WO2011160995A1 - Verfahren zum betreiben eines elektrofahrzeuges - Google Patents

Verfahren zum betreiben eines elektrofahrzeuges Download PDF

Info

Publication number
WO2011160995A1
WO2011160995A1 PCT/EP2011/059997 EP2011059997W WO2011160995A1 WO 2011160995 A1 WO2011160995 A1 WO 2011160995A1 EP 2011059997 W EP2011059997 W EP 2011059997W WO 2011160995 A1 WO2011160995 A1 WO 2011160995A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
state
charge
energy store
Prior art date
Application number
PCT/EP2011/059997
Other languages
English (en)
French (fr)
Inventor
Hubert Friedl
Günter Fraidl
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Publication of WO2011160995A1 publication Critical patent/WO2011160995A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a method for operating an electric vehicle, which has at least one electric drive machine, at least one electrical energy storage and at least one power generating device formed by an internal combustion engine, wherein the internal combustion engine is activated in dependence of the state of charge of the electrical energy storage, wherein in the exhaust system of the internal combustion engine at least one Aftertreatment device is assigned. Furthermore, the invention relates to a device for carrying out the method.
  • Range Extender units which consist of an internal combustion engine and a generator unit, to extend the range of electric vehicles gene by no longer sufficient battery charge, the electrical energy for the electric motor drive by a, formed by an internal combustion engine, so-called range extender is generated.
  • the power of the range extender would have to be designed similarly to the electrical drive power.
  • this requires comparatively high weight, cost and dimensions of the range extender unit.
  • the range extender is generally only a fraction of the total operating time of an electric vehicle in active mode and the majority of the operating life of the electric vehicle is only an inactive additional weight, minimizing the size and weight of the range extender unit is a very important goal.
  • the range-extender power is not designed for the maximum power of the electric traction drive, but only to the much lower average required drive power or the power required to reach the maximum speed limit.
  • Any additional energy demand is covered by a stored energy reserve.
  • this energy reserve must be designed in such a way that a performance shortage can never occur in practical driving (for example, on long freeways, passages, etc.). The more accurately this peak demand can be predicted, the smaller and thus more cost-effective and cost-effective, both the range extender unit and the energy storage of the electric vehicle can be designed.
  • the switch-on strategy is primarily determined by the state of charge of the electrical energy store (SOC ... State of charge).
  • SOC State of charge
  • the range extender is switched on and off between two predefined thresholds. In refined variants, this threshold is adapted depending on additional variables (for example, the previous energy / power requirement, battery temperature, etc.).
  • the route After actively entering the destination, the route is calculated and the energy demand for the route is calculated using the expected speed and altitude profile.
  • the switch-on of the range extender can be set so that on the one hand, even at low power of the range extender on long gradients no power shortage occurs, on the other hand, the operating life of the range extender and thus the consumption of fossil fuels is minimized.
  • the actual benefit of such control is limited.
  • a method for operating an electric vehicle in which a power generating device is activated from a defined state of charge of the electrical energy storage.
  • the power generating device is designed for a mean power requirement of the electric drive machine at a defined continuous speed of the electric vehicle in the plane, the power generating device is activated before reaching a lower technical operating limit of the state of charge of the electric energy storage at a defined Einschaltladeschreib, which is such that in relation to the lower technical operating limit, an energy reserve remains in the electrical energy storage in order to cover peak output.
  • the Einschaltladeschreib can be set flexibly depending on a destination and / or a planned route.
  • a method for charging control in a hybrid vehicle wherein a nominal state of charge is defined as the mean value of the charging area.
  • the energy flow is controlled so that the nominal state of charge is maintained.
  • the state of charge is lowered from a desired value and raised again by generating electrical energy with the internal combustion engine.
  • WO 2008/128416 A1 discloses an energy management for hybrid vehicles with a load prediction system, with which a future load level is calculated based on input parameters and by means of a self-learning system to determine an optimal future output power, a battery state of charge and an optimal vehicle speed based on the load request. On the basis of this optimal future power estimation, the internal combustion engine, the generator and the electrical energy store of the hybrid vehicle are coordinated.
  • JP 2008-201165 A describes a control unit for a hybrid vehicle, wherein the switch-on of the engine depending on the state of charge of the energy storage is determined based on the recorded data of completed rides and due to the demonstrated driving characteristics of an identified driver.
  • JP 2008 290610 A describes a navigation device for a hybrid vehicle, which simulate all possible routes between input start and a destination input and determines the fuel consumption of the internal combustion engine at each route.
  • range extenders are only used for range expansion and are only activated when the temperature falls below a predefined state of charge of the electrical energy store. Thus, there may be a long time between turning off and activating the range extender. This means that range extenders must generally be started in the cold state, in which neither the internal combustion engine nor the exhaust aftertreatment devices in the exhaust system of the internal combustion engine have the required operating temperature. This results in the problem that without additional Measures must be expected when cold starting a range extender with relatively high exhaust emissions.
  • AI a method for driving a motor vehicle with an exhaust gas heater is known, at least one operating parameter of the exhaust system detects at least one influence value of the heater determines and the influence value is compared with a target parameter of the exhaust system, whereupon the heater is activated so that the operating parameter reaches the target parameter.
  • DE 10 2005 003 469 A1 describes an abnormality determination apparatus for an electrically heatable catalyst for a plug-in hybrid vehicle that includes a battery that is charged by connecting an external charging device to an external electric power supply.
  • An abnormality determination means performs a determination of an abnormality in the electrically heatable catalyst when the external charging device is connected to the external electric power supply.
  • the object of the invention is to avoid the disadvantages mentioned and to reduce emissions in an electric vehicle whose energy storage can be charged by an internal combustion engine.
  • this is achieved by heating at least one exhaust aftertreatment device to operating temperature before activating the internal combustion engine, wherein preferably the internal combustion engine - and thus also the heating device of the exhaust aftertreatment device - is activated as a function of the driving route.
  • all possible relevant travel routes are simulated within a defined viewing horizon, and for each of the simulated travel routes a prospective switch-on time of the internal combustion engine and / or the heating device of the exhaust gas aftertreatment device is determined so that when the viewing horizon is reached, a defined state of charge of the energy store is maintained.
  • the calculation of all possible relevant routes is updated at each potential route change. In this case, there is a permanent adjustment of the calculated and the actual energy demand.
  • the simulation of all possible relevant routes are advantageously based on speed profiles which are determined as a function of the road type, the road condition, the topography, the traffic situation, the outside temperatures, the weather conditions and / or the time of day. It is particularly advantageous if a prospective energy consumption profile is created for all possible driving routes and the operation of the internal combustion engine and / or the heating device of the exhaust gas aftertreatment device is planned on the basis of this energy consumption profile, wherein the current and the prospective energy consumption at each travel route is preferably used when the energy consumption profile is generated is taken into account. Furthermore, the previous energy consumption can be used on the traveled section of the route to determine the vehicle load from the known topography.
  • the driver-specific energy consumption, as well as all other additional consumers such as air conditioning requirements based on outside temperature, light, windscreen wipers, windscreen and seat heating etc. are used for the most accurate prediction of energy requirements.
  • the simulation of the travel routes is based on a defined driver profile, wherein preferably the driver profile is derived from the driving operation of past journeys.
  • the total vehicle range can be used as the observation horizon.
  • the viewing horizon is estimated on the basis of the length, duration and destination of past journeys. But it is also possible to manually specify or preset the event horizon.
  • the respective current location of the electric vehicle is assigned to a new reference point, and a new simulation of all possible routes on the basis of the new reference point takes place.
  • the viewing horizon can be the original viewing horizon. It is but also conceivable that the viewing horizon as the viewpoint is changed dynamically.
  • a new assignment of the viewpoint and a new simulation of all possible routes should be performed at least when each node or branch point of the road network.
  • the switch-on time of the internal combustion engine is determined prospectively as a function of the charge state of the electrical energy store and the travel route and, taking into account a heat-up function of the exhaust gas aftertreatment device, determines a switch-on time of the heater at a defined heat output and the heater is switched on at a time prior to starting the internal combustion engine, so that Activation time of the internal combustion engine, the exhaust aftertreatment device has a defined operating temperature.
  • Fig. 1 is an electric vehicle with an electrical energy storage for
  • Fig. 2 is a diagram of the method according to the invention.
  • Fig. 3 is a route.
  • Fig. 1 shows an electric vehicle 1 with an electric drive machine 2 for driving drive wheels 3, the electric drive machine 2 being fed by an electrical energy store 4.
  • a range extender formed by an internal combustion engine 5 is provided, which charges the electrical energy store 4.
  • the internal combustion engine 5 has an exhaust gas line 6 with at least one exhaust gas aftertreatment device 7 formed by a catalytic converter, wherein a heating device 8 is provided for heating the exhaust gas aftertreatment device 7.
  • a control unit 9 the operation of the internal combustion engine 5 and the heater 8 is controlled.
  • Fig. 2 shows the operating strategy for heating the exhaust aftertreatment device 7.
  • the drive is effected by the electric vehicle 2 via the electrical energy store 4, the internal combustion engine 5 being switched off.
  • the control unit 9 monitors in step 200 permanently the state of charge SOC of the electric energy storage 4 and checks whether the state of charge SOC requires a charge by means of the internal combustion engine 5. If this is the case, it is checked in step 300 whether the internal combustion engine 5 is switched on. In this case (Y), steps 400 and 500 are skipped. If the internal combustion engine 5 is deactivated, the heating device 8 is switched on in step 400 and all preparations for starting the internal combustion engine 5 are made. The starting of the internal combustion engine 5 takes place in step 500.
  • the heating power of the heating device 8 is adjusted to the operating state of the internal combustion engine 5 in step 600.
  • the heating power can also be adjusted as a function of the state of charge SOC of the energy store 4 of the ambient temperature, the whereabouts of the electric vehicle 1 or the like in order to charge the energy store 4 as little as possible.
  • the activating of the heating device 8 takes place prospectively, which means that the activation of the heating device 8 is set as a function of the anticipated specific point in time for switching on the internal combustion engine 5.
  • FIG. 3 An example of a prospective switching on of the internal combustion engine and subsequently the heating device 8 is shown in FIG. 3 shown.
  • the Fig. 3 schematically shows a road map with a travel route R actually driven by the electric vehicle, where P 0 is the starting point, Pi is a characteristic node and P z is the destination. If the system does not know the destination, a simulation will be performed for all possible routes. In this case, the instantaneous location of the electric vehicle 1 is used as the reference point for the simulation at the starting point P 0 . Starting from this reference point, all possible routes within the observation horizon H are taken into account. For each of the simulated travel routes, a switch-on instant of the power generation device is prospectively determined, so that a defined state of charge of the energy accumulator 4 is maintained when the operating horizon H is reached.
  • the line 10 indicates the technical limit of purely electric driving.
  • Field 20 indicates the area in which the simulation provides the activation of the range extender in order not to fall below a defined state of charge SOC within the observation horizon H at the destination.
  • the simulation of all possible routes is based on speed profiles, which are determined depending on the type of road, the road conditions, the topography, the traffic situation, the outside temperatures, the weather conditions and / or the time of day.
  • a prospective energy consumption profile is created and the operation of the internal combustion engine 5 is planned on the basis of this energy consumption profile, taking into account the current and the prospective energy consumption for each route when the energy consumption profile is generated.
  • the driver-specific energy consumption, as well as all other additional consumers such as air conditioning requirements based on outside temperature, light, windscreen wipers, windscreen and seat heating, heating device 8 for the exhaust aftertreatment device 7 etc. are used for the most accurate prediction of energy requirements.
  • the information about road conditions, traffic conditions, weather, etc. can be provided via Internet, traffic, telematics or the like.
  • the simulation of the routes can be based on a defined driver profile, wherein the driver profile can be derived automatically from the driving operation of past trips, manually entered or detected by a personal identification device.
  • the total vehicle range can be used.
  • the respective current location of the electric vehicle 1 can be assigned to a new reference point, and a new simulation of all possible routes on the basis of the new reference point.
  • the original viewing horizon H can be used further.
  • the viewing horizon is changed dynamically together with the viewing point.
  • the simulation of the travel routes takes place with the involvement of a vehicle navigation system and / or a navigation satellite system.
  • the method described makes it possible, without the driver having to enter information about the destination, to minimize the size of the energy store as well as of the internal combustion engine without resulting in reduced driving performance. Nevertheless, the use of the range extender remains to a minimum necessary extent and allows the maximization of the purely mains-powered battery operation.
  • a simplification of the method may be useful in order to keep the computational effort and the calculation time within reasonable limits. It is sufficient if only such possible relevant routes are calculated, which influence the operation of the range extender. For example, in particular travel routes with different topography, traffic situation or type of road (for example city highways) are taken into account.
  • the field 30 in Fig. 3 indicates the area in which the heater 8 is activated when the internal combustion engine 5 is turned on at the point P 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Navigation (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Elektrofahrzeuges (1), welches zumindest eine elektrische Antriebsmaschine (2), zumindest einen elektrischen Energiespeicher (4) sowie zumindest eine durch eine Brennkraftmaschine (5) gebildete Stromerzeugungseinrichtung aufweist, wobei die Brennkraftmaschine in Abhängigkeit des Ladezustandes (SOC) des elektrischen Energiespeichers (4) aktiviert wird, wobei im Abgasstrang (6) der Brennkraftmaschine (5) zumindest eine Abgasnachbehandlungseinrichtung (7) zugeordnet ist. Die Emissionen können entscheidend verringert werden, wenn vor dem Aktivieren der Brennkraftmaschine (5) die Abgasnachbehandlungseinrichtung (7) auf Betriebstemperatur erwärmt wird.

Description

Verfahren zum Betreiben eines Elektrofahrzeuges
Die Erfindung betrifft ein Verfahren zum Betreiben eines Elektrofahrzeuges, welches zumindest eine elektrische Antriebsmaschine, zumindest einen elektrischen Energiespeicher sowie zumindest eine durch eine Brennkraftmaschine gebildete Stromerzeugungseinrichtung aufweist, wobei die Brennkraftmaschine in Abhängigkeit des Ladezustandes des elektrischen Energiespeichers aktiviert wird, wobei im Abgasstrang der Brennkraftmaschine zumindest eine Abgasnachbehandlungseinrichtung zugeordnet ist. Weiters betrifft die Erfindung eine Vorrichtung zur Durchführung des Verfahrens.
Es ist bekannt, mit Range-Extender-Einheiten, welche aus einer Brennkraftmaschine und einer Generatoreinheit bestehen, die Reichweite von Elektrofahrzeu- gen zu erweitern, indem bei nicht mehr ausreichender Batterieladung die elektrische Energie für den elektromotorischen Fahrantrieb durch einen, durch eine Brennkraftmaschine gebildeten, sogenannten Range-Extender generiert wird . Um unter allen Betriebszuständen ausreichende elektrische Leistung zur Verfügung stellen zu können, müsste dabei die Leistung des Range-Extenders ähnlich der elektrischen Antriebsleistung ausgelegt werden. Dies bedingt jedoch vergleichsweise hohes Gewicht, Kosten und Abmessungen der Range-Extender-Einheit. Da der Range-Extender im allgemeinen jedoch nur einen Bruchteil der Gesamtbetriebsdauer eines Elektrofahrzeuges in aktivem Betrieb ist und den Großteil der Betriebsdauer des Elektrofahrzeuges nur ein inaktives Zusatzgewicht darstellt, stellt eine Größen- und Gewichtsminimierung der Range-Extender-Einheit ein ganz wesentliches Ziel dar.
Dies kann zum Beispiel dadurch erfolgen, dass die Range-Extender-Leistung nicht auf die Maximalleistung des elektrischen Fahrantriebes ausgelegt wird, sondern lediglich auf die wesentlich niedrigere mittlere erforderliche Antriebsleistung bzw. die für Erreichen der Dauer-Höchstgeschwindigkeit erforderliche Leistung. Darüber hinaus gehender Energiebedarf wird aus einer vorgehaltenen Energiereserve abgedeckt. Diese Energiereserve muss jedoch so ausgelegt werden, dass im praktischen Fahrbetrieb nie ein Leistungsmangel auftreten kann (zum Beispiel bei langen Autobahnsteigungen, Passfahrten, etc.). Je genauer dieser Spitzenlastbedarf vorhergesagt werden kann, desto kleiner und damit Verbrauchs- und kostengünstiger kann sowohl die Range-Extender-Einheit, als auch der Energiespeicher des Elektrofahrzeuges ausgelegt werden.
Zwei Arten der Range-Extender-Steuerung sind bekannt: So genannte SOC-basierte Range-Extender-Steuerung :
Dabei wird die Einschaltstrategie primär durch den Ladezustand des elektrischen Energiespeichers (SOC... State of Charge) bestimmt. Das Zu- und Abschalten des Range-Extenders erfolgt zwischen zwei vordefinierten Schwellwerten. In verfeinerten Varianten wird dieser Schwellwert abhängig von Zusatzgrößen (zum Beispiel dem bisherigen Energie-/Leistungsbedarf, Batterietemperatur, etc.) entsprechend adaptiert.
Aktive GPS-basierte Range-Extender-Steuerung :
Nach aktiver Eingabe des Fahrziels wird die Fahrtroute errechnet und mit Hilfe des erwarteten Geschwindigkeits- und Höhenprofils der Energiebedarf für die Fahrtroute berechnet. Damit kann der Einschaltzeitpunkt des Range- Extenders so festgelegt werden, dass einerseits auch bei kleiner Leistung des Range-Extenders auch auf langen Steigungen kein Leistungsmangel auftritt, andererseits die Betriebsdauer des Range-Extenders und damit der Verbrauch an fossilen Brennstoffen minimiert wird. Da jedoch in der Praxis die Fahrer im Regelfall bekannte Fahrziele nicht in das GPS-System (Global Positioning System) eingeben, ist der tatsächliche Nutzen einer solchen Steuerung begrenzt.
Aus der AT 506.272 A ist ein Verfahren zum Betreiben eines Elektrofahrzeuges bekannt, bei dem eine Stromerzeugungseinrichtung ab einem definierten Ladezustand des elektrischen Energiespeichers aktiviert wird . Die Stromerzeugungseinrichtung ist dabei für einen mittleren Leistungsbedarf der elektrischen Antriebsmaschine bei einer definierten Dauergeschwindigkeit des Elektrofahrzeuges in der Ebene ausgelegt, wobei die Stromerzeugungseinrichtung noch vor Erreichen einer unteren technischen Betriebsgrenze des Ladezustandes des elektrischen Energiespeichers bei einem definierten Einschaltladezustand aktiviert wird, welcher so bemessen ist, dass im Bezug auf die untere technische Betriebsgrenze eine Energiereserve im elektrischen Energiespeicher verbleibt, um Spitzenleistungen abdecken zu können. Der Einschaltladezustand kann dabei flexibel in Abhängigkeit eines Fahrzieles und/oder einer geplanten Fahrtroute festgelegt werden.
Aus der EP 1 225 074 A2 ist ein Serienhybridfahrzeug mit einem Elektromotor, einem Generator und einer den Generator antreibenden Brennkraftmaschine bekannt. Dabei wird innerhalb einer Zero-Emission-Zone das Fahrzeug rein elektrisch bei deaktivierter Brennkraftmaschine betrieben. Sowohl kurz vor dem Eintritt in die emissionsfreie Zone als auch beim Verlassen der emissionsfreien Zone wird der elektrische Energiespeicher durch die Brennkraftmaschine aufgeladen. Die WO 2005/082663 AI offenbart ein tragbares Stromaggregat für Elektrofahr- zeuge, welches dazu ausgebildet ist, die Reichweite des Elektrofahrzeuges auszudehnen.
Aus der US 2009/015202 A ist ein Verfahren zur Laderegelung bei einem Hybridfahrzeug bekannt, wobei ein Sollladezustand als Mittelwert des Ladebereiches definiert wird . Der Energiefluss wird so geregelt, dass der Sollladezustand eingehalten wird . Durch Betreiben des elektrischen Antriebsmotors des Hybridfahrzeuges wird der Ladezustand von einem Sollwert abgesenkt und durch Generieren von elektrischer Energie mit der Brennkraftmaschine wieder angehoben.
Die WO 2008/128416 AI offenbart ein Energiemanagement für Hybridfahrzeuge mit einem Lastvorhersagesystem, mit welchem aufgrund von Eingangsparametern und mittels eines selbstlernenden System ein künftiges Lastniveau berechnet wird, um aufgrund der Lastanforderung eine optimale zukünftige Ausgangsleistung, einen Batterieladezustand und eine optimale Fahrzeuggeschwindigkeit zu bestimmen. Aufgrund dieser optimalen zukünftigen Leistungsabschätzung werden die Brennkraftmaschine, der Generator und der elektrische Energiespeicher des Hybridfahrzeuges koordiniert.
Die JP 2008-201165 A beschreibt eine Steuereinheit für ein Hybridfahrzeug, wobei der Einschaltzeitpunkt des Motors in Abhängigkeit des Ladezustandes des Energiespeichers aufgrund der aufgezeichneten Daten von absolvierten Fahrten und aufgrund der aufgezeigten Fahreigenschaften eines identifizierten Fahrers festgelegt wird.
Aus der EP 2 172 740 A ist es bekannt, aufgrund des Ladezustandes eines Energiespeichers bei einem Hybridfahrzeug ein Reichweitenprofil mittels eines Navigationssystems zu bestimmen.
Die JP 2008 290610 A beschreibt eine Navigationseinrichtung für ein Hybridfahrzeug, welche alle möglichen Fahrtrouten zwischen eingegebenen Start- und einer Zieleingabe simulieren und den Kraftstoffverbrauch der Brennkraftmaschine bei jeder Fahrtroute bestimmt.
Konzeptbedingt werden Range Extender nur zur Reichweitenausdehnung verwendet und erst bei Unterschreiten eines vordefinierten Ladezustandes des elektrischen Energiespeichers aktiviert. Somit kann zwischen dem Abstellen und dem Aktivieren des Range Extenders ein längerer Zeitraum liegen. Dies bedeutet, dass Range Extender im Allgemeinen im kalten Zustand gestartet werden müssen, in welchem weder die Brennkraftmaschine noch Abgasnachbehandlungseinrichtungen im Abgassystem der Brennkraftmaschine die erforderliche Betriebstemperatur aufweisen. Daraus ergibt sich die Problematik, dass ohne zusätzliche Maßnahmen beim Kaltstart eines Range Extenders mit relativ hohen Abgasemissionen gerechnet werden muss.
Aus der DE 10 2007 025 19 AI ist ein Verfahren zum Beitreiben eines Kraftfahrzeuges mit einer Abgas-Heizvorrichtung bekannt, wobei wenigstens ein Betriebsparameter der Abgasanlage erfasst, mindestens ein Einflusswert der Heizvorrichtung bestimmt und der Einflusswert mit einem Zielparameter der Abgasanlage verglichen wird, worauf die Heizvorrichtung aktiviert wird, so dass der Betriebsparameter den Zielparameter erreicht.
Die DE 10 2005 003 469 AI beschreibt eine Anomaliebestimmungsvorrichtung für einen elektrisch erwärmbaren Katalysator für ein Plug-In-Hybridfahrzeug, welches eines Batterie enthält, die geladen wird, indem eine externe Ladevorrichtung mit einer externen elektrischen Leistungsversorgung verbunden wird. Ein Anomaliebestimmungsmittel führt eine Bestimmung einer Anomalie in dem elektrisch erwärmbaren Katalysator durch, wenn die externe Ladevorrichtung mit der externen elektrischen Leistungsversorgung verbunden ist.
Aufgabe der Erfindung ist es, die genannten Nachteile zu vermeiden und die Emissionen bei einem Elektrofahrzeug, dessen Energiespeicher durch eine Brennkraftmaschine aufgeladen werden kann, zu verringern.
Erfindungsgemäß wird dies dadurch erreicht, dass vor dem Aktivieren der Brennkraftmaschine zumindest eine Abgasnachbehandlungseinrichtung auf Betriebstemperatur erwärmt wird, wobei vorzugsweise die Brennkraftmaschine - und somit auch die Aufheizeinrichtung der Abgasnachbehandlungseinrichtung - in Abhängigkeit der Fahrtroute aktiviert wird .
Besonders vorteilhaft ist es, wenn ausgehend von einem Bezugspunkt, welcher vorzugsweise einem Ausgangspunkt der Fahrtroute entspricht, innerhalb eines definierten Betrachtungshorizontes alle möglichen relevanten Fahrtrouten, vorzugsweise alle möglichen Fahrtrouten, simuliert werden, und für jede der simulierten Fahrtrouten prospektiv ein Einschaltzeitpunkt der Brennkraftmaschine und/oder der Aufheizeinrichtung der Abgasnachbehandlungseinrichtung ermittelt wird, so dass bei Erreichen des Betrachtungshorizontes ein definierter Ladezustand des Energiespeichers erhalten bleibt.
Als relevante Fahrtrouten werden solche definiert, die die Betriebsstrategie des Range-Extenders unterschiedlich beeinflussen.
Dadurch werden auch ohne aktive Eingabe eines Fahrzieles alle innerhalb des definierten Betrachtungshorizontes, beispielsweise der Fahrzeug-Gesamtreichweite liegenden möglichen Fahrtrouten und der daraus resultierende günstigste Einschaltzeitpunkt der Brennkraftmaschine und/oder der Aufheizeinrichtung der Abgasnachbehandlungseinrichtung berechnet. Die Vorgangsweise ähnelt dabei dem eines Schachcomputers, der auch jeden möglichen Schachzug vorab kalkuliert und den jeweils bestmöglichen Lösungsansatz berechnet.
Die Berechnung aller möglichen relevanten Fahrtrouten wird dabei bei jeder potentiellen Routenänderung aktualisiert. Dabei erfolgt permanent ein Abgleich des berechneten und des tatsächlichen Energiebedarfes.
Der Simulation aller möglicher relevanten Fahrtrouten werden vorteilhafter Weise Geschwindigkeitsprofile zugrunde gelegt, welche in Abhängigkeit der Straßenart, des Straßenzustandes, der Topographie, der Verkehrslage, der Außentemperaturen, der Wetterbedingungen und/oder der Tageszeit ermittelt werden . Besonders vorteilhaft ist es, wenn für alle möglichen Fahrtrouten jeweils ein prospektives Energieverbrauchsprofil erstellt und der Betrieb der Brennkraftmaschine und/ oder der Aufheizeinrichtung der Abgasnachbehandlungseinrichtung auf der Basis dieses Energieverbrauchsprofils geplant wird, wobei vorzugsweise bei Erstellung des Energieverbrauchsprofils der aktuelle und der prospektive Energieverbrauch bei jeder Fahrtroute berücksichtigt wird . Weiters kann auch der bisherige Energieverbrauch auf dem zurückgelegten Abschnitt der Fahrtroute zur Ermittlung der Fahrzeugbeladung aus der bekannten Topografie herangezogen werden. Dabei wird der fahrerspezifische Energieverbrauch, sowie alle anderen Zusatzverbraucher wie Klimatisierungserfordernisse basierend auf Außentemperatur, Licht, Scheibenwischer, Scheiben- und Sitzheizung etc. für eine möglichst genaue Vorhersage des Energiebedarfes herangezogen.
Vorzugsweise ist vorgesehen, dass der Simulation der Fahrtrouten ein definiertes Fahrerprofil zugrunde gelegt wird, wobei vorzugsweise das Fahrerprofil aus dem Fahrbetrieb vergangener Fahrten abgeleitet wird.
Als Betrachtungshorizont kann die Fahrzeug-Gesamtreichweite herangezogen werden. Um den Simulationsaufwand zu verkleinern und die Rechenzeit zu verkürzen, kann vorgesehen sein, dass der Betrachtungshorizont aufgrund der Länge, Dauer und Ziel von vergangenen Fahrten abgeschätzt wird. Es ist aber auch möglich, den Ereignishorizont manuell vorzugeben bzw. voreinzustellen.
In einer besonders bevorzugten Ausführungsvariante der Erfindung ist vorgesehen, dass der jeweils aktuelle Aufenthaltsort des Elektrofahrzeuges einem neuen Bezugspunkt zugeordnet wird, und eine neue Simulation aller möglichen Fahrtrouten auf der Basis des neuen Bezugspunktes erfolgt. Als Betrachtungshorizont kann dabei der ursprüngliche Betrachtungshorizont verwendet werden. Es ist aber auch denkbar, dass der Betrachtungshorizont wie der Betrachtungspunkt dynamisch verändert wird .
Eine neue Zuordnung des Betrachtungspunktes und eine neue Simulation aller möglichen Fahrtrouten sollte zumindest bei Erreichen jeweils eines Knoten- oder Verzweigungspunktes des Straßennetzes durchgeführt werden.
Die besten Ergebnisse lassen sich im Rahmen der Erfindung dadurch erreichen, dass die Simulation der Fahrtrouten unter Einbeziehung eines Fahrzeugnavigationssystems und/oder eines Navigationssatellitensystems erfolgt.
Dabei wird prospektiv der Einschaltzeitpunkt der Brennkraftmaschine in Abhängigkeit des Ladezustandes des elektrischen Energiespeichers und der Fahrtroute ermittelt und unter Berücksichtigung einer Aufheizfunktion der Abgasnachbehandlungseinrichtung bei einer definierten Heizleistung ein Einschaltzeitpunkt der Heizeinrichtung bestimmt und die Heizeinrichtung zu einem Zeitpunkt vor dem Starten der Brennkraftmaschine eingeschalten, so dass zum Aktivierungszeitpunkt der Brennkraftmaschine die Abgasnachbehandlungseinrichtung eine definierte Betriebstemperatur aufweist.
Die Erfindung wird im Folgenden anhand der Figuren näher erläutert. Es zeigen :
Fig. 1 ein Elektrofahrzeug mit einem elektrischen Energiespeicher zur
Durchführung des erfindungsgemäßen Verfahrens;
Fig. 2 ein Schema über das erfindungsgemäße Verfahren; und
Fig. 3 eine Fahrtroute.
Fig . 1 zeigt ein Elektrofahrzeug 1 mit einer elektrischen Antriebsmaschine 2 zum Antrieb von Antriebsrädern 3, wobei die elektrische Antriebsmaschine 2 von einem elektrischen Energiespeicher 4 gespeist wird. Zur Reichweitenverlängerung ist ein durch eine Brennkraftmaschine 5 gebildeter Range Extender vorgesehen, welche den elektrischen Energiespeicher 4 auflädt. Die Brennkraftmaschine 5 weist einen Abgasstrang 6 mit zumindest einer durch einen Katalysator gebildeten Abgasnachbehandlungseinrichtung 7 auf, wobei zum Erwärmen der Abgasnachbehandlungseinrichtung 7 eine Heizeinrichtung 8 vorgesehen ist. Durch eine Steuereinheit 9 wird der Betrieb der Brennkraftmaschine 5 und der Heizeinrichtung 8 gesteuert.
Fig . 2 zeigt die Betriebsstrategie zum Aufheizen der Abgasnachbehandlungseinrichtung 7. Im normalen elektrischen Fahrbetrieb 100 erfolgt der Antrieb durch das Elektrofahrzeug 2 über den elektrischen Energiespeicher 4, wobei die Brennkraftmaschine 5 ausgeschalten ist. Die Steuereinheit 9 überwacht in Schritt 200 permanent den Ladezustand SOC des elektrischen Energiespeichers 4 und prüft, ob der Ladezustand SOC eine Ladung mittels der Brennkraftmaschine 5 erfordert. Ist dies der Fall so wird in Schritt 300 überprüft, ob die Brennkraftmaschine 5 eingeschalten ist. In diesem Falle (Y) wird Schritt 400 und 500 übergangen . Ist die Brennkraftmaschine 5 deaktiviert, so wird in Schritt 400 die Heizeinrichtung 8 eingeschaltet und alle Vorbereitungen zum Starten der Brennkraftmaschine 5 getroffen . Der Start der Brennkraftmaschine 5 erfolgt in Schritt 500. Nach dem Starten der Brennkraftmaschine 5 wird die Heizleistung der Heizeinrichtung 8 an den Betriebszustand der Brennkraftmaschine 5 in Schritt 600 angepasst. Darüber hinaus kann die Heizleistung auch in Abhängigkeit des Ladezustandes SOC des Energiespeichers 4 der Umgebungstemperatur, des Aufenthaltsortes des Elekt- rofahrzeuges 1 oder dergleichen angepasst werden, um den Energiespeicher 4 möglichst wenig zu belasten .
Das Aktiveren der Heizeinrichtung 8 erfolgt prospektiv, dies bedeutet, dass das Aktivieren der Heizeinrichtung 8 in Abhängigkeit des vorausschauend bestimmten Zeitpunktes für das Einschalten der Brennkraftmaschine 5 festgesetzt wird .
Ein Beispiel für ein prospektiv erfolgendes Einschalten der Brennkraftmaschine und in weiterer Folge der Heizeinrichtung 8 ist in Fig . 3 gezeigt.
Die Fig . 3 zeigt schematisch eine Straßenkarte mit einer tatsächlich vom Elekt- rofahrzeug gefahrenen Fahrtroute R, wobei mit P0 der Ausgangspunkt, mit Pi ein charakteristischer Knotenpunkt und mit Pz das Fahrziel bezeichnet ist. Wenn dem System der Zielort nicht bekannt ist, wird eine Simulation für alle möglichen Fahrtrouten durchgeführt. Dabei wird am Ausgangspunkt P0 der momentane Aufenthaltsort des Elektrofahrzeuges 1 als Bezugspunkt für die Simulation herangezogen . Ausgehend von diesem Bezugspunkt werden sämtliche in Frage kommenden Fahrtrouten innerhalb des Betrachtungshorizontes H berücksichtigt. Für jede der simulierten Fahrtrouten wird prospektiv ein Einschaltzeitpunkt der Stromerzeugungseinrichtung ermittelt, so dass bei Erreichen des Betriebshorizontes H ein definierter Ladezustand des Energiespeichers 4 erhalten bleibt. Die Linie 10 gibt dabei die technische Grenze des rein elektrischen Fahrbetriebes an . Das Feld 20 zeigt das Gebiet an, in welchem die Simulation die Aktivierung des Range- Extenders vorsieht, um innerhalb des Betrachtungshorizontes H am Zielort einen definierten Ladezustandes SOC nicht zu unterschreiten .
Durch die Simulation aller möglichen Fahrtrouten werden auch ohne aktive Eingabe eines Fahrzieles alle innerhalb des definierten Betrachtungshorizontes H, beispielsweise der Fahrzeug-Gesamtreichweite, liegenden möglichen Fahrtrouten und der daraus resultierende günstigste Einschaltzeitpunkt der Stromerzeugungseinrichtung berechnet. Die Berechnung aller möglichen Fahrtrouten wird dabei bei jeder potentiellen Routenänderung, also in jedem Knotenpunkt oder Verzweigungspunkt Pi des Straßennetzes auf der tatsächlich gefahrenen Fahrtroute R, aktualisiert. Dabei erfolgt permanent ein Abgleich des berechneten und des tatsächlichen Energiebedarfes.
Der Simulation aller möglicher Fahrtrouten werden Geschwindigkeitsprofile zu Grunde gelegt, welche in Abhängigkeit der Straßenart, des Straßenzustandes, der Topographie, der Verkehrslage, der Außentemperaturen, der Wetterbedingungen und/oder der Tageszeit ermittelt werden. Für alle möglichen Fahrtrouten wird jeweils ein prospektives Energieverbrauchsprofil erstellt und der Betrieb der Brennkraftmaschine 5 auf der Basis dieses Energieverbrauchsprofils geplant, wobei bei Erstellung des Energieverbrauchsprofils der aktuelle und der prospektive Energieverbrauch bei jeder Fahrtroute berücksichtigt wird. Dabei wird der fahrerspezifische Energieverbrauch, sowie alle anderen Zusatzverbraucher wie Klimatisierungserfordernisse basierend auf Außentemperatur, Licht, Scheibenwischer, Scheiben- und Sitzheizung, Aufheizeinrichtung 8 für die Abgasnachbehandlungseinrichtung 7 etc. für eine möglichst genaue Vorhersage des Energiebedarfes herangezogen. Die Informationen über Straßenzustand, Verkehrslage, Wetter, etc. können über Internet, Verkehrsfunk, Telematik oder dergleichen bereitgestellt werden.
Der Simulation der Fahrtrouten kann ein definiertes Fahrerprofil zugrunde gelegt werden, wobei das Fahrerprofil automatisch aus dem Fahrbetrieb vergangener Fahrten abgeleitet, manuell eingegeben oder über eine Personenidentifikationseinrichtung erfasst werden kann.
Als Betrachtungshorizont H kann beispielsweise die Fahrzeug-Gesamtreichweite herangezogen werden. Es ist aber auch möglich den Betrachtungshorizont H aufgrund der Länge, Dauer und Ziel von vergangenen Fahrten abzuschätzen oder manuell vorzuwählen.
Insbesondere bei Kreuzungspunkten Pi entlang der gefahrenen Fahrtroute kann der jeweils aktuelle Aufenthaltsort des Elektrofahrzeuges 1 einem neuen Bezugspunkt zugeordnet, und eine neue Simulation aller möglichen Fahrtrouten auf der Basis des neuen Bezugspunktes erfolgen. Als Betrachtungshorizont kann dabei der ursprüngliche Betrachtungshorizont H weiter verwendet werden. Es ist aber auch denkbar, dass der Betrachtungshorizont zusammen mit dem Betrachtungspunkt dynamisch verändert wird .
Zweckmäßigerweise erfolgt die Simulation der Fahrtrouten unter Einbeziehung eines Fahrzeugnavigationssystems und/oder eines Navigationssatellitensystems. Das beschriebene Verfahren ermöglicht es, ohne dass der Fahrer Informationen zum Zielort eingeben muss, die Größe des Energiespeichers, sowie der Brennkraftmaschine zu minimieren, ohne dass dadurch Fahrleistungseinbußen entstehen. Trotzdem bleibt dabei der Einsatz des Range-Extenders in einem minimal erforderlichen Ausmaß und ermöglicht die Maximierung des rein netzgespeisten Batteriebetriebes.
Insbesondere in Ballungsräumen wie Großstädten mit einer Vielzahl von relativ nahe benachbarten Kreuzungen kann eine Vereinfachung des Verfahrens sinnvoll sein, um den Rechenaufwand und die Rechendauer in einem vertretbaren Rahmen zu halten. Dabei reicht es aus, wenn nur solche möglichen relevanten Fahrtrouten berechnet werden, welche die Betriebsweise des Range Extenders beeinflussen. Zum Beispiel werden dabei insbesondere Fahrtrouten mit unterschiedlicher Topografie, Verkehrslage oder Straßenart (zum Beispiel Stadtautobahnen) berücksichtigt.
Das Feld 30 in Fig. 3 zeigt den Bereich an, in welchem die Heizeinrichtung 8 aktiviert wird, wenn im Punkt P2 die Brennkraftmaschine 5 eingeschaltet wird . Durch die prospektive Festsetzung der Heinzeinrichtung 8 der Abgasnachbehandlungseinrichtung 7 wird erreicht, dass die Bgasnachbehandlungseinrichtung auch bei längerem Stillstand der Brennkraftmaschine 5 zum Zeitpunkt des Startens der Brennkraftmaschine 5 die erforderliche Betriebstemperatur aufweist. Auf diese Weise können die Emissionen, insbesondere beim Starten der Brennkraftmaschine 5 wesentlich reduziert werden.

Claims

P A T E N T A N S P R Ü C H E
1. Verfahren zum Betreiben eines Elektrofahrzeuges (1), welches zumindest eine elektrische Antriebsmaschine (2), zumindest einen elektrischen Energiespeicher (4) sowie zumindest eine durch eine Brennkraftmaschine (5) gebildete Stromerzeugungseinrichtung aufweist, wobei die Brennkraftmaschine in Abhängigkeit des Ladezustandes (SOC) des elektrischen Energiespeichers (4) aktiviert wird, wobei im Abgasstrang (6) der Brennkraftmaschine (5) zumindest eine Abgasnachbehandlungseinrichtung (7) zugeordnet ist, dadurch gekennzeichnet, dass vor dem Aktivieren der Brennkraftmaschine (5) die Abgasnachbehandlungseinrichtung (7) auf Betriebstemperatur erwärmt wird .
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Brennkraftmaschine (5) auch in Abhängigkeit der Fahrtroute aktiviert wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass ausgehend von einem Bezugspunkt, welcher vorzugsweise einem Ausgangspunkt (P0) der Fahrtroute (R) entspricht, innerhalb eines definierten Betrachtungshorizontes (H) alle möglichen relevanten Fahrtrouten, vorzugsweise alle möglichen Fahrtrouten, simuliert werden, und dass für jede der simulierten Fahrtrouten prospektiv ein Einschaltzeitpunkt (P2) der Brennkraftmaschine (5) ermittelt wird, so dass bei Erreichen des Betrachtungshorizontes (H) ein definierter Ladezustand (SOC) des Energiespeichers (4) erhalten bleibt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Einschaltzeitpunkt Abgasnachbehandlungseinrichtung (7) prospektiv unter Berücksichtigung einer Aufheizfunktion der Abgasnachbehandlungseinrichtung (7) bei einer definierten Heizleistung so festgelegt wird, dass die Abgasnachbehandlungseinrichtung (7) zum Einschaltzeitpunkt der Brennkraftmaschine (5) eine definierte Betriebstemperatur aufweist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Heizleistung für das Erwärmen der Abgasnachbehandlungseinrichtung (7) in Abhängigkeit des Betriebszustandes der Brennkraftmaschine (5), der Umgebungstemperatur, des Ladezustandes (SOC), des Energiespeichers (4) und/oder in Abhängigkeit des Aufenthaltsortes des Elektrofahrzeuges (1) angepasst wird .
6. Vorrichtung zur Durchführung des Verfahrens zum Betreiben eines Elektrofahrzeuges (1), welches zumindest eine elektrische Antriebsmaschine (2), zumindest einen elektrischen Energiespeicher (4), sowie zumindest eine durch eine Brennkraftmaschine (5) gebildete Stromerzeugungseinrichtung aufweist, wobei die Brennkraftmaschine (5) in Abhängigkeit des Ladezustandes des elektrischen Energiespeichers (4) aktivierbar ist, wobei im Abgasstrang (6) der Brennkraftmaschine (5) zumindest eine Abgasnachbehandlungseinrichtung (7) angeordnet ist nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Abgasnachbehandlungseinrichtung (7) eine Aufheizeinrichtung (8) aufweist, wobei die Abgasnachbehandlungseinrichtung (7) vor dem Aktivieren der Brennkraftmaschine auf eine Betriebstemperatur erwärmbar ist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Heizeinrichtung mittels einer Steuereinheit (9) aktivierbar ist, welche dazu ausgebildet ist, den Einschaltzeitpunkt der Brennkraftmaschine (5) in Abhängigkeit des Ladezustandes (SOC) des elektrischen Energiespeichers (4) und der Fahrtroute (R) festzulegen.
8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Steuereinheit (9) dazu ausgebildet ist, die Heizleistung der Heizeinrichtung (8) in Abhängigkeit der Umgebungstemperatur, des Betriebszustandes der Brennkraftmaschine (5), des Ladezustandes (SOC) des elektrischen Energiespeichers (4) und/oder des Aufenthaltsortes des Elektrofahrzeuges (1) festzulegen.
2011
Fu/Sc
PCT/EP2011/059997 2010-06-24 2011-06-16 Verfahren zum betreiben eines elektrofahrzeuges WO2011160995A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1064/2010A AT508065B1 (de) 2010-06-24 2010-06-24 Verfahren zum betreiben eines elektrofahrzeuges
ATA1064/2010 2010-06-24

Publications (1)

Publication Number Publication Date
WO2011160995A1 true WO2011160995A1 (de) 2011-12-29

Family

ID=42937603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/059997 WO2011160995A1 (de) 2010-06-24 2011-06-16 Verfahren zum betreiben eines elektrofahrzeuges

Country Status (2)

Country Link
AT (1) AT508065B1 (de)
WO (1) WO2011160995A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480046A1 (de) * 2017-11-01 2019-05-08 Hyundai Motor Company Hybridelektrofahrzeug und verfahren zur steuerung des motorbetriebs davon
US20210179068A1 (en) * 2019-12-16 2021-06-17 Hyundai Motor Company Hybrid Electric Vehicle and Engine Operation Control Method Therefor
CN113401103A (zh) * 2020-03-17 2021-09-17 丰田自动车株式会社 非瞬时性存储介质、车辆控制装置及数据结构的生成方法
WO2023001828A1 (de) * 2021-07-22 2023-01-26 Vitesco Technologies GmbH Batteriemanagement-verfahren und batteriemanagement-system für eine bordnetz-batterie eines hybrid-kraftfahrzeugs

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012001740A1 (de) * 2012-01-28 2013-08-01 Volkswagen Aktiengesellschaft Verfahren zum Betrieb einer Hybridantriebseinheit für ein Kraftfahrzeug sowie Hybridantriebseinheit
DE102012011996B4 (de) * 2012-06-16 2023-03-30 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Optimierung eines Betriebs eines Fahrzeugs und Fahrzeug selbst
DE102013003801A1 (de) * 2013-03-05 2014-09-11 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Fahrzeug mit elektrischem Antrieb
DE102013005252A1 (de) 2013-03-27 2014-10-02 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Hybrid-Antriebsstrang und Verfahren zum Steuern desselben
DE102016219039A1 (de) 2015-11-04 2017-05-04 Ford Global Technologies, Llc Steuerung einer Abgasnachbehandlungseinrichtung
DE102019201157A1 (de) * 2019-01-30 2020-07-30 Robert Bosch Gmbh Verfahren zur Nachbehandlung von Abgasen in einer Hybridmaschine
CN113401110B (zh) * 2021-08-03 2022-05-10 东蒲联合科技(福建)有限责任公司 增程式电动冷链物流车安全控制方法及物流车
DE102021128059A1 (de) 2021-10-28 2023-05-04 Audi Aktiengesellschaft Betriebsverfahren für hybrides Antriebssystem und Steuergerät

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785137A (en) * 1996-05-03 1998-07-28 Nevcor, Inc. Hybrid electric vehicle catalyst control
US5892346A (en) * 1995-02-27 1999-04-06 Kabushikikaisha Equos Research Vehicle
FR2811268A1 (fr) * 2000-07-04 2002-01-11 Renault Procede et systeme de gestion de l'energie dans un vehicule a moyen de propulsion hybride
EP1225074A2 (de) 2001-01-19 2002-07-24 Transportation Techniques, LLC Hybridfahrzeug mit wählbarem, emissionsfreiem Modus, und Einschaltungsverfahren dafür
DE102005003469A1 (de) 2004-01-27 2005-08-18 General Motors Corp. (N.D.Ges.D. Staates Delaware), Detroit Stranggepresste bipolare Platten
WO2005082663A1 (en) 2004-02-18 2005-09-09 Wavecrest Laboratories Llc Portable range extender with autonomous control of starting and stopping operations
JP2008201165A (ja) 2007-02-16 2008-09-04 Tokai Rika Co Ltd ハイブリッド車両制御装置
WO2008128416A1 (en) 2007-04-19 2008-10-30 The Chinese University Of Hong Kong Energy management for hybrid electric vehicles
JP2008290610A (ja) 2007-05-25 2008-12-04 Denso Corp 車両用ナビゲーション装置
DE102007025419A1 (de) 2007-05-31 2008-12-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb eines Kraftfahrzeuges mit einer Abgas-Heizvorrichtung
US20090015202A1 (en) 2007-07-10 2009-01-15 Shimpei Miura State of charge control method and systems for vehicles
AT506272A2 (de) 2009-04-02 2009-07-15 Avl List Gmbh Verfahren zum betreiben eines elektrofahrzeuges
EP2083156A1 (de) * 2006-11-15 2009-07-29 Toyota Jidosha Kabushiki Kaisha Hybridverfahren und steuerverfahren dafür
EP2172740A1 (de) 2007-07-19 2010-04-07 Aisin AW Co., Ltd. Kartenanzeigevorrichtung, kartenanzeigeverfahren und computerlesbares berührungsmedium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071213B2 (ja) * 2008-04-11 2012-11-14 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2009274478A (ja) * 2008-05-12 2009-11-26 Toyota Motor Corp ハイブリッド車両
JP5109861B2 (ja) * 2008-08-07 2012-12-26 トヨタ自動車株式会社 車両およびその制御方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892346A (en) * 1995-02-27 1999-04-06 Kabushikikaisha Equos Research Vehicle
US5785137A (en) * 1996-05-03 1998-07-28 Nevcor, Inc. Hybrid electric vehicle catalyst control
FR2811268A1 (fr) * 2000-07-04 2002-01-11 Renault Procede et systeme de gestion de l'energie dans un vehicule a moyen de propulsion hybride
EP1225074A2 (de) 2001-01-19 2002-07-24 Transportation Techniques, LLC Hybridfahrzeug mit wählbarem, emissionsfreiem Modus, und Einschaltungsverfahren dafür
DE102005003469A1 (de) 2004-01-27 2005-08-18 General Motors Corp. (N.D.Ges.D. Staates Delaware), Detroit Stranggepresste bipolare Platten
WO2005082663A1 (en) 2004-02-18 2005-09-09 Wavecrest Laboratories Llc Portable range extender with autonomous control of starting and stopping operations
EP2083156A1 (de) * 2006-11-15 2009-07-29 Toyota Jidosha Kabushiki Kaisha Hybridverfahren und steuerverfahren dafür
JP2008201165A (ja) 2007-02-16 2008-09-04 Tokai Rika Co Ltd ハイブリッド車両制御装置
WO2008128416A1 (en) 2007-04-19 2008-10-30 The Chinese University Of Hong Kong Energy management for hybrid electric vehicles
JP2008290610A (ja) 2007-05-25 2008-12-04 Denso Corp 車両用ナビゲーション装置
DE102007025419A1 (de) 2007-05-31 2008-12-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb eines Kraftfahrzeuges mit einer Abgas-Heizvorrichtung
US20090015202A1 (en) 2007-07-10 2009-01-15 Shimpei Miura State of charge control method and systems for vehicles
EP2172740A1 (de) 2007-07-19 2010-04-07 Aisin AW Co., Ltd. Kartenanzeigevorrichtung, kartenanzeigeverfahren und computerlesbares berührungsmedium
AT506272A2 (de) 2009-04-02 2009-07-15 Avl List Gmbh Verfahren zum betreiben eines elektrofahrzeuges

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480046A1 (de) * 2017-11-01 2019-05-08 Hyundai Motor Company Hybridelektrofahrzeug und verfahren zur steuerung des motorbetriebs davon
US10829108B2 (en) 2017-11-01 2020-11-10 Hyundai Motor Company Hybrid electric vehicle and method of controlling engine operation for the same
US20210179068A1 (en) * 2019-12-16 2021-06-17 Hyundai Motor Company Hybrid Electric Vehicle and Engine Operation Control Method Therefor
CN113401103A (zh) * 2020-03-17 2021-09-17 丰田自动车株式会社 非瞬时性存储介质、车辆控制装置及数据结构的生成方法
EP3882094A1 (de) * 2020-03-17 2021-09-22 Toyota Jidosha Kabushiki Kaisha Nicht-transitorisches speichermedium, fahrzeugsteuerungsvorrichtung und verfahren zur erzeugung einer datenstruktur
CN113401103B (zh) * 2020-03-17 2024-01-26 丰田自动车株式会社 非瞬时性存储介质、车辆控制装置及数据结构的生成方法
US11945429B2 (en) 2020-03-17 2024-04-02 Toyota Jidosha Kabushiki Kaisha Non-transitory storage medium, vehicle control device, and method for generating data structure
WO2023001828A1 (de) * 2021-07-22 2023-01-26 Vitesco Technologies GmbH Batteriemanagement-verfahren und batteriemanagement-system für eine bordnetz-batterie eines hybrid-kraftfahrzeugs

Also Published As

Publication number Publication date
AT508065A3 (de) 2012-03-15
AT508065A2 (de) 2010-10-15
AT508065B1 (de) 2012-09-15

Similar Documents

Publication Publication Date Title
AT508065B1 (de) Verfahren zum betreiben eines elektrofahrzeuges
EP2563634B1 (de) Verfahren zum Betreiben eines Elektrofahrzeuges
AT506272B1 (de) Verfahren zum betreiben eines elektrofahrzeuges
EP2323887B9 (de) Verfahren zur steuerung eines hybridantriebs in einem schienenfahrzeug
DE102011018182B4 (de) Selbstlernendes durch eine Satellitennavigation unterstütztes Hybridfahrzeug-Steuersystem
DE102014204308A1 (de) Reichweitenschätzung für Elektrofahrzeuge
DE102014014851B4 (de) Verfahren zum Betrieb eines Navigationssystems eines Hybridkraftfahrzeugs und Hybridkraftfahrzeug
DE102012011996B4 (de) Verfahren und Vorrichtung zur Optimierung eines Betriebs eines Fahrzeugs und Fahrzeug selbst
DE102008047923A1 (de) Verfahren zur Optimierung eines Betriebs eines Fahrzeugs sowie zugehörige Anzeigevorrichtung und zugehöriges Fahrzeug
DE102009027558A1 (de) Verfahren zum Betreiebn eines Heiz-oder Kühlsystems eines Kraftfahrzeugs
DE112012003691T5 (de) Fahrzeugsteuerungsvorrichtung
WO2019238340A1 (de) Verfahren zur temperierung eines elektrischen energiespeichers
WO2016041661A1 (de) Steuervorrichtung und verfahren zum prädiktiven, verbrauchsoptimierten betrieb eines hybridfahrzeugs
DE102010062866B4 (de) Verfahren zur Erzeugung einer Betriebsstrategie für ein Elektrofahrzeug mit Range-Extender
DE102015224003A1 (de) Verfahren zur Steuerung eines Hybridantriebs
DE102008043398A1 (de) Verfahren zum Betreiben eines Generators eines Fahrzeugs
WO2011020704A1 (de) Navigationsvorrichtung und verfahren zur rekuperationssteuerung
EP3770009A1 (de) Vorrausschauender betrieb einer nachladeinfrastruktur für elektrofahrzeuge
DE102014201062A1 (de) Verfahren zum Steuern einer Geschwindigkeit
DE102019212941A1 (de) Verfahren zum Steuern eines Ladezustands einer Batterie eines Kraftfahrzeugs
WO2019115585A1 (de) Hybrid-system zum antrieb eines fahrzeugs
WO2016058858A1 (de) Antriebsvorrichtung für ein kraftfahrzeug
AT511553B1 (de) Verfahren zum betreiben einer elektrischen energieerzeugungseinrichtung
DE102021201379A1 (de) Verfahren zur Routenplanung für ein Elektrokraftfahrzeug
WO2010078974A1 (de) Verfahren für die steuerung eines elektrofahrzeugs mit hilfsantrieb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11725105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11725105

Country of ref document: EP

Kind code of ref document: A1