WO2011160277A1 - 参考信号发送方法、信道质量估计方法、移动台、基站和无线通信系统 - Google Patents

参考信号发送方法、信道质量估计方法、移动台、基站和无线通信系统 Download PDF

Info

Publication number
WO2011160277A1
WO2011160277A1 PCT/CN2010/074144 CN2010074144W WO2011160277A1 WO 2011160277 A1 WO2011160277 A1 WO 2011160277A1 CN 2010074144 W CN2010074144 W CN 2010074144W WO 2011160277 A1 WO2011160277 A1 WO 2011160277A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
mobile station
reference signal
precoding
base station
Prior art date
Application number
PCT/CN2010/074144
Other languages
English (en)
French (fr)
Inventor
王键
周华
吴建明
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN201080067456XA priority Critical patent/CN102948186A/zh
Priority to KR1020137000904A priority patent/KR101348052B1/ko
Priority to PCT/CN2010/074144 priority patent/WO2011160277A1/zh
Priority to EP10853420.7A priority patent/EP2584810A1/en
Priority to CA2803043A priority patent/CA2803043A1/en
Priority to JP2013515656A priority patent/JP5494888B2/ja
Publication of WO2011160277A1 publication Critical patent/WO2011160277A1/zh
Priority to US13/719,969 priority patent/US20130107746A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • Mobile station base station and wireless communication system
  • the present invention relates to wireless communication technologies, and more particularly to a reference signal transmission method, a channel quality estimation method, a mobile station, a base station, and a wireless communication system.
  • the 4th generation (4G) mobile communication system for example, in the LTE (Long Term Evolution) Single-Carrier Frequency Division Multiple Access (SC-FDMA) uplink, using a reference signal (Reference Signal - RS) Data demodulation and channel sounding.
  • LTE Long Term Evolution
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • Reference Signal - RS Reference Signal
  • the role of the uplink reference signal includes channel estimates required for coherent demodulation, channel quality probing for uplink scheduling, power control, timing estimation, and direction of arrival estimation to support downlink beamforming.
  • the uplink reference signals in LTE are mostly based on the Zadoff-Chu (ZC) sequence.
  • ZC sequence is also referred to as the GCL (Generalized Chirp-Like) sequence.
  • the sequence is a non-binary unit amplitude sequence that satisfies the CAZAC (Constant Amplitude Zero Autocorrelation) feature.
  • the CAZAC sequence is a complex-valued signal in the form of.
  • a ZC sequence of length ⁇ ⁇ can be expressed as
  • the ZC sequence has the following characteristics.
  • the ZC sequence has a constant amplitude and is also constant amplitude after DFT operation.
  • the constant amplitude characteristic limits the peak-to-average power ratio and the boundary and time flat-type interference generated by other users. In addition, this feature simplifies implementation when only phase calculation and storage are required without amplitude.
  • the uplink reference signal has the following good characteristics: (1) The amplitude in the frequency domain is constant, in order to make the same for all allocated subcarriers in the unbiased channel estimation. (2) low-cubic metric (CM) values in the time domain are low; (3) very good autocorrelation properties to facilitate accurate channel estimation; (4) good cross-correlation properties, thereby reducing emissions from other cells Interference of reference signals transmitted on the same resource.
  • CM low-cubic metric
  • the uplink supports the following two reference signals:
  • Demodulation reference signal (Demodulation RS, DMRS). Such reference signals are mainly used for channel estimation of uplink data transmission or signaling information transmission, and then related detection;
  • SRS Sounding RS
  • one subframe has a total of 14 symbols, numbered 0, 2, 1, ..., 13.
  • the user's SRS signal can only be transmitted in the No. 13 symbol.
  • the user's DMRS signal can only be transmitted in the No. 3 symbol and the No. 10 symbol.
  • the uplink DMRS and SRS are time division multiplexed with data symbols.
  • the DMRS of a given mobile station has the same bandwidth, such as the PUSCH bandwidth in the entire cell bandwidth. Therefore, when different bandwidths of the system are allocated to different users (FDMA), the DMRS of each user is also orthogonal to each other.
  • the user's SRS bandwidth can be different from the bandwidth used for data transmission.
  • the user's SRS signal is always transmitted on the last SC-FMDA symbol of a subframe, and the parameters of the SRS signal are signaled by the higher layer signaling of the system.
  • the SRS signals of each mobile station are multiplexed by frequency division multiple access (FDM), code division multiple access (CDM), or time division multiple access (TDM).
  • FDM frequency division multiple access
  • CDM code division multiple access
  • TDM time division multiple access
  • the user's uplink signal transmission supports a single antenna transmission mode or an antenna selection transmission mode.
  • the user's uplink signal transmission supports a single antenna transmission mode or an antenna selection transmission mode.
  • only one set of SRS resources can be allocated per user.
  • the mobile station in order to meet the higher uplink transmission rate index, the mobile station is required to support higher rank (Rank) transmission in the uplink, such as the transmission of rankl-rank4, thereby requiring the mobile station to be equipped with a higher number.
  • Antennas such as mobile stations equipped with 2 antennas to support transmissions with a maximum rank of 2, or mobile stations equipped with 4 antennas to support transmissions with a maximum rank of 4.
  • the first method is to not precode the DMRS so that the DMRS can also be used as an SRS, thereby reducing the occupation of SRS resources.
  • a disadvantage of this approach is that there are two receivers for a Physical Uplink Shared Channel (PUSCH) with different DMRSs, one for the precoded DMRS and the other for the unprecoded DMRS. Furthermore, since each antenna occupies one cyclic shift resource in the case of channel quality estimation using uncoded DMRS, its use of cyclic shift (CS) resources is inefficient.
  • PUSCH Physical Uplink Shared Channel
  • the second method is to transmit both the precoded DMRS and the unprecoded DMRS in the DMRS subframe. Although this method does not require two receivers because the precoded DMRS always exists, there is still a cyclic shift due to each antenna occupying one cyclic shift resource in the case of channel quality estimation using uncoded DMRS. The problem of inefficient use of bit resources.
  • At least one object of the present invention is to provide a reference signal transmitting method, a channel quality estimating method, a mobile station, a base station, and a wireless communication system capable of overcoming at least some of the disadvantages and deficiencies of the prior art described above, to provide a plurality of mobile stations In the case of an antenna, the occupation of SRS resources in each antenna signal estimation is effectively reduced.
  • a reference signal transmitting method comprising: first precoding according to precoding for data to be transmitted through a plurality of antennas of a mobile station The matrix pre-codes the demodulation reference signal to be transmitted along with the data, and pre-codes the sounding reference signal to be transmitted along with the data according to the second pre-coding matrix.
  • Different columns and different rows of the first precoding matrix and the second precoding matrix respectively correspond to different data and different antennas; and transmit the precoded sounding reference signal and the precoded demodulation reference signal, wherein
  • the rank of the matrix formed by arranging all the column vectors in the first precoding matrix and all the column vectors in the second precoding matrix is greater than or equal to the number of the antennas.
  • the first precoding matrix and the second precoding matrix may be previously set by the base station and notified to the mobile station.
  • the mobile station may only pre-set and notify the mobile station of the first precoding matrix, and after receiving the first precoding matrix, the mobile station according to the first precoding matrix and the predefined first precoding matrix and the first A second precoding matrix is determined by a corresponding manner between the two precoding matrices.
  • the first precoding matrix and the second precoding matrix may be mutually positive
  • the first precoding matrix and the second precoding matrix may be changed by the base station from time to time and notified to the mobile station.
  • a channel quality estimation method including: using a reference signal channel estimation value transmitted from a plurality of antenna accompanying data transmitted from a mobile station, And according to the received second precoding moment value that is transmitted along with the data, different columns and different rows of the first precoding matrix and the second precoding matrix respectively correspond to different data and different antennas;
  • the first precoding matrix and the obtained demodulation reference signal channel estimate are derived from the first system of equations with the channel quality estimation values of the corresponding antennas, and are estimated based on the second precoding matrix and the obtained sounding reference signal channel estimates.
  • a second system of equations in which a channel quality estimate of the corresponding antenna is a variable, wherein a rank of a matrix formed by arranging all column vectors in the first precoding matrix and all column vectors in the second precoding matrix is greater than or equal to The number of antennas; and the channel quality estimation of each antenna calculated by combining the first system of equations with the second system of equations value.
  • the first precoding matrix and the second precoding matrix may be previously set by the base station and notified to the mobile station.
  • the mobile station may only pre-set and notify the mobile station of the first precoding matrix, and after receiving the first precoding matrix, the mobile station according to the first precoding matrix and the predefined first precoding matrix and the first A second precoding matrix is determined by a corresponding manner between the two precoding matrices.
  • the first precoding matrix and the second precoding matrix may be mutually positive Pay
  • the first precoding matrix and the second precoding matrix may be changed by the base station from time to time and notified to the mobile station.
  • a mobile station comprising: a plurality of antennas; a precoding unit configured to be used for transmitting through the plurality of antennas
  • the first precoding matrix pre-coded by the data pre-codes the demodulation reference signal to be accompanied by the data transmission, and pre-codes the sounding reference signal to be transmitted along with the data according to the second pre-coding matrix, the first pre-coding Different columns and different rows of the matrix and the second precoding matrix respectively correspond to different data and different antennas, and are arranged by all column vectors in the first precoding matrix and all column vectors in the second precoding matrix.
  • the rank of the constructed matrix is greater than or equal to the number of the antennas; and the transmitting unit is configured to transmit the precoded sounding reference signal and the precoded demodulation reference signal.
  • the first precoding matrix and the second precoding matrix may be previously set by the base station and notified to the mobile station.
  • the mobile station may only pre-set and notify the mobile station of the first precoding matrix, and after receiving the first precoding matrix, the mobile station according to the first precoding matrix and the predefined first precoding matrix and the first A second precoding matrix is determined by a corresponding manner between the two precoding matrices.
  • the first precoding matrix and the second precoding matrix may be orthogonal to each other.
  • the first precoding matrix and the second precoding matrix may be changed by the base station from time to time and notified to the mobile station.
  • a base station comprising: a channel estimation unit configured to use the received data of a plurality of antennas accompanying data transmission from a mobile station a precoding matrix precoded demodulation reference signal for channel estimation to obtain a demodulation reference signal channel estimation value, and based on the received utilization channel channel estimation value that is transmitted along with the data, the first precoding matrix and the first The different columns and different rows of the two precoding matrices respectively correspond to different data and different antennas; the first arithmetic unit is configured to estimate the channel quality of the root as the first equation of the variable, and according to the second The precoding matrix obtains a sounding reference signal channel estimate that is derived from a second system of equations in which the channel shield estimate of the corresponding antenna is a variable, wherein all column vectors and second precoding matrices in the first precoding matrix are included The rank of the matrix formed by all the column vectors is greater than or equal to the number of
  • the first precoding matrix and the second precoding matrix may be previously set by the base station and notified to the mobile station.
  • the mobile station may only pre-set and notify the mobile station of the first precoding matrix, and after receiving the first precoding matrix, the mobile station according to the first precoding matrix and the predefined first precoding matrix and the first A second precoding matrix is determined by a corresponding manner between the two precoding matrices.
  • the first precoding matrix and the second precoding matrix may be orthogonal to each other.
  • the first precoding matrix and the second precoding matrix may be changed by the base station from time to time and notified to the mobile station.
  • a wireless communication system comprising a mobile station as described above and a base station as described above.
  • FIG. 1 is a flowchart of a reference signal transmitting method according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart showing a reference signal transmitting method according to Embodiment 2 of the present invention
  • FIG. 3 is a flowchart showing a channel quality estimation method according to Embodiment 3 of the present invention
  • FIG. 4 is a flowchart showing a channel quality estimation method according to Embodiment 4 of the present invention
  • 6 shows a schematic diagram of a base station according to Embodiment 6 of the present invention
  • FIG. 7 shows a schematic diagram of a wireless communication system in accordance with a seventh embodiment of the present invention.
  • the present invention mainly relates to a reference signal transmitting method in a wireless communication system, a mobile station using the same, a channel quality estimating method, and a base station using the same, and a wireless communication system including the above mobile station and base station. Therefore, the description of the process of the encoding process, the scheduling algorithm, and the ranging, synchronization, and codec in the wireless data transceiving process with the present invention is only focused on the pairing and moving.
  • the reference signal transmission of the station is described in the process of estimating the antenna channel quality of the station.
  • the uplink DMRS uses a precoding matrix [1, 1, 1, 1 and ⁇ encoding, at which point the system transmits one layer of data.
  • the present invention provides a reference signal transmitting method applied to a mobile station.
  • FIG. 1 is a flow chart showing a method of transmitting a reference signal according to a first embodiment of the present invention.
  • the reference signal transmitting method according to the first embodiment of the present invention starts from step S101.
  • step S101 precoding the demodulation reference signal (DMRS) to be accompanied by the data transmission according to a first precoding matrix for precoding the data to be transmitted through the plurality of antennas of the mobile station, And precoding the sounding reference signal (SRS) to be accompanied by the data according to the second precoding matrix, wherein different columns and different rows of the first precoding matrix and the second precoding matrix respectively correspond to different data And different antennas.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • step S101 not only the DMRS is precoded, but also the SRS is precoded.
  • step S101 the rank of the matrix formed by arranging all the column vectors in the first precoding matrix and all the column vectors in the second precoding matrix is greater than or equal to the number of the antennas.
  • step S102 the precoded sounding reference signal and the precoded demodulation reference signal are transmitted.
  • the first system of equations can be obtained according to the channel quality estimates from all the column vectors in the first precoding matrix and the precoding based DMRS signals, the equations in the first system of equations The number of the same number is the same as the number of all column vectors in the first precoding matrix.
  • the first and second equations are The total number of equations is greater than or equal to the number of variables requiring the solution (ie, channel quality estimates for each antenna). Therefore, based on these two equations, the estimated value of the signal of each antenna can be obtained.
  • the rank of the matrices in which all the column vectors in the first precoding matrix and all the column vectors in the second precoding matrix are arranged are equal to the number of antennas, the channel quality estimation values of the respective antennas can be exactly obtained.
  • the first and second equations may be used.
  • the equations equal to the number of antennas are arbitrarily selected to obtain channel quality estimates for the respective antennas.
  • first precoding matrix and the second precoding matrix and the like used in this embodiment can be flexibly selected and set according to the requirements of a specific application, which should all be in the present invention.
  • the first precoding matrix and the second precoding matrix and the like used in this embodiment can be flexibly selected and set according to the requirements of a specific application, which should all be in the present invention.
  • the reference signal transmitting method precodes the DMRS and the SRS according to the first precoding matrix and the second precoding matrix, respectively, and all the columns in the two precoding matrices
  • the rank of the matrix formed by the vector arrangement is greater than or equal to the number of the antennas, so that the channel quality estimation of each antenna can be performed by using the DMRS and the SRS in combination with the corresponding base station side.
  • the reference signal transmitting method effectively reduces the occupation of SRS resources in the antenna channel quality estimation by using the pre-coded DMRS and the pre-coded SRS in combination, and also avoids the use of precoding alone.
  • the DMRS cannot perform the shortcomings of the signal estimation of each antenna.
  • the reference signal transmitting method combines the base station side based on the precoded DMRS and the precoded SRS by transmitting the precoded DMRS and the precoded SRS.
  • Signal estimation is performed, so that two receivers are also not required, and the occupation of cyclic shift resources is also reduced, thereby overcoming the above-mentioned drawbacks of the prior art.
  • Table 1 shows the codebook of the precoding matrix for Layer 2 transmission.
  • the channel quality estimation according to the reference signal transmission method according to the embodiment of the present invention will reduce the occupation of the SRS resource by a factor of two.
  • the reference signal transmitting method according to an embodiment of the present invention can further reduce system interference and increase the accuracy of system channel quality estimation by occupying less SRS resources.
  • the first precoding matrix and the second precoding matrix may be mutually orthogonal.
  • the mobile station is equipped with four antennas.
  • the precoding matrix Pdata [l 1 0 0; 0 0 1 - ⁇
  • the precoding matrix Psrs [l -1 0 0; 0 0 1 j] T ⁇ t SRS signal
  • the precoding matrix Pdata and the precoding matrix Psrs are orthogonal to each other.
  • the channel quality estimation values obtained according to the received pre-coded DMRS are 1 ⁇ 14 ⁇ ⁇ and h 2 , dmrs , and channel estimation based on the received pre-coded SRS is obtained. Values are h rs and h
  • Hantee n ( ⁇ 1, 2, 3, 4 ⁇ ) is the channel shield estimate for the nth antenna, and na, nb, nc, and nd are noise.
  • precoding matrix employed in the above-described examples of the first embodiment of the present invention is merely exemplary and not limiting. Those skilled in the art can flexibly set different precoding matrices according to the needs of practical applications to meet the application requirements of the actual wireless communication system, and all of them should be within the spirit and scope of the claimed invention.
  • the first precoding matrix and the second precoding matrix may be preset by the base station and notify the mobile station.
  • the mobile station may only preset and notify the mobile station of the first precoding matrix, and after receiving the first precoding matrix, the mobile station according to the first precoding matrix and the predefined A second precoding matrix is determined by a correspondence between the first precoding matrix and the second precoding matrix.
  • the first The precoding matrix and the second precoding matrix may be changed by the base station from time to time and notified to the mobile station.
  • FIG. 2 shows a flow chart of a reference signal transmitting method according to a second embodiment of the present invention.
  • the reference signal transmitting method according to the first embodiment of the present invention starts from step S201.
  • step S201 a first precoding matrix and a second precoding matrix for precoding the data transmitted by the mobile station to the plurality of antennas to be transmitted by the mobile station are preset and notified by the base station, wherein Different columns and different rows of the first precoding matrix and the second precoding matrix respectively correspond to different data and different antennas, and are used by all column vectors in the first precoding matrix and in the second precoding matrix
  • the rank of the matrix formed by arranging all the column vectors is greater than or equal to the number of antennas of the mobile station.
  • step S202 the demodulation reference signal to be transmitted along with the data described in step S201 is precoded according to the first precoding matrix, and according to the second precoding matrix pair to be accompanied by the step S201
  • the sounding reference signal transmitted by the data is precoded.
  • step S203 the precoded sounding reference signal and the precoded demodulation reference signal are transmitted.
  • first precoding matrix and the second precoding matrix and the like used in this embodiment can be flexibly selected and set according to the requirements of a specific application to satisfy an actual wireless communication system.
  • the application needs are within the spirit and scope of the claims as claimed.
  • the reference signal transmitting method pre-predicts the DMRS and the SRS according to the first precoding matrix and the second precoding matrix which are preset and notified to the mobile station by the base station, respectively.
  • Encoding, and the rank of the matrix formed by arranging all the column vectors in the two precoding matrices is greater than or equal to the number of the antennas, so that the base station side can combine the DMRS and the SRS to perform channel quality estimation of each antenna.
  • the reference signal transmitting method according to Embodiment 2 of the present invention effectively reduces the occupation of SRS resources in antenna channel quality estimation by using precoding DMRS and precoded SRS in combination, and also avoids using precoding separately.
  • the DMRS cannot perform the shortcomings of the signal estimation of each antenna.
  • the reference signal transmitting method according to Embodiment 2 of the present invention is performed by combining the precoded DMRS and the precoded SRS by enabling the base station side to perform the combination based on the precoded DMRS and the precoded SRS.
  • Channel quality estimation therefore, does not require two receivers, and also reduces the occupation of cyclic shift resources, thereby overcoming the above-discussed shortcomings of the prior art.
  • the first precoding matrix and the second precoding matrix may be mutually orthogonal.
  • the first precoding matrix and the second precoding matrix may be changed by the base station from time to time and notified to the mobile station.
  • the present invention also provides a channel quality estimation method applied to a base station.
  • FIG. 3 is a flow chart showing a channel quality estimation method according to Embodiment 3 of the present invention.
  • the channel quality estimation method according to Embodiment 3 of the present invention starts from step S301.
  • step S301 channel estimation is performed according to the received demodulation reference signal precoded by the first precoding matrix transmitted from the plurality of antennas accompanying data of the mobile station to obtain a demodulation reference signal channel estimation value. And using the second pre-behaved estimate according to the received data transmitted with the data, wherein different columns and different rows of the first precoding matrix and the second precoding matrix respectively correspond to different data and different antennas .
  • step S302 according to the first precoding matrix and the obtained demodulation reference signal channel estimation, the first system of equations with the channel quality estimation value of the corresponding antenna is derived, and according to the second precoding
  • the matrix and the obtained sounding reference signal channel estimates are derived from a second system of equations in which the channel quality estimates of the respective antennas are variables, wherein all columns in the first precoding matrix and all columns in the second precoding matrix
  • the rank of the matrix formed by the vector arrangement is greater than or equal to the number of the antennas.
  • step S303 channel estimation values of the respective antennas are calculated by combining the first system of equations and the second system of equations.
  • first precoding matrix and the second precoding matrix and the like used in this embodiment can be flexibly selected and set according to the requirements of a specific application to satisfy an actual wireless communication system.
  • the application needs are within the spirit and scope of the claims as claimed.
  • the channel quality estimation method according to Embodiment 3 of the present invention is obtained by precoding according to the received demodulation reference signal precoded by the first precoding matrix and using the second precoding matrix, respectively. Performing channel estimation on the sounding reference signal to obtain a demodulation reference signal channel estimation value and a sounding reference signal channel estimation value, respectively, and all the column vectors in the two precoding matrices are arranged to form a matrix having a rank greater than or equal to the antenna The number of channels can be combined to utilize DMRS and SRS for channel quality estimation of each antenna.
  • the channel quality estimation method according to Embodiment 3 of the present invention performs channel quality estimation of each antenna by using pre-coded DMRS and pre-coded SRS in combination, thereby effectively reducing occupation of SRS resources in antenna channel quality estimation. At the same time, the disadvantage of not being able to perform channel quality estimation of each antenna by using the precoded DMRS alone is also avoided.
  • the channel quality estimation method according to Embodiment 3 of the present invention does not require two receivers because channel quality estimation is performed in combination by precoding-based DMRS and pre-coded SRS, and also The occupation of cyclic shift resources is reduced, thereby overcoming the above disadvantages of the prior art.
  • the number of cyclic shift resources to be used is six.
  • the channel quality estimation method according to the third embodiment of the present invention since channel quality estimation is performed by using a combination of pre-coded DMRS and pre-coded SRS, only four cyclic shift resources are needed to obtain each antenna.
  • the channel quality estimation method according to the third embodiment of the present invention performs channel quality estimation to reduce the occupation of SRS resources by a factor of two.
  • the channel quality estimation method according to Embodiment 3 of the present invention can further reduce system interference and increase the accuracy of system channel shield estimation by occupying less SRS resources.
  • the first precoding matrix and the second precoding matrix may be mutually orthogonal.
  • the mobile station is equipped with four antennas.
  • Hante n (ne ⁇ l, 2, 3, 4 ⁇ ) is the channel quality estimate of the nth antenna, na nb nc and nd are noise 0
  • the first precoding matrix and the second precoding matrix may be preset by the base station and notify the mobile station.
  • the mobile station may only preset and notify the mobile station of the first precoding matrix, and after receiving the first precoding matrix, the mobile station according to the first precoding matrix and the predefined A second precoding matrix is determined by a correspondence between the first precoding matrix and the second precoding matrix.
  • the first precoding matrix and the second precoding matrix may be changed by the base station from time to time and notified to the mobile station.
  • FIG. 4 shows a flow chart of a channel quality estimation method according to Embodiment 4 of the present invention.
  • the channel quality estimation method according to Embodiment 4 of the present invention starts from step S401.
  • the first precoding matrix and the second precoding matrix are preset by the base station and notify the mobile station.
  • the mobile station may only pre-set and notify the mobile station of the first precoding matrix, and after receiving the first precoding matrix, the mobile station according to the first precoding matrix and the predefined first precoding matrix and the first A second precoding matrix is determined by a corresponding manner between the two precoding matrices.
  • channel estimation is performed according to the received demodulation reference signal precoded by the first precoding matrix transmitted from the plurality of antennas accompanying data of the mobile station to obtain a demodulation reference signal channel. Estimating a value and using the first signal channel estimate according to the received data transmitted with the data, wherein different columns and different rows of the first precoding matrix and the second precoding matrix respectively correspond to different data and different antennas .
  • step S403 according to the first precoding matrix and the obtained demodulation reference signal channel estimation, the first system of equations with the channel quality estimation value of the corresponding antenna is derived, and according to the second precoding
  • the matrix and the obtained sounding reference signal channel estimates are derived from a second system of equations in which the channel quality estimates of the respective antennas are variables, wherein all columns in the first precoding matrix and all columns in the second precoding matrix
  • the rank of the matrix formed by the vector arrangement is greater than or equal to the number of the antennas.
  • step S404 the channel volume estimation values of the respective antennas are calculated by combining the first system of equations and the second system of equations.
  • first precoding matrix and the second precoding matrix and the like used in this embodiment can be flexibly selected and set according to the requirements of a specific application to satisfy an actual wireless communication system.
  • the application needs are within the spirit and scope of the claims as claimed.
  • the channel quality estimation method is configured by using a demodulation reference signal precoded by a first precoding matrix preset by a base station and a second preset by a base station, respectively. Precoding the pre-coded sounding reference signal to perform channel estimation to obtain a demodulated reference signal channel estimation value and a sounding reference signal channel estimation value, respectively, and a matrix formed by arranging all column vectors in the two precoding matrices The rank is greater than or equal to the number of antennas, so that channel quality estimation of each antenna can be performed in combination with DMRS and SRS.
  • the channel quality estimation method according to Embodiment 3 of the present invention performs channel quality estimation of each antenna by using pre-coded DMRS and pre-coded SRS in combination, thereby effectively reducing occupation of SRS resources in antenna channel quality estimation. At the same time, the disadvantage of not being able to perform channel quality estimation of each antenna by using the precoded DMRS alone is also avoided.
  • the channel quality estimation method according to the third embodiment of the present invention does not require two receivers because the channel quality estimation is performed in combination by the precoding-based DMRS and the pre-coded SRS, and also Overcoming the prior art by reducing the occupation of cyclic shift resources The above shortcomings.
  • the first precoding matrix and the second precoding matrix may be mutually orthogonal.
  • the first precoding matrix and the second precoding matrix may be changed by the base station from time to time and notified to the mobile station.
  • the predetermined reference signal period can be flexibly set according to the requirements of the actual application to meet the delay requirement between the reference signal of the actual wireless communication system and the CQI feedback. All should be within the spirit and scope of the claimed invention.
  • a mobile station using a reference signal transmitting method according to an embodiment of the present invention a base station using a channel quality estimating method according to an embodiment of the present invention, and an upper multi-motion station and a base station Wireless communication system.
  • Figure 5 shows a schematic diagram of a mobile station 500 in accordance with a fifth embodiment of the present invention.
  • the mobile station 500 includes a precoding unit 501 and a transmitting unit 502.
  • the precoding unit 501 is configured to precode the demodulation reference signal to be accompanied by the data transmission according to the first precoding matrix for precoding the data to be transmitted through the plurality of antennas, and according to The second precoding matrix precodes the sounding reference signal to be accompanied by the data transmission, wherein different columns and different rows of the first precoding matrix and the second precoding matrix respectively correspond to different data and different antennas And the rank of the matrix formed by arranging all the column vectors in the first precoding matrix and all the column vectors in the second precoding matrix is greater than or equal to the number of the antennas.
  • the transmitting unit 502 is configured to transmit the precoded sounding reference signal and the precoded demodulation reference signal.
  • the first precoding matrix and the second precoding matrix and the like used in this embodiment can be flexibly selected and set according to the requirements of a specific application to satisfy an actual wireless communication system. The application needs are within the spirit and scope of the claims as claimed.
  • each unit in the mobile station 500 according to Embodiment 5 of the present invention may refer to the specific steps of the steps of the reference signal transmitting method in the wireless communication system according to Embodiment 1 of the present invention described above. achieve. Therefore, for the sake of clarity of the description, the specific implementation of each of the above units will not be described in detail herein.
  • the mobile station 500 pre-codes the DMRS and the SRS according to the first precoding matrix and the second precoding matrix, respectively, and all the column vectors in the two precoding matrices.
  • the rank of the matrix formed by the alignment is greater than or equal to the number of the antennas, so that the channel quality estimation of each antenna can be performed by using the DMRS and the SRS in combination with the corresponding base station side.
  • the mobile station 500 effectively reduces the occupation of SRS resources in the antenna channel quality estimation by using the pre-coded DMRS and the pre-coded SRS in combination, and also avoids the use of precoding alone.
  • the DMRS cannot perform the shortcomings of channel quality estimation for each antenna.
  • the mobile station 500 performs signal processing in combination with the pre-coded DMRS and the pre-coded SRS by transmitting the pre-coded DMRS and the pre-coded SRS. It is estimated that therefore, two receivers are also not required, and the occupation of cyclic shift resources is also reduced, thereby overcoming the above-mentioned drawbacks of the prior art.
  • the first precoding matrix and the second precoding matrix may be preset by the base station and notify the mobile station.
  • the mobile station may only preset and notify the mobile station of the first precoding matrix, and after receiving the first precoding matrix, the mobile station according to the first precoding matrix and the predefined A second precoding matrix is determined by a correspondence between the first precoding matrix and the second precoding matrix.
  • the first precoding matrix and the second precoding matrix may be orthogonal to each other.
  • the first precoding matrix and the second precoding matrix may be changed by the base station from time to time and notified to the mobile station.
  • FIG. 6 shows a schematic diagram of a base station 600 in accordance with a sixth embodiment of the present invention.
  • the base station 600 includes a channel estimating unit 601, a first arithmetic unit 602, and a second arithmetic unit 603.
  • the channel estimation unit 601 is configured to perform channel estimation to obtain a demodulation reference signal according to the received demodulation reference signal precoded by the first precoding matrix transmitted from the plurality of antennas accompanying data of the mobile station. a channel estimation value, and performing channel estimation according to the received sounding reference signal precoded by the second precoding matrix that is transmitted along with the data to obtain a sounding reference signal channel estimation value, wherein the first precoding matrix and the second pre The different columns and different rows of the coding matrix correspond to different data and different antennas, respectively.
  • the first operation unit 602 is configured to: according to the first precoding matrix and the obtained demodulation reference signal channel estimation, derive a first system of equations with a channel quality estimation value of the corresponding antenna, and according to the second
  • the precoding matrix and the obtained sounding reference signal channel estimate are derived from a second system of equations in which the channel quality estimates of the respective antennas are variables, wherein all of the column vectors in the first precoding matrix and the second precoding matrix
  • the rank of the matrix formed by arranging all the column vectors is greater than or equal to the number of the antennas.
  • the second arithmetic unit 603 is configured to calculate channel quality estimates for the respective antennas by combining the first system of equations and the second set of equations.
  • first precoding matrix and the second precoding matrix and the like used in this embodiment can be flexibly selected and set according to the requirements of a specific application to satisfy an actual wireless communication system.
  • the application needs are within the spirit and scope of the claims as claimed.
  • a specific implementation of each unit in the base station 600 according to Embodiment 6 of the present invention may refer to the specific implementation of the respective steps of the channel quality estimation method according to Embodiment 3 of the present invention described above. Therefore, for the sake of brevity of the description, the specific implementation of each of the above units will not be described in detail herein.
  • the base station 600 passes the demodulation reference signal precoded by using the first precoding matrix and the sounding reference signal precoded by the second precoding matrix, respectively.
  • the rank of the matrix formed by the columns is greater than or equal to the number of the antennas, so that the channel quality estimation of each antenna can be performed by using DMRS and SRS in combination.
  • the base station 600 performs channel quality estimation of each antenna by using the pre-coded DMRS and the pre-coded SRS in combination, thereby effectively reducing the occupation of the SRS resources in the antenna channel quality estimation, and also The disadvantage of not being able to perform channel quality estimation of each antenna by using the precoded DMRS alone is avoided.
  • the base station 600 since the base station 600 according to the embodiment of the present invention performs channel quality estimation in combination by precoding-based DMRS and pre-coded SRS, two receivers are also unnecessary, and the cyclic shift is also reduced.
  • the occupation of bit resources overcomes the above disadvantages of the prior art.
  • the first precoding matrix and the second precoding matrix may be preset by the base station and notify the mobile station.
  • the mobile station may only preset and notify the mobile station of the first precoding matrix, and after receiving the first precoding matrix, the mobile station according to the first precoding matrix and the predefined A second precoding matrix is determined by a correspondence between the first precoding matrix and the second precoding matrix.
  • the first precoding matrix and the second precoding matrix may be orthogonal to each other.
  • the first precoding matrix and the second precoding matrix may be changed by the base station from time to time and notified to the mobile station.
  • Figure 7 shows a schematic diagram of a wireless communication system 700 in accordance with a seventh embodiment of the present invention.
  • the wireless communication system 700 includes a mobile station 701 and a base station 702.
  • the mobile station 701 includes a precoding unit 703 and a transmitting unit 704.
  • the precoding unit 703 is configured to precode the demodulation reference signal to be accompanied by the data transmission according to a first precoding matrix for precoding the data to be transmitted through the plurality of antennas, And precoding the sounding reference signal to be sent along with the data according to the second precoding matrix, different columns of the first precoding matrix and the second precoding matrix And different rows respectively corresponding to different data and different antennas, the ranks of the matrix formed by arranging all the column vectors in the first precoding matrix and all the column vectors in the second precoding matrix are greater than or equal to The number of the antennas.
  • the transmitting unit 704 is configured to transmit the precoded sounding reference signal and the precoded demodulation reference signal.
  • the base station 702 includes a channel estimation unit 705, a first arithmetic unit 706, and a second arithmetic unit.
  • the channel estimation unit 705 is configured to perform channel estimation to obtain a demodulation reference signal according to the received demodulation reference signal precoded by the first precoding matrix transmitted from the plurality of antennas accompanying data of the mobile station. a channel estimation value, and performing channel estimation according to the received sounding reference signal precoded by the second precoding matrix that is transmitted along with the data to obtain a sounding reference signal channel estimation value, the first precoding matrix and the The different columns and different rows of the second precoding matrix correspond to different data and different antennas, respectively.
  • the first operation unit 706 is configured to estimate, according to the first precoding matrix and the obtained demodulation reference signal channel estimate, a first system of equations with a channel shield estimation value of the corresponding antenna, and Deriving a second set of equations with a channel quality estimate value of the corresponding antenna based on the second precoding matrix and the obtained sounding reference signal channel estimate, wherein all column vectors in the first precoding matrix are The rank of the matrix formed by arranging all the column vectors in the second precoding matrix is greater than or equal to the number of the antennas.
  • the second arithmetic unit 707 is configured to calculate channel quality estimates for the respective antennas by combining the first system of equations and the second set of equations.
  • first precoding matrix and the second precoding matrix and the like used in this embodiment can be flexibly selected and set according to the requirements of a specific application to satisfy an actual wireless communication system.
  • the application needs are within the spirit and scope of the claims as claimed.
  • each unit in the wireless communication system 700 according to Embodiment 7 of the present invention reference may be made to the reference signal transmitting method according to Embodiment 1 of the present invention and the channel quality according to Embodiment 3 of the present invention. Estimate the specific implementation of each step of the method. Therefore, for the sake of brevity of the description, the specific implementation of each of the above units will not be described in detail herein.
  • the base station 702 in the wireless communication system 700 passes the solution pre-coded by the first precoding matrix received from the mobile station 701, respectively. And performing channel estimation by adjusting the reference signal and the sounding reference signal pre-coded by the second precoding matrix received from the mobile station 701 to obtain a demodulation reference signal channel estimation value and a sounding reference signal channel estimation value, respectively.
  • the ranks of the matrices formed by arranging all the column vectors in the precoding matrices are greater than or equal to the number of the antennas, so that the channel quality estimation of each antenna can be performed by using DMRS and SRS in combination.
  • the wireless communication system 700 performs channel quality estimation of each antenna by using a pre-coded DMRS and a pre-coded SRS, thereby effectively reducing the occupation of SRS resources in the antenna channel quality estimation.
  • the disadvantage of not being able to perform channel quality estimation of each antenna by using the precoded DMRS alone is also avoided.
  • the wireless communication system 700 does not require two receivers because the channel quality estimation is performed in combination by the precoding-based DMRS and the pre-coded SRS, and also reduces the pair.
  • the occupation of cyclic shift resources overcomes the above disadvantages of the prior art.
  • the first precoding matrix and the second precoding matrix may be preset by the base station and notify the mobile station.
  • the mobile station may only preset and notify the mobile station of the first precoding matrix, and after receiving the first precoding matrix, the mobile station according to the first precoding matrix and the predefined A second precoding matrix is determined by a correspondence between the first precoding matrix and the second precoding matrix.
  • the first precoding matrix and the second precoding matrix may be orthogonal to each other.
  • the first precoding matrix and the second precoding matrix may be changed by the base station from time to time and notified to the mobile station.
  • wireless communication system 700 according to the present embodiment has been described above with reference to the schematic diagram shown in FIG. 7, those skilled in the art should understand that the schematic diagram shown in FIG. 7 is merely an example. The present invention is not limited to the scope of the present invention, and those skilled in the art can modify or modify the schematic diagram shown in FIG. 7 according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

参考信号发送方法、 信道质量估计方法、
移动台、 基站和无线通信系统
技术领域
[01] 本发明涉及无线通信技术, 更具体地, 涉及参考信号发送方法、信道 质量估计方法、 移动台、 基站以及无线通信系统。
背景技术
[02]在第 4代(4G )移动通信系统中, 例如在 LTE (长期演进)单载波频 分多址接入 ( SC-FDMA )上行链路中, 利用参考信号( Reference Signal - RS )进行数据解调和信道探测。
[03]上行参考信号的作用包括用于进行相干解调所需的信道估计, 用于上 行调度的信道质量探测、 功率控制、 定时估计以及支持下行波束成形的到 达方向估计等。
[04] LTE中的上行参考信号大部分基于 Zadoff-Chu(ZC)序列。 ZC序列也被 称为 GCL (广义啁啾样 -Generalized Chirp-Like )序列。 该序列都是非二 进制单位振幅序列 , 满足 CAZAC ( Constant Amplitude Zero Autocorrelation,恒幅零相关)特性。 CAZAC序列是形式为 的复数值信 号。 长度为素数 Λ ^的 ZC序列可以表示为
Figure imgf000003_0001
[(^其中^ …,^ 是 序列的根索引, " = o,iCzc _i, / e N。 为了简 单再 LTE中设置 Z = 0。
[06] ZC序列具有如下特性。
[07] 1. ZC序列具有恒定振幅, 经过 DFT运算后也是恒定振幅。 恒定振幅 特性限制了峰均功率比和对其他用户产生的边界和时间平坦型干扰。 此 外, 当只需要计算和存储相位而不需要幅度时, 这种特性也简化了实现。
[08] 2. 任何长度的 ZC序列具有理想的循环自相关性, 也即循环移位相关 是一个 δ函数
[09] 由于 ZC序列的理想特性, 上行链路的参考信号具有以下的很好的特 性: (1 )频域上幅度恒定, 这是为了在无偏信道估计中对所有已分配子载 波进行相同的激励; ( 2 ) 时域中低立方度量(CM )值较低; ( 3 )非常好 的自相关特性, 以利于精确的信道估计; (4 ) 良好的互相关特性, 从而减 少来自其他小区在相同资源上发送的参考信号的干扰。
[10]上行链路支持以下两种参考信号:
[11] ( 1 )解调参考信号( Demodulation RS, DMRS )。 这种参考信号主要 用来进行上信数据传输或者信令信息传输的信道估计, 进而进行相关检 测; 以及
[12] ( 2 )探测参考信号( Sounding RS, SRS )。 这种参考信号主要用来进 行信道质量测量, 从而进行上行链路的频率选择性调度。
[13]在 LTE系统中, 一个子帧 ( subframe )共有 14个符号, 分别编号为 0,2,1, …, 13。在 Rel.8/9系统中, 用户的 SRS信号只能在 No.13符号中传送。 在 Rel.8/9系统中, 用户的 DMRS信号只能在 No.3符号和 No.10符号中传送。 上行链路的 DMRS和 SRS与数据符号时分复用。 一个给定移动台的 DMRS 具有相同的带宽, 例如在整个小区带宽( cell bandwidth )中的 PUSCH 带 宽。 因此, 当将系统的不同带宽分配各不同用户时(FDMA ), 各用户的 DMRS也彼此正交。 而用户的 SRS带宽可以与用于数据传输的带宽不同。 用户的 SRS信号总是在一个子帧的最后一个 SC-FMDA符号上发送,并且该 SRS信号的参数由系统的高层信令通知。 各移动台的 SRS信号通过频分多 址( FDM )、码分多址( CDM )进行复用或者时分多址( TDM )进行复用。
[14]在 LTE系统中, 用户的上行信号发送支持单天线发送模式或天线选择 发送模式。 在分配 SRS资源时, 每用户仅仅分配一组 SRS资源即可。
[15]在 LTE-Advanced系统中, 为了满足更高的上行传输速率指标, 要求 移动台在上行支持更高秩(Rank ) 的传输, 比如 rankl-rank4的传输, 从 而要求移动台配备更高数目的天线,比如移动台配备 2根天线用以支持最大 秩为 2的传输, 或者移动台配备 4根天线用以支持最大秩为 4的传输。
[16] 当移动台配备更高的天线数目从而进行更高秩的传输时, 为了对每个 天线的信道质量进行探测和估计, 需要为每个天线分配更多的 SRS资源, 从而导致了需要占用更多的 SRS资源。 [17] 因此必须采用额外的方法来减少在移动台配备多天线的情况下、 在对 每个天线的信道质量进行估计时对 SRS资源的占用。
[18]现有技术中采用以下方法来解决上述问题。
[19]第一种方法是不对 DMRS进行预编码, 以使得该 DMRS也可以被用作 SRS, 从而减少了对 SRS资源的占用。 该方法的缺点在于, 针对具有不同 的 DMRS的物理上行共享信道( PUSCH )需要有两个接收机, 一个接收机 用于预编码的 DMRS, 另一个接收机用于未被预编码的 DMRS。 此外, 由 于在利用未编码的 DMRS进行信道质量估计的情况下每个天线占用一个循 环移位资源, 因此其对循环移位(CS ) 资源的使用是低效的。
[20]第二种方法是在 DMRS子帧中发送预编码的 DMRS和未被预编码的 DMRS这两种信号。 虽然这种方法由于预编码的 DMRS总是存在而不需要 两个接收机, 但是仍然存在由于在利用未编码的 DMRS进行信道质量估计 的情况下每个天线占用一个循环移位资源因而对循环移位资源的使用低 效的问题。
[21]综上所述, 目前仍然需要一种参考信号发送方法以及相应的信道质量 估计方法, 其能够在移动台配备多天线的情况下有效地减少各天线信道质 量估计中对 SRS资源的占用。
发明内容
[22] 在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些 方面的基本理解。 应当理解, 这个概述并不是关于本发明的穷举性概述。 它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范 围。其目的仅仅是以简化的形式给出某些概念, 以此作为稍后论述的更详 细描述的前序。
[23] 本发明的至少一个目的在于提供参考信号发送方法、信道质量估计方 法、移动台、基站以及无线通信系统, 其能够至少克服上述现有技术的部 分缺点和不足,以在移动台配备多天线的情况下有效地减少各天线信 量估计中对 SRS资源的占用。
[24] 为了实现上述目的,根据本发明的一个实施例,提供了一种参考信号 发送方法, 包括:根据用于对要通过移动台的多个天线发送的数据进行预 编码的第一预编码矩阵对要伴随该数据发送的解调参考信号进行预编码, 并根据第二预编码矩阵对要伴随该数据发送的探测参考信号进行预编码, 第一预编码矩阵和第二预编码矩阵的不同的列和不同的行分别对应于不 同的数据和不同的天线;以及发送预编码后的探测参考信号和预编码后的 解调参考信号,其中, 由第一预编码矩阵中的全部列向量和第二预编码矩 阵中的全部列向量排列而构成的矩阵的秩大于等于该天线的个数。
[25] 根据本发明的实施例,第一预编码矩阵和第二预编码矩阵可由基站预 先设置并通知移动台。或者,也可以由基站仅预先设置并通知移动台第一 预编码矩阵,并且移动台在接收到第一预编码矩阵之后,根据该第一预编 码矩阵以及预先定义的第一预编码矩阵和第二预编码矩阵之间的对应方 式来确定第二预编码矩阵。
根据本发明的实施例, 第一预编码矩阵和第二预编码矩阵可相互正
Figure imgf000006_0001
[27] 根据本发明的实施例,第一预编码矩阵和第二预编码矩阵可由基站不 定期地进行改变并通知移动台。
[28] 为了实现上述目的,根据本发明的另一实施例,提供了一种信道质量 估计方法, 包括:根据接收到的从移动台的多个天线伴随数据发送的利用 考信号信道估计值,并根据接收到的伴随该数据发送的利用第二预编码矩 计值,第一预编码矩阵和第二预编码矩阵的不同的列和不同的行分别对应 于不同的数据和不同的天线;根据第一预编码矩阵和获得的解调参考信号 信道估计值得出以相应的天线的信道质量估计值为变量的第一方程组,并 根据第二预编码矩阵和获得的探测参考信号信道估计值得出以相应的天 线的信道质量估计值为变量的第二方程组,其中由第一预编码矩阵中的全 部列向量和第二预编码矩阵中的全部列向量排列而构成的矩阵的秩大于 等于该天线的个数;以及通过将第一方程组和第二方程组相结合而计算得 到各个天线的信道质量估计值。
[29] 根据本发明的实施例,第一预编码矩阵和第二预编码矩阵可由基站预 先设置并通知移动台。或者,也可以由基站仅预先设置并通知移动台第一 预编码矩阵,并且移动台在接收到第一预编码矩阵之后,根据该第一预编 码矩阵以及预先定义的第一预编码矩阵和第二预编码矩阵之间的对应方 式来确定第二预编码矩阵。
[30] 根据本发明的实施例, 第一预编码矩阵和第二预编码矩阵可相互正 交
[31] 根据本发明的实施例,第一预编码矩阵和第二预编码矩阵可由基站不 定期地进行改变并通知移动台。
[32] 为了实现上述目的, 根据本发明的另一实施例, 提供了一种移动台, 包括: 多个天线; 预编码单元, 被配置用于根据用于对要通过该多个天线 发送的数据进行预编码的第一预编码矩阵对要伴随该数据发送的解调参 考信号进行预编码,并根据第二预编码矩阵对要伴随该数据发送的探测参 考信号进行预编码,第一预编码矩阵和第二预编码矩阵的不同的列和不同 的行分别对应于不同的数据和不同的天线,由第一预编码矩阵中的全部列 向量和第二预编码矩阵中的全部列向量排列而构成的矩阵的秩大于等于 该天线的个数; 以及发送单元,被配置用于发送预编码后的探测参考信号 和预编码后的解调参考信号。
[33] 根据本发明的实施例,第一预编码矩阵和第二预编码矩阵可由基站预 先设置并通知移动台。或者,也可以由基站仅预先设置并通知移动台第一 预编码矩阵,并且移动台在接收到第一预编码矩阵之后,根据该第一预编 码矩阵以及预先定义的第一预编码矩阵和第二预编码矩阵之间的对应方 式来确定第二预编码矩阵。
[34] 根据本发明的实施例, 第一预编码矩阵和第二预编码矩阵可相互正 交。
[35] 根据本发明的实施例,第一预编码矩阵和第二预编码矩阵可由基站不 定期地进行改变并通知移动台。
[36] 为了实现上述目的, 根据本发明的另一实施例, 提供了一种基站, 包 括:信道估计单元,被配置用于根据接收到的从移动台的多个天线伴随数 据发送的利用第一预编码矩阵预编码后的解调参考信号而进行信道估计 以获得解调参考信号信道估计值,并根据接收到的伴随该数据发送的利用 考信号信道估计值,第一预编码矩阵和第二预编码矩阵的不同的列和不同 的行分别对应于不同的数据和不同的天线; 第一运算单元,被配置用于根 的信道质量估计值为变量的第一方程组,并根据第二预编码矩阵 ^获得^ 探测参考信号信道估计值得出以相应的天线的信道盾量估计值为变量的 第二方程组,其中由第一预编码矩阵中的全部列向量和第二预编码矩阵中 的全部列向量排列而构成的矩阵的秩大于等于该天线的个数;以及第二运 算单元,被配置用于通过将第一方程组和第二方程组相结合而计算得到各 个天线的信道质量估计值。
[37] 根据本发明的实施例,第一预编码矩阵和第二预编码矩阵可由基站预 先设置并通知移动台。或者,也可以由基站仅预先设置并通知移动台第一 预编码矩阵,并且移动台在接收到第一预编码矩阵之后,根据该第一预编 码矩阵以及预先定义的第一预编码矩阵和第二预编码矩阵之间的对应方 式来确定第二预编码矩阵。
[38] 根据本发明的实施例, 第一预编码矩阵和第二预编码矩阵可相互正 交。
[39] 根据本发明的实施例,第一预编码矩阵和第二预编码矩阵可由基站不 定期地进行改变并通知移动台。
[40] 为了实现上述目的,根据本发明的另一实施例,提供了一种无线通信 系统, 包括如上文所述的移动台和如上文所述的基站。
[41] 根据本发明的实施例,能够在移动台配备多天线的情况下有效地减少 各天线信 量估计中对 SRS资源的占用。
[42] 通过以下结合附图对本发明的最佳实施例的详细说明,本发明的这些 以及其它的优点将更加明显。
附图说明
[43] 本发明可以通过参考下文中结合附图所给出的描述而得到更好的理 解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似 的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本 说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本 发明的原理和优点。 在附图中:
[44] 图 1示出了根据本发明实施例一的参考信号发送方法的流程图; [45] 图 2示出了根据本发明实施例二的参考信号发送方法的流程图; [46] 图 3示出了根据本发明实施例三的信道质量估计方法的流程图; [47] 图 4示出了根据本发明实施例四的信道质量估计方法的流程图; [48] 图 5示出了根据本发明实施例五的移动台的示意图; [49] 图 6示出了根据本发明实施例六的基站的示意图; 以及
[50] 图 7示出了根据本发明实施例七的无线通信系统的示意图。
[51] 本领域技术人员应当理解,附图中的元件仅仅是为了简单和清 见 而示出的, 而且不一定是按比例绘制的。 例如, 附图中某些元件的尺寸可 能相对于其他元件放大了, 以便有助于提高对本发明实施例的理解。
具体实施方式
[52] 在下文中将结合附图对本发明的示范性实施例进行详细描述。为了清 楚和简明起见, 在说明书中并未描述实际实施方式的所有特征。 然而, 应 该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方 式的决定, 以便实现开发人员的具体目标, 例如, 符合与系统及业务相关 的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改 变。 此外, 还应该了解, 虽然开发工作有可能是非常复杂和费时的, 但对 得益于^开内容的本领域技术人员来说,这种开发工作仅仅是例行的任 务。
[53] 在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发 明,在附图和说明中仅仅描述了与根据本发明的方案密切相关的装置结构 和 /或处理步骤, 而省略了对与本发明关系不大的、 本领域普通技术人员 已知的部件和处理的表示和描述。
[54] 例如,本发明主要涉及无线通信系统中的参考信号发送方法和使用该 方法的移动台、信道质量估计方法和使用该方法的基站、以及包括上述移 动台和基站的无线通信系统。 此,在此 去了对与 -本发明、关系不大的本 制编码过程、调度算法、 以及无线数据收发过程中的测距、 同步和编解码 等过程的描述,而只侧重于对与移动台的参考信号发送^ ^站的天线信道 质量估计相关的过程进行描述。
[55] 假设移动台配备有 4 个天线, 并且上行 DMRS 采用预编码矩阵 [1,1,1,1 进 ^编码, 此时系统传输一个层的数据。
[56] 那么,根据 DMRS的信道估计可以得到 Η=Η1+Η2+Η3+Η4+η,其中 Hn ( η ^ {1,2,3,4} )是第 n 个天线的信道质量估计值。 由上式可以看出, 由于方程的个数小于待求解的变量(即, 各个天线的信道质量估计值)的 个数, 因此理论上不可能单独从 H中分离出各天线的信 量估计值。 [57] 仍假设移动台配备有 4个天线,并且上行 DMRS采用预编码矩阵 [1 1 0 0; 0 0 1 -j]T ¾ ^编码。 此时系统传输两个层的数据。
[58] 那么, 根据 DMRS 的信道估计可以得到: Ha=Hl+H2+na, Hb=H3-H4*j+nb,其中 Hn ( {1,2,3,4} )是第 n个天线的信 i£ ^量估计值, Hx ( x e {a,b } )是第 X个层的信道质量估计值, na和 nb是噪声。 由上式 可以看出, 由于方程的个数小于待求解的变量(即, 各个天线的信道质量 估计值),因此理论上不可能单独从 Ha和 Hb中分离各天线的信道质量估 计值。
[59] 本申请的发明人基于上述发现而提出了本发明。
[60] 首先, 本发明提供了应用于移动台的参考信号发送方法。
[61] 图 1示出了根据本发明实施例一的参考信号发送方法的流程图。
[62] 如图 1所示, 根据本发明实施例一的参考信号发送方法从步骤 S101 开始。
[63] 在步骤 S101中, 根据用于对要通过移动台的多个天线发送的数据进 行预编码的第一预编码矩阵对要伴随该数据发送的解调参考信号 ( DMRS )进行预编码, 并根据第二预编码矩阵对要伴随该数据发送的探 测参考信号(SRS )进行预编码, 其中第一预编码矩阵和第二预编码矩阵 的不同的列和不同的行分别对应于不同的数据和不同的天线。
[64] 也就是说, 在步骤 S101中, 不仅对 DMRS进行预编码, 而且对 SRS 进行预编码。
[65] 此外, 在步骤 S101中, 由第一预编码矩阵中的全部列向量和第二预 编码矩阵中的全部列向量排列而构成的矩阵的秩大于等于该天线的个数。
[66] 然后, 在步骤 S102中, 发送预编码后的探测参考信号和预编码后的 解调参考信号。
[67] 这样,在相应的基站侧,根据由第一预编码矩阵中的全部列向量和基 于预编码的 DMRS信号的信道质量估计值可以得到第一方程组, 该第一 方程组中的方程的个数与第一预编码矩阵中的全部列向量的个数相同。根 据第二预编码矩阵中的全部列向量和基于预编码的 SRS信号的信道质量 估计值可以得到第二方程组,该第二方程组中的方程的个数与第二预编码 矩阵中的全部列向量的个数相同。由于由这两个矩阵中的全部列向量排列 构成的矩阵的秩大于等于天线的个数,因此该第一方程组和第二方程组中 的方程的总个数大于等于要求解的变量(即, 各天线的信道质量估计值) 的个数。 因此, 基于这两个方程组可以得出各个天线的信 i½量估计值。 在第一预编码矩阵中的全部列向量和第二预编码矩阵中的全部列向量排 列而构成的矩阵的秩等于天线的个数的情况下,可以恰好求出各个天线的 信道质量估计值。在第一预编码矩阵中的全部列向量和第二预编码矩阵中 的全部列向量排列而构成的矩阵的秩大于天线的个数的情况下,可以从第 一方程组和第二方程组中任意选择与天线的个数相等的方程来求出各个 天线的信道质量估计值。
[68] 本领域的技术人员应当理解,可以根据具体应用的需求来灵活地选择 和设置本实施例中所采用的第一预编码矩阵和第二预编码矩阵等,其均应 在本发明的权利要求所请求保护的精神和范围之内。
[69] 由上述可知,根据本发明实施例的参考信号发送方法通过分别根据第 一预编码矩阵和第二预编码矩阵对 DMRS和 SRS进行预编码, 并且这两 个预编码矩阵中的全部列向量排列而构成的矩阵的秩大于等于该天线的 个数, 从而使得在相应的基站侧能够结合利用 DMRS和 SRS来进行各天 线的信道质量估计。
[70] 根据本发明实施例的参考信号发送方法通过结合使用预编码的 DMRS和预编码的 SRS而有效地减少了天线信道质量估计中对 SRS资源 的占用, 同时也避免了单独使用预编码的 DMRS无法进行各个天线的信 量估计的缺点。
[71] 此外,才艮据本发明实施例的参考信号发送方法由于通过发送预编码的 DMRS和预编码的 SRS以使得基站侧能够基于该预编码的 DMRS和该预 编码的 SRS而相结合地进行信 量估计, 因此也不需要两个接收机, 并且也减少了对循环移位资源的占用, 从而克服了现有技术中的上述缺 点。
[72] 下面给出第一预编码矩阵和第二预编码矩阵相互正交的情况下的示 例。
[73] 表 1示出了用于二层传输的预编码矩阵的码本。
表 1 用于二层传输的预编码矩阵的码本 码 本
Figure imgf000012_0001
[74] 在具有 4 个天线的移动台使用上述表 1 中的预编码索引 0来发送 rank-2信号的情况下, 如果采用现有技术中的利用未被预编码的 DMRS 来进行信道质量估计的方案, 则需要使用的循环移位资源为 6个。 而如果 采用根据本发明实施例的参考信号发送方法,则由于利用预编码的 DMRS 和预编码的 SRS相结合来进行信 量估计, 因此仅需 ^吏用 4个循环 移位资源就可以得到各个天线的信道质量估计值,其中 2个循环移位资源 用于 DMRS, 2个循环移位资源用于预编码的 SRS。
[75] 此外, 如果采用现有技术中的不使用预编码的 SRS的方法来进行信 量估计,那么对于每个天线都需要 1个 SRS资源,从而需要 4个 SRS 资源, 也就是说, 与采用现有技术的参考信号发送方法相比, 根据本发明 实施例的参考信号发送方法来进行信道质量估计将会使 SRS资源的占用 减少一倍。
[76] 而且, 根据本发明实施例的参考信号发送方法通过占用较少的 SRS 资源,从而能够进一步减少系统的干扰, 并增大系统信道质量估计的精确 性。
[77] 可选地,在根据本发明实施例一的参考信号发送方法中,第一预编码 矩阵和第二预编码矩阵可以是相互正交的。
[78] 例如, 在一个示例中, 移动台配备有四个天线。
[79] 在移动台侧, 采用预编码矩阵 Pdata=[l 1 0 0; 0 0 1 -』 对数据和 DMRS进行预编码, 并采用预编码矩阵 Psrs=[l -1 0 0; 0 0 1 j]T ^t SRS信 号进行预编码。 其中可以看出, 预编码矩阵 Pdata与预编码矩阵 Psrs相 互正交。 [80] 相应地, 在基站侧, 根据所接收的预编码后的 DMRS得到的信道质 量估计值为 1ΐ14π^和 h2,dmrs, 根据所接收的预编码后的 SRS得到的信道 貭量估计值为 h rs和 h
[81] 那么, 根据 hwmr h2,dmrs、 hi,srs和 h2,srs以及由 Pdata和 Psrs构成的 满秩的矩阵 [1 1 0 0; 0 0 1 -j ; 1 -1 0 0; 0 0 1 j]T, 可以得到方程组如下:
[82] h l,dmr s—H antenna l+Hantenna2+n Β·,
Figure imgf000013_0001
[84] h i,Srs —Hailtennal-Hantenna2+nC,
[85] — Hantenna3+Hantenna45iij +nd β
[86] 其中 Hanten( {1,2,3,4} )是第 n个天线的信道盾量估计值, na、 nb、 nc和 nd是噪声。
[87] 由上式可以看出,由于方程的个数(即, 4个)等于待求解的变量(即, 各个天线的信道质量估计值 Hantennan ( n e {l,2,3,4} ) ), 因此通过对该方程 组进行求解, 可以得到各个天线的信道质量估计值如下:
[88] Hantennal一 h l,dmrs +h l,srs
[89] Hantenna2一 h l,dmrs - hl,srs
[90] Hantenna3一 h2,dmrs +h2,srs
[91] Hantenna4一 (h2,dmrs
Figure imgf000013_0002
[92] 本领域的技术人员应当理解,上述的根据本发明的实施例一的示例中 所采用的预编码矩阵仅仅是示例性的, 而不是限定性的。本领域的技术人 员完全可以根据实际应用的需求而灵活地设定不同的预编码矩阵,以满足 实际的无线通信系统的应用需求,其均应在本发明所请求保护的精神和范 围之内。
[93] 此外, 可选地, 在根据本发明实施例一的参考信号发送方法中, 第一 预编码矩阵和第二预编码矩阵可由基站预先设置并通知移动台。
[94] 或者,可选地,也可以由基站仅预先设置并通知移动台第一预编码矩 阵,并且移动台在接收到第一预编码矩阵之后,根据该第一预编码矩阵以 及预先定义的第一预编码矩阵和第二预编码矩阵之间的对应方式来确定 第二预编码矩阵。
[95] 此外, 可选地, 在根据本发明实施例一的参考信号发送方法中, 第一 预编码矩阵和第二预编码矩阵可由基站不定期地进行改变并通知移动台。
[96] 此外, 需要说明的是, 虽然以上结合图 1所示的流程图对根据本发明 实施例一的参考信号发送方法进行了描述, 但是本领域技术人员应当理 解, 图 1所示的流程图仅仅是示例性的, 而不是对本发明的范围的限制, 本领域技术人员完全可以根据实际需要对图 1 所示的流程图进行变型或 修改。
[97] 还需要指出的是,执行上述图 1所示的流程图中的系列处理的步骤时 可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间 顺序执行。 某些步骤可以并行或彼此独立地执行。
[98] 图 2示出了根据本发明实施例二的参考信号发送方法的流程图。
[99] 如图 2所示, 根据本发明实施例一的参考信号发送方法从步骤 S201 开始。
[100] 在步骤 S201中, 由基站预先设置并通知移动台用于对要通 it^多动台 的多个天线发送的数据进行预编码的第一预编码矩阵以及第二预编码矩 阵,其中第一预编码矩阵和第二预编码矩阵的不同的列和不同的行分别对 应于不同的数据和不同的天线,并且由第一预编码矩阵中的全部列向量和 第二预编码矩阵中的全部列向量排列而构成的矩阵的秩大于等于该移动 台的天线的个数。
[101] 然后, 在步骤 S202中, 根据第一预编码矩阵对要伴随步骤 S201 中 所述的数据发送的解调参考信号进行预编码,并根据第二预编码矩阵对要 伴随步骤 S201中所述的数据发送的探测参考信号进行预编码。
[102] 随后, 在步骤 S203中, 发送预编码后的探测参考信号和预编码后的 解调参考信号。
[103] 本领域的技术人员应当理解,可以根据具体应用的需求来灵活地选择 和设置本实施例中所采用的第一预编码矩阵和第二预编码矩阵等,以满足 实际的无线通信系统的应用需求,其均应在本发明的权利要求所请求保护 的精神和范围之内。
[104] 由上述可知,才艮据本发明实施例二的参考信号发送方法通过分别根据 基站预先设置并通知给移动台的第一预编码矩阵和第二预编码矩阵而对 DMRS和 SRS进行预编码, 并且这两个预编码矩阵中的全部列向量排列 而构成的矩阵的秩大于等于该天线的个数,从而使得在基站侧能够结合利 用 DMRS和 SRS来进行各天线的信道质量估计。 [105] 根据本发明实施例二的参考信号发送方法通过结合使用预编码的 DMRS和预编码的 SRS而有效地减少了天线信道质量估计中对 SRS资源 的占用, 同时也避免了单独使用预编码的 DMRS无法进行各个天线的信 量估计的缺点。
[106] 此外,根据本发明实施例二的参考信号发送方法由于通过发送预编码 的 DMRS和预编码的 SRS以使得基站侧能够基于该预编码的 DMRS和 该预编码的 SRS而相结合地进行信道质量估计, 因此也不需要两个接收 机,并且也减少了对循环移位资源的占用,从而克服了现有技术中的上述 缺点。
[107] 可选地,在根据本发明实施例二的参考信号发送方法中,第一预编码 矩阵和第二预编码矩阵可以是相互正交的。
[108] 可选地,在根据本发明实施例二的参考信号发送方法中,第一预编码 矩阵和第二预编码矩阵可由基站不定期地进行改变并通知移动台。
[109] 此外, 需要说明的是, 虽然以上结合图 2所示的流程图对根据本发明 实施例二的参考信号发送方法进行了描述, 但是本领域技术人员应当理 解, 图 2所示的流程图仅仅是示例性的, 而不是对本发明的范围的限制, 本领域技术人员完全可以根据实际需要对图 2所示的流程图进行变型或 修改。
[110] 还需要指出的是,执行上述图 2所示的流程图中的系列处理的步骤时 可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间 顺序执行。 某些步骤可以并行或彼此独立地执行。
[111] 本发明还提供了应用于基站的信道质量估计方法。
[112] 图 3示出了根据本发明实施例三的信道质量估计方法的流程图。
[113] 如图 3所示, 根据本发明实施例三的信道质量估计方法从步骤 S301 开始。
[114] 在步骤 S301中, 根据接收到的从移动台的多个天线伴随数据发送的 利用第一预编码矩阵预编码后的解调参考信号而进行信道估计以获得解 调参考信号信道估计值,并根据接收到的伴随该数据发送的利用第二预编 道估计值,其中第一预编码矩阵和第二预编码矩阵的不同的列和不同的行 分别对应于不同的数据和不同的天线。 [115] 然后, 在步骤 S302中, 根据第一预编码矩阵和获得的解调参考信号 信道估计值得出以相应的天线的信道质量估计值为变量的第一方程组,并 根据第二预编码矩阵和获得的探测参考信号信道估计值得出以相应的天 线的信道质量估计值为变量的第二方程组,其中由第一预编码矩阵中的全 部列向量和第二预编码矩阵中的全部列向量排列而构成的矩阵的秩大于 等于该天线的个数。
[116] 随后, 在步骤 S303中, 通过将第一方程组和第二方程组相结合而计 算得到各个天线的信道貭量估计值。
[117] 本领域的技术人员应当理解,可以根据具体应用的需求来灵活地选择 和设置本实施例中所采用的第一预编码矩阵和第二预编码矩阵等,以满足 实际的无线通信系统的应用需求,其均应在本发明的权利要求所请求保护 的精神和范围之内。
[118] 由上述可知,才艮据本发明实施例三的信道质量估计方法通过分别根据 接收到的利用第一预编码矩阵预编码后的解调参考信号和利用第二预编 码矩阵预编码后的探测参考信号而进行信道估计,以分别获得解调参考信 号信道估计值和探测参考信号信道估计值,并且这两个预编码矩阵中的全 部列向量排列而构成的矩阵的秩大于等于该天线的个数,从而能够结合利 用 DMRS和 SRS来进行各天线的信道质量估计。
[119] 根据本发明实施例三的信道质量估计方法通过结合使用预编码的 DMRS和预编码的 SRS来进行各天线的信道质量估计, 从而有效地减少 了天线信道质量估计中对 SRS资源的占用, 同时也避免了单独使用预编 码的 DMRS无法进行各个天线的信道质量估计的缺点。
[120] 此外,才艮据本发明实施例三的信道质量估计方法由于通过基于预编码 的 DMRS和预编码的 SRS而相结合地进行信道质量估计, 因此也不需要 两个接收机,并且也减少了对循环移位资源的占用,从而克服了现有技术 中的上述缺点。
[121] 例如, 在具有 4个天线的移动台使用表 1 中的预编码索引 0来发送 rank-2信号的情况下, 如果采用现有技术中的利用未被预编码的 DMRS 来进行信道质量估计的方案, 则需要使用的循环移位资源为 6个。 而如果 采用根据本发明实施例三的信道质量估计方法, 则由于利用预编码的 DMRS和预编码的 SRS相结合来进行信道质量估计, 因此仅需要使用 4 个循环移位资源就可以得到各个天线的信道质量估计值,其中 2个循环移 位资源用于 DMRS 2个循环移位资源用于预编码的 SRS
[122] 此外, 如果采用现有技术中的不使用预编码的 SRS的方法来进行信 ϋ ^量估计,那么对于每个天线都需要 1个 SRS资源,从而需要 4个 SRS 资源, 也就是说, 与采用现有技术的信道质量估计方法相比, 根据本发明 实施例三的信道质量估计方法来进行信道质量估计将会使 SRS资源的占 用减少一倍。
[123] 而且,根据本发明实施例三的信道质量估计方法通过占用较少的 SRS 资源,从而能够进一步减少系统的干扰, 并增大系统信道盾量估计的精确 性。
[124] 可选地,在根据本发明实施例一的信道质量估计方法中,第一预编码 矩阵和第二预编码矩阵可以是相互正交的。
[125] 例如, 在一个示例中, 移动台配备有四个天线。
[126] 在基站侧,根据从移动台接收的采用预编码矩阵 Pdata=[l 100; 001 -j]T预编码后的 DMRS而得到的信道质量估计值为 hw s和 h2,dmrs,并且 根据从移动台接收的采用预编码矩阵 Psrs=[l -100; 001 j]T预编码后的 SRS而得到的信道质量估计值为 h^s和 h2,srs。 其中可以看出, 预编码矩 阵 Pdata与预编码矩阵 Psrs相互正交。
[127] 那么, 根据 dmr h2,dmrs h!,srs和 h2,srs以及由 Pdata和 Psrs构成的 满秩的矩阵 [1100;001-j; 1-100; 001 j]T, 可以得到方程组如下:
[128] h l,dmrs—Hantennal+Hantenna2+na
[129] h2,dmrs— Hantenna3"Hantenna45iij +nb ,
[130] hi,srs — Hantennal"Hantenna2+nC)
[131] =Hantenna3+Hantenna4*j+nd0
[132] 其中 Hante n(ne{l,2,3,4})是第 n个天线的信道质量估计值, na nb nc和 nd是噪声 0
[133] 由上式可以看出,由于方程的个数(即, 4个)等于待求解的变量(即, 各个天线的信道质量估计值 Hantennan (ne {1,2,3,4})), 因此通过对该方程 组进行求解, 可以得到各个天线的信道质量估计值如下:
[134] Hantennal一 hi,dmrs +hl,srs
[135] Hantenna2 - hi,dmrs "hl^srs [136] Hantenna3―
[137] Hantenna4 -
Figure imgf000018_0001
[138] 可选地,在根据本发明实施例一的信道质量估计方法中,第一预编码 矩阵和第二预编码矩阵可由基站预先设置并通知移动台。
[139] 或者,可选地,也可以由基站仅预先设置并通知移动台第一预编码矩 阵,并且移动台在接收到第一预编码矩阵之后,根据该第一预编码矩阵以 及预先定义的第一预编码矩阵和第二预编码矩阵之间的对应方式来确定 第二预编码矩阵。
[140] 可选地,在根据本发明实施例一的信道质量估计方法中,第一预编码 矩阵和第二预编码矩阵可由基站不定期地进行改变并通知移动台。
[141] 本领域的技术人员应当理解,上述的根据本发明的实施例三的示例中 的预编码矩阵仅仅是示例性的, 而不是限定性的。本领域的技术人员完全 可以根据实际应用的需求而灵活地设定不同的预编码矩阵,以满足实际的 无线通信系统的应用需求, 其均应在本发明所请求保护的精神和范围之 内。
[142] 此外, 需要说明的是, 虽然以上结合图 3所示的流程图对根据本发明 实施例三的信道质量估计方法进行了描述, 但是本领域技术人员应当理 解, 图 3所示的流程图仅仅是示例性的, 而不是对本发明的范围的限制, 本领域技术人员完全可以根据实际需要对图 3 所示的流程图进行变型或 修改。
[143] 还需要指出的是,执行上述图 3所示的流程图中的系列处理的步骤时 可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间 顺序执行。 某些步骤可以并行或彼此独立地执行。
[144] 图 4示出了根据本发明实施例四的信道质量估计方法的流程图。
[145] 如图 4所示, 根据本发明实施例四的信道质量估计方法从步骤 S401 开始。
[146] 在步骤 S401中, 第一预编码矩阵和第二预编码矩阵由基站预先设置 并通知移动台。或者,也可以由基站仅预先设置并通知移动台第一预编码 矩阵, 并且移动台在接收到第一预编码矩阵之后,根据该第一预编码矩阵 以及预先定义的第一预编码矩阵和第二预编码矩阵之间的对应方式来确 定第二预编码矩阵。 [147] 然后, 在步骤 S402中, 根据接收到的从移动台的多个天线伴随数据 发送的利用第一预编码矩阵预编码后的解调参考信号而进行信道估计以 获得解调参考信号信道估计值,并根据接收到的伴随该数据发送的利用第 信号信道估计值,其中第一预编码矩阵和第二预编码矩阵的不同的列和不 同的行分别对应于不同的数据和不同的天线。
[148] 随后, 在步骤 S403中, 根据第一预编码矩阵和获得的解调参考信号 信道估计值得出以相应的天线的信道质量估计值为变量的第一方程组,并 根据第二预编码矩阵和获得的探测参考信号信道估计值得出以相应的天 线的信道质量估计值为变量的第二方程组,其中由第一预编码矩阵中的全 部列向量和第二预编码矩阵中的全部列向量排列而构成的矩阵的秩大于 等于该天线的个数。
[149] 然后, 在步骤 S404中, 通过将第一方程组和第二方程组相结合而计 算得到各个天线的信道貭量估计值。
[150] 本领域的技术人员应当理解,可以根据具体应用的需求来灵活地选择 和设置本实施例中所采用的第一预编码矩阵和第二预编码矩阵等,以满足 实际的无线通信系统的应用需求,其均应在本发明的权利要求所请求保护 的精神和范围之内。
[151] 由上述可知,根据本发明实施例四的信道质量估计方法通过分别根据 接收到的利用基站预先设置的第一预编码矩阵预编码后的解调参考信号 和利用基站预先设置的第二预编码矩阵预编码后的探测参考信号而进行 信道估计,以分别获得解调参考信号信道估计值和探测参考信号信道估计 值,并且这两个预编码矩阵中的全部列向量排列而构成的矩阵的秩大于等 于该天线的个数, 从而能够结合利用 DMRS和 SRS来进行各天线的信道 质量估计。
[152] 根据本发明实施例三的信道质量估计方法通过结合使用预编码的 DMRS和预编码的 SRS来进行各天线的信道质量估计, 从而有效地减少 了天线信道质量估计中对 SRS资源的占用, 同时也避免了单独使用预编 码的 DMRS无法进行各个天线的信道质量估计的缺点。
[153] 此外,才艮据本发明实施例三的信道质量估计方法由于通过基于预编码 的 DMRS和预编码的 SRS而相结合地进行信道质量估计, 因此也不需要 两个接收机,并且也减少了对循环移位资源的占用,从而克服了现有技术 中的上述缺点。
[154] 可选地,在根据本发明实施例四的信道质量估计方法中,第一预编码 矩阵和第二预编码矩阵可以是相互正交的。
[155] 可选地,在根据本发明实施例四的信道质量估计方法中,第一预编码 矩阵和第二预编码矩阵可由基站不定期地进行改变并通知移动台。
[156] 本领域的技术人员应当理解,可以根据实际应用的需求而灵活地设定 该预定的参考信号周期, 以满足实际的无线通信系统的参考信号与 CQI 反馈之间的时延要求, 其均应在本发明所请求保护的精神和范围之内。
[157] 此外, 需要说明的是, 虽然以上结合图 4所示的流程图对根据本发明 实施例四的信道质量估计方法进行了描述, 但是本领域技术人员应当理 解, 图 4所示的流程图仅仅是示例性的, 而不是对本发明的范围的限制, 本领域技术人员完全可以根据实际需要对图 4 所示的流程图进行变型或 修改。
[158] 还需要指出的是,执行上述图 4所示的流程图中的系列处理的步骤时 可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间 顺序执行。 某些步骤可以并行或彼此独立地执行。
[159] 根据本发明的实施例,还提供了使用根据本发明实施例的参考信号发 送方法的移动台、使用根据本发明实施例的信道质量估计方法的基站、以 及包括上 多动台和基站的无线通信系统。
[160] 图 5示出了根据本发明实施例五的移动台 500的示意图。
[161] 如图 5所示,根据本发明实施例二的移动台 500包括预编码单元 501 和发送单元 502。
[162] 预编码单元 501 被配置用于根据用于对要通过该多个天线发送的数 据进行预编码的第一预编码矩阵对要伴随该数据发送的解调参考信号进 行预编码,并根据第二预编码矩阵对要伴随该数据发送的探测参考信号进 行预编码,其中, 第一预编码矩阵和第二预编码矩阵的不同的列和不同的 行分别对应于不同的数据和不同的天线,并且由第一预编码矩阵中的全部 列向量和第二预编码矩阵中的全部列向量排列而构成的矩阵的秩大于等 于该天线的个数。
[163] 发送单元 502被配置用于发送预编码后的探测参考信号和预编码后 的解调参考信号。 [164] 本领域的技术人员应当理解,可以根据具体应用的需求来灵活地选择 和设置本实施例中所采用的第一预编码矩阵和第二预编码矩阵等,以满足 实际的无线通信系统的应用需求,其均应在本发明的权利要求所请求保护 的精神和范围之内。
[165] 根据本发明的实施例五的移动台 500 中的各个单元的具体实现可以 参照上文所描述的根据本发明的实施例一的无线通信系统中的参考信号 发送方法的各个步骤的具体实现。 因此, 为了说明书的筒洁起见, 在此就 不再对上述各个单元的具体实现进行详细描述了。
[166] 由上述可知,根据本发明实施例的移动台 500通过分别根据第一预编 码矩阵和第二预编码矩阵对 DMRS和 SRS进行预编码, 并且这两个预编 码矩阵中的全部列向量排列而构成的矩阵的秩大于等于该天线的个数,从 而使得在相应的基站侧能够结合利用 DMRS和 SRS来进行各天线的信道 质量估计。
[167] 才艮据本发明实施例的移动台 500通过结合使用预编码的 DMRS和预 编码的 SRS而有效地减少了天线信道质量估计中对 SRS资源的占用, 同 时也避免了单独使用预编码的 DMRS无法进行各个天线的信道质量估计 的缺点。
[168] 此外,根据本发明实施例的移动台 500由于通过发送预编码的 DMRS 和预编码的 SRS以使得基站侧能够基于该预编码的 DMRS和该预编码的 SRS而相结合地进行信 量估计, 因此也不需要两个接收机,并且也减 少了对循环移位资源的占用, 从而克服了现有技术中的上述缺点。
[169] 可选地,在根据本发明实施例的移动台 500中,第一预编码矩阵和第 二预编码矩阵可由基站预先设置并通知移动台。
[170] 或者,可选地,也可以由基站仅预先设置并通知移动台第一预编码矩 阵,并且移动台在接收到第一预编码矩阵之后,根据该第一预编码矩阵以 及预先定义的第一预编码矩阵和第二预编码矩阵之间的对应方式来确定 第二预编码矩阵。
[171] 可选地,在根据本发明实施例的移动台 500中,第一预编码矩阵和第 二预编码矩阵可相互正交。
[172] 可选地,在根据本发明实施例的移动台 500中,第一预编码矩阵和第 二预编码矩阵可由基站不定期地进行改变并通知移动台。
[173] 此外, 需要说明的是, 虽然以上结合图 5所示的示意图对根据本实施 例的移动台 500进行了描述,但是本领域技术人员应当理解, 图 5所示的 示意图仅仅是示例性的, 而不是对本发明的范围的限制,本领域技术人员 完全可以根据实际需要对图 5所示的示意图进行变型或修改。
[174] 图 6示出了根据本发明实施例六的基站 600的示意图。
[175] 如图 6所示,根据本发明实施例三的基站 600包括信道估计单元 601、 第一运算单元 602和第二运算单元 603。
[176] 信道估计单元 601 被配置用于根据接收到的从移动台的多个天线伴 随数据发送的利用第一预编码矩阵预编码后的解调参考信号而进行信道 估计以获得解调参考信号信道估计值,并根据接收到的伴随该数据发送的 利用第二预编码矩阵预编码后的探测参考信号而进行信道估计以获得探 测参考信号信道估计值,其中第一预编码矩阵和第二预编码矩阵的不同的 列和不同的行分别对应于不同的数据和不同的天线。
[177] 第一运算单元 602被配置用于根据第一预编码矩阵和获得的解调参 考信号信道估计值得出以相应的天线的信道质量估计值为变量的第一方 程组,并根据第二预编码矩阵和获得的探测参考信号信道估计值得出以相 应的天线的信道质量估计值为变量的第二方程组,其中由第一预编码矩阵 中的全部列向量和第二预编码矩阵中的全部列向量排列而构成的矩阵的 秩大于等于该天线的个数。
[178] 第二运算单元 603被配置用于通过将第一方程组和第二方程组相结 合而计算得到各个天线的信道质量估计值。
[179] 本领域的技术人员应当理解,可以根据具体应用的需求来灵活地选择 和设置本实施例中所采用的第一预编码矩阵和第二预编码矩阵等,以满足 实际的无线通信系统的应用需求,其均应在本发明的权利要求所请求保护 的精神和范围之内。
[180] 根据本发明的实施例六的基站 600 中的各个单元的具体实现可以参 照上文所描述的根据本发明的实施例三的信道质量估计方法的各个步骤 的具体实现。 因此, 为了说明书的简洁起见, 在此就不再对上述各个单元 的具体实现进行详细描述了。
[181] 由上述可知,根据本发明实施例的基站 600通过分别根据接收到的利 用第一预编码矩阵预编码后的解调参考信号和利用第二预编码矩阵预编 码后的探测参考信号而进行信道估计,以分别获得解调参考信号信道估计 值和探测参考信号信道估计值,并且这两个预编码矩阵中的全部列向量排 列而构成的矩阵的秩大于等于该天线的个数, 从而能够结合利用 DMRS 和 SRS来进行各天线的信道质量估计。
[182] 根据本发明实施例的基站 600通过结合使用预编码的 DMRS和预编 码的 SRS来进行各天线的信道质量估计, 从而有效地减少了天线信道质 量估计中对 SRS资源的占用, 同时也避免了单独使用预编码的 DMRS无 法进行各个天线的信道质量估计的缺点。
[183] 此外, 根据本发明实施例的基站 600由于通过基于预编码的 DMRS 和预编码的 SRS而相结合地进行信道质量估计, 因此也不需要两个接收 机,并且也减少了对循环移位资源的占用,从而克服了现有技术中的上述 缺点。
[184] 可选地,在根据本发明实施例的基站 600中,第一预编码矩阵和第二 预编码矩阵可由基站预先设置并通知移动台。
[185] 或者,可选地,也可以由基站仅预先设置并通知移动台第一预编码矩 阵,并且移动台在接收到第一预编码矩阵之后,根据该第一预编码矩阵以 及预先定义的第一预编码矩阵和第二预编码矩阵之间的对应方式来确定 第二预编码矩阵。
[186] 可选地,在根据本发明实施例的基站 600中,第一预编码矩阵和第二 预编码矩阵可相互正交。
[187] 可选地,在根据本发明实施例的基站 600中,第一预编码矩阵和第二 预编码矩阵可由基站不定期地进行改变并通知移动台。
[188] 此外, 需要说明的是, 虽然以上结合图 6所示的示意图对根据本实施 例的基站 600进行了描述,但是本领域技术人员应当理解, 图 6所示的示 意图仅仅是示例性的, 而不是对本发明的范围的限制,本领域技术人员完 全可以根据实际需要对图 6所示的示意图进行变型或修改。
[189] 图 7示出了根据本发明实施例七的无线通信系统 700的示意图。
[190] 如图 7所示, 无线通信系统 700包括移动台 701和基站 702。
[191] 移动台 701包括预编码单元 703和发送单元 704。
[192] 预编码单元 703被配置用于根据用于对要通过所述多个天线发送的 数据进行预编码的第一预编码矩阵对要伴随所述数据发送的解调参考信 号进行预编码,并根据第二预编码矩阵对要伴随所述数据发送的探测参考 信号进行预编码,所述第一预编码矩阵和所述第二预编码矩阵的不同的列 和不同的行分别对应于不同的数据和不同的天线,由所述第一预编码矩阵 中的全部列向量和所述第二预编码矩阵中的全部列向量排列而构成的矩 阵的秩大于等于所述天线的个数。
[193] 发送单元 704被配置用于发送预编码后的探测参考信号和预编码后 的解调参考信号。
[194] 基站 702包括信道估计单元 705、第一运算单元 706和第二运算单元
707。
[195] 信道估计单元 705被配置用于根据接收到的从移动台的多个天线伴 随数据发送的利用第一预编码矩阵预编码后的解调参考信号而进行信道 估计以获得解调参考信号信道估计值,并根据接收到的伴随所述数据发送 的利用第二预编码矩阵预编码后的探测参考信号而进行信道估计以获得 探测参考信号信道估计值,所述第一预编码矩阵和所述第二预编码矩阵的 不同的列和不同的行分别对应于不同的数据和不同的天线。
[196] 第一运算单元 706被配置用于根据所述第一预编码矩阵和获得的解 调参考信号信道估计值得出以相应的天线的信道盾量估计值为变量的第 一方程组,并根据第二预编码矩阵和获得的探测参考信号信道估计值得出 以相应的天线的信道质量估计值为变量的第二方程组,其中由所述第一预 编码矩阵中的全部列向量和所述第二预编码矩阵中的全部列向量排列而 构成的矩阵的秩大于等于所述天线的个数。
[197] 第二运算单元 707被配置用于通过将第一方程组和第二方程组相结 合而计算得到各个天线的信道质量估计值。
[198] 本领域的技术人员应当理解,可以根据具体应用的需求来灵活地选择 和设置本实施例中所采用的第一预编码矩阵和第二预编码矩阵等,以满足 实际的无线通信系统的应用需求,其均应在本发明的权利要求所请求保护 的精神和范围之内。
[199] 根据本发明的实施例七的无线通信系统 700 中的各个单元的具体实 现可以参照上文所描述的根据本发明实施例一的参考信号发送方法以及 根据本发明实施例三的信道质量估计方法的各个步骤的具体实现。 因此, 为了说明书的简洁起见,在此就不再对上述各个单元的具体实现进行详细 描述了。
[200] 由上述可知, 根据本发明实施例的无线通信系统 700 中的基站 702 通过分别根据从移动台 701 接收到的利用第一预编码矩阵预编码后的解 调参考信号和从移动台 701 接收到的利用第二预编码矩阵预编码后的探 测参考信号而进行信道估计,以分别获得解调参考信号信道估计值和探测 参考信号信道估计值,并且这两个预编码矩阵中的全部列向量排列而构成 的矩阵的秩大于等于该天线的个数, 从而能够结合利用 DMRS和 SRS来 进行各天线的信道质量估计。
[201] 根据本发明实施例的无线通信系统 700 通过结合使用预编码的 DMRS和预编码的 SRS来进行各天线的信道质量估计, 从而有效地减少 了天线信道质量估计中对 SRS资源的占用, 同时也避免了单独使用预编 码的 DMRS无法进行各个天线的信道质量估计的缺点。
[202] 此外,根据本发明实施例的无线通信系统 700由于通过基于预编码的 DMRS和预编码的 SRS而相结合地进行信道质量估计, 因此也不需要两 个接收机,并且也减少了对循环移位资源的占用,从而克服了现有技术中 的上述缺点。
[203] 可选地,在根据本发明实施例的无线通信系统 700中,第一预编码矩 阵和第二预编码矩阵可由基站预先设置并通知移动台。
[204] 或者,可选地,也可以由基站仅预先设置并通知移动台第一预编码矩 阵,并且移动台在接收到第一预编码矩阵之后,根据该第一预编码矩阵以 及预先定义的第一预编码矩阵和第二预编码矩阵之间的对应方式来确定 第二预编码矩阵。
[205] 可选地,在根据本发明实施例的无线通信系统 700中,第一预编码矩 阵和第二预编码矩阵可相互正交。
[206] 可选地,在根据本发明实施例的无线通信系统 700中,第一预编码矩 阵和第二预编码矩阵可由基站不定期地进行改变并通知移动台。
[207] 此外, 需要说明的是, 虽然以上结合图 7所示的示意图对根据本实施 例的无线通信系统 700进行了描述, 但是本领域技术人员应当理解, 图 7 所示的示意图仅仅是示例性的, 而不是对本发明的范围的限制,本领域技 术人员完全可以根据实际需要对图 7所示的示意图进行变型或修改。
[208] 虽然已经详细说明了本发明及其优点,但是应当理解在不脱离由所附 的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替 代和变换。
[209] 最后, 还需要说明的是, 在本文中, 诸如第一和第二等之类的关系术 语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定 要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而 且, 术语"包括"、 "包含"或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在没有更多限制的情况下, 由语句 "包括一 个 ...... "限定的要素, 并不排除在包括所述要素的过程、 方法、 物品或者 设备中还存在另外的相同要素。
10] 以上虽然结合附图详细描述了本发明的实施例,但^ ί当明白,上面 所描述的实施方式只是用于说明本发明, 而并不构成对本发明的限制。对 于本领域的技术人员来说,可以在不偏离本发明的精神和范围的情况下对 上述实施方式作出各种修改和变更。 因此,本发明的范围仅由所附的权利 要求及其等效内容来限定。

Claims

权利 要求 书
1. 一种参考信号发送方法, 包括:
根据用于对要通过移动台的多个天线发送的数据进行预编码的第一 预编码矩阵对要伴随所述数据发送的解调参考信号进行预编码,并根据第 一预编码矩阵和所述第二预编码矩阵的不同的列和不同的行分别对应于 不同的数据和不同的天线; 以及
发送预编码后的探测参考信号和预编码后的解调参考信号, 其中,由所述第一预编码矩阵中的全部列向量和所述第二预编码矩阵 中的全部列向量排列而构成的矩阵的秩大于等于所述天线的个数。
2.根据权利要求 1 所述的方法, 其中所述第一预编码矩阵和第二预 编码矩阵由基站预先设置并通知移动台; 或者
所述第一预编码矩阵由基站预先设置并通知移动台,并且所述移动台 在接收到所述第一预编码矩阵之后,根据所述第一预编码矩阵以及预先定 义的第一预编码矩阵和第二预编码矩阵之间的对应方式来确定所述第二 预编码矩阵。
3.根据权利要求 1 所述的方法, 其中所述第一预编码矩阵和第二预 编码矩阵相互正交。
4.根据权利要求 1 所述的方法, 其中所述第一预编码矩阵和第二预 编码矩阵由基站不定期地进行改变并通知移动台。
5. 一种信道质量估计方法, 包括:
根据接收到的从移动台的多个天线伴随数据发送的利用第一预编码 估计值,并根据接收到的伴随所述数据发送的利用第二预编码矩阵预编码 后的探测参考信号而进行信道估计以获得探测参考信号信道估计值,所述 第一预编码矩阵和所述第二预编码矩阵的不同的列和不同的行分别对应 于不同的数据和不同的天线;
根据所述第一预编码矩阵和获得的解调参考信号信道估计值得出以 相应的天线的信道质量估计值为变量的第一方程组,并根据所述第二预编 估计值为变量的第二方程组,其中, 由所述第一预编码矩阵中的全部列向 量和所述第二预编码矩阵中的全部列向量排列而构成的矩阵的秩大于等 于所述天线的个数; 以及
通过将第一方程组和第二方程组相结合而计算得到各个天线的信道 质量估计值。
6.根据权利要求 5所述的方法, 其中所述第一预编码矩阵和第二预 编码矩阵由基站预先设置并通知移动台; 或者
所述第一预编码矩阵由基站预先设置并通知移动台,并且所述移动台 在接收到所述第一预编码矩阵之后,根据所述第一预编码矩阵以及预先定 义的第一预编码矩阵和第二预编码矩阵之间的对应方式来确定所述第二 预编码矩阵。
7.根据权利要求 5所述的方法, 其中所述第一预编码矩阵和第二预 编码矩阵相互正交。
8.根据权利要求 5所述的方法, 其中所述第一预编码矩阵和第二预 编码矩阵由基站不定期地进行改变并通知移动台。
9. 一种移动台, 包括:
多个天线;
预编码单元,被配置用于根据用于对要通过所述多个天线发送的数据 进行预编码的第一预编码矩阵对要伴随所述数据发送的解调参考信号进 行预编码,并根据第二预编码矩阵对要伴随所述数据发送的探测参考信号 进行预编码,所述第一预编码矩阵和所述第二预编码矩阵的不同的列和不 同的行分别对应于不同的数据和不同的天线,由所述第一预编码矩阵中的 全部列向量和所述第二预编码矩阵中的全部列向量排列而构成的矩阵的 秩大于等于所述天线的个数; 以及
发送单元,被配置用于发送预编码后的探测参考信号和预编码后的解 调参考信号。
10.根据权利要求 9所述的移动台, 其中所述第一预编码矩阵和第二 预编码矩阵由基站预先设置并通知所述移动台; 或者
所述第一预编码矩阵由基站预先设置并通知移动台,并且所述移动台 在接收到所述第一预编码矩阵之后,根据所述第一预编码矩阵以及预先定 义的第一预编码矩阵和第二预编码矩阵之间的对应方式来确定所述第二 预编码矩阵。
11.根据权利要求 9所述的移动台, 其中所述第一预编码矩阵和第二 预编码矩阵相互正交。
12.根据权利要求 9所述的移动台, 其中所述第一预编码矩阵和第二 预编码矩阵由基站不定期地进行改变并通知所述移动台。
13. 一种基站, 包括:
信道估计单元,被配置用于根据接收到的从移动台的多个天线伴随数 据发送的利用第一预编码矩阵预编码后的解调参考信号而进行信道估计 以获得解调参考信号信道估计值,并根据接收到的伴随所述数据发送的利 参考信号信 估计值,所 第一预编码矩阵和所述第二预编码矩阵的不同 的列和不同的行分别对应于不同的数据和不同的天线;
第一运算单元,被配置用于根据所述第一预编码矩阵和获得的解调参 考信号信道估计值得出以相应的天线的信道质量估计值为变量的第一方 程组,并根据第二预编码矩阵和获得的探测参考信号信道估计值得出以相 应的天线的信道质量估计值为变量的第二方程组,其中由所述第一预编码 矩阵中的全部列向量和所述第二预编码矩阵中的全部列向量排列而构成 的矩阵的秩大于等于所述天线的个数; 以及
第二运算单元,被配置用于通过将第一方程组和第二方程组相结合而 计算得到各个天线的信道质量估计值。
14.根据权利要求 13所述的基站, 其中所述第一预编码矩阵和第二 预编码矩阵由所述基站预先设置并通知移动台; 或者
所述第一预编码矩阵由基站预先设置并通知移动台,并且所述移动台 在接收到所述第一预编码矩阵之后,根据所述第一预编码矩阵以及预先定 义的第一预编码矩阵和第二预编码矩阵之间的对应方式来确定所述第二 预编码矩阵。
15.根据权利要求 13所述的基站, 其中所述第一预编码矩阵和第二 预编码矩阵相互正交。
16.根据权利要求 13所述的基站, 其中所述第一预编码矩阵和第二 预编码矩阵由所述基站不定期地进行改变并通知移动台。
17. 一种无线通信系统,包括如权利要求 9-12中任一项所述的移动台 和如权利要求 13-16中任一项所述的基站 <
PCT/CN2010/074144 2010-06-21 2010-06-21 参考信号发送方法、信道质量估计方法、移动台、基站和无线通信系统 WO2011160277A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201080067456XA CN102948186A (zh) 2010-06-21 2010-06-21 参考信号发送方法、信道质量估计方法、移动台、基站和无线通信系统
KR1020137000904A KR101348052B1 (ko) 2010-06-21 2010-06-21 기준 신호 송신 방법, 채널 품질 추정 방법, 이동국, 기지국 및 무선 통신 시스템
PCT/CN2010/074144 WO2011160277A1 (zh) 2010-06-21 2010-06-21 参考信号发送方法、信道质量估计方法、移动台、基站和无线通信系统
EP10853420.7A EP2584810A1 (en) 2010-06-21 2010-06-21 Method for reference signal transmission, method for channel quality estimation, mobile station, base station, and wireless communication system
CA2803043A CA2803043A1 (en) 2010-06-21 2010-06-21 Method for reference signal transmission, method for channel quality estimation, mobile station, base station and wireless communication system
JP2013515656A JP5494888B2 (ja) 2010-06-21 2010-06-21 参照信号送信方法、チャネル品質推定方法、移動局、基地局及び無線通信システム
US13/719,969 US20130107746A1 (en) 2010-06-21 2012-12-19 Method for reference signal transmission, method for channel quality estimation, mobile station, base station and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074144 WO2011160277A1 (zh) 2010-06-21 2010-06-21 参考信号发送方法、信道质量估计方法、移动台、基站和无线通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/719,969 Continuation US20130107746A1 (en) 2010-06-21 2012-12-19 Method for reference signal transmission, method for channel quality estimation, mobile station, base station and wireless communication system

Publications (1)

Publication Number Publication Date
WO2011160277A1 true WO2011160277A1 (zh) 2011-12-29

Family

ID=45370819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074144 WO2011160277A1 (zh) 2010-06-21 2010-06-21 参考信号发送方法、信道质量估计方法、移动台、基站和无线通信系统

Country Status (7)

Country Link
US (1) US20130107746A1 (zh)
EP (1) EP2584810A1 (zh)
JP (1) JP5494888B2 (zh)
KR (1) KR101348052B1 (zh)
CN (1) CN102948186A (zh)
CA (1) CA2803043A1 (zh)
WO (1) WO2011160277A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153269A1 (en) * 2012-04-13 2013-10-17 Nokia Corporation Arrangement for enhanced multi-transmit antenna sounding
JP2015026967A (ja) * 2013-07-26 2015-02-05 富士通株式会社 無線基地局
US20220416859A1 (en) * 2020-10-26 2022-12-29 Wisig Networks Private Limited Method of signal processing by a massive mimo base station receiver

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10153811B2 (en) * 2012-06-14 2018-12-11 Samsung Electronics Co., Ltd. Communication system with communication-layer maximization mechanism and method of operation thereof
US9042336B2 (en) 2012-06-19 2015-05-26 Telefonaktiebolaget L M Ericsson (Publ) Signaling of precoding vector pattern in a lean-carrier system
CN105207705A (zh) 2014-06-23 2015-12-30 北京三星通信技术研究有限公司 有源天线系统中的参考信号收发方法及设备
US10172118B2 (en) * 2015-12-09 2019-01-01 Qualcomm Incorporated Decoupled mode for a common uplink burst transmission in a time division duplex subframe structure
CN106936486B (zh) * 2015-12-30 2020-07-21 电信科学技术研究院 一种csi反馈方法及装置
JP6644904B2 (ja) * 2016-03-16 2020-02-12 華為技術有限公司Huawei Technologies Co.,Ltd. 信号伝送方法及び装置
US10122559B2 (en) * 2016-03-21 2018-11-06 Qualcomm Incorporated Uplink channel quality measurement using a subframe with high-intensity reference signal bursts
CN107786473B (zh) * 2016-08-31 2020-09-08 华为技术有限公司 信道估计方法、参考信号发送方法、装置及系统
CN108259401B (zh) * 2016-12-28 2020-09-15 电信科学技术研究院 参考信号发送方法和相位噪声确定方法及相关装置
US11018828B2 (en) * 2017-02-06 2021-05-25 Qualcomm Incorporated Uplink MIMO reference signals and data transmission schemes
US10367553B2 (en) * 2017-03-24 2019-07-30 Mediatek Inc. Transmission scheme for wireless communication systems
CN109495879B (zh) * 2017-09-11 2020-09-25 电信科学技术研究院 一种资源配置方法、基站和终端
US11546191B2 (en) 2018-06-28 2023-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for channel estimation
US11533088B2 (en) * 2020-07-23 2022-12-20 Qualcomm Incorporated Cross-interface interference management
EP4264893A1 (en) * 2020-12-18 2023-10-25 Telefonaktiebolaget LM Ericsson (publ) Controlling transmisson of reference signals
CN113872651B (zh) * 2021-10-12 2022-12-27 京信网络系统股份有限公司 预编码矩阵的获取方法、装置、基站及存储介质
CN116418374A (zh) * 2021-12-29 2023-07-11 华为技术有限公司 一种数据处理方法及通信装置
CN116567818B (zh) * 2023-07-04 2023-11-17 阿里巴巴(中国)有限公司 信息感知方法、信息处理方法、设备及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020983A1 (en) * 2007-08-06 2009-02-12 Qualcomm Incorporated Multiplexing and transmission of traffic data and control information in a wireless communication system
WO2009037580A2 (en) * 2007-07-16 2009-03-26 Nortel Networks Limited Providing space division multiple access in a wireless network
WO2009150177A2 (en) * 2008-06-11 2009-12-17 Nokia Siemens Networks Oy Local area optimized uplink control channel
CN101615937A (zh) * 2008-06-27 2009-12-30 中兴通讯股份有限公司 一种多天线发射方法及多天线发射装置
CN101686110A (zh) * 2008-09-26 2010-03-31 大唐移动通信设备有限公司 一种多输入多输出系统、及其数据传输的方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361865B2 (ja) * 2008-04-04 2013-12-04 パナソニック株式会社 無線通信移動局装置およびプレコーディング行列使用方法
EP2757846B1 (en) * 2008-04-24 2016-03-09 Huawei Technologies Co., Ltd. Mobile station device, mobile communication system, and communication method
KR101306735B1 (ko) * 2008-10-15 2013-09-11 엘지전자 주식회사 복수개의 안테나를 이용한 사운딩 기준 신호 시퀀스 전송 방법
JP2011035785A (ja) * 2009-08-04 2011-02-17 Sharp Corp 無線通信システム、移動局装置および基地局装置
JP5608178B2 (ja) * 2010-01-14 2014-10-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末装置、通信装置及び通信方法
US8948196B2 (en) * 2010-05-03 2015-02-03 Qualcomm Incorporated Method and apparatus for sounding antennas in wireless communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037580A2 (en) * 2007-07-16 2009-03-26 Nortel Networks Limited Providing space division multiple access in a wireless network
WO2009020983A1 (en) * 2007-08-06 2009-02-12 Qualcomm Incorporated Multiplexing and transmission of traffic data and control information in a wireless communication system
WO2009150177A2 (en) * 2008-06-11 2009-12-17 Nokia Siemens Networks Oy Local area optimized uplink control channel
CN101615937A (zh) * 2008-06-27 2009-12-30 中兴通讯股份有限公司 一种多天线发射方法及多天线发射装置
CN101686110A (zh) * 2008-09-26 2010-03-31 大唐移动通信设备有限公司 一种多输入多输出系统、及其数据传输的方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153269A1 (en) * 2012-04-13 2013-10-17 Nokia Corporation Arrangement for enhanced multi-transmit antenna sounding
JP2015026967A (ja) * 2013-07-26 2015-02-05 富士通株式会社 無線基地局
US20220416859A1 (en) * 2020-10-26 2022-12-29 Wisig Networks Private Limited Method of signal processing by a massive mimo base station receiver
US11949475B2 (en) * 2020-10-26 2024-04-02 Wisig Networks Private Limited Method of signal processing by a massive MIMO base station receiver

Also Published As

Publication number Publication date
JP5494888B2 (ja) 2014-05-21
CA2803043A1 (en) 2011-12-29
CN102948186A (zh) 2013-02-27
EP2584810A1 (en) 2013-04-24
US20130107746A1 (en) 2013-05-02
KR101348052B1 (ko) 2014-01-03
JP2013534758A (ja) 2013-09-05
KR20130031889A (ko) 2013-03-29

Similar Documents

Publication Publication Date Title
WO2011160277A1 (zh) 参考信号发送方法、信道质量估计方法、移动台、基站和无线通信系统
US11804885B2 (en) Codebook subset restriction for full-dimension MIMO
CN108476049B (zh) 用于信道状态信息参考信号(csi-rs)的方法和装置
EP3442136B1 (en) Method for transmitting data, user equipment unit, and network side device
CN111478761B (zh) 发送和接收信道状态信息-参考信号的方法和设备
US9584275B2 (en) Method and apparatus for generating an uplink reference signal sequence in a wireless communication system
EP2536231B1 (en) Pre-coding method and apparatus based on mixed multiplexing demodulation reference signals
US8964520B2 (en) Apparatus and method for transmitting and receiving of cyclic shift parameter for supporting orthogonality in MIMO environment
KR101276855B1 (ko) 프리코딩 행렬 정보 전송방법 및 사용자기기와, 프리코딩 행렬 구성방법 및 기지국
CA2786700C (en) Method and apparatus for generating a reference signal sequence in a wireless communication system
EP4044541B1 (en) Method and apparatus for transmitting data
JP6179825B2 (ja) 通信装置、通信方法及び集積回路
JP5388356B2 (ja) プリコーディングウェイト生成方法、移動局装置及び基地局装置
WO2017008562A1 (zh) 在上行控制信道上发送信号的方法和装置
KR20130122572A (ko) 단말 대 단말 통신을 위한 송수신 방법
KR20110000536A (ko) 상향링크 mimo 전송에서 참조신호를 전송하는 방법 및 장치
CN109075828B (zh) 用于实现上行链路mimo的方法和设备
KR20090115781A (ko) Mu-mimo를 지원하기 위한 프리코딩을 이용한 프레임송신 방법 및 그 방법을 지원하는 기지국
US9374833B2 (en) Method and device for exchanging data in wireless communication system
TW201724778A (zh) 一種確定多使用者傳輸方式的方法及裝置
JP2019516291A (ja) 非周期的信号を送信する方法、基地局及びユーザ装置
KR20140084024A (ko) 협력 다중-포인트 송수신 집합에 대한 채널상태정보 보고 방법 및 이를 위한 장치
WO2013023586A1 (zh) 上行预编码信息发送方法、预编码方法、基站及终端
WO2015129872A1 (ja) 無線基地局、ユーザ端末および無線通信方法
JP5950029B2 (ja) 移動局、基地局、及び通信制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067456.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2803043

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010853420

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013515656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137000904

Country of ref document: KR

Kind code of ref document: A