WO2012000333A1 - 一种定位海底管道机器人方法及装置 - Google Patents

一种定位海底管道机器人方法及装置 Download PDF

Info

Publication number
WO2012000333A1
WO2012000333A1 PCT/CN2011/072164 CN2011072164W WO2012000333A1 WO 2012000333 A1 WO2012000333 A1 WO 2012000333A1 CN 2011072164 W CN2011072164 W CN 2011072164W WO 2012000333 A1 WO2012000333 A1 WO 2012000333A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure wave
signal
robot
pipeline
Prior art date
Application number
PCT/CN2011/072164
Other languages
English (en)
French (fr)
Inventor
张化光
刘金海
冯健
李济磊
魏向向
马大中
刘振伟
张新钢
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to US13/701,763 priority Critical patent/US9013958B2/en
Publication of WO2012000333A1 publication Critical patent/WO2012000333A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves

Definitions

  • the invention belongs to the technical field of pipeline detection, and particularly relates to a method and a device for positioning a subsea pipeline robot.
  • Pipes are widely used in the transportation industry in the fields of petroleum, chemical industry, natural gas, etc., and play an irreplaceable role.
  • pipeline robots are gradually used in pipeline cleaning and defect detection. Accurately determining the position of the pipeline robot is an important guarantee for the robot to complete its work.
  • the positioning technology of the pipeline robot is the technique for determining the position of the pipeline robot in the pipeline.
  • the main applications are GPS navigation positioning, CCD visual positioning and optical encoder positioning.
  • GPS navigation and positioning is that the satellite continuously transmits its ephemeris parameters and time information. After receiving the information, the user calculates the three-dimensional position, three-dimensional direction and motion speed and time information of the receiver. With the GPS positioning system, the position of the pipe robot can be located. However, due to the deep burial of the submarine pipeline, the long pipeline and the harsh surrounding environment, it is difficult to achieve navigation and positioning with GPS.
  • CCD Charge Coupled Device
  • the camera's internal flash memory or internal hard drive card saves data, making it easy to transfer data to a computer.
  • the vision-based CCD positioning cannot extract effective visual features due to oil pollution.
  • the photoelectric code disc is made of optical glass, and has many concentric code tracks engraved thereon, and each code track has a light-transmitting and opaque portion arranged in a regular pattern.
  • the light is projected on the code wheel, and the code wheel rotates with the moving object, and the light passing through the bright area passes through the slit and is received by the photosensitive element, and the arrangement of the photosensitive elements corresponds to the code channel one by one, when the code wheel rotates differently
  • the combination of the output signals of the photosensitive elements reflects a certain regular digital quantity, representing the angular displacement of the code wheel axis, and the distance from the code wheel can be calculated according to the angular displacement and the diameter of the code wheel, so that the pipeline robot can be measured. position.
  • the presence of oil in the pipeline also affects the application of the photoelectric encoder, making it bumpy and slippery and unable to locate.
  • the present invention provides a method and apparatus for positioning a subsea pipeline robot.
  • the method of the present invention is realized by the pressure wave positioning device of the subsea pipeline robot of the present invention:
  • the submarine pipeline machine of the present invention comprises a pressure wave launching device and a pressure wave collecting and processing device;
  • the pressure wave launching device includes two working chambers, a piston, a spring, a stepping motor, a gear, a chain, a shrapnel, and a single chip and a driving chip. Connection of various components of the pressure wave transmitting device: Two cylindrical working chambers are respectively located on both sides of the pressure wave transmitting device, and the two working chambers are hollow in the axial direction to send pressure waves to both sides of the pipe; Each of the pistons is provided with a piston, and four springs are evenly mounted on the outer circumference of the piston (in the direction away from the center of the device), one end of the spring is connected to the outer side of the piston, and the other end of the spring is mounted on both ends of the working chamber, and the spring and the piston are The circular section is perpendicular, each piston is equipped with four springs.
  • the initial position of the piston is close to the outer edge of the working chamber, and the spring is in a tight state.
  • the stepping motor is located at the inner center of the two pistons, and the stepping motor shaft is installed with less than the working room.
  • the diameter of the gear is mounted on each of the two ends of the gear at a position of one end of the gear.
  • One end of the chain is installed at the intersection of any diameter of the gear and the circumference of the gear, and the other end of the chain is respectively mounted on the inner side of a piston (pointing to the center of the device)
  • the center position of the direction) the shrapnel is mounted on the side of the stepper motor, and the control step Motor stops, the stepping motor is mounted below the microcontroller and the driver chip.
  • the pressure wave collecting and processing device comprises a pressure transmitter, a signal conditioning board, an A/D module, an ARM processor, a FLASH module and a keyboard display device;
  • the pressure wave launching device is installed on the subsea pipeline robot; a pressure transmitter is installed on the pipeline end of the oil pipeline and the end of the pipeline; the output end of the pressure transmitter is connected to the input end of the signal conditioning board; the output of the signal conditioning board The end is connected to the A/D module; the A/D module is connected to the ARM processor; the output terminals of the FLASH module and the keyboard display device are respectively connected to the ARM processor.
  • the working principle of the device of the invention is: installing a pressure wave launching device on the subsea pipeline robot.
  • the pressure wave launching device sends a pressure signal to the two ends of the pipeline at a fixed frequency, and installs pressure on both sides of the pipeline.
  • the transmitter is configured to receive a pressure signal from the pressure wave transmitting device, and amplify and filter the pressure signal through an analog signal conversion module, and then transmit the signal to the microprocessor, through wavelet transform theory and neural network algorithm, etc.
  • the data processing method processes the signal, and finally calculates the positioning distance data of the pipeline robot through the pressure wave ranging theory and saves it.
  • the working process of the device of the invention is as follows: The device is installed on the subsea pipeline robot, and the robot advances in the pipeline.
  • the single chip microcomputer controls the stepping motor through the driving chip, so that the stepping motor is equipped with two
  • the gear of the chain rotates forward and reverse at a predetermined frequency.
  • the gear tightens the chain, the chain pulls the piston to move inward, and the spring outside the piston is in tension; when the gear is reversed, the gear relaxes the chain, and then the outer side of the piston The spring pulls the piston back to its original position.
  • the chain is regularly tightened and relaxed, and the piston reciprocates at a set frequency within the cavity of the working chamber, so that the device continuously emits a certain frequency of pressure to the beginning and the end of the pipe.
  • the microcontroller stops the motor by driving the chip.
  • the launch of the pressure wave can be set in two ways: (1) Stop-and-go launch mode: The pressure wave launcher collects the speed signal of the pipeline robot. When the robot speed signal is not zero, the robot does not emit pressure waves when moving, when the speed When the signal is zero, the device transmits a pressure wave of a certain frequency; (2) Real-time transmission mode: The speed of the pipeline wave robot is collected by the pressure wave launching device The signal, the device always emits a pressure wave, and the frequency of the pressure wave is inversely proportional to the speed signal of the robot, that is, the slower the moving speed of the robot, the higher the frequency of the pressure wave.
  • the above-mentioned pressure wave launching device should not be too long, but the following conditions must be met: When the pressure wave launching device moves forward with the robot in the pipeline, it cannot rotate laterally in the pipeline so that the pressure wave cannot follow the positive direction. Issued to both sides of the pipe.
  • the pressure wave generator should be pre-treated before it is installed to conform to the fluid standard as much as possible so that it does not increase the resistance of the robot. Test it before use, check that the cavity in the work chamber is closed, that the piston is moving properly, and that other problems such as deformation occur.
  • the method of positioning using a pressure wave positioning device is as follows:
  • Step 1 The pressure wave transmitting device acquires the moving speed signal of the robot, determines whether the transmitting mode is a stop launch or a real-time launch, and then the pressure wave transmitting device sends a pressure signal to the beginning and the end of the pipeline at a fixed frequency according to a set manner;
  • Step 2 The pressure transmitter is used to collect the pressure signal in the field, and the pressure signal is 1 ⁇ 5V voltage signal;
  • Step 3 Using the RC filter to remove the interference and sampling noise, filtering the pressure signal, and filtering the filtered pressure signal by using non-sampling wavelet Perform fine filtration to further reduce the pressure signal;
  • Step 4 group the fixed time filtered signals into a group, which is a set of pressure time series, which is a constant independent of the environment;
  • Step 5 Using BP neural network to identify the data in this time period in real time;
  • Real-time data ⁇ ''Joint history data constitutes the input vector, as the input of the current neural network, the next output of the prediction is obtained.
  • Prediction error 'value and the prediction-5 Prediction error 'value and the prediction-5).
  • ⁇ failure judgment value as a basis of err, if err> RT, then the current number of According to the data exceeding the specified data, otherwise continue to judge, the RT is preset or the threshold obtained by automatic identification; wherein, steps 1) and 2) are completed offline using the historical pressure time series, in order to ensure the real-time performance of the signal identification, 3) ,
  • Step 6 According to the BP neural network identification result and the frequency of the pressure signal emitted by the pressure wave transmitting device, the moving state of the robot in the tube is determined;
  • Step 7 Apply the pressure wave ranging theory to calculate the position of the robot in the tube, and update the time period data group in real time by using the first-in-first-out method;
  • Step 8 End when the robot advances to the pipe end, otherwise repeat step 4 through step 7.
  • the positioning function of the subsea pipeline robot can be realized.
  • the location of the subsea pipeline robot is measured in real time by collecting data independently and performing analysis and processing of the data.
  • the harsh environment around the pipeline has less impact on the method.
  • Figure 1 is a longitudinal sectional view of a pressure wave transmitting device of the present invention
  • Figure 2 is a transverse sectional view of the pressure wave transmitting device of the present invention.
  • Figure 3 is a side view of the pressure wave transmitting device of the present invention.
  • FIG. 4 is a schematic diagram of a single-chip controlled stepping motor in a pressure wave transmitting device of the present invention
  • Figure 5 is a connection diagram of a pressure wave collecting and processing device for a subsea pipeline robot according to the present invention
  • FIG. 6 is an electrical schematic diagram of a signal conditioning board in a pressure wave acquisition and processing device of the present invention.
  • FIG. 7 is an electrical schematic diagram of a FLASH module and an ARM processor in a pressure wave acquisition and processing device of the present invention
  • FIG. 8 is a flow chart of a pressure wave positioning method for a subsea pipeline robot according to the present invention.
  • a method and apparatus for positioning a subsea pipeline robot according to the present invention will be described with reference to an example.
  • the pressure wave positioning device for positioning a subsea pipeline robot of the present invention comprises a pressure wave launching device and a pressure wave collecting and processing device;
  • the pressure wave launching device comprises two working chambers 10, a piston 3, a spring 2, a stepping motor 1, a gear 9, a chain 4, a spring 7 and a single chip and a driving chip 8.
  • each of the working chambers 10 is provided with a piston 3, and the outer side of the piston 3 (in a direction away from the center position of the device) is circumferentially
  • a spring 2 is mounted at a 90 degree angle, and the other side of the spring 2 is mounted on the outer wall 6 of the work chamber, and the spring 7 is kept perpendicular to the circular cross section of the piston 3.
  • Each piston 3 is provided with four springs 2, the initial position of the piston 3 is close to the outer edge of the working room 10, and the spring 2 is in a contracted state;
  • the center position of the pressure wave transmitting device is a stepping motor 1, and the stepping motor is mounted on the shaft 1
  • gears 9 having a diameter smaller than the diameter of the working chamber 10, and one chain 4 is attached to each of the two ends of the gear 9 at the ends of each of the diameters of the gears 9, and the other ends of each of the chains 4 are respectively mounted on the inner side of one of the pistons 3 (pointing toward the center of the device)
  • the center position of the pressure wave transmitting device is mounted with a spring piece 7 for controlling the stop of the stepping motor 1, a single chip for controlling the stepping motor 1, and a driving chip 8, and the single chip microcomputer and the driving chip 8 are as shown in FIG.
  • the pressure wave acquisition and processing device is shown in Figure 5, including pressure transmitter, signal conditioning board, A/D module, ARM processor, FLASH module and keyboard display device; wherein the single-chip microcomputer in the pressure wave transmitting device selects AT89S52, The driver chip selects the TA8435; the A-traversal processor in the pressure wave acquisition and processing device selects the S3C2440 model.
  • the pressure wave launching device is installed on the subsea pipeline robot; a pressure transmitter is installed on the pipeline end of the oil pipeline and the end of the pipeline; the output end of the pressure transmitter is connected to the input terminal of the signal conditioning board DIN0 ⁇ DIN7;
  • the transmitter collects the pressure signal from the pressure wave transmitting device in the field; the output terminals AIN0 ⁇ AIN7 of the signal conditioning board are respectively connected to the input terminals AIN0 ⁇ AIN7 of the A/D module provided by the ARM processor; filtering is performed by the signal conditioning board After processing, the filtered signal is adjusted to a range that can be accepted by the A/D module; converted into a digital signal by the A/D module, and the digital signal is sent to the ARM processor, and the data is processed by the ARM processor.
  • the 8, 18, 17, 16, 9, 7, and 29-44 interfaces of a FLASH module are respectively connected to the El, F3, Dl, F5, F4, G6, and D12 of the ARM processor.
  • ⁇ A14 interface another FLASH module 26, 11, 28, 9, 16, 17, 48, 1 ⁇ 8, 18 ⁇ 25 and 29 ⁇ 45 interfaces are respectively connected to the C5 of the ARM processor, E6, F6, D10 ⁇ E 7 and D12 ⁇ B17 interfaces, the output terminals of the keyboard display device are respectively connected to the ARM processor, and the graphic and text information is directly displayed on the keyboard display device of the device peripheral through the serial port, and the signal conditioning board is as shown in FIG. 6 As shown, the connection of the APRM processor to the two FLASH modules is shown in Figure 7.
  • the working process of the device of the invention is: mounting the pressure wave launching device on the subsea pipeline robot, as the robot advances in the pipeline.
  • the single-chip microcomputer in the device controls the stepping motor 1 through the driving chip, so that the gear 9 equipped with the two chains 4 on the motor rotates forward and reverse at a predetermined frequency, and the stepping motor 1 rotates forward.
  • the gear 9 twists the chain 4, the chain 4 pulls the piston 3 to move inward, the spring 4 outside the piston 3 is in a stretched state; the gear 9 relaxes the chain 4 when reversed, and the spring 4 outside the piston 3 pulls the piston 3 back In the original position, as the stepping motor 1 is regularly reversed, the chain 4 is regularly tightened and relaxed, and the piston 3 reciprocates at a set frequency within the cavity of the working chamber, so that the device is toward the beginning of the pipe. And the terminal continuously emits a pressure wave of a certain frequency.
  • the motor schematic is shown in Figure 4.
  • the specific implementation process of the present invention is: installing a pressure wave launching device on the subsea pipeline robot. When the robot is in the pipeline, the pressure wave launching device respectively sends a pressure signal to the two ends of the pipeline at a certain frequency, and the pressure is installed on both sides of the pipeline.
  • the transmitter is configured to receive a pressure signal from the pressure wave transmitting device, and amplify and filter the pressure signal through an analog signal conversion module, and then transmit the signal to the microprocessor, and pass data such as wavelet transform theory and neural network algorithm.
  • the processing method is used to process the signal, and finally the positioning distance data of the pipeline robot is calculated and saved by the pressure wave ranging theory.
  • the present invention utilizes a pressure signal for positioning, which can greatly reduce the difficulty of the robot positioning caused by the length and depth of the pipeline.
  • the invention is also less affected by oil stains.
  • the invention provides a method for positioning a submarine pipeline robot, and the specific steps are as follows:
  • Step 1 The pressure wave transmitting device acquires the moving speed signal of the robot, determines whether the transmitting mode is a stop launch or a real launch, and then the pressure wave transmitting device sends a pressure signal to the beginning and the end of the pipeline at a frequency of once every 10 seconds according to a set mode.
  • Step 2 Using a pressure transmitter to collect the pressure signal in the field, the pressure signal is a voltage signal of 1 ⁇ 5V; Step 3. Using the RC filter to remove the interference and sampling noise, filtering the pressure signal, and using the filtered pressure signal Sampling wavelet filtering for fine filtering to further reduce the pressure signal;
  • Step 4 Group the filtered signals every 10 minutes into a group. This is a set of pressure time series, which is a constant independent of the environment;
  • Step 5 Using the obtained pipeline pressure time series to conduct online learning, and using BP neural network to identify the current time period data in real time;
  • Step 6 According to the BP neural network identification result and the frequency of the pressure signal emitted by the pressure wave transmitting device, the moving state of the robot in the tube is determined;
  • Step 7 Apply the pressure wave ranging theory to calculate the position of the robot in the tube, and update the time period data group in real time by using the first-in-first-out method;
  • Step 8 End when the robot advances to the pipe end, otherwise repeat step 4 through step 7.
  • Step 5 is as follows:
  • Real-time data ⁇ ''Joint history data constitutes the input vector, as the input of the current neural network, the next output of the prediction is obtained.
  • RT is the preset or the threshold obtained by automatic identification
  • steps 1) and 2) are completed offline using historical pressure time series.
  • steps 3), 4) and 5) should be performed simultaneously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manipulator (AREA)
  • Feedback Control In General (AREA)

Description

一种定位海底管道机器人方法及装置 技术领域:
本发明属于管道检测技术领域, 特别涉及一种定位海底管道机器人方法及装置。
背景技术:
管道在石油、 化工、 天然气等领域的运输业中被广泛应用, 发挥着不可替代的作用。 伴 随着管道运输业的发展, 管道机器人逐渐广泛地应用于管道清理、 缺陷检测等方面。 准确测 定管道机器人的位置是机器人完成工作的重要保证。 管道机器人的定位技术就是确定管道机 器人在管道内位置的技术。 实现管道机器人定位的方法很多, 目前主要应用的有 GPS导航定 位、 CCD视觉定位及光电码盘定位等。
GPS导航定位是卫星不间断地发送自身的星历参数和时间信息,用户接收到这些信息后, 经过计算求出接收机三维位置、 三维方向以及运动速度和时间信息。 通过 GPS定位系统, 可 以定位出管道机器人位置。 但由于海底输油管线埋藏很深、 管线很长且周围环境很恶劣, 用 GPS很难实现导航定位。
电荷藕合器件图像传感器 CCD (Charge Coupled Device), 它使用一种高感光度的半导体 材料制成, 能把光线转变成电荷, 通过模数转换器芯片转换成数字信号, 数字信号经过压缩 以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机。 但由于管道内油污很多, 受到油污的影响, 基于视觉的 CCD定位无法提取有效的视觉特征。
光电码盘是由光学玻璃制成,在上面刻有许多同心码道,每个码道上都有按一定规律 排列的透光和不透光部分。 工作时, 光投射在码盘上, 码盘随运动物体一起旋转, 透过亮 区的光经过狭缝后由光敏元件接受, 光敏元件的排列与码道一一对应, 当码盘旋转在不同 位置时, 光敏元件输出信号的组合反映出一定规律的数字量, 代表了码盘轴的角位移, 根 据角位移与码盘的直径可以计算出码盘前进的距离, 这样可以测得管道机器人的位置。但 管道内油污的存在同样影响光电码盘的应用, 使其颠簸和打滑而无法定位。
发明内容:
针对现有技术存在的不足, 本发明提供一种定位海底管道机器人方法及装置。
本发明的方法通过本发明海底管道机器人压力波定位装置实现的: 本发明海底管道机器 人压力波定位装置包括压力波发射装置和压力波采集与处理装置;
其中压力波发射装置包括有两个工作间、 活塞、 弹簧、 步进电机、 齿轮、 链条、 弹片和 单片机与驱动芯片。 压力波发射装置各部件的连接: 两个圆柱状的工作间分别位于压力波发射装置的两侧, 两个工作间沿轴向中空, 用以向管道两侧发出压力波; 每个工作间中各设置有一个活塞, 活 塞外侧 (背离装置中心位置的方向) 的圆周上均匀安装四根弹簧, 弹簧的一端连接在活塞外 侧上, 弹簧的另一端安装在工作间两端, 并且弹簧与活塞的圆形截面相垂直, 每个活塞上装 有四根弹簧, 活塞的初始位置靠近工作间外侧边缘, 弹簧处于紧缩状态; 步进电机位于两个 活塞内侧中心, 步进电机轴上安装有小于工作间直径的齿轮, 在齿轮任意一条直径两端的位 置上各安装有一根链条, 链条一端安装在齿轮任意直径与齿轮圆周交点处, 链条的另一端分 别对应安装在一个活塞的内侧 (指向装置中心位置的方向) 的圆心位置, 弹片安装在步进电 机的侧面, 控制步进电机停转, 步进电机下面安装有单片机与驱动芯片。
其中压力波采集与处理装置包括压力变送器、 信号调理板、 A/D 模块、 ARM 处理器、 FLASH模块和键盘显示设备;
上述压力波发射装置安装在海底管道机器人上; 输油管道的始端和终端的管道壁上安装 有压力变送器; 压力变送器的输出端与信号调理板的输入端连接; 信号调理板的输出端连接 到 A/D模块; A/D模块连接到 ARM处理器中; FLASH模块、 键盘显示设备的输出端分别连接 ARM处理器。
本发明装置的工作原理是: 在海底管道机器人上安装压力波发射装置, 当机器人在管道 中时, 压力波发射装置分别向管道的两端按固定频率发出压力信号, 在管道的两侧安装压力 变送器, 用以接收压力波发射装置发出的压力信号, 并通过模拟信号转换模块对此压力信号 进行放大、 滤波处理, 而后将信号传递给微处理器, 通过小波变换理论和神经网络算法等数 据处理方式对信号进行处理, 最后通过压力波测距理论计算出管道机器人的定位距离数据并 保存。
本发明装置的工作过程如下: 装置安装在海底管道机器人上, 随机器人在管道中前进, 当按既定方式要求发射压力波时, 单片机通过驱动芯片控制步进电机, 使步进电机上装有两 根链条的齿轮按既定频率正转和反转, 步进电机正转时齿轮绞紧链条, 链条拉动活塞向内侧 移动, 活塞外侧的弹簧处于拉伸状态; 反转时齿轮放松链条, 这时活塞外侧的弹簧将活塞拉 回到原来位置。 随着电机规则地正反转, 链条被规则地绞紧和放松, 活塞在工作间的空腔内 按设定的频率往复运动, 这样, 装置就向管道的始端和终端不断发出一定频率的压力波, 要 停止发射压力波时, 单片机通过驱动芯片使电机停转。
压力波的发射可设置两种方式: (1 ) 停步发射方式: 压力波发射装置采集管道机器人的 速度信号, 当机器人速度信号不为零时, 即机器人在移动时不发射压力波, 当速度信号为零 时, 装置发射一定频率的压力波; (2) 实时发射方式: 压力波发射装置采集管道机器人的速 度信号, 装置一直发射压力波, 压力波的频率与机器人的速度信号成反比, 即机器人移动速 度越慢, 压力波频率越高。
在实际应用中, 上述压力波发射装置长度不宜过长, 但要满足下面的条件: 当压力波发 射装置随机器人在管道中向前移动时, 不能在管道中横向转动以至压力波不能沿正向向管道 两侧发出。 一般来讲, 安装压力波发生装置前要对其进行预处理, 使其外形尽量符合流体的 标准, 这样就可以保证其不为机器人的移动增加阻力。 在使用前要对其进行检测, 检查工作 间的空腔是否封闭, 活塞是否移动正常, 以及是否发生变形等其他问题。
采用压力波定位装置进行定位的方法, 步骤如下:
步骤 1、 压力波发射装置获取到机器人移动速度信号, 判断发射方式是停步发射还是实 时发射, 然后压力波发射装置按设定方式以固定频率分别向管道始端和终端发送压力信号; 步骤 2、 利用压力变送器在现场采集压力信号, 压力信号为 1〜5V电压信号; 步骤 3、 利用阻容滤波除去干扰和采样噪声, 对压力信号进行滤波, 将滤波后的压力信 号利用非抽样小波滤波进行精过滤, 进一步还原压力信号;
步骤 4、 将固定时间的滤波信号分为一组, 此为一组压力时间序列, 是不依赖于环境的 常量;
步骤 5、 运用 BP神经网络对这时间段数据进行实时辨识;
BP神经网络的在线学习的设计分为如下几个步骤完成:
1 ) . 确定嵌入延迟7和最佳嵌入维 d, 利用历史时间序列 V重构相空间:
, , ,…,
式中 = 1,2," Ά, Md = N - (d - \)r ^ 代表历史被测压力信号, χί+χ代表其他某个时刻 的被测信号, Mrf代表最佳嵌入维, N代表历史数据的个数, M 个 d维矢量在 d维相空间 描述出的轨迹把混沌吸引子完全展开, 在拓扑等价的意义下恢复原来系统的动力学行为;
2) .把历史压力时间序列作为训练样本, 对 BP神经网络进行训练, 使 BP神经网络具有 在线短期预测的能力;
3 ) .实时数据 χ''联合历史数据组成输入向量, 作为当前神经网络的输入, 得到预测的下 一步输出
4) . 对包括实时数据 Χ'·在内共 k个向量 '·, '·-ι,' ' ' ϋ"进行实时训练 BP网络, 得到的 权值用来实时更新下一步预测的 BP网络的权值;
5 ) . χ'·和其预测值 的预测误差值 err作为故障判断的依据, 如果 err>RT, 则说明当前数 据有超出规定数据, 否则继续判断, RT为预先设定或者通过自动识别得到的阈值; 其中, 第 1 )、 2) 步利用历史压力时间序列离线完成, 为了保证信号辨识的实时性, 3 )、
4)、 5 ) 步应同时进行;
步骤 6、 依照 BP神经网络辨识结果、 压力波发射装置发出的压力信号的频率, 来判断管 内机器人的移动状态;
步骤 7、 应用压力波测距理论计算机器人在管内的位置, 并采用先进先出的方式实时更 新时间段数据组;
步骤 8、 当机器人前进至管道终端时结束, 否则不断重复步骤 4一步骤 7。
本发明的优点: 可以实现海底管道机器人的定位功能。 通过独立地采集数据并完成对数 据的分析和处理, 实时测定海底管道机器人的具体位置。 管线周围的恶劣环境对本方法影响 较小。
附图说明:
图 1为本发明压力波发射装置纵向截面图;
图 2为本发明压力波发射装置横向截面图;
图 3为本发明压力波发射装置侧视图;
图 4为本发明压力波发射装置中的单片机控制步进电机原理图;
图 5为本发明海底管道机器人压力波采集与处理装置的连接图;
图 6为本发明压力波采集与处理装置中的信号调理板电原理图;
图 7为本发明压力波采集与处理装置中的 FLASH模块和 ARM处理器的电原理图; 图 8 为本发明海底管道机器人压力波定位方法的流程图;
图中: 1步进电机, 2弹簧, 3活塞, 4 链条, 5 工作间侧壁, 6工作间外壁, 7 弹片, 8 单片机与驱动芯片, 9齿轮, 10工作间。
具体实施方式:
本发明一种定位海底管道机器人方法和装置结合实例加以说明。
本发明定位海底管道机器人的压力波定位装置包括压力波发射装置和压力波采集与处理 装置;
其中压力波发射装置包括有两个工作间 10、 活塞 3、 弹簧 2、 步进电机 1、 齿轮 9、 链条 4、 弹片 7和单片机与驱动芯片 8。
压力波发射装置各部件的连接: 如图 1、 图 2和图 3所示, 两个圆柱状的工作间 10分别 位于压力波发射装置的两侧, 所述工作间 10沿轴向中空, 用以向管道两侧发出压力波; 每个 工作间 10中各设置有一个活塞 3, 活塞 3的外侧 (背离装置中心位置的方向) 的圆周上每隔 90度角安装有一根弹簧 2, 弹簧 2的另一侧安装在工作间外壁 6上, 并使弹簧 7与活塞 3的 圆形截面保持垂直。 每个活塞 3上装有四根弹簧 2, 活塞 3的初始位置靠近工作间 10外侧边 缘, 弹簧 2处于紧缩状态; 压力波发射装置的中心位置是一个步进电机 1, 步进电机 1轴上 安装有小于工作间 10直径的齿轮 9, 在齿轮 9任意一条直径两端的位置上各安装有一根链条 4, 每个链条 4的另一端分别对应安装在一个活塞 3的内侧(指向装置中心位置的方向)的圆 心位置, 压力波发射装置中安装有应用于控制步进电机 1停转的弹片 7、 控制步进电机 1 的 单片机以及驱动芯片 8, 单片机以及驱动芯片 8如图 4所示。
其中压力波采集与处理装置如图 5所示,包括压力变送器、信号调理板、 A/D模块、 ARM 处理器、 FLASH模块和键盘显示设备; 其中压力波发射装置中的单片机选择 AT89S52, 驱动 芯片选择 TA8435; 压力波采集与处理装置中的 A履处理器选择 S3C2440型号。
所述压力波发射装置安装在海底管道机器人上; 输油管道的始端和终端的管道壁上安装 有压力变送器; 压力变送器的输出端连接信号调理板的输入端 DIN0〜DIN7; 利用压力变送器 在现场采集压力波发射装置发出的压力信号; 信号调理板的输出端 AIN0〜AIN7 分别连接到 ARM处理器自带的 A/D模块的输入端 AIN0〜AIN7; 经过信号调理板进行滤波处理后, 并将滤 波后的信号调整为能够被 A/D模块接受的范围; 由 A/D模块转换为数字信号, 将该数字信号 发送到 ARM处理器, 利用 ARM处理器对数据进行处理, 判断所测管道内机器人状态, 确定机 器人位置一个 FLASH模块的 8、 18、 17、 16、 9、 7和 29〜44接口分别连接 ARM处理器的 El、 F3、 Dl、 F5、 F4、 G6和 D12〜A14接口, 另一个 FLASH模块的 26、 11、 28、 9、 16、 17、 48、 1〜8、 18〜25和 29〜45接口分别连接 ARM处理器的 C5、 E6、 F6、 D10〜E 7和 D12〜B17接 口, 键盘显示设备的输出端分别连接 ARM处理器, 通过串口将图文信息在装置外设的键盘显 示设备上直接显示, 信号调理板如图 6所示, APRM处理器与两个 FLASH模块的连接如图 7所 示。
本发明装置的工作过程是: 将压力波发射装置安装在海底管道机器人上, 随机器人在管 道中前进。 当按既定方式要求发射压力波时, 装置中的单片机通过驱动芯片控制步进电机 1, 使电机上装有两根链条 4的齿轮 9按既定频率正转和反转, 步进电机 1正转时齿轮 9绞紧链 条 4, 链条 4拉动活塞 3向内侧移动, 活塞 3外侧的弹簧 4处于拉伸状态; 反转时齿轮 9放 松链条 4, 这时活塞 3外侧的弹簧 4将活塞 3拉回到原来位置, 随着步进电机 1规则地正反 转, 链条 4被规则地绞紧和放松, 活塞 3在工作间的空腔内按设定的频率往复运动, 这样, 装置就向管道的始端和终端不断发出一定频率的压力波, 要停止发射压力波时, 单片机停止 发出驱动脉冲, 由单片机控制的弹片 7弹出, 使步进电机 1停转, 装置中的单片机及驱动芯 片 8控制步进电机原理图如图 4所示。 本发明具体实现过程是: 在海底管道机器人上安装压力波发射装置, 当机器人在管道中 时, 压力波发射装置分别向管道的两端按一定频率发出压力信号, 在管道的两侧安装压力变 送器, 用以接收压力波发射装置发出的压力信号, 并通过模拟信号转换模块对此压力信号进 行放大、 滤波处理, 而后将信号传递给微处理器, 通过小波变换理论和神经网络算法等数据 处理方式对信号进行处理, 最后通过压力波测距理论计算出管道机器人的定位距离数据并保 存。
与其它海底管道机器人定位方法相比, 本发明利用压力信号进行定位, 这样可以大大减 少管道长度及深度对机器人定位所造成的困难。 本发明受油污的影响也较小。
本发明一种定位海底管道机器人方法, 具体步骤如下: 如图 8所示,
步骤 1、 压力波发射装置获取到机器人移动速度信号, 判断发射方式是停步发射还是实 时发射,然后压力波发射装置按设定方式以每 10秒一次频率分别向管道始端和终端发送压力 信号。
步骤 2、 利用压力变送器在现场采集压力信号, 压力信号为 1〜5V电压信号; 步骤 3、 利用阻容滤波除去干扰和采样噪声, 对压力信号进行滤波, 将滤波后的压力信 号利用非抽样小波滤波进行精过滤, 进一步还原压力信号;
步骤 4、 把每 10分钟的滤波信号分为一组, 此为一组压力时间序列, 是不依赖于环境的 常量;
步骤 5、 运用已经得到的管道压力时间序列, 进行在线学习, 采用 BP神经网络对当前时 间段数据进行实时辨识;
步骤 6、 依照 BP神经网络辨识结果、 压力波发射装置发出的压力信号的频率, 来判断管 内机器人的移动状态;
步骤 7、 应用压力波测距理论计算机器人在管内的位置, 并采用先进先出的方式实时更新 时间段数据组;
步骤 8、 当机器人前进至管道终端时结束, 否则不断重复步骤 4一步骤 7。
其中, 步骤 5按如下步骤:
1 ) . 确定嵌入延迟7和最佳嵌入维 d, 利用历史时间序列重构相空间:
, , ,…,
式中 = 1,2," Ά, Md = N - (d - \)r ^ 代表历史被测压力信号, χί+χ代表其他某个时刻 的被测信号, Mrf代表最佳嵌入维, N代表历史数据的个数, M 个 d 维矢量在 d维相空间 描述出的轨迹把混沌吸引子完全展开, 在拓扑等价的意义下恢复原来系统的动力学行为; 2) .把历史压力时间序列作为训练样本, 对 BP神经网络进行训练, 使 BP神经网络具有 在线短期预测的能力;
3) .实时数据 Χ''联合历史数据组成输入向量, 作为当前神经网络的输入, 得到预测的下 一步输出
4) . 对包括实时数据 χ'·在内共 k个向量 '·, '·-ι,' ' ' ϋ"进行实时训练 BP网络, 得到的 权值用来实时更新下一步预测的 BP网络的权值;
5) . 和其预测值 的预测误差值 err作为故障判断的依据, 如果 err〉RT, 则说明当前 数据有超出规定数据, 否则继续判断, RT为预先设定或者通过自动识别得到的阈值;
其中, 第 1 )、 2) 步利用历史压力时间序列离线完成, 为了保证信号辨识的实时性, 3)、 4)、 5) 步应同时进行。

Claims

权利要求书
1. 一种定位海底管道机器人方法, 其特征在于: 包括如下步骤,
步骤 1、 压力波发射装置获取到机器人移动速度信号, 判断发射方式是停步发射还是实 时发射, 然后压力波发射装置按设定方式以固定频率分别向管道始端和终端发送压力信号; 步骤 2、 利用压力变送器在现场采集压力信号, 压力信号为 1〜5V电压信号; 步骤 3、 利用阻容滤波除去干扰和采样噪声, 对压力信号进行滤波, 将滤波后的压力信 号利用非抽样小波滤波进行精过滤, 进一步还原压力信号;
步骤 4、 将固定时间的滤波信号分为一组, 此为一组压力时间序列, 是不依赖于环境的 常量;
步骤 5、 运用 BP神经网络对这时间段数据进行实时辨识;
步骤 6、 依照 BP神经网络辨识结果、 压力波发射装置发出的压力信号的频率, 来判断管 内机器人的移动状态;
步骤 7、 应用压力波测距理论计算机器人在管内的位置, 并采用先进先出的方式实时更 新时间段数据组;
步骤 8、 当机器人前进至管道终端时结束, 否则不断重复步骤 4一步骤 7。
2、 按权利要求 1所述的定位海底管道机器人方法, 其特征在于: 所述的步骤 5, 按如下 步骤:
1 ) . 确定嵌入延迟7和最佳嵌入维 d, 利用历史时间序列重构相空间:
, , ,…,
式中 = 1,2," Ά, Md = N - (d - \)r ^ 代表历史被测压力信号, χί+χ代表其他某个时刻 的被测信号, Mrf代表最佳嵌入维, N代表历史数据的个数, M 个 d 维矢量在 d维相空间 描述出的轨迹把混沌吸引子完全展开, 在拓扑等价的意义下恢复原来系统的动力学行为;
2 ) .把历史压力时间序列作为训练样本, 对 BP神经网络进行训练, 使 BP神经网络具有 在线短期预测的能力;
3 ) .实时数据 Χ''联合历史数据组成输入向量, 作为当前神经网络的输入, 得到预测的下 一步输出
4 ) . 对包括实时数据 χ'·在内共 k个向量 '·, '·-ι,' ' ' ϋ"进行实时训练 BP网络, 得到的 权值用来实时更新下一步预测的 BP网络的权值;
5 ) . 和其预测值 的预测误差值 err作为故障判断的依据, 如果 err〉RT, 则说明当前 数据有超出规定数据, 否则继续判断, RT为预先设定或者通过自动识别得到的阈值;
其中, 第 1 )、 2 ) 步利用历史压力时间序列离线完成, 为了保证信号辨识的实时性, 3)、 4)、 5 ) 步应同时进行。
3、 权利要求 1所述的定位海底管道机器人方法所采用的压力波定位装置, 其特征在于: 该装置包括压力波发射装置和压力波采集与处理装置;
其中压力波发射装置包括有两个工作间、 活塞、 弹簧、 步进电机、 齿轮、 链条、 弹片和 单片机与驱动芯片;
压力波发射装置各部件的连接: 两个工作间分别位于压力波发射装置的两侧, 两个工作 间沿轴向中空, 每个工作间中各设置有一个活塞, 活塞外侧的圆周上均匀安装四根弹簧, 弹 簧的一端连接在活塞外侧上, 弹簧的另一端安装在工作间两端, 并且弹簧与活塞的圆形截面 相垂直, 每个活塞上装有四根弹簧, 活塞的初始位置靠近工作间外侧边缘, 弹簧处于紧缩状 态; 步进电机位于两个活塞内侧中心, 步进电机轴上安装有小于工作间直径的齿轮, 在齿轮 任意一条直径两端的位置上各安装有一根链条, 链条一端安装在齿轮任意直径与齿轮圆周交 点处, 链条的另一端分别对应安装在一个活塞内侧的圆心位置, 弹片安装在步进电机的侧面, 步进电机下面安装有单片机与驱动芯片;
其中压力波采集与处理装置包括压力变送器、信号调理板、 A/D模块、 ARM处理器、 FLASH 模块和键盘显示设备;
压力波采集与处理装置各部件的连接:压力变送器的输出端与信号调理板的输入端连接; 信号调理板的输出端连接到 A/D模块; A/D模块连接到 ARM处理器中; FLASH模块、键盘显示 设备的输出端分别连接 ARM处理器。
4、 按照权利要求 3所述的定位海底管道机器人方法所采用的压力波定位装置, 其特征在 于: 所述的工作间为圆柱状。
PCT/CN2011/072164 2010-06-30 2011-03-25 一种定位海底管道机器人方法及装置 WO2012000333A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/701,763 US9013958B2 (en) 2010-06-30 2011-03-25 Device for positioning submarine pipeline robots and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010212901.9 2010-06-30
CN201010212901.9A CN101886743B (zh) 2010-06-30 2010-06-30 一种定位海底管道机器人方法及装置

Publications (1)

Publication Number Publication Date
WO2012000333A1 true WO2012000333A1 (zh) 2012-01-05

Family

ID=43072768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072164 WO2012000333A1 (zh) 2010-06-30 2011-03-25 一种定位海底管道机器人方法及装置

Country Status (3)

Country Link
US (1) US9013958B2 (zh)
CN (1) CN101886743B (zh)
WO (1) WO2012000333A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389736A (zh) * 2013-07-18 2013-11-13 东北大学 一种基于红外热成像的海底管道巡线机器人及其控制方法
CN103697330A (zh) * 2013-12-06 2014-04-02 中南大学 一种列车超长管路泄露监测方法
CN112987616A (zh) * 2021-03-15 2021-06-18 沈阳智谷科技有限公司 一种基于磁变量信号的超高速电子包采集系统与方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886743B (zh) 2010-06-30 2012-10-17 东北大学 一种定位海底管道机器人方法及装置
US20150091805A1 (en) 2013-09-27 2015-04-02 Ayeshwarya Mahajan Run-time image display on a device
CA2942860C (en) 2014-03-28 2020-11-24 Public Joint Stock Company "Transneft" Method for monitoring the position of above-ground pipelines in permafrost conditions
CN106090621B (zh) * 2016-06-02 2018-12-11 东北电力大学 一种基于压力信号分析的供水管网泄漏、堵塞故障诊断与定位方法
CN109855615A (zh) * 2016-09-14 2019-06-07 江苏师范大学 一种管道机器人智能化自动快速定位系统
CN107166174B (zh) * 2017-05-28 2019-01-22 东北大学 一种海底管道内检测器的实时跟踪与定位系统及方法
WO2019056121A1 (en) * 2017-09-22 2019-03-28 University Of Saskatchewan METHODS OF DETECTING A WEAKENING OF A PIPELINE
CN112013203B (zh) * 2020-07-18 2021-09-24 淮阴工学院 一种基于drnn神经网络管网检测系统
CN115657574A (zh) * 2022-12-28 2023-01-31 合力(天津)能源科技股份有限公司 一种基于压力波通讯的控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5671334A (en) * 1990-06-21 1997-09-23 International Business Machines Corporation Neural network model for reaching a goal state
CN1382997A (zh) * 2002-06-13 2002-12-04 上海交通大学 基于神经网络的机动目标精确跟踪方法
CN1601300A (zh) * 2004-10-13 2005-03-30 大连理工大学 管道内移动微型机器人的超声波在线定位方法
CN1604451A (zh) * 2004-11-03 2005-04-06 大连理工大学 磁控微型游动机器人的双谐振频率驱动方法
CN101886743A (zh) * 2010-06-30 2010-11-17 东北大学 一种定位海底管道机器人方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303010B2 (en) * 2002-10-11 2007-12-04 Intelligent Robotic Corporation Apparatus and method for an autonomous robotic system for performing activities in a well
JP4265989B2 (ja) * 2004-03-31 2009-05-20 株式会社山武 トレース方法および装置
CN1828219A (zh) * 2006-04-06 2006-09-06 上海交通大学 海底管道智能检测器
CN100462884C (zh) * 2006-11-02 2009-02-18 上海交通大学 海底管道内爬行器智能控制器
CN100461057C (zh) * 2007-08-09 2009-02-11 上海交通大学 海底管道检测机器人仿真系统
EP3058872A1 (en) * 2010-09-13 2016-08-24 Incube Labs, LLC Self-propelled buoy for monitoring underwater objects

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5671334A (en) * 1990-06-21 1997-09-23 International Business Machines Corporation Neural network model for reaching a goal state
CN1382997A (zh) * 2002-06-13 2002-12-04 上海交通大学 基于神经网络的机动目标精确跟踪方法
CN1601300A (zh) * 2004-10-13 2005-03-30 大连理工大学 管道内移动微型机器人的超声波在线定位方法
CN1604451A (zh) * 2004-11-03 2005-04-06 大连理工大学 磁控微型游动机器人的双谐振频率驱动方法
CN101886743A (zh) * 2010-06-30 2010-11-17 东北大学 一种定位海底管道机器人方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389736A (zh) * 2013-07-18 2013-11-13 东北大学 一种基于红外热成像的海底管道巡线机器人及其控制方法
CN103697330A (zh) * 2013-12-06 2014-04-02 中南大学 一种列车超长管路泄露监测方法
CN112987616A (zh) * 2021-03-15 2021-06-18 沈阳智谷科技有限公司 一种基于磁变量信号的超高速电子包采集系统与方法
CN112987616B (zh) * 2021-03-15 2022-03-25 沈阳智谷科技有限公司 一种基于磁变量信号的超高速电子包采集系统与方法

Also Published As

Publication number Publication date
US20130073081A1 (en) 2013-03-21
CN101886743B (zh) 2012-10-17
CN101886743A (zh) 2010-11-17
US9013958B2 (en) 2015-04-21

Similar Documents

Publication Publication Date Title
WO2012000333A1 (zh) 一种定位海底管道机器人方法及装置
CN103244830B (zh) 一种用于海底管道的内检测系统及其检测方法
EP3017230B1 (en) Internal pipe pig with wireless data transmission system
CN104199036B (zh) 测距装置及机器人系统
CN103376452B (zh) 一种用单台声信标修正水下机器人位置误差的方法
KR100646079B1 (ko) 옥내 급수관 진단 및 세척용 마이크로 로봇
CN205438623U (zh) 一种水下检测和作业机器人的水面监控系统
CN110118307B (zh) 一种核电厂小型管道泄漏检测装置及其检测方法
CN104122117A (zh) 一种基于多旋翼无人机的河流湖泊水样自动控制采集系统
CN105864644A (zh) 深海海底管道智能检测器及检测方法
CN115854271B (zh) 城市地下管网损伤监测与修复系统及损伤识别修复方法
CN103984344A (zh) 用于核电站蒸汽发生器二次侧的爬壁机器人路径规划方法
CN109931507B (zh) 基于水下巡检系统的巡检装置及方法
CN109425650A (zh) 管道内部检测装置及检测方法
CN104280024A (zh) 一种深水机器人组合导航装置和方法
CN113049683B (zh) 一种面向水下管线的超声波探伤装置
CN206609830U (zh) 一种用于管道内腐蚀超声波扫查装置
CN103197678B (zh) 一种扫地机器人智能导航系统
CN103672413A (zh) 自来水管道内超声波检漏方法
Ishikawa et al. Investigation of odometry method of pipe line shape by peristaltic crawling robot combined with inner sensor
WO2020149945A1 (en) Robotic sensor system for measuring parameters of a structure
CN104697459A (zh) 钢管端部圆度检测系统
CN105091982A (zh) 一种水位检测控制系统及其水位检测方法
Basri et al. Development of a robotic boiler header inspection device with redundant localization system
TWI592629B (zh) 水下厚度測量裝置的運作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13701763

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800078

Country of ref document: EP

Kind code of ref document: A1