WO2012005092A1 - 通信制御装置、通信制御方法、通信システム及び通信装置 - Google Patents

通信制御装置、通信制御方法、通信システム及び通信装置 Download PDF

Info

Publication number
WO2012005092A1
WO2012005092A1 PCT/JP2011/063657 JP2011063657W WO2012005092A1 WO 2012005092 A1 WO2012005092 A1 WO 2012005092A1 JP 2011063657 W JP2011063657 W JP 2011063657W WO 2012005092 A1 WO2012005092 A1 WO 2012005092A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
service
secondary usage
usage node
channel
Prior art date
Application number
PCT/JP2011/063657
Other languages
English (en)
French (fr)
Inventor
亮 澤井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US13/807,898 priority Critical patent/US9078243B2/en
Priority to CN201180032588.3A priority patent/CN102960010B/zh
Priority to EP11803428.9A priority patent/EP2592856B1/en
Publication of WO2012005092A1 publication Critical patent/WO2012005092A1/ja
Priority to US14/696,941 priority patent/US9380575B2/en
Priority to US15/167,555 priority patent/US9999085B2/en
Priority to US15/986,604 priority patent/US10368385B2/en
Priority to US16/428,806 priority patent/US10517131B2/en
Priority to US16/670,826 priority patent/US10764950B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • the present disclosure relates to a communication control device, a communication control method, a communication system, and a communication device.
  • CPC Circuit Pilot Channel
  • Non-Patent Document 2 recommends that a data server be installed that receives administrator information, location information, and the like from a secondary usage node that intends to provide a secondary communication service and stores the information in a database. ing.
  • the data server specifies a channel that can be provided for the secondary usage in response to a request from the secondary usage node, and notifies the secondary usage node of the specified channel. By using the channel notified from the data server in this way, the secondary usage node prevents interference with the primary communication service.
  • the technology according to the present disclosure enables a new and improved communication control device, communication control method, communication system, and communication that enables a configuration for secondary use to be adjusted between a plurality of secondary communication services.
  • the device is to be provided.
  • a communication control apparatus that controls communication by one or more secondary usage nodes that provide a secondary communication service using a portion of a frequency band assigned to the primary communication service, Service area information for estimating a service area for a secondary communication service provided by the secondary usage node from each secondary usage node, and access method information indicating a radio access scheme usable by the secondary usage node
  • a communication unit that receives the service area, a storage unit that stores the service area information and the access method information received by the communication unit, and a service area of two or more secondary communication services using the service area information On the basis of the positional relationship between the service areas estimated by the estimation unit, the estimation unit, and the access method information.
  • a control unit that notifies a secondary access node that provides the secondary communication service of a recommended radio access scheme or a recommended channel for at least one of the two or more secondary communication services. Is provided.
  • the service area information includes the position of the secondary usage node that provides the corresponding secondary communication service, the maximum transmission power applied to the secondary usage node, and the height of the antenna of the secondary usage node. Data may be included.
  • the communication unit further receives permission channel information indicating a channel that the secondary usage node is permitted to use from the secondary usage node, and the control unit selects a channel recommended for each secondary usage node.
  • the channel may be selected from the channels represented by the permitted channel information received from the secondary usage node.
  • control unit is a wireless access method that can be used by two secondary usage nodes that respectively provide the two secondary communication services when the service areas of the two secondary communication services overlap. May be recommended to use the common wireless access method.
  • control unit causes the communication unit to transmit a synchronization signal to the two secondary usage nodes when the other secondary usage node is not included in one service area of the two secondary communication services. May be.
  • control unit is a wireless access method that can be used by two secondary usage nodes that respectively provide the two secondary communication services when the service areas of the two secondary communication services overlap. May be recommended to a secondary usage node that provides the other secondary communication service, using a channel different from the channel used by one secondary communication service.
  • control unit when the service areas of the two secondary communication services do not overlap and the level of mutual interference between the two secondary communication services does not exceed the allowable interference level
  • the use of a common channel may be recommended to the two secondary usage nodes that respectively provide the two secondary communication services.
  • control unit in response to a request from the secondary usage node that has detected the interference between the secondary communication services, the secondary usage node or other secondary usage in which the secondary usage node and the service area overlap.
  • the node may be notified of a recommended radio access scheme or a recommended channel.
  • control unit in response to a request from the secondary usage node for expansion of the service area, the secondary usage node or another secondary usage that can use the radio access method common to the secondary usage node
  • the node may be notified of a recommended radio access scheme or a recommended channel.
  • control unit may notify a recommended channel to the secondary usage node in response to a request from the secondary usage node that requests bandwidth expansion.
  • control unit may preferentially recommend a channel with no transmission power limitation.
  • communication control for controlling communication by one or more secondary usage nodes that provide a secondary communication service using a part of a frequency band allocated to the primary communication service.
  • a service area information for estimating a service area for a secondary communication service provided by the secondary usage node from each secondary usage node, and a radio access method usable by the secondary usage node Receiving the access method information indicating, storing the received service area information and the access method information, and estimating service areas of two or more secondary communication services using the service area information And two or more secondary communication services based on the estimated positional relationship between the service areas and the access method information.
  • the recommended radio access scheme or recommended channel for one even without the notifying the secondary usage node providing the secondary communication service, the communication control method comprising is provided.
  • one or more secondary usage nodes that provide a secondary communication service using a part of a frequency band allocated to the primary communication service and the one or more secondary usages
  • a communication system including a communication control device for controlling communication by a node, wherein the communication control device estimates a service area for a secondary communication service provided by the secondary usage node from each secondary usage node.
  • the communication control device estimates a service area for a secondary communication service provided by the secondary usage node from each secondary usage node.
  • the service area information and the access method information representing the wireless access method usable by the secondary usage node, and the service area information and the access method information received by the communication unit
  • an estimation unit that estimates service areas of two or more secondary communication services using the service area information, and the estimation unit.
  • the recommended wireless access method or recommended channel for at least one of the two or more secondary communication services is assigned to the secondary communication.
  • a communication system comprising: a secondary usage control unit that provides a secondary communication service to one or more terminal devices using the recommended radio access scheme or the recommended channel.
  • a communication apparatus that provides a secondary communication service using a part of a frequency band assigned to the primary communication service, the secondary communication service provided by the communication apparatus.
  • a communication unit for transmitting service area information for estimating a service area of the mobile station and access method information representing a wireless access method usable by the communication device to another device, and the second estimated using the service area information. Based on the positional relationship between the service area of the next communication service and the service area of the other secondary communication service and the access method information, the wireless access method or the recommended channel recommended by the other device is used.
  • a communication device including a secondary usage control unit that provides the secondary communication service to two or more terminal devices.
  • the communication control device As described above, according to the communication control device, the communication control method, the communication system, and the communication device according to the present disclosure, it is possible to adjust the configuration for secondary use among a plurality of secondary communication services. .
  • FIG. 1 is an explanatory diagram for explaining an overview of a communication system according to an embodiment. Referring to FIG. 1, a primary usage node 10, secondary usage nodes 20a and 20b, a data server 40, and a communication control device 100 are shown.
  • the primary usage node 10 is a node that transmits and receives a radio signal for a primary communication service using a pre-assigned frequency band. However, the primary usage node 10 does not necessarily use all the allocated frequency bands. In the example of FIG. 1, frequency bands including channels F1, F2, and F3 are allocated, but the primary usage node 10 uses only channel F1.
  • the primary communication service may be any communication service including, for example, a digital TV broadcast service, a satellite communication service, or a mobile communication service.
  • the primary usage node 10 may correspond to a TV broadcast station.
  • the primary usage node 10 can correspond to a base station.
  • the boundary B01 is an outer edge of the service area of the primary communication service provided by the primary usage node 10.
  • a terminal device (not shown) located inside the boundary B01 can receive a primary communication service provided by the primary usage node 10.
  • the boundary B02 is an outer edge of the guard area provided around the service area of the primary communication service.
  • the guard area is a buffer zone provided between the service area of the primary communication service and a so-called white space. Due to the presence of the guard area, even when the frequency band is secondarily used in the white space, the possibility that a failure such as interference occurs in the terminal device located inside the service area is reduced.
  • the space between the boundary B02 and the boundary B03 is a so-called white space.
  • the secondary usage nodes 20a and 20b are located in this white space.
  • Each of the secondary usage nodes 20a and 20b is a communication device that provides a secondary communication service using a part of the frequency band assigned to the primary communication service.
  • the alphabet at the end of the code is omitted and these are collectively referred to as the secondary usage node 20. To do.
  • the secondary usage node 20 determines whether or not secondary usage is possible according to a predetermined spectrum policy, receives a channel from the data server 40, and then provides secondary communication services to terminal devices (not shown) located in the vicinity. I will provide a.
  • the secondary usage node 20 may be located in the service area of the primary communication service or in the periphery of the service area.
  • a secondary usage node may be provided in the service area of the primary communication service in order to cover a spectrum hole generated in the service area due to an influence of shadowing (fading) or fading.
  • the secondary communication service typically refers to an additional or alternative communication service provided using a part or all of the frequency band allocated to the primary communication service.
  • the primary communication service and the secondary communication service may be different types of communication services or the same type of communication services.
  • the different types of communication services are, for example, two or more that can be selected from any communication service such as digital TV broadcast service, satellite communication service, mobile communication service, wireless LAN access service, or P2P (Peer To Peer) connection service. Refers to different types of communication services.
  • the same type of communication service includes, for example, a service by a macro cell provided by a communication carrier in a mobile communication service and a service by a femto cell operated by a user or an MVNO (Mobile Virtual Network Operator).
  • the relationship between can be included.
  • the same type of communication service covers a service provided by a base station and a spectrum hall in a communication service conforming to WiMAX, LTE (Long Term Evolution) or LTE-A (LTE-Advanced). Therefore, the relationship between services provided by a relay station (relay node) may also be included.
  • the secondary communication service may use a plurality of fragmented frequency bands aggregated using a spectrum aggregation technique.
  • the secondary communication service is provided in the service area provided by the base station, and is provided by the femtocell group, the relay station group, and the small and medium base station group that provides a smaller service area than the base station. It may be a communication service.
  • the gist of each embodiment described in the present specification is widely applicable to all kinds of secondary usage forms.
  • the data server 40 is a server having a database that receives node information including administrator information and position information from the secondary usage node 20 and accumulates the received node information.
  • the data server 40 can be connected to the primary usage node 10 and the secondary usage node 20 via, for example, the Internet or a backbone network of a primary communication service.
  • the data server 40 accumulates the above-described node information received from the secondary usage node 20.
  • the data server 40 provides the secondary usage node 20 with information such as a channel that can be provided for secondary usage, a maximum transmission power, and a spectrum mask, for example. . Thereby, the secondary usage node 20 can start the secondary communication service.
  • FIG. 2 is a sequence diagram illustrating an example of a process flow between the secondary usage node 20 and the data server 40 illustrated in FIG.
  • the secondary usage node 20 that intends to secondary use the frequency band assigned to the primary communication service first transmits node information to the data server 40 and requests registration of the node information (step). S02). Then, the data server 40 registers the node information received from the secondary usage node 20 in the database (step S04).
  • the node information registered in the database includes, for example, the following information: Regulation ID: An ID given when authenticated as a device that can be used for secondary use. It may be included in the node information in the case of secondary use of the TV white space.
  • Regulation ID An ID given when authenticated as a device that can be used for secondary use. It may be included in the node information in the case of secondary use of the TV white space.
  • -Manufacturer ID Manufacturer ID
  • Position data represents the position of a device that is dynamically measured using a positioning means such as GPS or is fixedly held.
  • -Antenna height The height of the antenna of the device. For example, HAAT (Height Above Average Terrain of the tx) can be used.
  • Administrator information Includes the name, address, email address, etc. of the device owner.
  • the data server 40 transmits a confirmation signal (confirmation) for confirming that the registration of the node information is completed to the secondary usage node 20 (step S06).
  • the secondary usage node 20 requests permission for secondary usage from the data server 40 (step S08).
  • the data server 40 determines a channel that can be provided to the secondary usage node 20 (for example, an unused part of the frequency band assigned to the primary communication service), and there is a channel that can be provided.
  • the secondary usage node 20 is permitted to use the secondary usage.
  • the channel that can be provided to the secondary usage node 20 is a restricted channel that imposes a limitation on the transmission power that can be used by the secondary usage node 20 to be lower than the general transmission power.
  • the data server 40 may preferentially provide the normal channel to the secondary usage node 20.
  • the data server 40 may preferentially provide the normal channel to the secondary usage node 20.
  • a maximum transmission power of 100 m [W] is allowed.
  • Such a channel can be treated as a normal channel.
  • the maximum transmission power is limited to 40 m [W].
  • Such a channel can be treated as a restricted channel.
  • the data server 40 provides, for example, the following information to the secondary usage node 20: Maximum transmission power: The maximum transmission power that the secondary usage node 20 is allowed to radiate. Allowed channel information: a list of channel numbers that identify channels that can be provided to the secondary usage node 20.
  • the frequency band allocated to the primary communication service may be divided into a plurality of channels in advance, and channel numbers may be assigned to the individual channels. Note that the center frequency of the channel may be used instead of the channel number.
  • the grant channel information may also include information representing channel classification for each channel (whether regular channel or restricted channel, etc.). • Regulatory Information: may contain rules for secondary use such as spectrum masks.
  • grant information may contain rules for secondary use such as spectrum masks.
  • the secondary usage node 20 can start secondary usage of the frequency band allocated to the primary communication service.
  • the communication control device 100 is a communication device that controls communication by one or more secondary usage nodes 20. Similarly to the data server 40, the communication control apparatus 100 can be connected to the primary usage node 10 and the secondary usage node 20 via, for example, the Internet or a backbone network of a primary communication service. Note that the communication control device 100 may be configured using the same physical device as the database 40. As will be described in more detail in the next section, the communication control device 100 uses the node information of the secondary usage node 20 and the information provided by the data server 40 to provide the secondary communication service provided by each secondary usage node 20. The configuration of the radio access method and channel is adjusted among a plurality of secondary communication services.
  • FIG. 3 is a block diagram illustrating an example of the configuration of the communication control apparatus 100 according to the present embodiment.
  • the communication control apparatus 100 includes a communication unit 110, a storage unit 120, an estimation unit 130, and a control unit 140.
  • the communication unit 110 is a communication interface for the communication control device 100 to communicate with the secondary usage node 20. Further, the communication unit 110 may further be able to communicate with the data server 40. In the present embodiment, the communication unit 110 receives a secondary usage registration request from, for example, each secondary usage node 20 that is permitted secondary usage.
  • Secondary registration requests include, for example, the following information: Regulation ID: One piece of information that can be registered in the data server as node information. Manufacturer ID: One piece of information that can be registered in the data server as node information. Location data: One piece of information that can be registered in the data server as node information. Antenna height: One piece of information that can be registered in the data server as node information. Maximum transmission power: One of information that can be provided from the data server as permission information. Authorization channel information: One of information that can be provided from the data server as authorization information. Regulation information: One of information that can be provided from the data server as permission information. Used channel information: The channel number that the secondary usage node intends to use for the secondary communication service among the channels included in the list of permitted channel information.
  • Access method information A list of access method numbers representing radio access methods that can be used (and currently used) by the secondary usage node. Individual radio access schemes such as IEEE 802.11af, 11g or 11n, IEEE 802.22, IEEE 802.16, or LTE or LTE-A may be pre-numbered.
  • the access method information may include a bit string or a code value indicating whether or not each wireless access method is supported, instead of a list of access method numbers. Further, the access method information may include information indicating whether or not a protocol for coexistence of communication services described later can be used.
  • the communication control apparatus 100 estimates the service area for the secondary communication service provided by the secondary usage node 20 using the position data, antenna height, and maximum transmission power among these pieces of information. Treat as information.
  • the information listed here is only an example. That is, the secondary usage registration request transmitted from the secondary usage node 20 to the communication control apparatus 100 may not include a part of the information described above, or may further include additional information. Good. Further, the communication control apparatus 100 may acquire a part of the information described above from the data server 40 instead of the secondary usage node 20.
  • the communication unit 110 stores the information received from each secondary usage node 20 in the storage unit 120. Further, the communication unit 110 receives a request for adjustment from the secondary usage node 20 that requests adjustment between secondary communication services. The adjustment request from the secondary usage node 20 is processed by the control unit 140 described later.
  • the storage unit 120 is realized using a storage medium such as a hard disk or a semiconductor memory, for example.
  • the storage unit 120 stores information included in the registration request received by the communication unit 110.
  • the service area information including the position data of the secondary usage node 20, the antenna height, and the maximum transmission power is used for estimation of the service area by the estimation unit 130 described later. obtain.
  • the permitted channel information, the used channel information, and the access method information can be used for adjustment between secondary communication services by the control unit 140 described later.
  • the estimation unit 130 uses the service area information stored in the storage unit 120, that is, the secondary usage service provided by the secondary usage node 20 using the position data, antenna height, and maximum transmission power of the secondary usage node 20. Estimate the service area. For example, the estimation unit 130 approximates the service area of the secondary communication service provided by the secondary usage node 20 as a circular area centered on the position of the secondary usage node 20.
  • the first method is the propagation described in “Method for point-to-area predictions for terrestrial services in the frequency range 30 mhz to 3000 mhz” (International Telecommunications Commission (ITU), RECOMMENDAION ITU-R P1546-3, 2007). This is a method that uses road curves. In this case, a statistical curve (propagation path curve) based on an actual measurement value for deriving a communication distance (a distance at which communication is possible at a constant place rate and a constant time rate) from the antenna height and the electric field strength is Stored by the storage unit 120.
  • ITU International Telecommunications Commission
  • RECOMMENDAION ITU-R P1546-3 2007
  • the estimation unit 130 converts the maximum transmission power of the secondary usage node 20 into electric field strength, and the communication distance corresponding to the antenna height and electric field strength of the secondary usage node 20 is stored in the storage unit 120. Obtained from the propagation path curve. This communication distance is the radius of the service area of the secondary communication service provided by the secondary usage node 20.
  • the second method for estimating the radius of the service area is the evaluation formula in the urban area model of Okumura-Kashiwa Curve (see “Digital Wireless Transmission Technology” (Seiichi Sampei, Pearson Education Japan, pp.16-19)). It is a technique that uses.
  • the estimation unit 130 calculates the maximum allowable path loss from the maximum transmission power of the secondary usage node 20 and the minimum reception sensitivity of the receiver. Then, the estimation unit 130 calculates the communication distance by substituting the calculated path loss and antenna height into the evaluation formula. This communication distance is the radius of the service area of the secondary communication service provided by the secondary usage node 20.
  • the estimation unit 130 causes the storage unit 120 to store values representing the service area of the secondary communication service for each secondary usage node 20 estimated in this way (for example, the circular center position and radius).
  • the control unit 140 Based on the positional relationship between the service areas estimated by the estimation unit 130 and the radio access scheme that can be used by the secondary usage node 20, the control unit 140 configures a configuration for secondary usage between secondary communication services. adjust.
  • the adjustment of the configuration for secondary use between the secondary communication services is, for example, wireless communication with respect to at least one secondary usage node 20 from the viewpoint of, for example, expanding secondary usage opportunities or improving frequency usage efficiency.
  • the positional relationship between service areas that the control unit 140 uses as a basis for coordination between secondary communication services is, for example, three classes illustrated in FIGS. 4 to 6 (referred to as class A, class B, and class C, respectively). being classified.
  • Class A Referring to FIG. 4, an example of the positional relationship between service areas belonging to class A is shown.
  • the secondary usage node 20b is included in the service area A11 of the secondary usage node 20a.
  • the secondary usage node 20a is included in the service area A12 of the secondary usage node 20b.
  • the radio waves transmitted by the adjacent secondary usage node 20a and secondary usage node 20b may cause interference with each other, resulting in a failure in secondary usage.
  • the case where only one of the two secondary usage nodes 20 is included in the other service area may be included in this class A.
  • the control unit 140 further includes two secondary usage nodes 20a and 20b that provide the two secondary communication services, respectively. It is determined whether or not the available wireless access methods are common. For example, when the secondary usage node 20a can use the radio access schemes R1 and R2 and the secondary usage node 20b can use the radio access scheme R1, it is determined that the radio access scheme R1 is common. . When the wireless access methods that can be used are common, the control unit 140 recommends the secondary usage nodes 20a and 20b to use the common wireless access method and the common channel.
  • a communication service can coexist between the secondary usage nodes 20a and 20b, or a mesh network can be formed to operate the secondary communication service without causing interference.
  • IEEE 802.22, Ecma 392, 11s of the IEEE 802.11 family, and IEEE. 16j of the 802.16 (WiMax) family supports a mesh protocol or a protocol for exchanging scheduling information. Accordingly, communication services can coexist between communication services using these wireless access methods.
  • the IEEE 802.11 family may support a function for obtaining resource usage information of an adjacent network via an access point or a terminal by a method such as a beacon request using a public action frame. In that case as well, communication services can coexist in the same manner.
  • the control unit 140 when the combination of the wireless access methods is a combination that can coexist with each other, Communication services can coexist. This also applies to other classes described later.
  • the control unit 140 uses the second channel different from the first channel used by one secondary communication service, To the secondary usage node 20a or 20b that provides the secondary communication service. At this time, if the second channel is a channel not adjacent to the first channel on the frequency axis, interference due to out-of-band radiation is also prevented, which is more desirable. Accordingly, the secondary communication service by the secondary usage node 20a and the secondary communication service by the secondary usage node 20b can be operated on different channels without causing interference with each other.
  • Class B Referring to FIG. 5, an example of the positional relationship between service areas belonging to class B is shown.
  • the secondary usage node 20b is not included in the service area A11 of the secondary usage node 20a, and the secondary usage node 20a is not included in the service area A12 of the secondary usage node 20b.
  • radio waves may interfere in the terminal device 22a located in the overlapping area, and there may be a partial failure in secondary usage.
  • the control unit 140 when the service areas of two secondary communication services are in a class B positional relationship, the control unit 140 further includes two secondary usage nodes 20a and 20b that provide the two secondary communication services, respectively. It is determined whether or not the available wireless access methods are common. And when the radio
  • the control unit 140 supports the coexistence of communication services or the formation of a mesh network by causing the communication unit 110 to transmit synchronization signals to the two secondary usage nodes 20a and 20b. Further, as in the case of class A, the control unit 140, when the wireless access methods that can be used are different and they cannot coexist, is different from the channel used by one of the secondary communication services (preferably Is not recommended for the secondary usage node 20a or 20b that provides the other secondary communication service.
  • Class C Referring to FIG. 6, an example of the positional relationship between service areas belonging to class C is shown.
  • the service area A11 of the secondary usage node 20a and the service area A12 of the secondary usage node 20b do not overlap.
  • the control unit 140 transmits a common channel to the two secondary usage nodes 20a and 20b that provide the two secondary communication services, regardless of the available radio access methods. Recommended to use. Thereby, it is possible to widen the room for channel selection for the secondary usage node 20 that provides the third secondary communication service (not shown).
  • control unit 140 is preferably controlled to share communication resources in the same manner as class A and class B described above.
  • control unit 140 selects, for example, a channel recommended for each secondary usage node 20 from the channels represented by the permitted channel information received from the secondary usage node 20. This means that adjustments between secondary communication services by the communication control device 100 can be made within the scope of regulations for secondary use (such as legal regulations in each country or regulations established between operators). I mean. Therefore, even if the secondary usage node 20 receives the notification from the communication control device 100 and changes the channel, there is no risk of causing interference to the primary communication service or other communication services that can be operated in the vicinity.
  • FIG. 7 is a block diagram illustrating an example of the configuration of the secondary usage node 20 according to the present embodiment.
  • the secondary usage node 20 may be a communication device that provides an arbitrary secondary communication service such as a small and medium base station, a wireless relay station, or a wireless access point. Therefore, the secondary usage node 20 may have various components depending on its role. However, in FIG. 7, only the components directly related to the present embodiment are shown. Referring to FIG. 7, the secondary usage node 20 includes a first communication unit 210, a second communication unit 220, a storage unit 230, and a secondary usage control unit 240.
  • the first communication unit 210 is a communication interface for the secondary usage node 20 to communicate between the data server 40 and the communication control device 100. For example, in response to control by the secondary usage control unit 240, the first communication unit 210 transmits the node information registration request described with reference to FIG. 2 to the data server 40 and receives node information registration confirmation. The first communication unit 210 transmits a secondary usage permission request to the data server 40 and receives permission information included in a response from the data server 40, for example, according to control by the secondary usage control unit 240. To do. Further, the first communication unit 210 transmits a request for adjustment between secondary communication services, which will be described in detail later, to the communication control apparatus 100, and a recommended service configuration transmitted from the communication control apparatus 100 as a result of the adjustment. Receive information about.
  • the second communication unit 220 is a communication interface for the secondary usage node 20 to provide a secondary communication service to surrounding terminal devices.
  • the radio access scheme supported by the second communication unit 220 may be any scheme such as IEEE802.11af, 11g or 11n, IEEE802.22 or LTE or LTE-A.
  • Access method information representing a wireless access method supported by the second communication unit 220 is stored in the storage unit 230 in advance.
  • the storage unit 230 is realized using a storage medium such as a hard disk or a semiconductor memory, for example.
  • the storage unit 230 stores in advance the node information described above that the secondary usage node 20 should register with the data server 40.
  • the storage unit 230 stores the above access method information in advance.
  • the storage unit 230 stores the permission information.
  • the secondary usage node 20 stores the channel number that the secondary usage control unit 240 intends to use for the secondary communication service as usage channel information.
  • the secondary usage control unit 240 controls a series of processes for secondary usage of the frequency band by the secondary usage node 20. For example, the secondary usage control unit 240 performs processing with the data server 40 illustrated in FIG. 2 via the first communication unit 210. Further, the secondary usage control unit 240 determines the necessity for adjustment between the secondary communication services, and transmits an adjustment request to the communication control apparatus 100 when adjustment is required.
  • the case where adjustment between secondary communication services is required refers to, for example, communication quality as expected due to interference between secondary communication services, although secondary usage has started according to permission from the data server 40 May not be obtained.
  • the case where adjustment between secondary communication services is required may include, for example, the case where expansion of a service area is desired in order to allow an unconnected terminal device to enter the secondary communication service.
  • the case where adjustment between secondary communication services is required may include, for example, a case where it is desired to expand a band by adding a channel.
  • An example of processing after the secondary usage control unit 240 transmits the adjustment request will be specifically described in the next section. Note that the communication control apparatus 100 may voluntarily perform adjustment between secondary communication services, for example, to improve frequency use efficiency without receiving a request for adjustment from the secondary usage node 20.
  • FIG. 8 is a sequence diagram illustrating an example of a flow of communication control processing between the communication control apparatus 100 and the secondary usage nodes 20a and 20b according to the present embodiment.
  • the registration of node information to the data server 40 by the secondary usage nodes 20a and 20b is completed, and permission for secondary usage to the secondary usage nodes 20a and 20b has already been given.
  • the secondary usage node 20b requests the communication control device 100 to register secondary usage (step S102).
  • the registration request transmitted from the secondary usage node 20b includes service area information and access method information for estimating a service area for the secondary communication service provided by the secondary usage node 20b.
  • the communication control apparatus 100 stores the information received from the secondary usage node 20b in the storage unit 120 (Step S104). And the communication control apparatus 100 transmits the confirmation signal (confirmation) which confirms that registration was complete
  • the secondary usage node 20a requests the communication control device 100 to register secondary usage (step S108).
  • the registration request transmitted from the secondary usage node 20a also includes service area information and access method information.
  • the communication control apparatus 100 stores the information received from the secondary usage node 20a in the storage unit 120 (Step S110). And the communication control apparatus 100 transmits the confirmation signal (confirmation) which confirms that registration was complete
  • the estimation unit 130 of the communication control apparatus 100 estimates the service area of each secondary communication service using the service area information received from each of the secondary usage nodes 20a and 20b (step S114). Note that the service area estimation process by the estimation unit 130 may be performed after a request for adjustment between secondary communication services in step S116.
  • the secondary usage node 20a requests the communication control device 100 to adjust between the secondary communication services (step S116). Instead of the secondary usage node requesting the communication control device 100 to adjust the secondary communication service, the communication control device 100 may spontaneously start the adjustment between the secondary communication services. Thereafter, the communication control apparatus 100 determines the configuration of the secondary communication service that should be recommended to the secondary usage node 20a or the other secondary usage node 20 (step S118). In the example of FIG. 8, the other secondary usage node 20 corresponds to the secondary usage node 20b. Then, the communication control apparatus 100 notifies a recommended service configuration (that is, a radio access scheme to be used or a channel to be used) to at least one of the secondary usage node 20a and the secondary usage node 20b ( Step S120).
  • a recommended service configuration that is, a radio access scheme to be used or a channel to be used
  • FIG. 9 is a flowchart illustrating an example of a service area estimation process performed by the communication control apparatus 100 in step S114 of FIG.
  • the estimation unit 130 of the communication control device 100 acquires the position, the maximum transmission power, and the antenna height of the secondary usage node 20 stored in the storage unit 120 (step S132).
  • the estimation unit 130 calculates the radius of the service area of the secondary communication service using the maximum transmission power and the antenna height of the secondary usage node 20 (step S134).
  • the estimation unit 130 is a service area of the secondary communication service provided by the secondary usage node 20, with the circular area having the radius calculated in step S ⁇ b> 134 centered on the position of the secondary usage node 20. (Step S136).
  • the estimation unit 130 may be based on an elliptical shape or a terrain instead of a circular shape. A service area having a complicated shape may be estimated.
  • the control unit 140 of the communication control apparatus 100 determines whether or not the service areas of the two secondary communication services provided by the secondary usage nodes 20a and 20b overlap (step). S151). Whether or not the service areas overlap may be determined based on, for example, whether or not the sum of the radii of the two service areas is smaller than the distance between the secondary usage nodes 20a and 20b. If it is determined that the service areas do not overlap, the process proceeds to step S170 in FIG. 10C. On the other hand, if it is determined that the service areas overlap, the process proceeds to step S152.
  • step S152 the positional relationship between the service areas of the two secondary communication services belongs to either class A or class B shown in FIGS.
  • the control unit 140 determines whether or not the wireless access methods that can be used by the two secondary usage nodes 20a and 20b are common (step S152). If it is determined that the available wireless access methods are not common, the process proceeds to step S161 in FIG. 10B. On the other hand, if it is determined that the available wireless access methods are common, the process proceeds to step S153.
  • step S153 the control unit 140 determines whether or not the trigger for the recommended service configuration determination process being executed is a secondary usage node (step S153). For example, when the recommended service configuration determination process is started when the communication control apparatus 100 receives a request for adjustment between secondary communication services from the secondary usage node 20a, the trigger of the recommended service configuration determination process is It is determined that the node is a secondary usage node. In that case, the process proceeds to step S161 in FIG. 10B. On the other hand, when the communication control apparatus 100 actively starts the recommended service configuration determination process, the process proceeds to step S154 because the process trigger is not the secondary usage node.
  • step S154 the control unit 140 determines whether or not the wireless access scheme currently used by the two secondary usage nodes 20a and 20b is common (step S154). If it is determined that the currently used wireless access method is common, the process proceeds to step S161 in FIG. 10B. On the other hand, if it is determined that the currently used wireless access method is not common, the process proceeds to step S155.
  • step S155 the control unit 140 determines whether the common radio access scheme currently used by the two secondary usage nodes 20a and 20b operates effectively (that is, in parallel without causing a failure). Determination is made (step S155). For example, when a wireless access method that makes it difficult to operate two systems in parallel in a situation where service areas overlap is used, the control unit 140 does not operate the common wireless access method effectively. It can be determined. In that case, the process proceeds to step S173 in FIG. 10C. On the other hand, if it is determined that the common wireless access scheme operates effectively, the process proceeds to step S156.
  • the control unit 140 recommends using a common radio access method and a common channel that can be used by the two secondary usage nodes 20a and 20b (step S156). Note that the control unit 140 preferentially uses a normal channel when there are a normal channel with no transmission power limitation and a limited channel with a transmission power limitation as recommended channels. May be recommended. Further, the control unit 140 determines whether or not it is necessary to supply a synchronization signal to the two secondary usage nodes 20a and 20b (step S157). For example, when one secondary usage node 20 is not included in the other service area, the positional relationship between the service areas of the two secondary communication services belongs to class B.
  • the control unit 140 can determine that the synchronization signal needs to be supplied to the two secondary usage nodes 20a and 20b.
  • step S157 If it is determined in step S157 that the synchronization signal needs to be supplied, the control unit 140 supplies the synchronization signal to the two secondary usage nodes 20a and 20b via the communication unit 110 (step S158). . On the other hand, when it is determined in step S157 that the supply of the synchronization signal is not necessary, the communication control apparatus 100 does not supply the synchronization signal to these nodes.
  • step S161 of FIG. 10B the control unit 140 determines whether there is a combination of radio access schemes that can be used by the two secondary usage nodes 20a and 20b and can coexist with each other on a common channel in the overlapping service area. It is determined whether or not (step S161).
  • the frame format in the standard specification of IEEE 802.22 is provided with “Coexistence Beacon Period” for exchanging information between a plurality of communication services.
  • the secondary usage nodes 20a and 20b use, for example, this “Coexistence Beacon Period” to exchange scheduling information or route information to form a mesh network or to provide control information so that scheduling timing does not overlap.
  • Two communication services can coexist by exchanging.
  • control unit 140 recommends using a channel that is shared with the wireless access method (step S162). On the other hand, if there is no combination of wireless access methods that can coexist, the process proceeds to step S163.
  • step S163 the control unit 140 determines whether different channels can be assigned to the two secondary communication services (step S163).
  • the control unit 140 recommends the use of the different channels to the secondary usage nodes 20a and 20b (step S164). For example, when the permitted channel information from the secondary usage nodes 20a and 20b includes both the channels F1 and F2, the channel F1 may be recommended for the secondary usage node 20a and the channel F2 may be recommended for the secondary usage node 20b.
  • the process proceeds to step S165.
  • step S165 the control unit 140 determines whether or not the communication resource can be shared by supporting the sharing of the communication resources of the two secondary communication services (step S165). For example, when a synchronization signal is supplied to the secondary usage nodes 20a and 20b and two communication services can coexist in a time division manner, it can be determined that communication resources can be shared. In that case, the process proceeds to step S167. On the other hand, if it is determined that communication resources cannot be shared, the process proceeds to step S166. In step S166, since the recommended service configuration is not found, the control unit 140 notifies the secondary usage node 20a that the recommended service configuration is not found.
  • the positional relationship between the service areas of the two secondary communication services belongs to class A or class B.
  • Communication resources can be shared.
  • a combination of radio access schemes includes, for example, a combination of OFDMA and CSMA.
  • the controller 140 recommends using different radio access schemes and a common channel (step S167). Thereafter, the control unit 140 exchanges information specifying a range of communication resources that can be shared between the secondary usage nodes 20a and 20b, and supplies the synchronization signal to the secondary usage nodes 20a and 20b, so that they are different from each other. Two communication services using the radio access method coexist.
  • step S170 the positional relationship between the service areas of the two secondary communication services belongs to the class C shown in FIG.
  • the control unit 140 determines whether or not the trigger for the recommended service configuration determination process being executed is a secondary usage node (step S170).
  • the trigger of the recommended service configuration determination process is the secondary usage node
  • the process proceeds to step S172.
  • the control unit 140 determines whether or not the mutual interference between the nodes of the two secondary communication services is below an acceptable level (step S171).
  • the control unit 140 estimates the interference level between the nodes of the two secondary communication services based on the transmission power of each secondary communication service and the path loss according to the distance between the nodes. At this time, a margin for absorbing the estimation error may be included in the estimation result of the interference level. Then, the control unit 140 compares the estimated interference level with an allowable interference level corresponding to the required communication quality (such as minimum SINR) of each secondary communication service. Based on the result, the control unit 140 can determine whether or not the mutual interference between the nodes is at an acceptable level. Instead, the node of the secondary communication service may measure the actual interference level, and the communication control apparatus 100 may receive the measurement result for comparison with the allowable interference level.
  • an allowable interference level such as minimum SINR
  • the node of the secondary communication service may report the result of comparison between the actual interference level and the allowable interference level to the communication control apparatus 100.
  • the process proceeds to step S172.
  • the control unit 140 recommends the use of a common channel to the secondary usage nodes 20a and 20b regardless of the radio access method (step S172).
  • the process proceeds to step S173.
  • step S173 the control unit 140 determines whether different channels can be assigned to the two secondary communication services (step S173).
  • the control unit 140 recommends the use of the different channels to the secondary usage nodes 20a and 20b (step S174).
  • step S174 the control unit 140 recommends the use of the different channels to the secondary usage nodes 20a and 20b.
  • the process proceeds to step S175.
  • step S175 the control unit 140 determines whether communication resources can be shared by supporting sharing of communication resources of two secondary communication services (step S175). If it is determined that the communication resource can be shared, the process proceeds to step S177. On the other hand, if it is determined that communication resources cannot be shared, the process proceeds to step S176. In step S176, since the recommended service configuration is not found, the control unit 140 notifies the secondary usage node 20a that the recommended service configuration is not found.
  • step S177 the control unit 140 recommends using different radio access schemes and a common channel (step S177). Thereafter, the control unit 140 exchanges information specifying the range of communication resources that can be shared between the secondary usage nodes 20a and 20b, and supplies a synchronization signal to the secondary usage nodes 20a and 20b. Two communication services are allowed to coexist in a divided manner.
  • the flow of the recommended service configuration determination process by the communication control apparatus 100 is not limited to the example shown in FIGS. 10A to 10C. That is, some of the processing steps shown in FIGS. 10A to 10C may be omitted or integrated, and additional steps may be added. Further, the order of the processing steps may be changed.
  • the example in which the communication control apparatus 100 adjusts the service configuration between two communication services has been mainly described. However, the present embodiment can be similarly applied to the case of adjustment between three or more communication services.
  • steps S156, S162, S164, S167, S172, S174, S177, etc. shown in FIGS. 10A to 10C when there are normal channels and restricted channels as recommended channels, normal channels Can be preferentially recommended. According to such a configuration, it is possible to maintain a high throughput of each secondary communication service while increasing frequency utilization efficiency by adjusting between the secondary communication services.
  • Typical scenario for communication control> The adjustment between the secondary communication services by the communication control apparatus 100 described above is useful in various scenarios. Hereinafter, five exemplary scenarios will be described.
  • FIG. 11A and 11B are explanatory diagrams for describing a first scenario of the communication control process. Referring to FIG. 11A, a primary usage node 10, secondary usage nodes 20a and 20b, and a communication control device 100 are shown.
  • the primary communication service provided by the primary usage node 10 is assigned a frequency band including channels F1, F2 and F3. Of these, the primary usage node 10 uses the channel F1. On the other hand, channels F2 and F3 are unused.
  • the secondary usage node 20a provides a secondary communication service using the radio access method R1 on the channel F2 with permission from a data server (not shown). Further, the secondary usage node 20b provides a secondary communication service using a radio access scheme (RAT) R2 on the channel F2 with permission from a data server (not shown).
  • RAT radio access scheme
  • a signal transmitted from the secondary usage node 20b causes interference on the secondary usage node 20a.
  • the secondary usage node 20a detects the interference and reports the interference to the communication control apparatus 100 (SIG1a). This report implies a request for coordination between secondary communication services.
  • the communication control apparatus 100 recommends that, for example, the channel used by the secondary usage node 20a be changed from F2 to F3 according to the recommended service configuration determination process illustrated in FIGS. 10A to 10C (SIG1b). . Accordingly, the secondary usage node 20a can change the channel for secondary usage to F3, avoid interference, and continue the secondary usage satisfactorily.
  • [4-2. Second scenario] 12A and 12B are explanatory diagrams for describing the second scenario of the communication control process. Referring to FIG. 12A, the primary usage node 10, the secondary usage nodes 20a and 20b, and the communication control device 100 are shown again.
  • the frequency band including the channels F1, F2, and F3 is assigned to the primary communication service provided by the primary usage node 10.
  • the primary usage node 10 uses the channel F1.
  • the channel F2 is not particularly used.
  • the secondary usage node 20a provides a secondary communication service using the radio access method R1 on the channel F2 with permission from a data server (not shown). However, the secondary usage node 20a can use the radio access scheme R2 in addition to the radio access scheme R1. Further, the secondary usage node 20b provides a secondary communication service using the radio access method R2 on the channel F2 with permission from a data server (not shown). However, in this case, since the distance between the secondary usage nodes 20a and 20b is short, for example, a signal transmitted from the secondary usage node 20b causes interference on the secondary usage node 20a. The secondary usage node 20a detects such interference and reports that the interference has occurred to the communication control apparatus 100 (SIG2a).
  • SIG2a communication control apparatus 100
  • the communication control apparatus 100 recommends, for example, the secondary usage node 20a to switch the radio access method from R1 to R2 in accordance with the recommended service configuration determination process illustrated in FIGS. 10A to 10C (SIG2b).
  • the secondary usage node 20a forms a mesh network using the radio access scheme R2 and the common channel F2 common to the secondary usage node 20b, and avoids interference and continues secondary usage well. be able to.
  • FIG. 13A and 13B are explanatory diagrams for explaining a third scenario of the communication control process. Referring to FIG. 13A, the primary usage node 10, the secondary usage nodes 20a and 20b, and the communication control device 100 are shown again.
  • the primary communication service provided by the primary usage node 10 is assigned a frequency band including channels F1, F2, and F3. Of these, the primary usage node 10 uses the channel F1. On the other hand, channels F2 and F3 are unused.
  • the secondary usage node 20a provides a secondary communication service using the radio access method R2 on the channel F2 with permission from a data server (not shown). Further, the secondary usage node 20b provides a secondary communication service using the radio access method R1 on the channel F3 with permission from a data server (not shown). However, the secondary usage node 20b can use the radio access scheme R2 in addition to the radio access scheme R1. In this case, since the channels used by the secondary usage nodes 20a and 20b are different, no large interference occurs between the two secondary communication services. However, for example, the terminal device 22a located in the vicinity of the secondary usage node 20a and the terminal device 22b located in the vicinity of the secondary usage node 20b cannot communicate with each other because the communication services to which they belong are different. Therefore, the secondary usage node 20a requests the communication control device 100 to expand the network according to the communication needs between these terminal devices (SIG3a). This network expansion request means a request for coordination between secondary communication services.
  • the communication control apparatus 100 recommends switching the radio access method from R1 to R2 and using the channel F2 for the secondary usage node 20b, for example, according to the recommended service configuration determination process illustrated in FIGS. 10A to 10C. (SIG3b). Further, the communication control apparatus 100 supplies a synchronization signal (SYNC) for synchronizing the secondary usage nodes 20a and 20b. Thereby, the secondary usage nodes 20a and 20b form a mesh network using the common radio access scheme R2 and the common channel F2. As a result, the secondary usage nodes 20a and 20b relay signals transmitted and received between the terminal devices 22a and 22b, and communication between the terminal devices 22a and 22b becomes possible.
  • SIG3b recommended service configuration determination process illustrated in FIGS. 10A to 10C.
  • FIG. 14A and 14B are explanatory diagrams for describing a fourth scenario of the communication control process.
  • a primary usage node 10 secondary usage nodes 20a, 20b and 20c, and a communication control device 100 are shown.
  • the primary communication service provided by the primary usage node 10 is assigned a frequency band including channels F1, F2, and F3. Of these, the primary usage node 10 uses the channel F1. On the other hand, channels F2 and F3 are unused.
  • the secondary usage node 20b receives a permission from a data server (not shown) and provides a secondary communication service using the radio access method R3 on the channel F2.
  • the secondary usage node 20c receives a permission from a data server (not shown) and provides a secondary communication service using the radio access method R1 on the channel F3.
  • the secondary usage node 20a attempts to provide a secondary communication service using the radio access method R2 with permission from a data server (not shown).
  • the permitted channel information permitted from the data server includes channels F2 and F3.
  • the secondary usage node 20a starts the secondary communication service due to interference caused by signals from the secondary usage nodes 20b and 20c located in the vicinity, regardless of which of the channels F2 and F3 is used. I can't. Therefore, the secondary usage node 20a reports to the communication control device 100 that interference has occurred (SIG4a).
  • the communication control apparatus 100 recommends that the channel F3 be used for the secondary usage node 20b, for example, according to the recommended service configuration determination process illustrated in FIGS. 10A to 10C (SIG4b). This is because the positional relationship between the service area A22 of the secondary usage node 20b and the service area A23 of the secondary usage node 20c belongs to the class C described above, and the secondary usage node 20c uses the channel F3. It is. Further, the communication control apparatus 100 recommends that the channel F2 should be used for the secondary usage node 20a, for example (SIG4c). Thereby, the secondary usage node 20a can use the channel F2 different from the secondary usage nodes 20b and 20c, and can avoid secondary interference and start secondary usage.
  • FIG. 15A and 15B are explanatory diagrams for explaining a fifth scenario of the communication control process.
  • a primary usage node 10 secondary usage nodes 20a and 20b, and a communication control device 100 are shown.
  • a frequency band including channels F1, F2, F3, and F4 is assigned to the primary communication service provided by the primary usage node 10.
  • the primary usage node 10 uses the channel F1.
  • channels F2, F3 and F4 are unused.
  • the secondary usage node 20a provides a secondary communication service using the radio access method R1 on the channel F3 with permission from a data server (not shown).
  • the secondary usage node 20b provides a secondary communication service using the radio access method R2 on the channel F2 with permission from a data server (not shown).
  • the channels used by the secondary usage nodes 20a and 20b are different, no large interference occurs between the two secondary communication services.
  • the secondary usage node 20a requests the communication control device 100 to add a channel in order to increase the bandwidth of the secondary communication service and improve the data rate (SIG5a).
  • This channel addition request means a request for coordination between secondary communication services.
  • the communication control apparatus 100 informs the secondary usage node 20a that the channels F3 and F4 that are not used by the secondary usage node 20b are used.
  • Recommended (SIG5b) As a result, the secondary usage node 20a can use the channels F3 and F4 to provide a secondary communication service in a wider band than before, that is, at a higher data rate.
  • the communication control apparatus 100 includes a positional relationship between service areas of two or more secondary communication services and a radio access scheme that can be used by a secondary usage node that provides the secondary communication service. Based on the above, the radio access scheme or channel to be used is recommended to at least one secondary usage node. Accordingly, the configuration for secondary use can be adjusted among a plurality of secondary communication services. In particular, in the case of secondary usage of a frequency band, it is often difficult to know in advance what radio access method each secondary usage node supports.
  • the communication control device 100 which is a neutral entity that collects information such as the radio access method for each secondary usage node and performs coordination between secondary communication services, is also possible from a cost standpoint. This is also beneficial from the perspective of coordination neutrality.
  • the communication control apparatus 100 selects a channel recommended for each secondary usage node from the channels permitted to be used by each secondary usage node. Accordingly, the adjustment by the communication control device 100 does not cause a risk of interfering with the primary communication service or other communication services that can be operated in the vicinity.
  • the configuration of the secondary communication service can be changed so as to avoid the interference.
  • the configuration of the secondary communication service can be changed so that the service area is expanded.
  • the secondary usage node seeks to expand the bandwidth, the bandwidth of the secondary communication service can be expanded without newly causing interference. Thereby, the opportunity of secondary use for the user is expanded, and the frequency use efficiency is further improved.
  • control processing in the communication control apparatus 100 and the secondary usage node 20 described in this specification can be realized using software.
  • a program constituting software for realizing the above-described control processing is stored in advance in a storage medium provided inside or outside each device.
  • Each program is read into a RAM (Random Access Memory) at the time of execution and executed by a processor such as a CPU (Central Processing Unit).
  • a processor such as a CPU (Central Processing Unit).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】二次利用のための構成を複数の二次通信サービス間で調整することを可能とすること。 【解決手段】一次通信サービスの周波数帯の一部を使用して二次通信サービスを提供する1つ以上の二次利用ノードによる通信を制御する通信制御装置であって、各二次利用ノードから、サービスエリアを推定するためのサービスエリア情報、及び使用可能な無線アクセス方式を表すアクセス方式情報を受信する通信部と、上記サービスエリア情報及び上記アクセス方式情報を記憶する記憶部と、上記サービスエリア情報を用いて2つ以上の二次通信サービスのサービスエリアを推定する推定部と、サービスエリア間の位置関係と上記アクセス方式情報とに基づいて推奨される無線アクセス方式又は推奨されるチャネルを、二次利用ノードに通知する制御部と、を備える通信制御装置を提供する。

Description

通信制御装置、通信制御方法、通信システム及び通信装置
 本開示は、通信制御装置、通信制御方法、通信システム及び通信装置に関する。
 近年、一次利用される周波数帯(スペクトラム)の利用状況に応じて、その周波数帯を二次的な通信サービスに利用できるようにするための議論が進められている。例えば、米国のデジタルTV放送の周波数帯に含まれる未使用のチャネル(TVホワイトスペース)を無線通信に開放するための標準規格がIEEE802.22ワーキンググループにおいて検討されている(下記非特許文献1参照)。
 また、2008年11月のFCC(Federal Communications Commission)からの勧告によれば、一定の条件を満たして認証を受けた通信装置を用いてTVホワイトスペースを二次利用することが認められる方向にある。このFCCの勧告は、TVホワイトスペースの二次利用の標準化の先駆けであるIEEE802.22の上記標準規格を容認すると共に、IEEEのNew Study Groupの動きもカバーするものであった。技術的な内容としては、例えば、既存の技術を用いて-114[dBm](例えばNF(Noise Figure)=11[dB]だとすると、SNR=-19[dB]程度)レベルの信号検知を行うことが要求されるため、地理位置情報データベースアクセス(Geo-location Database Access)のような補助的な機能が必要となる見込みである(下記非特許文献2参照)。また、FCCは、新たな二次利用のためのチャネルとして、5GHz帯の一部の250MHzの帯域を開放することを模索している。
 また、EUでは、長期的な戦略の下、DSA(Dynamic Spectrum Access)を実現するためのCPC(Cognitive Pilot Channel)と呼ばれる専用の制御チャネルを全世界共通で割当てようとする動きもある。CPCの割当てについては、2011年のITU(International Telecommunication Union)-WP11のアジェンダに組み込まれている。さらに、DSAを行う二次利用システムのための技術検討は、IEEEのSCC(Standards Coordinating Committee)41においても進められている。
 一般的に、一次利用に係る通信サービス(以下、一次通信サービスという)に割当てられた周波数帯を二次利用する場合には、二次利用に係る通信サービス(以下、二次通信サービスという)が一次通信サービスに干渉を与えないことが重要である。そこで、下記非特許文献2は、二次通信サービスを提供しようとする二次利用ノードから管理者情報及び位置情報等を受信してこれら情報をデータベースに蓄積するデータサーバを設置することを勧告している。この場合、データサーバは、二次利用ノードからの要求に応じて、二次利用のために供与可能なチャネルを特定し、特定したチャネルを二次利用ノードへ通知する。二次利用ノードがこのようにデータサーバから通知されるチャネルを利用することで、一次通信サービスへの干渉が防止される。
「IEEE802.22 WG on WRANs」、[online]、[2010年7月1日検索]、インターネット<URL:http://www.ieee802.org/22/> 「SECOND REPORT AND ORDER AND MEMORANDUM OPINION AND ORDER」、[online]、[2010年7月1日検索]、インターネット<URL:http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-08-260A1.pdf>
 しかしながら、上述したデータサーバから提供される情報を用いるのみでは、複数の二次利用ノードが存在し、複数の二次通信サービスが提供され得る状況において、二次通信サービス間で干渉又は信号の衝突などの障害が生じるリスクが残されている。また、複数の二次通信サービスが互いに協調することなく独立的に提供されれば、高い周波数利用効率を達成することは困難である。従って、無線アクセス方式及びチャネルなどの二次利用のための構成を互いに調整した上で、個々の二次通信サービスが提供されることが望ましい。
 そこで、本開示に係る技術は、二次利用のための構成を複数の二次通信サービス間で調整することを可能とする、新規かつ改良された通信制御装置、通信制御方法、通信システム及び通信装置を提供しようとするものである。
 ある実施形態によれば、一次通信サービスに割当てられた周波数帯の一部を使用して二次通信サービスを提供する1つ以上の二次利用ノードによる通信を制御する通信制御装置であって、各二次利用ノードから、当該二次利用ノードが提供する二次通信サービスについてのサービスエリアを推定するためのサービスエリア情報、及び当該二次利用ノードにより使用可能な無線アクセス方式を表すアクセス方式情報を受信する通信部と、上記通信部により受信される上記サービスエリア情報及び上記アクセス方式情報を記憶する記憶部と、上記サービスエリア情報を用いて2つ以上の二次通信サービスのサービスエリアを推定する推定部と、上記推定部により推定されるサービスエリア間の位置関係と上記アクセス方式情報とに基づいて、上記2つ以上の二次通信サービスの少なくとも1つについて推奨される無線アクセス方式又は推奨されるチャネルを、当該二次通信サービスを提供する二次利用ノードに通知する制御部と、を備える通信制御装置が提供される。
 また、上記サービスエリア情報は、対応する二次通信サービスを提供する二次利用ノードの位置、当該二次利用ノードに適用される最大送信電力、及び当該二次利用ノードのアンテナの高さについてのデータを含んでもよい。
 また、上記通信部は、上記二次利用ノードから当該二次利用ノードが使用を許可されたチャネルを表す許可チャネル情報をさらに受信し、上記制御部は、各二次利用ノードに推奨するチャネルを、当該二次利用ノードから受信された上記許可チャネル情報により表されるチャネルの中から選択してもよい。
 また、上記制御部は、2つの二次通信サービスのサービスエリアが重複している場合であって、当該2つの二次通信サービスをそれぞれ提供する2つの二次利用ノードにより使用可能な無線アクセス方式が共通するときに、当該共通する無線アクセス方式の使用を推奨してもよい。
 また、上記制御部は、上記2つの二次通信サービスの一方のサービスエリアに他方の二次利用ノードが含まれない場合に、上記通信部から上記2つの二次利用ノードに同期信号を送信させてもよい。
 また、上記制御部は、2つの二次通信サービスのサービスエリアが重複している場合であって、当該2つの二次通信サービスをそれぞれ提供する2つの二次利用ノードにより使用可能な無線アクセス方式が異なるときに、一方の二次通信サービスが使用するチャネルと異なるチャネルの使用を他方の二次通信サービスを提供する二次利用ノードに推奨してもよい。
 また、上記制御部は、2つの二次通信サービスのサービスエリアが重複しておらず、かつ当該2つの二次通信サービスの間の相互干渉のレベルが許容され得る干渉レベルを超えない場合には、当該2つの二次通信サービスをそれぞれ提供する2つの二次利用ノードに、共通するチャネルの使用を推奨してもよい。
 また、上記制御部は、二次通信サービス間の干渉を検知した二次利用ノードからの要求に応じて、当該二次利用ノード又は当該二次利用ノードとサービスエリアが重複する他の二次利用ノードに、推奨される無線アクセス方式又は推奨されるチャネルを通知してもよい。
 また、上記制御部は、サービスエリアの拡張を求める二次利用ノードからの要求に応じて、当該二次利用ノード又は当該二次利用ノードと共通する無線アクセス方式を使用可能な他の二次利用ノードに、推奨される無線アクセス方式又は推奨されるチャネルを通知してもよい。
 また、上記制御部は、帯域の拡張を求める二次利用ノードからの要求に応じて、当該二次利用ノードに推奨されるチャネルを通知してもよい。
 また、上記制御部は、推奨可能なチャネルが複数存在する場合には、送信電力の制限のないチャネルを優先的に推奨してもよい。
 また、別の実施形態によれば、一次通信サービスに割当てられた周波数帯の一部を使用して二次通信サービスを提供する1つ以上の二次利用ノードによる通信を制御するための通信制御方法であって、各二次利用ノードから、当該二次利用ノードが提供する二次通信サービスについてのサービスエリアを推定するためのサービスエリア情報、及び当該二次利用ノードにより使用可能な無線アクセス方式を表すアクセス方式情報を受信することと、受信した上記サービスエリア情報及び上記アクセス方式情報を記憶することと、上記サービスエリア情報を用いて2つ以上の二次通信サービスのサービスエリアを推定することと、推定したサービスエリア間の位置関係と上記アクセス方式情報とに基づいて、上記2つ以上の二次通信サービスの少なくとも1つについて推奨される無線アクセス方式又は推奨されるチャネルを、当該二次通信サービスを提供する二次利用ノードに通知することと、を含む通信制御方法が提供される。
 また、別の実施形態によれば、一次通信サービスに割当てられた周波数帯の一部を使用して二次通信サービスを提供する1つ以上の二次利用ノードと当該1つ以上の二次利用ノードによる通信を制御する通信制御装置とを含む通信システムであって、上記通信制御装置は、各二次利用ノードから、当該二次利用ノードが提供する二次通信サービスについてのサービスエリアを推定するためのサービスエリア情報、及び当該二次利用ノードにより使用可能な無線アクセス方式を表すアクセス方式情報を受信する通信部と、上記通信部により受信される上記サービスエリア情報及び上記アクセス方式情報を記憶する記憶部と、上記サービスエリア情報を用いて2つ以上の二次通信サービスのサービスエリアを推定する推定部と、上記推定部により推定されるサービスエリア間の位置関係と上記アクセス方式情報とに基づいて、上記2つ以上の二次通信サービスの少なくとも1つについて推奨される無線アクセス方式又は推奨されるチャネルを、当該二次通信サービスを提供する二次利用ノードに通知する制御部と、を備え、各二次利用ノードは、上記サービスエリア情報及び上記アクセス方式情報を上記通信制御装置へ送信する通信部と、上記通信制御装置により推奨される無線アクセス方式又は推奨されるチャネルを使用して、1つ以上の端末装置に二次通信サービスを提供する二次利用制御部と、を備える、通信システムが提供される。
 また、別の実施形態によれば、一次通信サービスに割当てられた周波数帯の一部を使用して二次通信サービスを提供する通信装置であって、上記通信装置が提供する二次通信サービスについてのサービスエリアを推定するためのサービスエリア情報及び上記通信装置により使用可能な無線アクセス方式を表すアクセス方式情報を他の装置へ送信する通信部と、上記サービスエリア情報を用いて推定される上記二次通信サービスのサービスエリアと他の二次通信サービスのサービスエリアとの位置関係及び上記アクセス方式情報に基づいて上記他の装置により推奨される無線アクセス方式又は推奨されるチャネルを使用して、1つ以上の端末装置に上記二次通信サービスを提供する二次利用制御部と、を備える通信装置が提供される。
 以上説明したように、本開示に係る通信制御装置、通信制御方法、通信システム及び通信装置によれば、二次利用のための構成を複数の二次通信サービス間で調整することが可能となる。
一実施形態に係る通信システムの概要について説明するための説明図である。 二次利用ノードとデータサーバとの間の処理の流れの一例を示すシーケンス図である。 一実施形態に係る通信制御装置の構成の一例を示すブロック図である。 二次通信サービスのサービスエリア間の位置関係の第1の例について説明するための説明図である。 二次通信サービスのサービスエリア間の位置関係の第2の例について説明するための説明図である。 二次通信サービスのサービスエリア間の位置関係の第3の例について説明するための説明図である。 一実施形態に係る二次利用ノードの構成の一例を示すブロック図である。 一実施形態に係る通信制御装置と二次利用ノードとの間の通信制御処理の流れの一例を示すシーケンス図である。 一実施形態に係るサービスエリア推定処理の流れの一例を示すフローチャートである。 一実施形態に係る推奨サービス構成判定処理の流れの一例を示すフローチャートの第1の部分である。 一実施形態に係る推奨サービス構成判定処理の流れの一例を示すフローチャートの第2の部分である。 一実施形態に係る推奨サービス構成判定処理の流れの一例を示すフローチャートの第3の部分である。 一実施形態に係る通信制御処理の第1のシナリオについて説明するための第1の説明図である。 一実施形態に係る通信制御処理の第1のシナリオについて説明するための第2の説明図である。 一実施形態に係る通信制御処理の第2のシナリオについて説明するための第1の説明図である。 一実施形態に係る通信制御処理の第2のシナリオについて説明するための第2の説明図である。 一実施形態に係る通信制御処理の第3のシナリオについて説明するための第1の説明図である。 一実施形態に係る通信制御処理の第3のシナリオについて説明するための第2の説明図である。 一実施形態に係る通信制御処理の第4のシナリオについて説明するための第1の説明図である。 一実施形態に係る通信制御処理の第4のシナリオについて説明するための第2の説明図である。 一実施形態に係る通信制御処理の第5のシナリオについて説明するための第1の説明図である。 一実施形態に係る通信制御処理の第5のシナリオについて説明するための第2の説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付すことにより重複説明を省略する。
 また、以下の順序にしたがって当該「発明を実施するための形態」を説明する。
  1.システムの概要
  2.一実施形態に係る装置の構成例
   2-1.通信制御装置の構成例
   2-2.サービスエリア間の位置関係の例
   2-3.二次利用ノードの構成例
  3.一実施形態に係る処理の流れ
   3-1.通信制御処理
   3-2.サービスエリア判定処理
   3-3.推奨サービス構成判定処理
  4.通信制御の典型的なシナリオ
   4-1.第1のシナリオ
   4-2.第2のシナリオ
   4-3.第3のシナリオ
   4-4.第4のシナリオ
   4-5.第5のシナリオ
  5.まとめ
 <1.システムの概要>
 図1は、一実施形態に係る通信システムの概要について説明するための説明図である。図1を参照すると、一次利用ノード10、二次利用ノード20a及び20b、データサーバ40、並びに通信制御装置100が示されている。
 一次利用ノード10は、予め割り当てられた周波数帯を使用して一次通信サービスのための無線信号を送受信するノードである。但し、一次利用ノード10は、必ずしも割り当てられた全ての周波数帯を使用しているとは限らない。図1の例では、チャネルF1、F2及びF3を含む周波数帯が割り当てられているが、一次利用ノード10は、そのうちチャネルF1のみを使用している。一次通信サービスとは、例えば、デジタルTV放送サービス、衛星通信サービス、又は移動体通信サービスなどを含む任意の通信サービスであってよい。例えば、一次通信サービスがデジタルTV放送サービスである場合には、一次利用ノード10は、TV放送局に相当し得る。また、例えば、一次通信サービスが移動体通信サービスである場合には、一次利用ノード10は、基地局に相当し得る。
 図1に示した境界B01は、一次利用ノード10により提供される一次通信サービスのサービスエリアの外縁である。境界B01の内部に位置する端末装置(図示せず)は、一次利用ノード10が提供する一次通信サービスを受けることができる。境界B02は、一次通信サービスのサービスエリアの周囲に設けられるガードエリアの外縁である。ガードエリアは、一次通信サービスのサービスエリアといわゆるホワイトスペースとの間に設けられる緩衝地帯である。ガードエリアが存在することにより、ホワイトスペースにおいて周波数帯が二次利用される場合にも、サービスエリアの内部に位置する端末装置において干渉などの障害が生じる可能性が低減される。
 境界B02と境界B03との間は、いわゆるホワイトスペースである。図1の例では、二次利用ノード20a及び20bは、このホワイトスペースに位置する。二次利用ノード20a及び20bは、それぞれ、一次通信サービスに割当てられた周波数帯の一部を使用して二次通信サービスを提供する通信装置である。なお、本明細書の以降の説明においては、特に二次利用ノード20a及び20bを相互に区別する必要がない場合には、符号の末尾のアルファベットを省略してこれらを二次利用ノード20と総称する。
 二次利用ノード20は、所定のスペクトラムポリシーに従って二次利用の可否を判断し、データサーバ40からチャネルの供与を受けた上で、周囲に位置する端末装置(図示せず)に二次通信サービスを提供する。図1の例に限定されず、二次利用ノード20は、一次通信サービスのサービスエリア内又はサービスエリアの周辺部に位置してもよい。例えば、シャドウイング(遮蔽)又はフェージングなどの影響によりサービスエリア内に生じたスペクトラムホールをカバーするために、一次通信サービスのサービスエリア内に二次利用ノードが設けられる場合がある。
 二次通信サービスとは、典型的には、一次通信サービスに割当てられた周波数帯の一部又は全部を使用して提供される追加的あるいは代替的な通信サービスをいう。“二次利用”という用語の意味において、一次通信サービスと二次通信サービスとは、異なる種類の通信サービスであってもよく、又は同一の種類の通信サービスであってもよい。異なる種類の通信サービスとは、例えば、デジタルTV放送サービス、衛星通信サービス、移動体通信サービス、無線LANアクセスサービス、又はP2P(Peer To Peer)接続サービスなどの任意の通信サービスから選択し得る2以上の異なる種類の通信サービスをいう。一方、同一の種類の通信サービスとは、例えば、移動体通信サービスにおける、通信事業者により提供されるマクロセルによるサービスと、ユーザ又はMVNO(Mobile Virtual Network Operator)により運用されるフェムトセルによるサービスとの間の関係を含み得る。また、同一の種類の通信サービスとは、WiMAX、LTE(Long Term Evolution)又はLTE-A(LTE-Advanced)などに準拠した通信サービスにおける、基地局により提供されるサービスと、スペクトラムホールをカバーするために中継局(リレーノード)により提供されるサービスとの間の関係をも含み得る。さらに、二次通信サービスは、スペクトラムアグリゲーション技術を用いて集約された複数の断片的な周波数帯を利用するものであってもよい。さらに、二次通信サービスは、基地局により提供されるサービスエリア内に存在する、フェムトセル群、中継局群、基地局よりも小さなサービスエリアを提供する中小基地局群により提供される補助的な通信サービスであってもよい。本明細書において説明する各実施形態の要旨は、このようなあらゆる種類の二次利用の形態に広く適用可能なものである。
 データサーバ40は、二次利用ノード20から管理者情報及び位置情報等を含むノード情報を受信し、受信したノード情報を蓄積するデータベースを有するサーバである。データサーバ40は、例えば、インターネット又は一次通信サービスのバックボーンネットワークなどを介して、一次利用ノード10及び二次利用ノード20と接続され得る。データサーバ40は、二次利用ノード20から受信される上述したノード情報を蓄積する。また、データサーバ40は、二次利用ノード20からの要求に応じて、例えば、二次利用のために供与可能なチャネル、最大送信電力及びスペクトラムマスクなどの情報を二次利用ノード20に提供する。それにより、二次利用ノード20が二次通信サービスを開始することが可能となる。
 図2は、図1に例示した二次利用ノード20とデータサーバ40との間の処理の流れの一例を示すシーケンス図である。図2を参照すると、一次通信サービスに割当てられた周波数帯を二次利用しようとする二次利用ノード20は、まず、データサーバ40にノード情報を送信し、ノード情報の登録を要求する(ステップS02)。すると、データサーバ40は、二次利用ノード20から受信したノード情報をデータベースに登録する(ステップS04)。
 ここでデータベースに登録されるノード情報は、例えば、次の情報を含む:
・レギュレーションID(Regulation ID):二次利用に使用可能なデバイスとして認証された際に付与されるID。TVホワイトスペースの二次利用の場合にノード情報に含まれ得る。
・製造者ID(Manufacturer ID):デバイスの製造者のID。
・位置データ:GPSなどの測位手段を利用して動的に計測され、又は固定的に保持されるデバイスの位置を表す。
・アンテナ高さ:デバイスのアンテナの高さ。例えばHAAT(Height Above Average Terrain of the tx)などが用いられ得る。
・管理者情報:デバイスのオーナーの氏名、住所、メールアドレスなどを含む。
 次に、データサーバ40は、ノード情報の登録が終了したことを確認する確認信号(confirmation)を二次利用ノード20へ送信する(ステップS06)。次に、二次利用ノード20は、二次利用の許可をデータサーバ40に要求する(ステップS08)。すると、データサーバ40は、例えば、二次利用ノード20に供与可能なチャネル(例えば、一次通信サービスに割り当てられた周波数帯のうち未使用の部分)を判定し、供与可能なチャネルが存在する場合には二次利用ノード20に二次利用を許可する(ステップS10)。なお、二次利用ノード20に供与可能なチャネルは、二次利用ノード20が使用可能な送信電力について、一般的な送信電力と比較して低い送信電力とするような制限が課せられる制限付きチャネル(Restricted Channel)と、そのような制限が課せられない通常のチャネル(Normal Channel)とに分類され得る。データサーバ40は、通常のチャネルを供与可能である場合には、通常のチャネルを優先的に二次利用ノード20に供与してもよい。例えば、FCCの規定における所謂Mode-Iクライアントについて、Personal/Portableの場合、あるチャネルの隣接チャネルが一次通信サービスにより利用されていなければ、100m[W]の最大送信電力が認められる。このようなチャネルは、通常のチャネルとして扱われ得る。一方、あるチャネルの隣接チャネルが一次通信サービスにより利用されていれば、最大送信電力は40m[W]に制限される。このようなチャネルは、制限付きチャネルとして扱われ得る。
 ステップS10において、データサーバ40は、二次利用ノード20に、例えば、次の情報を提供する:
・最大送信電力:二次利用ノード20が放射することを許可される最大の送信電力。
・許可チャネル情報:二次利用ノード20に供与可能なチャネルを特定するチャネル番号のリスト。一次通信サービスに割り当てられた周波数帯は、予め複数のチャネルに分割され、個々のチャネルにチャネル番号が付与され得る。なお、チャネル番号の代わりにチャネルの中央周波数が用いられてもよい。許可チャネル情報は、チャネルごとのチャネル分類(通常のチャネルか制限付きチャネルか、など)を表す情報も含み得る。
・規制情報(Regulatory Information):スペクトラムマスクなどの二次利用のためのルールを含み得る。
 本明細書では、これらデータサーバ40から二次利用ノード20に提供される情報を許可情報(grant information)という。
 このようなステップを経た後、二次利用ノード20は、一次通信サービスに割当てられた周波数帯の二次利用を開始することができる。
 通信制御装置100は、1つ以上の二次利用ノード20による通信を制御する通信装置である。通信制御装置100もまた、データサーバ40と同様、例えば、インターネット又は一次通信サービスのバックボーンネットワークなどを介して、一次利用ノード10及び二次利用ノード20と接続され得る。なお、通信制御装置100は、データベース40と物理的に同一の装置を用いて構成されてもよい。通信制御装置100は、次節より詳しく説明するように、二次利用ノード20のノード情報及びデータサーバ40により提供される情報等を用いて、各二次利用ノード20が提供する二次通信サービスの無線アクセス方式及びチャネルなどの構成を複数の二次通信サービス間で調整する。
 <2.一実施形態に係る装置の構成例>
  [2-1.通信制御装置の構成例]
 図3は、本実施形態に係る通信制御装置100の構成の一例を示すブロック図である。図3を参照すると、通信制御装置100は、通信部110、記憶部120、推定部130、及び制御部140を備える。
  (通信部)
 通信部110は、通信制御装置100が二次利用ノード20との間で通信するための通信インタフェースである。また、通信部110は、さらにデータサーバ40との間で通信可能であってよい。本実施形態において、通信部110は、例えば、二次利用を許可された各二次利用ノード20から、二次利用の登録要求を受信する。
 二次利用の登録要求は、例えば、以下の情報を含む:
・レギュレーションID:ノード情報としてデータサーバに登録され得る情報の1つ。
・製造者ID:ノード情報としてデータサーバに登録され得る情報の1つ。
・位置データ:ノード情報としてデータサーバに登録され得る情報の1つ。
・アンテナ高さ:ノード情報としてデータサーバに登録され得る情報の1つ。
・最大送信電力:許可情報としてデータサーバから提供され得る情報の1つ。
・許可チャネル情報:許可情報としてデータサーバから提供され得る情報の1つ。
・規制情報:許可情報としてデータサーバから提供され得る情報の1つ。
・利用チャネル情報:許可チャネル情報のリストに含まれるチャネルのうち、二次利用ノードが二次通信サービスのために利用しようとしているチャネルの番号。
・アクセス方式情報:二次利用ノードにより使用可能な(及び現在使用中の)無線アクセス方式を表すアクセス方式番号のリスト。IEEE802.11af、11g若しくは11n、IEEE802.22、IEEE802.16、又はLTE若しくはLTE-Aなどの個々の無線アクセス方式に予め番号が付与され得る。アクセス方式情報は、アクセス方式番号のリストの代わりに、各無線アクセス方式のサポートの有無を表すビット列又はコード値などを含んでもよい。また、アクセス方式情報は、後述する通信サービスの共存のためのプロトコルが使用可能か否かを表す情報を含んでもよい。
 本実施形態において、通信制御装置100は、これら情報のうち位置データ、アンテナ高さ及び最大送信電力を、二次利用ノード20が提供する二次通信サービスについてのサービスエリアを推定するためのサービスエリア情報として扱う。なお、ここで列挙した情報は一例に過ぎない。即ち、二次利用ノード20から通信制御装置100へ送信される二次利用の登録要求は、上述した情報の一部を含んでいなくてもよく、又は追加的な情報をさらに含んでいてもよい。また、通信制御装置100は、上述した情報の一部を二次利用ノード20ではなくデータサーバ40から取得してもよい。
 通信部110は、各二次利用ノード20から受信した情報を、記憶部120に記憶させる。さらに、通信部110は、二次通信サービス間の調整を求める二次利用ノード20から、調整の要求を受信する。二次利用ノード20からの調整の要求は、後に説明する制御部140により処理される。
  (記憶部)
 記憶部120は、例えば、ハードディスク又は半導体メモリなどの記憶媒体を用いて実現される。本実施形態において、記憶部120は、通信部110により受信される上記登録要求に含まれる情報を記憶する。記憶部120により記憶される情報のうち、二次利用ノード20の位置データ、アンテナ高さ及び最大送信電力を含むサービスエリア情報は、後に説明する推定部130によるサービスエリアの推定のために用いられ得る。また、許可チャネル情報、利用チャネル情報及びアクセス方式情報は、後に説明する制御部140による二次通信サービス間の調整のために用いられ得る。
  (推定部)
 推定部130は、記憶部120により記憶されているサービスエリア情報、即ち二次利用ノード20の位置データ、アンテナ高さ及び最大送信電力を用いて、二次利用ノード20が提供する二次通信サービスのサービスエリアを推定する。推定部130は、例えば、二次利用ノード20が提供する二次通信サービスのサービスエリアを、二次利用ノード20の位置を中心とする円形状のエリアであると近似する。
 サービスエリアの半径を推定するための手法としては、2つの手法が考えられる。第1の手法は、“Method for point-to-area predictions for terrestrial services in the frequency range 30 mhz to 3000mhz”(International Telecommunications Commission(ITU), RECOMMENDAION ITU-R P1546-3, 2007)に記載された伝播路カーブを利用する手法である。この場合、アンテナ高さ及び電界強度から通信距離(一定の場所率及び一定の時間率で通信が可能である距離)を導くための実測値に基づく統計的な曲線(伝播路カーブ)が、予め記憶部120により記憶される。そして、推定部130は、二次利用ノード20の最大送信電力を電界強度に変換し、二次利用ノード20のアンテナ高さ及び電界強度に対応する通信距離を、記憶部120に記憶されている伝播路カーブから取得する。この通信距離が、二次利用ノード20が提供する二次通信サービスのサービスエリアの半径となる。
 サービスエリアの半径を推定するための第2の手法は、奥村・秦カーブの市街地モデル(“デジタルワイヤレス伝送技術”(三瓶政一著,Pearson Education Japan,pp.16-19)参照)における評価式を利用する手法である。この場合、推定部130は、二次利用ノード20の最大送信電力と受信機の最小受信感度から、許容される最大の経路損失を算出する。そして、推定部130は、算出された経路損失及びアンテナ高さを評価式に代入することにより、通信距離を算出する。この通信距離が、二次利用ノード20が提供する二次通信サービスのサービスエリアの半径となる。
 推定部130は、このように推定した二次利用ノード20ごとの二次通信サービスのサービスエリアを表す値(例えば、円形の中心位置及び半径)を、記憶部120に記憶させる。
  (制御部)
 制御部140は、推定部130により推定されるサービスエリア間の位置関係と二次利用ノード20により使用可能な無線アクセス方式とに基づいて、二次通信サービス間で二次利用のための構成を調整する。二次通信サービス間での二次利用のための構成の調整とは、例えば、二次利用機会の拡大又は周波数利用効率の向上などの観点での、少なくとも1つの二次利用ノード20に対する、無線アクセス方式の推奨又は使用すべきチャネルの推奨を含む。即ち、制御部140は、推定部130により推定されるサービスエリア間の位置関係と二次利用ノード20により使用可能な無線アクセス方式とに基づいて、少なくとも1つの二次利用ノード20に推奨される無線アクセス方式又は推奨されるチャネルを決定する。そして、制御部140は、決定した無線アクセス方式又はチャネルを、通信部110を介して二次利用ノード20に通知する。それに応じて、二次利用ノード20は、推奨された新たな無線アクセス方式又はチャネルを使用して二次利用を行う。
  [2-2.サービスエリア間の位置関係の例]
 制御部140が二次通信サービス間の調整の基礎とするサービスエリア間の位置関係は、例えば、図4~図6に例示した3つのクラス(それぞれ、クラスA、クラスB及びクラスCという)に分類される。
  (クラスA)
 図4を参照すると、クラスAに属するサービスエリア間の位置関係の例が示されている。図4において、二次利用ノード20aのサービスエリアA11と二次利用ノード20bのサービスエリアA12とは重複している。また、二次利用ノード20aのサービスエリアA11に二次利用ノード20bが含まれている。同様に、二次利用ノード20bのサービスエリアA12に二次利用ノード20aが含まれている。このような位置関係においては、これら隣接する二次利用ノード20a及び二次利用ノード20bが発信する電波が互いに干渉の原因となり、二次利用に障害が生じる可能性がある。なお、2つの二次利用ノード20の一方のみが他方のサービスエリアに含まれる場合もこのクラスAに含めてよい。
 制御部140は、例えば、2つの二次通信サービスのサービスエリアがクラスAの位置関係にある場合には、さらに当該2つの二次通信サービスをそれぞれ提供する2つの二次利用ノード20a及び20bにより使用可能な無線アクセス方式が共通するか否かを判定する。例えば、二次利用ノード20aが無線アクセス方式R1及びR2を使用可能であって、二次利用ノード20bが無線アクセス方式R1を使用可能である場合には、無線アクセス方式R1が共通すると判定される。このように使用可能な無線アクセス方式が共通する場合には、制御部140は、当該共通する無線アクセス方式及び共通するチャネルを使用することを二次利用ノード20a及び20bに推奨する。それにより、例えば、二次利用ノード20a及び20bの間で通信サービスを共存させ、又はメッシュネットワークを形成して、互いに干渉を与えることなく二次通信サービスを運用することができる。例えば、IEEE802.22、Ecma392、IEEE802.11ファミリーのうち11s、及びIEEE.802.16(WiMax)ファミリーのうち16jなどは、メッシュプロトコル又はスケジューリング情報の交換のためのプロトコルをサポートしている。従って、これら無線アクセス方式を使用する通信サービス間では、通信サービスの共存が可能となり得る。また、IEEE802.11ファミリーでは、Public Action Frameを用いたビーコンリクエストなどの手法でアクセスポイント又は端末を介して隣接ネットワークのリソース利用情報を入手するための機能をサポートしている場合がある。その場合にも、同様に通信サービスの共存が可能となり得る。また、制御部140は、使用可能な無線アクセス方式が異なる(共通していない)場合であっても、無線アクセス方式の組合せが互いに共存可能な組合せであるときは、共通するチャネル上で2つの通信サービスを共存させることができる。この点は、後述する他のクラスについても同様である。制御部140は、使用可能な無線アクセス方式が互いに異なり、かつそれらが共存可能でない場合には、一方の二次通信サービスが使用する第1のチャネルとは異なる第2のチャネルの使用を、他方の二次通信サービスを提供する二次利用ノード20a又は20bに推奨する。このとき、第2のチャネルが周波数軸上で第1のチャネルに隣接しないチャネルであれば、帯域外放射による干渉も防止されることから、より望ましい。それにより、二次利用ノード20aによる二次通信サービスと二次利用ノード20bによる二次通信サービスとを、互いに干渉を与えることなく、異なるチャネルでそれぞれ運用することができる。
  (クラスB)
 図5を参照すると、クラスBに属するサービスエリア間の位置関係の例が示されている。図5において、二次利用ノード20aのサービスエリアA11と二次利用ノード20bのサービスエリアA12とは重複している。但し、二次利用ノード20aのサービスエリアA11に二次利用ノード20bは含まれず、二次利用ノード20bのサービスエリアA12に二次利用ノード20aは含まれない。このような位置関係においては、例えば、重複する領域に位置する端末装置22aにおいて電波が干渉し、二次利用に部分的に障害が生じる可能性がある。
 制御部140は、例えば、2つの二次通信サービスのサービスエリアがクラスBの位置関係にある場合には、さらに当該2つの二次通信サービスをそれぞれ提供する2つの二次利用ノード20a及び20bにより使用可能な無線アクセス方式が共通するか否かを判定する。そして、制御部140は、使用可能な無線アクセス方式が共通する場合には、当該共通する無線アクセス方式及び共通するチャネルを使用することを二次利用ノード20a及び20bに推奨する。それにより、クラスAの場合と同様、二次利用ノード20a及び20bの間で互いに干渉を与えることなく二次通信サービスを運用することができる。但し、クラスBの場合には、二次利用ノード20a及び20bは、相手が送信する信号を直接的に受信することができない。そのため、この場合、制御部140は、通信部110から2つの二次利用ノード20a及び20bに同期信号を送信させることで、通信サービスの共存又はメッシュネットワークの形成を支援する。また、制御部140は、クラスAの場合と同様、使用可能な無線アクセス方式が異なり、かつそれらが共存可能でない場合には、一方の二次通信サービスが使用するチャネルとは異なるチャネル(好適には隣接しないチャネル)の使用を、他方の二次通信サービスを提供する二次利用ノード20a又は20bに推奨する。
  (クラスC)
 図6を参照すると、クラスCに属するサービスエリア間の位置関係の例が示されている。図6において、二次利用ノード20aのサービスエリアA11と二次利用ノード20bのサービスエリアA12とは重複していない。このような位置関係においては、制御部140は、例えば、2つの二次通信サービスをそれぞれ提供する2つの二次利用ノード20a及び20bに、使用可能な無線アクセス方式に関わらず、共通するチャネルの使用を推奨する。それにより、第3の二次通信サービス(図示せず)を提供する二次利用ノード20のためのチャネルの選択の余地を広げることができる。但し、クラスCにおいても、2つの二次通信サービスのノード間の相互干渉(例えば、2つのサービスエリアの外縁部に位置するノード間の干渉)が許容し得るレベルを超える場合には、制御部140は、上述したクラスA及びクラスBと同様に通信リソースの共用のための制御を行うことが望ましい。
 なお、制御部140は、例えば、各二次利用ノード20に推奨するチャネルを、当該二次利用ノード20から受信された許可チャネル情報により表されるチャネルの中から選択する。これは、通信制御装置100による二次通信サービス間の調整が、二次利用のための規制(各国の法的な規制又は事業者間で定められる規制など)の範囲内で行われ得ることを意味している。従って、二次利用ノード20が通信制御装置100からの通知を受けてチャネルを変更したとしても、一次通信サービス又は周辺で運用され得るその他の通信サービスに干渉を与えるリスクは生じない。
  [2-3.二次利用ノードの構成例]
 図7は、本実施形態に係る二次利用ノード20の構成の一例を示すブロック図である。二次利用ノード20は、例えば、中小基地局、無線中継局又は無線アクセスポイントなど、任意の二次通信サービスを提供する通信装置であってよい。従って、二次利用ノード20は、その役割に応じて様々な構成要素を備える可能性がある。しかしながら、図7においては、本実施形態に直接的に関連する構成要素のみが示されている。図7を参照すると、二次利用ノード20は、第1通信部210、第2通信部220、記憶部230及び二次利用制御部240を備える。
  (第1通信部)
 第1通信部210は、二次利用ノード20がデータサーバ40及び通信制御装置100との間で通信するための通信インタフェースである。第1通信部210は、例えば、二次利用制御部240による制御に応じて、図2を用いて説明したノード情報の登録要求をデータサーバ40へ送信し、ノード情報の登録確認を受信する。また、第1通信部210は、例えば、二次利用制御部240による制御に応じて、二次利用の許可要求をデータサーバ40へ送信し、データサーバ40からの応答に含まれる許可情報を受信する。さらに、第1通信部210は、後により詳細に説明する二次通信サービス間の調整の要求を通信制御装置100へ送信し、調整の結果として通信制御装置100から送信される推奨されるサービス構成に関する情報を受信する。
  (第2通信部)
 第2通信部220は、二次利用ノード20が周囲の端末装置に二次通信サービスを提供するための通信インタフェースである。第2通信部220がサポートする無線アクセス方式は、IEEE802.11af、11g若しくは11n、IEEE802.22又はLTE若しくはLTE-Aなどの任意の方式であってよい。第2通信部220がサポートする無線アクセス方式を表すアクセス方式情報は、予め記憶部230により記憶される。
  (記憶部)
 記憶部230は、例えば、ハードディスク又は半導体メモリなどの記憶媒体を用いて実現される。本実施形態において、記憶部230は、二次利用ノード20がデータサーバ40に登録すべき上述したノード情報を予め記憶する。また、記憶部230は、上述したアクセス方式情報を予め記憶する。また、記憶部230は、データサーバ40から上述した許可情報が提供された場合には、当該許可情報を記憶する。さらに、二次利用ノード20は、二次利用制御部240が二次通信サービスのために利用しようとしているチャネルの番号を利用チャネル情報として記憶する。
  (二次利用制御部)
 二次利用制御部240は、二次利用ノード20による周波数帯の二次利用のための一連の処理を制御する。例えば、二次利用制御部240は、第1通信部210を介して、図2に例示したデータサーバ40との間の処理を遂行する。また、二次利用制御部240は、二次通信サービス間での調整の必要性を判定し、調整が必要とされる場合に、調整の要求を通信制御装置100へ送信する。二次通信サービス間での調整が必要とされる場合とは、例えば、データサーバ40からの許可に従って二次利用を開始したものの、二次通信サービス間の干渉を原因として期待したような通信品質が得られない場合を含み得る。また、二次通信サービス間での調整が必要とされる場合とは、例えば、未接続の端末装置を二次通信サービスに参入させるためにサービスエリアの拡張が望まれる場合を含み得る。また、二次通信サービス間での調整が必要とされる場合とは、例えば、チャネルを追加することによる帯域の拡張が望まれる場合を含み得る。二次利用制御部240が調整の要求を送信した後の処理の例については、次節において具体的に説明する。なお、通信制御装置100は、二次利用ノード20からの調整の要求を受けることなく、例えば周波数利用効率の向上のために自発的に二次通信サービス間での調整を実行してもよい。
 <3.一実施形態に係る処理の流れ>
 次に、図8~図10Cを用いて、本実施形態に係る通信制御装置100と複数の二次利用ノード20との間の通信制御処理の流れについて説明する。
  [3-1.通信制御処理]
 図8は、本実施形態に係る通信制御装置100と二次利用ノード20a及び20bとの間の通信制御処理の流れの一例を示すシーケンス図である。なお、図8の処理の前に、二次利用ノード20a及び20bによるデータサーバ40へのノード情報の登録は終了し、二次利用ノード20a及び20bに対する二次利用の許可は既に与えられているものとする。
 図8を参照すると、まず、二次利用ノード20bは、通信制御装置100に対して二次利用の登録を要求する(ステップS102)。二次利用ノード20bから送信される登録要求は、上述したように、二次利用ノード20bが提供する二次通信サービスについてのサービスエリアを推定するためのサービスエリア情報及びアクセス方式情報等を含む。すると、通信制御装置100は、二次利用ノード20bから受信した情報を記憶部120に記憶する(ステップS104)。そして、通信制御装置100は、登録が終了したことを確認する確認信号(confirmation)を二次利用ノード20bへ送信する(ステップS106)。
 また、二次利用ノード20aは、通信制御装置100に対して二次利用の登録を要求する(ステップS108)。二次利用ノード20aから送信される登録要求もまた、サービスエリア情報及びアクセス方式情報等を含む。すると、通信制御装置100は、二次利用ノード20aから受信した情報を記憶部120に記憶する(ステップS110)。そして、通信制御装置100は、登録が終了したことを確認する確認信号(confirmation)を二次利用ノード20aへ送信する(ステップS112)。
 その後、通信制御装置100の推定部130は、二次利用ノード20a及び20bからそれぞれ受信したサービスエリア情報を用いて、各二次通信サービスのサービスエリアを推定する(ステップS114)。なお、推定部130によるサービスエリア推定処理は、ステップS116における二次通信サービス間の調整の要求があった後に行われてもよい。
 次に、二次利用ノード20aは、二次通信サービス間の調整の必要性を認識すると、通信制御装置100に二次通信サービス間の調整を要求する(ステップS116)。なお、二次利用ノードが通信制御装置100に二次通信サービス間の調整を要求する代わりに、通信制御装置100が自発的に二次通信サービス間の調整を開始してもよい。その後、通信制御装置100は、二次利用ノード20a又は他の二次利用ノード20に推奨すべき二次通信サービスの構成を判定する(ステップS118)。図8の例では、他の二次利用ノード20は、二次利用ノード20bに相当する。そして、通信制御装置100は、二次利用ノード20a及び二次利用ノード20bの少なくとも一方に、推奨されるサービス構成(即ち、使用すべき無線アクセス方式、又は使用すべきチャネルなど)を通知する(ステップS120)。
  [3-2.サービスエリア判定処理]
 図9は、図8のステップS114における通信制御装置100によるサービスエリア推定処理の流れの一例を示すフローチャートである。
 図9を参照すると、まず、通信制御装置100の推定部130は、記憶部120に記憶されている二次利用ノード20の位置、最大送信電力及びアンテナ高さを取得する(ステップS132)。次に、推定部130は、二次利用ノード20の最大送信電力及びアンテナ高さを用いて、二次通信サービスのサービスエリアの半径を算出する(ステップS134)。そして、推定部130は、二次利用ノード20の位置を中心とし、ステップS134において算出した半径を有する円形状のエリアを、二次利用ノード20により提供される二次通信サービスのサービスエリアであると推定する(ステップS136)。なお、推定部130は、例えば二次利用ノード20のアンテナの指向性のデータ又は周辺の地形データなどの追加的な情報を取得できる場合には、円形状ではなく楕円形状又は地形に応じてより複雑な形状のサービスエリアを推定してもよい。
  [3-3.推奨サービス構成判定処理]
 図10A~図10Cは、図8のステップS118における通信制御装置100による推奨サービス構成判定処理の流れの一例を示すフローチャートである。
 図10Aを参照すると、まず、通信制御装置100の制御部140は、二次利用ノード20a及び20bにより提供される2つの二次通信サービスのサービスエリアが重複しているか否かを判定する(ステップS151)。サービスエリアが重複しているか否かは、例えば、2つのサービスエリアの半径の和が二次利用ノード20a及び20bの間の距離よりも小さいか否かに基づいて判定されてよい。ここでサービスエリアが重複していないと判定された場合には、処理は図10CのステップS170へ進む。一方、サービスエリアが重複していると判定された場合には、処理はステップS152へ進む。
 処理がステップS152に進んだ場合、2つの二次通信サービスのサービスエリア間の位置関係は、図4及び図5に示したクラスA及びクラスBのいずれかに属している。この場合、制御部140は、2つの二次利用ノード20a及び20bが使用可能な無線アクセス方式が共通しているか否かを判定する(ステップS152)。ここで使用可能な無線アクセス方式が共通していないと判定された場合には、処理は図10BのステップS161へ進む。一方、使用可能な無線アクセス方式が共通していると判定された場合には、処理はステップS153へ進む。
 ステップS153において、制御部140は、実行中の推奨サービス構成判定処理のトリガが二次利用ノードであったか否かを判定する(ステップS153)。例えば、通信制御装置100が二次利用ノード20aから二次通信サービス間の調整の要求を受信したことをきっかけとして推奨サービス構成判定処理が開始された場合には、推奨サービス構成判定処理のトリガは二次利用ノードであったと判定される。その場合、処理は図10BのステップS161へ進む。一方、通信制御装置100が能動的に推奨サービス構成判定処理を開始した場合には、処理のトリガは二次利用ノードではないため、処理はステップS154へ進む。
 ステップS154において、制御部140は、2つの二次利用ノード20a及び20bにより現在使用されている無線アクセス方式が共通しているか否かを判定する(ステップS154)。ここで現在使用中の無線アクセス方式が共通していると判定された場合には、処理は図10BのステップS161へ進む。一方、現在使用中の無線アクセス方式が共通していないと判定された場合には、処理はステップS155へ進む。
 ステップS155において、制御部140は、2つの二次利用ノード20a及び20bにより現在使用されている共通の無線アクセス方式が有効に(即ち、障害を起こすことなく並行して)動作するか否かを判定する(ステップS155)。例えば、サービスエリアが重複している状況での2つのシステムの並列的な運用が困難な無線アクセス方式が使用されている場合には、制御部140は、共通の無線アクセス方式が有効に動作しないと判定し得る。その場合、処理は図10CのステップS173へ進む。一方、共通の無線アクセス方式が有効に動作すると判定された場合には、処理はステップS156へ進む。
 処理がステップS156に進んだ場合、制御部140は、2つの二次利用ノード20a及び20bが使用可能な共通する無線アクセス方式と共通するチャネルとを使用することを推奨する(ステップS156)。なお、制御部140は、推奨可能なチャネルとして送信電力の制限のない通常のチャネルと送信電力の制限のある制限付きチャネルとが存在する場合には、通常のチャネルを使用することを優先的に推奨してよい。さらに、制御部140は、2つの二次利用ノード20a及び20bへの同期信号の供給が必要であるか否かを判定する(ステップS157)。例えば、一方の二次利用ノード20が他方のサービスエリアに含まれない場合には、2つの二次通信サービスのサービスエリア間の位置関係はクラスBに属している。その場合、例えばEcma392などのメッシュプロトコルスタックが利用可能でなければ、通信サービス間の同期を補助することが必要となる。また、クラスAなどの場合でも、IEEE802.11ファミリーのようにクロックずれが大きい状況下では、通信サービス間の同期を補助することが望ましい。これらの状況に該当する場合には、制御部140は、2つの二次利用ノード20a及び20bに同期信号の供給が必要であると判定し得る。
 ステップS157において、同期信号の供給が必要であると判定された場合には、制御部140は、通信部110を介して2つの二次利用ノード20a及び20bに同期信号を供給する(ステップS158)。一方、ステップS157において、同期信号の供給が必要ではないと判定された場合には、通信制御装置100は、これらノードに同期信号を供給しない。
 図10BのステップS161では、制御部140は、重複するサービスエリア内の共通するチャネル上で、2つの二次利用ノード20a及び20bにより使用可能かつ互いに共存可能な無線アクセス方式の組合せが存在するか否かを判定する(ステップS161)。例えば、IEEE802.22の標準仕様におけるフレームフォーマットには、複数の通信サービス間で情報を交換するための“Coexistence Beacon Period”が設けられている。二次利用ノード20a及び20bは、例えば、この“Coexistence Beacon Period”を用いてスケジューリング情報又は経路情報などを交換することにより、メッシュネットワークを形成し、又はスケジューリングのタイミングが重ならないように制御情報を交換して2つの通信サービスを共存させ得る。制御部140は、共存可能な無線アクセス方式の組合せが存在すると判定した場合には、当該無線アクセス方式と共通するチャネルとを使用することを推奨する(ステップS162)。一方、共存可能な無線アクセス方式の組合せが存在しない場合には、処理はステップS163へ進む。
 ステップS163では、制御部140は、互いに異なるチャネルを2つの二次通信サービスに割り当てることができるか否かを判定する(ステップS163)。ここで、互いに異なるチャネルを2つの二次通信サービスに割り当てることができる場合には、制御部140は、当該異なるチャネルの使用を二次利用ノード20a及び20bに推奨する(ステップS164)。例えば、二次利用ノード20a及び20bからの許可チャネル情報が共にチャネルF1及びF2を含む場合には、二次利用ノード20aにチャネルF1、二次利用ノード20bにチャネルF2がそれぞれ推奨され得る。一方、互いに異なるチャネルを2つの二次通信サービスに割り当てることができない場合には、処理はステップS165へ進む。
 ステップS165では、制御部140は、2つの二次通信サービスの通信リソースの共用を支援することで通信リソースの共用が可能となるか否かを判定する(ステップS165)。例えば、二次利用ノード20a及び20bに同期信号を供給し、時間分割方式で2つの通信サービスを共存させることができる場合には、通信リソースの共用が可能であると判定され得る。その場合、処理はステップS167へ進む。一方、通信リソースの共用が可能でないと判定された場合には、処理はステップS166へ進む。ステップS166では、制御部140は、推奨可能なサービス構成が見つからないため、推奨可能なサービス構成が見つからないことを二次利用ノード20aに通知する。
 処理がステップS167に進んだ場合、2つの二次通信サービスのサービスエリア間の位置関係は、クラスA又はクラスBに属している。また、通信リソースは共用可能である。このような無線アクセス方式の組合せは、例えば、OFDMAとCSMAとの組合せを含む。この場合、制御部140は、互いに異なる無線アクセス方式と共通するチャネルとを使用することを推奨する(ステップS167)。その後、制御部140は、二次利用ノード20a及び20bの間で共用可能な通信リソースの範囲を特定する情報を交換させ、二次利用ノード20a及び20bに同期信号を供給することにより、互いに異なる無線アクセス方式を使用する2つの通信サービスを共存させる。
 処理が図10CのステップS170に進んだ場合、2つの二次通信サービスのサービスエリア間の位置関係は、図6に示したクラスCに属している。この場合、制御部140は、実行中の推奨サービス構成判定処理のトリガが二次利用ノードであったか否かを判定する(ステップS170)。ここで、推奨サービス構成判定処理のトリガが二次利用ノードであった場合には、処理はステップS172へ進む。一方、推奨サービス構成判定処理のトリガが二次利用ノードではなかった場合には、処理はステップS171へ進む。ステップS171では、制御部140は、2つの二次通信サービスのノード間の相互干渉が許容し得るレベル以下であるか否かを判定する(ステップS171)。例えば、制御部140は、各二次通信サービスの送信電力とノード間の距離に応じた経路損失とに基づいて、2つの二次通信サービスのノード間の干渉レベルを推定する。このとき、推定誤差を吸収するためのマージンが干渉レベルの推定結果に含められてもよい。そして、制御部140は、推定した干渉レベルを各二次通信サービスの所要通信品質(最小SINRなど)に応じた許容干渉レベルと比較する。その結果に基づいて、制御部140は、ノード間の相互干渉が許容し得るレベルであるか否かを判定することができる。その代わりに、二次通信サービスのノードが実際の干渉レベルを測定し、通信制御装置100がその測定結果を許容干渉レベルとの比較のために受信してもよい。また、二次通信サービスのノードが実際の干渉レベルと許容干渉レベルとの比較の結果を通信制御装置100に報告してもよい。ここで、2つの二次通信サービスのノード間の相互干渉が許容し得るレベルを超えない場合には、処理は、ステップS172へ進む。ステップS172では、制御部140は、無線アクセス方式に関わらず、共通するチャネルの使用を二次利用ノード20a及び20bに推奨する(ステップS172)。一方、2つの二次通信サービスのノード間の相互干渉が許容し得るレベルを超える場合には、処理はステップS173へ進む。
 ステップS173では、制御部140は、互いに異なるチャネルを2つの二次通信サービスに割り当てることができるか否かを判定する(ステップS173)。ここで、互いに異なるチャネルを2つの二次通信サービスに割り当てることができる場合には、制御部140は、当該異なるチャネルの使用を二次利用ノード20a及び20bに推奨する(ステップS174)。一方、互いに異なるチャネルを2つの二次通信サービスに割り当てることができない場合には、処理はステップS175へ進む。
 ステップS175では、制御部140は、2つの二次通信サービスの通信リソースの共用を支援することで通信リソースの共用が可能となるか否かを判定する(ステップS175)。ここで、通信リソースの共用が可能であると判定された場合には、処理はステップS177へ進む。一方、通信リソースの共用が可能でないと判定された場合には、処理はステップS176へ進む。ステップS176では、制御部140は、推奨可能なサービス構成が見つからないため、推奨可能なサービス構成が見つからないことを二次利用ノード20aに通知する。
 ステップS177では、制御部140は、互いに異なる無線アクセス方式と共通するチャネルとを使用することを推奨する(ステップS177)。その後、制御部140は、二次利用ノード20a及び20bの間で共用可能な通信リソースの範囲を特定する情報を交換させ、二次利用ノード20a及び20bに同期信号を供給することにより、例えば時間分割方式で、2つの通信サービスを共存させる。
 なお、通信制御装置100による推奨サービス構成判定処理の流れは、図10A~図10Cに示した例に限定されない。即ち、図10A~図10Cに示したいくつかの処理ステップが省略され若しくは統合されてもよく、追加的なステップが加えられてもよい。また、処理ステップの順序が変更されてもよい。また、ここでは通信制御装置100が2つの通信サービスの間でサービス構成を調整する例について主に説明した。しかしながら、3つ以上の通信サービス間での調整の場合にも、本実施形態は同様に適用可能である。
 また、図10A~図10Cに示したステップS156、S162、S164、S167、S172、S174、S177などにおいて、推奨可能なチャネルとして通常のチャネルと制限付きチャネルとが存在する場合には、通常のチャネルが優先的に推奨され得る。かかる構成によれば、二次通信サービス間の調整によって周波数利用効率を高めながら、個々の二次通信サービスのスループットを高く維持することができる。
 <4.通信制御の典型的なシナリオ>
 上述した通信制御装置100による二次通信サービス間の調整は、様々なシナリオにおいて有益である。以下、例示的な5つのシナリオについて説明する。
  [4-1.第1のシナリオ]
 図11A及び図11Bは、通信制御処理の第1のシナリオについて説明するための説明図である。図11Aを参照すると、一次利用ノード10、二次利用ノード20a及び20b、並びに通信制御装置100が示されている。
 一次利用ノード10により提供される一次通信サービスには、チャネルF1、F2及びF3を含む周波数帯が割り当てられている。このうち、一次利用ノード10は、チャネルF1を使用している。一方、チャネルF2及びF3は未使用である。
 二次利用ノード20aは、図示しないデータサーバからの許可を受けて、チャネルF2上で無線アクセス方式R1を使用して二次通信サービスを提供している。また、二次利用ノード20bは、図示しないデータサーバからの許可を受けて、チャネルF2上で無線アクセス方式(RAT)R2を使用して二次通信サービスを提供している。しかし、この場合、二次利用ノード20a及び20bの間の距離が近いため、例えば、二次利用ノード20bから送信される信号が二次利用ノード20a上で干渉を生じさせる。二次利用ノード20aは、かかる干渉を検知し、干渉が生じていることを通信制御装置100へ報告する(SIG1a)。この報告は、二次通信サービス間の調整の要求を意味する。
 この場合、通信制御装置100は、図10A~図10Cに例示した推奨サービス構成判定処理に従って、例えば二次利用ノード20aが使用しているチャネルをF2からF3に変更することを推奨する(SIG1b)。それにより、二次利用ノード20aは、二次利用のためのチャネルをF3に変更し、干渉を回避して良好に二次利用を継続することができる。
  [4-2.第2のシナリオ]
 図12A及び図12Bは、通信制御処理の第2のシナリオについて説明するための説明図である。図12Aを参照すると、一次利用ノード10、二次利用ノード20a及び20b、並びに通信制御装置100が再び示されている。
 第1のシナリオと同様、本シナリオにおいても、一次利用ノード10により提供される一次通信サービスには、チャネルF1、F2及びF3を含む周波数帯が割り当てられている。このうち、一次利用ノード10は、チャネルF1を使用している。一方、特にチャネルF2は未使用である。
 二次利用ノード20aは、図示しないデータサーバからの許可を受けて、チャネルF2上で無線アクセス方式R1を使用して二次通信サービスを提供している。但し、二次利用ノード20aは、無線アクセス方式R1の他に無線アクセス方式R2も使用することができる。また、二次利用ノード20bは、図示しないデータサーバからの許可を受けて、チャネルF2上で無線アクセス方式R2を使用して二次通信サービスを提供している。しかし、この場合、二次利用ノード20a及び20bの間の距離が近いため、例えば、二次利用ノード20bから送信される信号が二次利用ノード20a上で干渉を生じさせる。二次利用ノード20aは、かかる干渉を検知し、干渉が生じていることを通信制御装置100へ報告する(SIG2a)。
 この場合、通信制御装置100は、図10A~図10Cに例示した推奨サービス構成判定処理に従って、例えば二次利用ノード20aに無線アクセス方式をR1からR2に切り替えることを推奨する(SIG2b)。それにより、二次利用ノード20aは、二次利用ノード20bと共通する無線アクセス方式R2及び共通するチャネルF2を使用してメッシュネットワークを形成し、干渉を回避して良好に二次利用を継続することができる。
  [4-3.第3のシナリオ]
 図13A及び図13Bは、通信制御処理の第3のシナリオについて説明するための説明図である。図13Aを参照すると、一次利用ノード10、二次利用ノード20a及び20b、並びに通信制御装置100が再び示されている。
 これまでのシナリオと同様、本シナリオにおいても、一次利用ノード10により提供される一次通信サービスには、チャネルF1、F2及びF3を含む周波数帯が割り当てられている。このうち、一次利用ノード10は、チャネルF1を使用している。一方、チャネルF2及びF3は未使用である。
 二次利用ノード20aは、図示しないデータサーバからの許可を受けて、チャネルF2上で無線アクセス方式R2を使用して二次通信サービスを提供している。また、二次利用ノード20bは、図示しないデータサーバからの許可を受けて、チャネルF3上で無線アクセス方式R1を使用して二次通信サービスを提供している。但し、二次利用ノード20bは、無線アクセス方式R1の他に無線アクセス方式R2も使用することができる。この場合、二次利用ノード20a及び20bが使用しているチャネルが異なるため、2つの二次通信サービス間で大きな干渉は生じない。しかし、例えば二次利用ノード20aの近傍に位置する端末装置22aと二次利用ノード20bの近傍に位置する端末装置22bとは、それぞれが属する通信サービスが異なるため、互いに通信することができない。そこで、二次利用ノード20aは、これら端末装置間の通信のニーズに応じて、通信制御装置100にネットワークの拡張を要求する(SIG3a)。このネットワークの拡張要求は、二次通信サービス間の調整の要求を意味する。
 この場合、通信制御装置100は、図10A~図10Cに例示した推奨サービス構成判定処理に従って、例えば二次利用ノード20bに無線アクセス方式をR1からR2に切り替えると共に、チャネルF2を使用することを推奨する(SIG3b)。また、通信制御装置100は、二次利用ノード20a及び20bが同期するための同期信号(SYNC)を供給する。それにより、二次利用ノード20a及び20bは、共通する無線アクセス方式R2及び共通するチャネルF2を使用してメッシュネットワークを形成する。その結果、二次利用ノード20a及び20bが端末装置22a及び22bの間で送受信される信号を中継し、端末装置22a及び22bの間での通信が可能となる。
  [4-4.第4のシナリオ]
 図14A及び図14Bは、通信制御処理の第4のシナリオについて説明するための説明図である。図14Aを参照すると、一次利用ノード10、二次利用ノード20a、20b及び20c、並びに通信制御装置100が示されている。
 これまでのシナリオと同様、本シナリオにおいても、一次利用ノード10により提供される一次通信サービスには、チャネルF1、F2及びF3を含む周波数帯が割り当てられている。このうち、一次利用ノード10は、チャネルF1を使用している。一方、チャネルF2及びF3は未使用である。
 二次利用ノード20bは、図示しないデータサーバからの許可を受けて、チャネルF2上で無線アクセス方式R3を使用して二次通信サービスを提供している。また、二次利用ノード20cは、図示しないデータサーバからの許可を受けて、チャネルF3上で無線アクセス方式R1を使用して二次通信サービスを提供している。
 さらに、本シナリオにおいて、二次利用ノード20aは、図示しないデータサーバからの許可を受けて、無線アクセス方式R2を使用して二次通信サービスを提供しようとする。データサーバから許可される許可チャネル情報は、チャネルF2及びF3を含む。しかし、二次利用ノード20aは、チャネルF2及びF3のいずれを使用したとしても、周囲に位置する二次利用ノード20b及び20cからの信号を原因として生じる干渉により、二次通信サービスを開始することができない。そこで、二次利用ノード20aは、干渉が生じていることを通信制御装置100へ報告する(SIG4a)。
 この場合、通信制御装置100は、図10A~図10Cに例示した推奨サービス構成判定処理に従って、例えば二次利用ノード20bにチャネルF3を使用すべきことを推奨する(SIG4b)。これは、二次利用ノード20bのサービスエリアA22と二次利用ノード20cのサービスエリアA23との間の位置関係が上述したクラスCに属し、二次利用ノード20cがチャネルF3を使用しているためである。また、通信制御装置100は、例えば二次利用ノード20aにチャネルF2を使用すべきことを推奨する(SIG4c)。それにより、二次利用ノード20aは、二次利用ノード20b及び20cとは異なるチャネルF2を使用し、干渉を回避して二次利用を開始することができる。
  [4-5.第5のシナリオ]
 図15A及び図15Bは、通信制御処理の第5のシナリオについて説明するための説明図である。図15Aを参照すると、一次利用ノード10、二次利用ノード20a及び20b、並びに通信制御装置100が示されている。
 本シナリオでは、一次利用ノード10により提供される一次通信サービスには、チャネルF1、F2、F3及びF4を含む周波数帯が割り当てられている。このうち、一次利用ノード10は、チャネルF1を使用している。一方、チャネルF2、F3及びF4は未使用である。
 二次利用ノード20aは、図示しないデータサーバからの許可を受けて、チャネルF3上で無線アクセス方式R1を使用して二次通信サービスを提供している。また、二次利用ノード20bは、図示しないデータサーバからの許可を受けて、チャネルF2上で無線アクセス方式R2を使用して二次通信サービスを提供している。この場合、二次利用ノード20a及び20bが使用しているチャネルが異なるため、2つの二次通信サービス間で大きな干渉は生じない。ここで、例えば、二次利用ノード20aにより提供される二次通信サービスにおいて、例えば高いデータレートを要するアプリケーションのニーズが生じたものとする。そこで、二次利用ノード20aは、二次通信サービスの帯域を拡張してデータレートを向上させるために、通信制御装置100にチャネルの追加を要求する(SIG5a)。このチャネルの追加要求は、二次通信サービス間の調整の要求を意味する。
 この場合、通信制御装置100は、図10A~図10Cに例示した推奨サービス構成判定処理に従って、例えば二次利用ノード20bが使用していないチャネルF3及びF4を使用することを二次利用ノード20aに推奨する(SIG5b)。その結果、二次利用ノード20aは、チャネルF3及びF4を使用し、それまでよりも広い帯域で、即ち高いデータレートで二次通信サービスを提供することが可能となる。
 <5.まとめ>
 ここまで、図1~図15Bを用いて、本開示の一実施形態について説明した。上述した実施形態によれば、通信制御装置100は、2つ以上の二次通信サービスのサービスエリア間の位置関係と当該二次通信サービスを提供する二次利用ノードが使用可能な無線アクセス方式とに基づいて、少なくとも1つの二次利用ノードに、使用すべき無線アクセス方式又はチャネルを推奨する。従って、二次利用のための構成を複数の二次通信サービス間で調整することが可能となる。特に、周波数帯の二次利用の場面では、個々の二次利用ノードがどのような無線アクセス方式をサポートしているかが事前に把握されない場合が多い。また、個々の二次利用ノードに二次通信サービス間の調整を行うための機能を課すことは、コストの観点から現実的でなく、調整の中立性も確保しにくい。従って、各二次利用ノードについての無線アクセス方式などの情報を収集し、二次通信サービス間の調整を行う中立的なエンティティである通信制御装置100が提供されることは、コストの観点からも調整の中立性の観点からも有益である。
 また、上述した実施形態によれば、通信制御装置100は、各二次利用ノードが使用を許可されたチャネルの中から、各二次利用ノードに推奨するチャネルを選択する。従って、通信制御装置100が調整を行うことによって、一次通信サービス又は周辺で運用され得るその他の通信サービスに干渉を与えるリスクは生じない。
 また、上述した実施形態によれば、二次利用ノードが二次通信サービス間の干渉を検知した場合には、干渉を回避するように、二次通信サービスの構成が変更され得る。二次利用ノードがサービスエリアの拡張を求める場合には、サービスエリアが拡張されるように二次通信サービスの構成が変更され得る。二次利用ノードが帯域の拡張を求める場合には、新たに干渉を生じさせることなく、二次通信サービスの帯域が拡張され得る。それにより、ユーザにとっての二次利用の機会が拡大されると共に、周波数利用効率は一層向上する。
 なお、本明細書において説明した通信制御装置100及び二次利用ノード20における制御処理は、ソフトウェアを用いて実現され得る。上述した制御処理を実現するソフトウェアを構成するプログラムは、各装置の内部又は外部に設けられる記憶媒体に予め格納される。そして、各プログラムは、例えば、実行時にRAM(Random Access Memory)に読み込まれ、CPU(Central Processing Unit)などのプロセッサにより実行される。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 10   一次利用ノード
 20   二次利用ノード
 40   データサーバ
 100  通信制御装置
 110  通信部(通信制御装置)
 120  記憶部(通信制御装置)
 130  推定部(通信制御装置)
 140  制御部(通信制御装置)
 210  第1通信部(二次利用ノード)
 220  第2通信部(二次利用ノード)
 230  記憶部(二次利用ノード)
 240  二次利用制御部(二次利用ノード)
 

Claims (14)

  1.  一次通信サービスに割当てられた周波数帯の一部を使用して二次通信サービスを提供する1つ以上の二次利用ノードによる通信を制御する通信制御装置であって:
     各二次利用ノードから、当該二次利用ノードが提供する二次通信サービスについてのサービスエリアを推定するためのサービスエリア情報、及び当該二次利用ノードにより使用可能な無線アクセス方式を表すアクセス方式情報を受信する通信部と;
     前記通信部により受信される前記サービスエリア情報及び前記アクセス方式情報を記憶する記憶部と;
     前記サービスエリア情報を用いて2つ以上の二次通信サービスのサービスエリアを推定する推定部と;
     前記推定部により推定されるサービスエリア間の位置関係と前記アクセス方式情報とに基づいて、前記2つ以上の二次通信サービスの少なくとも1つについて推奨される無線アクセス方式又は推奨されるチャネルを、当該二次通信サービスを提供する二次利用ノードに通知する制御部と;
     を備える通信制御装置。
  2.  前記サービスエリア情報は、対応する二次通信サービスを提供する二次利用ノードの位置、当該二次利用ノードに適用される最大送信電力、及び当該二次利用ノードのアンテナの高さについてのデータを含む、請求項1に記載の通信制御装置。
  3.  前記通信部は、前記二次利用ノードから当該二次利用ノードが使用を許可されたチャネルを表す許可チャネル情報をさらに受信し、
     前記制御部は、各二次利用ノードに推奨するチャネルを、当該二次利用ノードから受信された前記許可チャネル情報により表されるチャネルの中から選択する、
     請求項1に記載の通信制御装置。
  4.  前記制御部は、2つの二次通信サービスのサービスエリアが重複している場合であって、当該2つの二次通信サービスをそれぞれ提供する2つの二次利用ノードにより使用可能な無線アクセス方式が共通するときに、当該共通する無線アクセス方式の使用を推奨する、請求項1に記載の通信制御装置。
  5.  前記制御部は、前記2つの二次通信サービスの一方のサービスエリアに他方の二次利用ノードが含まれない場合に、前記通信部から前記2つの二次利用ノードに同期信号を送信させる、請求項4に記載の通信制御装置。
  6.  前記制御部は、2つの二次通信サービスのサービスエリアが重複している場合であって、当該2つの二次通信サービスをそれぞれ提供する2つの二次利用ノードにより使用可能な無線アクセス方式が異なるときに、一方の二次通信サービスが使用するチャネルと異なるチャネルの使用を他方の二次通信サービスを提供する二次利用ノードに推奨する、請求項1に記載の通信制御装置。
  7.  前記制御部は、2つの二次通信サービスのサービスエリアが重複しておらず、かつ当該2つの二次通信サービスの間の相互干渉のレベルが許容され得る干渉レベルを超えない場合には、当該2つの二次通信サービスをそれぞれ提供する2つの二次利用ノードに、共通するチャネルの使用を推奨する、請求項1に記載の通信制御装置。
  8.  前記制御部は、二次通信サービス間の干渉を検知した二次利用ノードからの要求に応じて、当該二次利用ノード又は当該二次利用ノードとサービスエリアが重複する他の二次利用ノードに、推奨される無線アクセス方式又は推奨されるチャネルを通知する、請求項1に記載の通信制御装置。
  9.  前記制御部は、サービスエリアの拡張を求める二次利用ノードからの要求に応じて、当該二次利用ノード又は当該二次利用ノードと共通する無線アクセス方式を使用可能な他の二次利用ノードに、推奨される無線アクセス方式又は推奨されるチャネルを通知する、請求項1に記載の通信制御装置。
  10.  前記制御部は、帯域の拡張を求める二次利用ノードからの要求に応じて、当該二次利用ノードに推奨されるチャネルを通知する、請求項1に記載の通信制御装置。
  11.  前記制御部は、推奨可能なチャネルが複数存在する場合には、送信電力の制限のないチャネルを優先的に推奨する、請求項1に記載の通信制御装置。
  12.  一次通信サービスに割当てられた周波数帯の一部を使用して二次通信サービスを提供する1つ以上の二次利用ノードによる通信を制御するための通信制御方法であって:
     各二次利用ノードから、当該二次利用ノードが提供する二次通信サービスについてのサービスエリアを推定するためのサービスエリア情報、及び当該二次利用ノードにより使用可能な無線アクセス方式を表すアクセス方式情報を受信することと;
     受信した前記サービスエリア情報及び前記アクセス方式情報を記憶することと;
     前記サービスエリア情報を用いて2つ以上の二次通信サービスのサービスエリアを推定することと;
     推定したサービスエリア間の位置関係と前記アクセス方式情報とに基づいて、前記2つ以上の二次通信サービスの少なくとも1つについて推奨される無線アクセス方式又は推奨されるチャネルを、当該二次通信サービスを提供する二次利用ノードに通知することと;
     を含む通信制御方法。
  13.  一次通信サービスに割当てられた周波数帯の一部を使用して二次通信サービスを提供する1つ以上の二次利用ノードと当該1つ以上の二次利用ノードによる通信を制御する通信制御装置とを含む通信システムであって、
     前記通信制御装置は:
     各二次利用ノードから、当該二次利用ノードが提供する二次通信サービスについてのサービスエリアを推定するためのサービスエリア情報、及び当該二次利用ノードにより使用可能な無線アクセス方式を表すアクセス方式情報を受信する通信部と;
     前記通信部により受信される前記サービスエリア情報及び前記アクセス方式情報を記憶する記憶部と;
     前記サービスエリア情報を用いて2つ以上の二次通信サービスのサービスエリアを推定する推定部と;
     前記推定部により推定されるサービスエリア間の位置関係と前記アクセス方式情報とに基づいて、前記2つ以上の二次通信サービスの少なくとも1つについて推奨される無線アクセス方式又は推奨されるチャネルを、当該二次通信サービスを提供する二次利用ノードに通知する制御部と;
     を備え、
     各二次利用ノードは:
     前記サービスエリア情報及び前記アクセス方式情報を前記通信制御装置へ送信する通信部と;
     前記通信制御装置により推奨される無線アクセス方式又は推奨されるチャネルを使用して、1つ以上の端末装置に二次通信サービスを提供する二次利用制御部と;
     を備える、
     通信システム。
  14.  一次通信サービスに割当てられた周波数帯の一部を使用して二次通信サービスを提供する通信装置であって:
     前記通信装置が提供する二次通信サービスについてのサービスエリアを推定するためのサービスエリア情報及び前記通信装置により使用可能な無線アクセス方式を表すアクセス方式情報を他の装置へ送信する通信部と;
     前記サービスエリア情報を用いて推定される前記二次通信サービスのサービスエリアと他の二次通信サービスのサービスエリアとの位置関係及び前記アクセス方式情報に基づいて前記他の装置により推奨される無線アクセス方式又は推奨されるチャネルを使用して、1つ以上の端末装置に前記二次通信サービスを提供する二次利用制御部と;
     を備える通信装置。
     
PCT/JP2011/063657 2010-07-07 2011-06-15 通信制御装置、通信制御方法、通信システム及び通信装置 WO2012005092A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/807,898 US9078243B2 (en) 2010-07-07 2011-06-15 Communication control device, communication control method, communication system and communication device
CN201180032588.3A CN102960010B (zh) 2010-07-07 2011-06-15 通信控制装置、通信控制方法、通信系统和通信装置
EP11803428.9A EP2592856B1 (en) 2010-07-07 2011-06-15 Communication control device, communication control method, communication system, and communication device
US14/696,941 US9380575B2 (en) 2010-07-07 2015-04-27 Communication control device, communication control method, communication system and communication device
US15/167,555 US9999085B2 (en) 2010-07-07 2016-05-27 Communication control device, communication control method, communication system and communication device
US15/986,604 US10368385B2 (en) 2010-07-07 2018-05-22 Communication control device, communication control method, communication system and communication device
US16/428,806 US10517131B2 (en) 2010-07-07 2019-05-31 Communication control device, communication control method, communication system and communication device
US16/670,826 US10764950B2 (en) 2010-07-07 2019-10-31 Communication control device, communication control method, communication system and communication device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010155116 2010-07-07
JP2010-155116 2010-07-07
JP2010243789 2010-10-29
JP2010-243789 2010-10-29
JP2011-029988 2011-02-15
JP2011029988A JP5617676B2 (ja) 2010-07-07 2011-02-15 通信制御装置、通信制御方法、通信システム及び通信装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/807,898 A-371-Of-International US9078243B2 (en) 2010-07-07 2011-06-15 Communication control device, communication control method, communication system and communication device
US14/696,941 Continuation US9380575B2 (en) 2010-07-07 2015-04-27 Communication control device, communication control method, communication system and communication device

Publications (1)

Publication Number Publication Date
WO2012005092A1 true WO2012005092A1 (ja) 2012-01-12

Family

ID=45441078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063657 WO2012005092A1 (ja) 2010-07-07 2011-06-15 通信制御装置、通信制御方法、通信システム及び通信装置

Country Status (6)

Country Link
US (6) US9078243B2 (ja)
EP (1) EP2592856B1 (ja)
JP (1) JP5617676B2 (ja)
CN (2) CN102960010B (ja)
MY (1) MY163054A (ja)
WO (1) WO2012005092A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207934A1 (ja) * 2013-06-28 2014-12-31 富士通株式会社 制御装置及び制御方法
CN115118609A (zh) * 2022-07-13 2022-09-27 深圳市冠辰科技有限公司 基于mesh网络的控制方法及计算机可读存储介质

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565082B2 (ja) 2009-07-31 2014-08-06 ソニー株式会社 送信電力決定方法、通信装置及びプログラム
JP5531767B2 (ja) 2009-07-31 2014-06-25 ソニー株式会社 送信電力制御方法、通信装置及びプログラム
JP5429036B2 (ja) 2009-08-06 2014-02-26 ソニー株式会社 通信装置、送信電力制御方法、及びプログラム
JP5617676B2 (ja) * 2010-07-07 2014-11-05 ソニー株式会社 通信制御装置、通信制御方法、通信システム及び通信装置
JP5821208B2 (ja) 2010-10-29 2015-11-24 ソニー株式会社 通信制御装置、通信制御方法、通信装置、通信方法及び通信システム
WO2014007156A1 (ja) * 2012-07-04 2014-01-09 株式会社日立国際電気 無線通信システム、周波数チャネル共用方法、ネットワークコントローラ装置
US9998985B2 (en) 2012-08-31 2018-06-12 Sony Corporation Communication control apparatus, terminal apparatus, communication control method, program, and communication control system
JP2014192949A (ja) 2013-03-26 2014-10-06 Canon Inc 送電装置、受電装置、送電方法、受電方法及びプログラム
CN103179593A (zh) * 2013-04-12 2013-06-26 重庆大学 一种异构多认知无线网络共存环境中的网络识别方法
WO2015106460A1 (zh) * 2014-01-20 2015-07-23 华为技术有限公司 核心网设备、接入网设备、数据分流方法及系统
KR102172404B1 (ko) * 2014-03-07 2020-10-30 한국전자통신연구원 무선 기기의 전파도달거리 산출 방법
JP6277893B2 (ja) 2014-07-08 2018-02-14 ソニー株式会社 装置及び方法
EP3410760B1 (en) 2016-01-27 2020-10-21 Sony Corporation Communication control device, communication control method and program
CN106093844B (zh) * 2016-06-06 2019-03-12 中科劲点(北京)科技有限公司 估计终端间距及位置规划的方法、终端及设备
WO2020202829A1 (ja) * 2019-03-29 2020-10-08 ソニー株式会社 通信制御装置、通信装置および通信制御方法
WO2021257253A1 (en) * 2020-06-17 2021-12-23 Commscope Technologies Llc Methods and systems for provisioning of parameter data of radios controlled by a spectrum access system

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749044A (en) 1995-07-14 1998-05-05 Motorola, Inc. Centralized dynamic channel assignment controller and methods
KR100295437B1 (ko) * 1997-12-30 2001-07-12 윤종용 멀티주파수할당시스템의커버리지최적화방법
JP4247059B2 (ja) * 2003-07-04 2009-04-02 株式会社エヌ・ティ・ティ・ドコモ 制御局、無線通信システム、及び周波数割当て方法
US20080248824A1 (en) * 2005-12-14 2008-10-09 Mitsubishi Electric Corporation Scheduling Method, Base Station and Terminal
JP4772582B2 (ja) * 2006-04-28 2011-09-14 株式会社東芝 コグニティブ無線システム
US7495608B1 (en) * 2006-06-16 2009-02-24 Cellco Partnership Position determination using almanac for virtual base stations
CN100558003C (zh) * 2006-06-30 2009-11-04 西安电子科技大学 基于频谱多重使用的动态频谱管理方法
US8929281B2 (en) * 2006-09-15 2015-01-06 Qualcomm Incorporated Methods and apparatus related to peer to peer device
CN102740323B (zh) * 2006-09-26 2015-09-30 高通股份有限公司 基于无线装置的传感器网络
GB2445599B (en) * 2006-11-20 2009-10-07 Motorola Inc Frequency reuse in communication systems
KR100962115B1 (ko) * 2007-07-06 2010-06-10 삼성전자주식회사 무선인지 통신시스템에서 공동 전력제어를 위한 방법 및장치
US7881726B2 (en) * 2007-07-31 2011-02-01 Motorola, Inc. Method and apparatus for spectrum sharing between an incumbent communications system and a cognitive radio system
US8155033B2 (en) * 2007-11-28 2012-04-10 Motorola Solutions, Inc. Opportunistic spectrum sensing optimization for a communication system
US8140085B2 (en) * 2008-09-30 2012-03-20 Motorola Solutions, Inc. Method and apparatus for optimizing spectrum utilization by a cognitive radio network
JP5648286B2 (ja) * 2009-01-14 2015-01-07 ソニー株式会社 通信システム、通信装置、プログラム、及び通信制御方法
US8305917B2 (en) * 2009-03-23 2012-11-06 Motorola Solutions, Inc. System and method for maintaining a backup radio operating parameter list in a secondary use communication system
KR101700996B1 (ko) * 2009-04-06 2017-01-31 인터디지탈 패튼 홀딩스, 인크 다양한 무선 액세스 기술들에 걸친 텔레비젼 대역(tvbd)채널 콰이어팅을 위한 방법 및 장치
JP5609252B2 (ja) 2009-07-31 2014-10-22 ソニー株式会社 送信電力割当て方法、通信装置及びプログラム
JP5531767B2 (ja) 2009-07-31 2014-06-25 ソニー株式会社 送信電力制御方法、通信装置及びプログラム
JP5565082B2 (ja) 2009-07-31 2014-08-06 ソニー株式会社 送信電力決定方法、通信装置及びプログラム
JP5429036B2 (ja) 2009-08-06 2014-02-26 ソニー株式会社 通信装置、送信電力制御方法、及びプログラム
CN101662783B (zh) * 2009-08-26 2012-05-23 东南大学 认知无线电系统中一种基于图论的频谱分配方法
US8761060B2 (en) 2010-02-12 2014-06-24 Qualcomm Incorporated Controlling access point transmit power based on received access terminal messages
JP5617676B2 (ja) 2010-07-07 2014-11-05 ソニー株式会社 通信制御装置、通信制御方法、通信システム及び通信装置
JP5581975B2 (ja) * 2010-07-07 2014-09-03 ソニー株式会社 通信制御装置、通信制御方法、通信システム及び通信装置
JP5821208B2 (ja) 2010-10-29 2015-11-24 ソニー株式会社 通信制御装置、通信制御方法、通信装置、通信方法及び通信システム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Digital Wireless Transmission Technology", PEARSON EDUCATION JAPAN, pages: 16 - 19
GABRIEL PORTO VILLARDI ET AL.: "COEXISTENCE OF MULTIPLE SECONDARY NETWORKS IN TVWS", IEEE P802.19 WIRELESS COEXISTENCE, DOC.:IEEE 802.19-10/ 0072R0, IEEE, 18 May 2010 (2010-05-18), XP017661578, Retrieved from the Internet <URL:https://mentor.ieee.org/802.19/dcn/10/19-10-0072-00-0001-coexistence-of-multiple-secondary-networks-in-tvws.pdf> [retrieved on 20110704] *
RYO SAWAI ET AL.: "Coexistence mechanism and its algorithm", IEEE P802.19 WIRELESS COEXISTENCE, DOC.: IEEE 802.19-10/0145R0, 1 December 2010 (2010-12-01), XP017661489, Retrieved from the Internet <URL:https://mentor.ieee.org/802.19/dcn/10/19-10-0145-00-0001-coexistence-mechanism-and-its-algorithm.pdf> [retrieved on 20110704] *
See also references of EP2592856A4
TUNCER BAYKAS ET AL.: "System Design Document, IEEE P802.19 Wireless Coexistence, doc.", IEEE 802.19-10/0055R3, IEEE, 18 March 2010 (2010-03-18), XP017661600, Retrieved from the Internet <URL:https://mentor.ieee.org/802.19/dcn/10/19-10-0055-03-0001-system-design-document.pdf> [retrieved on 20110704] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207934A1 (ja) * 2013-06-28 2014-12-31 富士通株式会社 制御装置及び制御方法
JPWO2014207934A1 (ja) * 2013-06-28 2017-02-23 富士通株式会社 制御装置及び制御方法
CN115118609A (zh) * 2022-07-13 2022-09-27 深圳市冠辰科技有限公司 基于mesh网络的控制方法及计算机可读存储介质

Also Published As

Publication number Publication date
CN105792226A (zh) 2016-07-20
US9999085B2 (en) 2018-06-12
EP2592856B1 (en) 2019-12-25
MY163054A (en) 2017-08-15
US20200068641A1 (en) 2020-02-27
US10368385B2 (en) 2019-07-30
JP5617676B2 (ja) 2014-11-05
US10517131B2 (en) 2019-12-24
US20150230243A1 (en) 2015-08-13
US20160278157A1 (en) 2016-09-22
US20190289659A1 (en) 2019-09-19
US9380575B2 (en) 2016-06-28
US10764950B2 (en) 2020-09-01
CN105792226B (zh) 2019-10-25
CN102960010B (zh) 2016-06-01
US20180270890A1 (en) 2018-09-20
EP2592856A4 (en) 2017-07-26
CN102960010A (zh) 2013-03-06
EP2592856A1 (en) 2013-05-15
US9078243B2 (en) 2015-07-07
JP2012109922A (ja) 2012-06-07
US20130102344A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5617676B2 (ja) 通信制御装置、通信制御方法、通信システム及び通信装置
JP5581975B2 (ja) 通信制御装置、通信制御方法、通信システム及び通信装置
JP5353812B2 (ja) 通信制御方法、通信装置、及びプログラム
US9369258B2 (en) Systems and methods for peer-to-peer and AP traffic multiplexing
JP5429036B2 (ja) 通信装置、送信電力制御方法、及びプログラム
EP3007490A1 (en) Communications control device, communications control method, wireless communications system, base station, and terminal device
JP2010246097A (ja) フェムトセルネットワークにおける干渉回避方法、装置およびシステム
US20130022013A1 (en) Method for providing information such that different types of access points can coexist
KR20140095474A (ko) 무선 통신 시스템에서 주변 네트워크 정보 송수신 방법 및 장치
JP2011010265A (ja) 通信装置、通信制御方法、及びプログラム
KR101590967B1 (ko) 무선 통신 시스템에서 화이트스페이스 맵 송수신 방법 및 장치
JP5668815B2 (ja) 通信制御方法、通信装置、及びプログラム
US20150180601A1 (en) Method and apparatus for controlling inter-cellular interference in hetnet system
WO2014033854A1 (ja) 基地局装置、通信システム及び通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032588.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803428

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011803428

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13807898

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE