WO2012004209A1 - Verfahren zur herstellung von polyolgemischen - Google Patents
Verfahren zur herstellung von polyolgemischen Download PDFInfo
- Publication number
- WO2012004209A1 WO2012004209A1 PCT/EP2011/061174 EP2011061174W WO2012004209A1 WO 2012004209 A1 WO2012004209 A1 WO 2012004209A1 EP 2011061174 W EP2011061174 W EP 2011061174W WO 2012004209 A1 WO2012004209 A1 WO 2012004209A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino
- polyol
- functional
- substances
- reaction
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/42—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/46—Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen
- C08G18/4615—Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4866—Polyethers having a low unsaturation value
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5036—Polyethers having heteroatoms other than oxygen having nitrogen containing -N-C=O groups
- C08G18/5045—Polyethers having heteroatoms other than oxygen having nitrogen containing -N-C=O groups containing urethane groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/32—General preparatory processes using carbon dioxide
- C08G64/34—General preparatory processes using carbon dioxide and cyclic ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2603—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2642—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
- C08G65/2645—Metals or compounds thereof, e.g. salts
- C08G65/2663—Metal cyanide catalysts, i.e. DMC's
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/333—Polymers modified by chemical after-treatment with organic compounds containing nitrogen
- C08G65/33303—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G71/00—Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
- C08G71/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/12—Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
Definitions
- the invention relates to a process for the preparation of polyol mixtures comprising polyethercarbonate polyol and urethane group-containing polyol and to a process for the production of polyurethane from these mixtures.
- the invention thus provides a process for the preparation of polyol mixtures containing polyethercarbonate polyol and urethane group-containing polyol, characterized in that
- step (ii) in a second step, at least one amino-functional substance is added to the crude mixture formed in step (i).
- step (ii) of the process according to the invention the cyclic carbonate formed as by-product in the copolymerization of alkylene oxide and CO 2 is reacted with the amino-functional substance, resulting in a urethane-containing polyol B), which is thus mixed in a mixture with the polyether carbonate polyol A). is present.
- a polyol mixture comprising polyethercarbonate polyol A) and urethane-containing polyol B) is obtained by the novel process without work-up steps (such as distillation).
- aminofunctional substance for example, technically available crude mixtures of amines, diamines and / or amino compounds, which may additionally contain hydroxyl groups used.
- the process according to the invention has the advantage that valuable polyol raw materials are obtained from the mixture resulting from the copolymerization containing unwanted cyclic carbonate in the second step (ii), so that the resulting product without further separation steps (such as by distillation) in the further reaction to refined products, such. B. with isocyanates to polyurethanes, can be used.
- polyol mixtures thus represent valuable raw materials for the production of polyurethanes (such as polyurethane foams, polyurethane plastics, thermoplastic polyurethanes, polyurethane dispersions, polyurethane coatings, polyurethane adhesives and polyurethane sealants).
- a preferred embodiment of the invention is a process for the preparation of polyurethanes, characterized in that (i) in a first step one or more alkylene oxides and carbon dioxide are added in the presence of at least one DMC catalyst to one or more H-functional starter substances ("copolymerization"),
- step (ii) at least one amino-functional substance is added in a second step to the crude mixture formed in step (i), and
- step (iii) reacting the polyol mixture resulting from step (ii) with diisocyanate and / or polyisocyanate.
- the process according to the invention represents a simple and elegant method for removing cyclic carbonate from copolymerization products of alkylene oxides and carbon dioxide without distillation or other work-up step, this cyclic carbonate being converted into a secondary product which is suitable for being processed into polyurethane with isocyanate. This is done by reacting the present in the mixture in addition to polycarbonate polyols cyclic carbonate with one or more amino-functional substances (such as primary and / or secondary amines).
- Amino-functional substances in the context of the invention are, for example, aliphatic, cycloaliphatic and / or heterocyclic primary amines, for example those according to US Pat
- n is an integer from 0 to 17,
- n is an integer from 0 to 8, preferably 1 or 2
- X and Y are independently NH, O or S.
- Preferred amino-functional substances are primary monoamines (such as, for example, methylamine, ethylamine, 1-propylamine, 1-ethylpropylamine, 1-butylamine, 1-hexylamine, 2-ethylhexylamine, cyclopentylamine, cyclohexylamine, 2-methylcyclohexylamine, 4-methylcyclohexylamine, cyclooctylamine, 1- Octylamine, 1-decylamine, 1-dodecylamine, 1-octadecylamine, N- (3-aminopropyl) -2-pyrrolidinone, 1-aminopyrrolidine, 1-aminopiperidine, 1-amino-4-methylpiperazine, 4- (2-aminoethyl) - morpholine, 1- (2-aminoethyl) piperidine, 1- (2-aminoethyl) pyrrolidine, 2- (2-aminoethyl
- Jeffamine ® D series for example, Jeffamine ® D-230, Jeffamine ® D-400, Jeffamine ® D-2000, Jeffamine ® D-4000; aliphatic and cycloaliphatic triamines having primary and / or secondary amino groups, such as. B. triaminononane (4-aminomethyl-l, 8-octanediamine); Polyetheramines, such as. B. Jeffamine ® T series, for example, Jeffamine ® T -403, Jeffamine ® T-3000, Jeffamine ® T-5000) and / or hydroxy amines having primary or secondary amino groups (such as.
- 2-aminoethanol 2 -Amino-1-propanol, 1-amino-2-propanol, 2-amino-1-butanol, 4-amino-1-butanol, 4- (2-hydroxyethyl) -piperidine, 4- (2-hydroxyethyl) -piperazine , 2-amino-cyclohexanol, 4-amino-cyclohexanol, 2-amino-cyclopentanol, diethanolamine, bis (2-hydroxypropyl) -amine).
- amino-functional substances are hydroxy-functional monoamines having primary or secondary amino groups (for example 2-aminoethanol, 2-amino-1-propanol, 1-amino-2-propanol, 2-amino-1-butanol, 4-amino-1-one butanol, 4- (2-hydroxyethyl) -piperidine, 4- (2-hydroxyethyl) -piperazine, 2-amino-cyclohexanol, 4-amino-cyclohexanol, 2-amino-cyclopentanol, diethanolamine, bis- (2-hydroxypropyl) - amine) and / or diamines having primary and / or secondary amino groups (such as 1,2-diaminoethane, 1,3-diaminopropane, 1, 4-diaminobutane, 1,2-bis (methylamino) ethane, 1, 3 Diaminopentane, 1,6-diaminohexane, 1,8-di
- step (ii) is carried out in less than 12 hours, preferably less than 1 hour, following step (i).
- step (i) for the preparation of polyethercarbonate polyols by addition of one or more alkylene oxides and carbon dioxide in the presence of at least one DMC catalyst to one or more H-functional starter substances is known from the prior art (eg WO -A 2004/087788, WO-A 2006/103212, WO-A 2008/013731, US 4,826,953, WO-A 2008/092767).
- copolymerization for example, depending on the particular catalyst chosen in general up to 30 wt .-% of cyclic carbonate are formed.
- polyethercarbonate polyol is carried out, for example, by a process for preparing polyethercarbonate polyols from one or more H-functional starter substances, one or more alkylene oxides and carbon dioxide in the presence of a DMC catalyst, characterized in that
- step (ß) for the activation of a partial amount (based on the total amount used in the activation and copolymerization of alkylene oxides) of one or more alkylene oxides to the mixture resulting from step (a) is added, wherein this addition of a partial amount of alkylene oxide, optionally in the presence CO 2 can be carried out, and in which case the temperature peak occurring due to the following exothermic chemical reaction ("hotspot") and / or a pressure drop in the reactor is respectively awaited, and wherein the step ( ⁇ ) for activating can also take place several times,
- step ( ⁇ ) one or more alkylene oxides and carbon dioxide are added to the mixture resulting from step ( ⁇ ), wherein the alkylene oxides used in step ( ⁇ ) may be identical or different from the alkylene oxides used in step ( ⁇ ).
- Activation in the sense of the invention refers to a step in which a partial amount of alkylene oxide compound, optionally in the presence of CO 2 , is added to the DMC catalyst and then the addition of the alkylene oxide compound is interrupted, a temperature peak ("" due to a subsequent exothermic chemical reaction ("The activation step is the time from the addition of the partial amount of alkylene oxide compound, optionally in the presence of CO 2 , to the DMC catalyst to the hotspot
- the activation step may be one step for drying the DMC catalyst and optionally the starter be preceded by increased temperature and / or reduced pressure, wherein this step of drying is not part of the activation step in the context of the present invention.
- alkylene oxides having 2-24 carbon atoms can be used for the process according to the invention.
- the alkylene oxides having 2-24 carbon atoms are, for example, one or more compounds selected from the group consisting of ethylene oxide, propylene oxide, 1-butene oxide, 2,3-butene oxide, 2-methyl-1,2-propene oxide (isobutene oxide), 1- pentenoxide, 2,3-pentenoxide, 2-methyl-l, 2-butene oxide, 3-methyl-1,2-butene oxide, 1-hexene oxide, 2,3-hexene oxide, 3,4-hexene oxide, 2-methyl- l, 2-pentenoxide, 4-methyl-l, 2-pentenoxide, 2-ethyl-l, 2-butene oxide, 1-epoxide, 1-octene oxide, 1-nonene oxide, 1-decene oxide, 1-undecenoxide, 1-dodecenoxide, 4-methyl-l, 2-pentenoxide, butadiene monoxide,
- alkoxylation active groups having active H atoms are, for example, -OH, -NH 2 (primary amines), -NH- (secondary amines), -SH and -CO 2 H, preferably -OH and -NH 2 , are particularly preferred is -OH.
- H-functional starter substance for example, one or more compounds selected from the group consisting of water, monohydric or polyhydric alcohols, mono- or polyhydric amines, polyhydric thiols, carboxylic acids, amino alcohols, aminocarboxylic acids, thioalcohols, hydroxyesters, polyetherpolyols, polyesterpolyols, polyesteretherpolyols, polyether carbonate polyols, polycarbonate polyols, polyethyleneimines, polyetheramines (z. B. so-called Jeffamine ® from Huntsman, such as. for example, D-230, D-400, D-2000, T-403, T-3000, T-5000 or corresponding products of BASF such. B.
- monofunctional alcohols can be used: methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 3-buten-1-ol, 3-butyn-1-ol, 2-methyl 3-buten-2-o 1, 2-methyl-3-butyn-2-ol, propargyl alcohol, 2-methyl-2-propanol, 1-tert-butoxy-2-propanol, 1-pentanol, 2-pentanol , 3-pentanol, 1-hexanol, 2-hexanol, 3-hexanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 3-octanol, 4-octanol, phenol, 2-hydroxybiphenyl , 3-hydroxybiphenyl, 4-hydroxybiphenyl, 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxypyridine.
- monofunctional amines are: butylamine, tert-butylamine, pentylamine, hexylamine, aniline, aziridine, pyrrolidine, piperidine, morpholine.
- monofunctional thiols can be used: ethanethiol, 1 -propanethiol, 2-propanethiol, 1-butanethiol, 3-methyl-1-butanethiol, 2-butene-1-thiol, thiophenol.
- monofunctional carboxylic acids may be mentioned: formic acid, acetic acid, propionic acid, butyric acid, fatty acids such as stearic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, acrylic acid.
- suitable polyhydric alcohols are, for example, dihydric alcohols (such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1, 3-propanediol, 1, 4-butanediol, 1, 4-butenediol, 1, 4-butynediol, neopentyl glycol, 1 , 5-pentanediol, methylpentanediols (such as, for example, 3-methyl-1,5-pentanediol), 1,6-hexanediol, 1,8-octanediol, 1,1-decanediol, 1,12-dodecanediol, bis (hydroxymethyl) cyclohexanes (such as, for example, 1,4-bis (hydroxymethyl) cyclohexane), triethylene glycol, tetraethylene glycol, polyethylene glycols, dipropylene glycol, triprop
- the H-functional starter substances can also be selected from the substance class of the polyether polyols, in particular those having a molecular weight Mn in the range from 100 to 4000 g / mol. Preference is given to polyether polyols which are composed of repeating ethylene oxide and propylene oxide units, preferably with a proportion of from 35 to 100% of propylene oxide units, especially preferably with a proportion of 50 to 100% of propylene oxide units. These may be random copolymers, gradient copolymers, alternating or block copolymers of ethylene oxide and propylene oxide.
- Suitable polyether polyols made up of repeating propylene oxide and / or ethylene oxide units are, for example Desmophen ® -, Acclaim ® -, Arcol ® -, Baycoll ® -, Bayfill ® -, Bayflex ® - Baygal ® -, PET ® - and polyether polyols Bayer MaterialScience AG (such.
- Desmophen ® 3600Z Desmophen ® 1900U
- Acclaim ® polyol 2200 Acclaim ® polyol 40001
- Arcol ® polyol 1010 Arcol ® polyol 1030
- Arcol ® polyol 1070 Arcol ® polyol 1070
- suitable homo-polyethylene oxides are the BASF SE example Pluriol E ® brands
- suitable homo-polypropylene oxides are, for example Pluriol P ® brands from BASF SE
- suitable mixed copolymers of Ethylene oxide and propylene oxide are, for example, the Pluronic PE or Pluriol RPE grades from BASF SE.
- the H-functional starter substances can also be selected from the substance class of the polyesterpolyols, in particular those having a molecular weight Mn in the range from 200 to 4500 g / mol.
- Polyester polyols used are at least difunctional polyesters. Polyester polyols preferably consist of alternating acid and alcohol units.
- acid components z. As succinic acid, maleic acid, maleic anhydride, adipic acid, phthalic anhydride, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride or mixtures of said acids and / or anhydrides used.
- polycarbonate diols as H-functional starter substances, in particular those having a molecular weight Mn in the range from 150 to 4500 g / mol, preferably 500 to 2500, for example by reacting phosgene, dimethyl carbonate, diethyl carbonate or diphenyl carbonate and difunctional alcohols or polyester polyols or polyether polyols.
- polycarbonates can be found, for. As in EP-A 1359177.
- Desmophen ® C types of Bayer MaterialScience AG can be used, such as. B. Desmophen ® C 1100 or Desmophen ® C 2200th
- polyether carbonate polyols can be used as H-functional starter substances.
- polyether carbonate polyols which are obtainable by the process according to the invention described here are used.
- These polyether carbonate polyols used as H-functional starter substances are prepared beforehand in a separate reaction step for this purpose.
- the H-functional starter substances generally have a functionality (ie number of H atoms active per molecule for the polymerization) of 1 to 8, preferably 2 or 3.
- the H-functional starter substances are used either individually or as a mixture of at least two H-functional starter substances.
- Preferred H-functional starter substances are alcohols of the general formula (VI)
- alcohols according to formula (VI) are ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol and 1,12-dodecanediol.
- H-functional starter substances are neopentyl glycol, trimethylolpropane, glycerol, pentaerythritol, reaction products of the alcohols according to formula (VI) with ⁇ -caprolactone, for example reaction products of trimethylolpropane with ⁇ -caprolactone, reaction products of glycerol with ⁇ -caprolactone, and reaction products of pentaerythritol with ⁇ -caprolactone.
- Preference is furthermore given to using water, diethylene glycol, dipropylene glycol, castor oil, sorbitol and polyetherpolyols composed of repeating polyalkylene oxide units as H-functional starter substances.
- the H-functional starter substances are one or more compounds selected from the group consisting of ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2-methylpropane-l, 3-diol, neopentyl glycol, 1,6-hexanediol, 1.8 octanediol, diethylene glycol, dipropylene glycol, glycerol, trimethylolpropane, di- and trifunctional polyether polyols, wherein the polyether polyol from a di or tri-H-functional starter substance and Propylene oxide or a di- or tri-H-functional starter substance, propylene oxide and ethylene oxide is constructed.
- the polyether polyols preferably have a molecular weight Mn in the range of 62 to 4500 g / mol and a functionality of 2 to 3 and in particular a molecular weight Mn in the range of 62 to 3000 g / mol and a functionality of 2 to 3.
- the polyether carbonate polyols are prepared by catalytic addition of carbon dioxide and alkylene oxides to H-functional starter substances.
- H-functional means the number of H atoms active for the alkoxylation per molecule of the starter compound.
- DMC catalysts are in principle known in the art (see eg US-A 3 404 109, US-A 3 829 505, US-A 3 941 849 and US-A 5 158 922).
- DMC catalysts which are described, for example, in US Pat. No. 5,470,813, EP-A 700 949, EP-A 743 093, EP-A 761 708, WO 97/40086, WO 98/16310 and WO 00/47649 a very high activity in the homopolymerization of epoxides and allow the production of polyether polyols at very low Catalyst concentrations (25 ppm or less), so that a separation of the catalyst from the finished product is generally no longer required.
- a typical example are the highly active DMC catalysts described in EP-A 700 949 which, in addition to a double metal cyanide compound (eg zinc hexacyanocobaltate (III)) and an organic complex ligand (eg tert.-butanol), have a polyether with a number average molecular weight greater than 500 g / mol.
- a double metal cyanide compound eg zinc hexacyanocobaltate (III)
- an organic complex ligand eg tert.-butanol
- novel DMC catalysts are obtained, for example, by
- Metal cyanide salt in the presence of one or more organic complexing ligands, e.g. an ether or alcohol,
- one or more organic complex ligands preferably in excess (based on the double metal cyanide compound) and optionally further complex-forming components, may be added.
- the double metal cyanide compounds contained in the DMC catalysts according to the invention are the reaction products of water-soluble metal salts and water-soluble metal cyanide salts.
- an aqueous solution of zinc chloride preferably in excess based on the metal cyanide salt such as Kaliumhexacyanocobaltat
- potassium hexacyanocobaltate mixed and then dimethoxyethane (glyme) or tert-butanol (preferably in excess, based on zinc hexacyanocobaltate) added to the resulting suspension.
- suitable metal salts are zinc chloride, zinc bromide, zinc iodide, zinc acetate, zinc acetylacetonate, zinc benzoate, zinc nitrate, iron (II) sulfate, iron (II) bromide, iron (II) chloride, iron (III) chloride, cobalt (II) chloride, Cobalt (II) thiocyanate, nickel (II) chloride and nickel (II) nitrate. It is also possible to use mixtures of different metal salts.
- suitable metal cyanide salts are sodium hexacyanocobaltate (III), potassium hexacyanocapaltate (III), potassium hexacyanoferrate (II), potassium hexacyanoferrate (III), calcium hexacyanocobaltate (III) and lithium hexacyanocobaltate (III).
- suitable double metal cyanide compounds a) are zinc hexacyanocobaltate (III), zinc hexacyanoiridate (III), zinc hexacyanoferrate (III) and cobalt (II) hexacyanocobaltate (III). Further examples of suitable double metal cyanide compounds can be found, for example, in US Pat. No.
- Zinc hexacyanocobaltate (III) is particularly preferably used.
- the reaction of the crude mixture resulting from step (i) with at least one amino-functional substance takes place, for example, after determination of the content of cyclic carbonate in the crude mixture.
- the content of cyclic carbonate in the mixture obtained from step (i) is determined, and in step (ii) the amino-functional substance in a molar ratio of amino-functional substance to cyclic carbonate of 1, 5: 1, 0 to 0.5: 1 , 0, more preferably 1.1: 1.0 to 0.9: 1.0 used.
- a reaction of the cyclic carbonate with the amino-functional substance takes place.
- the reaction according to step (ii) takes place, for example, at temperatures between 0 and 150.degree. C., preferably 10 to 140.degree. C., more preferably 20 to 130.degree. C. and most preferably 30 to 120.degree.
- the course of the reaction can be easily followed by means of IR spectroscopy and titration of the amine number.
- the intensity of the carbonyl band of the cyclic carbonate disappears by 1800 cm -1 and the amine number of the reaction mixture decreases as the reaction of the aminofunctional substance with the cyclic carbonate progresses cm "1 ) almost unchanged.
- the number of isocyanate-reactive groups per molecule of the resulting urethane-containing polyol B) can be controlled in the reaction of the cyclic carbonate with these amino-functional substances.
- amino functional substance primary amine having one hydroxyl group per molecule (such as 2-aminoethanol): urethane group-containing polyols B) having 2 hydroxyl groups per molecule
- amino-functional substance secondary amine having two hydroxyl groups per molecule (such as diethanolamine): urethane group-containing polyols B) having 3 hydroxyl groups per molecule.
- the urethane-group-containing polyols B) of the polyol mixtures according to the invention particularly preferably have 2 to 3 hydroxyl groups per molecule and OH numbers of 90 to 815 mg KOH / g.
- the urethane-group-containing polyols B) particularly preferably have 2 to 3 hydroxyl groups per molecule and OH numbers of 340 to 815 mg KOH / g.
- the urethane group-containing polyols B) have 2 to 3 hydroxyl groups per molecule and OH numbers of 680 to 815 mg KOH / g.
- the polyether polycarbonate polyols A) of the polyol mixtures according to the invention have number average molecular weights of 500 to 10,000 Da, preferably 500 to 8,000 Da, more preferably 500 to 6,000 Da and most preferably 500 to 4,000 Da.
- the number of hydroxyl groups per molecule (functionality) of the polyethercarbonate polyol A) is generally from 1 to 8, preferably from 2 to 6, more preferably from 2 to 4, and most preferably from 2 to 3.
- novel polyol mixtures resulting from step (ii) are generally obtained as homogeneous, clear to slightly cloudy mixtures containing polyether polycarbonate polyols A) and urethane group-containing polyols B).
- These mixtures according to the invention are valuable raw materials for the production of polyurethanes (such as polyurethane foams, polyurethane plastics, thermoplastic polyurethanes, polyurethane dispersions, polyurethane coatings, polyurethane adhesives and polyurethane sealants).
- step (iii) of the resulting from step (ii) Polyolgemische s with di- and / or polyisocyanate is carried out according to known methods.
- the polyol mixture resulting from step (ii) can be used both in the presence of organic solvents, as an aqueous preparation or solvent-free.
- polyether polyols can also be blended with polyether polyols, polyether ester polyols and / or polyester polyols for reaction with di- and / or polyisocyanate.
- Suitable polyether polyols, polyetherester polyols and / or polyester polyols have an OH number range of usually 9 to 200, preferably 14 to 180 and particularly preferably 28 to 150 mg KOH / g, and a functionality of 1 to 6, preferably 2 to 4 and particularly preferably 2 up to 3.
- step (iii) of the resulting from step (ii) Polyolgemische s with di- and / or polyisocyanate can also be carried out in the presence of solvents, blowing agents, flame retardants, catalysts, stabilizers, and / or other auxiliaries and additives, such as this is known in principle to the person skilled in the art and is described, for example, in “Kunststoffhandbuch", Volume 7 "Polyurethanes", Chapter 3.4.
- the OH number was determined on the basis of DIN 53240-2, except that pyridine was used instead of THF / dichloromethane as the solvent. It was titrated with 0.5 molar ethanolic KOH (endpoint detection by potentiometry). The test substance was castor oil with a certificate of OH number.
- the unit in "mg / g" refers to mg [KOH] / g [polyethercarbonate polyol].
- the ratio of cyclic carbonate (propylene carbonate) to polyethercarbonate polyol was determined by means of 1 H-NMR (Bruker, DPX 400, 400 MHz, pulse program zg30, waiting time dl: 10 s, 64 scans). Each sample was dissolved in deuterated chloroform.
- F (5, 1-4, 8) area of resonance at 5.1-4.8 ppm for polyether carbonate polyol and a H atom for cyclic carbonate.
- F (1, 2-1.0) area of resonance at 1.2-1.0 ppm for polyether polyol
- the weight fraction (in% by weight) of polymer-bound carbonate (LC) in the reaction mixture was calculated according to formula (VIII), [(5,1 - 4,8) - (4,5)] * 102
- N [F (5,1-4,8) -F (4,5)] * 102 + F (4,5) * 102 + F (2,4) * 58 + 0,33 * F (1, 2 - 1,0) * 58 + 0,25 * F (l, 6 l, 52) * 146
- the factor 102 results from the sum of the molar masses of CO 2 (molar mass 44 g / mol) and that of propylene oxide (molar mass 58 g / mol), the factor 58 results from the molar mass of propylene oxide and the factor 146 results from the molar mass of the employed Starters 1,8-octanediol.
- the composition based on the polymer portion consisting of polyether polyol, which was composed of starter and propylene oxide during the activation steps taking place under CCVUFinate conditions, and polyether carbonate, composed of starter, propylene oxide and carbon dioxide during the in Presence of CO 2 taking place activation steps and during the copolymerization
- the non-polymer constituents of the reaction mixture ie, cyclic propylene carbonate and possibly present, unreacted propylene oxide
- the indication of the CCV content in the polyethercarbonate polyol ("incorporated CO 2 ", see Examples below and Table 1) is normalized to the proportion of the polyethercarbonate polyol molecule formed in the copolymerization and, if appropriate, the activation steps in the presence of CO 2 (ie the proportion of the polyethercarbonate polyol molecule resulting from the initiator (1,8-octanediol) as well as from the reaction of the initiator with epoxide added under C0 2 -free conditions was not considered here).
- step (i), ie the preparation of the crude mixture containing polyethercarbonate polyol and cyclic carbonate (propylene carbonate) was carried out by the process according to WO-A 2008/013731, wherein as starting polyol 1,8-octanediol and as alkylene oxide propylene oxide was used, and the used DMC catalyst was prepared according to Example 6 of WO-A 01/80994. Two crude mixtures with the following characteristics were synthesized in this way:
- Viscosity 3000 mPas (23 ° C) raw mixture 2:
- Viscosity 1250 mPas (23 ° C)
- Examples 1 to 3 show, based on the analytical data, that the cyclic carbonate is reacted with the aid of amino-functional substances to form urethane-containing polyol, while the carbonate group of the polyethercarbonate polyol does not react with the amino-functional substance.
- Example 4 demonstrates that the polyol blends obtainable by the process according to the invention can be processed without further workup with isocyanate to give polyurethanes which are used in the form of a polyurethane lacquer film.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Toxicology (AREA)
- Polyurethanes Or Polyureas (AREA)
- Polyesters Or Polycarbonates (AREA)
- Sealing Material Composition (AREA)
- Paints Or Removers (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Polyethers (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180042617.4A CN103097425B (zh) | 2010-07-05 | 2011-07-04 | 制备多元醇混合物的方法 |
US13/808,470 US9096717B2 (en) | 2010-07-05 | 2011-07-04 | Process for the preparation of polyol mixtures |
ES11743458.9T ES2463967T3 (es) | 2010-07-05 | 2011-07-04 | Procedimiento para la preparación de mezclas de polioles |
JP2013517327A JP2013537565A (ja) | 2010-07-05 | 2011-07-04 | ポリオール混合物の製造方法 |
BR112013000260A BR112013000260A2 (pt) | 2010-07-05 | 2011-07-04 | processo para a produção de misturas de poliol |
KR1020137002890A KR20130089642A (ko) | 2010-07-05 | 2011-07-04 | 폴리올 혼합물의 제조 방법 |
EP11743458.9A EP2591036B1 (de) | 2010-07-05 | 2011-07-04 | Verfahren zur herstellung von polyolgemischen |
MX2013000190A MX2013000190A (es) | 2010-07-05 | 2011-07-04 | Procedimiento para la preparacion de mezclas de polioles. |
SG2012095717A SG186833A1 (en) | 2010-07-05 | 2011-07-04 | Method for producing polyol mixtures |
CA2804134A CA2804134A1 (en) | 2010-07-05 | 2011-07-04 | Method for producing polyol mixtures |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010030950 | 2010-07-05 | ||
DE102010030950.8 | 2010-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012004209A1 true WO2012004209A1 (de) | 2012-01-12 |
Family
ID=44630253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/061174 WO2012004209A1 (de) | 2010-07-05 | 2011-07-04 | Verfahren zur herstellung von polyolgemischen |
Country Status (11)
Country | Link |
---|---|
US (1) | US9096717B2 (de) |
EP (1) | EP2591036B1 (de) |
JP (1) | JP2013537565A (de) |
KR (1) | KR20130089642A (de) |
CN (1) | CN103097425B (de) |
BR (1) | BR112013000260A2 (de) |
CA (1) | CA2804134A1 (de) |
ES (1) | ES2463967T3 (de) |
MX (1) | MX2013000190A (de) |
SG (1) | SG186833A1 (de) |
WO (1) | WO2012004209A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150002832A (ko) * | 2012-04-16 | 2015-01-07 | 노보머, 인코포레이티드 | 접착제 조성물 및 방법 |
EP2886572A1 (de) * | 2013-12-17 | 2015-06-24 | Bayer MaterialScience AG | Einsatz von Urethan-Alkoholen zur Herstellung von Polyethercarbonatpolyolen |
WO2016120406A1 (en) * | 2015-01-28 | 2016-08-04 | Repsol, S.A. | A polyurethane adhesive formulation based on polyether carbonate polyol |
EP3098252A1 (de) * | 2015-05-26 | 2016-11-30 | Covestro Deutschland AG | Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyethercarbonatpolyolen |
EP3098251A1 (de) * | 2015-05-26 | 2016-11-30 | Covestro Deutschland AG | Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyetherpolyolen |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6900194B2 (ja) | 2014-04-03 | 2021-07-07 | サウジ アラムコ テクノロジーズ カンパニー | 脂肪族ポリカーボネートポリオール組成物 |
CN107922604B (zh) * | 2015-08-04 | 2020-08-28 | 雷普索尔有限公司 | 用于压敏粘合剂的新制剂 |
US10119223B2 (en) | 2016-07-15 | 2018-11-06 | Covestro Llc | Carpet and synthetic turf backings prepared from a polyether carbonate polyol |
EP3732224A4 (de) * | 2017-12-28 | 2021-11-03 | Covestro Deutschland AG | Wässrige dispersion |
CN109970994A (zh) * | 2017-12-28 | 2019-07-05 | 科思创德国股份有限公司 | 水性分散体 |
CN111138623B (zh) * | 2020-01-10 | 2021-02-19 | 浙江大学 | 一种有机硅改性聚醚-聚碳酸酯水性聚氨酯及其制备方法 |
KR102566314B1 (ko) * | 2021-01-29 | 2023-08-14 | 한국화학연구원 | 에폭시 화합물, 이를 포함하는 에폭시 수지 조성물 및 이를 포함하는 일액형 에폭시 접착제 조성물 |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3404109A (en) | 1963-02-14 | 1968-10-01 | Gen Tire & Rubber Co | Production of polyether diols using water as a telogen |
US3829505A (en) | 1970-02-24 | 1974-08-13 | Gen Tire & Rubber Co | Polyethers and method for making the same |
US3941849A (en) | 1972-07-07 | 1976-03-02 | The General Tire & Rubber Company | Polyethers and method for making the same |
DE2832253A1 (de) | 1978-07-22 | 1980-01-31 | Bayer Ag | Verfahren zur herstellung von formschaumstoffen |
US4826953A (en) | 1985-11-14 | 1989-05-02 | Shell Oil Company | Process for the preparation of polycarbonates from epoxy compound and carbon dioxide |
US5158922A (en) | 1992-02-04 | 1992-10-27 | Arco Chemical Technology, L.P. | Process for preparing metal cyanide complex catalyst |
US5470813A (en) | 1993-11-23 | 1995-11-28 | Arco Chemical Technology, L.P. | Double metal cyanide complex catalysts |
EP0700949A2 (de) | 1994-09-08 | 1996-03-13 | ARCO Chemical Technology, L.P. | Hochwirksame Doppelmetallcyanidkatalysatoren |
EP0743093A1 (de) | 1995-05-15 | 1996-11-20 | ARCO Chemical Technology, L.P. | Hochwirksamer Katalysator aus ein Doppellmetallcyanidkomplex |
EP0761708A2 (de) | 1995-08-22 | 1997-03-12 | ARCO Chemical Technology, L.P. | Doppelmetallcyanidkatalysatorzusammensetzung enthaltend Polyetherpolyole |
WO1997040086A1 (en) | 1996-04-19 | 1997-10-30 | Arco Chemical Technology, L.P. | Highly active double metal cyanide catalysts |
WO1998016310A1 (en) | 1996-10-16 | 1998-04-23 | Arco Chemical Technology, L.P. | Double metal cyanide catalysts containing functionalized polymers |
WO2000047649A1 (de) | 1999-02-11 | 2000-08-17 | Bayer Aktiengesellschaft | Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen |
WO2001080994A1 (de) | 2000-04-20 | 2001-11-01 | Bayer Aktiengesellschaft | Verfahren zur herstellung von dmc-katalysatoren |
WO2003028644A2 (en) * | 2001-10-01 | 2003-04-10 | Eurotech, Ltd. | Preparation of oligomeric cyclocarbonates and their use in ionisocyanate or hybrid nonisocyanate polyurethanes |
EP1359177A1 (de) | 2002-04-29 | 2003-11-05 | Bayer Aktiengesellschaft | Herstellung und Verwendung von hochmolekularen aliphatischen Polycarbonaten |
US6713599B1 (en) * | 2003-03-31 | 2004-03-30 | Basf Corporation | Formation of polymer polyols with a narrow polydispersity using double metal cyanide (DMC) catalysts |
WO2006103212A1 (en) | 2005-03-29 | 2006-10-05 | Basf Aktiengesellschaft | A complex of a multimetal cyanide compound and methods of forming polyethercarbonate polyols |
WO2008013731A1 (en) | 2006-07-24 | 2008-01-31 | Bayer Materialscience Llc | Polyether carbonate polyols made via double metal cyanide (dmc) catalysis |
WO2008092767A1 (de) | 2007-01-30 | 2008-08-07 | Basf Se | Verfahren zur herstellung von polyethercarbonatpolyolen |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8600166A (nl) | 1986-01-27 | 1987-08-17 | Gen Electric | Polymeermengsel, dat een polyamide, een polyfenyleenether en een middel voor het verbeteren van de slagsterkte bevat. |
DE3617705A1 (de) * | 1986-05-26 | 1987-12-03 | Hoechst Ag | Urethangruppenhaltige polymere, deren loesungen und deren waessrige dispersionen, verfahren zu ihrer herstellung und ihre verwendung |
US6646153B1 (en) * | 2000-07-19 | 2003-11-11 | E. I. Du Pont De Nemours And Company | Hydroxyl functional urethanes having a tertiary carbamate bond |
EP1506975A1 (de) * | 2003-08-13 | 2005-02-16 | Vantico GmbH | Nanoverbundwerkstoffe enthaltend polyurethan oder polyurethan-epoxy Hybridharze hergestellt ohne Verwendung von Isocyanaten |
JP2006009001A (ja) * | 2004-05-26 | 2006-01-12 | Japan Paint Manufacturers Association | ポリヒドロキシウレタンの製造方法 |
US7671228B2 (en) * | 2005-03-29 | 2010-03-02 | Basf Corporation | Method of forming a polyethercarbonate polyol using a CO2-philic compound or substituent |
ES2366931T3 (es) * | 2006-11-15 | 2011-10-26 | Basf Se | Procedimiento para la obtención de espumas blandas de poliuretano. |
EP2015014A1 (de) * | 2007-07-11 | 2009-01-14 | Bayer MaterialScience AG | Verfahren zur Trocknung von Schäumen aus wässrigen PUR-Dispersionen |
KR20100125239A (ko) * | 2008-03-25 | 2010-11-30 | 아사히 가라스 가부시키가이샤 | 하이드록시 화합물, 그 제조 방법, 그 하이드록시 화합물을 사용한 프리폴리머 및 폴리우레탄 |
US20090281240A1 (en) * | 2008-05-08 | 2009-11-12 | E.I.Du Pont De Nemours And Coompany | Inkjet inks for textiles containing crosslinked polyurethanes and further containing additional reactive components |
JP5781939B2 (ja) * | 2008-12-23 | 2015-09-24 | ノボマー, インコーポレイテッド | 調整可能なポリマー組成物 |
DE102009033637A1 (de) * | 2009-07-17 | 2011-01-20 | Bayer Materialscience Ag | Prepolymere |
-
2011
- 2011-07-04 MX MX2013000190A patent/MX2013000190A/es active IP Right Grant
- 2011-07-04 EP EP11743458.9A patent/EP2591036B1/de not_active Not-in-force
- 2011-07-04 KR KR1020137002890A patent/KR20130089642A/ko not_active Application Discontinuation
- 2011-07-04 ES ES11743458.9T patent/ES2463967T3/es active Active
- 2011-07-04 JP JP2013517327A patent/JP2013537565A/ja active Pending
- 2011-07-04 CN CN201180042617.4A patent/CN103097425B/zh not_active Expired - Fee Related
- 2011-07-04 BR BR112013000260A patent/BR112013000260A2/pt not_active IP Right Cessation
- 2011-07-04 CA CA2804134A patent/CA2804134A1/en not_active Abandoned
- 2011-07-04 SG SG2012095717A patent/SG186833A1/en unknown
- 2011-07-04 US US13/808,470 patent/US9096717B2/en not_active Expired - Fee Related
- 2011-07-04 WO PCT/EP2011/061174 patent/WO2012004209A1/de active Application Filing
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3404109A (en) | 1963-02-14 | 1968-10-01 | Gen Tire & Rubber Co | Production of polyether diols using water as a telogen |
US3829505A (en) | 1970-02-24 | 1974-08-13 | Gen Tire & Rubber Co | Polyethers and method for making the same |
US3941849A (en) | 1972-07-07 | 1976-03-02 | The General Tire & Rubber Company | Polyethers and method for making the same |
DE2832253A1 (de) | 1978-07-22 | 1980-01-31 | Bayer Ag | Verfahren zur herstellung von formschaumstoffen |
US4826953A (en) | 1985-11-14 | 1989-05-02 | Shell Oil Company | Process for the preparation of polycarbonates from epoxy compound and carbon dioxide |
US5158922A (en) | 1992-02-04 | 1992-10-27 | Arco Chemical Technology, L.P. | Process for preparing metal cyanide complex catalyst |
US5470813A (en) | 1993-11-23 | 1995-11-28 | Arco Chemical Technology, L.P. | Double metal cyanide complex catalysts |
EP0700949A2 (de) | 1994-09-08 | 1996-03-13 | ARCO Chemical Technology, L.P. | Hochwirksame Doppelmetallcyanidkatalysatoren |
EP0743093A1 (de) | 1995-05-15 | 1996-11-20 | ARCO Chemical Technology, L.P. | Hochwirksamer Katalysator aus ein Doppellmetallcyanidkomplex |
EP0761708A2 (de) | 1995-08-22 | 1997-03-12 | ARCO Chemical Technology, L.P. | Doppelmetallcyanidkatalysatorzusammensetzung enthaltend Polyetherpolyole |
WO1997040086A1 (en) | 1996-04-19 | 1997-10-30 | Arco Chemical Technology, L.P. | Highly active double metal cyanide catalysts |
WO1998016310A1 (en) | 1996-10-16 | 1998-04-23 | Arco Chemical Technology, L.P. | Double metal cyanide catalysts containing functionalized polymers |
WO2000047649A1 (de) | 1999-02-11 | 2000-08-17 | Bayer Aktiengesellschaft | Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen |
WO2001080994A1 (de) | 2000-04-20 | 2001-11-01 | Bayer Aktiengesellschaft | Verfahren zur herstellung von dmc-katalysatoren |
WO2003028644A2 (en) * | 2001-10-01 | 2003-04-10 | Eurotech, Ltd. | Preparation of oligomeric cyclocarbonates and their use in ionisocyanate or hybrid nonisocyanate polyurethanes |
EP1359177A1 (de) | 2002-04-29 | 2003-11-05 | Bayer Aktiengesellschaft | Herstellung und Verwendung von hochmolekularen aliphatischen Polycarbonaten |
US6713599B1 (en) * | 2003-03-31 | 2004-03-30 | Basf Corporation | Formation of polymer polyols with a narrow polydispersity using double metal cyanide (DMC) catalysts |
WO2004087788A1 (en) | 2003-03-31 | 2004-10-14 | Basf Corporation | Formation of polymer polyols with a narrow polydispersity using double metal cyanide (dmc) catalysts |
WO2006103212A1 (en) | 2005-03-29 | 2006-10-05 | Basf Aktiengesellschaft | A complex of a multimetal cyanide compound and methods of forming polyethercarbonate polyols |
WO2008013731A1 (en) | 2006-07-24 | 2008-01-31 | Bayer Materialscience Llc | Polyether carbonate polyols made via double metal cyanide (dmc) catalysis |
WO2008092767A1 (de) | 2007-01-30 | 2008-08-07 | Basf Se | Verfahren zur herstellung von polyethercarbonatpolyolen |
Non-Patent Citations (1)
Title |
---|
INOUE ET AL.: "Copolymerization of Carbon Dioxide and Epoxide with Organometallic Compounds", DIE MAKROMOLEKULARE CHEMIE, vol. 130, 1969, pages 210 - 220, XP001018750, DOI: doi:10.1002/macp.1969.021300112 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150002832A (ko) * | 2012-04-16 | 2015-01-07 | 노보머, 인코포레이티드 | 접착제 조성물 및 방법 |
JP2015514848A (ja) * | 2012-04-16 | 2015-05-21 | ノボマー, インコーポレイテッド | 接着剤組成物および方法 |
JP2018024893A (ja) * | 2012-04-16 | 2018-02-15 | ノボマー, インコーポレイテッド | 接着剤組成物および方法 |
KR102110746B1 (ko) * | 2012-04-16 | 2020-05-14 | 사우디 아람코 테크놀로지스 컴퍼니 | 접착제 조성물 및 방법 |
EP2886572A1 (de) * | 2013-12-17 | 2015-06-24 | Bayer MaterialScience AG | Einsatz von Urethan-Alkoholen zur Herstellung von Polyethercarbonatpolyolen |
WO2015091246A1 (de) * | 2013-12-17 | 2015-06-25 | Bayer Materialscience Ag | Einsatz von urethan-alkoholen zur herstellung von polyethercarbonatpolyolen |
US9957352B2 (en) | 2013-12-17 | 2018-05-01 | Covestro Deutschland Ag | Use of urethane alcohols for preparing polyether carbonate polyols |
WO2016120406A1 (en) * | 2015-01-28 | 2016-08-04 | Repsol, S.A. | A polyurethane adhesive formulation based on polyether carbonate polyol |
EP3098252A1 (de) * | 2015-05-26 | 2016-11-30 | Covestro Deutschland AG | Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyethercarbonatpolyolen |
EP3098251A1 (de) * | 2015-05-26 | 2016-11-30 | Covestro Deutschland AG | Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyetherpolyolen |
WO2016188838A1 (de) * | 2015-05-26 | 2016-12-01 | Covestro Deutschland Ag | Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyetherpolyolen |
WO2016188992A1 (de) * | 2015-05-26 | 2016-12-01 | Covestro Deutschland Ag | Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyethercarbonatpolyolen |
Also Published As
Publication number | Publication date |
---|---|
US9096717B2 (en) | 2015-08-04 |
ES2463967T3 (es) | 2014-05-29 |
MX2013000190A (es) | 2013-01-28 |
CA2804134A1 (en) | 2012-01-12 |
JP2013537565A (ja) | 2013-10-03 |
KR20130089642A (ko) | 2013-08-12 |
CN103097425A (zh) | 2013-05-08 |
CN103097425B (zh) | 2015-10-07 |
SG186833A1 (en) | 2013-02-28 |
EP2591036A1 (de) | 2013-05-15 |
BR112013000260A2 (pt) | 2016-05-24 |
US20130150526A1 (en) | 2013-06-13 |
EP2591036B1 (de) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2591036B1 (de) | Verfahren zur herstellung von polyolgemischen | |
EP2714770B1 (de) | Verfahren zur herstellung von polyetherpolyolen | |
EP2691434B1 (de) | Verfahren zur herstellung von polyurethan-weichschaumstoffen | |
EP2917264B1 (de) | Verfahren zur herstellung von polyethercarbonatpolyolen | |
EP2571922B1 (de) | Verfahren zur herstellung von polyethercarbonatpolyolen | |
EP2734567B1 (de) | Verfahren zur aktivierung von doppelmetallcyanidkatalysatoren zur herstellung von polyethercarbonatpolyolen | |
EP3387035B1 (de) | Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen | |
EP3619251B1 (de) | Verfahren zur herstellung von polyethercarbonatpolyolen, basierend auf alkoholen, die mindestens zwei urethangruppen enthalten | |
EP2734571A1 (de) | Verfahren zur herstellung von polyethercarbonatpolyolen | |
EP3288994B1 (de) | Mischungen von polyethercarbonatpolyolen und polyetherpolyolen zur herstellung von polyurethanweichschaumstoffen | |
DE102010043409A1 (de) | Verfahren zur Herstellung von Polycarbonatpolyolen durch immortale Polymerisation von cyclischen Carbonaten | |
EP3083740B1 (de) | Einsatz von urethan-alkoholen zur herstellung von polyethercarbonatpolyolen | |
EP3098251A1 (de) | Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyetherpolyolen | |
EP3178858A1 (de) | Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen | |
EP3549969A1 (de) | Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen | |
EP2730602A1 (de) | Verfahren zur Herstellung von Polyethercarbonatpolyolen | |
EP3762441B1 (de) | Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen | |
EP3630859B1 (de) | Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen | |
EP3555175A1 (de) | Verfahren zur herstellung von polyetherthiocarbonatpolyolen | |
EP3892660A1 (de) | Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen | |
EP4194476A1 (de) | Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180042617.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11743458 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011743458 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2804134 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2013517327 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/000190 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20137002890 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13808470 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013000260 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013000260 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130104 |