WO2012002460A1 - イオンチャネルに作用する化合物のスクリーニング用材料及びその利用 - Google Patents
イオンチャネルに作用する化合物のスクリーニング用材料及びその利用 Download PDFInfo
- Publication number
- WO2012002460A1 WO2012002460A1 PCT/JP2011/064967 JP2011064967W WO2012002460A1 WO 2012002460 A1 WO2012002460 A1 WO 2012002460A1 JP 2011064967 W JP2011064967 W JP 2011064967W WO 2012002460 A1 WO2012002460 A1 WO 2012002460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- ion channel
- screening
- cells
- channel
- Prior art date
Links
- 102000004310 Ion Channels Human genes 0.000 title claims abstract description 232
- 238000012216 screening Methods 0.000 title claims abstract description 177
- 150000001875 compounds Chemical class 0.000 title claims abstract description 73
- 239000000463 material Substances 0.000 title claims abstract description 36
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 55
- 230000036390 resting membrane potential Effects 0.000 claims abstract description 24
- 210000004027 cell Anatomy 0.000 claims description 264
- 108090000862 Ion Channels Proteins 0.000 claims description 227
- 230000030833 cell death Effects 0.000 claims description 75
- 108091006146 Channels Proteins 0.000 claims description 57
- 238000012360 testing method Methods 0.000 claims description 56
- 238000000034 method Methods 0.000 claims description 51
- 230000036982 action potential Effects 0.000 claims description 40
- 230000028161 membrane depolarization Effects 0.000 claims description 37
- 230000002779 inactivation Effects 0.000 claims description 36
- 108020004414 DNA Proteins 0.000 claims description 35
- 230000009471 action Effects 0.000 claims description 28
- 210000000170 cell membrane Anatomy 0.000 claims description 27
- 239000003814 drug Substances 0.000 claims description 22
- 229940079593 drug Drugs 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 15
- 101000694017 Homo sapiens Sodium channel protein type 5 subunit alpha Proteins 0.000 claims description 13
- 101000944277 Homo sapiens Inward rectifier potassium channel 2 Proteins 0.000 claims description 11
- 102100033114 Inward rectifier potassium channel 2 Human genes 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 9
- 239000003112 inhibitor Substances 0.000 claims description 8
- 230000034994 death Effects 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 abstract description 24
- 230000001965 increasing effect Effects 0.000 abstract description 8
- 239000012528 membrane Substances 0.000 description 40
- 230000000638 stimulation Effects 0.000 description 40
- 150000002500 ions Chemical class 0.000 description 29
- OEBPANQZQGQPHF-UHFFFAOYSA-N Nifekalant Chemical compound O=C1N(C)C(=O)N(C)C(NCCN(CCO)CCCC=2C=CC(=CC=2)[N+]([O-])=O)=C1 OEBPANQZQGQPHF-UHFFFAOYSA-N 0.000 description 19
- 229950008576 nifekalant Drugs 0.000 description 19
- 108090000623 proteins and genes Proteins 0.000 description 17
- 235000018102 proteins Nutrition 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 16
- 230000008859 change Effects 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 13
- 230000002401 inhibitory effect Effects 0.000 description 12
- 230000004308 accommodation Effects 0.000 description 10
- 230000008685 targeting Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 230000035899 viability Effects 0.000 description 9
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 8
- 150000001413 amino acids Chemical class 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 229960004194 lidocaine Drugs 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 229910001424 calcium ion Inorganic materials 0.000 description 6
- 210000000349 chromosome Anatomy 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 230000002336 repolarization Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 239000000556 agonist Substances 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 108010083945 potassium channel protein TREK-1 Proteins 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 4
- 239000007995 HEPES buffer Substances 0.000 description 4
- 101000974733 Homo sapiens Potassium channel subfamily K member 18 Proteins 0.000 description 4
- 102100022756 Potassium channel subfamily K member 18 Human genes 0.000 description 4
- 102100023204 Potassium channel subfamily K member 2 Human genes 0.000 description 4
- 206010003119 arrhythmia Diseases 0.000 description 4
- 229910001422 barium ion Inorganic materials 0.000 description 4
- HQMRIBYCTLBDAK-UHFFFAOYSA-M bis(2-methylpropyl)alumanylium;chloride Chemical compound CC(C)C[Al](Cl)CC(C)C HQMRIBYCTLBDAK-UHFFFAOYSA-M 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 102100021178 ATP-sensitive inward rectifier potassium channel 12 Human genes 0.000 description 3
- 102100033063 G protein-activated inward rectifier potassium channel 1 Human genes 0.000 description 3
- 108091006027 G proteins Proteins 0.000 description 3
- 102000030782 GTP binding Human genes 0.000 description 3
- 108091000058 GTP-Binding Proteins 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 101000614708 Homo sapiens ATP-sensitive inward rectifier potassium channel 12 Proteins 0.000 description 3
- 101000944266 Homo sapiens G protein-activated inward rectifier potassium channel 1 Proteins 0.000 description 3
- 101001049829 Homo sapiens Potassium channel subfamily K member 5 Proteins 0.000 description 3
- 101001047090 Homo sapiens Potassium voltage-gated channel subfamily H member 2 Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 208000002193 Pain Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 230000006793 arrhythmia Effects 0.000 description 3
- 206010015037 epilepsy Diseases 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000010220 ion permeability Effects 0.000 description 3
- 230000007794 irritation Effects 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 238000003266 membrane potential measurement method Methods 0.000 description 3
- 210000000287 oocyte Anatomy 0.000 description 3
- FCTRVTQZOUKUIV-MCDZGGTQSA-M potassium;[[[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound [K+].C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)([O-])=O)[C@@H](O)[C@H]1O FCTRVTQZOUKUIV-MCDZGGTQSA-M 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 230000010474 transient expression Effects 0.000 description 3
- 206010001497 Agitation Diseases 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 102100021239 G protein-activated inward rectifier potassium channel 2 Human genes 0.000 description 2
- 102100021237 G protein-activated inward rectifier potassium channel 4 Human genes 0.000 description 2
- 101000614714 Homo sapiens G protein-activated inward rectifier potassium channel 2 Proteins 0.000 description 2
- 101000614712 Homo sapiens G protein-activated inward rectifier potassium channel 4 Proteins 0.000 description 2
- 101001049841 Homo sapiens Potassium channel subfamily K member 1 Proteins 0.000 description 2
- 101000974745 Homo sapiens Potassium channel subfamily K member 10 Proteins 0.000 description 2
- 101000974737 Homo sapiens Potassium channel subfamily K member 15 Proteins 0.000 description 2
- 101000974739 Homo sapiens Potassium channel subfamily K member 16 Proteins 0.000 description 2
- 101000974732 Homo sapiens Potassium channel subfamily K member 17 Proteins 0.000 description 2
- 101001049828 Homo sapiens Potassium channel subfamily K member 6 Proteins 0.000 description 2
- 101001050878 Homo sapiens Potassium channel subfamily K member 9 Proteins 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 108010051001 Kir2.1 channel Proteins 0.000 description 2
- 108090000301 Membrane transport proteins Proteins 0.000 description 2
- 102000003939 Membrane transport proteins Human genes 0.000 description 2
- 229910003251 Na K Inorganic materials 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 102100023242 Potassium channel subfamily K member 1 Human genes 0.000 description 2
- 102100022798 Potassium channel subfamily K member 10 Human genes 0.000 description 2
- 102100022801 Potassium channel subfamily K member 12 Human genes 0.000 description 2
- 101710131547 Potassium channel subfamily K member 12 Proteins 0.000 description 2
- 102100022799 Potassium channel subfamily K member 13 Human genes 0.000 description 2
- 101710131549 Potassium channel subfamily K member 13 Proteins 0.000 description 2
- 102100022796 Potassium channel subfamily K member 16 Human genes 0.000 description 2
- 102100022757 Potassium channel subfamily K member 17 Human genes 0.000 description 2
- 102100023205 Potassium channel subfamily K member 4 Human genes 0.000 description 2
- 101710185483 Potassium channel subfamily K member 4 Proteins 0.000 description 2
- 102100024986 Potassium channel subfamily K member 9 Human genes 0.000 description 2
- 102100022807 Potassium voltage-gated channel subfamily H member 2 Human genes 0.000 description 2
- 102100027198 Sodium channel protein type 5 subunit alpha Human genes 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102000018692 Sulfonylurea Receptors Human genes 0.000 description 2
- 108010091821 Sulfonylurea Receptors Proteins 0.000 description 2
- 241000269370 Xenopus <genus> Species 0.000 description 2
- 108010084455 Zeocin Proteins 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 210000003050 axon Anatomy 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 230000002964 excitative effect Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000002102 hyperpolarization Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 208000004296 neuralgia Diseases 0.000 description 2
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- VIOJNMVMOZPCTD-BUHFOSPRSA-N 1,3-dibutyl-5-[(e)-3-(1,3-dibutyl-4-hydroxy-2,6-dioxopyrimidin-5-yl)prop-2-enylidene]-1,3-diazinane-2,4,6-trione Chemical compound O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C1=C(O)N(CCCC)C(=O)N(CCCC)C1=O VIOJNMVMOZPCTD-BUHFOSPRSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 102000040125 5-hydroxytryptamine receptor family Human genes 0.000 description 1
- 108091032151 5-hydroxytryptamine receptor family Proteins 0.000 description 1
- 102100021177 ATP-sensitive inward rectifier potassium channel 11 Human genes 0.000 description 1
- 102100022844 ATP-sensitive inward rectifier potassium channel 14 Human genes 0.000 description 1
- 102100021240 ATP-sensitive inward rectifier potassium channel 8 Human genes 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 208000006386 Bone Resorption Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010048610 Cardiotoxicity Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 108091005462 Cation channels Proteins 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 101100114828 Drosophila melanogaster Orai gene Proteins 0.000 description 1
- 102000013138 Drug Receptors Human genes 0.000 description 1
- 108010065556 Drug Receptors Proteins 0.000 description 1
- 241000156978 Erebia Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102100021241 G protein-activated inward rectifier potassium channel 3 Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000018899 Glutamate Receptors Human genes 0.000 description 1
- 108010027915 Glutamate Receptors Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 102000011714 Glycine Receptors Human genes 0.000 description 1
- 108010076533 Glycine Receptors Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000614701 Homo sapiens ATP-sensitive inward rectifier potassium channel 11 Proteins 0.000 description 1
- 101001047033 Homo sapiens ATP-sensitive inward rectifier potassium channel 14 Proteins 0.000 description 1
- 101000614717 Homo sapiens ATP-sensitive inward rectifier potassium channel 8 Proteins 0.000 description 1
- 101000614721 Homo sapiens G protein-activated inward rectifier potassium channel 3 Proteins 0.000 description 1
- 101100453550 Homo sapiens KCNJ12 gene Proteins 0.000 description 1
- 101000932790 Homo sapiens Voltage-dependent L-type calcium channel subunit alpha-1S Proteins 0.000 description 1
- RENBRDSDKPSRIH-HJWJTTGWSA-N Ile-Phe-Met Chemical compound N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCSC)C(=O)O RENBRDSDKPSRIH-HJWJTTGWSA-N 0.000 description 1
- 108010083687 Ion Pumps Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102100037601 P2X purinoceptor 4 Human genes 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102100022797 Potassium channel subfamily K member 15 Human genes 0.000 description 1
- 102100023202 Potassium channel subfamily K member 5 Human genes 0.000 description 1
- 102100023203 Potassium channel subfamily K member 6 Human genes 0.000 description 1
- 102000002294 Purinergic P2X Receptors Human genes 0.000 description 1
- 108010000836 Purinergic P2X Receptors Proteins 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 206010046543 Urinary incontinence Diseases 0.000 description 1
- 102100025485 Voltage-dependent L-type calcium channel subunit alpha-1S Human genes 0.000 description 1
- 241000269368 Xenopus laevis Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 102000034337 acetylcholine receptors Human genes 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000008484 agonism Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 231100000259 cardiotoxicity Toxicity 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229940125400 channel inhibitor Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000002999 depolarising effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 230000001094 effect on targets Effects 0.000 description 1
- 239000006274 endogenous ligand Substances 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical class N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- 208000021722 neuropathic pain Diseases 0.000 description 1
- 230000003957 neurotransmitter release Effects 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 238000012758 nuclear staining Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001536 pro-arrhythmogenic effect Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 229940119381 wellpatch Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/025—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6872—Intracellular protein regulatory factors and their receptors, e.g. including ion channels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/10—Screening for compounds of potential therapeutic value involving cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2510/00—Detection of programmed cell death, i.e. apoptosis
Definitions
- the present invention relates to a material used for screening a compound that acts on an ion channel and its use, and more specifically, a material containing cells that can be used to screen for a compound that acts on an ion channel (including membrane transport proteins) and The present invention relates to a screening method using the material.
- ⁇ ⁇ ⁇ Ion channels have physiologically important functions. It is expected to provide useful drugs by searching for agonists and inhibitors that act on the ion channel with the ion channel as a target.
- As an evaluation method for screening systems for drugs that target such ion channels for example, voltage-gated ion channels, fluorescent membrane potential measurement methods that detect changes in membrane potential in cells with voltage-dependent fluorescent dyes are known ( Patent Document 1). Also known is a patch clamp method in which a glass electrode is brought into close contact (seal) with a cell membrane to electrically detect the membrane potential.
- Non-Patent Document 1 An automated patch clamp that uses a multi-well patch plate with an opening corresponding to the tip of the glass electrode in each well and automatically seals the cell membrane and patch electrode in the well to detect the membrane potential.
- the conventional fluorescent membrane potential measurement method is suitable for the evaluation of many specimens, the measurement accuracy and applicable ion channel range may be limited.
- the patch clamp method has high measurement accuracy and a large amount of information obtained by measurement, but the number that can be measured at one time is small and the efficiency is low.
- the automation patch clamp method has a structure in which a large number of specimens are simultaneously evaluated, the patch success rate is low and it is not suitable for high-throughput screening. Further, the automation patch clamp method has a problem that the apparatus and running cost are high.
- the disclosure of this specification is aimed at the construction of a screening system excellent in efficiency targeting an ion channel.
- the present inventors have to use an evaluation method for detecting a membrane potential of a living cell in a screening system targeting an ion channel, and the problem of such an evaluation method makes it difficult to construct a screening system. Focused on that.
- Various studies were conducted with the aim of constructing a screening system to which a simpler evaluation method can be applied instead of such an evaluation method.
- one or two or more first DNAs encoding voltage-dependent Na ion channels whose inactivation is suppressed are retained, and the resting membrane potential is deepened in the negative direction.
- a screening material for a compound including cells that act on a target ion channel, in which a K channel is activated.
- a screening method comprising a step of detecting an action of a test compound on the target ion channel using the cell of the screening material as an indicator of whether the cell is alive or dead.
- an apparatus for screening a compound that acts on an ion channel the cell containing unit including one or more regions containing cells, and the 1 or 2 described above
- an apparatus comprising a cell death measuring unit for the cells in the above region.
- FIG. 1 It is a figure which shows the outline
- (A) shows the current-voltage relationship before and after administration of 100 ⁇ M Ba ions, which is a specific blocker of Kir2.1 channel, and
- (b) shows changes in membrane potential before and after administration of 100 ⁇ M Ba ions.
- (A) shows the result of the wild type, and (b) shows the result of the mutant type.
- FIG. 3 is an action potential original diagram showing generation of an action potential by depolarizing energization stimulation by transiently expressing wild type and mutant Nav1.5 channels in HEK_Kir cells.
- (A) shows the result of the wild type
- (b) shows the result of the mutant type. It is a figure which shows the result of having electrically stimulated three types of cells of HEK, HEK_Kir, and HEK_Kir_mutated Nav and measuring the change in the number of cells by the MTT method.
- the absorbance of the unstimulated control is shown as 1.
- lidocaine Sigma which is the inhibitor of Na ion channel to HEK_Kir_mutated Nav cell, and performing electrical stimulation.
- the absorbance of the unstimulated control is shown as 1.
- the disclosure of the present specification relates to a screening system targeting an ion channel, specifically, a screening material containing cells that can be used for screening a compound that acts on an ion channel (membrane transport protein) and
- the present invention relates to a screening method using a material, a screening apparatus, and the like.
- an effect on a target ion channel in screening can be detected by cell death of cells constructed for screening. That is, the cell is given a cell death control mechanism in which cell death occurs because the action potential generated once depolarization is induced is extended. That is, the disclosure of this specification uses such a cell death control mechanism as a means for detecting the action of a test compound on a target ion channel.
- the present screening material is a test compound in which a test compound comprises a target ion channel and a Na ion channel in which inactivation is suppressed in a cell membrane, and a K ion channel that activates a resting potential is activated.
- the effect of the test compound on the target ion channel appears as a result of inducing or suppressing depolarization.
- the switch of the cell death control mechanism by the Na ion channel and the K ion channel on the cell membrane of the screening material is turned “on”, This screening material leads to cell death.
- the switch of the cell death control mechanism remains “off” instead of “on”, and the screening material survives.
- this screening material detects the presence or absence of depolarization induced by the action of the test compound by turning on / off the cell death control mechanism, that is, the presence or absence of a continuous action potential that leads to cell death or death. To do. In this way, the action of the test compound on the target ion channel can be detected by viability of the cells, not simply by detecting changes in the membrane potential of the cell membrane.
- Detecting cell viability is simpler or clearer than electrical detection, which is simply measuring the membrane potential or membrane current of a cell, and is suitable for simultaneous evaluation of multiple samples, so it has high throughput. Further, measurement accuracy can be ensured because of the simplicity of operation.
- Such a screening method is also suitable for primary screening of compounds targeting ion channels.
- the screening material disclosed in the present specification retains the first DNA encoding a voltage-gated Na ion channel in which inactivation is suppressed, and at the same time, the resting membrane potential is deepened in the negative direction.
- Channels such as inwardly rectifying K ion channels, are activated and contain cells in which cell death due to intracellular entry of Na ions is avoided.
- this cell is referred to as a screening cell.
- the present screening material may contain only screening cells, or may contain culture materials or additives that allow or are suitable for survival of the screening cells in addition to the screening cells.
- Examples of the culture material include a general medium, a buffer solution, an antibiotic and the like.
- the cell for screening has the 1st DNA which codes the voltage-dependent Na ion channel by which inactivation was suppressed. And such Na ion channel is expressed.
- the voltage-gated Na ion channel is a protein on the cell membrane that opens and mediates passive diffusion of Na ions depending on the membrane potential of the cell membrane.
- the voltage-gated Na ion channel used in the present specification is not particularly limited, and various known voltage-gated Na ion channels can be used, but a Nav1.5 channel is preferable. Nav1.5 channels are distributed in cardiomyocytes and are thought to be involved in action potential generation and excitatory conduction.
- the gate opens depending on the membrane potential and exhibits Na ion permeability, and then the inactivation mechanism works to lose Na ion permeability (inactivation).
- the voltage-gated Na ion channel in which inactivation is suppressed suppresses (disappears) such an inactivation mechanism. That is, the voltage-dependent Na ion channel in which inactivation is suppressed means a Na ion channel in which such inactivation does not occur after the gate opens and exhibits ion permeability depending on the membrane potential.
- the channel In the voltage-gated Na ion channel in which inactivation is suppressed, when depolarization is induced in the membrane and the ion channel itself is activated, the channel is opened and can take a state in which passive diffusion of Na ions can be mediated. However, since the inactivation of the ion channel itself is suppressed, the open state of the channel is maintained. As a result, in the voltage-dependent Na ion channel in which the inactivation is suppressed, once the action potential is generated by stimulation, the inactivation of the channel is delayed, and the action potential is delayed from the original voltage-dependent Na ion channel. Continue for a long time.
- the Na ion channel in which inactivation is suppressed is likely to be activated even at a stationary or relatively deep resting membrane potential (so-called window current is increased). Therefore, in cells expressing a Na ion channel with suppressed inactivation, excessive Na ion inflow can be prevented only when the resting membrane potential is maintained at a sufficiently deep negative potential.
- the Na ion channel activity is easily increased by depolarization, and it is 1 minute or more, preferably 2 minutes or more, more preferably 3 minutes. As described above, the action potential or depolarization is maintained for about 5 minutes or more. This causes excessive Na influx into the cell, leading to cell death.
- Such suppression of inactivation can be appropriately realized by introducing an amino acid mutation into the amino acid sequence of the voltage-dependent Na ion channel.
- Several specific approaches have been disclosed for inhibiting Nav1.5 channel inactivation. For example, modification of the IFM motif (A. O. Grant et al. Biophys. J. Vol.79, pp.3019-3035, 2000), mutating the 406th asparagine to glutamic acid, arginine, or lysine (M. M McNulty et al., Mol. Pharmacol. Vol.70, pp.1514-1523, 2006), deletion of the linker site containing the IFM part linking domain III-IV (D. E. Patton et al., Proc Natl. Acad.
- the screening cell holds the first DNA encoding the mutant protein so that it can be expressed as the mutant.
- the cell for screening may express the mutant, that is, the voltage-dependent Na ion channel in which inactivation is suppressed, steadily or transiently. That is, the first DNA may be integrated on the chromosome and transmitted to the daughter cell, or may be integrated into a plasmid that is autonomously amplified outside the chromosome but not necessarily transmitted to the daughter cell. Also good.
- the first DNA is preferably linked under the control of a constitutively operating promoter (constitutive promoter).
- an expression vector containing the first DNA based on well-known genetic engineering techniques and transformant preparation techniques, and use this as a host for screening cells.
- By introducing into and transforming into the cells, steady expression or transient expression cells can be appropriately obtained.
- the voltage-gated Na ion channel is composed of two or more subunits, and the subunits containing mutations effective for inactivation are a part of the whole, only the partial subunits Can be expressed in a screening cell as one or more first DNAs, and these subunits can be co-expressed simultaneously with other subunits constituting the Na ion channel.
- Each of the DNAs encoding can be retained as the first DNA so that they can be expressed.
- enzymes and other proteins necessary for functioning the voltage-gated Na ion channel in which inactivation is suppressed more effectively these proteins may be expressed appropriately. Good.
- the K ion channel is activated so that the resting membrane potential becomes deeper in the negative direction, in other words, the negative potential becomes larger. That is, the inflow of K ions into the cell is promoted.
- a Na ion channel mutant a membrane potential-dependent Na ion channel in which inactivation is suppressed
- Na ions excessively flow into the cells, and eventually the Na ion concentration in the cells increases and the cells die.
- the cell needs to be alive until such a cell death mechanism is induced.
- the K ion channel is activated to promote the inflow of K ions into the cell.
- the resting membrane potential can be set deeper in the negative direction than usual.
- the resting membrane potential is deeper in the negative direction as long as it does not affect cell survival.
- the membrane potential is preferably ⁇ 50 mV, more preferably ⁇ 60 mV, further preferably about ⁇ 70 mV, and more preferably about ⁇ 80 mV.
- the state in which the K ion channel is activated so that the resting membrane potential is deepened in the negative direction is, for example, an inward rectifying K ion channel (Kir), a four-transmembrane type and a two-pore type K ion. Examples include a state where a channel, a serial pore domain type K ion channel, and the like are activated.
- Kir inward rectifying K ion channel
- 2-pore domain type K ion channel examples include a state where a channel, a serial pore domain type K ion channel, and the like are activated.
- 4-transmembrane type and 2-pore type K ion channels having different properties, and are classified into TWIK, TERK, TASK, TALK, THIK, TRESK, and the like. These channels function as leakage channels because they have no potential and time dependency. Due to the nature of leakage channels, it works to fix the resting membrane potential of cells.
- the inwardly rectifying K ion channel is not particularly limited, and examples thereof include various Kir.2.x ion channels such as Kir2.1, 2.2, 2.3, and 2.4 channels.
- Kir2.1 channel is an inwardly rectifying K + channel with a two-transmembrane structure. It has no potential dependence and has the property of bringing the membrane potential closer to the equilibrium potential side of K + . It is expressed in nerves, heart, and skeletal muscle, and forms, stabilizes and maintains a resting membrane potential.
- Kir2.2 is also mentioned. Kir2.2 is an inwardly rectifying K ion channel similar to Kir2.1, but is more inwardly rectifying than Kir2.1. It is expressed together with Kir2.1 in the heart, brain, and skeletal muscle, and plays a major role in other inwardly rectifying K ion channels in human vascular endothelial cells.
- Kir.2.x ion channel is described in Circ. Res. 2004; 94; 1332-1339 and Am J Physiol Cell Physiol. 2005. 289: C1134-C1144.
- the nucleotide sequences encoding human-derived Kir2.x channels are Kir2.1 (GenBank accession No.U12507, NM_000891.2), Kir2.2 (GenBank accession No.AB074970, NM_021012 (Human KCNJ12)), Kir2. 3 (GenBank accession No. U07364, U24056), Kir2.4 (GenBank accession No. AF081466.1), and the like.
- GIRK GIRK
- Kir3 is an inwardly rectifying K ion channel and is a K channel activated by G protein unlike Kir2.
- These subunits are tissue specific and form heterotetramers composed of Kir3.1 / Kir3.4 in the heart and Kir3.1 / Kir3.2 in the central nervous system. It is not activated at normal times but activated by agonist stimulation. However, it has been reported in Xenopus oocytes experiments that the channel always opens by mutating the amino acid of the transmembrane helix that forms the channel pore (J Biol Chem, 2003, Vol.278, No.50). , Pp.50654-50663).
- nucleotide sequences encoding human-derived Kir3.x channel are Kir3.1 (GenBank accessionNMNo.NM_002239.2), Kir3.2 (GenBank accession No.NM_002240.2), Kir3.3 (GenBank accession No. NM_004983.2), Kir3.4 (GenBank accession No. NM_000890.3).
- KATP Kir6
- the K ATP channel is an inwardly rectifying K ion channel that is inhibited by ATP and activated by ADP.
- K ATP channels regulate cell excitability according to the metabolic state of the cell.
- the KATP channel is a heterooctamer composed of 4 KATP channels and 4 sulfonylurea receptors (SUR).
- SUR sulfonylurea receptors
- a deep resting membrane potential can also be formed by using this mutant.
- Examples of the base sequence encoding the human-derived Kir6.x channel include Kir6.1 (GenBank accession No. NM_004982.2) and Kir6.2 (GenBank accession No. NM_001166290.1).
- THIK channel a membrane potential increases when expressed in HEK293 cells (V. (A. Campanucci et al., Neuroscience Vol.135, pp.1087-1094, 2005), TASK2 channel (C. Kindler et al., J Pharmacol Exp Ther.Vol.306, pp.84-) when expressed in Xenopus oocytes. 92, 2003)), Kv ion channel (Kv ion channel deepens resting membrane potential in smooth muscle tissue (S. S. McDaniel et al., J Appl Physiol Vol.91, pp.2322-2333, 2001) ) Etc. are known.
- TWIK ⁇ 2-pore type K ion channels are classified into TWIK, TREK, TASK, TALK, THIK, and TRESK subfamilies.
- the TWIK subfamily contains TWIK-1 and TWIK-2 channels (Cell Biochem Biophys (2007), 47: 209-256).
- TWIK channels are present in many tissues in humans.
- human-derived TWIK ion channels include TWIK-1 (GenBank accession No. NM_002245.3) and TWIK-2 (GenBank accession No. NM_004823.1).
- the TREK subfamily includes TREK-1, TREK-2 and TRAAK channels.
- human-derived TREK ion channels include TREK-1 (GenBank accession No. NM_014217.3), TREK-2 (GenBank accession No. NM_138317.2) and TRAAK (GenBank accession No. NM_033310.2).
- the TASK subfamily includes TASK-1, TASK-3 and TASK-5 channels.
- human-derived TASK ion channels include TASK-1 (GenBank accession No. NM_002246.2), TASK-3 (GenBank accession No. NM_016601.2) and TASK-5 (GenBank accession No. NM_022358.3). It is done.
- TALK subfamily includes TALK-1, TALK-2 and TASK-2 channels.
- TALK-1 GenBank accession No.NM_001135106.1
- TALK-2 GenBank accession No.NM_001135111.1
- TASK-2 GenBank accession No.NM_003740.3
- THIK subfamily includes THIK-1 and THIK-2 channels.
- human-derived THIK ion channels include THIK-1 (GenBank accession No. NM — 022054.2) and THIK-2 (GenBank accession No. NM — 022055.1).
- TRESK subfamily includes TRESK (GenBank accession No. NM_181840.1).
- one or more of these K ion channels can be used in appropriate combination for the purpose of increasing the resting membrane potential.
- the screening cell may be one that constantly or transiently expresses the K ion channel. That is, the second DNA may be integrated on the chromosome and transmitted to the daughter cell, or may be integrated into a plasmid that is autonomously amplified outside the chromosome but not necessarily transmitted to the daughter cell. Also good.
- the second DNA is preferably linked under the control of a constitutively acting promoter (constitutive promoter).
- an expression vector containing the second DNA, etc. based on well-known genetic engineering techniques and transformant preparation techniques, and use them as host cells for screening cells. By introducing into and transforming into the cells, steady expression or transient expression cells can be appropriately obtained.
- the K ion channel to be activated is composed of two or more different subunits (may be subunits of different K ion channels), one or two or more second DNAs encoding each of these subunits are used. It is preferable to be expressed in screening cells as the DNA of. Further, when there are enzymes and other proteins necessary for effectively functioning the K ion channel to be expressed, these proteins may be co-expressed. In that case, DNA encoding such other proteins may be retained so as to be expressed. Examples of other proteins include G protein when the K ion channel is a G protein-coupled K ion channel.
- the screening cell has a voltage-dependent Na ion channel whose inactivation is suppressed on a biological membrane such as a cell membrane, and at the same time, the K ion channel operates so that the resting membrane potential decreases (becomes deeper).
- the inward rectifying K ion channel or the like is operating on the cell membrane, and as a result, even if it has a mutant type voltage-dependent Na ion channel with suppressed inactivation.
- the cell is prevented from cell death due to Na ion inflow into the cell. That is, the cell death inducing mechanism that operates after waiting for depolarization to occur in the cell membrane of the screening cell is in a standby state.
- the screening cell can also be used as a host cell for newly introducing and expressing DNA encoding a target ion channel.
- the target ion channel in the screening cell is not particularly limited, and one or more ion channels can be appropriately selected from known or new ion channels.
- the ion channel means a protein that penetrates through biological membranes such as animal and plant cell membranes and inner membranes and passively permeates specific ions. Examples of ions include Na ions, K ions, Ca ions, and Cl ions.
- Ion channels include voltage dependence, ligand dependence, mechanical stimulus dependence, temperature dependence, leakage channel, phosphorylation dependence, and the like, depending on the controllability of opening and closing.
- the ion channel since the action (agonism and inhibitory activity) on the target ion channel can be detected by viability of the screening cell, the entire ion channel can be widely targeted. Note that in this specification, the ion channel does not ask the control mode of opening and closing, such as whether it is voltage-dependent or ligand-dependent.
- ion channels transporters of biological membranes including cell membranes and nuclear membranes and other organelle membranes that perform potential-generated ion transport, ion exchangers (Na + -Ca 2+ exchangers, etc.), An ion pump (Na + -K + pump) is also included.
- target ion channels include various ion channel-integrated drug receptors. Such receptors include nicotine-like acetylcholine receptor, ion channel ATP receptor (P2x receptor), ion channel glutamate receptor, ion channel GABA A receptor, ion channel glycine receptor, and type 3 serotonin receptor. Examples include the body. In addition, various TRP (Transient Receptor Potential) channels (non-selective cation channels) can be mentioned. Also, store-operated Ca ion channels such as the Orai channel and the Stim channel can be mentioned. Examples of the target ion channel include various potential-dependent ion channels.
- TRP Transient Receptor Potential
- all voltage-dependent Ca ion channels all voltage-dependent K ion channels (including HERG channels), all voltage-dependent Na ion channels, and all voltage-dependent Cl ion channels can be mentioned.
- Other ligand-dependent Ca ion channels, Na ion channels, proton ion channels, K ion channels, and Cl ion channels can be used.
- all the ion channels which open and close in response to stimuli such as potential, temperature, pH, and tension can be mentioned.
- the target ion channel is preferably a target ion channel that is considered to be closely related to diseases and symptoms.
- Nav channels include Nav 1.1-1.3 and 1.5-1.9. These are related to epilepsy, neuropathic pain, arrhythmia, pain and the like, and it becomes possible to screen for drugs for treating or preventing them.
- Examples of the Ca ion channel include Cav1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 3.1, 3.2, and 3.3. These are related to cardiovascular disease, Alzheimer's disease, pain, epilepsy, and hypertension, and it becomes possible to screen for drugs for treating or preventing them.
- K ion channel examples include Kv1.1 to 1.5, 2.1, 3.2, 4.3, 7.1 to 7.5, 10.1, 11.1 (including hERG), and 12.1 to 12.3. These are related to multiple sclerosis, autoimmune diseases, pain, atrial fibrillation, diabetes, epilepsy, neuralgia, Alzheimer's disease, urinary incontinence, arrhythmia, cancer, etc., and screening for drugs to prevent or treat these It becomes possible.
- Cl ion channels CLC-1 to 7 and -Ka and Kb are related to hypertension, and it is possible to screen for drugs for preventing or treating this.
- the hERG ⁇ ⁇ ⁇ ⁇ K ion channel is one of voltage-dependent K ion channels having a six-transmembrane structure and forming a tetramer.
- a difference from other voltage-dependent K ion channels is that it exhibits inward rectification. This is due to the fact that type C inactivation occurs very quickly. It works strongly in the repolarization phase, the third phase of action potential in the heart. It is known as a channel that is strongly related to arrhythmia and cancer because it has the function of hyperpolarizing the potential in the repolarization phase.
- Inhibiting hERG channels induces a highly lethal QT syndrome, and at present, it is required to examine proarrhythmic effects of all kinds of drug candidate compounds by inhibiting the action of HERG ⁇ K ion channels as cardiotoxicity. For this reason, the usefulness of the cell for a screening which uses a target ion channel as a hERG (K) ion channel is high.
- the hERG K ion channel is expressed in the screening cell, for example, the action potential generated by electrical stimulation is shortened, so that cell death is less likely to occur.
- hERG K ion channel inhibitory activity a compound that has hERG K ion channel inhibitory activity or suspected of causing it tends to cause cell death of the screening cell, so the inhibitory effect on hERGK ion channel is quantitative. Can be evaluated.
- An example of hERG is GenBank accessionNMNo.NM_000238.2.
- any screening cell expressing the target ion channel can be used for screening.
- the screening cell used for screening specifically or highly expresses the target ion channel. This is for screening with higher accuracy and sensitivity. Since ion channels are often distributed in specific cells, it is also possible to select cells that highly express the target ion channel in advance as the parent cell line for screening cells. However, in order to stably express the target ion channel in the screening cell outside the test tube, the screening cell holds and expresses the DNA encoding the target ion channel (third DNA). Is preferred.
- the screening cell may be one that constantly or transiently expresses the target ion channel. That is, the third DNA may be integrated on the chromosome and transmitted to the daughter cell, or may be integrated into a plasmid that is autonomously amplified outside the chromosome but not necessarily transmitted to the daughter cell. Also good.
- the third DNA is preferably linked under the control of a constitutively acting promoter (constitutive promoter).
- constitutively acting promoter those skilled in the art will construct an expression vector containing the third DNA based on well-known genetic engineering techniques and transformant preparation techniques, and use this as a host for screening cells. By introducing into and transforming into the cells, steady expression or transient expression cells can be appropriately obtained.
- DNA encoding each of these subunits is used in one or two or more third units. It is preferably expressed as DNA in screening cells. Furthermore, when there are enzymes and other proteins necessary for effectively functioning the target ion channel to be expressed, these proteins may be co-expressed. In that case, DNA encoding such other proteins may be retained so as to be expressed. Examples of other proteins include various receptor proteins, GTP-binding proteins, and phosphorylating enzymes.
- the host cell of the screening cell is not particularly limited as long as it can be used for screening, and various animal and plant cells can be used.
- the type of animal cell is not particularly limited, such as mammals and insects.
- the host cell is a cell such as bovine, pig, horse, bird, dog, cat, etc. in addition to a human, a cell for screening a drug for preventing or treating a disease in these animals can be obtained.
- insect cells are used as hosts, screening cells for pesticides and the like targeting insects can be obtained.
- a screening cell such as an agrochemical can be obtained.
- Animal cells typically include human fetal kidney-derived cells (HEK cells), African green monkey kidney-derived cells (COS cells), Chinese hamster ovary cells (CHO cells), baby hamster kidney cells (BHK cells), and Xenopus laevis. Oocytes are used.
- HEK cells human fetal kidney-derived cells
- COS cells African green monkey kidney-derived cells
- COS cells Chinese hamster ovary cells
- BHK cells baby hamster kidney cells
- Xenopus laevis Xenopus laevis. Oocytes are used.
- the screening method disclosed in the present specification comprises a step of detecting the action of a test compound on a target channel using the screening cell of the screening material disclosed in the present specification using the life or death of the screening cell as an index. Can be provided.
- this screening method by using the screening cells disclosed in the present specification, the effect of the test compound on the target ion channel can be detected using the life and death of the screening cells as an index. For this reason, it is possible to easily and simultaneously evaluate multiple samples with high efficiency. Further, since no special operation or apparatus is required, there is no decrease in accuracy resulting from the operation, and the screening cost can be reduced.
- the screening method disclosed in the present specification screens a drug for preventing or treating a disease or symptom associated with the target ion channel by using a screening cell in which the various ion channels already described are target ion channels. be able to.
- one or more test compounds can be supplied to the screening cells.
- a single test compound may be used to detect the action of the compound, or two or more test compounds may be used to detect a combined action or synergistic action of these compounds.
- the viability of the screening cell when no test compound is supplied can be used as a control.
- a compound having a known action on the target ion channel may be used as a control. By comparison with such a control, the presence or absence of the action of the test compound on the target ion channel and the degree of the action can be detected.
- test compound is not particularly limited.
- nucleic acids such as proteins, peptides, oligonucleotides and polynucleotides, oligosaccharides, polysaccharides, lipids and the like may be used.
- various stimuli may be applied to the screening cells as necessary. This is because the action may be promoted or suppressed in combination with these stimuli. It is also possible to evaluate the effect on target ion channels that are activated or deactivated in the presence of a stimulus. Examples of such stimulation include temperature change (high temperature and low temperature), pH change, O 2 / CO 2 concentration change, osmotic pressure change, and the like.
- the detection step it may be necessary to induce depolarization of the cell membrane of the screening cell. In that case, it is preferable to use a stimulus that does not easily affect the test compound, such as an electrical stimulus.
- the ratio of cell death (in other words, the ratio of living cells) is used as an index.
- the ratio of cell death it is possible to evaluate the intensity and degree of action, sensitivity, and the like.
- Various known techniques can be adopted as a method for detecting cell death (may be a living cell) of screening cells without any particular limitation. For example, various methods such as MTT method, cell staining, nuclear staining, enzyme activity and the like can be mentioned. It can be appropriately selected in consideration of accuracy and efficiency.
- Cell death can also be detected by detecting a continuous action potential leading to cell death. That is, it may be detected by detecting the duration of action potential that leads to cell death. Such a sustained state of the action potential may be detected by a fluorescent membrane potential detection method or a membrane potential sensitive dye in addition to the conventional electrical detection of the membrane potential.
- the mode of the screening method is appropriately selected according to the type of the target ion channel. More specifically, it is appropriately selected according to the control mode of the target ion channel and its function. For example, activation (or inactivation) of the target ion channel according to the control mode of the target ion channel (voltage dependence, ligand dependence, mechanical stimulus dependence, temperature dependence, leakage channel, phosphorylation dependence, etc.) The presence or absence of a stimulus and the type of stimulus are selected. In addition, depending on the function of the target ion channel, an evaluation mode using cell death as an index (whether it is operative or inhibitory with respect to the target ion channel) is selected.
- the target ion channel is a voltage-gated ion channel
- various functions are expressed by activation (activation by a predetermined membrane potential). Specifically, action potential generation, excitatory conduction (above, Na ion channel), neurotransmitter release, action potential generation in nerves and myocardium (above, Ca ion channel), maintenance of membrane potential, excitability Control, action potential repolarization (K ion channel), membrane potential repolarization, protein resorption, bone resorption, Cl transport (Cl ion channel).
- the target ion channel is an ion channel that causes depolarization of a biological membrane such as a cell membrane of a screening cell by activation
- screening modes in the following detection step can be mentioned. That is, (1) the step of detecting the action of the test compound on the target channel of the screening material in the presence of the test compound using the life or death of the screening cell as an index. More specifically, after giving the test compound to the screening cells, the viability of the screening cells is detected. When the promotion of cell death is detected, the test compound can be determined to be an agonist (activator) having an activity with respect to the target ion channel.
- a step of detecting the action of the test compound in the presence of a stimulus for the test compound and the target ion channel using the viability of the cell as an index can be mentioned. More specifically, a test compound is previously given to the screening cell, and then a known agonist for the target ion channel is added, and then the viability of the screening cell is detected. When cell death is not detected or cell death is suppressed, the test compound can be determined to be an inhibitor (inactivation agent) having an inhibitory effect on the target ion channel.
- the target ion channel is an ion channel that suppresses depolarization and / or action potential (promotes hyperpolarization) of the cell membrane of a screening cell, such as a leakage channel
- the following aspects of the detection process include Can be mentioned. That is, in the presence of a stimulus that causes depolarization of the biological membrane of the test compound and the screening cell, the action of the test compound is detected using the viability of the screening cell as an index. In this case, in the absence of the test compound, the target ion channel operates constantly, suppressing depolarization or suppressing action potential (promoting repolarization).
- a cell death control mechanism is activated by applying a stimulus that causes depolarization of the cell membrane of a screening cell, such as electrical stimulation, action potentials are not generated or prolonged. As a result, the screening cells survive. On the other hand, if the cell death of the screening cell is promoted when the test compound and the stimulus are applied to the screening cell, the test compound is used as an inhibitor having an inhibitory effect on the target ion channel. Can be judged.
- the target ion channel is an ion channel that suppresses depolarization and / or action potential (promotes repolarization) of a biological membrane such as a cell membrane of a screening cell by activation, such as a HERG K ion channel
- Examples of screening in the detection step are as follows. That is, in the presence of a test compound and a stimulus that causes depolarization of the biological membrane of the screening cell, the action of the test compound is detected using the life or death of the cell as an index. More specifically, if cell death of the screening cell is suppressed when the depolarization of the biological membrane is induced by electrical stimulation or the like at the same time or after application of the test compound to the screening cell, the test is performed.
- a compound can be determined to be an agonist with activity against a target ion channel.
- the cell death of the screening cell is promoted, it can be determined that the test compound is an inhibitor having an inhibitory effect on the target ion channel.
- the screening method disclosed in the present specification it is possible to easily and efficiently detect the activity of a test compound on a target ion channel in various modes using the life and death of a screening cell as an index. it can.
- This screening method is suitable not only for screening systems that require rapidity, but also for screening for drugs that target ion channels, for which structural design is difficult, especially primary screening that requires high throughput.
- the method includes the step of detecting the action of the test compound on the target ion channel using the screening cell of the screening material disclosed in the present specification as an indicator of the viability of the screening cell.
- test methods for test compounds According to this test method, it is possible to measure the action (operability and inhibitory activity) of the test compound on the target ion channel simply and quickly. Therefore, it is useful as a test method when a test compound is required to have a certain action or more.
- various aspects of the screening method disclosed in the present specification that have already been described can be applied as they are.
- the screening apparatus disclosed in the present specification is an apparatus for screening a compound that acts on an ion channel, and includes a cell accommodation unit including one or two or more areas (cell accommodation areas) for accommodating cells; A unit for measuring cell death of the cells in one or more regions. According to the screening apparatus disclosed in the present specification, since the cell death measurement unit is provided, cell death in the cell accommodation unit can be efficiently detected.
- the screening device disclosed in this specification can be used for this screening apparatus. In detecting cell death, various methods can be adopted as already described in this screening method.
- the cell accommodation unit only needs to accommodate the number of cells suitable for cell death measurement, and can include a well-known multi-well plate or a well having the same size as a cell accommodation region. These wells are usually capable of containing a medium so that the cells can be incubated. The wells are preferably arranged in an array.
- the cell death measuring unit can take various modes according to the cell death detection method.
- a drug supply unit capable of supplying such a drug in a cell accommodation region can be provided.
- the drug supply unit typically includes a drug injection unit for supplying a drug to the cell accommodation region simultaneously or sequentially, a drug storage unit for storing the drug, and a drug injection unit for transporting the drug from the storage unit. And a control unit for controlling the supply amount of the medicine.
- the drug injection part is preferably provided, but the other parts are provided as necessary.
- the cell death measurement unit may include an optical detection unit for detecting cell death of cells in the cell storage unit electrically or optically, depending on the detection method.
- the optical detection unit can usually include a scanner unit and a control unit that calculates a detected signal as light intensity with reference to a control or the like.
- the cell death measuring unit or screening device can include a storage unit that controls the screening process and stores the results, and a control unit including the storage unit. Furthermore, a display unit for displaying such processes and results can be provided. Further, a printer unit for printing the result can be provided.
- the screening apparatus may further include a voltage application unit that applies a voltage to one or two or more cell accommodation regions.
- a voltage application unit that applies a voltage to one or two or more cell accommodation regions.
- Such a voltage application unit can be used to apply electrical stimulation to the screening cells in the cell accommodation region to induce depolarization of the cell membrane and to activate the cell death control mechanism.
- the voltage application unit can include an electrode applied to a part or the whole of the cell accommodation region and a power source for applying a voltage to the electrode. The applied voltage is preferably controlled by the control unit already described.
- the screening kit disclosed in the present specification includes the screening material disclosed in the present specification. According to such a kit, the screening cell can be easily and efficiently screened for a compound that acts on an ion channel.
- the kit may include a reagent for measuring cell death.
- you may provide the culture medium suitable for the cell for a screening.
- the screening kit can further include a screening device disclosed in the present specification. The screening cells, screening materials, and screening devices applied to the screening kit are appropriately selected and combined from the various aspects already described.
- hNav1.5 amino acid sequence (displays only the region containing IFM to be mutated) (SEQ ID NO: 1) 1470-IDNFNQQKKKLGGQD IFM TEEQKKYYNAMKK-1500 (Underlined IFM is changed to QQQ)
- HEK293 cells Human embryonic kidney-derived cells (HEK293 cells) were purchased from Human Science Research Resource Bank (HSRRB). Add 10% FBS (Gibco), 100U / ml penicillin (Wako Pure Chemical Industries), 100 ⁇ g / ml streptomycin (Meiji Seika Co.) in D-MEM medium (Wako Pure Chemical Industries) at 37 °C, 5% CO 2 Cultured.
- PcDNA / Kir2.1 obtained by subcloning human-derived Kir2.1 (NM_000891.2) into pcDNA3.1 (+) (Invitrogen) was introduced using Lipofectamine 2000 regent (Invitrogen), and the above-mentioned D-MEM medium was introduced.
- the cells were cultured in a medium supplemented with 0.2 mg / ml Zeocin (Invitrogen), and Zeocin resistant cells were cloned to produce Kir2.1 constant expression cells (HEK_Kir).
- HEK_Kir inactivation mutant Nav-QQQ
- HEK_Kir_mutated Nav was introduced into Kir2.1 constant expression cells by the same method, and the experiment was conducted 24 to 72 hours later.
- the composition of the external solution is (mM): 137 NaCl, 5.9 KCl, 2.2 CaCl 2 , 1.2 MgCl 2 , 14 glucose, 10 HEPES (pH 7.4 by NaOH).
- the composition of the pipette solution is (mM): 140 KCl, 4 MgCl 2 , 5 ATP-2Na, 0.05 EGTA, 10 HEPES (pH 7.2 by KOH). All experiments were performed at room temperature (23 ⁇ 1 ° C). A cell microelectrode was pressed against the cells adhering to the glass piece using a hydraulic fine movement manipulator (MO-203: Narimo Kagaku), and recording was performed by the potential fixing method and the current fixing method.
- MO-203 hydraulic fine movement manipulator
- the measured current and potential were amplified using a microcurrent amplifier (EPC-7: HEKA Elektronik) and recorded on a computer using an AD converter (Digdata 1400A: Axon Instruments). Data analysis was performed using Clampfit 10.2 software (Axon Instruments) and Origin 6.0J (Microcal Software Inc.).
- HEK, HEK_Kir, HEK_Kir_mutated Nav Three types of cells (HEK, HEK_Kir, HEK_Kir_mutated Nav) were seeded at 5 ⁇ 10 3 cells / well in a 96-well plate containing 100 ⁇ l of D-MEM medium and cultured at 37 ° C. with 5% CO 2 .
- two stimulating silver wire electrodes with a diameter of 0.5 mm were inserted into the culture medium of each well, and the tip of the electrode was inserted about 2 mm, and four types of current intensity (strength 1 to 4): 40 mA, 80 mA, 120 mA, and 160 mA.
- electrical stimulation with a rectangular wave having a stimulation width of 200 ms was performed three times at intervals of 3 minutes using an electrical stimulation device (Nihon Kohden).
- the electrical stimulation condition does not necessarily need to be as described above, and a condition that can reliably generate an action potential may be selected.
- the cells were cultured at 37 ° C. with 5% CO 2 , and one day later, 10 ⁇ l of MTT reagent (dissolved with phosphate buffered saline PBS ( ⁇ ) and adjusted to a final concentration of 5 mg / mL) was added for 4 hours, 5% CO 2.
- a lysis solution (20% SDS / 50% DMF solution) was added to lyse the cells to dissolve the formazan salt. Furthermore, after incubating at 37 ° C. for 8 to 12 hours, the absorbance was measured at a measurement wavelength of 595 nm and a control wavelength of 650 nm using a multi-scan JX (ver1.1, Thermo Labsystems, USA). It was used as an index. However, the above 4 hours and 8 to 12 hours can be measured even if they are shortened to 2 hours and 3 hours, respectively.
- HEK_Kir_mutated Nav cells are highly sensitive to depolarization stimuli.
- electrical stimulation was performed by administering lidocaine (Sigma), an inhibitor of Na ion channel, with the same stimulation intensity.
- the results inhibited cell death from occurring, as shown in FIG. This indicates that HEK_Kir_mutated Nav cells undergo cell death by generating very long action potentials, and cell death is suppressed by inhibiting Na ion channels.
- human-derived hERG (NM_000238.2) was subcloned into pcDNA3.1 (+), introduced into native HEK cells and constant-expressed HEK_Kir_mutated Nav cells, and hERG-HEK cells and hERG_HEK_Kir_mutated Nav Cells were prepared and electrophysiological experiments were performed 24-72 hours later.
- the electrophysiological experiment was carried out on native HEK cells, hERG-HEK cells, and hERG_HEK_Kir_mutatedirNav cells according to Example 2, and the hERG channel current and action potential were measured.
- the hERGK ion channel exhibits inward rectification and acts to suppress cell death by shortening the action potential generated by electrical stimulation or the like when expressed in screening cells.
- the hERG-HEK cells in which hERG channels were transiently expressed in native HEK cells were administered with nifekalant, an hERG channel inhibitor, and the potential at the cell membrane before and after administration was measured.
- a current original diagram is shown in FIG. 7, and a current-voltage curve is shown in FIG. As shown in FIGS. 7 and 8, it was found that when nifekalant was administered, hERG channel current was inhibited.
- FIG. 9 shows a current original diagram
- FIG. 10 shows an action potential original diagram generated by depolarization energization stimulation
- FIG. 11 shows an action potential time by depolarization energization stimulation.
- hERG_HEK_Kir_mutatedmutNav cells in which hERG is expressed with a cell death control mechanism, when nifekalant is not administered, the duration of action potential is further reduced by hERG, and nifekalant is reduced.
- hERG channels were inhibited and action potential duration was significantly prolonged. From the above results, it was considered that when hERG channel is expressed in HEK_Kir_mutated Nav cells, cell death by electrical stimulation is suppressed and cell death is induced by nifekalant administration.
- hERG_HEK_Kir_mutated Nav cells are suitable as screening materials that target ion channels using hERG or the like as a target ion channel and targeting ion channels with cell death as an index. .
- DiBAC 4 (3) has the property that the fluorescence intensity increases when the membrane potential is depolarized, and the membrane potential correlates with changes in fluorescence intensity.
- HEK_Kir Two types of cells (HEK_Kir, HEK_Kir_mutated Nav) with 100 nM DiBAC 4 (3) (bis (1,3-dibutylbarbituric acid) trimethine oxonol) for 30 minutes in normal HEPES buffer containing the dye, After loading at room temperature, the sample was excited at 488 nm, reflected by a 505 nm dichroic mirror, and measured for fluorescence at 520 nm or more. In addition, as a stimulus, the cell membrane is depolarized using High K + with increased K ions in the extracellular fluid. This is because K ions are mainly involved in the formation of the resting membrane potential.
- DiBAC 4 (3) bis (1,3-dibutylbarbituric acid) trimethine oxonol
- Na-K pump keeps K ions in the cell higher than extracellular, but the leak channel discharges K ions out of the cell.
- the potential that balances the inflow of K ions by the Na-K pump and the discharge of K ions by the leak channel is the resting membrane potential. Therefore, when the extracellular K ion concentration is increased, the difference between the K ions inside and outside the cell becomes smaller, and the resting membrane potential becomes shallower.
- this depolarization stimulation was used to measure changes in fluorescence intensity of two types of cells.
- the fluorescence intensity when the extracellular K ion concentration was 140 mM K + was measured with 1 as the standard.
- the apparatus used for fluorescence measurement was a fast cooled CCD camera fluorescence imaging system ARGUS / HiSCA (Hamamatsu Photonics). The results are shown in FIGS.
- FIGS. 14 and 15 are diagrams showing fluorescence changes (horizontal axis: time (extracellular K ion concentration), vertical axis: fluorescence intensity) by high K + stimulation in HEK_Kir cells and HEK_Kir_mutated Nav cells, respectively.
- time extracellular K ion concentration
- vertical axis fluorescence intensity
- FIG. 16 is a diagram showing fluorescence intensities when HEK_Kir cells and HEK_Kir_mutated Nav cells were stimulated with extracellular K ions (15.3 mM) at the same concentration. As shown in FIG. 16, in HEK_Kir_mutated Nav cells, compared to HEK_Kir cells, it shows higher fluorescence intensity for the same K ion concentration stimulation, and it is clear that more sensitive or more depolarization is promoted. It was.
- FIG. 17 is a diagram showing the influence of lidocaine administration on the fluorescence intensity when the extracellular K ion concentration is changed from 5.9 mM to 15.3 mM in HEK_Kir_mutated Nav cells.
- Lidocaine is an inhibitor of Na ion channel.
- the administration time of 1 mM lidocaine is a period indicated by an underline.
- lidocaine inhibits the fluorescence change due to stimulation of extracellular K ion concentration.
- HEK_Kir_mutated Nav cells and HEK_Kir cells show the same fluorescence change.
- the Na ion channel contributes to a significant fluorescence change caused by stimulation of extracellular K ion concentration in HEK_Kir_mutated Nav cells. It was also found that this screening cell can be used in fluorescence measurement using DiBAC 4 (3), which is a membrane potential sensitive dye.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Toxicology (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- General Engineering & Computer Science (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Peptides Or Proteins (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
本明細書の開示は、2010年6月29日出願の日本国特許出願である特願2010-147255を優先権主張の基礎とするものであり、その全内容が引用によりここに組み込まれるものとする。
本発明は、イオンチャネルに作用する化合物のスクリーニングに用いる材料及びその利用に関し、詳しくは、イオンチャネル(膜輸送タンパク質を含む)に作用する化合物をスクリーニングするのに用いることができる細胞を含む材料及び当該材料を利用したスクリーニング方法等に関する。
本明細書に開示されるスクリーニング用材料は、不活性化を抑制された電位依存性Naイオンチャネルをコードする第1のDNAを保持し、同時に静止膜電位が負の方向に深くなるようにKチャネル、例えば内向き整流性Kイオンチャネルが活性化され、Naイオンの細胞内流入による細胞死が回避された細胞を含んでいる。以下、この細胞を、スクリーニング用細胞と称する。
スクリーニング用細胞は、不活性化を抑制された電位依存性Naイオンチャネルをコードする第1のDNAを保持している。そして、こうしたNaイオンチャネルを発現している。ここで電位依存性Naイオンチャネルとは、細胞膜の膜電位に依存して開口してNaイオンの受動拡散を媒介する細胞膜上のタンパク質である。本明細書において用いる電位依存性Naイオンチャネルは、特に限定しないで公知の各種電位依存性Naイオンチャネルを用いることができるが、好ましくは、Nav1.5チャネルである。Nav1.5チャネルは、心筋細胞に分布しており、活動電位の発生と興奮伝導に関与していると考えられている。
スクリーニング用細胞は、静止膜電位が負の方向に深くなるように、換言すれば、より負の電位が大きくなるように、Kイオンチャネルが活性化されている。すなわち、Kイオンの細胞内への流入が促進されている。上記第1のDNAを保持し、Naイオンチャネル変異体(不活性化が抑制された膜電位依存性Naイオンチャネル)が発現し活性化されていると、細胞内外におけるNaイオンの濃度差により、Naイオンが細胞内に過剰に流入する状態となり、最終的には細胞内のNaイオン濃度が高まり細胞は死んでしまう。スクリーニング用細胞として機能させるためには、かかる細胞死機構が誘導されるまでは細胞が生存している必要がある。そこで、静止膜電位を深く(低く)するために、細胞内へのKイオンの流入を促進するようKイオンチャネルが活性化されている。このようにKイオンチャネルが活性化されていると、通常よりも、静止膜電位を負の方向に深く設定することができる。
スクリーニング用細胞における標的イオンチャネルは、特に限定しないで、公知のあるいは新たなイオンチャネルから1又は2以上を適宜選択することができる。なお、イオンチャネルとは、動植物の細胞膜や内膜などの生体膜を貫通して存在し、特定のイオンを受動的に透過させるタンパク質を意味している。イオンとしては、Naイオン、Kイオン、Caイオン、Clイオン等が挙げられる。イオンチャネルには、その開閉の制御性により、電位依存性、リガンド依存性、機械刺激依存性、温度依存性、漏洩チャネル、リン酸化依存性等が挙げられる。本明細書の開示によれば、スクリーニング用細胞の生死で、標的イオンチャネルに対する作用(作動性と阻害性)を検出できるため、広くイオンチャネル全般を標的とすることができる。なお、本明細書において、イオンチャネルとは、電位依存性であるかリガンド依存性であるかなどその開閉の制御形式を問うものではない。また、イオンチャネルとしては、電位発生的なイオン輸送を行う細胞膜および核膜やその他の細胞内小器官膜などを含む生体膜の輸送体、イオン交換体(Na+-Ca2+交換体など)、イオンポンプ(Na+-K+ポンプ)も包含している。スクリーニング用細胞における標的イオンチャネルを選択することで、当該標的イオンチャネルが関連する疾患の予防又は治療のためのスクリーニング用細胞が提供されることになる。
本明細書に開示されるスクリーニング方法は、本明細書に開示されるスクリーニング用材料のスクリーニング用細胞を用いて、標的チャネルに対する被験化合物の作用をスクリーニング用細胞の生死を指標として検出する工程、を備えることができる。本スクリーニング方法によれば、本明細書に開示されるスクリーニング用細胞を用いることで、スクリーニング用細胞の生死を指標として、被験化合物の標的イオンチャネルへの作用を検出できる。このため、簡易に高効率に多検体を同時評価することが可能となっている。また、特別な操作や装置も必要としないため、操作に由来する精度低下もなく、スクリーニングコストも低下させることができる。
すなわち、(1)被験化合物の存在下でスクリーニング用材料の標的チャネルに対する被験化合物の作用をスクリーニング用細胞の生死を指標として検出する工程が挙げられる。より具体的には、スクリーニング用細胞に被験化合物を付与後に、スクリーニング用細胞の生死を検出する。細胞死の促進を検出したとき、当該被験化合物は、標的イオンチャネルに対して作動性を有する作動剤(活性化剤)であると判定できる。
本明細書の開示によれば、本明細書に開示されるスクリーニング用材料のスクリーニング用細胞を用いて、標的イオンチャネルに対する被験化合物の作用をスクリーニング用細胞の生死を指標として検出する工程、を備える、被験化合物の検査方法も提供される。この検査方法によれば、簡易かつ迅速に、被験化合物の標的イオンチャネルへの作用(作動性や阻害性)を測定できる。したがって、被験化合物に一定以上の作用が求められる場合における検査方法として有用である。本明細書に開示される検査方法においては、すでに説明した本明細書に開示されるスクリーニング方法における各種態様をそのまま適用することができる。
本明細書に開示されるスクリーニング装置は、イオンチャネルに作用する化合物のスクリーニングのための装置であって、細胞を収容する1又は2以上の領域(細胞収容領域)を備える細胞収容ユニットと、前記1又は2以上の領域内の前記細胞の細胞死の測定ユニットと、を備えることができる。本明細書に開示されるスクリーニング装置によれば、細胞死測定ユニットを備えているため、細胞収容ユニット内の細胞死を効率的に検出することができる。このスクリーニング装置には、本明細書に開示されるスクリーニング用細胞を用いることができる。なお、細胞死の検出にあたっては、本スクリーニング方法において既に説明したように各種方法を採用することができる。
本明細書に開示されるスクリーニング用キットは、本明細書に開示されるスクリーニング用材料を備えている。こうしたキットによれば、本スクリーニング用細胞を用いてイオンチャネルに作用する化合物のスクリーニングを容易にかつ効率的に行うことができる。本キットは、本スクリーニング用材料の他、細胞死の測定用の試薬を備えていてもよい。また、スクリーニング用細胞に適した培地を備えていてもよい。本スクリーニング用キットは、さらに、本明細書に開示されるスクリーニング装置を備えることができる。本スクリーニング用キットに適用されるスクリーニング用細胞及びスクリーニング用材料並びにスクリーニング装置は既に説明した各種態様から適宜選択され、組み合わされる。
Nav1.5チャネルの不活性化を制御しているIII-IVリンカー領域中に存在する疎水性アミノ酸配列Ile-Phe-Met(IFMモチーフ)をすべてGlnに変異させることとした。変異後のアミノ酸配列(部分)を以下に示す。
1470-IDNFNQQKKKLGGQDIFMTEEQKKYYNAMKK-1500
(下線部のIFMをQQQに変異)
5’-gttagggggccaggaccaacaacagacagaggagcagaag-3’(配列番号2)
5’-cttctgctcctctgtctgttgttggtcctggccccctaac-3’(配列番号3)
ヒト胎児腎由来細胞(HEK293細胞)はヒューマンサイエンス研究資源バンク(HSRRB)から購入した。10%FBS(Gibco)を添加し、100U /ml ペニシリン(和光純薬)、100μg/ml ストレプトマイシン(明治製菓)を加えたD-MEM培地(和光純薬)中で37℃、5%CO2において培養した。ヒト由来のKir2.1(NM_000891.2)をpcDNA3.1(+)(Invitrogen)にサブクローニングしたpcDNA/Kir2.1をLipofectamine 2000 regent(Invitrogen)を用いて遺伝子導入し、上記のD-MEM培地に0.2mg/ml Zeocin(Invitrogen)を加えた培地で培養し、Zeocin耐性細胞をクローニングし、Kir2.1定常発現細胞(HEK_Kir)を作製した。また同様の方法でKir2.1定常発現細胞に不活性化変異体Nav-QQQ(HEK_Kir_mutated Nav)を遺伝子導入し、24~72時間後に実験を行なった。
Hamill等によって確立されたパッチクランプ法を用いて電流導出等を行なった。外径1.04~1.08μmの芯入りガラス管から2段式の電極作製機(PB-7, 成茂科学)により、先端の径がおよそ1μmのガラス微小電極を作製し、500倍の顕微鏡下で熱加工して先端を滑らかにした。本実験では電極内液を充填した時の電極抵抗が2~5MΩの電極を用いた。倒立顕微鏡(Nikon TMD)のステージ上に固定した容量約500μlのチャンバーに細胞を定着させたガラス片を固定し外液で灌流した。外液(正常HEPES緩衝液)の組成は(mM):137 NaCl, 5.9 KCl, 2.2 CaCl2, 1.2 MgCl2, 14 glucose, 10 HEPES (pH7.4 by NaOH)。ピペット内液の組成は(mM):140 KCl, 4 MgCl2, 5 ATP-2Na, 0.05 EGTA, 10 HEPES (pH7.2 by KOH)。実験はすべて室温(23±1℃)で行なった。ガラス片に付着している細胞に対し、油圧式微動マニピュレータ(MO-203: 成茂科学)を用いてガラス微小電極を押し当てて、電位固定法及び電流固定法により記録を行なった。測定した電流及び電位は微小電流用増幅器(EPC-7: HEKA Elektronik)を用いて増幅し、A-D変換機(Digdata 1400A: Axon Instruments)を用いてコンピュータ上に記録した。データの解析はClampfit10.2ソフトウェア(Axon Instruments)とOrigin6.0J(Microcal Software Inc.)を用いて行なった。
3種の細胞(HEK, HEK_Kir, HEK_Kir_mutated Nav)を100μlのD-MEM培地を入れた96ウェルプレートに5×103 cells/wellになるように蒔き5%CO2、37℃で培養した。1日後に径0.5mmの2本の刺激銀線電極を各ウェルの培養液内へ、その先端部分を2mm程度差し込み、40mA, 80mA, 120mA, 160mAの4種類の電流強度(強度1~4)で、刺激幅200msの矩形波による電気刺激を電気刺激装置(日本光電)を用いて3分間隔で3回行なった。電気刺激条件は必ずしもこの通りである必要はなく、確実に活動電位を発生させることができる条件を選べばよい。その後、5%CO2、37℃で培養し、一日後にMTT試薬(リン酸緩衝食塩水PBS(-)で溶かし最終濃度を5mg/mLに調製)を10μl加え、4時間、5%CO2、37℃で培養後、溶解溶液(20% SDS / 50% DMF溶液)を100μl入れて細胞を溶解し、ホルマザン塩を溶解させた。さらに、37℃で8~12時間インキュベート後、マルチスキャンJX(ver1.1, Thermo Labsystems, USA)を用いて測定波長: 595nm、対照波長: 650nmにおいて吸光度を測定し、生細胞数の間接的な指標とした。ただし、上記の4時間および8~12時間はそれぞれ2時間、3時間に短縮しても測定できる。
・ HEK_Kir細胞の発現解析
HEK_Kir細胞にボルテージクランプ法を適用しKirチャネル電流を測定した。結果は、図2(a)に示すように、内向きに流れるKirチャネル電流の特徴が見られ、選択的阻害薬である100μMのBaイオンを投与すると内向き電流が阻害された。また、カレントクランプ法により膜電位を測定すると、図2(b)に示すように、約-70mVの深い静止膜電位であり、100μMのBaイオン投与により静止膜電位が浅くなった。
HEK_Kir細胞に野生型と変異型のNav1.5チャネルを一過性に発現させ、Naイオンチャネル電流を測定した。結果は図3に示すように、変異型(図3(b))においてNaイオンチャネル電流の不活性化が非常に遅い電流が観測された。また同じ細胞を用いて脱分極通電刺激(野生型に対して300pA、10ms、変異型に対して200pA、100ms)により活動電位を発生させたところ、変異型(図4(b)において活動電位の発生時間が有意に長いことが判明した。結果を図4に示す。
先の2.に示した結果から変異型のNav1.5チャネルにおいて非常に長い活動電位が発生することが明らかとなった。電気刺激により活動電位を発生させると細胞死が起こる可能性が考えられたため、次に電気刺激による細胞死の変化を検討した。HEK, HEK_Kir, HEK_Kir_mutated Navの3種類の細胞に電気刺激を行ない、MTT法により細胞数の変化を測定した。図5に示すように、80mA、200ms、3発(3分間隔)の矩形波電気刺激でHEK_Kir_mutated Navの細胞数が有意に減少した。このことは、HEK_Kir_mutated Nav細胞が脱分極の刺激に対して感受性が高いことを示している。また同様の刺激強度でNaイオンチャネルの阻害薬であるlidocaine(Sigma)を投与し電気刺激を行なった。結果は、図6に示すように、細胞死が起こるのを阻害した。このことからHEK_Kir_mutated Nav細胞は非常に長い活動電位が発生することで細胞死が起き、Naイオンチャネルを阻害すると細胞死が抑制されることが判明した。
Claims (15)
- 不活性化が抑制された電位依存性Naイオンチャネルをコードする1又は2以上の第1のDNAを保持し、
静止膜電位が負の方向に深くなるようにKイオンチャネルが活性化された細胞を含む、標的イオンチャネルに作用する化合物のスクリーニング用材料。 - 前記1又は2以上の第1のDNAは、Nav1.5チャネルの変異体をコードするDNAを含む、請求項1に記載のスクリーニング用材料。
- 前記Kイオンチャネルは、Kir2.1を含む、請求項1又は2に記載のスクリーニング材料。
- さらに、前記細胞は、前記Kイオンチャネルをコードする外来性の1又は2以上の第2のDNAを保持する、請求項1~3のいずれかに記載のスクリーニング用材料。
- 前記標的イオンチャネルは、hERGイオンチャネルを含む、請求項1~4のいずれかに記載のスクリーニング用材料。
- 前記細胞は、前記標的イオンチャネルをコードする1又は2以上の第3のDNAを保持する、請求項1~5のいずれかに記載のスクリーニング用材料。
- 標的イオンチャネルに対する作用剤又は阻害剤をスクリーニングする方法であって、
請求項1~6のいずれかに記載のスクリーニング用材料であって、前記標的チャネルに対する被験化合物の作用を前記細胞の生死又は前記細胞死に相当する持続的な活動電位を指標として検出する工程、
を備える、スクリーニング方法。 - 前記標的イオンチャネルは、活性化により前記細胞で細胞膜の脱分極を惹起するイオンチャネルであり、
前記検出工程は、前記被験化合物の存在下でスクリーニング材料の前記標的チャネルに対する被験化合物の作用を検出する工程である、請求項7に記載の方法。 - 前記標的イオンチャネルは、活性化により前記細胞で細胞膜の脱分極を惹起するイオンチャネルであり、
前記検出工程は、前記被験化合物及び前記標的イオンチャネルに対する前記刺激の存在下で、前記被験化合物の作用を検出する工程である、請求項7に記載のスクリーニング方法。 - 前記標的イオンチャネルは、前記細胞で細胞膜の脱分極及び/又は活動電位を抑制するイオンチャネルであり、
前記検出工程は、前記被験化合物及び前記細胞で細胞膜の脱分極を惹起する刺激の存在下で、前記被験化合物の作用を検出する工程である、請求項7に記載の方法。 - 前記標的イオンチャネルは、活性化により前記細胞で細胞膜の脱分極を抑制するイオンチャネルであり、
前記検出工程は、前記被験化合物及び前記細胞で細胞膜の脱分極を惹起する刺激の存在下で、前記被験化合物の作用を検出する工程である、請求項7に記載の方法。 - イオンチャネルに作用する化合物のスクリーニングのための装置であって、
細胞を収容する1又は2以上の領域を備える細胞収容ユニットと、
前記1又は2以上の領域内の前記細胞の細胞死又は前記細胞死に相当する持続的な活動電位の測定ユニットと、
を備える、装置。 - 前記測定ユニットは、前記1又は2以上の領域内の前記細胞の細胞死又は前記細胞死に相当する持続的な活動電位を検出するための1又は2以上の薬剤の供給部と、前記1又は2以上の領域内の前記細胞の細胞死又は前記細胞死に相当する持続的な活動電位を光学的に検出するための光学検出部と、を備える、請求項12に記載の装置。
- さらに、前記1又は2以上の領域に電圧を印加する電圧印加ユニットを備える、12又は13に記載の装置。
- 請求項1~6のいずれかに記載のスクリーニング用材料を含む、イオンチャネルに作用する化合物のスクリーニング用キット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180041709.0A CN103228793B (zh) | 2010-06-29 | 2011-06-29 | 作用在离子通道上的化合物的筛选用材料及其应用 |
JP2012522676A JP5884222B2 (ja) | 2010-06-29 | 2011-06-29 | イオンチャネルに作用する化合物のスクリーニング用材料及びその利用 |
US13/807,464 US9133496B2 (en) | 2010-06-29 | 2011-06-29 | Material for screening for compound acting on ion channel and use thereof |
EP11800922.4A EP2589664B1 (en) | 2010-06-29 | 2011-06-29 | Method of screening for compounds capable of acting on ion channels |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-147255 | 2010-06-29 | ||
JP2010147255 | 2010-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012002460A1 true WO2012002460A1 (ja) | 2012-01-05 |
Family
ID=45402164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064967 WO2012002460A1 (ja) | 2010-06-29 | 2011-06-29 | イオンチャネルに作用する化合物のスクリーニング用材料及びその利用 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9133496B2 (ja) |
EP (1) | EP2589664B1 (ja) |
JP (1) | JP5884222B2 (ja) |
CN (1) | CN103228793B (ja) |
WO (1) | WO2012002460A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018084221A1 (ja) | 2016-11-01 | 2018-05-11 | 公立大学法人名古屋市立大学 | イオンチャネルに作用する化合物のスクリーニング材料及びその利用 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2863526T3 (es) | 2010-06-23 | 2021-10-11 | Curna Inc | Tratamiento de enfermedades relacionadas con la subunidad alfa del canal de sodio (SCNA), controlado por voltaje, mediante inhibición de la transcripción antisentido natural a SCNA |
KR20170083539A (ko) * | 2014-09-22 | 2017-07-18 | 더 락커펠러 유니버시티 | 세포 활성을 조절하는 조성물 및 방법 |
CN114507695B (zh) * | 2022-02-17 | 2023-09-19 | 四川大学华西医院 | 一种用于调控神经元活性的重组载体和方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006126073A (ja) | 2004-10-29 | 2006-05-18 | Hamamatsu Photonics Kk | 膜電位変化検出方法、薬物スクリーニング方法及びウェルプレート |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU1982799A (en) * | 1998-01-23 | 1999-08-09 | Yamanouchi Pharmaceutical Co., Ltd. | Novel potassium channel protein |
US6969449B2 (en) * | 2000-07-10 | 2005-11-29 | Vertex Pharmaceuticals (San Diego) Llc | Multi-well plate and electrode assemblies for ion channel assays |
US7615356B2 (en) * | 2000-07-10 | 2009-11-10 | Vertex Pharmaceuticals (San Diego) Llc | Ion channel assay methods |
WO2002042842A2 (en) * | 2000-11-22 | 2002-05-30 | Allergan, Inc. | A high-throughput screen for identifying channel blockers that selectively distinguish transient from persistent sodium channels |
WO2003006103A2 (en) | 2001-07-12 | 2003-01-23 | Merck & Co., Inc. | Electrical field stimulation of eukaryotic cells |
US7361478B2 (en) | 2001-11-20 | 2008-04-22 | Allergan, Inc. | High-throughput screen for identifying selective persistent sodium channels channel blockers |
JP2007517513A (ja) | 2004-01-15 | 2007-07-05 | エボテック・アーゲー | イオンチャンネルの活性を調べるための方法 |
EP3070174B1 (en) | 2004-05-11 | 2019-11-06 | Ncardia AG | Drug discovery based on in vitro differentiated cells |
JP5540343B2 (ja) | 2007-11-06 | 2014-07-02 | 国立大学法人 岡山大学 | 小児てんかん患者における急性脳炎または急性脳症の罹患リスク判定データの取得方法およびその利用 |
US8551693B2 (en) * | 2008-12-22 | 2013-10-08 | UNIVERSITé LAVAL | Mutated voltage-gated sodium channel Nav alpha subunit for identification of modulators |
-
2011
- 2011-06-29 JP JP2012522676A patent/JP5884222B2/ja active Active
- 2011-06-29 CN CN201180041709.0A patent/CN103228793B/zh not_active Expired - Fee Related
- 2011-06-29 WO PCT/JP2011/064967 patent/WO2012002460A1/ja active Application Filing
- 2011-06-29 US US13/807,464 patent/US9133496B2/en active Active
- 2011-06-29 EP EP11800922.4A patent/EP2589664B1/en not_active Not-in-force
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006126073A (ja) | 2004-10-29 | 2006-05-18 | Hamamatsu Photonics Kk | 膜電位変化検出方法、薬物スクリーニング方法及びウェルプレート |
Non-Patent Citations (20)
Title |
---|
A.O. GRANT ET AL., BIOPHYS. J., vol. 79, 2000, pages 3019 - 3035 |
AM. J. PHYSIOL. CELL PHYSIOL., vol. 289, 2005, pages C1134 - C1144 |
C. KINDLER ET AL., J. PHARMACOL. EXP. THER., vol. 306, 2003, pages 84 - 92 |
CELL. BIOCHEM. BIOPHYS., vol. 47, 2007, pages 209 - 25 |
CIRC. RES., vol. 94, 2004, pages 1332 - 1339 |
D.E. PATTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 10905 - 10909 |
EMBO J., vol. 17, no. 12, 1998, pages 3290 - 3296 |
J. BIOL. CHEM., vol. 278, no. 50, 2003, pages 50654 - 50663 |
L.Q. CHEN ET AL., J. GEN- PHYSIOL., vol. 108, 1996, pages 549 - 556 |
M.M. MCNULTY ET AL., MOL. PHARMACOL., vol. 70, 2006, pages 1514 - 1523 |
MASATO FUJII ET AL.: "Kaihen Idenshi Hatsugen Saibo o Mochiita Saiboshi Sokutei ni yoru Shinki Ion Channel Hyoteki Soyaku Screening-kei no Kaihatsu", DAI 118 KAI THE JAPANESE PHARMACOLOGICAL SOCIETY KINKI BUKAI PROGRAM YOSHISHU, 19 November 2010 (2010-11-19), pages 60, C-15 * |
MASATO FUJII ET AL.: "Kaihen Idenshi Hatsugen Saibo o Mochiita Saiboshi Sokutei ni yoru Shinki Ion Channel Hyoteki Soyaku Screening-kei no Kaihatsu", THE PHARMACEUTICAL SOCIETY OF JAPAN DAI 131 NENKAI YOSHISHU 3, 5 March 2011 (2011-03-05), pages 81 * |
MOHAN D.K. ET AL.: "Toxin detection based on action potential shape analysis using a realistic mathematical model of differentiated NG108-15 cells", BIOSENSORS AND BIOELECTRONICS, vol. 21, 15 March 2006 (2006-03-15), pages 1804 - 1811, XP024961482 * |
S.S. MCDANIEL ET AL., J. APPL. PHYSIOL., vol. 91, 2001, pages 2322 - 2333 |
SAITO ET AL.: "ES Saibo o Tsukatta Soyaku, Screening Business ni Tsuite (ES cells for Drug Discovery)", GEKKAN MEDICAL SCIENCE DIGEST, 12 GATSU SPECIAL EXTRA, vol. 33, no. 14, 25 December 2007 (2007-12-25), pages 33 - 36, XP008142323 * |
See also references of EP2589664A4 |
TIM J.; DALE ET AL., MOL. BIOSYST, vol. 3, 2007, pages 714 - 722 |
VA CAMPANUCCI ET AL., NEUROSCIENCE, vol. 135, 2005, pages 1087 - 1094 |
WALLIS, R.M ET AL.: "Non Clinical Pharmacology -To Cover Testing Paradigms and Latest ICH Thinking (ICH S7B)", SHIN'YAKU NO KAIHATSU SENRYAKU SAIZENSEN, vol. 31, no. SUPPL, 25 June 2004 (2004-06-25), pages 279 - 295 * |
WEST J.W. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 10910 - 10914 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018084221A1 (ja) | 2016-11-01 | 2018-05-11 | 公立大学法人名古屋市立大学 | イオンチャネルに作用する化合物のスクリーニング材料及びその利用 |
JPWO2018084221A1 (ja) * | 2016-11-01 | 2019-12-12 | 公立大学法人名古屋市立大学 | イオンチャネルに作用する化合物のスクリーニング材料及びその利用 |
JP7093952B2 (ja) | 2016-11-01 | 2022-07-01 | 公立大学法人名古屋市立大学 | イオンチャネルに作用する化合物のスクリーニング材料及びその利用 |
US11828750B2 (en) | 2016-11-01 | 2023-11-28 | Public University Corporation Nagoya City University | Material for screening for compound acting on ION channel and use thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5884222B2 (ja) | 2016-03-15 |
EP2589664A1 (en) | 2013-05-08 |
EP2589664B1 (en) | 2017-09-20 |
EP2589664A4 (en) | 2014-03-05 |
CN103228793A (zh) | 2013-07-31 |
JPWO2012002460A1 (ja) | 2013-08-29 |
US20130183709A1 (en) | 2013-07-18 |
CN103228793B (zh) | 2017-02-15 |
US9133496B2 (en) | 2015-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kuner et al. | A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons | |
Raimondo et al. | A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system | |
Wang et al. | The auxiliary calcium channel subunit α2δ4 is required for axonal elaboration, synaptic transmission, and wiring of rod photoreceptors | |
Levitz et al. | Optical control of metabotropic glutamate receptors | |
Weng et al. | Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain | |
Broillet et al. | β subunits of the olfactory cyclic nucleotide-gated channel form a nitric oxide activated Ca2+ channel | |
Trötschel et al. | Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation | |
Hwang et al. | CatSper calcium channels: 20 years on | |
Klippenstein et al. | Probing ion channel structure and function using light-sensitive amino acids | |
Wajdner et al. | Orai and TRPC channel characterization in FcεRI‐mediated calcium signaling and mediator secretion in human mast cells | |
JP5884222B2 (ja) | イオンチャネルに作用する化合物のスクリーニング用材料及びその利用 | |
Xiang et al. | Control of Gαq signaling dynamics and GPCR cross-talk by GRKs | |
Sasmal et al. | Single-molecule patch-clamp FRET anisotropy microscopy studies of NMDA receptor ion channel activation and deactivation under agonist ligand binding in living cells | |
Yang et al. | A force-sensitive adhesion GPCR is required for equilibrioception | |
Berlin et al. | Optical control of glutamate receptors of the NMDA-kind in mammalian neurons, with the use of photoswitchable ligands | |
Zou et al. | Signal-induced NLRP3 phase separation initiates inflammasome activation | |
Islam et al. | Ivermectin-activated, cation-permeable glycine receptors for the chemogenetic control of neuronal excitation | |
Puckerin et al. | Similar molecular determinants on Rem mediate two distinct modes of inhibition of CaV1. 2 channels | |
US9085791B2 (en) | Method for screening substance relating to endoplasmic reticulum stress participating in onset of diabetes | |
JP5188498B2 (ja) | インスリン分泌のtrpm4モジュレーターをスクリーニングする方法 | |
Chen et al. | Near-Infrared Luciferase Complementation Assay with Enhanced Bioluminescence for Studying Protein–Protein Interactions and Drug Evaluation Under Physiological Conditions | |
JP7093952B2 (ja) | イオンチャネルに作用する化合物のスクリーニング材料及びその利用 | |
Ngamlertwong et al. | Agonist dependency of the second phase access of β-arrestin 2 to the heteromeric µ-V1b receptor | |
Yuan et al. | Coupling of Slack and NaV1. 6 sensitizes Slack to quinidine blockade and guides anti-seizure strategy development | |
Tian et al. | Design of light-sensitive NMDARs by genetically encoded photo-cross-linkers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11800922 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012522676 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011800922 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011800922 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13807464 Country of ref document: US |