CN1604451A - 磁控微型游动机器人的双谐振频率驱动方法 - Google Patents

磁控微型游动机器人的双谐振频率驱动方法 Download PDF

Info

Publication number
CN1604451A
CN1604451A CN 200410082742 CN200410082742A CN1604451A CN 1604451 A CN1604451 A CN 1604451A CN 200410082742 CN200410082742 CN 200410082742 CN 200410082742 A CN200410082742 A CN 200410082742A CN 1604451 A CN1604451 A CN 1604451A
Authority
CN
China
Prior art keywords
driver
resonance frequency
robot
thin film
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410082742
Other languages
English (en)
Other versions
CN100444510C (zh
Inventor
张永顺
戴桓震
贾振元
郭东明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CNB200410082742XA priority Critical patent/CN100444510C/zh
Publication of CN1604451A publication Critical patent/CN1604451A/zh
Application granted granted Critical
Publication of CN100444510C publication Critical patent/CN100444510C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

本发明属于自动化工程技术领域,涉及一种通过磁场驱动控制微型机器人在封闭管道内实现双向游动的基本方法。技术特征是以磁致伸缩双面薄膜为驱动器,模仿鱼的尾鳍实现仿生游动。根据振动薄膜与液体耦合的推力特性和薄膜各阶谐振频率的关系特性,提出了一种机器人头、尾部具有不同二阶谐振频率驱动器薄膜的双向驱动模型,通过赫姆霍兹双线圈产生驱动磁场,在前后薄膜驱动器的二个谐振频率之间驱动,来实现机器人游动速度的连续调整和定位控制。本发明的效果和益处是结构简单,易于微型化,可靠性和实用性好,便于观察,驱动频率范围小,双向调整速度范围大,通过磁控方式实现封闭管道内微型机器人的双向游动。

Description

磁控微型游动机器人的双谐振频率驱动方法
技术领域
本发明属于自动化工程技术领域,涉及一种通过外磁场驱动控制微型机器人在充满液体的封闭管道内实现双向仿生游动的基本方法。
背景技术
磁控无缆驱动微机器人更接近于自然状态,在人体内作业时具有可靠性高、安全等特点。以人体柔弹性组织内的体液为媒介,它可到达体内的深处部位。因此游动微型机器人为体内介入治疗提供了一种重要的作业形式,在医学工程领域具有广阔的应用前景。
医疗微型机器人的作业环境是体内的肠道、泌尿系统、血管等,其环境特点是周围由柔弹性组织封闭、内部充有体液的狭小空间。为了不对柔弹性软组织造成创伤,要求微机器人以无电缆驱动方式,通过游动可靠的进入和退出体内深处,并采用简单、易于微型化的结构,以实现体内在线医疗作业。
目前研制的游动微型机器人主要有以下几种,如日本的福田敏男教授采用压电材料开发了基于仿生学原理的游动微型机器人;日本的郭树祥采用离子聚合体薄膜为驱动器开发了另一种游动微型机器人,上述微型机器人由于拖带电缆,因此存在响应慢、效率低,在人体内驱动存在漏电安全等问题,尤其是不能实现医学上所需要的体内进入与退出的双向游动。
事实证明采用磁场控制的无缆驱动方式是提高微型机器人实用性和可靠性的关键,因此磁控微型机器人迅速成为国际上的研究热点,日本的郭树祥又采用钐钴磁铁为驱动器,以铜铂为尾鳍,开发了管道内游动微型机器人;中国科学院智能机械研究所的梅涛采用铁磁橡胶[4]为驱动器开发了一种游动微型机器人,通过外磁场实现了微型机器人的控制,解决了无电缆驱动问题,但依然未从根本上解决双向游动这一难题,上述两种机器人在驱动器高阶谐振频率驱动时,机器人可以实现慢速度的反向游动,存在机器人控制困难,耗能大等缺点。
综上所述,目前以超磁致伸缩薄膜为驱动器,采用双谐振频率驱动方法在管内充满液体的环境下,以磁场驱动实现微型游动机器人双向控制的研究还未见报道。
发明内容
本发明的目的是给出一种管内液体介质环境下,微型机器人的双谐振频率驱动方法,提供基于上述理论的设计方法与技术方案,从而实现封闭管道内微型机器人的双向在线游动,提高机器人的可靠性和实用性。
本发明的技术方案是:
以磁致伸缩薄膜为驱动器,模仿鱼的尾鳍实现仿生游动的微型机器人。磁致伸缩薄膜是以十到几十微米级的聚酰亚氨或铜铂为基片,通过物理磁控溅射法形成微米级的磁致伸缩薄膜,本发明采用磁致伸缩双面薄膜,即在基片的一面溅射上正磁致伸缩材料薄膜,其成分为Tb0.28Dy0.72Fe1.93;在基片的另一面溅射上负磁致伸缩材料薄膜,其成分为SmFe1.95,正磁致伸缩材料在磁场的作用下伸长;负磁致伸缩材料在磁场的作用下缩短,施加激励磁场,驱动器将向薄膜的一侧产生弯曲。
本发明也可以采用单面薄膜,但其弯曲变形小于双面薄膜。作业原理是以磁致伸缩薄膜驱动器为鱼鳍模仿鱼尾部的摆动,通过改变振荡磁场的驱动频率,媒介于磁致伸缩薄膜的磁机耦合作用,将振荡磁场能转换成驱动器的振动机械能,振动的磁致伸缩薄膜再与液体耦合,便产生了机器人的推力,实现了微型机器人的游动。由于该磁致伸缩薄膜结构简单、厚度薄,使机器人能够达到毫米级尺寸,可望应用于人体循环系统如血管内。
依据磁致伸缩薄膜在液体内的谐振模态与推力的关系特性,提出游动机器人的双谐振频率驱动方法。磁致伸缩薄膜在液体内的振动特性主要由前三阶谐振模态组成,薄膜与液体耦合推力的大小和方向与各阶谐振模态的形状有关:如一阶谐振频率驱动时,平均推力不大,机器人向前游动速度较慢;以二阶谐振频率驱动时,平均推力最大,向前游动速度最快;以三阶谐振频率驱动时,平均推力为负推力,机器人反向游动,但速度不大。三阶谐振频率很大,此时磁场会产生严重的畸变和严重的衰减,因此反向驱动控制效果不理想。
由于二阶谐振频率具有频率不高,推力大的优点,因此可利用二阶谐振频率实现机器人的双向游动。方法是在机器人的头部和尾部各安装一个二阶谐振频率不同的薄膜驱动器,以两个谐振频率之间的频率驱动就可以实现机器人速度的双向连续驱动控制。
磁致伸缩薄膜的二阶固有角频率,可以借助于下式求出, p 2 = β 2 2 * EI / m , β2=1.5π/lm。其中,EI为磁致伸缩薄膜的刚度;m为磁致伸缩薄膜单位长度上的质量;lm为磁致伸缩薄膜的长度。
机器人薄膜驱动器安装结构分为三种:
第一种结构方案是前、后端磁致伸缩薄膜驱动器采用不同种材料的基片,如前端磁致伸缩薄膜基片材料可以是聚酰亚氨;后端磁致伸缩薄膜基片材料可以是铜铂。机器人结构如附图2所示,图中:1前端驱动器;2机器人本体;3后端驱动器。
第二种结构方案是前、后端磁致伸缩薄膜驱动器采用同种材料的基片,如前端、后端磁致伸缩薄膜基片材料可以为聚酰亚氨或是铜铂。机器人结构如附图3所示,图中:1前端驱动器;2机器人本体;3后端驱动器。
以上两种结构是采用两种不同的技术方案来调整前、后端驱动器的二阶谐振频率,前后端都采用单磁致伸缩薄膜尾鳍,但都能实现微型机器人的双向游动控制。
第三种结构方案是在前两种方案的基础上,即前端、后端磁致伸缩薄膜基片材料可以相同,也可以不同,但前、后端都采用两个磁致伸缩薄膜驱动器与机器人轴心线对称,并与中心线形成0到45度的夹角。
机器人结构如附图4所示,图中:1前端驱动器;2机器人本体;3后端驱动器。
本发明的效果和益处是:
1.通过管道外部交变磁场的驱动频率改变可以实现微型机器人在封闭管道内的双向游动控制,无电缆驱动方式提高了机器人的可靠性和实用性。
2.能通过管道外部的交变磁场实现微型机器人游动速度的连续调整和机器人的定位控制,以两个二阶谐振频率之间的频率驱动可以实现机器人速度的双向连续驱动控制,机器人姿态稳定。
3.在很小的低频率范围内驱动,可以实现机器人正反方向速度大范围的连续调整,调整效率高。
4.驱动频率低,驱动磁场不产生畸变和衰减现象,节省能源。
5.由于磁致伸缩薄膜厚度薄,机器人结构简单、紧凑,使机器人尺寸可望达到毫米级。本发明原理可用于设计和优化双向仿生游动微型机器人的微小结构,提高机器人的驱动效率。
6.驱动磁场采用赫姆霍兹双线圈结构,结构优化表明两个线圈间的磁场比较均匀,有利于机器人的驱动控制效果,此外还有易于观察机器人的运动情况,便于检测机器人的实验参数。
附图说明
附图1是本发明的双谐振频率驱动结构示意图。
图1中:a赫姆霍兹双线圈;b双向游动微型机器人;c充满液体的封闭管道。
图1中的赫姆霍兹双线圈a的驱动控制器的功放采用深度电流负反馈放大电路,以提高驱动电流的快速响应,消除电感对交流驱动电流的阻碍作用,使驱动线圈中的电流响应得到大幅度的提高。用正弦波驱动赫姆霍兹双线圈a。图1中的充满液体的封闭管道c,采用有机玻璃,便于观察和检测机器人的游动。
附图2是一种双谐振频率驱动微型机器人模型的结构示意图。
图2中:1前端驱动器;2机器人本体;3后端驱动器。
图2中的前端驱动器1和后端驱动器2均采用磁致伸缩双面薄膜,前、后端驱动器为不同种基片。
附图3第二种双谐振频率驱动微型机器人模型的结构示意图。
图3中:1前端驱动器;2机器人本体;3后端驱动器。
图3中的前端驱动器1和后端驱动器2均采用磁致伸缩双面薄膜,但前、后端驱动器为同一种基片。
附图4是第三种双谐振频率驱动微型机器人模型的结构示意图。
图4中:1前端驱动器;2机器人本体;3后端驱动器。
第三种结构方案中,前端驱动器1和后端驱动器3的磁致伸缩薄膜基片材料可以相同,也可以不同,其选取与设计方法与前两种方案相同,机器人本体2的前端驱动器1和后端驱动器3分别为两个,并与机器人中心线对称安装,四个驱动器与机器人中心线的夹角相同,夹角范围在0到45度之间。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
上述实施例方案一的结构示意图2中,首先要完成前端驱动器1和后端驱动器3的结构设计,前后驱动器为不同种基片,选取二种的基片外形尺寸一样,在二种基片厚度和在基片上溅射的正负磁致伸缩材料薄膜的厚度上进行调整,使基片弹性模量小的薄膜之二阶谐振频率是基片弹性模量大的薄膜之二阶谐振频率满足以下关系,前端驱动器1的二阶谐振频率的范围是10到30赫兹,后端驱动器3的二阶谐振频率的范围是50到70赫兹,前、后端驱动器二阶谐振频率之差为40赫兹,完成二种薄膜的加工。
然后将前端驱动器1和后端驱动器3在机器人中心线上相对本体对称布置,两个驱动器基片上的正负磁致伸缩材料薄膜应具有在中心线的同一侧,以便抵消侧向推力使机器人处于侧向平衡状态。
驱动可以通过波形发生器发生正弦波,通过功放模块去驱动附图1中的赫姆霍兹双线圈a,功放采用深度电流负反馈放大电路。
在前端驱动器1和后端驱动器3的二个二阶谐振频率之间调整驱动磁场的驱动频率便实现了机器人的双向游动。
上述实施例方案二的结构示意图3中,除驱动器设计具体实施的方案不同外,其它实施方案步骤与实施例方案一完全相同。下面仅说明附图3中前端驱动器1和后端驱动器3的具体实施方式。
前、后驱动器为相同种材料和厚度的基片,在基片上溅射的正负磁致伸缩材料薄膜的厚度相同,通过调整二种基片的外形尺寸,来实现二阶谐振频率的调整,在保证前、后端薄膜外形面积相等的情况下,使后端长度大的薄膜之二阶谐振频率与前端长度小的薄膜之二阶谐振频率满足以下关系,后端驱动器3的二阶谐振频率的范围是10至30赫兹,前端驱动器1的二阶谐振频率的范围是50至70赫兹,后、前端驱动器二阶谐振频率之差为40赫兹。
保证薄膜外形面积相等是因为推力大小与薄膜尾鳍的面积有关,以保证机器人前、后游动速度大小相等,实现驱动的对称性。
上述实施例方案三的结构示意图4中,驱动器设计具体实施的方案与前两例完全相同,不同之处是前端驱动器1和后端驱动器3可以分别为两个,前端两个驱动器1与后端两个驱动器3分别对称安装于机器人本体2中心线的两侧,前端两个驱动器1与后端两个驱动器3与中心线形成同一夹角,夹角范围为0至45度之间。
机器人本体(2)采用与液体密度相同的材料,将机器人置于附图1的充满液体的封闭管道c中,赫姆霍兹双线圈a以前端驱动器1的二阶谐振频率驱动,实现机器人向后游动;以后端驱动器3的二阶谐振频率驱动,实现机器人向前游动;以两个二阶谐振频率之间的频率驱动能实现前、后游动速度的连续调整,从而实现机器人在充满液体的封闭管道c内的定位。

Claims (1)

1.磁控微型游动机器人的双谐振频率驱动方法,其特征在于:
a)双谐振频率驱动模型的前端驱动器(1)和后端驱动器(3)是二阶谐振频率不同的磁致伸缩薄膜驱动器,分别对称安装在机器人本体(2)的前、后端,并与机器人中心线重合,前端驱动器(1)的二阶谐振频率的范围是10至30赫兹,后端驱动器(3)的二阶谐振频率的范围是50至70赫兹,前端驱动器(1)和后端驱动器(3)的二阶谐振频率之差为40赫兹;
b)驱动磁场采用赫姆霍兹双线圈结构(a),充满液体的封闭管道(c)采用有机玻璃管;
c)前端驱动器(1)和后端驱动器(3)可以分别为两个,前端两个驱动器(1)与后端两个驱动器(3)分别对称安装于机器人本体(2)中心线的两侧,前端两个驱动器(1)与后端两个驱动器(3)与轴心线形成同一夹角,夹角θ范围为0至45度。
CNB200410082742XA 2004-11-03 2004-11-03 磁控微型游动机器人的双谐振频率驱动方法 Expired - Fee Related CN100444510C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200410082742XA CN100444510C (zh) 2004-11-03 2004-11-03 磁控微型游动机器人的双谐振频率驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200410082742XA CN100444510C (zh) 2004-11-03 2004-11-03 磁控微型游动机器人的双谐振频率驱动方法

Publications (2)

Publication Number Publication Date
CN1604451A true CN1604451A (zh) 2005-04-06
CN100444510C CN100444510C (zh) 2008-12-17

Family

ID=34667000

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200410082742XA Expired - Fee Related CN100444510C (zh) 2004-11-03 2004-11-03 磁控微型游动机器人的双谐振频率驱动方法

Country Status (1)

Country Link
CN (1) CN100444510C (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554755C (zh) * 2007-12-05 2009-10-28 中国科学院电工研究所 一种永磁微型机器人
WO2012000333A1 (zh) * 2010-06-30 2012-01-05 东北大学 一种定位海底管道机器人方法及装置
CN102429731A (zh) * 2011-10-18 2012-05-02 南京航空航天大学 游动机器人及其运动方法
CN102649470A (zh) * 2011-02-28 2012-08-29 苏州大学 谐振驱动微型水面移动机器人
CN105030298A (zh) * 2015-06-19 2015-11-11 王晶怡 微型无缆游动机器人
CN106473714A (zh) * 2016-09-21 2017-03-08 南京航空航天大学 一种微型血管探测机器人及其运动控制方法
CN111333019A (zh) * 2018-12-19 2020-06-26 湖南早晨纳米机器人有限公司 纳米机器人与纳米机器人运动控制系统
CN113164207A (zh) * 2018-12-17 2021-07-23 苏黎世联邦理工学院 在具有壁的空间中推进和控制微型机器人的位移的方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121513A (ja) * 1992-10-06 1994-04-28 Sumitomo Metal Mining Co Ltd 磁気アクチュエータ
JPH0974773A (ja) * 1995-09-01 1997-03-18 Denso Corp 移動装置および移動体駆動方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554755C (zh) * 2007-12-05 2009-10-28 中国科学院电工研究所 一种永磁微型机器人
WO2012000333A1 (zh) * 2010-06-30 2012-01-05 东北大学 一种定位海底管道机器人方法及装置
US9013958B2 (en) 2010-06-30 2015-04-21 Northeastern University Device for positioning submarine pipeline robots and method thereof
CN102649470A (zh) * 2011-02-28 2012-08-29 苏州大学 谐振驱动微型水面移动机器人
CN102649470B (zh) * 2011-02-28 2014-10-22 苏州大学 谐振驱动微型水面移动机器人
CN102429731A (zh) * 2011-10-18 2012-05-02 南京航空航天大学 游动机器人及其运动方法
CN105030298A (zh) * 2015-06-19 2015-11-11 王晶怡 微型无缆游动机器人
CN106473714A (zh) * 2016-09-21 2017-03-08 南京航空航天大学 一种微型血管探测机器人及其运动控制方法
CN106473714B (zh) * 2016-09-21 2023-09-26 南京航空航天大学 一种微型血管探测机器人及其运动控制方法
CN113164207A (zh) * 2018-12-17 2021-07-23 苏黎世联邦理工学院 在具有壁的空间中推进和控制微型机器人的位移的方法和系统
CN113164207B (zh) * 2018-12-17 2024-06-11 苏黎世联邦理工学院 在具有壁的空间中推进和控制微型机器人的位移的方法和系统
CN111333019A (zh) * 2018-12-19 2020-06-26 湖南早晨纳米机器人有限公司 纳米机器人与纳米机器人运动控制系统

Also Published As

Publication number Publication date
CN100444510C (zh) 2008-12-17

Similar Documents

Publication Publication Date Title
Shintake et al. Soft biomimetic fish robot made of dielectric elastomer actuators
Hu et al. Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing
Zhang et al. Artificial bacterial flagella for micromanipulation
CN1604451A (zh) 磁控微型游动机器人的双谐振频率驱动方法
Liu et al. An in-pipe wireless swimming microrobot driven by giant magnetostrictive thin film
CN107425749B (zh) 一种纳米马达及其制备方法
Guo et al. A novel type of microrobot for biomedical application
CN114601509B (zh) 一种磁驱动微纳米机器人的设计及其制备方法和驱动方式
CN111409803A (zh) 一种基于ipmc驱动的仿生波动鳍
Ning et al. A dual-mode excitation method of flexure hinge type piezoelectric stick-slip actuator for suppressing backward motion
CN113300632B (zh) 用于光学镜头调焦的悬臂梁式超声波电机及其驱动方法
CN113894819A (zh) 一种磁控仿尺蠖双向运动软体机器人
Wei et al. A magnetically actuated miniature robotic fish with the flexible tail fin
CN103341853B (zh) 一种永磁微机器人在线圈系统中的无缆运动驱动方法
Xiang et al. Study on tetherless micro-soft robot based on magnetic elastic composite material
Lim et al. Fabrication, control, and modeling of robots inspired by flagella and cilia
CN1147383C (zh) 微型多关节电磁蠕动机器人系统
CN201227469Y (zh) 双极性陡磁场脉冲振荡磁场磁性微球载体靶向控释装置
Temel et al. Navigation of mini swimmers in channel networks with magnetic fields
Liao et al. A fish-like magnetically propelled microswimmer fabricated by 3D laser lithography
Qiu et al. 3D-printed soft microrobot for swimming in biological fluids
Zhang et al. Dynamic analysis and experiment of a 3mm swimming microrobot
Zhang et al. Wireless micro biomimetic swimming robot based on giant magnetostrictive films
Li et al. Fish Swing Biomimetic Magnetically Controlled Microrobot
CN115352604B (zh) 一种微小型仿生鳐鱼水下推进器及其驱动方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081217

Termination date: 20111103