WO2012003713A1 - 一种压燃式低辛烷值汽油发动机 - Google Patents

一种压燃式低辛烷值汽油发动机 Download PDF

Info

Publication number
WO2012003713A1
WO2012003713A1 PCT/CN2011/001106 CN2011001106W WO2012003713A1 WO 2012003713 A1 WO2012003713 A1 WO 2012003713A1 CN 2011001106 W CN2011001106 W CN 2011001106W WO 2012003713 A1 WO2012003713 A1 WO 2012003713A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasoline
engine
compression
ignition
low
Prior art date
Application number
PCT/CN2011/001106
Other languages
English (en)
French (fr)
Inventor
周向进
Original Assignee
Zhou Xiangjin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhou Xiangjin filed Critical Zhou Xiangjin
Priority to CA2807267A priority Critical patent/CA2807267C/en
Priority to EP11803067.5A priority patent/EP2592248A4/en
Priority to US13/806,419 priority patent/US10072558B2/en
Priority to AU2011276880A priority patent/AU2011276880A1/en
Priority to JP2013516965A priority patent/JP6264040B2/ja
Priority to KR1020127033707A priority patent/KR20130093527A/ko
Priority to KR1020197013318A priority patent/KR102059848B1/ko
Priority to BR112013000429A priority patent/BR112013000429A2/pt
Publication of WO2012003713A1 publication Critical patent/WO2012003713A1/zh
Priority to ZA2013/00976A priority patent/ZA201300976B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B7/00Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel
    • F02B7/06Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel the fuel in the charge being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B9/00Engines characterised by other types of ignition
    • F02B9/02Engines characterised by other types of ignition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2720/00Engines with liquid fuel
    • F02B2720/25Supply of fuel in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention belongs to the technical field of internal combustion engines in the mechanical industry and is a novel internal combustion engine product.
  • a diesel engine compression ignition engine
  • a gasoline engine ignited engine
  • the greenhouse effect of emissions is 45% lower, carbon monoxide and carbon. Hydrogen emissions are also low.
  • the diesel engine has a simple structure with a low failure rate, and the disadvantage is that the harmful particulate matter is discharged.
  • Gasoline is more volatile and invasive.
  • Gasoline engine and diesel engine oil supply method are also different.
  • the gasoline engine mixes gasoline into the intake port and mixes with air to enter the cylinder.
  • the diesel engine only injects the diesel fuel into the cylinder through the fuel injection nozzle after the cylinder piston compresses the air.
  • Modern diesel engines use advanced technologies such as turbocharged, intercooled, direct injection (common rail and multi-point injection), exhaust catalytic converters and particle traps. Diesel engine vehicles have reached Euro III and Euro IV emission standards.
  • the compression ratio of a gasoline engine is generally 7 to 11, and it is necessary to use a high-energy (high-grade) gasoline.
  • the compression ratio of the diesel engine is generally 15 to 18, and the high compression ratio can reach 18 to 22.
  • the fuel mass (in g) consumed in lh for each lkw of effective power of the engine is called the fuel consumption rate.
  • the unit of fuel consumption is gram / (kWh). Obviously, the lower the fuel consumption rate, the better the economy.
  • Gasoline contains xylene, ethylbenzene, ethylbenzene, toluene and other derivatives of benzene, which are collectively referred to as aromatic hydrocarbons.
  • aromatic hydrocarbons The octane number of aromatic hydrocarbons is generally high, but it is slightly toxic.
  • the tail gas produced by the combustion of aromatic hydrocarbons contains polycyclic aromatic hydrocarbons and is carcinogenic.
  • MMT methylcyclopentadienyltricarbonyl manganese
  • MTBE methyl tert-butyl ether
  • methyl tert-amyl ether methyl tert-amyl ether
  • Antiknock agents have secondary pollution to the environment, and some states in the United States have already banned the use of MTBE.
  • the cetane number is the main indicator affecting whether diesel can be compressed or not.
  • the diesel fuel has a hexadecanal value of 40 to 60.
  • Diesel engines have higher thermal efficiency than gasoline engines, mainly because of their high compression ratio and high air to fuel ratio.
  • Gasoline is more volatile than diesel, and the uniformity of mixing with air is better than that of diesel.
  • the particulate impurities such as carbon black are less than diesel.
  • the present invention contemplates a high compression ratio, compression ignition gasoline engine that has not been reported to date.
  • the combustion efficiency of the compression-ignition internal combustion engine is higher than that of the ignition-type internal combustion engine, and a compression-ignition gasoline engine fueled by low-octane gasoline is designed to improve the gasoline engine.
  • the thermal efficiency of a (compression-ignition low-saturation gasoline engine) increases the thermal efficiency of a gasoline engine to the level of a diesel engine while reducing the greenhouse effect of gasoline engine emissions.
  • Compression ignition of compression-ignition low-octane gasoline engines is diffusion compression ignition, which is different from homogeneous compression ignition.
  • the test data proves that the specific fuel consumption of the compression-ignition low-xin diesel engine is 10 ⁇ 15% lower than that of the diesel engine. That is, the heat-compression conversion efficiency of the compression-ignition low-six-value gasoline engine is 10 ⁇ higher than that of the diesel engine. 15%. Therefore, the compression-ignition low-octane gasoline engine has a heat conversion efficiency of about 30 to 55% higher than that of a conventional ignition gasoline engine.
  • the compression ratio can be selected from 7 to 15, or 15 to 18.
  • the gasoline has a sixteen ⁇ value equivalent to 40 to 60, and can be compression-ignited under the above compression ratio.
  • the gasoline Xinxin value can be appropriately relaxed, for example: relaxation to 55, 59 , etc., as long as the gasoline can be compression-ignited, with reliable compression ignition reliability.
  • gasoline storage and delivery systems such as fuel tanks, oil pumps, tubing, wide doors, fuel gauges, etc.
  • multiple injection fuel supply technology can be used to optimize combustion control. If the multiple injection fuel supply technology is not used, the structure of the engine will be simplified and may even be free of circuits and electronics.
  • the compression-ignition low-octane gasoline engine has the advantages of both a diesel engine and a gasoline engine. High efficiency and high power with diesel engine (the cylinder diameter can be increased like diesel engine without the risk of knocking); Low emission with gasoline engine (particulate impurities such as carbon black of gasoline engine and carbon monoxide emission lower than diesel engine); Hydrocarbon emission The index is lower than the latest direct injection gasoline engine in the market, and lower than the homogeneous compression ignition gasoline engine (HCCI).
  • HCCI homogeneous compression ignition gasoline engine
  • gasoline Since the volatility of gasoline is better than that of diesel fuel, low-xin ⁇ value gasoline can be quickly mixed with air and fully burned after being injected into the cylinder.
  • the exhaust gas has no particulate impurities such as carbon black, and the carbon monoxide emission is very low (compared with diesel fuel for diesel engines). Therefore, the efficiency is 10 ⁇ 15% higher than that of the diesel engine, and 30 ⁇ 55% higher than that of the ordinary gasoline engine.
  • the low-octane gasoline engine can be a simple mechanical device that does not contain circuits and electrical components, and has the advantages of low failure rate while having high heat-work conversion efficiency.
  • the diesel engine adopts the technology of prolonging the injection time, the diesel engine can improve efficiency, work softly and reduce noise without the circuit and the electrical components, and the advantages of low failure rate.
  • the tail gas of the low octane gasoline engine does not contain polycyclic aromatic hydrocarbons.
  • low-xin-value gasoline is more suitable for diesel engines than diesel
  • compression-ignition low-octane gasoline engines may be the most perfect internal combustion engine in history.
  • gasoline with a Xinxin value of less than 60 (study method) as low-xin gasoline.
  • it can be determined by the Xinxin value of low-octane gasoline.
  • Gasoline with an octane number of 40 can be called No. 40 gasoline.
  • No. 10 gasoline (octane number 10) is better than No. 30 gasoline (30 min.). It can be adapted to a compression-compression gasoline engine with a lower compression ratio.
  • the low octane gasoline is injected into the cylinder through the fuel injection pump and the fuel injection nozzle, and is automatically ignited in the high temperature and high pressure air in the cylinder. And burning, generating higher pressure, pushing the piston to the bottom dead center, doing work. Reduce the fuel injection speed and prolong the injection time, so that the time for the gasoline to mix with the air is extended, the mixing is sufficient, the combustion is sufficient, the combustion process is soft, and the noise is reduced. 6, the concept of time
  • the time corresponding to the running stroke of the engine piston, the time at which the injection nozzle starts to inject and the end of the injection are all relative time, which is based on the angle of rotation of the crankshaft.
  • the running time of the piston from top dead center to bottom dead center is 180 degrees, corresponding to the crank angle of 180 degrees; assuming that the fuel injection nozzle starts to spray from 5 degrees before top dead center, to 55 degrees through top dead center
  • the injection time is 60 degrees, which corresponds to the relative time that the crankshaft has rotated 60 degrees.
  • the injection time is 60 degrees, if the engine speed is 1200 rpm (1/20 sec / rev), the injection time is one hundred and twenty-one seconds (1/120 sec).
  • Different fuels are one of the characteristics of a compression-ignition gasoline engine that is different from ordinary gasoline engines and diesel engines. Due to the different structure and composition of diesel and gasoline, the volatility, permeability and wettability of gasoline are stronger than that of diesel. The viscosity of diesel (high viscosity) is greater than that of gasoline.
  • the fuel tank of compression ignition type low-xin gasoline engine, The structure and performance requirements of fuel oil pipelines, fuel oil pumps, nozzles, filters and other components are very different from those of diesel engines. Therefore, ordinary diesel engines cannot be used as low-energy gasoline engines.
  • Low-octane gasoline has three main advantages compared with high-octane gasoline: clean one-free aromatics, no anti-knocking agent; environmentally-friendly exhaust gas does not contain polycyclic aromatic hydrocarbons; low cost one by one does not need to pass through The reforming "equal molecular conversion process increases the octane number of the gasoline.
  • Low-octane gasoline is different from diesel fuel. Different numbers are determined according to the octane number corresponding to the ignition point. For example: 45# gasoline, 40# gasoline, 35# gasoline, 30# gasoline, 20# gasoline, etc. Low compression ratio gasoline engine with compression ratio. Diesel does not have a label for different compression ratio diesel engines.
  • the high-pressure injection oil pump and the injection nozzle of the low-octane gasoline are different from the high-pressure injection pump and the injection nozzle of the diesel engine.
  • the compression ignition type gasoline engine adopts a method in which the fuel is self-ignited in the cylinder, and the ordinary gasoline engine is ignited by an electronic ignition system such as a spark plug.
  • the compression ignition type gasoline engine can be used as the default electronic ignition system, it has a simpler structure and a lower failure rate than a conventional gasoline engine.
  • the method of extending the injection time to the combustion chamber is equally applicable to diesel engines.
  • the diesel engine does not use multi-point injection technology, it can also improve efficiency, reduce noise, work softly, and has a simple structure.
  • the compression ratio is different, which is the third characteristic of the compression ignition gasoline engine that is different from the ordinary gasoline engine and the diesel engine. Once the compression-ignition low-energy gasoline engine is finalized, the compression ratio is determined, and the low-octane gasoline used is determined.
  • the octane number (gasoline number) has an upper limit. A compression-ignition low-octane gasoline engine can only work properly if gasoline equal to or lower than this number is used.
  • the compression ratio of the compression ignition gasoline engine for example, the compression ratio range is 10 to 14
  • the engine operation is smoother and smoother.
  • Compression-ignition gasoline engines have a higher compression ratio than conventional gasoline engines, but require different numbers of low-energy gasoline.
  • the compression ratio of the compression ignition gasoline engine can be designed in the range of 18 ⁇ 20 (even in the range of 19 ⁇ 22).
  • the compression ignition gasoline engine can use the low-octane gasoline product. High of those gasoline varieties.
  • the compression ratio of the compression ignition gasoline engine can be set in the range of 10 ⁇ 14 (even 7 ⁇ 10 range). Especially when air boosting technology is used, the lower compression ratio still has higher thermal power conversion efficiency, and the increase of air-fuel ratio is also beneficial to improve engine efficiency.
  • a compression-ignition gasoline engine with a relatively low compression ratio for example, a compression ignition gasoline engine with a compression ratio of 12 to 14
  • the compression ratio of this compression-ignition gasoline engine is still higher than that of a ignited (ordinary) gasoline engine, and the heat work efficiency is also high, and the greenhouse effect produced by the discharge is also low.
  • the compression ignition type gasoline engine uses the fuel injection nozzle to send fuel into the cylinder.
  • the ordinary gasoline engine uses the fuel injection nozzle to inject fuel into the intake pipe, and mixes with the compressed air to enter the cylinder.
  • some gasoline engines now use direct injection technology, but there are still fundamental differences in ignition methods.
  • the thermal power efficiency of a compression ignition gasoline engine is about 40 to 55% higher than that of a conventional gasoline engine (about 10 to 15% higher than that of a diesel engine). For example: If a car with a normal gasoline engine has a fuel consumption of 8 liters per 100 kilometers (assuming 93 gas, 40 liters of gasoline can travel 500 km); when this car uses a compression ignition low octane gasoline engine, The fuel consumption per 100 kilometers is about 5.7 liters (40 liters of gasoline can travel 700 kilometers).
  • the compression ignition type low-energy gasoline engine reduces the oil inlet speed (injection speed), which is equivalent to reducing the combustion rate of the fuel mixture in the cylinder and reducing the impact of the explosive gas on the cylinder and the piston.
  • the lubricating oil system of the compression-ignition low-octane gasoline engine is different from the diesel engine and is closer to the ordinary gasoline engine.
  • Compression-ignited gasoline engines combine the advantages of gasoline and diesel, but they are different from previous gasoline and diesel engines. Therefore, the present invention is novel and inventive while being practical.
  • a compression-ignition low-octane gasoline engine which is characterized by: using low-xin-value gasoline as a fuel and adopting a "compression-ignition" ignition mode, so that the cylinder of the engine can be used 10 ⁇ a high compression ratio of 22;
  • the engine can use a lower compression ratio, for example: compression ratio of 7 to 15, or 15 to 18, the engine still has more power than ordinary gasoline engines Performance
  • the default electronic ignition system can be used, for example: spark plug, glow plug;
  • the electronically controlled multi-point injection system is adopted; or the electronically controlled multi-point injection system can also be used by default, so that the engine has a simple structure and a low failure rate.
  • a lubricating oil system and a fuel oil storage and conveying system (similar to a fuel tank of a gasoline engine, an oil circuit system) required for a light fuel oil internal combustion engine, and a high pressure required for a compression ignition engine
  • Fuel injection pump and fuel injection nozzle (similar to the fuel injection pump and fuel injection nozzle of diesel engine), but specially designed for high-pressure gasoline fuel injection pump and fuel injection nozzle for light fuel oil.
  • the start time of the fuel injection can be advanced to the angle of 0 ⁇ 5 degrees before the piston reaches the top dead center, or 5 ⁇ 10 degree angle, to ensure that the first batch of gasoline injected into the cylinder is mixed with air and then the piston is stopped. It is ignited within 0 to 10 degrees after the point.
  • a low-octane gasoline compression-combustion feasibility test was carried out using a 4-stroke 110 mm single-cylinder internal combustion engine with a compression ratio of 7.6.
  • the engine was started with natural intake and manual cranking. As a result, the engine smoothly passed the octane number. 39.
  • the three low-grade gasoline samples of 3, 25 and 12.5 are compression-ignited and operate normally after the engine is started.
  • the bench test was carried out using a 4-cylinder 4-stroke 93 mm bore engine with a compression ratio of 18, and the engine was water-cooled and naturally vented.
  • the results show that the specific fuel consumption of the compression-ignition low-xin diesel engine is 10-15% lower than that of the same type of diesel engine.
  • High-pressure gasoline injection pumps with a injection pressure of 17 MPa have appeared on the market, which can basically meet the needs of compression-ignition low-octane gasoline engines.
  • the emergence of higher pressure gasoline injection pumps for compression-ignition low-energy gasoline engines will meet the needs of compression-combustion low-energy gasoline engines with higher compression ratios.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Supercharger (AREA)

Abstract

一种压燃式低辛垸值汽油发动机,采用低辛烷值汽油燃料和压燃点火方式,不需要火花塞,热功效率高于普通汽油机约40%,排放所产生的温室效应低于普通汽油机约45%。低辛垸值汽油机的"压燃"是扩散压燃,区别于均质压燃,气缸的压缩比可以达到14〜22,而普通汽油机的压缩比仅为7〜11。低辛烷值汽油机的结构简单,燃烧控制容易,噪声低,故障率低。由于低辛烷值汽油可以不含芳烃,不需要添加MTBE、MMT等抗爆剂,因此这种新型汽油发动机是一种高效、清洁、环境友好的内燃机。

Description

一种压燃式低辛烷值汽油发动机
技术领域
本发明属于机械工业的内燃机技术领域, 是一种新型的内燃机产品。
背景技术
1、 柴油发动机和汽油发动机的比较
通常, 柴油发动机(压燃式发动机)与汽油发动机(点燃式发动机)相比热 功效率高 30% (有资料称 20 ~ 4说0% )> 排放产生的温室效应低 45%, 一氧化碳 与碳氢排放也低。 柴油机结构简单故障率低, 不足之处是有害颗粒物排放大。
汽油机与柴油机相比, 燃料的存储、输送系统有所不同, 汽油的挥发性和侵 润性比较强。汽油机与柴油机给油方式也不同书,汽油机将汽油喷入进气道与空气 混合后进入气缸,而柴油机是在气缸活塞将空气压缩之后才经过喷油咀将柴油喷 入气缸。
近年, 市场上出现了一种缸内直喷汽油机,在压缩行程阶段预先喷射一部分 汽油进入气缸与空气预混合,活塞到达上止点之后再多次喷射汽油进入气缸,采 用火花塞点火。 这种发动机使用高标号汽油, 压缩比有所提高, 但是不能太高。 另外一种均质压燃汽油机 (HCCI) 仍然处在研究阶段, 通过预喷 (汽油与空气 预混)和多次喷射汽油, 适当提高压缩比和采用电热塞加热, 能够实现压燃和多 点点火。但是这种均质压燃汽油机的燃烧控制困难, 存在工作粗暴的风险, 难以 推广应用。
柴油机的工作粗暴问题: 由于柴油的运动黏度较大,柴油必须使用高压油泵 喷射进入气缸, 才能够被充分雾化。 为了使得柴油很好地与空气混合, 这种油泵 喷射压力有时高达 1800〜2000个大气压。 因此, 传统的柴油机往往在极短时间 将柴油喷射进入气缸, 雾化的柴油与空气混合后自燃, 多点同时着火引起爆燃, 噪声和震动较大, 工作粗暴。
现代柴油发动机采用涡轮增压、 中冷、 直喷 (共轨和多点喷射)、 尾气催化 转换和颗粒捕集器等先进技术, 柴油发动机汽车的排放己达到欧 III、 欧 IV排放 标准。
2、 发动机压缩比与热效率
从理论上讲, 压缩比越大, 发动机效率越高。汽油机的压缩比一般为 7〜11 , 需要使用高辛垸值 (高标号) 汽油。 柴油机的压缩比一般为 15〜18, 高的压缩 比可以达到 18〜22。 但因为气缸受材料强度的限制, 压缩比不能太大。 发动机每发出 lkw有效功率, 在 lh内所消耗的燃油质量(以 g为单位), 称 为燃油消耗率。 比油耗的单位为克 /(千瓦小时)。 很明显, 燃油消耗率越低, 经济 性越好。
4、 芳烃与辛烷值
汽油中含有二甲苯、 乙苯、 甲乙苯、 甲苯以及苯的其它衍生物, 它们统称为 芳烃。 芳烃的辛烷值一般都比较高, 但是具有轻微的毒性。 芳烃燃烧生成的尾气 含有多环芳烃, 具有致癌作用。
为了提高汽油的辛烷值, 炼油厂往往采用 "重整"工艺, 将直链垸烃转化为 芳烃。 这个过程需要消耗大量能源, 而且损耗一部分原料。
5、 抗爆添加剂
为了增加汽油辛垸值, 工程师还研究了抗爆剂, 例如: 甲基环戊二烯三羰基 锰 (MMT)、 甲基叔丁基醚 (MTBE)、 甲基叔戊基醚等。
抗爆剂对环境有二次污染作用, 美国有一些州己经立法禁止使用 MTBE。
6、 辛垸值与十六垸值
柴油的品质指标中,十六烷值是影响柴油能否被压燃的主要指标, 一般要求 柴油的十六垸值 40〜60, 十六烷值越高越容易被柴油机压燃。 有研究资料显示, 十六垸值 40相当于辛垸值 50, 十六烷值 60相当于辛烷值 30。 事实上, 汽油辛 烷值越低越容易被压燃。
7、 综合柴油发动机优点和汽油发动机优点的创新型发动机
柴油机比汽油机的热功效率高, 主要是因为它的压缩比高和空气与燃料比 高。汽油的挥发性比柴油好, 与空气混合的均匀性好于柴油, 燃烧后的尾气中炭 黑等颗粒状杂质少于柴油。
本发明设计了一种高压缩比、压燃式汽油发动机,这种新型内燃发动机迄今 为止未见报道。
发明内容
利用低辛烷值汽油自燃燃点较低的特点,利用压燃式内燃机热功效率高于点 燃式内燃机的特点, 设计出一种以低辛垸值汽油为燃料的压燃式汽油发动机, 提 高汽油机(压燃式低辛垸值汽油发动机)的热功效率, 把汽油机的热功效率提升 到柴油机的水平, 同时降低汽油发动机排放所产生的温室效应。
压燃式低辛烷值汽油机的压燃是扩散压燃, 区别于均质压燃。
试验数据证明,压燃式低辛垸值汽油机的比油耗比柴油机使用柴油燃料的比 油耗低 10〜15%。 即, 压燃式低辛垸值汽油机的热功转换效率比柴油机高 10〜 15%。因此,压燃式低辛烷值汽油机比普通点燃式汽油机的热功转换效率高 30〜 55%左右。
由于生产高辛烷值汽油 (辛烷值在 90以上的汽油, 研究法) 的难度和工艺 复杂程度较高,压燃式低辛垸值汽油机的出现将降低炼油工业生产汽油过程的难 度和复杂程度。
1、 本发明一种压燃式低辛烷值机的技术方案和技术措施
( 1 )、 将汽油发动机的压缩比提高 14〜22, 以提高汽油机的热功转换效率。 对于采用进气空气压缩技术,包括采用涡轮增压技术和中冷技术的汽油机,压缩 比可以选择在 7〜15, 或者 15〜18范围。
(2)、 使用辛烷值 30〜50 (研宄法) 的汽油作为燃料, 这种汽油的十六垸 值相当于 40〜60, 可以在上述压缩比条件下被压燃。 实际应用时, 根据压燃式 汽油机的压缩比及相关参数, 汽油辛垸值指标可以适当放宽, 例如: 放宽到 55, 59, 等等, 只要保证汽油能够被压燃, 具有可靠的压燃点火可靠性。
(3 )、使用高压汽油油泵和高压汽油喷咀,保证低辛垸值汽油能够被有效喷 射进入高压气缸,并且汽油被喷射进入气缸的压力能够保证汽油均匀分散到气缸 内的空气中。 这种高压汽油油泵相对于高压柴油油泵, 具有较低的喷射压力。
(4)、 使用汽油储存和输送系统, 如油箱、 油泵、 油管、 阔门、 油量计等。
(5 )、 燃烧控制方面, 采用延长喷油时间、 降低喷油速度的措施, 提高发动 机效率, 同时避免由于燃油与空气的混合气爆燃,避免活塞在上止点附近时燃烧 室短时间压力过高和发动机工作粗暴。 控制汽油燃料在曲臂与连杆形成 90度角 之前和 60度角之后完全燃烧, 这是本发明提高发动机效率的第二项关键技术措 施。
这种设计方案和技术措施同样可以应用到柴油发动机。
(6)、可以采用多次喷射燃料供给技术优化燃烧控制。如果不采用多次喷射 燃料供给技术的方案, 则发动机的结构会简化, 甚至可以不含电路和电子器件。
2、 本发明解决的技术问题
( 1 )、解决汽油发动机压缩比低于柴油机, 热功效率和动力输出性能低于柴 油机, 以及汽油的燃料经济性低于柴油的问题。
(2)、克服了低辛垸值汽油不能在普通柴油机使用的困难, 回避了柴油机油 泵油咀喷射系统用于喷射低辛垸值汽油燃料时,柱塞偶件等动设备部件的润滑和 磨损问题。
(3 )、 优化燃烧控制, 解决压燃式内燃机 (包括柴油机和低辛烷值汽油机) 工作粗暴、 噪声大的问题, 同时进一步提高发动机效率。 (4)、解决柴油机大量排放炭黑等颗粒状杂质、一氧化碳, 汽油机排放较大 量多环芳烃和碳氢的问题。
( 5 )、 解决汽油需要添加抗爆剂的问题和实现清洁汽油无芳烃化的目标。
3、 本发明技术方案和技术措施的效果
( 1 )、压燃式低辛烷值汽油机兼有柴油机和汽油机的优点。具有柴油机的高 效率、 大功率 (气缸口径可以像柴油机那样增加, 却没有爆震的危险); 具有汽 油机的低排放 (汽油机的炭黑等颗粒状杂质和一氧化碳排放低于柴油机); 碳氢 排放指标低于最新投放市场的缸内直喷汽油机,也低于均质压燃汽油机(HCCI)。
由于汽油的挥发性好于柴油,低辛垸值汽油被喷射进入气缸后能够快速与空 气混合和充分燃烧, 尾气没有炭黑等颗粒状杂质, 一氧化碳排放很低(与柴油机 使用柴油相比), 所以效率比柴油机高 10〜15%, 比普通汽油机高 30〜55%。
(2)、采用延长喷油时间的技术时,低辛烷值汽油发动机可以是不含电路和 电器元件的简单机械装置,在具有高热功转换效率的同时,具有故障率低的优点。
(3 )、柴油机采用延长喷油时间的技术时,柴油发动机可以在不含电路和电 器元件, 同时具有故障率低的优点的情况下, 提高效率, 工作柔和, 降低噪声。
(4)、 低辛烷值汽油机的尾气不含多环芳烃。
(5 )、采用多次喷射燃料供给技术, 压燃式低辛烷值汽油机的燃烧控制可以 进一步优化, 热功转换效率可以进一步提高。
(6)、 有内燃机专家评论说: 低辛垸值汽油是比柴油更适合柴油机的燃料, 而压燃式低辛烷值汽油机可能是历史上最完美的内燃机。
4、 低辛垸值汽油的概念
一般情况下, 我们将辛垸值小于 60 (研究法) 的汽油称为低辛垸值汽油。 与高辛垸值汽油一样, 可以按照低辛烷值汽油的辛垸值确定它的标号, 例如: 辛 烷值为 40的汽油可以称为 40号汽油。低辛烷值汽油的标号越低,适应不同压缩 比的压燃式汽油机的能力越强, 但是成本也越高。 例如: 10 号汽油 (辛烷值为 10) 比 30号汽油 (辛垸值为 30) 能适应更低压缩比的压燃式汽油机, 适用性更 强。
5、 压燃式低辛垸值汽油机的工作过程描述
当活塞将空气压缩进燃烧室, 活塞到达上止点位置或者接近上止点位置时, 低辛烷值汽油经过喷油泵和喷油咀被喷入气缸,在气缸内的高温高压空气中自动 点火和燃烧, 产生更高压力, 推动活塞向下止点运行, 做功。 降低喷油速度, 延 长喷油时间, 使得汽油在气缸与空气混合的时间延长, 混合充分, 燃烧充分, 燃 烧过程柔和, 噪声降低。 6、 时间的概念
本说明书关于发动机活塞运行行程对应的时间、喷油咀开始喷油和结束喷油 的时间, 都是相对时间, 是以曲轴转动的角度为参照的。 例如: 活塞从上止点到 下止点的运行时间为 180度角, 对应曲轴转动 180度角; 假设喷油咀从上止点之 前 5度角开始喷油, 到经过上止点 55度角喷油结束, 则喷油时间为 60度角, 相 当于曲轴转动 60度经过的相对时间。当喷油时间为 60度角时, 如果发动机转速 为 1200转 /分钟 ( 1/20秒 /转), 则喷油时间为一百二十分之一秒 ( 1/120秒)。
7、 压燃式低辛垸值汽油机与普通汽油机和柴油机的区别
( 1 )、 燃料不同, 是压燃式汽油机区别于普通汽油机和柴油机的特征之一。 由于柴油与汽油的结构、 组成不同, 汽油的挥发性、 渗透性、 浸润性比柴油 强, 柴油的 (粘稠度高) 运动粘度比汽油大, 压燃式低辛垸值汽油机的燃料箱、 燃料油管线、 燃料油泵、 喷咀、 过滤器等部件的结构、 性能要求都与柴油机有很 大差别, 因此普通柴油机不能作为低辛垸值汽油发动机使用。
结论是: 即使压燃式汽油机的压缩比与柴油机相当时,压燃式汽油机与柴油 机也是完全不同的两种内燃机产品。
压燃式汽油发动机使用低辛垸值汽油。低辛烷值汽油与高辛垸值汽油相比较 具有三项主要优点: 清洁一一不含芳烃、 不含抗爆剂; 环保一一尾气不含多环芳 烃; 低成本一一不需要经过 "重整"等分子转换工艺提高汽油辛烷值。
低辛烷值汽油与柴油不同, 根据自燃燃点高低所对应的辛烷值确定不同标 号, 例如: 45号汽油、 40号汽油、 35号汽油、 30号汽油、 20号汽油等等, 以 适应不同压缩比的低辛垸值汽油机。 而柴油并没有针对不同压缩比柴油机的标 号。
低辛垸值汽油的高压喷射油泵和喷射油咀与柴油机的高压喷射泵和喷射油 咀不同。
(2 )、 点火方式不同, 是压燃式汽油机区别于普通汽油机的特征之二。 压燃式汽油机采用燃料在气缸内自燃点火的方式,而普通汽油机采用火花塞 等电子点火系统点燃。
压燃式汽油机由于可以缺省电子点火系统,所以比普通汽油机结构简单, 故 障率低。
延长向燃烧室喷油时间的方法, 同样适用于柴油机。柴油机不使用多点喷射 技术, 也可以提高效率、 降低噪声、 工作柔和, 而且结构简单。
( 3 )、压缩比不同,是压燃式汽油机区别于普通汽油机和柴油机的特征之三。 压燃式低辛垸值汽油机一旦定型,压缩比就确定了,所使用的低辛烷值汽油 的辛烷值(汽油标号)就有一个上限。 只有使用等于和低于这个标号的汽油, 压 燃式低辛烷值汽油发动机才能正常工作。
反之, 汽油标号越低, 压燃式汽油发动机的压缩比可以越低(例如: 选择压 缩比范围为 10〜14), 发动机的运行越加轻柔平稳。
多大的气缸压缩比需要使用多少标号的低辛垸值汽油 __这种标准数据,业 内技术人员可以很方便地利用测试汽油辛垸值的试验装置反向试验得到。
压燃式汽油机的压缩比高于普通汽油机,但是需要使用不同标号的低辛垸值 汽油。
a、 为了使得发动机的效率更高, 压燃式汽油机的压缩比可以设计在 18〜20 范围(甚至在 19〜22范围),这类压燃式汽油机可以使用低辛烷值汽油产品中标 号偏高的那些汽油品种。
b、 为了使得发动机运行平稳轻柔, 压燃式汽油机的压缩比可以设置在 10〜 14范围 (甚至 7〜10范围)。 尤其在使用空气增压技术时, 较低的压缩比仍然有 较高的热功转换效率, 空燃比的提高也有利于提高发动机效率。这样, 使用低辛 垸值汽油产品中标号偏低的那些汽油品种,可以采用压缩比相对较低的压燃式汽 油机(例如: 压缩比为 12〜14的压燃式汽油机)。 即使如此, 这种压燃式汽油机 的压缩比仍然比点燃式(普通)汽油机高, 热功效率也高, 排放所产生的温室效 应也低。
(4)、 进油方式不同:
压燃式汽油机采用喷油咀喷油的方式将燃料送入气缸,普通汽油机采用喷油 咀将燃料喷入进气管, 与压缩空气混合后进入气缸。当然现在也有部分汽油机采 用直喷的技术, 但是两者仍然存在点火方式的根本不同。
( 5 )、 效率不同:
压燃式汽油机的热功效率比普通汽油机高大约 40〜55% (比柴油机高 10〜 15%左右)。 举例说明: 如果一台使用普通汽油机的汽车, 百公里油耗为 8升汽 油 (假设为 93号汽油, 40升汽油可行驶 500公里); 当这台汽车采用压燃式低 辛烷值汽油机时, 百公里油耗大约为 5.7升 (40升汽油可行驶 700公里)。
( 6)、 喷油速度不同:
为了降低发动机的震动和噪声, 压燃式低辛垸值汽油机降低进油速度(喷油 速度), 相当于降低了气缸内燃料混合气的燃烧速度, 减轻了爆燃气体对气缸和 活塞的冲击。
( 7)、 启动方式不同:
a、 压燃式汽油发动机在启动时, 通过控制喷油咀, 减少喷油咀向气缸供油 的量, 避免第一次压燃时燃料积聚过多。
b、 使用摇把手动启动压燃式汽油发动机时, 在释放气缸封闭阀的开闭杠杆 前, 切断油路, 停止向气缸供油。
( 8 )、 润滑原理和润滑油系统以及润滑油不同:
压燃式低辛烷值汽油机的润滑油系统与柴油机不同, 更接近于普通汽油机。
(9)、 温室气体排放标准不同- 使用相同单位质量燃料,压燃式汽油机的排放所产生的温室效应比普通汽油 机降低 40〜55%左右。
关于压燃式发动机和点燃式发动机的工作原理、 机械结构以及二者的区别, 是内燃机业内技术人员所熟悉的,本说明书不做详细叙述不会影响业内技术人员 对本发明的理解。
压燃式汽油发动机兼有汽油机和柴油的优点,但是它不同于以往的汽油机和 柴油机。 所以, 本发明在具有实用性的同时, 具备新颖性和创造性。
8、 相关权利要求
( 1 )、 一种压燃式低辛烷值汽油发动机, 它的特征是: 使用低辛垸值汽油作 为燃料, 同时采用 "压燃式"点火方式, 因此这种发动机的气缸可以采用 10〜 22的高压缩比;
使用空气增压技术, 例如: 涡轮增压, 或者包括使用中冷器, 发动机可以采 用较低的压缩比, 例如: 压缩比为 7〜15, 或者 15〜18, 发动机仍然具有超过普 通汽油机的动力性能;
可以缺省电子点火系统, 例如: 火花塞, 电热塞;
采用电控多点喷射系统; 或者也可以缺省电控多点喷射系统, 因此发动机的 结构简单, 故障率低。
(2)、 根据权利要求 1, 采用轻质燃料油内燃机所需要的润滑油系统和燃料 油存储、 输送系统 (类似于汽油发动机的油箱、 油路系统), 以及压燃式发动机 所需要的高压喷油泵和喷油咀 (类似于柴油发动机的喷油泵和喷油咀), 但是专 门为适应轻质燃料油而设计的高压汽油喷油泵和喷油咀。
(3 )、 根据权利要求 1, 为了降低燃料经喷油咀喷入气缸后混合油气爆燃对 气缸、 活塞乃至对发动机的冲击和震动, 采取降低做功行程喷油速度(延长喷油 时间)的措施, 将喷油结束的时间延迟到曲轴旋转角 45〜105度角之间(活塞在 上止点时, 曲轴旋转角度为 0), 典型的延迟度角范围为 45〜75度角之间; 使得 燃油燃烧时间接近于普通汽油发动机,在燃油消耗量相同的情况下,输出功率更 加提高; 不需要在活塞到达上止点之前更大的转动角度 (例如 50〜60度角范围) 向 气缸预喷入汽油, 或者在空气进气道预混入汽油, 形成均质油气混合层;
喷油的起始时间可以适当提前到活塞到达上止点之前 0〜5度角, 或者 5〜 10 度角, 保证第一批被喷入气缸的少部分汽油与空气混合后在活塞经过上止点 后 0〜 10度角内被点火。
(4)、 根据权利要求 1, 在发动机启动阶段, 分别或者同时采取以下两项措 施减少尾气中炭黑等燃料不完全燃烧造成的颗粒状排放物:
a、 启动状态时减少每一做功行程中经过喷油咀向气缸喷射的低辛垸值汽油 的量;
b、 在发动机转速达到规定速度 (例如: 怠速的转速) 之前, 切断油路停止 向气缸供油, 等转速达到较高时 (例如: 怠速的转速), 才开始向气缸供油, 避 免第一次压燃点火时气缸内部燃油积聚过多, 引起燃烧不完全, 出现炭黑和颗粒 状杂质;
使用摇把手动启动发动机时, 在释放气缸封闭阀的杠杆(手柄)前, 切断高 压油泵或者喷油咀的油路,停止向气缸喷油,即:按动开启气缸封闭阀的杠杆(手 柄), 就关闭向高压油泵或者喷油咀供油的阔门, 手柄释放后, 向喷油咀供油的 阀门随即开启。
具体实施方式
实施例 1:
使用一台压缩比为 17. 6的 4冲程 110毫米单缸内燃机进行低辛烷值汽油压 燃可行性试验, 发动机采用自然进气, 手动摇把启动, 结果发动机顺利地分别将 辛烷值为 39. 3、25和 12. 5的三个低标号汽油样品压燃,发动机启动后运行正常。
实施例 2:
使用一台压缩比为 18的 4缸 4冲程 93毫米缸径内燃机进行台架试验,发动 机采用水冷、 自然进气。 结果显示, 压燃式低辛垸值汽油机的负荷曲线和速度曲 线的比油耗比相同型制的柴油机使用柴油时的比油耗低 10-15%。
实施例 3:
市场上已经出现喷射压力为 17MPa的高压汽油喷射泵, 基本可以满足压燃 式低辛烷值汽油机的需要。将来为压燃式低辛垸值汽油机配套的提供更高压力的 汽油喷射泵的出现, 将适应更高压缩比的压燃式低辛垸值汽油机的需要。

Claims

权 利 要 求 书
1、 一种压燃式低辛垸值汽油发动机, 特征是: 使用低辛垸值汽油作为燃料, 采用 "压燃式" 点火方式, 采用 14〜22的高压缩比;
使用空气增压技术, 例如: 涡轮增压, 或者包括使用中冷器, 发动机可以采 用较低的压缩比, 例如: 压縮比为 7〜15, 或者 15〜! 8;
采用电控多点喷射系统, 或者缺省电控多点喷射系统。
2、 根据权利要求 1, 采用汽油内燃机所需要的润滑油系统和燃料存储、 输 送系统 (类似于汽油发动机的油箱、 油路系统), 以及压燃式发动机所需要的高 压喷油泵和喷油咀 (类似于柴油发动机的喷油泵和喷油咀), 但是专门为适应低 辛垸值汽油而设计的高压汽油喷油泵和喷油咀。
3、 根据权利要求 1, 采取降低做功行程喷油速度 (延长喷油时间) 的措施, 将喷油结束的时间延迟到曲轴旋转角 45〜105度角之间(活塞在上止点时, 曲轴 旋转角度为 0), 典型的延迟度角范围为 45〜75度角之间;
喷油的起始时间可以提前到活塞到达上止点之前 0〜5度角, 或者 5〜10度 角, 保证第一批被喷入气缸的少部分汽油与空气混合后在活塞经过上止点后 0〜 10度角内被点火。
4、 根据权利要求 1, 在发动机启动阶段, 分别或者同时采取以下两项措施 减少尾气中炭黑等燃料不完全燃烧生成的颗粒状排放物:
( 1 )、启动状态时减少每一做功行程中经过喷油咀向气缸喷射的低辛垸值汽 油的量;
(2)、 在发动机转速达到规定速度(例如: 设定的怠速转速)之前, 切断油 路停止向气缸供油, 等转速达到较高时 (例如: 设定的怠速转速), 才开始向气 缸供油; 使用摇把手动启动发动机时, 在释放气缸封闭阀的杠杆(手柄)前, 切 断高压油泵或者喷油咀的油路, 停止向气缸喷油, SP : 按动开启气缸封闭阀的杠 杆 (手柄), 就关闭向高压油泵或者喷油咀供油的阀门, 手柄释放后, 向喷油咀 供油的阀门随即开启。
PCT/CN2011/001106 2010-07-07 2011-07-05 一种压燃式低辛烷值汽油发动机 WO2012003713A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2807267A CA2807267C (en) 2010-07-07 2011-07-05 A compression-ignition low octane gasoline engine
EP11803067.5A EP2592248A4 (en) 2010-07-07 2011-07-05 Compression-ignition low octane gasoline engine
US13/806,419 US10072558B2 (en) 2010-07-07 2011-07-05 Compression-ignition low octane gasoline engine
AU2011276880A AU2011276880A1 (en) 2010-07-07 2011-07-05 Compression-ignition low octane gasoline engine
JP2013516965A JP6264040B2 (ja) 2010-07-07 2011-07-05 圧縮点火低オクタンガソリンエンジン
KR1020127033707A KR20130093527A (ko) 2010-07-07 2011-07-05 압축점화식 저옥탄가 가솔린엔진
KR1020197013318A KR102059848B1 (ko) 2010-07-07 2011-07-05 압축점화식 저옥탄가 가솔린엔진
BR112013000429A BR112013000429A2 (pt) 2010-07-07 2011-07-05 motor a gasolina de baixa octanagem e ignição por compressão
ZA2013/00976A ZA201300976B (en) 2010-07-07 2013-02-06 Compression-ignition low octane gasoline engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010227388.0 2010-07-07
CN2010102273880A CN102312719B (zh) 2010-07-07 2010-07-07 一种压燃式低辛烷值汽油发动机

Publications (1)

Publication Number Publication Date
WO2012003713A1 true WO2012003713A1 (zh) 2012-01-12

Family

ID=45426231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001106 WO2012003713A1 (zh) 2010-07-07 2011-07-05 一种压燃式低辛烷值汽油发动机

Country Status (11)

Country Link
US (1) US10072558B2 (zh)
EP (1) EP2592248A4 (zh)
JP (1) JP6264040B2 (zh)
KR (2) KR102059848B1 (zh)
CN (1) CN102312719B (zh)
AU (1) AU2011276880A1 (zh)
BR (1) BR112013000429A2 (zh)
CA (1) CA2807267C (zh)
MY (1) MY175179A (zh)
WO (1) WO2012003713A1 (zh)
ZA (1) ZA201300976B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312719B (zh) 2010-07-07 2013-08-28 周向进 一种压燃式低辛烷值汽油发动机
CN103375242B (zh) * 2012-04-23 2019-11-12 北京奋进科技有限公司 内燃机混合燃烧控制方法
US20170370308A1 (en) * 2016-06-23 2017-12-28 Tula Technology, Inc. Dynamic skip fire operation of a gasoline compression ignition engine
CN103867322B (zh) * 2012-12-13 2019-07-05 周氏(北京)汽车技术有限公司 汽车及内燃机的一种控制方法
CN104712445B (zh) * 2013-12-13 2019-09-06 周向进 单燃料压燃与点燃混合的燃烧控制方法及内燃机
US20190226419A1 (en) * 2014-10-23 2019-07-25 Xiangjin Zhou Hybrid combustion mode of internal combustion engine and controller thereof, internal combustion engine, and automobile
CN105647598A (zh) * 2014-11-05 2016-06-08 周向进 含有助燃剂的汽油产品及其制造方法
CN104879212A (zh) * 2015-04-30 2015-09-02 刘洪保 一种双活塞四冲程内燃机
US20170175614A1 (en) * 2015-12-21 2017-06-22 Cummins Inc. Gasoline compression ignition (gci) engine with dedicated-egr cylinders
US9863305B1 (en) * 2016-09-20 2018-01-09 Delphi Technologies, Inc. Low-cost high-efficiency GDCI engines for low octane fuels
CN107061001B (zh) * 2017-05-18 2023-06-23 刘和平 一种油电气混合发动机
CN113671102A (zh) * 2021-08-12 2021-11-19 笃为(上海)精密仪器有限公司 用于测定汽油辛烷值、柴油十六烷值的装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124830A (ja) * 1986-11-13 1988-05-28 Akira Kaiya 高圧縮比エンジン
JPH07247872A (ja) * 1994-03-10 1995-09-26 Nissan Motor Co Ltd 圧縮着火式内燃機関
CN1196445A (zh) * 1998-03-17 1998-10-21 大连机车车辆厂 柴油机启动方法及其控制装置
CN1305052A (zh) * 2000-08-06 2001-07-25 梁思武 压燃式节能汽油机
CN1774566A (zh) * 2003-04-11 2006-05-17 李赞宰 预混料压缩点燃发动机和具有相同特性的往复发电机
CN2888092Y (zh) * 2006-02-15 2007-04-11 张标 高速四冲程柴油发动机

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280451A (en) * 1980-04-23 1981-07-28 Moore Edward J High compression vacuum cycle engine
CN86209862U (zh) * 1986-12-03 1988-03-16 徐冠英 往复旋转式发动机
US5230315A (en) * 1989-12-18 1993-07-27 Usui Kokusai Sangyo Kaisha, Ltd. Otto-cycle engine
JP3173663B2 (ja) * 1991-08-14 2001-06-04 本田技研工業株式会社 内燃エンジンの燃料噴射制御装置
JPH0559972A (ja) * 1991-08-29 1993-03-09 Kubota Corp 手始動式デイーゼルエンジン
CN1085987A (zh) * 1992-10-16 1994-04-27 史瑞坤 内燃机汽化器燃油电加热方法
CN1099100A (zh) * 1993-11-27 1995-02-22 道格拉斯·C·克鲁泽 有限温度循环内燃机
GB2301625B (en) * 1996-01-30 1997-04-23 Steven Valisko Internal combustion engines
CN1109180C (zh) * 1996-07-15 2003-05-21 彭曙东 旋转燃烧室暨气门装置和可变配气机构
JP3052856B2 (ja) * 1996-10-24 2000-06-19 三菱自動車工業株式会社 排気昇温装置
AU5005297A (en) * 1996-12-02 1998-06-29 Caterpillar Inc. Air to air aftercooler heated bypass with load sensing switching valve
CN1158940A (zh) * 1997-03-06 1997-09-10 朱荣辉 内燃机的循环工作方法及实施该方法的装置
EP1134400B1 (en) * 2000-01-27 2012-01-18 Nissan Motor Company Limited Auto-ignition combustion management in internal combustion engine
WO2002014665A1 (fr) * 2000-08-17 2002-02-21 Hitachi, Ltd. Moteur a combustion interne par compression
US7047933B2 (en) * 2002-08-08 2006-05-23 The United States Of America As Represented By The Administrator Of The United States Environmental Protection Agency Low emission fuel for use with controlled temperature combustion, direct injection, compression ignition engines
US6973921B2 (en) * 2003-12-12 2005-12-13 Caterpillar Inc. Fuel pumping system and method
JP4375295B2 (ja) * 2005-07-26 2009-12-02 日産自動車株式会社 筒内直接噴射式火花点火内燃機関の制御装置
JP4725531B2 (ja) * 2006-03-31 2011-07-13 マツダ株式会社 火花点火式ガソリンエンジン
US7743754B2 (en) * 2006-03-31 2010-06-29 Transonic Combustion, Inc. Heated catalyzed fuel injector for injection ignition engines
JP4639177B2 (ja) * 2006-11-14 2011-02-23 本田技研工業株式会社 内燃機関の制御装置
FR2913065B1 (fr) * 2007-02-26 2012-10-19 Inst Francais Du Petrole Procede pour faciliter la vaporisation d'un carburant pour un moteur a combustion interne a injection directe de type diesel
EP2103798A1 (en) * 2008-03-20 2009-09-23 Aquafuel Research Limited Combustion method and apparatus
JP2010121591A (ja) * 2008-11-21 2010-06-03 Toyota Motor Corp 多種燃料内燃機関
JP5319253B2 (ja) * 2008-11-28 2013-10-16 Jx日鉱日石エネルギー株式会社 改質器付き予混合圧縮着火エンジン用燃料油組成物
US20110186011A1 (en) * 2010-02-03 2011-08-04 Honda Motor Co., Ltd. Internal combustion engine
EP2569530A1 (en) * 2010-03-01 2013-03-20 Transonic Combustion, Inc. Low octane fuel for gasoline compression ignition
CN102312719B (zh) 2010-07-07 2013-08-28 周向进 一种压燃式低辛烷值汽油发动机
US9022003B2 (en) * 2011-04-06 2015-05-05 GM Global Technology Operations LLC Piston for robust auto-ignition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124830A (ja) * 1986-11-13 1988-05-28 Akira Kaiya 高圧縮比エンジン
JPH07247872A (ja) * 1994-03-10 1995-09-26 Nissan Motor Co Ltd 圧縮着火式内燃機関
CN1196445A (zh) * 1998-03-17 1998-10-21 大连机车车辆厂 柴油机启动方法及其控制装置
CN1305052A (zh) * 2000-08-06 2001-07-25 梁思武 压燃式节能汽油机
CN1774566A (zh) * 2003-04-11 2006-05-17 李赞宰 预混料压缩点燃发动机和具有相同特性的往复发电机
CN2888092Y (zh) * 2006-02-15 2007-04-11 张标 高速四冲程柴油发动机

Also Published As

Publication number Publication date
MY175179A (en) 2020-06-12
JP2013529753A (ja) 2013-07-22
CA2807267C (en) 2019-01-15
AU2011276880A1 (en) 2013-02-28
ZA201300976B (en) 2013-09-25
CA2807267A1 (en) 2012-01-12
EP2592248A1 (en) 2013-05-15
JP6264040B2 (ja) 2018-01-24
CN102312719B (zh) 2013-08-28
US20130160729A1 (en) 2013-06-27
CN102312719A (zh) 2012-01-11
KR20190053972A (ko) 2019-05-20
US10072558B2 (en) 2018-09-11
KR20130093527A (ko) 2013-08-22
BR112013000429A2 (pt) 2016-05-17
KR102059848B1 (ko) 2019-12-27
EP2592248A4 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2012003713A1 (zh) 一种压燃式低辛烷值汽油发动机
CN101907025A (zh) 内燃机多燃料燃烧系统
JP5916840B2 (ja) 燃料反応性成層を介した低負荷でのエンジン燃焼制御
CN103375242B (zh) 内燃机混合燃烧控制方法
Akihama et al. An investigation of high load (compression ignition) operation of the “naphtha engine”–a combustion strategy for low well-to-wheel CO2 emissions
CN104712445A (zh) 单燃料压燃与点燃混合的燃烧控制方法及内燃机
US20130263820A1 (en) Integrated lean burn stabilizers
CN111305977A (zh) 一种氢气天然气全比例可变双燃料发动机
Verhelst et al. A comprehensive overview of hydrogen engine design features
US20190226419A1 (en) Hybrid combustion mode of internal combustion engine and controller thereof, internal combustion engine, and automobile
Poonia et al. Experimental investigations on engine performance and exhaust emissions in an LPG diesel dual fuel engine
US8669402B2 (en) Fuel compositions
Huang et al. Study on cycle-by-cycle variations of combustion in a natural-gas direct-injection engine
Liu et al. Effect of exhaust gas recirculation and intake air e-boosting on gasoline compression ignition combustion
Al-kaabi et al. Study the consumption and cost of using LPG in diesel engines
Fang et al. Dual-Fuel Diesel Engine Combustion with Hydrogen, Gasoline and Ethanol as Fumigants: Effect of Diesel Injection Timing
Ambekar et al. Preliminary optimization of duel fuel engine using dimethyl ether premixed combustion
Chauhan et al. A Technical Review HCCI Combustion in Diesel Engine
Gowtham et al. An Experimental Investigation on Performance and Emission Characteristics of PCCI Engine Using BiodieselEthanol Blends in Dual Fuel Mode
Pielecha et al. Effects of mixture formation strategies on combustion in dual-fuel engines-a review
Pirouzpanah et al. Dual‐fuelling of an industrial indirect injection diesel engine by diesel and liquid petroleum gas
Solanki et al. Prospects of Gasoline Compression Ignition (GCI) Engine Technology
CN201661365U (zh) 内燃机的机械式助油装置
Lei et al. Performance of diesel engine fueled with ethanol-diesel blends in different altitude regions
Nguyen et al. A Study on Impacts of CNG Supplying Method on the Intake Manifold to Operation of Transferring Gasoline Engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516965

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127033707

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011803067

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2807267

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13806419

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011276880

Country of ref document: AU

Date of ref document: 20110705

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013000429

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013000429

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130107