WO2012001046A1 - Gel de décontamination biologique et procédé de décontamination de surfaces utilisant ce gel - Google Patents

Gel de décontamination biologique et procédé de décontamination de surfaces utilisant ce gel Download PDF

Info

Publication number
WO2012001046A1
WO2012001046A1 PCT/EP2011/060914 EP2011060914W WO2012001046A1 WO 2012001046 A1 WO2012001046 A1 WO 2012001046A1 EP 2011060914 W EP2011060914 W EP 2011060914W WO 2012001046 A1 WO2012001046 A1 WO 2012001046A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
biological
decontamination
weight
mixtures
Prior art date
Application number
PCT/EP2011/060914
Other languages
English (en)
Inventor
Frédéric CUER
Sylvain Faure
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to CN201180033089.6A priority Critical patent/CN102971016B/zh
Priority to KR1020137002722A priority patent/KR101848108B1/ko
Priority to RU2013104408/15A priority patent/RU2569747C2/ru
Priority to US13/806,856 priority patent/US9451765B2/en
Priority to JP2013517267A priority patent/JP5840206B2/ja
Priority to EP11728007.3A priority patent/EP2588148B1/fr
Publication of WO2012001046A1 publication Critical patent/WO2012001046A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/23Solid substances, e.g. granules, powders, blocks, tablets

Definitions

  • the present invention relates to a biological decontamination gel used for the decontamination of surfaces.
  • the present invention further relates to a method of decontaminating surfaces using this gel.
  • the invention applies to the decontamination of polluted contaminated surfaces by biological agents.
  • the method according to the invention can be applied to all kinds of surfaces such as metal surfaces, plastic surfaces, surfaces made of glassy materials.
  • the invention is particularly applicable to surfaces of porous materials such as matrices, materials, cementitious materials such as pastes, mortars and concretes; the bricks ; plasters; and the stone.
  • the technical field of the invention can thus generally be defined as that of the decontamination of surfaces in order to eliminate pollutants, contaminants found therein and whose presence on these surfaces is not desired.
  • the technical field of the invention is that of the biological decontamination of surfaces contaminated in particular by species biological toxic, for example endospores, toxins, viruses.
  • the threat agents have evolved into the arms of stronger impacts, simpler to implement and especially not detectable before the first symptoms appear on the body.
  • Toxic biological species such as Bacillus anthracis (anthrax) or botulinum toxin are considered to be the weapons with the highest probability of use.
  • the first is to inactivate biological contaminants, bio-toxic during prolonged contact between the biocidal agent (usually a chemical species strongly oxidizing) and the pathogen.
  • This inhibition phase requires a contact time of up to several hours depending on the formulation used,
  • the second is to try, most often, to transfer the contaminating species to a solid or liquid phase allowing the elimination of the inactivated species of the treated material.
  • remediation techniques for materials contaminated by biological contamination consist in bringing a liquid containing a biocidal agent into contact with the contaminated surfaces.
  • the application of the biocidal solution is generally carried out by spraying or washing, coupled or not with a mechanical effect such as brushing.
  • document [1] describes a cleaning composition for removing antibacterial and other agents used in decontamination following a biological attack.
  • This composition notably comprises ethanol, isopropanol, n-hexyl ether of
  • Document [2] describes a large-scale decontamination process in which a solid, stable peracid, or a solid, stable source of a peracid is contacted with a contaminated surface.
  • the transfer of contamination is to a solid support material capable of trapping and / or destroying toxic biological species.
  • the waste thus generated is then also in solid form.
  • the obtaining of a solid waste is particularly interesting to limit the risks of dispersion of toxic substances in the environment but also to facilitate the management and treatment of the waste product.
  • Different technologies implementing a solid support material have already been developed. It is: first of all the so-called "powder glove” technology intended for the decontamination of persistent toxic liquids on the skin or on equipment.
  • the decontaminant is an absorbent powder, usually the Fuller's Earth. This is poured on the contaminated place by tapping, it absorbs the toxic liquid, then it is wiped with the help of the sponge face of the glove [6].
  • composition of the glove may, in some cases, include an oxidizing agent capable of inactivating the trapped contamination of the foulard Earth. This technique, particularly adapted to the care of the people, remains nevertheless limited to the treatment of small liquid contaminations.
  • decontamination products which are in the form of a gel, generate solid waste and thus make it possible to dispense with the use of liquid solutions for cleaning parts of large areas and complex geometries.
  • These gels are generally used by spraying them on the surface to be decontaminated.
  • This solution can be an aqueous or organic solution.
  • the thickening or gelling agents may be chosen from silica, alumina, aluminosilicates, mixtures of silica and alumina, and clays such as smectite.
  • Oxidizing agents include sodium hypochlorite, ammonium persulfate, or hydrogen peroxide.
  • these gels can be used to remove biological agents such as microorganisms such as bacteria, fungi, viruses, and spores, or chemical agents such as neurotoxic gases.
  • the gels are then sprayed onto the surfaces to be treated and then recovered by suction after drying.
  • the gels described above do not allow deep decontamination of porous material.
  • the object of the present invention is to provide a biological decontamination gel that meets this need, among others.
  • the object of the present invention is still to provide a decontamination gel which does not have the disadvantages of the defects, limitations and disadvantages of the decontamination gels of the prior art and which solves the problems of the decontamination gels of the prior art.
  • a biological decontamination gel constituted by a colloidal solution comprising, preferably consisting of:
  • the gels according to the invention meet all the needs mentioned above, they do not have the disadvantages, defects, limitations and disadvantages of the gels of the prior art such as those described in the documents mentioned above.
  • the gels according to the invention solve the problems presented by the biological decontamination gels of the prior art without presenting the disadvantages thereof while retaining all the known advantageous properties of these gels.
  • the gel according to the invention is a colloidal solution, which means that the gel according to the invention contains inorganic solid particles, mineral, viscosity agent whose elementary particles, primary, have a size generally of 2 to 200 nm.
  • the organic content of the gel according to the invention is generally less than 4% by weight, preferably less than 2%. in mass, which is yet another advantage of the gels according to the invention.
  • inorganic, solid inorganic particles act as a viscosity agent to allow the solution, for example the aqueous solution, to gel and thus adhere to the surfaces to be treated, decontaminate, whatever their geometry, their shape, their size. , and where are the contaminants to be removed.
  • the inorganic viscosifying agent may be chosen from aluminas, silicas, aluminosilicates, clays such as smectite, and mixtures thereof.
  • the inorganic viscosifier may be chosen from aluminas (Al 2 O 3) and silicas
  • the inorganic viscosifier may comprise only one silica or alumina or a mixture thereof, namely a mixture of two or more different silicas (SiO 2 / SiO 2 mixture), a mixture of two or more different aluminas (Al mixture). 2 O 3 / Al 2 O 3 ), or a mixture of one or more silicas with one or more aluminas (mixture Si0 2 / Al 2 O 3 ).
  • the inorganic viscosifying agent may be chosen from pyrogenic silicas, precipitated silicas, hydrophilic silicas, hydrophobic silicas, acidic silicas and basic silicas, such as Tixosil 73 (trademark) silica marketed by Rhodia, and their mixtures.
  • acidic silicas there may be mentioned fumed silica or fumed Silica "Cab-O-Sil” M5, H5 or EH5 (trademarks) marketed by CABOT, and pyrogenic silicas sold by the company DEGUSSA under the 'AEROSIL appellation (trademarks).
  • AEROSIL 380 (trade mark) silica with a specific surface area of 380 m 2 / g, which offers the maximum viscosity properties for a minimum mineral filler, will also be preferred.
  • the silica used may also be a so-called precipitated silica obtained for example by the wet route by mixing a solution of sodium silicate and an acid.
  • Preferred precipitated silicas are marketed by Degussa under the name Sipernat 22 LS and FK 310 (trademarks) or by Rhodia under the name Tixosil 331 (trademark), the latter is a precipitated silica whose surface average specific is between 170 and 200 m 2 / g.
  • the inorganic viscosifying agent consists of a mixture of a precipitated silica and a fumed silica.
  • the alumina may be chosen from calcined aluminas, crushed calcined aluminas, and mixtures thereof.
  • the viscosing agent is constituted by one or more alumina (s) generally representing from 5% to 30% by weight relative to the mass of the gel.
  • the alumina is preferably at a concentration of 8 to 17% by weight relative to the total mass of the gel to ensure drying of the gel at a temperature of between 20 ° C. and 50 ° C. and at a relative humidity. between 20 and 60% on average in 30 minutes to 5 hours.
  • the nature of the mineral viscosifying agent especially when it consists of one or more alumina (s), unexpectedly influences the drying of the gel according to the invention and the particle size of the residue obtained.
  • the dry gel is in the form of particles of controlled size, more precisely millimetric solid flakes, the size of which generally ranges from 1 to 10 mm, preferably from 2 to 5 mm, in particular by virtue of the abovementioned compositions of the present invention. , especially when the viscosing agent is constituted by one or more alumina (s).
  • the size of the particles generally corresponds to their largest dimension.
  • the gel according to the invention contains an active agent for biological decontamination.
  • biological decontamination agent which can also be described as biocidal agent is meant any agent, which when put in contact with a biological species and in particular a toxic biological species is likely to inactivate or destroy it.
  • biological species we mean any type of microorganism such as bacteria, fungi, yeasts, viruses, toxins, spores including Bacillus anthracis spores, and protozoa.
  • the biological species that are eliminated, destroyed, inactivated by the gel according to the invention are essentially bio-toxic species such as pathogenic spores such as for example Bacillus anthracis spores, toxins such as botulinum toxin, and the like. virus.
  • the active biological decontamination agent may be selected from bases such as sodium hydroxide, potassium hydroxide, and mixtures thereof; acids such as nitric acid, phosphoric acid, hydrochloric acid, sulfuric acid, and mixtures thereof; oxidizing agents such as peroxides, permanganates, persulfates, ozone, hypochlorites, and mixtures thereof; quaternary ammonium salts such as hexacetylpyridinium salts such as hexacethylpyridinium chloride; and mixtures thereof (see especially Examples 1 and 2).
  • bases such as sodium hydroxide, potassium hydroxide, and mixtures thereof
  • acids such as nitric acid, phosphoric acid, hydrochloric acid, sulfuric acid, and mixtures thereof
  • oxidizing agents such as peroxides, permanganates, persulfates, ozone, hypochlorites, and mixtures thereof
  • quaternary ammonium salts such as hexacetylpyri
  • Some active decontamination agents can be classified among several of the categories defined above.
  • nitric acid is an acid but also an oxidizing agent.
  • the active decontaminating agent such as a biocidal agent, is generally used at a concentration of between 0.5 and 10 mol / l of gel, and preferably of 1 to 10 mol / l of gel to guarantee inhibition of biological species, especially biotoxic, compatible with the gel drying time and to ensure, for example, drying of the gel at a temperature of between 20 ° C. and 50 ° C. and at a relative humidity of between 20 and 60% on average in 30 minutes to 5 hours.
  • the active decontamination agent can be an acid or a mixture of acids. These acids are generally selected from mineral acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid.
  • a particularly preferred biological decontaminant is nitric acid.
  • nitric acid provides destruction, inactivation, of spores such as Bacillus thuringiensis spores which are particularly resistant species.
  • the acid (s) is (are) preferably present in a concentration of 0.5 to 10 mol / L, more preferably 1 to 10 mol / L, to ensure drying of the gel generally at a temperature range between 20 ° C and 50 ° C and at a relative humidity of between 20 and 60% on average in 30 minutes to 5 hours.
  • the inorganic viscosifying agent is preferably silica or a mixture of silicas.
  • the active biological decontamination agent may be a base, preferably a mineral base, preferably chosen from sodium hydroxide, potassium hydroxide and mixtures thereof.
  • the gel according to the invention has, in addition to the decontamination action, a degreasing action.
  • the gel according to the invention may have a broad concentration range of basic decontamination agent (s) (s). ).
  • the base is advantageously present at a concentration of less than 10 mol / l, preferably between 0.5 and 7 mol / l, more preferably between 1 and 5 mol / l to ensure drying of the gel at a temperature of between 20 ° C. and 50 ° C and relative humidity between 20 and 60% on average in 30 minutes to 5 hours.
  • the inorganic viscosifying agent is preferably an alumina or a mixture of aluminas.
  • the biological decontamination agent is preferably sodium hydroxide or potassium hydroxide.
  • the basic pH of the gel which is induced by the use of soda or potassium hydroxide, makes it possible to avoid acid-base reactions, between the material to be decontaminated and the gel , which affect the integrity of the gel on the surface and therefore the efficiency of the process.
  • the hygroscopic nature of sodium hydroxide or potassium hydroxide is also a considerable advantage in slowing down the phenomenon of drying the gel.
  • the contact time between the gel according to the invention, for example containing a biocidal solution, and the biological contamination, is then considerably increased.
  • the biocidal agent it will preferably be sodium hydroxide at a concentration of between 1 and 5 mol / l.
  • the gel according to the invention further contains as a basic component a superabsorbent polymer.
  • superabsorbent polymer also referred to as “SAP” is generally meant a polymer capable, in the dry state, of spontaneously absorbing at least 10 times, preferably at least 20 times its weight of aqueous liquid, particularly water and especially distilled water.
  • SAP can absorb up to and even over 1000 times their weight of liquid.
  • Spontaneous absorption is understood to mean an absorption time of up to about one hour.
  • the superabsorbent polymer can have a water absorption capacity ranging from 10 to 2000 times its own weight, preferably from 20 to 2000 times its own weight (ie 20 g to 2000 g of water absorbed per gram of polymer absorbent), more preferably from 30 to 1500 times, and in particular from 50 to 1000 times.
  • the SAP of the biological decontamination gel according to the invention may be chosen from sodium poly (meth) acrylates, starches grafted with a (meth) acrylic polymer, hydrolyzed starches grafted with a (meth) acrylic polymer; polymers based on starch, gum, and cellulose derivative; and their mixtures.
  • SAP that can be used in the gel according to the invention can be, for example, chosen from:
  • the polymers resulting from the polymerization with partial crosslinking of hydrosoluble ethylenically unsaturated monomers such as acrylic or methacrylic polymers (resulting especially from the polymerization of acrylic and / or methacrylic acid and / or of acrylate and / or methacrylate monomers) or vinyl, in particular crosslinked and neutralized poly (meth) acrylates, especially in the form of a gel; and the salts, in particular the alkaline salts such as the sodium or potassium salts of these polymers;
  • starches grafted with polyacrylates acrylamide / acrylic acid copolymers, especially in the form of sodium or potassium salts;
  • salts especially alkaline salts, of crosslinked polyaspartic acids; salts, especially alkaline salts, of crosslinked polyglutamic acids.
  • SAP a compound chosen from:
  • grafted starch polyacrylates sold under the names SANWET IM-100, SANWET IM-3900 and SANWET IM-5000S (Hoechst);
  • Superabsorbent polymers in particular superabsorbent polymers (polyelectrolytes) which contain alkaline ions such as sodium or potassium ions, for example of the sodium or potassium poly (meth) acrylate type, give the gels many properties. decontamination.
  • superabsorbent polymers polyelectrolytes which contain alkaline ions such as sodium or potassium ions, for example of the sodium or potassium poly (meth) acrylate type
  • the product first influence the rheology of the product, especially its flow threshold.
  • the interest is to guarantee a perfect gel performance on the treated materials, especially on vertical surfaces and ceilings when the thickness of spray gel is greater than 1 mm.
  • the superabsorbent polymer is particularly interesting because it absorbs by hydrogen bonding a part of the solution, for example the biocide solution contained in the gel.
  • the number of hydrogen bonds formed between the solution, for example the biocidal solution, of the gel and the superabsorbent polymer such as sodium polyacrylate being a function of the salt load, absorption / desorption phenomena appear when the salt load of the decontamination gel is changed.
  • This mechanism is particularly interesting when it comes to decontaminating mineral and porous materials such as cementitious matrices for example.
  • the salt load of the gel increases due to the presence of mineral particles very often calcium-based.
  • the substitution of the Na + counterion by Ca 2+ from calcium instantly generates a solution re-release phenomenon, for example of a biocidal solution, because of the greater steric hindrance of the calcium ion.
  • the amount of biocidal solution released by the superabsorbent polymer such as sodium polyacrylate can then instantly diffuse into the porosity of the material and penetrate deeply.
  • the phenomenon of diffusion of the decontaminating agent, for example from the biocidal agent to the core of the material is much more limited in the case of a gel containing no superabsorbent (see Example 6).
  • the superabsorbent polymer is preferably selected from the ranges or Norsocryl AQUAKEEP ® ® marketed by Arkema.
  • the gel may also contain a surfactant or a mixture of surfactants, preferably selected from the family of nonionic surfactants such as block copolymers, sequenced as block copolymers of ethylene oxide. and propylene oxide, and ethoxylated fatty acids, and mixtures thereof.
  • surface active agents are preferably block copolymers marketed by BASF under the name "Pluronic ®”.
  • Pluronics ® are block copolymers of ethylene oxide and propylene oxide.
  • surfactants influence the rheological properties of the gel, including the thixotropic nature of the product and the recovery time, to make it sprayable on floors, walls or ceilings, avoiding the appearance of sagging.
  • the surfactants also make it possible to control the adhesion of the dry waste [Example 7] and to control the size of the flakes of dry residue to guarantee the non-pulverulence of the waste [Example 8].
  • the solvent according to the invention is generally selected from water, organic solvents, and mixtures thereof.
  • a preferred solvent is water, and in this case the solvent is therefore water, comprises 100% water.
  • the invention furthermore relates to a method for the biological decontamination of a surface of a solid substrate contaminated by at least one biological species on said surface and optionally under said surface in the depth of the substrate, wherein at least one cycle is carried out comprising the following successive steps:
  • the gel is maintained on the surface for at least sufficient time for the gel to destroy and / or inactivate and / or absorb the biological species, and for the gel to dry and form a dry and solid residue containing said biological species ;
  • the dry gel will contain only the surface contamination residue.
  • the solid substrate is a porous substrate, preferably a porous mineral substrate.
  • the substrate is in at least one material chosen from metals such as stainless steel; polymers such as plastics or rubbers such as polyvinyl chloride or PVC, polypropylenes or PPs, polyethylenes or PE, in particular high density polyethylenes or HDPEs, poly (methyl methacrylate) or PMMA, polyvinylidene fluoride or PVDF, polycarbonates or PCs; the glasses ; cements; mortars and concretes; plasters; the bricks ; natural or artificial stone; ceramics.
  • metals such as stainless steel
  • polymers such as plastics or rubbers such as polyvinyl chloride or PVC, polypropylenes or PPs, polyethylenes or PE, in particular high density polyethylenes or HDPEs, poly (methyl methacrylate) or PMMA, polyvinylidene fluoride or PVDF, polycarbonates or PCs
  • the glasses cements; mortars and concretes; plasters; the bricks ; natural or artificial stone; ceramics.
  • the biological species is chosen from the toxic biological species already listed above.
  • the gel is applied to the surface to be decontaminated at a rate of 100 g to 2000 g of gel per m 2 of surface, preferably of 500 to 1500 g of gel per m 2 of surface, more preferably of 600 to 1000 g per m 2 of surface, which generally corresponds to a thickness of gel deposited on the surface of between 0.5 mm and 2 mm.
  • the gel is applied to the solid surface by spraying, with a brush or with a trowel.
  • the drying is carried out at a temperature of 1 ° C. to 50 ° C., preferably of 15 ° C. to 25 ° C., and at a relative humidity of 20% to 80%. preferably from 20% to 70%.
  • the gel is kept on the surface for a period of 2 to 72 hours, preferably from 2 to 48 hours, more preferably from 5 to 24 hours.
  • the dry and solid residue is in the form of particles, for example flakes, of a size of 1 to 10 mm, preferably 2 to 5 mm.
  • the dry and solid residue is removed from the solid surface by brushing and / or suctioning.
  • the cycle described above can be repeated for example from 1 to 10 times using the same gel during all the cycles or by using different gels during one or more cycle (s).
  • the gel before total drying, is rewetted with a solution of a biological decontamination agent, preferably with the solution of the biological active agent of the gel applied during step a ) in the solvent of this gel.
  • the gel can be rewetted before the total drying with the biocidal solution contained in the biological decontamination gel already described above, which then generally avoids repeating the application of the gel on the surface and causes a reagent economy and a limited amount of waste. This rewetting operation can be repeated.
  • drying time is greater than or equal to the time required for inactivation.
  • rewetting is generally used.
  • FIG. 1 shows schematic sectional views illustrating the main steps of the method according to the invention for the decontamination of a solid material.
  • Figure 2 shows schematic sectional views showing the mode of action of a superabsorbent polymer-free gel on a material Cementitiously contaminated in depth by contamination in liquid form.
  • Figure 3 shows schematic sectional views showing the mode of action of a gel containing a superabsorbent polymer on a cementitious material deeply contaminated by contamination in liquid form.
  • Figure 4 is a graph showing the kinetics of inhibition of Bacillus thuringiensis spores in different liquid biocidal solutions containing various decontaminating active agents at various concentrations, namely: 4.8% NaOCl, 1M NaOH, HN0 3 0.5M, and 2% CHP (hexadecyl pyridinium chloride); comparative solutions containing the surfactant Pluronic ® P 8020 at 1%, or the surfactant KR8 (ethoxylated fatty alcohol) at 1% are also tested. The number of residual spores is given for each of the biocidal solutions at contact times of 1 hour and 24 hours.
  • Figure 5 is a graph showing the kinetics of inhibition of Bacillus thuringiensis spores in different liquid biocidal solutions containing different bases at various concentrations, namely: 0.5 M NaOH, 1 M NaOH, 5 M NaOH, KOH at 0.5M, 1M KOH, and 5M KOH. The number of residual spores is given for each of the biocidal solutions at contact times of 1 hour, 2 hours, 3 hours, 4 hours and 5 hours.
  • Figure 6 is a graph which shows the influence of the concentration of sodium hydroxide in the gel on the drying time.
  • Curves A, B, C, and D represent respectively gel drying without NaOH (only water), and with NaOH concentrations of 1M, 5M and 10M.
  • Figure 7 is a graph showing the influence of temperature on the drying kinetics of a 1M NAOH gel; and the drying kinetics of a 1M KOH-based gel.
  • Curve A represents the drying of a 1M NaOH gel at 22 ° C. and at 40% relative humidity
  • curve B represents the drying of a 1M KOH gel at 22 ° C. relative humidity of 40%
  • curve C represents the drying of a 1M KOH-based gel at 50 ° C. and 40% relative humidity.
  • Figure 8 is a graph which shows the influence of deposited gel thickness on the drying kinetics of a 1M NaOH gel.
  • Curve A represents the drying of a gel deposited on a thickness of 1 mm
  • curve B represents the drying of a gel deposited on a thickness of 2 mm.
  • Figure 9 is a graph which shows the influence of the superabsorbent polymer on the effectiveness of biological decontamination of a mortar expressed by the number of Bacillus thuringiensis spores on a mortar sample.
  • the left bars represent the contamination of the mortar samples before treatment, and the right bars (in dark gray C and D) represent the residual contamination of the mortar samples after recovery. dry gel.
  • the graph shows two distinct gel treatments, the first one (left part of the graph, bars A and C contiguous to the left of the graph) in the presence of a biocidal gel free of super ⁇ absorbing polymer, the second (right part of the graph, bars B and D contiguous to the right of the graph) in the presence of the same biocide gel to which was added the superabsorbent polymer.
  • Figure 10 is a graph showing the influence of surfactant concentration (Pluronic ® ) on the adhesion strength of dry gel flakes.
  • the ordinate is plotted the total adhesion area (mm 2 / cm 2 ), and the abscissa is the concentration of surfactant (g / L).
  • Figure 11 is a graph showing the influence of the concentration of active (Pluronic * ) on the number of dry gel flakes formed.
  • Figure 12 is a graph that illustrates the effectiveness of the gel according to the invention depending on the nature of the treated material.
  • the left bars represent the contamination before gel treatment according to the invention and the right bars (black) represent the residual contamination after recovery of the gel.
  • the gel according to the invention can be easily prepared at room temperature.
  • the gel according to the invention may be prepared by gradually adding, for example, the inorganic viscosity agent (s), for example the alumina (s) and / or the silica or silica (s) ( s), a solution containing the active agent (s) active (s) biological decontamination (s), the surfactant (s) and the polymer (s) super-absorbent (s).
  • the inorganic viscosity agent for example the alumina (s) and / or the silica or silica (s) ( s)
  • the surfactant (s) and the polymer (s) super-absorbent (s) for example, the inorganic viscosity agent (s), for example the alumina (s) and / or the silica or silica (s) ( s)
  • This addition can be carried out by simply pouring the viscosity agent (s) into said solution.
  • the solution containing the or the biological decontamination active agent (s), the surfactant (s) and the superabsorbent polymer (s) is generally kept under mechanical stirring. This agitation can be, for example, carried out by means of a mechanical stirrer equipped with a three blade propeller.
  • the stirring speed is generally between 600 and 800 rpm.
  • the stirring is continued, for example for 2 to 5 minutes, so as to obtain a perfectly homogeneous gel.
  • the gel according to the invention must have a viscosity of less than 200 mPa.s under a shear of 1000s -1 so as to allow spraying on the surface to be decontaminated remotely (for example at a distance of 1 to 5 m ) or in proximity (for example at a distance less than 1 m, preferably from 50 to 80 cm).
  • the recovery time of the viscosity should generally be less than one second and the viscosity under low shear greater than 10 Pa s not to sink on the wall.
  • the surfactant of the gel according to the invention has a favorable and noticeable influence on the rheological properties of the gel according to the invention.
  • This surfactant makes it possible in particular for the gel according to the invention to be used by spraying and avoids the risk of spreading or dripping when treating vertical surfaces and ceilings.
  • the gel according to the invention thus prepared is then applied (1) (FIG. 1) on the solid surface
  • this biological contamination (4) may consist of one or more of the biological species already defined above.
  • the active biological decontamination agent is chosen according to the biological species to eliminate, destroy, or inactivate.
  • the gel according to the invention does not generate any alteration, erosion, attack, chemical, mechanical or physical of the treated material.
  • the gel according to the invention is therefore in no way detrimental to the integrity of the treated materials and even allows their reuse.
  • sensitive materials such as military equipment are preserved and may after their decontamination be reused, while monuments treated with the gel according to the invention do not are absolutely not degraded and see their visual and structural integrity preserved.
  • This material of the substrate (3) can therefore be chosen from, for example, metals such as stainless steel, polymers such as plastics or rubbers, among which mention may be made of PVC, PP, PE in particular HDPE, PMMA, PVDF, PC , glasses, cements, mortars and concretes, plaster, bricks, natural or artificial stone, ceramics.
  • metals such as stainless steel
  • polymers such as plastics or rubbers, among which mention may be made of PVC, PP, PE in particular HDPE, PMMA, PVDF, PC , glasses, cements, mortars and concretes, plaster, bricks, natural or artificial stone, ceramics.
  • the treated surface can be painted or unpainted.
  • the gel according to the invention was particularly effective on porous materials such as cementitious matrices such as pastes, mortars and concretes, bricks, plasters, or even natural stone. or artificial. Indeed, the presence in the gel according to the invention of a superabsorbent polymer allows a decontamination of the porous material to a much greater depth than with an equivalent gel without super ⁇ absorbing polymer.
  • the presence of a superabsorbent polymer in the gel according to the invention facilitates the diffusion of the active agent for decontamination, for example of the biocidal agent in the depth of the material when it comes to treating porous substrates, especially inorganic substrates.
  • the effectiveness of the treatment with the gel according to the invention is generally total, including contaminated materials several millimeters deep.
  • the shape, the geometry and the size of the surface to be decontaminated there is also no limitation as to the shape, the geometry and the size of the surface to be decontaminated, the gel according to the invention and the process implementing it allow the treatment of large surfaces of complex geometries, presenting for example, hollows, angles, recesses.
  • the gel according to the invention provides effective treatment not only of horizontal surfaces such as floors, but also of vertical surfaces such as walls, or inclined or overhanging surfaces such as ceilings.
  • the decontamination method according to the invention which implements a gel is particularly advantageous for the treatment of large surface materials, non-transportable and implanted at outside. Indeed, the method according to the invention because of the implementation of a gel, allows in situ decontamination by avoiding the spread of chemical solutions in the environment and the dispersion of contaminating species.
  • the gel according to the invention can be applied to the surface to be treated by all the application methods known to those skilled in the art.
  • Conventional methods are spraying, for example by spraying, or applying by means of a brush, or a trowel.
  • the colloidal solution may for example be conveyed via a low pressure pump, for example a pump which implements a pressure less than or equal to at 7 bar is about 7.10 5 Pascals.
  • the burst of the gel jet on the surface can be obtained for example by means of a jet nozzle or round jet.
  • the distance between the pump and the nozzle may be arbitrary, for example it may be from 1 to 50 m, in particular from 1 to 25 m.
  • the sufficiently short viscosity recovery time of the gels according to the invention allows the spray gels to adhere to all surfaces, for example to walls.
  • the amount of gel deposited on the surface to be treated is generally from 100 to 2000 g / m 2 , preferably from 500 to 1500 g / m 2 , more preferably from 600 to 1000 g / m 2 .
  • the amount of gel deposited per unit area and, consequently, the thickness of the deposited gel influences the rate of drying.
  • the effective contact time between the gel and the materials is then equivalent to its contact time. drying, during which time the active ingredient contained in the gel will interact with the contamination.
  • the action time of the biocidal solution having penetrated into the core of material as a result of the action of the superabsorbent polymer may be greater than the gel drying time, to which it is usually necessary either to rewet with the biocide solution, or to repeat a spray of the gel.
  • the amount of gel deposited and thus the deposited gel thickness is the fundamental parameter which influences the size of the dry residues formed after drying of the gel and which thus ensures that residues Millimeter sized and not powdery residues are formed, such residues being easily removed by a mechanical process and preferably by suction.
  • the drying gel is improved and leads to a homogeneous fracturing phenomenon with a size of the mono-dispersed dry residues and an increased ability of the dry residues to separate from the support.
  • the gel is then held on the surface to be treated for the duration necessary for drying.
  • the solvent contained in the gel namely generally the water contained in the gel evaporates to the obtaining a dry and solid residue.
  • the drying time depends on the composition of the gel in the concentration ranges of its constituents given above, but also, as already mentioned, on the amount of gel deposited per unit area, that is to say the deposited gel thickness.
  • the drying time also depends on the climatic conditions, namely the temperature and the relative humidity of the atmosphere in which the solid surface is located.
  • the process according to the invention can be carried out under extremely wide climatic conditions, namely at a temperature T of 1 ° C. to 50 ° C. and at a relative humidity RH of 20% to 80%.
  • the drying time of the gel according to the invention is therefore generally from 1 hour to 24 hours at a temperature T of 1 ° C. to 50 ° C. and at a relative humidity RH of 20% to 80%.
  • the formulation of the gel according to the invention essentially because of the presence of surfactants such as "Pluronics ® " generally provides a drying time which is substantially equivalent to the contact time (between the agent of decontamination, such as a biocidal agent, and biological species including bio-toxic to eliminate) that is necessary, required to inactivate and / or absorb the contaminating species polluting the material.
  • the formulation of the gel ensures a drying time which is none other than the inactivation time of the biological contaminating species and which is compatible with the kinetics of inhibition of the biological contamination.
  • the specific surface area of the generally used inorganic filler which is generally from 50 m 2 / g to 300 m 2 / g, preferably from 100 m 2 / g, and the absorption capacity of the gel according to the invention make it possible to trap the contamination.
  • the biological contaminating species are inactivated in the gelled phase. After drying the gel, the inactivated contamination is removed during the recovery of the dry gel residue described below.
  • the gel fractures homogeneously to give millimetric solid dry residues, for example of a size of 1 to 10 mm, preferably 2 to 5 mm non-pulverulent, generally in the form of solid glitter (5).
  • Dry residues may contain the inactivated contaminant (s) (6).
  • the dry residues, such as flakes (5), obtained after drying have a low adhesion to the surface (2) of the decontaminated material.
  • the dry residues obtained after drying of the gel can be easily recovered by simple brushing and / or aspiration.
  • the dry residues can also be evacuated by gas jet, for example by compressed air jet.
  • the method according to the invention thus firstly achieves a significant saving of chemical reagents compared to a decontamination process by washing with a solution. Then, since a waste in the form of a directly aspirable dry residue is obtained, a rinsing operation with water or with a liquid is avoided. This obviously results in a decrease in the amount of effluents produced but also a significant simplification in terms of treatment and outlet channel.
  • the dry waste can be stored or directed to a discharge die without prior treatment.
  • the mass of dry waste produced is less than 300 grams per m 2 .
  • FIG 2 there is illustrated the decontamination by a gel not according to the invention containing no superabsorbent polymer of a porous substrate (21) contaminated with spores in aqueous solution (22).
  • the contamination front (23) extends in the depth of the substrate ( Figure 2A).
  • a biocide gel (24) is applied to the surface (25) of the substrate, the diffusion front (26) of the biocidal agent extends little in the depth of the substrate and remains below the contamination front ( 23) ( Figure 2B).
  • Figure 2C the sanitized area (27) extends little deep and residual contamination remains (28) in the porous substrate (21).
  • FIG 3 there is illustrated the decontamination, by a gel according to the invention containing a superabsorbent polymer, a porous substrate (31) contaminated with spores in aqueous solution (32).
  • the contamination front (33) extends into the depth of the substrate ( Figure 3A).
  • the diffusion front (36) of the biocidal agent extends in the depth of the substrate and extends beyond contamination front ( Figure 3B).
  • the sanitized zone (37) extends in depth (P) and no residual contamination remains in the porous substrate.
  • the experiment consists in bringing into contact, with stirring, 2 ⁇ 10 6 spores with 1 ml of liquid biocidal solution.
  • Figure 4 shows in particular that Pluronic ® P 8020 and surfactant KR8 have no action on spores.
  • the kinetics of inhibition of Bacillus thuringiensis spores are studied in different liquid biocidal solutions containing different bases at various concentrations, namely: 0.5M NaOH, 1M NaOH; 5M NaOH, 0.5M KOH, 1M KOH, and 5M KOH.
  • the experimental protocol used is similar to that described above in Example 1. Only the number of samples of mixture is increased (1 hour, 2 hours, 3 hours, 4 hours, 5 hours) so as to determine the kinetics of inhibition of spores in the biocidal medium under consideration.
  • Figure 5 shows that increasing the concentration of biocidal agent significantly increases the rates of inhibition of Bacillus thuringiensis spores.
  • the gel has the following composition in percentages by weight:
  • the gels of variable sodium hydroxide concentration (0 M, 1 M, 5 M and 10 M) are spread on an inert metal support to a controlled thickness of 1 mm.
  • the metal support containing the gel film is then placed in a climatic chamber equipped with a precision balance which monitors the loss of mass of the gel over time.
  • the climatic chamber is regulated at a temperature of 22 ° C and a relative humidity of 60%.
  • the gels have the following composition in mass percentages:
  • the experimental protocol used is similar to that described above in Example 3.
  • the climatic chamber is in one case regulated at a temperature of 22 ° C. and 40% relative humidity (1 M NaOH gel, 1 M KOH gel). ) in another at a temperature of 50 ° C and 40% relative humidity (1M NaOH gel, left curve C).
  • the curves in FIG. 7 show that the drying time of the 1M NaOH gel at 22 ° C. is slightly longer than that of the 1M KOH gel. at the same temperature while the drying time of the 1M NaOH gel at 50 ° C is greatly reduced.
  • the gel has the following composition in percentages by weight:
  • the experimental protocol used is similar to that described above in Example 3.
  • the climatic chamber is in this case regulated at a temperature of 22 ° C. and 40% relative humidity. Only the gel thickness deposited on the metal support varies from 1 mm to 2 mm.
  • curves in FIG. 8 show that the drying time is significantly longer when passing from a deposited gel thickness of 1 mm (curve A) to a deposited gel thickness of 2 mm (curve B).
  • the influence of the superabsorbent polymer on the effectiveness of the biological decontamination of a mortar expressed by the number of Bacillus thuringiensis spores on a mortar sample.
  • the mortar samples are contaminated by deposition of a droplet of water of a volume of 100 ⁇ l containing 2 ⁇ 10 7 spores of Bacillus thuringiensis.
  • the biocidal decontamination gels are spread on the contaminated side of the mortar samples.
  • the quantity of gel deposited is equal to 1000 g / m 2 .
  • the dry gel flakes formed are removed from the mortar sample.
  • the latter is then immersed in a Luria Broth nutrient solution kept stirring for 3 hours at a temperature of 37 ° C.
  • the revelation of the residual biological activity of the mortar samples then consists of taking a known volume of Luria Broth nutrient solution in which the mortar samples have been dipped and deposited on an agarose gel. After 24 hours of incubation, counting the bacteria colonies reveals the number of non-inactivated spores by the biocide decontamination gel.
  • the gel comprising a superabsorbent polymer has the following composition in percentages by weight:
  • the graph of FIG. 9 shows that the addition of superabsorbent polymer makes it possible to significantly increase the efficiency of the decontamination of a porous material such as a mortar which is contaminated in depth over a thickness of several millimeters.
  • the gel is applied to a flexible stainless steel strip (calibrated sheet from Outillage Île-de-France), whose mechanical properties are known (25 ⁇ m thick, length 2 cm, width 1 cm and a Young's modulus of 2.10 11 Pa). ), one end is fixed and the other free.
  • the surface of the gel layer is leveled with a suitable scraper in order to deposit a constant thickness of one mm.
  • a camera placed above the gel layer makes it possible to visualize the appearance of the fractures and another placed on the side allows to measure the evolution of the thickness of the gel layer over time.
  • the glitter adhesion is studied by analyzing the images obtained by the two cameras.
  • the gel studied is the gel free of superabsorbent polymer in which the concentration of surfactant is varied.
  • the other compounds being maintained at mass contents equal to those of Example 6.
  • the concentrations of surfactants are 0.10 g / L and 50 g / L.
  • the graph in Figure 10 shows that in the concentration range of interest ( ⁇ 10 g / l), increasing the concentration of Pluronic ® causes a decrease in glitter adhesion. The recovery of dry gel waste by brushing and / or aspiration is then found facilitated.
  • the gel studied is the gel of Example 7 in which the concentration of surfactant is varied.
  • the concentrations of surfactants are 0.10 g / L and 50 g / L.
  • the graph in Figure 11 shows that the addition of Pluronic ® to the gel formulation generates a decrease in the number of flakes.
  • the addition of Pluronic ® makes it possible to improve the tenacity of the gelled matrix in the face of the fracturing induced by drying: the gel will fracture more easily, the number of fractures will be smaller and the number of flakes will be smaller.
  • the reduction in the number of flakes is beneficial: the flakes being larger, the waste will be non-pulverulent during the waste recovery phase by brushing and / or suction.
  • the studied gel is the gel comprising an absorbent polymer of Example 6.
  • the experimental protocol is identical to that of Example 6.
  • the materials studied being non-porous materials, the latter are treated with the gel after a phase of evaporation of the contaminating drop of 30 minutes. This evaporation phase corresponding to the desire to treat a dry contamination, a priori the most detrimental to the process of the invention, covering the surface of the materials.
  • the graph of Figure 12 shows that after recovery of the gel, whatever the treated material (stainless steel, painted steel, glass, PVC, PP, PMMA, HDPE, PVDF, PC), the decontamination is complete without the material being altered.
  • This example shows the effectiveness and versatility of the gel according to the invention.
  • Method of treating a surface with a treatment gel, and treatment gel FR-A1-2 827 530.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Detergent Compositions (AREA)
  • Inorganic Chemistry (AREA)

Abstract

Gel de décontamination biologique, constitué par une solution colloïdale comprenant 5 à 30 % en masse, de préférence 5 à 25% en masse, de préférence encore 8 à 20% en masse par rapport à la masse du gel, d'au moins un agent viscosant inorganique; 0,5 à 10 mol/L de gel, de préférence 1 à 10 mol/L de gel, d'au moins un agent actif de décontamination biologique; 0,05 à 5% en masse, de préférence 0,05 à 2% en masse par rapport à la masse du gel, d'au moins un polymère super-absorbant; 0,1 à 2% en masse par rapport à la masse du gel, d'au moins un agent tensio-actif; et le reste de solvant. Procédé de décontamination biologique mettant en œuvre ce gel.

Description

GEL DE DÉCONTAMINATION BIOLOGIQUE ET PROCÉDÉ DE DÉCONTAMINATION DE SURFACES UTILISANT CE GEL.
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention a pour objet un gel de décontamination biologique utilisable pour la décontamination de surfaces.
La présente invention a trait, en outre, à un procédé de décontamination de surfaces utilisant ce gel.
L'invention s'applique à la décontamination de surfaces polluées, contaminées, par des agents biologiques .
Le procédé selon l'invention peut s'appliquer à toutes sortes de surfaces telles que les surfaces métalliques, les surfaces en matières plastiques, les surfaces en matériaux vitreux.
L'invention s'applique tout particulièrement aux surfaces de matériaux poreux tels que les matrices, matériaux, cimentaires comme les pâtes, les mortiers et les bétons ; les briques ; les plâtres ; et la pierre.
Le domaine technique de l'invention peut ainsi, de manière générale, être défini comme étant celui de la décontamination de surfaces en vue d'en éliminer les polluants, contaminants qui s'y trouvent et dont la présence sur ces surfaces n'est pas souhaitée.
Plus particulièrement, le domaine technique de l'invention est celui de la décontamination biologique de surfaces contaminées notamment par des espèces biologiques toxiques par exemple de type endospores, toxines, virus.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Depuis une vingtaine d'années, la succession d'actes terroristes chimiques et plus récemment biologiques, par exemple l'attentat au gaz sarin dans le métro de Tokyo en 1995, les attentats suicides sur les Twin Towers de New York en 2001, l'anthrax dans les courriers de l'US Postal aux Etats-Unis en 2001, et les attentats à l'explosif dans les gares de Madrid en 2004, a incité de nombreux pays à bâtir de véritables programmes de recherche pour se munir de moyens efficaces face aux menaces terroristes.
Essentiellement de nature chimique au début du
XXieme siècle, les agents de la menace ont évolué vers des armes de plus forts impacts, plus simples à mettre en œuvre et surtout non détectables avant l'apparition des premiers symptômes sur l'organisme.
La crainte se porte donc aujourd'hui sur les attaques terroristes de type biologiques particulièrement contagieuses par voie orale. Les espèces biologiques toxiques telles que le Bacillus anthracis (anthrax) ou encore la toxine botulique sont considérées comme les armes dont la probabilité d'utilisation est la plus forte.
Dans le cas de la décontamination biologique, deux objectifs sont recherchés :
le premier est d' inactiver les contaminants biologiques, bio-toxiques lors du contact prolongé entre l'agent biocide (généralement une espèce chimique fortement oxydante) et l'agent pathogène. Cette phase d' inhibition nécessite une durée de contact pouvant atteindre plusieurs heures selon la formulation utilisée,
- le deuxième est d'essayer, le plus souvent, de transférer les espèces contaminantes vers une phase solide ou liquide permettant l'élimination des espèces inactivées du matériau traité.
D'une façon générale, les techniques d'assainissement des matériaux contaminés par une contamination biologique consistent en la mise en contact d'un liquide contenant un agent biocide avec les surfaces contaminées. L'application de la solution biocide est généralement réalisée par pulvérisation ou par lavage couplé ou non à un effet mécanique tel qu'un brossage .
Ainsi, le document [1] décrit-il une composition de nettoyage pour éliminer les agents antibactériens et autres utilisés dans la décontamination suite à une attaque biologique. Cette composition comprend notamment de l'éthanol, de 1 ' isopropanol , de l'éther n-hexylique de
1 ' éthylèneglycol , un bromure et un chlorure.
Le document [2] décrit un procédé de décontamination à grande échelle dans lequel un peracide solide, stable, ou une source solide, stable, d'un peracide est mis en contact avec une surface contaminée .
Plus récemment, de nouvelles techniques de mouillage par nébulisation ou par projection de mousse ont permis de réduire la quantité de solutions biocides utilisées et donc le volume d'effluents chimiques produits. On pourra à cet égard se référer aux documents [3] et [4] .
D'autres procédés utilisent les agents biocides sous forme gazeuse tels que le peroxyde d'hydrogène ou encore l'ozone, comme c'est le cas du procédé décrit dans le document [5] .
L'inconvénient majeur associé à ces procédés est toutefois le risque de dissémination d'agents toxiques dans l'environnement, qu'il s'agisse d'agents toxiques biologiques et chimiques dans le cas du procédé par pulvérisation de liquide, ou bien d'agents toxiques chimiques dans le cas du procédé mettant en œuvre des agents biocides sous forme gazeuse.
En outre, le procédé qui met en œuvre des agents biocides sous forme gazeuse, est exclusivement efficace lors d'une mise en œuvre dans des enceintes closes .
Pour répondre à la problématique de récupération de la contamination, une troisième catégorie de procédé a plus récemment été développée.
Dans ces procédés, le transfert de la contamination se fait vers un matériau support solide capable de piéger et/ou de détruire les espèces biologiques toxiques. Le déchet ainsi généré se retrouve alors également sous forme solide. L'obtention d'un déchet solide est particulièrement intéressante pour limiter les risques de dispersion des toxiques dans l'environnement mais aussi pour faciliter la gestion et le traitement du déchet produit. Différentes technologies mettant en œuvre un matériau support solide ont d'ores et déjà été développées. Il s'agit : tout d'abord de la technologie dite du « gant poudreur » destinée à la décontamination de liquides toxiques persistants se trouvant sur la peau ou sur des équipements.
Dans ce gant, l'agent décontaminant est une poudre absorbante, généralement de la Terre de foulon. Celle-ci est déversée sur l'endroit contaminé par tapotage, elle absorbe le liquide toxique, puis elle est essuyée à l'aide de la face éponge du gant [6] .
La composition du gant peut, dans certains cas, inclure un agent oxydant capable d' inactiver la contamination piégée par la Terre de foulon. Cette technique, particulièrement adaptée au soin des personnes, reste néanmoins limitée au traitement des contaminations liquides de faible envergure.
D'autres produits de décontamination, qui se présentent sous la forme d'un gel, génèrent un déchet solide et permettent ainsi de s'affranchir de l'utilisation de solutions liquides pour assainir des pièces de grandes surfaces et de géométries complexes.
Ces gels sont généralement mis en œuvre en les pulvérisant sur la surface à décontaminer.
Après un temps de contact du gel avec la surface à décontaminer, équivalent à la durée d' évaporation du solvant, le déchet sec obtenu est éliminé par brossage et/ou aspiration. L'intérêt majeur de ces procédés est leur aptitude au traitement des grandes surfaces et de géométries accidentées. Ainsi, le document [7] décrit une composition de gel contenant des agents oxydants pour la décontamination chimique ou biologique de zones contaminées. Cette composition est préparée en ajoutant des agents épaississants ou gélifiants sous la forme de colloïdes à une solution d'agent oxydant pour former un gel colloïdal visqueux.
Cette solution peut être une solution aqueuse ou organique.
Les agents épaississants ou gélifiants peuvent être choisis parmi la silice, l'alumine, les aluminosilicates , les mélanges de silice et d'alumine, et les argiles telles que la smectite.
Les agents oxydants sont notamment 1 ' hypochlorite de sodium, le persulfate d'ammonium, ou le peroxyde d'hydrogène.
Il est indiqué que ces gels peuvent être utilisés pour éliminer des agents biologiques tels que des micro-organismes comme les bactéries, champignons, virus, et spores, ou des agents chimiques tels que les gaz neurotoxiques.
Les gels sont ensuite pulvérisés sur les surfaces à traiter puis récupérés par aspiration après séchage .
II est indiqué qu'un gel oxydant contenant du peroxymonosulfate de potassium et 15% de silice Cab-O- Sil® EH-5 en tant qu'agent gélifiant, détruit les agents chimiques « Mustard », « VX » et « GD » dans le temps nécessaire pour amener le gel à siccité et que le Bacillus globigii (BG) , simulant de l'Anthrax est également détruit en partie par ce gel. Les formulations gélifiées développées par le Lawrence Livermore National Laboratory sous les noms de L-Gel 115, et L-Gel 200 sont analogues aux formulations développées dans le document [7] et sont mises en œuvre avec le procédé dit « L-Gel ». Ce procédé semble avoir une certaine efficacité vis-à-vis d'une contamination biologique telle qu'une contamination par les spores de Bacillus globigii [8].
Ces gels sont formulés à partir de solutions acides oxydantes auxquelles sont ajoutés des solvants organiques et une charge de silice. Les gels sont ensuite pulvérisés sur les surfaces à traiter puis récupérés par aspiration après séchage. Parmi les points critiques de ce procédé, apparaît en premier lieu la présence d'agents oxydants puissants dont la stabilité chimique est souvent très limitée dans le temps .
Par ailleurs, afin d'éviter les coulures, en particulier lorsque le gel est appliqué sur les murs ou les plafonds, celui ci est appliqué sous forme de films très minces d'une épaisseur ne dépassant pas, dans le document [7], 125 ym. Il en résulte un déchet sec pulvérulent pouvant entraîner, si l'efficacité du traitement n'est pas totale, une dissémination des espèces bio-toxiques et chimiques, telles que les composés oxydants, dans l'atmosphère.
Les performances du procédé, déterminées vis-à- vis d'une contamination par l'Anthrax sous forme d'aérosol (107 et 108 spores par échantillon de 0,16 m2), montrent qu'il n'autorise pas une réduction de la contamination supérieure à 4 décades [8] . Par ailleurs, dans le cadre de la décontamination nucléaire, des formulations gélifiées qui permettent de s'affranchir des problèmes liés au caractère pulvérulent du déchet sec et d' accroître l'efficacité du procédé gel ont fait l'objet des documents [9] et [10] . Les formulations de gel qui y sont décrites permettent de libérer, au moyen d'une faible érosion du matériau support, la contamination sous forme particulaire . Le contaminant se retrouve alors piégé dans le résidu de gel sec [9], [10].
Ces gels sont spécifiquement destinés à la décontamination radioactive et ne sont, en aucune manière, adaptés ou susceptibles d'être adaptés à la décontamination biologique de surfaces.
En outre, les gels décrits plus haut ne permettent pas la décontamination en profondeur de matériau poreux.
Il existe donc, au regard de ce qui précède, un besoin pour un gel de décontamination biologique qui produise des déchets secs faciles à éliminer sans dissémination des contaminants biologiques, qui permette de traiter avec la même efficacité une grande variété de surfaces quelles que soient leur forme, leur géométrie, leur taille et leur nature.
II existe, en particulier, un besoin pour un gel de décontamination biologique qui permette la décontamination efficace de surfaces poreuses notamment minérales et qui assure la décontamination en profondeur de telles surfaces sur une profondeur pouvant atteindre par exemple plusieurs millimètres. Il existe encore un besoin pour un gel de décontamination qui ne produise aucune altération, chimique, mécanique ou physique des surfaces traitées.
Le but de la présente invention est de fournir un gel de décontamination biologique qui réponde entre autres à ce besoin.
Le but de la présente invention est encore de fournir un gel de décontamination qui ne présente pas les inconvénients défauts, limitations et désavantages des gels de décontamination de l'art antérieur et qui résolve les problèmes des gels de décontamination de l'art antérieur.
EXPOSÉ DE L' INVENTION
Ce but, et d'autres encore, sont atteints, conformément à l'invention, par un gel de décontamination biologique, constitué par une solution colloïdale comprenant, de préférence constituée par :
5 à 30% en masse, de préférence 5 à 25 % ΘΠ masse , de préférence encore 8 à 20 ~6 en masse par rapport à la masse du gel, d'au moins un agent viscosant inorganique ;
0,5 à 10 mol/L de gel, de préférence 1 à 10 mol/L de gel, d'au moins un agent actif de décontamination biologique ;
0,05 à 5% en masse, de préférence 0,05 à 2% en masse par rapport à la masse du gel, d'au moins un polymère super-absorbant ;
0,1 à 2% en masse par rapport à la masse du gel, d'au moins un agent tensio-actif ;
et le reste de solvant. Les gels selon l'invention n'ont jamais été décrits dans l'art antérieur.
En particulier, l'incorporation d'un polymère super-absorbant dans un gel de décontamination et a fortiori la combinaison dans un tel gel d'un tel polymère super-absorbant avec un agent de décontamination biologique n'ont jamais été décrites dans l'art antérieur, tel que représenté notamment par les documents cités plus haut.
Les gels selon l'invention répondent à l'ensemble des besoins mentionnés plus haut, ils ne présentent pas les inconvénients, défauts, limitations et désavantages des gels de l'art antérieur tels que ceux décrits dans les documents mentionnés plus haut.
Les gels selon l'invention résolvent les problèmes présentés par les gels de décontamination biologique de l'art antérieur sans en présenter les inconvénients mais tout en conservant toutes les propriétés avantageuses connues de ces gels.
Le gel selon l'invention est une solution colloïdale, ce qui signifie que le gel selon l'invention contient des particules solides inorganiques, minérales, d'agent viscosant dont les particules élémentaires, primaires, ont une taille généralement de 2 à 200 nm.
Du fait de la mise en œuvre d'un agent viscosant généralement exclusivement inorganique, sans agent viscosant organique, la teneur en matières organiques du gel selon l'invention est généralement inférieure à 4% en masse, de préférence inférieure à 2% en masse, ce qui constitue encore un autre avantage des gels selon l'invention.
Ces particules solides, minérales, inorganiques jouent le rôle de viscosant pour permettre à la solution, par exemple la solution aqueuse, de se gélifier et ainsi d'adhérer aux surfaces à traiter, décontaminer, quelle que soit leur géométrie, leur forme, leur taille, et où que se trouvent les contaminants à éliminer.
Avantageusement, l'agent viscosant inorganique peut être choisi parmi les alumines, les silices, les aluminosilicates , les argiles telles que la smectite, et leurs mélanges.
En particulier, le viscosant inorganique peut être choisi parmi les alumines (AI2O3) et les silices
(Si02) .
Le viscosant inorganique peut ne comprendre qu'une seule silice ou alumine ou un mélange de celles- ci, à savoir un mélange de deux silices différentes ou plus (mélange Si02/Si02), un mélange de deux alumines, différentes ou plus (mélange AI2O3/AI2O3) , ou encore un mélange d'une ou plusieurs silices avec une ou plusieurs alumines (mélange Si02/Al203) .
Avantageusement, l'agent viscosant inorganique peut être choisi parmi les silices pyrogénées, les silices précipitées, les silices hydrophiles, les silices hydrophobes, les silices acides, les silices basiques comme la silice Tixosil 73 (marque de commerce) commercialisée par la société Rhodia, et leurs mélanges. Parmi les silices acides, on peut notamment citer les silices pyrogénées ou fumées de silice "Cab- O-Sil" M5, H5 ou EH5 (marques de commerce) commercialisées par la société CABOT, et les silices pyrogénées commercialisées par la société DEGUSSA sous l'appellation AEROSIL (marques de commerce).
Parmi ces silices pyrogénées, on préférera encore la silice AEROSIL 380 (marque de commerce) d'une surface spécifique de 380 m2/g qui offre les propriétés viscosantes maximales pour une charge minérale minimale .
La silice utilisée peut aussi être une silice dite précipitée obtenue par exemple par voie humide par mélange d'une solution de silicate de soude et d'un acide. Les silices précipitées préférées sont commercialisées par DEGUSSA sous le nom de SIPERNAT 22 LS et FK 310 (marques de commerce) ou encore par la société RHODIA sous le nom de TIXOSIL 331 (marque de commerce) , cette dernière est une silice précipitée dont la surface spécifique moyenne est comprise entre 170 et 200 m2/g.
Avantageusement, l'agent viscosant inorganique est constitué par un mélange d'une silice précipitée et d'une silice pyrogénée .
L'alumine peut être choisie parmi les alumines calcinées, les alumines calcinées broyées, et leurs mélanges .
A titre d'exemple, on peut citer le produit vendu par DEGUSSA sous la désignation commerciale « Aeroxide Alumine C » qui est de l'alumine fine pyrogénée . De manière avantageuse, selon l'invention, l'agent viscosant est constitué par une ou plusieurs alumine (s) représentant généralement de 5% à 30 % en masse par rapport à la masse du gel.
Dans ce cas, l'alumine est de préférence à une concentration de 8 à 17% en masse par rapport à la masse totale du gel pour assurer un séchage du gel à température comprise entre 20°C et 50°C et à une humidité relative comprise entre 20 et 60% en moyenne en 30 minutes à 5 heures.
La nature de l'agent viscosant minéral, notamment lorsqu'il est constitué d'une ou plusieurs alumine (s), influence de manière inattendue le séchage du gel selon l'invention et la granulométrie du résidu obtenu.
En effet, le gel sec se présente sous la forme de particules de taille contrôlée, plus précisément de paillettes solides millimétriques, dont la taille va généralement de 1 à 10 mm de préférence de 2 à 5 mm grâce notamment aux compositions précitées de la présente invention, en particulier lorsque l'agent viscosant est constitué par une ou plusieurs alumine ( s ) .
Précisons que la taille des particules correspond généralement à leur plus grande dimension.
Le gel selon l'invention contient un agent actif de décontamination biologique.
Par agent de décontamination biologique que l'on peut aussi qualifier d'agent biocide, on entend tout agent, qui lorsqu'il est mis en contact avec une espèce biologique et notamment une espèce biologique toxique est susceptible, d' inactiver ou de détruire celle-ci .
Par espèce biologique, on entend tout type de micro-organisme tel que les bactéries, les champignons, les levures, les virus, les toxines, les spores notamment les spores de Bacillus Anthracis, et les protozoaires .
Les espèces biologiques qui sont éliminées, détruites, inactivées, par le gel selon l'invention sont essentiellement des espèces bio-toxiques telles que les spores pathogènes comme par exemple les spores de Bacillus Anthracis, les toxines comme par exemple la toxine botulique, et les virus.
L' ' agent actif de décontamination biologique peut être choisi parmi les bases telles que l'hydroxyde de sodium, l'hydroxyde de potassium, et leurs mélanges ; les acides tels que l'acide nitrique, l'acide phosphorique, l'acide chlorhydrique, l'acide sulfurique, et leurs mélanges ; les agents oxydants tels que les peroxydes, permanganates, persulfates, l'ozone, les hypochlorites , et leurs mélanges ; les sels d'ammonium quaternaires tels que les sels d' hexacétylpyridinium comme le chlorure d' hexacéthylpyridinium ; et leurs mélanges (voir notamment les Exemples 1 et 2) .
Certains agents actifs de décontamination peuvent être classés parmi plusieurs des catégories définies plus haut.
Ainsi, l'acide nitrique est-il un acide mais aussi un agent oxydant. L'agent actif de décontamination, tel qu'un agent biocide, est généralement utilisé à une concentration comprise entre 0,5 et 10 mol/L de gel, et de préférence de 1 à 10 mol/L de gel afin de garantir un pouvoir d'inhibition des espèces biologiques, notamment biotoxiques, compatible avec le temps de séchage du gel et pour assurer par exemple un séchage du gel à une température comprise entre 20 °C et 50 °C et à une humidité relative comprise entre 20 et 60 % en moyenne en 30 minutes à 5 heures.
L'agent actif de décontamination peut être un acide ou un mélange d'acides. Ces acides sont généralement choisis parmi les acides minéraux tels que l'acide chlorhydrique, l'acide nitrique, l'acide sulfurique et l'acide phosphorique .
Un agent décontaminant biologique particulièrement préféré est l'acide nitrique.
En effet, il s'est avéré de manière totalement surprenante que l'acide nitrique détruisait, inactivait, les espèces biologiques notamment biotoxiques .
En particulier, il a été mis en évidence de manière étonnante que l'acide nitrique assurait la destruction, 1 ' inactivation, des spores telles que les spores de Bacillus thuringiensis qui sont des espèces particulièrement résistantes.
L'acide ou les acides est (sont) de préférence présent (s) à une concentration de 0,5 à 10 mol/L, de préférence encore de 1 à 10 mol/L, pour assurer un séchage du gel généralement à une température comprise entre 20°C et 50°C et à une humidité relative comprise entre 20 et 60% en moyenne en 30 minutes à 5 heures.
Pour ce type de gel acide, l'agent viscosant inorganique est de préférence la silice ou un mélange de silices.
Ou bien, l'agent actif de décontamination biologique peut être une base de préférence une base minérale, choisie de préférence parmi la soude, la potasse, et leurs mélanges.
Dans le cas d'une telle formulation de gel basique, le gel selon l'invention a, outre l'action de décontamination, une action de dégraissage.
De manière à atteindre une efficacité totale, y compris dans les conditions climatiques les plus défavorables vis-à-vis du temps de séchage du gel, le gel selon invention peut présenter une large gamme de concentration en agent (s) de décontamination basique ( s ) .
En effet, l'augmentation de la concentration en agent de décontamination basique comme NaOH ou KOH, jouant généralement le rôle d'agent biocide, permet d'accroître considérablement les vitesses d'inhibition des espèces biologiques, comme cela a été démontré pour des spores de Bacillus thuringiensis (Exemple 2) .
La base est avantageusement présente à une concentration inférieure à 10 mol/L, de préférence entre 0,5 et 7 mol/L, de préférence encore entre 1 et 5 mol/L pour assurer un séchage du gel à température comprise entre 20°C et 50°C et humidité relative comprise entre 20 et 60% en moyenne en 30 minutes à 5 heures . Pour ce type de gel alcalin, basique, l'agent viscosant inorganique est de préférence une alumine ou un mélange d'alumines.
De manière à aboutir à l'efficacité maximale sur une large gamme de matériaux tout en garantissant l'innocuité du traitement, l'agent de décontamination biologique est de préférence l'hydroxyde de sodium ou l'hydroxyde de potassium.
Dans le cas du traitement d'une matrice cimentaire, le pH basique du gel, qui est induit par l'utilisation de la soude ou de la potasse, permet d'éviter les réactions acido-basiques , entre le matériau à décontaminer et le gel, qui nuisent à l'intégrité du gel sur la surface et donc à l'efficacité du procédé.
Le caractère hygroscopique de l'hydroxyde de sodium ou de l'hydroxyde de potassium constitue également un atout considérable pour ralentir le phénomène de séchage du gel. Le temps de contact entre le gel selon l'invention, contenant par exemple une solution biocide, et la contamination biologique, s'en retrouve alors considérablement augmenté.
En effet, la compétition entre le processus d' évaporation de la phase aqueuse et celui de reprise d'eau des cristaux d'hydroxyde de sodium ou d'hydroxyde de potassium modifie favorablement la cinétique de séchage du gel (Exemple 3) .
Au regard de la cinétique d' inhibition des spores (Exemple 2) et des durées de séchage des gels en fonction de la température (Exemple 4), l'agent biocide sera de préférence l'hydroxyde de sodium à une concentration comprise entre 1 et 5 mol/L.
Le gel selon l'invention contient en outre en tant que composant fondamental un polymère super- absorbant.
Par « polymère super-absorbant » également dénommé « SAP », on entend généralement un polymère capable, à l'état sec, d'absorber spontanément au moins 10 fois, de préférence au moins 20 fois son poids de liquide aqueux, en particulier d'eau et notamment d'eau distillée .
Certains « SAP » peuvent absorber jusqu'à et même plus de 1000 fois leur poids de liquide.
De tels polymères super-absorbants sont notamment décrits dans l'ouvrage « Absorbent Polymer Technology, Studies in Polymer Science 8 » de L. BRANNON-PAPPAS et R. HARLAND, édition Elsevier, 1990, auquel on pourra se référer.
Par absorption spontanée, on entend un temps d'absorption allant jusqu'à environ une heure.
Le polymère super-absorbant peut avoir une capacité d'absorption d'eau allant de 10 à 2000 fois son propre poids, de préférence de 20 à 2000 fois son propre poids (soit 20 g à 2000 g d'eau absorbée par gramme de polymère absorbant) , de préférence encore de 30 à 1500 fois, et en particulier de 50 à 1000 fois.
Ces caractéristiques d'absorption d'eau s'entendent dans les conditions normales de température (25°C) et de pression (760 mm Hg soit 100000 Pa) et pour de l'eau distillée. Le SAP du gel de décontamination biologique selon l'invention peut être choisi parmi les poly (méth) acrylates de sodium, les amidons greffés par un polymère (méth) acrylique, les amidons hydrolysés greffés par un polymère (méth) acrylique ; les polymères à base d'amidon, de gomme, et de dérivé cellulosique ; et leurs mélanges.
Plus précisément, le SAP utilisable dans le gel selon l'invention peut être par exemple choisi parmi :
- les polymères résultants de la polymérisation avec réticulation partielle de monomères à insaturation éthylénique hydrosolubles , tels que les polymères acryliques, méthacryliques (issus notamment de la polymérisation de l'acide acrylique et/ou méthacrylique et/ou de monomères acrylate et/ou méthacrylate) ou vinyliques, en particulier les poly (méth) acrylates réticulés et neutralisés, notamment sous forme de gel ; et les sels notamment les sels alcalins tels que les sels de sodium ou de potassium de ces polymères ;
les amidons greffés par des polyacrylates ; les copolymères acrylamide/acide acrylique, notamment sous forme de sels de sodium ou de potassium ;
- les amidons greffés acrylamide/acide acrylique, notamment sous forme de sels de sodium ou de potassium ;
les sels de sodium ou de potassium de carboxyméthylcellulose ;
- les sels notamment les sels alcalins, d'acides polyaspartiques réticulés ; les sels notamment les sels alcalins, d'acides polyglutamiques réticulés.
En particulier, on peut utiliser comme « SAP » un composé choisi parmi :
les polyacrylates de sodium ou de potassium réticulés vendus sous les dénominations SALSORB CL 10, SALSORB CL 20, FSA type 101, FSA type 102 (Allied Colloids) ; ARASORB S-310 (Arakawa Chemical) ; ASAP 2000, Aridall 1460 (Chemdal) ; Kl -GEL 201-K (Siber Hegner) ; AQUALIC CA W3, AQUALIC CA W7, AQUALIC CA W10; (Nippon Shokuba) ; AQUA KEEP D 50, AQUA KEEP D 60, AQUA KEEP D 65, AQUA KEEP S 30, AQUA KEEP S 35, AQUA KEEP S 45, AQUA KEEP Al Ml, AQUA KEEP Al M3, AQUA KEEP HP 200, , NORSOCRYL S 35, NORSOCRYL FX 007 (Arkema) ; AQUA KEEP 10SH-NF, AQUA KEEP J-550 (Kobo) ; LUQUASORB CF, LUQUASORB MA 1110, LUQUASORB MR 1600, HYSORB C3746-5 (BASF) ; COVAGEL (Sensient technologies), SANWET IM- 5000D (Hoechst Celanese) ;
- les polyacrylates greffés d'amidon vendus sous les dénominations SANWET IM-100, SANWET IM-3900, SANWET IM-5000S (Hoechst) ;
les copolymères acrylamide/acide acrylique greffés d'amidon sous forme de sel de sodium ou de potassium vendus sous les dénominations WATERLOCK A- 100, WATERLOCK A-200, WATERLOCK C-200, WATERLOCK D- 200, WATERLOCK B-204 (Grain Processing Corporation) ;
les copolymères acrylamide/acide acrylique sous forme de sel de sodium vendu sous la dénomination WATERLOCK G-400 (Grain Processing Corporation) ; la carboxyméthylcellulose vendue sous les dénominations AQUASORB A250 (Aqualon) ;
le polyglutamate de sodium réticulé vendu sous la dénomination GELPROTEIN (Idemitsu Technofine).
Les polymères super-absorbants, en particulier les polymères super-absorbants (polyélectrolytes ) qui contiennent des ions alcalins tels que des ions sodium ou potassium, par exemple de type poly (méth) acrylate de sodium ou de potassium, confèrent de nombreuses propriétés aux gels de décontamination.
Ils influencent tout d'abord la rhéologie du produit, notamment son seuil d'écoulement. En terme de mise en œuvre du procédé, l'intérêt est de garantir une tenue parfaite du gel sur les matériaux traités, notamment sur les surfaces verticales et les plafonds lorsque l'épaisseur de gel pulvérisé est supérieure à 1 mm.
Dans le cadre d'un procédé de décontamination biologique par gel, le polymère super-absorbant est particulièrement intéressant car il absorbe par liaison hydrogène une partie de la solution, par exemple de la solution biocide contenue dans le gel. Le nombre de liaisons hydrogènes formées entre la solution, par exemple la solution biocide, du gel et le polymère super-absorbant tel que le polyacrylate de sodium étant fonction de la charge saline, des phénomènes d' absorption/désorption apparaissent lorsque la charge saline du gel de décontamination est modifiée.
Ce mécanisme est alors particulièrement intéressant lorsqu'il s'agit de décontaminer des matériaux minéraux et poreux comme les matrices cimentaires par exemple.
En effet, au contact du matériau, la charge saline du gel augmente du fait de la présence de particules minérales très souvent à base de calcium. Au sein du polymère super absorbant tel que le polyacrylate de sodium, la substitution du contre-ion Na+ par Ca2+ issu du calcium génère instantanément un phénomène de re-larguage de solution, par exemple de solution biocide, en raison de l'encombrement stérique plus important de l'ion calcium.
La quantité de solution biocide libérée par le polymère super-absorbant tel que le polyacrylate de sodium peut alors diffuser instantanément dans la porosité du matériau et pénétrer en profondeur.
Le phénomène de diffusion de l'agent de décontamination, par exemple de l'agent biocide vers le cœur du matériau est beaucoup plus limité dans le cas d'un gel ne contenant pas de super-absorbant (voir l'Exemple 6) .
L'ajout de polymère super-absorbant au gel selon l'invention permet donc d'accroître significativement l'efficacité du gel et du procédé selon l'invention en présence de matériaux poreux contaminés en profondeur sur une épaisseur de un à plusieurs millimètres, par exemple jusqu'à 2, 5, 10, 20 voire 100 mm (Exemple 6) .
Le polymère super-absorbant peut être choisi de préférence parmi les gammes Aquakeep® ou Norsocryl® commercialisées par la société ARKEMA. Le gel peut aussi contenir un agent tensio- actif ou un mélange d'agents tensio-actifs , de préférence choisis parmi la famille des agents tensio- actifs non ioniques tels que les copolymères blocs, séquencés comme les copolymères séquencés d' oxyde d' éthylène et d'oxyde de propylène, et les acides gras éthoxylés, et leurs mélanges.
Pour ce type de gel, les agents tensio-actifs sont de préférence des copolymères blocs commercialisés par la société BASF sous la dénomination "PLURONIC®".
Les Pluronics® sont des copolymères séquencés d'oxyde d' éthylène et d'oxyde de propylène.
Ces agents tensio-actifs influencent les propriétés rhéologiques du gel, notamment le caractère thixotropique du produit et le temps de reprise, afin de le rendre pulvérisable aussi bien sur les planchers, les murs ou les plafonds en évitant l'apparition de coulure .
Les tensio-actifs permettent, par ailleurs, de maîtriser l'adhésion du déchet sec [Exemple 7] et de contrôler la taille des paillettes de résidu sec pour garantir la non-pulvérulence du déchet [Exemple 8] .
Le solvant selon l'invention est généralement choisi parmi l'eau, les solvants organiques, et leurs mélanges.
Un solvant préféré est l'eau, et dans ce cas, le solvant est donc constitué par de l'eau, comprend 100% d'eau.
L'invention concerne, en outre, un procédé de décontamination biologique d'une surface d'un substrat solide contaminée par au moins une espèce biologique se trouvant sur ladite surface et éventuellement sous ladite surface dans la profondeur du substrat, dans lequel on réalise au moins un cycle comprenant les étapes successives suivantes :
a) on applique le gel selon l'invention tel que décrit plus haut sur ladite surface;
b) on maintient le gel sur la surface au moins pendant une durée suffisante pour que le gel détruise et/ou inactive et/ou absorbe l'espèce biologique, et pour que le gel sèche et forme un résidu sec et solide contenant ladite espèce biologique ;
c) on élimine le résidu sec et solide contenant ladite espèce biologique.
Il est à noter que, dans le cas d'une surface non poreuse, la contamination biologique « inactivée » est récupérée par les paillettes de gel sec.
Par contre dans le cas d'une contamination profonde, comme c'est le cas dans les matériaux poreux tels que les matrices cimentaires, le gel sec ne contiendra que le résidu de contamination surfacique.
La contamination interne, profonde,
« inactivée » in situ suite à l'action du super¬ absorbant, du gel restera au cœur du matériau, substrat .
Avantageusement, le substrat solide est un substrat poreux, de préférence un substrat minéral poreux .
Toutefois, l'efficacité du gel et du procédé selon l'invention est tout aussi bonne en présence d'une surface non poreuse et/ou non minérale. Avantageusement, le substrat est en au moins un matériau choisi parmi les métaux comme l'acier inoxydable ; les polymères tels que les matières plastiques ou caoutchoucs comme les poly (chlorure de vinyle) s ou PVC, les polypropylènes ou PP, les polyéthylènes ou PE notamment les polyéthylènes haute densité ou HDPE, les poly (méthacrylate de méthyle) s ou PMMA, les poly ( fluorure de vinylidène) s ou PVDF, les polycarbonates ou PC ; les verres ; les ciments ; les mortiers et bétons ; les plâtres ; les briques ; la pierre naturelle ou artificielle ; les céramiques.
Avantageusement, l'espèce biologique est choisie parmi les espèces biologiques toxiques déjà énumérées plus haut.
Avantageusement, le gel est appliqué sur la surface à décontaminer à raison de 100 g à 2000 g de gel par m2 de surface, de préférence de 500 à 1500 g de gel par m2 de surface, de préférence encore de 600 à 1000 g par m2 de surface, ce qui correspond généralement à une épaisseur de gel déposé sur la surface comprise entre 0,5 mm et 2 mm.
Avantageusement, le gel est appliqué sur la surface solide par pulvérisation, au pinceau ou avec une taloche.
Avantageusement (lors de l'étape b) ) , le séchage est réalisé à une température de 1°C à 50°C, de préférence de 15°C à 25°C, et sous une humidité relative de 20% à 80%, de préférence de 20% à 70%.
Avantageusement, le gel est maintenu sur la surface pendant une durée de 2 à 72 heures, de préférence de 2 à 48 heures, de préférence encore de 5 à 24 heures.
Avantageusement, le résidu sec et solide se présente sous la forme de particules, par exemple de paillettes, d'une taille de 1 à 10 mm, de préférence de 2 à 5 mm.
Avantageusement, le résidu sec et solide est éliminé de la surface solide par brossage et/ou aspiration .
Avantageusement, le cycle décrit plus haut peut être répété par exemple de 1 à 10 fois en utilisant le même gel lors de tous les cycles ou en utilisant des gels différents lors d'un ou de plusieurs cycle (s) .
Avantageusement, lors de l'étape b) , le gel, avant séchage total, est remouillé avec une solution d'un agent de décontamination biologique, de préférence avec la solution de l'agent actif biologique du gel appliqué lors de l'étape a) dans le solvant de ce gel.
Lors de l'étape b) , le gel peut avant séchage total être remouillé avec la solution biocide contenue dans le gel de décontamination biologique déjà décrit plus haut, ce qui évite alors généralement de répéter l'application du gel sur la surface et occasionne une économie de réactif et une quantité de déchet limitée. Cette opération de remouillage peut être répétée.
En résumé, le procédé et le gel selon l'invention présentent entre autres les propriétés avantageuses suivantes :
l'application du gel par pulvérisation, - l'adhérence aux parois, l'obtention de l'efficacité maximale de décontamination à l'issue de la phase de séchage du gel, y compris en situation de contamination pénétrante notamment dans le cas de surfaces poreuses.
En général, on fait en sorte que le temps de séchage soit supérieur ou égal à la durée nécessaire pour 1 ' inactivation . Dans le cas d'une inactivation profonde, on fait généralement appel à un remouillage.
le traitement d'une gamme très large de matériaux,
l'absence d'altération mécanique ou physique des matériaux à l'issue du traitement,
la mise en œuvre du procédé dans des conditions climatiques variables,
- la réduction du volume de déchet,
la facilité de récupération du déchet sec.
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description détaillée qui suit, cette description étant faite à titre illustratif et non limitatif, en liaison avec les dessins joints.
BRÈVE DESCRIPTION DES DESSINS .
- La Figure 1 (A, B) présente des vues en coupe schématique illustrant les étapes principales du procédé selon l'invention pour la décontamination d'un matériau solide.
La Figure 2 (A, B, C) présente des vues en coupe schématique montrant le mode d'action d'un gel exempt de polymère super-absorbant sur un matériau cimentaire contaminé en profondeur par une contamination sous forme liquide.
La Figure 3 (A, B, C) présente des vues en coupe schématique montrant le mode d'action d'un gel contenant un polymère super-absorbant sur un matériau cimentaire contaminé en profondeur par une contamination sous forme liquide.
La Figure 4 est un graphique qui représente la cinétique d' inhibition des spores de Bacillus thuringiensis , dans différentes solutions biocides liquides contenant différents agents actifs de décontamination à diverses concentrations, à savoir : NaOCl à 4,8%, NaOH à 1M, HN03 à 0,5M, et CHP (chlorure d'hexadecyl pyridinium) à 2% ; des solutions comparatives contenant le tensio-actif Pluronic® P 8020 à 1%, ou le tensio-actif KR8 (alcool gras éthoxylé) à 1% sont également testées. Le nombre de spores résiduelles est donné pour chacune des solutions biocides à des temps de contact de 1 heure et 24 heures.
La Figure 5 est un graphique qui représente la cinétique d' inhibition des spores de Bacillus thuringiensis, dans différentes solutions biocides liquides contenant différentes bases à diverses concentrations, à savoir : NaOH à 0,5 M, NaOH à 1M, NaOH à 5M, KOH à 0,5M, KOH à 1M, et KOH à 5M. Le nombre de spores résiduelles est donné pour chacune des solutions biocides à des temps de contact de 1 heure, 2 heures, 3 heures, 4 heures et 5 heures. La Figure 6 est un graphique qui représente l'influence de la concentration en hydroxyde de sodium dans le gel sur la durée de séchage.
En ordonnée est portée la perte de masse du gel en % et en abscisse est porté le temps de séchage du gel en jours.
Les courbes A, B, C, et D représentent respectivement le séchage de gel sans NaOH (uniquement de l'eau), et avec des concentrations en NaOH de 1M, 5M et 10M.
La Figure 7 est un graphique qui représente l'influence de la température sur la cinétique de séchage d'un gel à base de NAOH 1M ; et la cinétique de séchage d'un gel à base de KOH 1M.
En ordonnée est portée la perte de masse du gel en % et en abscisse est porté le temps de séchage du gel en minutes.
La courbe A représente le séchage d'un gel à base de NaOH 1M à 22 °C et sous une humidité relative de 40%, la courbe B représente le séchage d'un gel à base de KOH 1M à 22°C et sous une humidité relative de 40%, la courbe C représente le séchage d'un gel à base de KOH 1M à 50°C et sous une humidité relative de 40%.
La Figure 8 est un graphique qui représente l'influence de l'épaisseur de gel déposé sur la cinétique de séchage d'un gel à base de NaOH 1M.
En ordonnée est portée la perte de masse du gel en % et en abscisse est porté le temps de séchage du gel en minutes.
La courbe A représente le séchage d'un gel déposé sur une épaisseur de 1 mm, et la courbe B représente le séchage d'un gel déposé sur une épaisseur de 2 mm .
La Figure 9 est un graphique qui représente l'influence du polymère super-absorbant sur l'efficacité de la décontamination biologique d'un mortier exprimée par le nombre de spores de Bacillus thuringiensis sur un échantillon de mortier.
Pour chaque gel, les barres de gauche (en gris clair A et B) représentent la contamination des échantillons de mortier avant traitement, et les barres de droite (en gris foncé C et D) représentent la contamination résiduelle des échantillons de mortier après la récupération du gel sec.
Le graphique présente deux traitements par gel distincts, le premier (partie gauche du graphique, barres A et C accolées à gauche du graphique) en présence d'un gel biocide exempt de polymère super¬ absorbant, le deuxième (partie droite du graphique, barres B et D accolées à droite du graphique) en présence du même gel biocide auquel a été rajouté le polymère super-absorbant.
La Figure 10 est un graphique qui représente l'influence de la concentration en tensio- actif (Pluronic®) sur le pouvoir d'adhésion des paillettes de gel sec.
En ordonnée est portée la zone totale d'adhésion (mm2/cm2), et en abscisse est portée la concentration en tensio-actif (g/L) .
La Figure 11 est un graphique qui représente l'influence de la concentration en tensio- actif (Pluronic*) sur le nombre de paillettes de gel sec formées.
En ordonnée est portée le nombre de paillettes/cm2, et en abscisse est portée la concentration en tensio-actif (g/L) .
La Figure 12 est un graphique qui illustre l'efficacité du gel selon l'invention en fonction de la nature du matériau traité.
En ordonnée est porté le nombre de spores de Bacillus thuringiensis .
Pour chaque matériau, les barres de gauche (gris clair) représentent la contamination avant traitement par le gel selon l'invention et les barres de droite (noir) représentent la contamination résiduelle après récupération du gel.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Le gel selon l'invention peut être facilement préparé à la température ambiante.
Par exemple, le gel selon l'invention peut être préparé en ajoutant de préférence progressivement, le ou les agent (s) viscosant (s) inorganique ( s ) par exemple la ou les alumine (s) et/ou la ou les silice (s), à une solution contenant le ou les agents (s) actif (s) de décontamination biologique ( s ) , le ou les tensioactif ( s ) et le ou les polymère (s) super-absorbant ( s ) .
Cette addition peut être réalisée en versant simplement le ou les agent (s) viscosant (s) dans ladite solution. Lors de l'addition du ou des agent (s) viscosant (s) inorganique ( s ) , la solution contenant le ou les agent (s) actif (s) de décontamination biologique ( s ) , le ou les tensioactif (s) et le ou les polymère (s) super-absorbant ( s ) est généralement maintenue sous agitation mécanique. Cette agitation peut être, par exemple, réalisée au moyen d'un agitateur mécanique équipé d'une hélice à trois pales.
La vitesse d'agitation est généralement comprise entre 600 et 800 tours/minute.
Après la fin de l'ajout du ou des viscosant (s) minéral (aux) , l'agitation est encore poursuivie, par exemple pendant 2 à 5 minutes, de manière à obtenir un gel parfaitement homogène.
Il est bien évident que d'autres protocoles de préparation des gels selon l'invention peuvent être mis en œuvre avec une addition des composants du gel dans un ordre différent de celui mentionné plus haut.
Généralement, le gel selon l'invention doit présenter une viscosité inférieure à 200 mPa.s sous un cisaillement de 1000s-1 de manière à permettre la pulvérisation sur la surface à décontaminer, à distance (par exemple à une distance de 1 à 5 m) ou à proximité (par exemple à une distance inférieure à 1 m, de préférence de 50 à 80 cm) . Le temps de reprise de la viscosité doit généralement être inférieur à une seconde et la viscosité sous faible cisaillement supérieur à 10 Pa.s pour ne pas couler sur la paroi.
Il est à noter que l'agent tensio-actif du gel selon l'invention influence favorablement et notablement les propriétés rhéologiques du gel selon l'invention. Ce tensio-actif permet notamment que le gel selon l'invention puisse être mis en œuvre par pulvérisation et évite les risques d' épandage ou de coulure lors du traitement des surfaces verticales et des plafonds.
Le gel selon l'invention ainsi préparé est ensuite appliqué (1) (Figure 1) sur la surface solide
(2) à décontaminer d'un substrat en un matériau solide
(3) , en d'autres termes sur la surface (2) ayant été exposée à une contamination biologique (4) ; cette contamination biologique (4) peut être constituée par une ou plusieurs des espèces biologiques déjà définies plus haut.
Comme on l'a déjà indiqué plus haut, l'agent actif de décontamination biologique est choisi en fonction de l'espèce biologique à éliminer, détruire, ou inactiver.
Hormis éventuellement les alliages de métaux légers de type aluminium, dans le cas où l'on met en œuvre des gels basiques ou acides, il n'existe aucune limitation quant au matériau qui constitue la surface (2) à décontaminer, en effet le gel selon l'invention permet de traiter sans aucun endommagement , toutes sortes de matériaux même fragiles.
Le gel selon l'invention ne génère aucune altération, érosion, attaque, chimique, mécanique ou physique du matériau traité. Le gel selon l'invention n'est donc en aucune manière préjudiciable à l'intégrité des matériaux traités et permet même leur réutilisation. Ainsi, des matériels sensibles tels que des équipements militaires sont préservés et pourront après leur décontamination être réutilisés, tandis que les monuments traités par le gel selon l'invention ne sont absolument pas dégradés et voient leur intégrité visuelle et structurale conservée.
Ce matériau du substrat (3) peut donc être choisi parmi par exemple les métaux comme l'acier inoxydable, les polymères tels que les matières plastiques ou caoutchoucs parmi lesquels on peut citer les PVC, PP, PE notamment HDPE, PMMA, PVDF, PC, les verres, les ciments, mortiers et bétons, les plâtres, les briques, la pierre naturelle ou artificielle, les céramiques.
Dans tous les cas (voir Exemple 9 et Figure 12), quel que soit le matériau, l'efficacité de décontamination par le gel selon l'invention est totale .
La surface traitée peut être peinte ou non peinte .
De manière particulièrement surprenante, il s'est avéré que le gel selon l'invention était particulièrement efficace sur les matériaux poreux tels que les matrices cimentaires comme les pâtes, les mortiers et les bétons, les briques, les plâtres, ou encore la pierre naturelle ou artificielle. En effet, la présence dans le gel selon l'invention d'un polymère super-absorbant permet une décontamination du matériau poreux sur une profondeur beaucoup plus importante qu'avec un gel équivalent sans polymère super¬ absorbant .
En d'autres termes, la présence d'un polymère super-absorbant dans le gel selon l'invention facilite la diffusion de l'agent actif de décontamination, par exemple de l'agent biocide dans la profondeur du matériau lorsqu'il s'agit de traiter des substrats poreux, notamment minéraux.
L'efficacité du traitement avec le gel selon l'invention est généralement totale, y compris sur les matériaux contaminés sur plusieurs millimètres de profondeur .
Il n'existe également aucune limitation quant à la forme, la géométrie et la taille de la surface à décontaminer, le gel selon l'invention et le procédé le mettant en œuvre permettent le traitement de surfaces de grande taille, de géométries complexes, présentant par exemple des creux, angles, recoins.
Le gel selon l'invention assure le traitement efficace non seulement de surfaces horizontales telles que des planchers, mais aussi de surfaces verticales telles que des murs, ou de surfaces inclinées ou en surplomb telles que des plafonds.
Par rapport aux procédés de décontamination biologiques existants qui mettent en œuvre des liquides tels que des solutions, le procédé de décontamination selon l'invention qui met en œuvre un gel est particulièrement avantageux pour le traitement de matériaux de grande surface, non transportables et implantés à l'extérieur. En effet, le procédé selon l'invention du fait de la mise en œuvre d'un gel, permet la décontamination in situ en évitant l'épandage de solutions chimiques dans l'environnement et la dispersion des espèces contaminantes.
Le gel selon l'invention peut être appliqué sur la surface à traiter par tous les procédés d'application connus de l'homme du métier. Des procédés classiques sont la pulvérisation par exemple au pistolet ou l'application au moyen d'un pinceau, ou d'une taloche.
Pour l'application par pulvérisation du gel selon l'invention sur la surface à traiter, la solution colloïdale peut par exemple être véhiculée par l'intermédiaire d'une pompe basse pression, par exemple une pompe qui met en œuvre une pression inférieure ou égale à 7 bar soit environ 7.105 Pascals.
L'éclatement du jet de gel sur la surface peut être obtenu par exemple au moyen d'une buse à jet plat ou à jet rond.
La distance entre la pompe et la buse peut être quelconque, par exemple elle peut être de 1 à 50 m, notamment de 1 à 25 m.
Le temps de reprise de la viscosité suffisamment court des gels selon l'invention, permet aux gels pulvérisés d'adhérer à toutes les surfaces, par exemple à des parois.
La quantité de gel déposée sur la surface à traiter est généralement de 100 à 2000 g/m2, de préférence de 500 à 1500 g/m2, de préférence encore de 600 à 1000 g/m2.
La quantité de gel déposée par unité de surface et, par voie de conséquence, l'épaisseur du gel déposé influence la vitesse de séchage.
Ainsi, lorsque l'on pulvérise un film, couche de gel d'une épaisseur de 0,5 mm à 2 mm sur la surface à traiter, le temps de contact efficace entre le gel et les matériaux est alors équivalent à son temps de séchage, période pendant laquelle le principe actif contenu dans le gel va interagir avec la contamination.
Dans le cas des substrats poreux, par exemple des matrices cimentaires, le temps d'action de la solution biocide ayant pénétré dans le cœur de matériau suite à l'action du polymère super-absorbant peut être supérieur au temps de séchage du gel, auquel cas il est généralement nécessaire soit de réaliser un remouillage avec la solution biocide, soit de répéter une pulvérisation du gel.
En outre, il a été montré de manière surprenante que la quantité de gel déposée lorsqu'elle se situe dans les plages mentionnées plus haut et en particulier lorsqu'elle est supérieure à 500 g/m2 et notamment dans la plage de 500 à 1500 g/m2, ce qui correspond à une épaisseur minimale de gel déposée par exemple supérieure à 500 ym pour une quantité de gel déposée supérieure à 500 g/m2, permettait après séchage du gel d' obtenir une fracturation du gel sous la forme de paillettes millimétriques, par exemple d'une taille de 1 à 10 mm, de préférence de 2 à 5 mm aspirables.
La quantité de gel déposée et donc l'épaisseur de gel déposé, de préférence supérieure à 500 g/m2 soit 500 ym, est le paramètre fondamental qui influence la taille des résidus secs formés après séchage du gel et qui assure ainsi que des résidus secs de taille millimétrique et non des résidus pulvérulents soient formés, de tels résidus étant facilement éliminés par un procédé mécanique et de préférence par aspiration.
Cependant, il est également à noter que grâce à l'agent tensio-actif à faible concentration, le séchage du gel est amélioré et conduit à un phénomène de fracturation homogène avec une taille des résidus secs mono dispersée et une aptitude accrue des résidus secs à se détacher du support.
Le gel est ensuite maintenu sur la surface à traiter pendant toute la durée nécessaire à son séchage. Au cours de cette étape de séchage dont on peut considérer qu'elle constitue la phase active du procédé selon l'invention, le solvant contenu dans le gel, à savoir généralement l'eau contenue dans le gel s'évapore jusqu'à l'obtention d'un résidu sec et solide .
La durée de séchage dépend de la composition du gel dans les gammes de concentration de ses constituants données plus haut, mais aussi, comme on l'a déjà précisé, de la quantité de gel déposée par unité de surface c'est-à-dire de l'épaisseur de gel déposé .
La durée de séchage dépend aussi des conditions climatiques à savoir de la température et de l'humidité relative de l'atmosphère dans laquelle se trouve la surface solide.
Le procédé selon l'invention peut être mis en œuvre dans des conditions climatiques extrêmement larges, à savoir à une température T de 1°C à 50°C et à une humidité relative HR de 20% à 80%.
La durée de séchage du gel selon l'invention est donc généralement de 1 heure à 24 heures à une température T de 1°C à 50 °C et à une humidité relative HR de 20% à 80%. Il est à noter que la formulation du gel selon l'invention essentiellement du fait de la présence de tensio-actifs tels que les « Pluronics® » assure généralement un temps de séchage qui est sensiblement équivalent au temps de contact (entre l'agent de décontamination, tel qu'un agent biocide, et les espèces biologiques notamment bio-toxiques à éliminer) qui est nécessaire, requis pour inactiver et/ou absorber les espèces contaminantes polluant le matériau. En d'autres termes, la formulation du gel assure un temps de séchage qui n'est autre que le temps d' inactivation des espèces contaminantes biologiques et qui est compatible avec la cinétique d' inhibition de la contamination biologique.
La surface spécifique de la charge minérale généralement utilisée qui est généralement de 50 m2/g à 300 m2/g, de préférence de 100 m2/g et la capacité d'absorption du gel selon l'invention permettent de piéger la contamination labile (surfacique) du matériau constituant la surface à traiter.
Le cas échéant, les espèces biologiques contaminantes sont inactivées dans la phase gélifiée. Après séchage du gel, la contamination inactivée est éliminée lors de la récupération du résidu de gel sec décrite plus bas.
A l'issue du séchage du gel, le gel se fracture de manière homogène pour donner des résidus secs solides millimétriques, par exemple d'une taille de 1 à 10 mm, de préférence de 2 à 5 mm non pulvérulents, généralement sous la forme de paillettes solides (5) . Les résidus secs peuvent contenir la ou les espèce (s) contaminante ( s ) inactivée (s) (6).
Les résidus secs, tels que des paillettes (5) , obtenus à l'issue du séchage présentent une faible adhérence à la surface (2) du matériau décontaminé. De ce fait, les résidus secs obtenus après séchage du gel peuvent être facilement récupérés par simple brossage et/ou aspiration. Toutefois, les résidus secs peuvent aussi être évacués par jet de gaz, par exemple par jet d'air comprimé.
Ainsi, aucun rinçage n'est nécessaire et le procédé selon l'invention ne génère aucun effluent secondaire .
Le procédé selon l'invention réalise donc ainsi tout d'abord une importante économie de réactifs chimiques par rapport à un procédé de décontamination par lavage avec une solution. Ensuite du fait qu'un déchet sous la forme d'un résidu sec directement aspirable est obtenu, une opération de rinçage avec de l'eau ou avec un liquide est évitée. Il en résulte bien évidemment une diminution de la quantité d'effluents produits mais aussi une simplification notable en termes de filière de traitement et d'exutoire.
En raison de la composition majoritairement minérale du gel selon l'invention et de la faible quantité de déchets produits, le déchet sec peut être stocké ou dirigé vers une filière d'évacuation sans traitement préalable.
A titre d'exemple, dans le cas courant où l'on applique 1000 grammes de gel par m2 de surface traitée, la masse de déchet sec produite est inférieure à 300 grammes par m2.
Sur la Figure 2, on a illustré la décontamination par un gel non conforme à l'invention ne contenant pas de polymère super-absorbant d'un substrat poreux (21) contaminé par des spores en solution aqueuse (22) . Le front de contamination (23) s'étend dans la profondeur du substrat (Figure 2A) . Lorsque l'on applique un gel biocide (24) sur la surface (25) du substrat, le front de diffusion (26) de l'agent biocide s'étend peu dans la profondeur du substrat et reste en deçà du front de contamination (23) (Figure 2B) . De ce fait, lorsque le gel est enlevé (Figure 2C) la zone assainie (27) s'étend peu en profondeur et il reste une contamination résiduelle (28) dans le substrat poreux (21) .
Sur la Figure 3, on a illustré la décontamination, par un gel conforme à l'invention contenant un polymère super-absorbant, d'un substrat poreux (31) contaminé par des spores en solution aqueuse (32) . Le front de contamination (33) s'étend dans la profondeur du substrat (Figure 3A) . Lorsque l'on applique un gel biocide contenant le super¬ absorbant ( 34 ) sur la surface (35) du substrat, le front de diffusion (36) de l'agent biocide s'étend dans la profondeur du substrat et va au-delà du front de contamination (Figure 3B) . De ce fait, la zone assainie (37) s'étend en profondeur (P) et il ne reste plus de contamination résiduelle dans le substrat poreux. L' invention va maintenant être décrite en référence aux exemples suivants, donnés à titre illustratif et non limitatif. EXEMPLES :
Exemple 1 :
Dans cet exemple, on étudie la cinétique d'inhibition des spores de Bacillus thuringiensis , dans différentes solutions biocides liquides contenant différents agents actifs de décontamination à diverses concentrations, à savoir : NaOCl à 4,8%, NaOH à 1M ; HNO3 à 0,5M, CHP (chlorure d'hexadecyl pyridinium) à 2%. Des solutions comparatives contenant le tensio- actif Pluronic® P 8020 à 1%, ou le tensio-actif KR8 (alcool gras éthoxylé) à 1% ont également été utilisées .
Protocole expérimental :
L'expérimentation consiste à mettre en contact, sous agitation, 2xl06 spores avec 1 ml de solution biocide 1iquide .
A l'issue de 1 heure et 24 heures d'agitation, des prélèvements sont effectués pour révéler l'activité biologique du mélange. La révélation consiste alors à déposer une goutte de mélange sur un milieu nutritif (Gel Agar) et à dénombrer, à l'issue d'une période d'incubation de 16 heures à 30°C, le nombre de colonies formées. Chacune des colonies étant le résultat d'une spore inactivée.
Les résultats des essais sont donnés sur la
Figure 4 où le nombre de spores résiduelles est donné pour chacune des solutions biocides et des solutions comparatives à des temps de contact de 1 heure et 24 heures.
La Figure 4 montre notamment que le Pluronic® P 8020 et le tensio-actif KR8 n'ont pas d'action sur les spores.
Exemple 2 :
Dans cet exemple, on étudie la cinétique d'inhibition des spores de Bacillus thuringiensis , dans différentes solutions biocides liquides contenant différentes bases à diverses concentrations, à savoir : NaOH à 0,5 M, NaOH à 1M ; NaOH à 5M, KOH à 0,5M, KOH à 1M, et KOH à 5M.
Le protocole expérimental utilisé est analogue à celui décrit plus haut dans l'exemple 1. Seul le nombre de prélèvements de mélange est augmenté (1 heure, 2 heures, 3 heures, 4 heures, 5 heures) de manière à déterminer la cinétique d' inhibition des spores dans le milieu biocide considéré.
Les résultats des essais sont donnés sur la Figure 5 où le nombre de spores résiduelles est donné pour chacune des solutions biocides à des temps de contact de 1 heure, 2 heures, 3 heures, 4 heures, 5 heures.
La Figure 5 montre que l'augmentation de la concentration en agent biocide permet d' accroître considérablement les vitesses d' inhibition des spores de Bacillus thuringiensis. Exemple 3 :
Dans cet exemple, on étudie l'influence de la concentration en hydroxyde de sodium dans un gel de la présente invention sur la durée de séchage.
Le gel a la composition suivante en pourcentages massiques :
Alumine : 14%
Solution d' hydroxyde de sodium
(concentration variable) : 85% Tensio-actif (Pluronic® P8020) : 0,7%
Polymère super-absorbant : Polyacrylate de sodium Norsocryl® S35 : 0,3%. Protocole expérimental :
Les gels, de concentration en hydroxyde de sodium variable (0 M, 1 M, 5 M et 10 M) sont étalés sur un support métallique inerte sur une épaisseur contrôlée de 1 mm. Le support métallique contenant le film de gel est alors placé dans une enceinte climatique équipée d'une balance de précision qui assure le suivi de la perte de masse du gel au cours du temps. L'enceinte climatique est régulée à une température de 22 °C et à une humidité relative de 60%.
Les courbes de la Figure 6 montrent que le caractère hygroscopique de l' hydroxyde de sodium (mais aussi de l'hydroxyde de potassium) ralentit le phénomène de séchage du gel. De ce fait, le temps de contact entre l'agent de décontamination, à savoir la solution biocide, et la contamination biologique se trouve considérablement augmenté. Exemple 4 :
Dans cet exemple, on étudie l'influence de la température sur la cinétique de séchage d'un gel à base de NAOH 1M ; et la cinétique de séchage d'un gel à base de KOH 1M.
Les gels ont la composition suivante en pourcentages massiques :
Alumine : 14%
- Solution d' hydroxyde de sodium (1M) : 85%
Tensio-actif (Pluronic® P8020) : 0,7%
Polymère super-absorbant : Polyacrylate de sodium Norsocryl® S35 : 0,3%.
Ou bien,
- Alumine : 14%
Solution d' hydroxyde de potassium (1M) : 85%
Tensio-actif (Pluronic® P8020) : 0,7%
Polymère super-absorbant : Polyacrylate de sodium Norsocryl® S35 : 0,3%.
Le protocole expérimental utilisé est analogue à celui décrit plus haut dans l'exemple 3. L'enceinte climatique est dans un cas régulée à une température de 22°C et 40% d'humidité relative (gel NaOH 1 M, gel KOH 1 M), dans un autre à une température de 50°C et 40% d'humidité relative (gel NaOH 1 M, courbe de gauche C) .
Les courbes de la Figure 7 montrent que le temps de séchage du gel à base de NaOH 1M à 22 °C est légèrement plus long que celui du gel à base de KOH 1M à la même température tandis que le temps de séchage du gel de NaOH 1M à 50 °C est fortement réduit.
Exemple 5 :
Dans cet exemple, on étudie l'influence de l'épaisseur de gel déposé sur la cinétique de séchage d'un gel de la présente invention à base de NaOH 1M.
Le gel a la composition suivante en pourcentages massiques :
- Alumine : 14%
Solution d'hydroxyde de sodium (1M) : 85% Tensio-actif (Pluronic® P8020) : 0,7%
Polymère super-absorbant : Polyacrylate de sodium Norsocryl® S35 : 0,3%.
Le protocole expérimental utilisé est analogue à celui décrit plus haut dans l'exemple 3. L'enceinte climatique est dans ce cas régulée à une température de 22°C et 40% d'humidité relative. Seule l'épaisseur de gel déposé sur le support métallique varie de 1 mm à 2 mm.
Les courbes de la Figure 8 montrent que le temps de séchage est nettement allongé lorsque l'on passe d'une épaisseur de gel déposé de 1 mm (courbe A) à une épaisseur de gel déposé de 2 mm (courbe B) .
Exemple 6 :
Dans cet exemple, on étudie l'influence du polymère super-absorbant sur l'efficacité de la décontamination biologique d'un mortier exprimée par le nombre de spores de Bacillus thuringiensis sur un échantillon de mortier.
Protocole expérimental :
Les échantillons de mortier sont contaminés par dépôt d'une goutte d'eau d'un volume de 100 μΐ contenant 2xl07 spores de Bacillus thuringiensis.
Après diffusion de la solution contaminante dans la profondeur du matériau cimentaire, les gels biocides de décontamination sont étalés sur la face contaminée des échantillons de mortier. La quantité de gel déposé est égale à 1000 g/m2.
A l'issue de 24 heures de séchage, les paillettes de gel sec formées sont éliminées de l'échantillon de mortier. Ce dernier est alors immergé dans une solution nutritive Luria Broth maintenue sous agitation pendant 3 heures à une température de 37 °C.
La révélation de l'activité biologique résiduelle des échantillons de mortier consiste alors à prélever un volume connu de solution nutritive Luria Broth dans lequel ont trempé les échantillons de mortier et à le déposer sur un gel agarose. Après 24 heures d'incubation, le dénombrement des colonies de bactéries permet de révéler le nombre de spores non inactivées par le gel biocide de décontamination.
Le gel comprenant un polymère super-absorbant a la composition suivante en pourcentages massiques :
Alumine : 14%
Solution d'hydroxyde de sodium (1M) : 85% - Tensio-actif (Pluronic® P8020) : 0,7% Polymère super-absorbant : Polyacrylate de sodium Norsocryl® S35 : 0,3%
Le gel exempt de polymère absorbant à la même composition sauf que le polymère super-absorbant est omis .
Le graphique de la Figure 9 montre que l'ajout de polymère super-absorbant permet d' accroître significativement l'efficacité de la décontamination d'un matériau poreux tel qu'un mortier qui est contaminé en profondeur sur une épaisseur de plusieurs millimètres .
Exemple 7 :
Dans cet exemple, on étudie l'influence de la concentration en tensio-actif, à savoir le Pluronic® P 8020, sur le pouvoir d'adhésion des paillettes de gel sec . Protocole expérimental :
Le gel est appliqué sur une lame d'acier inoxydable flexible (feuille calibrée de chez Outillage francilien) , dont les propriétés mécaniques sont connues (25 ym d'épaisseur, longueur 2 cm, largeur 1 cm et un module de Young de 2.1011 Pa) , l'une des extrémités est fixe et l'autre libre. On nivelle la surface de la couche de gel avec un racleur approprié afin d'y déposer une épaisseur constante de un mm.
On ajoute deux caméras, une caméra placée au- dessus de la couche de gel permet de visualiser l'apparition des fractures et une autre placée sur le côté permet de mesurer l'évolution de l'épaisseur de la couche de gel au cours du temps. L'adhésion des paillettes est étudiée par analyses des images obtenues par les deux caméras.
Le gel étudié est le gel exempt de polymère super-absorbant dans lequel on fait varier la concentration en tensio-actif . Les autres composés étant maintenus à des teneurs massiques égales à celles de l'exemple 6.
Les concentrations en tensio-actifs sont de 0,10 g/L, et 50 g/L.
Le graphique de la Figure 10 montre que dans la gamme de concentration qui nous intéresse (< 10 g/1), l'augmentation de la concentration en Pluronic® engendre une diminution de l'adhésion des paillettes. La récupération du déchet de gel sec par brossage et/ou aspiration s'en retrouve alors facilitée.
Exemple 8 :
Dans cet exemple, on étudie l'influence de la concentration en tensio-actif, à savoir le Pluronic® P 8020, sur le nombre de paillettes de gel sec formées.
Le gel étudié est le gel de l'exemple 7 dans lequel on fait varier la concentration en tensio-actif.
Les concentrations en tensio-actifs sont de 0,10 g/L, et 50 g/L.
Le protocole expérimental utilisé est rigoureusement le même que celui utilisé dans l'exemple 7.
Le graphique de la Figure 11 montre que l'ajout de Pluronic® à la formulation du gel engendre une diminution du nombre de paillettes. L'ajout de Pluronic® permet d'améliorer la ténacité de la matrice gélifiée face à la fracturation induite par le séchage : le gel va se fracturer plus difficilement, le nombre de fractures sera moindre et le nombre de paillettes sera ainsi plus petit. En ce qui concerne le procédé de décontamination, la diminution du nombre de paillettes est bénéfique : les paillettes étant plus grosses, le déchet sera non pulvérulent lors de la phase de récupération du déchet par brossage et/ou aspiration .
Exemple 9 :
Dans cet exemple, on étudie l'efficacité du gel de traitement selon l'invention sur une contamination par des spores de Bacillus Thuringiensis en fonction de la nature du matériau traité.
Le gel étudié est le gel comprenant un polymère absorbant de l'exemple 6.
Le protocole expérimental est identique à celui de l'exemple 6. Les matériaux étudiés étant des matériaux non poreux, ces derniers sont traités par le gel après une phase d' évaporation de la goutte contaminante de 30 minutes. Cette phase d' évaporation correspondant au souhait de traiter une contamination sèche, a priori la plus préjudiciable pour le procédé de l'invention, recouvrant la surface des matériaux.
Le graphique de la Figure 12 montre qu'après récupération du gel, quel que soit le matériau traité (Acier inoxydable, acier peint, Verre, PVC, PP, PMMA, HDPE, PVDF, PC) , la décontamination est totale sans que le matériau ne soit altéré.
Cet exemple montre l'efficacité et la polyvalence du gel selon l'invention.
RÉFÉRENCES
[1] JENEVEIN. E, "Cleaning composition for neutralizing biological and chemical weapons removal agents" ,
US-B2-7, 026, 274.
[2] SCHILLING. A, HODGE . R " Peracid-based large area decontamination" , Patent n° US-AÏ- 2006/0073067.
[3] CONERLY. L, EHNTHOLT . D, LOUIE . A, WHELAN. R
"Chemical and/or biological decontamination
System", US-A1-2003/0109017.
[4] TUCKER. M, COMSTOCK. R "Decontamination formulation with sorbent additive" , US-AÏ- 2004/0022867.
[5] ROGERS. J.V, SABOURIN. C.L.K, CHOI . Y.W
"Decontamination assessment of bacillus subtilis , and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas gênerator" ,
2005.
[6] JOSSE. D, BOUDRY. I, NAUD . N "Décontamination cutanée vis-à-vis des agents organophosphorés et de l''ypérite au soufre : Bilan et perspectives" , Médecine et armées, vol. 34, n°l, pages 33-36, 2006.
[7] HOFFMAN. D, Me GUIRE. R "Oxidizer gels for detoxification of chemical and biological agents" , US-B1- 6,455,751.
[8] HARPER. B, LARSEN. L "A comparison of decontamination technologies for biological agents on selected commercial surface materials" , Biological weapons improved response program, April 2001. [9] FAURE. S, FOURNEL. B, FUENTES . P, LALLO . Y .
"Procédé de traitement d'une surface par un gel de traitement, et gel de traitement" , FR-A1-2 827 530.
[10] FAURE. S, FUENTES. P, LALLOT. Y. "Gel aspirable pour la décontamination de surfaces et utilisation", FR-A1-2 891 470.

Claims

REVENDICATIONS
1. Gel de décontamination biologique, constitué par une solution colloïdale comprenant :
- 5 à 30% en masse, de préférence 5 à 25 % ΘΠ masse, de préférence encore 8 à 20 ~6 en masse par rapport à la masse du gel, d'au moins un agent viscosant inorganique ;
0,5 à 10 mol/L de gel, de préférence 1 à 10 mol/L de gel, d'au moins un agent actif de décontamination biologique ;
0,05 à 5% en masse, de préférence 0,05 à 2% en masse par rapport à la masse du gel, d'au moins un polymère super-absorbant ;
0,1 à 2% en masse par rapport à la masse du gel, d'au moins un agent tensio-actif ;
et le reste de solvant.
2. Gel selon la revendication 1, dans lequel l'agent viscosant inorganique est choisi parmi les alumines, les silices, les aluminosilicates , les argiles, et leurs mélanges.
3. Gel selon la revendication 2, dans lequel l'agent viscosant inorganique est choisi parmi les silices pyrogénées, les silices précipitées, les silices hydrophiles, les silices hydrophobes, les silices acides, les silices basiques, et leurs mélanges .
4. Gel selon la revendication 3, dans lequel l'agent viscosant inorganique est constitué par un mélange d'une silice précipitée et d'une silice pyrogénée
5. Gel selon la revendication 2, dans lequel l'agent viscosant inorganique est constitué par une ou plusieurs alumine (s) représentant de 5% à 30% en masse, de préférence de 8 à 17% en masse par rapport à la masse du gel.
6. Gel selon l'une quelconque des revendications précédentes, dans lequel l'agent actif de décontamination biologique est choisi parmi les bases telles que l'hydroxyde de sodium, l'hydroxyde de potassium, et leurs mélanges ; les acides tels que l'acide nitrique, l'acide phosphorique, l'acide chlorhydrique, l'acide sulfurique, et leurs mélanges ; les agents oxydants tels que les peroxydes, permanganates, persulfates, l'ozone, les hypochlorites , et leurs mélanges ; les sels d'ammonium quaternaires tels que les sels d' hexacétylpyridinium ; et leurs mélanges .
7. Gel selon l'une quelconque des revendications précédentes, dans lequel le polymère super-absorbant est choisi parmi les poly (méth) acrylates de sodium, les amidons greffés par un polymère (méth) acrylique, les amidons hydrolysés greffés par un polymère (méth) acrylique ; les polymères à base d'amidon, de gomme, et de dérivé cellulosique ; et leurs mélanges.
8. Gel selon l'une quelconque des revendications précédentes, dans lequel l'agent tensio- actif est choisi parmi les agents tensio-actifs non ioniques tels que les copolymères blocs, séquencés comme les copolymères séquencés d'oxyde d' éthylène et d'oxyde de propylène, et les acides gras éthoxylés ; et leurs mélanges.
9. Gel selon l'une quelconque des revendications précédentes, dans lequel le solvant est choisi parmi l'eau, les solvants organiques et leurs mélanges.
10. Procédé de décontamination biologique d'une surface d'un substrat solide contaminée par au moins une espèce biologique se trouvant sur ladite surface et éventuellement sous ladite surface dans la profondeur du substrat, dans lequel on réalise au moins un cycle comprenant les étapes successives suivantes :
a) on applique le gel selon l'une quelconque des revendications 1 à 9 sur ladite surface ;
b) on maintient le gel sur la surface au moins pendant une durée suffisante pour que le gel détruise et/ou inactive et/ou absorbe l'espèce biologique, et pour que le gel sèche et forme un résidu sec et solide contenant ladite espèce biologique ;
c) on élimine le résidu sec et solide contenant ladite espèce biologique.
11. Procédé selon la revendication 10, dans lequel le substrat solide est un substrat poreux, de préférence un substrat minéral poreux.
12. Procédé selon la revendication 10 ou 11, dans lequel le substrat est au moins en un matériau choisi parmi les métaux comme l'acier inoxydable ; les polymères tels que les matières plastiques ou caoutchoucs comme les poly (chlorure de vinyle) s ou PVC, les polypropylènes ou PP, les polyéthylènes ou PE notamment les polyéthylènes haute densité ou HDPE, les poly (méthacrylate de méthyle) s ou PMMA, les poly ( fluorure de vinylidène) s ou PVDF, les polycarbonates ou PC ; les verres ; les ciments ; les mortiers et bétons ; les plâtres ; les briques ; la pierre naturelle ou artificielle ; les céramiques.
13. Procédé selon l'une quelconque des revendications 10 à 12, dans lequel l'espèce biologique est choisie parmi les bactéries, les champignons, les levures, les virus, les toxines, les spores et les protozoaires .
14. Procédé selon l'une quelconque des revendications 10 à 13, dans lequel l'espèce biologique est choisie parmi les espèces bio-toxiques telles que les spores pathogènes comme par exemple les spores de Bacillus anthracis, les toxines comme par exemple la toxine botulique, et les virus.
15. Procédé selon l'une quelconque des revendications 10 à 14, dans lequel le gel est appliqué sur la surface à raison de 100 g à 2000 g de gel par m2 de surface, de préférence de 500 g à 1500 g de gel par m2, de préférence encore de 600 g à 1000 g de gel par m2 de surface.
16. Procédé selon l'une quelconque des revendications 10 à 15, dans lequel le gel est appliqué sur la surface solide par pulvérisation, au pinceau ou avec une taloche.
17. Procédé selon l'une quelconque des revendications 10 à 15, dans lequel lors de l'étape b) , le séchage est réalisé à une température de 1°C à 50°C, de préférence de 15°C à 25°C, et sous une humidité relative de 20% à 80%, de préférence de 20% à 70%.
18. Procédé selon l'une quelconque des revendications 10 à 15, dans lequel le gel est maintenu sur la surface pendant une durée de 2 à 72 heures, de préférence de 2 à 48 heures, de préférence encore de 5 à 24 heures.
19. Procédé selon l'une quelconque des revendications 10 à 18, dans lequel le résidu sec et solide se présente sous la forme de particules, par exemple de paillettes, d'une taille de 1 à 10 mm, de préférence de 2 à 5 mm.
20. Procédé selon l'une quelconque des revendications 10 à 19, dans lequel le résidu sec et solide est éliminé de la surface solide par brossage et/ou aspiration.
21. Procédé selon l'une quelconque des revendications 10 à 20, dans lequel le cycle décrit est répété de 1 à 10 fois en utilisant le même gel lors de tous les cycles ou en utilisant des gels différents lors d'un ou de plusieurs cycle (s).
22. Procédé selon l'une quelconque des revendications 10 à 21, dans lequel, lors de l'étape b) , le gel, avant séchage total, est remouillé avec une solution d'un agent de décontamination biologique, de préférence avec la solution de l'agent actif biologique du gel appliqué lors de l'étape a) dans le solvant de ce gel.
PCT/EP2011/060914 2010-07-02 2011-06-29 Gel de décontamination biologique et procédé de décontamination de surfaces utilisant ce gel WO2012001046A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180033089.6A CN102971016B (zh) 2010-07-02 2011-06-29 生物净化凝胶和使用所述凝胶用于净化表面的方法
KR1020137002722A KR101848108B1 (ko) 2010-07-02 2011-06-29 생물학적 정화 겔 및 이 겔을 이용한 표면 정화 방법
RU2013104408/15A RU2569747C2 (ru) 2010-07-02 2011-06-29 Гель для биологической деконтаминации и способ деконтаминации поверхностей посредством использования этого геля
US13/806,856 US9451765B2 (en) 2010-07-02 2011-06-29 Biological decontamination gel and method for decontaminating surfaces by using this gel
JP2013517267A JP5840206B2 (ja) 2010-07-02 2011-06-29 生物学的な除染ゲル、およびこのゲルを用いて表面を除染するための方法
EP11728007.3A EP2588148B1 (fr) 2010-07-02 2011-06-29 Gel de décontamination biologique et procédé de décontamination de surfaces utilisant ce gel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1055399 2010-07-02
FR1055399A FR2962046B1 (fr) 2010-07-02 2010-07-02 Gel de decontamination biologique et procede de decontamination de surfaces utilisant ce gel.

Publications (1)

Publication Number Publication Date
WO2012001046A1 true WO2012001046A1 (fr) 2012-01-05

Family

ID=43530386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/060914 WO2012001046A1 (fr) 2010-07-02 2011-06-29 Gel de décontamination biologique et procédé de décontamination de surfaces utilisant ce gel

Country Status (8)

Country Link
US (1) US9451765B2 (fr)
EP (1) EP2588148B1 (fr)
JP (2) JP5840206B2 (fr)
KR (1) KR101848108B1 (fr)
CN (1) CN102971016B (fr)
FR (1) FR2962046B1 (fr)
RU (1) RU2569747C2 (fr)
WO (1) WO2012001046A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2984170A1 (fr) * 2011-12-19 2013-06-21 Commissariat Energie Atomique Gel de decontamination et procede de decontamination de surfaces par trempage utilisant ce gel.
WO2013171516A1 (fr) * 2012-05-18 2013-11-21 Nader Siabi Destruction contrôlée de médicaments
WO2014154818A1 (fr) 2013-03-29 2014-10-02 Commissariat à l'énergie atomique et aux énergies alternatives Gel alcalin oxydant de décontamination biologique et procédé de décontamination biologique de surfaces utilisant ce gel.
WO2014154817A1 (fr) * 2013-03-29 2014-10-02 Commissariat à l'énergie atomique et aux énergies alternatives Gel de decontamination pigmente et procede de decontamination de surfaces utilisant ce gel
WO2015082548A1 (fr) 2013-12-05 2015-06-11 Commissariat à l'énergie atomique et aux énergies alternatives Utilisation d'un gel alcalin oxydant pour eliminer un biofilm sur une surface d'un substrat solide
US20160325318A1 (en) * 2013-12-31 2016-11-10 Kimberly-Clark Worldwide, Inc. Method for cleaning hard surfaces
WO2017129688A1 (fr) * 2016-01-29 2017-08-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Materiau hydrogel utilisable pour la sequestration de composes organophosphores
WO2018011525A1 (fr) 2016-07-13 2018-01-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Gel de décontamination adsorbant et photocatalytique et procédé de décontamination de surfaces utilisant ce gel.
WO2018024990A1 (fr) 2016-08-05 2018-02-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Gel aspirable et procede pour eliminer une contamination contenue dans une couche organique en surface d'un substrat solide
WO2019018347A3 (fr) * 2017-07-17 2019-02-21 Tiax Llc Compositions de neutralisation et leurs procédés d'utilisation
US10376931B2 (en) 2014-10-15 2019-08-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Gel for removing graffiti and method for removing graffiti using said gel

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2856196C (fr) 2011-12-06 2020-09-01 Masco Corporation Of Indiana Distribution d'ozone dans un robinet
AU2012377744B2 (en) * 2012-04-17 2018-03-08 Soletanche Freyssinet Method for the galvanic protection of a reinforced concrete structure
FR2990364B1 (fr) 2012-05-11 2014-06-13 Commissariat Energie Atomique Procede de decontamination radioactive d'une terre par mousse de flottation a air disperse et ladite mousse
CN103461379B (zh) * 2013-09-16 2016-08-17 北京农学院 一种缓释臭氧溶胶、其制备方法和应用
CA2933607A1 (fr) * 2013-12-19 2015-06-25 Basf Se Melanges comprenant un polymere superabsorbant (sap) et un biopesticide
JP6018237B2 (ja) * 2014-02-14 2016-11-02 アークレイ株式会社 マイクロ流路を備えるチップの製造方法及びそれにより製造されるチップ
GB201405602D0 (en) * 2014-03-28 2014-05-14 Best Andrew Controlled drug deconstruction
CN108463437B (zh) 2015-12-21 2022-07-08 德尔塔阀门公司 包括消毒装置的流体输送系统
US10370625B2 (en) * 2016-09-08 2019-08-06 Morehouse School Of Medicine Cleaning composition, method of making and use thereof
EP3381479A1 (fr) * 2017-03-29 2018-10-03 ARTOSS GmbH Composition de support pour matériau de substitution osseuse
US20200362155A1 (en) * 2017-08-21 2020-11-19 Sumitomo Seika Chemicals Co., Ltd. Water absorbent resin dispersion liquid, water absorbent resin coating film and method for producing same
WO2020006546A1 (fr) * 2018-06-29 2020-01-02 M-I L.L.C. Procédés de recyclage d'huile à partir d'une émulsion à phase directe
RU2720175C1 (ru) * 2018-12-28 2020-04-27 Федеральное бюджетное учреждение науки "Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека Способ конвективного высушивания высокодисперсных биоматериалов
CN112604667A (zh) * 2020-11-25 2021-04-06 南京乐透思环保科技有限公司 泥水同治型底泥修复材料及其制备方法和应用
GB2614755A (en) * 2022-01-18 2023-07-19 Rotam Agrochem Int Co Ltd Pesticide suspension composition and the use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001085845A1 (fr) * 2000-05-08 2001-11-15 Maelor Pharmaceuticals Limited Gels pour blessures
US6455751B1 (en) 1999-03-03 2002-09-24 The Regents Of The University Of California Oxidizer gels for detoxification of chemical and biological agents
FR2827530A1 (fr) 2001-07-17 2003-01-24 Commissariat Energie Atomique Procede de traitement d'une surface par un gel de traitement, et gel de traitement
US20030109017A1 (en) 2000-02-01 2003-06-12 Conerly Lisa L. Chemical and/or biological decontamination system
US20040022867A1 (en) 2002-07-19 2004-02-05 Tucker Mark D. Decontamination formulation with sorbent additive
US20060073067A1 (en) 2004-10-06 2006-04-06 Government Of The United States Of America As Represented By The Secretary Of The Navy Peracid-based large-area decontamination
US7026274B2 (en) 2002-07-30 2006-04-11 Earl Jenevein Cleaning composition for neutralizing biological and chemical weapons removal agents
FR2891470A1 (fr) 2005-10-05 2007-04-06 Commissariat Energie Atomique Gel aspirable pour la decontamination de surfaces et utilisation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1321115C (fr) * 1987-12-30 1993-08-10 Robert Corring Composes de gel detergent
FR2695839B1 (fr) * 1992-09-23 1994-10-14 Commissariat Energie Atomique Gel décontaminant réducteur et son utilisation pour la décontamination de surface notamment d'installations nucléaires.
FR2746328B1 (fr) * 1996-03-21 1998-05-29 Stmi Soc Tech Milieu Ionisant Gel organomineral de decontamination et son utilisation pour la decontamination de surfaces
EP1991624A2 (fr) * 2006-02-23 2008-11-19 E.I. Du Pont De Nemours And Company Compositions de revêtement antimicrobiennes amovibles et procédés d'utilisation de celles-ci
JP5046666B2 (ja) * 2007-01-26 2012-10-10 正男 碇 抗菌方法ならびに微生物紛体、微生物含有液剤、微生物含有ゲル化剤
FR2912668B1 (fr) 2007-02-15 2009-05-22 Commissariat Energie Atomique Mousse de decontamination, de decapage et/ou de degraissage a particules solides
FR2936720B1 (fr) 2008-10-03 2010-10-29 Commissariat Energie Atomique Procede de decontamination electrocinetique d'un milieu solide poreux.
IL196375A0 (en) * 2009-01-07 2009-12-24 Israel Inst Biolog Res Compositions for decontaminating hazardous chemical and biological compounds, methods employing same and systems for preparing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455751B1 (en) 1999-03-03 2002-09-24 The Regents Of The University Of California Oxidizer gels for detoxification of chemical and biological agents
US20030109017A1 (en) 2000-02-01 2003-06-12 Conerly Lisa L. Chemical and/or biological decontamination system
WO2001085845A1 (fr) * 2000-05-08 2001-11-15 Maelor Pharmaceuticals Limited Gels pour blessures
FR2827530A1 (fr) 2001-07-17 2003-01-24 Commissariat Energie Atomique Procede de traitement d'une surface par un gel de traitement, et gel de traitement
WO2003008529A1 (fr) * 2001-07-17 2003-01-30 Commissariat A L'energie Atomique Procede de traitement d'une surface par un gel de traitement, et gel de traitement
US20040022867A1 (en) 2002-07-19 2004-02-05 Tucker Mark D. Decontamination formulation with sorbent additive
US7026274B2 (en) 2002-07-30 2006-04-11 Earl Jenevein Cleaning composition for neutralizing biological and chemical weapons removal agents
US20060073067A1 (en) 2004-10-06 2006-04-06 Government Of The United States Of America As Represented By The Secretary Of The Navy Peracid-based large-area decontamination
FR2891470A1 (fr) 2005-10-05 2007-04-06 Commissariat Energie Atomique Gel aspirable pour la decontamination de surfaces et utilisation
WO2007039598A2 (fr) * 2005-10-05 2007-04-12 Commissariat A L'energie Atomique Gel aspirable pour la decontamination de surfaces et utilisation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HARPER. B, LARSEN. L: "A comparison of decontamination technologies for biological agents on selected commercial surface materials", BIOLOGICAL WEAPONS IMPROVED RESPONSE PROGRAM, April 2001 (2001-04-01)
JOSSE. D, BOUDRY. I, NAUD. N: "Décontamination cutanée vis-à-vis des agents organophosphorés et de l'ypérite au soufre : Bilan et perspectives", MÉDECINE ET ARMÉES, vol. 34, no. 1, 2006, pages 33 - 36
L. BRANNON-PAPPAS, R. HARLAND: "Absorbent Polymer Technology, Studies in Polymer Science", 1990, ELSEVIER
ROGERS. J.V, SABOURIN. C.L.K, CHOI. Y.W, DECONTAMINATION ASSESSMENT OF BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACES USING A HYDROGEN PEROXIDE GAS GENERATOR, 2005

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013092633A1 (fr) * 2011-12-19 2013-06-27 Commissariat à l'énergie atomique et aux énergies alternatives Gel de décontamination et procédé de décontamination de surfaces par trempage utilisant ce gel
FR2984170A1 (fr) * 2011-12-19 2013-06-21 Commissariat Energie Atomique Gel de decontamination et procede de decontamination de surfaces par trempage utilisant ce gel.
GB2507464B (en) * 2012-05-18 2015-01-14 Nader Siabi Controlled drug destruction
WO2013171516A1 (fr) * 2012-05-18 2013-11-21 Nader Siabi Destruction contrôlée de médicaments
GB2507464A (en) * 2012-05-18 2014-05-07 Nader Siabi Controlled drug destruction kit
JP2016521260A (ja) * 2013-03-29 2016-07-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 酸化型アルカリ性生物学的除染ゲル及び前記ゲルを用いた表面の生物学的除染法
KR102247193B1 (ko) 2013-03-29 2021-05-03 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 산화성의 알칼리성 생물오염제거용 겔 및 상기 겔을 사용한 표면 생물오염제거 방법
FR3003763A1 (fr) * 2013-03-29 2014-10-03 Commissariat Energie Atomique Gel alcalin oxydant de decontamination biologique et procede de decontamination biologique de surfaces utilisant ce gel.
WO2014154817A1 (fr) * 2013-03-29 2014-10-02 Commissariat à l'énergie atomique et aux énergies alternatives Gel de decontamination pigmente et procede de decontamination de surfaces utilisant ce gel
JP2019048978A (ja) * 2013-03-29 2019-03-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 着色除染ゲル及び前記ゲルを用いて表面を除染するための方法
US10251391B2 (en) 2013-03-29 2019-04-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Oxidizing alkaline biodecontamination gel and surface biodecontamination method using said gel
KR20150140712A (ko) * 2013-03-29 2015-12-16 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 착색된 오염제거용 겔 및 상기 겔을 사용한 표면 오염제거 방법
KR20150140713A (ko) * 2013-03-29 2015-12-16 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 산화성의 알칼리성 생물오염제거용 겔 및 상기 겔을 사용한 표면 생물오염제거 방법
US20160057993A1 (en) * 2013-03-29 2016-03-03 Commissariat à l'énergie atomique et aux énergies alternatives Pigmented decontaminating gel and method for decontaminating surfaces using said gel
JP2016521199A (ja) * 2013-03-29 2016-07-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 着色除染ゲル及び前記ゲルを用いて表面を除染するための方法
RU2669932C2 (ru) * 2013-03-29 2018-10-17 Коммиссариат А Л'Энержи Атомик Э Оз Энержи Альтернатив Окисляющий щелочной гель для биодеконтаминации и способ биодеконтаминации поверхности с применением этого геля
WO2014154818A1 (fr) 2013-03-29 2014-10-02 Commissariat à l'énergie atomique et aux énergies alternatives Gel alcalin oxydant de décontamination biologique et procédé de décontamination biologique de surfaces utilisant ce gel.
KR102286086B1 (ko) 2013-03-29 2021-08-05 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 착색된 오염제거용 겔 및 상기 겔을 사용한 표면 오염제거 방법
FR3003869A1 (fr) * 2013-03-29 2014-10-03 Commissariat Energie Atomique Gel de decontamination pigmente et procede de decontamination de surfaces utilisant ce gel.
US10653131B2 (en) 2013-03-29 2020-05-19 Commissariat à l'énergie atomique et aux énergies alternatives Pigmented decontaminating gel and method for decontaminating surfaces using said gel
US9834744B2 (en) 2013-12-05 2017-12-05 Commissariat à l'énergie atomique et aux énergies alternatives Use of an oxidising alkaline gel to remove a biofilm on a surface of a solid substrate
FR3014336A1 (fr) * 2013-12-05 2015-06-12 Commissariat Energie Atomique Utilisation d'un gel alcalin oxydant pour eliminer un biofilm sur une surface d'un substrat solide.
WO2015082548A1 (fr) 2013-12-05 2015-06-11 Commissariat à l'énergie atomique et aux énergies alternatives Utilisation d'un gel alcalin oxydant pour eliminer un biofilm sur une surface d'un substrat solide
US20160325318A1 (en) * 2013-12-31 2016-11-10 Kimberly-Clark Worldwide, Inc. Method for cleaning hard surfaces
US9931679B2 (en) * 2013-12-31 2018-04-03 Kimberly-Clark Worldwide, Inc. Method for cleaning hard surfaces
US10376931B2 (en) 2014-10-15 2019-08-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Gel for removing graffiti and method for removing graffiti using said gel
FR3047242A1 (fr) * 2016-01-29 2017-08-04 Commissariat Energie Atomique Materiau hydrogel utilisable pour la sequestration de composes organophosphores
WO2017129688A1 (fr) * 2016-01-29 2017-08-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Materiau hydrogel utilisable pour la sequestration de composes organophosphores
WO2018011525A1 (fr) 2016-07-13 2018-01-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Gel de décontamination adsorbant et photocatalytique et procédé de décontamination de surfaces utilisant ce gel.
US11517640B2 (en) 2016-07-13 2022-12-06 Commissariat à l'énergie atomique et aux énergies alternatives Adsorbent and photocatalytic decontamination gel, and method for decontaminating surfaces using said gel
WO2018024990A1 (fr) 2016-08-05 2018-02-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Gel aspirable et procede pour eliminer une contamination contenue dans une couche organique en surface d'un substrat solide
US11081251B2 (en) 2016-08-05 2021-08-03 Commissariat à l'énergie atomique et aux énergies alternatives Suctionable gel and method for eliminating a contamination contained in a surface organic layer of a solid substrate
WO2019018347A3 (fr) * 2017-07-17 2019-02-21 Tiax Llc Compositions de neutralisation et leurs procédés d'utilisation

Also Published As

Publication number Publication date
CN102971016B (zh) 2015-05-20
JP5840206B2 (ja) 2016-01-06
RU2013104408A (ru) 2014-08-10
JP2013532160A (ja) 2013-08-15
KR20130090402A (ko) 2013-08-13
EP2588148B1 (fr) 2014-12-10
US9451765B2 (en) 2016-09-27
FR2962046A1 (fr) 2012-01-06
KR101848108B1 (ko) 2018-04-11
CN102971016A (zh) 2013-03-13
EP2588148A1 (fr) 2013-05-08
FR2962046B1 (fr) 2012-08-17
US20130171024A1 (en) 2013-07-04
JP2016093503A (ja) 2016-05-26
RU2569747C2 (ru) 2015-11-27
JP6078624B2 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
EP2588148B1 (fr) Gel de décontamination biologique et procédé de décontamination de surfaces utilisant ce gel
WO2014154817A1 (fr) Gel de decontamination pigmente et procede de decontamination de surfaces utilisant ce gel
EP2793959A1 (fr) Gel de décontamination et procédé de décontamination de surfaces par trempage utilisant ce gel
FR3003763A1 (fr) Gel alcalin oxydant de decontamination biologique et procede de decontamination biologique de surfaces utilisant ce gel.
EP3484610B1 (fr) Gel de décontamination adsorbant et photocatalytique et procédé de décontamination de surfaces utilisant ce gel.
EP3077491B1 (fr) Utilisation d&#39;un gel alcalin oxydant pour eliminer un biofilm sur une surface d&#39;un substrat solide
EP3310399B1 (fr) Mousse aqueuse désinfectante, son procédé de préparation et ses utilisations
WO2020012125A2 (fr) Procede de decontamination d&#39;un milieu gazeux contamine par des especes contaminantes en suspension.
WO2022184996A1 (fr) Procede de decontamination de surfaces ou de milieux gazeux utilisant un gel ferromagnetique
EP3870686A1 (fr) Pâte de decontamination et procede de decontamination d&#39;un substrat en un materiau solide utilisant cette pâte

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033089.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11728007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2828/MUMNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2013517267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011728007

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137002722

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013104408

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13806856

Country of ref document: US