは国際公開第2009/021126号の32~33頁に記載の合成例の方法で合成した。
 例示化合物(a-3)、例示化合物(a-57)は、国際公開第03/080760号パンフレット、国際公開第03/078541号パンフレット、国際公開第05/085387号パンフレット、国際公開第05/022962号パンフレット等を参考に合成した。例えば、化合物例示化合物(a-3)は、m-ブロモベンゾアルデヒドを出発原料に用い、国際公開第05/085387号パンフレット[0074]~[0075](45頁、11行~46頁、18行)に記載の方法で合成することができる。
 なお、本実施例に用いた有機材料は全て昇華精製したものを用い、高速液体クロマトグラフィー(東ソーTSKgel ODS-100Z)により分析し、254nmの吸収強度面積比で99.9%以上のものを用いた。
[実施例1]
<有機電界発光素子の作製>
 厚み0.7mm、2.5cm角の酸化インジウム錫(ITO)膜を有するガラス基板(ITO膜厚は100nm)を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。このガラス基板上に真空蒸着装置(トッキ社製、Small-ELVESS)を用いて真空蒸着法にて以下の各層を蒸着した。なお、以下の実施例及び比較例における真空蒸着法は、全て同条件で行い、蒸着速度は、特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。また、圧力は、1×10-4Pa以下である。また、以下の各層の厚みは水晶振動子を用いて測定した。
 陽極(ITO)上に、正孔注入層(HIL)として2-TNATAを厚みが10nmになるように真空蒸着することにより成膜した。
 次に、正孔注入層上に、正孔輸送層(HTL)としてN,N’-ジナフチル-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(α-NPD)を厚みが30nmとなるように真空蒸着することにより成膜した。
 次に、正孔輸送層上に、化合物A(ホスト材料)と燐光発光材料である発光材D(ゲスト)を質量比で90:10含む発光層を、厚みが30nmとなるように真空蒸着することにより成膜した。
 次に、発光層上に、化合物(a-3)を厚みが5nmとなるように真空蒸着することにより電子輸送層(ETL)を形成した。更に、この電子輸送層上に、もう1層の電子輸送層(ETL2)としてAlqを厚みが40nmとなるように真空蒸着により成膜した。
 次に、電子輸送層(ETL2)上に電子注入層(EIL)としてLiFを、厚みが0.5nmとなるように真空蒸着することにより成膜し、その上に、陰極としてパタ-ニングしたマスク(発光領域が2mm×2mmとなるマスク)を設置し、金属アルミニウムを厚み100nmとなるように真空蒸着することにより成膜した。
 以上により作製した積層体を、アルゴンガスで置換したグローブボックス内に入れ、ガラス製の封止缶、及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ株式会社製)を用いて封止した。以上により、実施例1の有機電界発光素子を作製した。
(有機電界発光素子の性能評価)
 作製した実施例1の有機電界発光素子の性能は以下のように評価した。評価結果は下記表2に示す。
(a)外部量子効率(発光効率)
 東陽テクニカ製ソースメジャーユニット2400を用いて、一定電流密度(25mA/cm)にて直流電圧を有機電界発光素子に印加し発光させ、その輝度をトプコン社製輝度計BM-8を用いて測定した。発光スペクトルと発光波長は浜松ホトニクス製スペクトルアナライザーPMA-11を用いて測定した。これらを元に輝度が5000cd/m付近の外部量子効率を輝度換算法により算出した。外部量子効率は数字が大きいほど優れており好ましい。
(b)駆動電圧
 有機電界発光素子を(株)島津製作所製の発光スペクトル測定システム(ELS1500)にセットし、一定電流密度(25mA/cm)にて発光させ、輝度が5000cd/m時の印加電圧を測定した。駆動電圧は低いほど優れており好ましい。
(c)高電流密度での駆動前後の色度変化
 有機電界発光素子を株)島津製作所製の発光スペクトル測定システム(ELS1500)にセットし、一定電流密度(25mA/cm)にて輝度が5000cd/mになるように直流電圧を印加して発光させた。得られた発光スペクトルをCIE色度に換算して、この時のCIE色度(x、y)を求めた。その後、輝度が2500cd/mに低下した時の色度(x、y)を同様に求め、両者のx値、y値の差を(Δx、Δy)を求め、ΔZ=(Δx)+(Δy)を駆動前後の色度変化の指標とした。ΔZの値は小さいほど好ましい。
(d)高電流密度での耐久性
 有機電界発光素子を一定電流密度(25mA/cm)にて輝度が5000cd/mになるように直流電圧を印加して発光させた。輝度が5000cd/mの80%に低下するまでの時間を測定し、高電流密度での耐久性の指標とした。この値が大きいほど優れており好ましい。
[実施例2~7、比較例1~10]
 各層に使用した化合物を下記表1に示すように変更した以外は、実施例1と同様に素子を作製し、評価した。評価結果は下記表2に示す。
 なお、表2中、高電流密度での耐久性は、比較例7の値を1.0としたときの相対値として記載した。
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
 表2の結果から明らかのように、一般式(I)で表されるベンゾチオフェン構造とトリフェニレン構造とを含む特定の化合物をホスト材料として発光層に用い、一般式(II)で表されるカルバゾール構造とフェニルピリジン又はフェニルピリミジン構造とを含む特定の材料を電子輸送材料として電子輸送層に用いた本発明の素子は、それらの両者若しくはいずれか一方を使用しない比較例の素子と比べて、外部量子効率が高く、低電圧駆動が可能で、高電流密度領域での耐久性が高く、かつ駆動前後の色度変化が極めて小さいことが分かる。
 また、実施例1と2の素子の結果、及び実施例3と4の素子の結果の比較から、一般式(II)で表される化合物として、カルバゾール構造とフェニルピリジン又はフェニルピリミジン構造とがそれぞれ置換基を有さない(n1~n5が0である)ものを用いた素子の方が、高電流密度領域での耐久性が高く及び駆動前後での色度変化が小さいことが分かる。
 更に、実施例1、3及び5の素子の結果の比較から、一般式(I-1)で表される化合物を用いた素子は、一般式(I-2)で表される化合物を用いた素子に比べて、高電流密度領域の耐久性が高いことが分かる。逆に、一般式(I-2)で表される化合物は、一般式(I-1)で表される化合物を用いた素子に比べて、高電流密度領域での駆動前後での色度変化が小さいことが分かる。
 発光装置、表示装置、照明装置の場合、各画素部で高い電流密度を通じて瞬間的に高輝度発光させる必要があり、本発明の発光素子はそのような場合に発光効率が高くなるように設計されているため、有利に利用することができる。
 上記実施例及び比較例で使用した化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000049
 本発明の有機電界発光素子は、発光効率が高く、駆動電圧が低く、高電流密度領域での耐久性が高く、高電流密度領域での駆動前後での色度変化が小さい。このため、各種の発光装置、ピクセル、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、又は光通信等に好ましく利用することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年7月9日出願の日本特許出願(特願2010-157353)に基づくものであり、その内容はここに参照として取り込まれる。
2・・・基板
3・・・陽極
4・・・正孔注入層
5・・・正孔輸送層
6・・・発光層
7・・・正孔ブロック層
8・・・電子輸送層
9・・・陰極
10・・・有機電界発光素子(有機EL素子)
11・・・有機層
12・・・保護層
14・・・接着層
16・・・封止容器
20・・・発光装置
30・・・光散乱部材
30A・・・光入射面
30B・・・光出射面
31・・・透明基板
32・・・微粒子
40・・・照明装置

Claims (10)

  1.  陽極及び陰極からなる一対の電極と、該電極間に発光層を有し、該発光層と該陰極の間に少なくとも一層の有機層を有する有機電界発光素子であって、
     該発光層に下記一般式(I)で表される化合物を少なくとも一つ含有し、
     該発光層と該陰極の間の少なくとも一層の有機層に下記一般式(II)で表される化合物を少なくとも一つ含有する、有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(I)中、R11~R15はそれぞれ独立にアルキル基、アルコキシ基、アリール基、芳香族ヘテロ環基、アルケニル基、アルキニル基、-OAr11、-N(R16)(R17)、又は-N(Ar11)(Ar12)を表す。R16及びR17はそれぞれ独立に水素原子又は置換基を表す。Ar11及びAr12はそれぞれ独立にアリール基又は芳香族へテロ環基を表す。Lは、単結合、アリーレン基、2価の芳香族ヘテロ環基又はこれらの組合せからなる基を表す。n11、n12及びn15はそれぞれ独立に0~4の整数を表し、n13及びn14はそれぞれ独立に0~3の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002

    (一般式(II)中、X、X及びXはそれぞれ独立に窒素原子又は水素原子若しくは置換基が結合した炭素原子であり、X、X及びXを含む環はピリジン又はピリミジンである。L’は、単結合又はベンゼン環を表す。R~Rはそれぞれ独立にフッ素原子、メチル基、フェニル基、シアノ基、ピリジル基、ピリミジル基、シリル基、カルバゾリル基、又はtert-ブチル基を表す。n1~n5はそれぞれ独立に0又は1を表し、p’及びq’はそれぞれ独立に1又は2を表す。)
  2.  前記一般式(I)で表される化合物が、下記一般式(I-1)で表される化合物である、請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000003

    (一般式(I-1)中、R11~R15、L、及びn11~n15は、一般式(I)におけるR11~R15、L、及びn11~n15と同義である。)
  3.  前記一般式(I)で表される化合物が、下記一般式(I-2)で表される化合物である、請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000004

    (一般式(I-2)中、R11~R15、L、及びn11~n15は、一般式(I)におけるR11~R15、L、及びn11~n15と同義である。)
  4.  R11~R15がそれぞれ独立にアリール基又は芳香族ヘテロ環基である、請求項1~3のいずれか1項に記載の有機電界発光素子。
  5.  Lがアリーレン基である、請求項1~4のいずれか1項に記載の有機電界発光素子。
  6.  前記発光層が、燐光発光材料を少なくとも1つ含有する、請求項1~5のいずれか1項に記載の有機電界発光素子。
  7.  前記発光層、及び前記陽極と前記陰極の間に存在するその他の有機層のうちいずれか少なくとも1層が溶液塗布プロセスにより形成された、請求項1~6のいずれか1項に記載の有機電界発光素子。
  8.  請求項1~6のいずれか1項に記載の有機電界発光素子を用いた発光装置。
  9.  請求項1~6のいずれか1項に記載の有機電界発光素子を用いた表示装置。
  10.  請求項1~6のいずれか1項に記載の有機電界発光素子を用いた照明装置。
PCT/JP2011/065716 2010-07-09 2011-07-08 有機電界発光素子 WO2012005361A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137003189A KR20130044317A (ko) 2010-07-09 2011-07-08 유기 전계 발광 소자
US13/808,904 US9907140B2 (en) 2010-07-09 2011-07-08 Organic electroluminescent element
KR1020187015856A KR20180065036A (ko) 2010-07-09 2011-07-08 유기 전계 발광 소자
KR1020197013243A KR20190053287A (ko) 2010-07-09 2011-07-08 유기 전계 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-157353 2010-07-09
JP2010157353A JP4751954B1 (ja) 2010-07-09 2010-07-09 有機電界発光素子

Publications (1)

Publication Number Publication Date
WO2012005361A1 true WO2012005361A1 (ja) 2012-01-12

Family

ID=44597095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065716 WO2012005361A1 (ja) 2010-07-09 2011-07-08 有機電界発光素子

Country Status (4)

Country Link
US (1) US9907140B2 (ja)
JP (1) JP4751954B1 (ja)
KR (3) KR20130044317A (ja)
WO (1) WO2012005361A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133653A1 (ja) * 2011-03-31 2012-10-04 富士フイルム株式会社 電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置
WO2012133644A1 (ja) * 2011-03-31 2012-10-04 富士フイルム株式会社 有機電界発光素子、並びに、該素子を用いた発光装置、表示装置、照明装置及び該素子用の化合物
WO2014122933A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 有機エレクトロルミネッセンス素子
CN104871334B (zh) * 2012-12-27 2017-03-08 佳能株式会社 有机发光元件

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5735241B2 (ja) * 2010-09-08 2015-06-17 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子及び電荷輸送材料
CN103380508B (zh) 2011-11-22 2017-09-08 出光兴产株式会社 芳香族杂环衍生物、有机电致发光元件用材料以及有机电致发光元件
JP6088979B2 (ja) 2011-11-22 2017-03-01 出光興産株式会社 芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
KR101431645B1 (ko) * 2012-06-26 2014-08-20 롬엔드하스전자재료코리아유한회사 발광층 및 이를 포함하는 유기 전계 발광 소자
CN105473569B (zh) 2013-11-13 2021-01-01 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
CN104795503B (zh) * 2014-01-16 2018-07-20 三星显示有限公司 有机发光装置
KR102328675B1 (ko) * 2014-07-24 2021-11-19 삼성디스플레이 주식회사 유기 발광 소자
JP6640735B2 (ja) 2014-11-28 2020-02-05 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子および電子機器
JP6657895B2 (ja) * 2015-12-10 2020-03-04 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
EP3398945B1 (en) * 2017-05-04 2022-11-02 Samsung Display Co., Ltd. Pyrimidinyl derivatives and their use in optoelectronic devices
JP2022075556A (ja) 2020-11-06 2022-05-18 住友化学株式会社 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142083A1 (ja) * 2006-06-02 2007-12-13 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2009021126A2 (en) * 2007-08-08 2009-02-12 Universal Display Corporation Benzo-fused thiophene or benzo-fused furan compounds comprising a triphenylene group

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998595B2 (en) * 2001-02-14 2011-08-16 Sanyo Electric Co., Ltd. Organic electroluminescent device, luminescent material and organic compound
TWI428053B (zh) * 2004-02-09 2014-02-21 Idemitsu Kosan Co Organic electroluminescent element
JP4864476B2 (ja) * 2006-02-14 2012-02-01 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2009030981A2 (en) * 2006-12-28 2009-03-12 Universal Display Corporation Long lifetime phosphorescent organic light emitting device (oled) structures
KR20160140980A (ko) * 2008-06-30 2016-12-07 유니버셜 디스플레이 코포레이션 황 함유 그룹을 포함하는 정공 수송 물질
JP5530087B2 (ja) * 2008-10-17 2014-06-25 ユー・ディー・シー アイルランド リミテッド 発光素子
JP4930497B2 (ja) 2008-12-09 2012-05-16 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP4523992B1 (ja) * 2009-07-31 2010-08-11 富士フイルム株式会社 有機電界発光素子
JP4474493B1 (ja) * 2009-07-31 2010-06-02 富士フイルム株式会社 有機電界発光素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142083A1 (ja) * 2006-06-02 2007-12-13 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2009021126A2 (en) * 2007-08-08 2009-02-12 Universal Display Corporation Benzo-fused thiophene or benzo-fused furan compounds comprising a triphenylene group

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133653A1 (ja) * 2011-03-31 2012-10-04 富士フイルム株式会社 電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置
WO2012133644A1 (ja) * 2011-03-31 2012-10-04 富士フイルム株式会社 有機電界発光素子、並びに、該素子を用いた発光装置、表示装置、照明装置及び該素子用の化合物
JP2012216817A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 有機電界発光素子、並びに、該素子を用いた発光装置、表示装置、照明装置及び該素子用の化合物
JP2012216818A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置
CN104871334B (zh) * 2012-12-27 2017-03-08 佳能株式会社 有机发光元件
US10038152B2 (en) 2012-12-27 2018-07-31 Canon Kabushiki Kaisha Organic light-emitting element
WO2014122933A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 有機エレクトロルミネッセンス素子
JPWO2014122933A1 (ja) * 2013-02-08 2017-01-26 ソニー株式会社 有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
JP4751954B1 (ja) 2011-08-17
US20130207540A1 (en) 2013-08-15
KR20190053287A (ko) 2019-05-17
JP2012019173A (ja) 2012-01-26
KR20130044317A (ko) 2013-05-02
KR20180065036A (ko) 2018-06-15
US9907140B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
JP4751954B1 (ja) 有機電界発光素子
JP5906114B2 (ja) 電荷輸送材料、有機電界発光素子、発光装置、表示装置および照明装置
KR101789708B1 (ko) 유기 전계 발광 소자
JP4741028B1 (ja) 有機電界発光素子
JP5620125B2 (ja) 有機電界発光素子
JP4729643B1 (ja) 有機電界発光素子
JP4691611B1 (ja) 有機電界発光素子
WO2012015017A1 (ja) 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材料
JP6014304B2 (ja) 有機電界発光素子
JP4729641B1 (ja) 有機電界発光素子
WO2011086861A1 (ja) 電荷輸送材料及び有機電界発光素子
JP4637270B1 (ja) 有機電界発光素子
WO2012014696A1 (ja) 有機電界発光素子及びp-ジシアノベンゼン構造を有する化合物
WO2012050008A1 (ja) 有機電界発光素子及び電荷輸送材料
JP5990385B2 (ja) 化合物、有機電界発光素子用材料、電荷輸送材料、有機電界発光素子
JP6212098B2 (ja) 有機電界発光素子
JP4637271B1 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137003189

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13808904

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11803695

Country of ref document: EP

Kind code of ref document: A1