WO2011159011A1 - 수소 발생 장치 - Google Patents

수소 발생 장치 Download PDF

Info

Publication number
WO2011159011A1
WO2011159011A1 PCT/KR2011/001244 KR2011001244W WO2011159011A1 WO 2011159011 A1 WO2011159011 A1 WO 2011159011A1 KR 2011001244 W KR2011001244 W KR 2011001244W WO 2011159011 A1 WO2011159011 A1 WO 2011159011A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
magnesium
electrolyte
spring
catalyst
Prior art date
Application number
PCT/KR2011/001244
Other languages
English (en)
French (fr)
Inventor
백동수
Original Assignee
주식회사 미트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미트 filed Critical 주식회사 미트
Publication of WO2011159011A1 publication Critical patent/WO2011159011A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen generating apparatus, and more particularly, by supplying magnesium ball and sea water or brine to the reaction tank through the injection unit to generate hydrogen, and discharge the magnesium hydroxide produced by the hydrogen reaction to the discharge unit, high energy density
  • the present invention relates to a hydrogen generating apparatus having a large amount of hydrogen in a safe manner.
  • Hydrogen is an environmentally friendly clean fuel, but special care must be taken to store it due to its high pressure and safety devices, which costs hydrogen production and the weight of the container containing hydrogen is a problem.
  • an unstable compound that generates hydrogen such as sodium borohydride (NaBH 4 ) or hydrazine (H 2 NNH 2 , a compound of hydrogen and nitrogen).
  • produces hydrogen by putting aluminum metal into alkaline solution
  • this method also has the disadvantage that the method of controlling the generated hydrogen is not only easy and dangerous, but also increases the pressure of the cell itself, making the container bulky, heavy and complicated to withstand the pressure.
  • hydrogen fuel cells are used as an auxiliary power source for some fuel cell vehicles, unmanned weapons, and diesel submarines, and because of the large capacity used for diesel submarines, a large amount of hydrogen is required, and a large amount of high pressure hydrogen is used. Since the container or the hydrogen storage material to be used must be used to raise the safety problem and the hydrogen gas filling time is long.
  • Magnesium is one of the most easily corroded metals, but catalysts are used to achieve higher corrosion rates, or hydrogen evolution rates, because the usual corrosion rates are not sufficient.
  • the catalyst electrode is composed of a low hydrogen generation overvoltage in a noble material, that is, a material having higher corrosion resistance, that is, a metal having a lower ionization tendency than magnesium.
  • Japanese Patent JP5610981 proposes a device for generating hydrogen by putting pieces of magnesium metal into a mesh made of iron or nickel in a sealed container. Corrosion is facilitated by the contact of the metal mesh with magnesium particles.
  • Japanese Patent JP2008 / 56551 proposes an apparatus for generating hydrogen by putting magnesium metal pieces in a platinum-plated titanium mesh.
  • the use of platinum-plated nets increases the catalytic effect and results in an increase in speed.
  • Plating over titanium mesh ensures better corrosion resistance and durability. Both of these techniques use fixed metal meshes, so that the reaction does not occur at an even position, and the resulting magnesium hydroxide particles stick to the mesh, which significantly lowers the reactivity.
  • US 2007/0237994 proposes a device for extracting hydrogen generated by putting a corrosive electrolyte in a sealed container containing magnesium, zinc or aluminum powder. Hydrogen is generated depending on the amount of corrosive electrolyte added, but there are disadvantages in handling a container in which the powder is sealed and disadvantages of preparing an electrolyte separately.
  • aluminum powder has a high reaction rate, which may cause an explosion, and scattering powder may damage the exhaust system.
  • Japanese Patent JP 2007/238383 proposes an apparatus for extracting hydrogen generated by introducing aluminum particles into a container filled with a corrosive electrolyte. Gas sealing problems with the addition of aluminum particles. There is a disadvantage that an excess alkali electrolyte must be provided.
  • Japanese Patent JP 2003-221202 proposes a method of promoting the corrosion reaction by dropping a magnesium metal mass embedded with catalytic metal particles in an electrolyte.
  • This method is useful as a material that reacts with an electrolyte to generate hydrogen, but has the disadvantage that it is expensive to manufacture a magnesium product containing precious metal particles and that a general magnesium alloy material cannot be used.
  • US 2008/0245673 proposes a method of accelerating hydrogen generation rate by applying an external voltage to an electrode pair having a cathode connected to aluminum and an anode connected to magnesium.
  • This method can increase speed but has the disadvantage of requiring a separate device to apply voltage using an external power source.
  • Magnesium requires approximately 1.5 times the water weight of magnesium, but 5 times the water to have fluidity to remove from the system. There is also a burden to carry the produced magnesium hydroxide sludge. In an environment where seawater can be used, the advantage of using magnesium is maximized because there is no need to bear this water burden.
  • magnesium either plate or powder can be used, which can yield hydrogen by reaction in a closed container.
  • issues of structure and efficiency are raised, and safety is also a problem to consider.
  • the present invention was created in order to improve the above problems, by supplying magnesium ball and sea water or brine to the reaction tank through the injection unit to generate hydrogen, and discharge the magnesium hydroxide produced by the hydrogen reaction to the discharge unit to achieve a high energy density It is an object of the present invention to provide a hydrogen generator that can have a large amount of hydrogen in a safe manner.
  • the present invention was created to improve the above problems, it is possible to continuously use by continuously adding the magnesium ball, the catalyst to react with the magnesium ball is distributed to have a uniform and sufficient space to increase the reaction area It is an object of the present invention to provide a hydrogen generator that can easily remove the generated sludge.
  • the present invention was created to improve the above problems, the life of the catalyst used is not long, so easy replacement in the inside, it is easy to generate hydrogen so that excessive pressure is not generated due to the generated hydrogen It is an object to provide a hydrogen generator that can be stopped or regulated.
  • a hydrogen generating apparatus generates a hydrogen by the corrosion reaction due to the contact of the electrolyte solution, magnesium ball and the spring catalyst, magnesium hydroxide is produced; And a hydrogen discharge part for discharging hydrogen generated in the reaction tank, and the spring catalyst is made of a coiled spring considering the size of the magnesium ball, so that the empty space can be easily formed, deformed, and restored, thereby making contact with the accommodation of the magnesium ball. It is characterized in that the role of the mobile passage of the magnesium hydroxide sludge.
  • the magnesium ball has a diameter in the range of 0.5 to 20 mm, characterized in that the magnesium or magnesium alloy.
  • an injection unit for supplying the electrolyte and the magnesium ball into the reaction tank outside the reaction tank;
  • a discharge part for discharging the magnesium hydroxide and the used electrolyte in the reactor to the outside;
  • a control unit for adjusting the hydrogen generation rate by adjusting the level of the electrolyte in the reaction tank.
  • the injection unit is connected to one side of the reaction tank for supplying an electrolyte solution; Branch pipe branched from the injection pipe; A hopper connected to an end of the branch pipe to inject magnesium balls; And a three-way valve provided at a connection point between the injection pipe and the branch pipe to selectively supply electrolyte and magnesium balls.
  • the hopper is characterized in that formed in a position higher than the height of the reactor.
  • the electrolyte supply pressure of the injection tube is higher than the internal pressure of the reaction tank, and maintains a pressure lower than the pressure due to the position of the hopper, thereby preventing the back flow of hydrogen and the electrolyte solution discharged to the outside of the hopper.
  • the electrolyte is filled in the branch pipe when the magnesium ball into the hopper, the air is discharged in the hopper direction to prevent the air is mixed in the reaction tank.
  • the inner wall of the injection tube and the branch pipe is characterized in that the magnesium ball and the electrolyte solution is formed, the insulation coating layer of Teflon or fluorine resin is formed in order to prevent the magnesium hydroxide is generated to block the conduit. .
  • control unit is connected to the injection unit injection pump for supplying an electrolyte;
  • a discharge pump connected to the discharge part to discharge magnesium hydroxide and used electrolyte;
  • a control unit for controlling hydrogen generation by controlling the level of the reaction tank by interworking the injection pump with the discharge pump.
  • the inside of the reaction tank is provided with a filter vessel of any one selected from a metal mesh, a fiber mesh and a porous metal vessel, the open space interval of the filter vessel is characterized in that it has a range of 0.01 ⁇ 3mm or less.
  • the spring catalyst is pre-filled in the filter vessel before the magnesium ball is supplied.
  • the spring catalyst any one metal selected from iron, nickel, inconel, copper, brass, bronze, titanium, or a metal alloy wire containing the metal, nickel, silver, gold, palladium, rhodium, It is characterized by plating at least one metal selected from platinum or platinum group metals.
  • the coil diameter of the spring catalyst characterized in that it has a range of 5 to 30 mm, wire diameter is 0.3 to 3 mm, pitch interval of 1 to 10 mm, length 10 to 100 mm.
  • Spring catalysts include both modified and tapered forms within this range. It is more advantageous in mass production because only the most tapered general round shape is convenient and inexpensive to manufacture.
  • the upper part of the reaction tank is characterized in that the gas filter for separating from the hydrogen gas and the electrolyte.
  • the gas filter is characterized in that any one of a porous cloth, a filter woven from fluorocarbon fiber, or a hydrophobic treatment treated with a hydrophobic treatment so that water does not seep out, and only the hydrogen gas is filtered out of the electrolyte.
  • reaction tank is provided with an inner cylinder capable of lifting up and down in accordance with the hydrogen generating pressure, the magnesium ball and the spring catalyst stored in the inner cylinder to reduce or increase the contact with the electrolyte solution to control the rate of hydrogen generation Characterized in that configured.
  • the electrolyte is characterized in that the sea water or brine.
  • the hydrogen generating apparatus has high energy density because magnesium hydrogen and seawater or brine are supplied to the reaction tank through the inlet to generate hydrogen, and the magnesium hydroxide produced by the hydrogen reaction is discharged to the outlet. In addition, a large amount of hydrogen can be obtained in a safe manner.
  • the hydrogen generating device according to the present invention can be continuously used by continuously input the magnesium ball, the catalyst to react with the magnesium ball is distributed so as to have a uniform and sufficient space to increase the reaction area and facilitate the generated hydroxide sludge Can be removed by draining.
  • the hydrogen generating device according to the present invention should be easy to replace in the inside because the catalyst is not used for a long life, it is convenient in use because it stops or regulates the generation of hydrogen so that excessively high pressure is not generated due to the generated hydrogen. Can be provided.
  • FIG. 1 is a partially cutaway perspective view of a hydrogen generator according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the overall configuration of the hydrogen generating apparatus according to an embodiment of the present invention.
  • FIG. 3 is an enlarged view of the hydrogen discharge configuration according to an embodiment of the present invention in FIG.
  • FIG. 4 is an enlarged view of the injection hole according to an embodiment of the present invention in FIG.
  • FIG 5 is a view showing a state in which hydrogen is generated by contacting the spring catalyst and magnesium balls in the hydrogen generating apparatus according to an embodiment of the present invention.
  • FIG. 1 is a partially cutaway perspective view of a hydrogen generator according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view of the overall configuration of the hydrogen generator according to an embodiment of the present invention
  • Figure 3 is a view of the invention in Figure 2 4 is an enlarged view of a hydrogen discharge configuration according to an embodiment
  • FIG. 4 is an enlarged view of an injection hole according to an embodiment of the present invention in FIG. 3
  • FIG. 5 is a spring catalyst in the hydrogen generating device according to an embodiment of the present invention.
  • Magnesium ball is a view showing a state in which hydrogen is generated.
  • the hydrogen generating device generates hydrogen by a corrosion reaction due to contact between an electrolyte, a magnesium ball 2, and a spring catalyst 4, and is a corrosion product.
  • a hydrogen discharge unit 20 for discharging hydrogen generated in the reaction tank 10 and the reaction tank 10 in which magnesium hydroxide is generated.
  • the spring catalyst 4 is made of a spring coil type considering the size of the magnesium ball 2, so that it is easy to form, deform and restore the empty space, so that the magnesium ball 2 can be easily accommodated and brought into contact with the magnesium hydroxide sludge. It is configured to play a role.
  • the electrolyte solution uses sea water or salt water.
  • the magnesium balls 2 have a diameter in the range of 0.5 to 20 mm and are made of magnesium or magnesium alloy. In particular, it is most preferable to have a range of 2 to 10 mm.
  • the magnesium balls 2 may be supplied from the outside in the reaction tank 2 or pre-stored therein, and may be manufactured in various sizes to enter the spaces between the magnesium balls 2.
  • the magnesium ball 2 Since the magnesium ball 2 is close to a sphere and has good flowability, the magnesium ball 2 can be easily moved inside the apparatus or the pipe.
  • Magnesium ball (2) is a magnesium high purity, that is, 99% or more, produced in large quantities and its shape is close to the sphere and flowability can be moved inside the device or pipe.
  • the size of the magnesium ball 2 becomes smaller as the corrosion progresses. If the size of the magnesium ball 2 becomes small enough, the corrosion of the magnesium ball 2 itself proceeds sufficiently without contact with the spring catalyst 4. It can be terminated.
  • reaction tank 10 is provided with an injection portion 30 for supplying the electrolyte solution and the magnesium ball (2) into the reaction tank (10).
  • the injection unit 30 is connected to one end of the reaction tank 10 to supply an electrolyte solution 32, a branch pipe 34 branched from the injection pipe 32, the branch pipe 34 is connected to the end of magnesium
  • a three-way valve 38 is provided at the connection point of the hopper 36 and the injection pipe 32 and the branch pipe 34 to inject the ball 2 to selectively supply the electrolyte solution and the magnesium ball 2.
  • the hopper 36 is formed at a position higher than the height of the reaction vessel 10.
  • the electrolyte supply pressure of the injection pipe 32 is higher than the internal pressure of the reaction tank 10 and is maintained at a pressure lower than the pressure due to the position (height) of the hopper 36, whereby the reverse flow of hydrogen and the electrolyte in the reaction tank 10 are hoppers. It prevents the discharge to the outside of the 36, the electrolyte is filled in the branch pipe 34, when the magnesium ball (2) is injected into the hopper 36, the air is discharged to the upper direction of the hopper 36 to the reaction tank It is configured to prevent the incorporation of air into the 10.
  • Insulation coating layer 35 of teflon or fluorine resin is formed on the inner wall of the injection pipe 32 and the branch pipe 34 to prevent magnesium hydroxide from blocking the pipe when the magnesium ball 2 and the electrolyte stay or move. Is formed.
  • the magnesium ball 2 having a specific gravity of only 1.8 can be easily moved to the flow of seawater, which is an electrolyte, so that the magnesium ball 2 is injected together with the electrolyte to allow a more convenient charging. Unlike the prior art, it does not need to use a screw or other moving means has superior advantages over the prior art.
  • outside the reactor 10 is provided with a magnesium hydroxide sludge which is a corrosion product in the reactor 10 and a discharge part 40 for discharging the used electrolyte to the outside.
  • Discharge part 40 is connected to the lower side of the reaction vessel 10 is a discharge pipe for discharging the magnesium hydroxide sludge generated by the corrosion reaction and the electrolyte used in the corrosion reaction.
  • control unit 50 for controlling the hydrogen generation rate by adjusting the level of the electrolyte in the reaction tank (10).
  • the adjusting unit 50 is connected to the injection pipe 32 of the injection unit 30, the injection pump 52 for supplying the electrolyte solution, connected to the discharge unit 40 discharge pump for discharging the magnesium hydroxide and the used electrolyte solution ( 54) and a control unit 56 for controlling the generation of hydrogen by controlling the level of the reaction tank 10 by interlocking the injection pump 52 and the discharge pump 54.
  • the supply rate of the electrolyte solution of the injection pump 52 is adjusted, and the discharge pump 54 is operated to operate inside the reactor 10.
  • the level of the electrolyte solution of the magnesium ball (2) and the spring catalyst (4) it is possible to reduce the area in contact with the electrolyte solution, to control the generation of hydrogen, and if all the electrolyte solution is removed in the reaction tank (10), hydrogen is a reaction tank ( 10) no longer occurs within.
  • the inside of the reaction tank 10 is provided with a filter vessel 12 which is any one selected from a metal mesh, a fiber mesh and a porous metal vessel.
  • the spring catalyst 4 is pre-filled before the magnesium balls 2 are supplied from the outside.
  • the spring catalyst 4 may be supplied through the injection unit 30.
  • the filter vessel 12 is formed to open the upper side to store the magnesium catalyst (2) injected into the spring catalyst (4) and the injection portion (30).
  • the hydrogen is sludged into magnesium hydroxide while gradually generating hydrogen by the corrosion reaction, and is discharged between the open spaces of the filter container 12 to be discharged to the outside through the discharge part 40.
  • the spring catalyst 4 acts as a catalyst to help the corrosion of the magnesium ball 2 and the electrolyte well between each other, but does not discharge itself between the open space of the filter container 12 because it does not become small by itself.
  • reaction tank 10 is separated to replace the spring catalyst 12, which is damaged by the plating layer and degrades the catalytic action.
  • the open space spacing of the filter vessel 12 is in the range of 0.01-2 mm.
  • Magnesium hydroxide has high solubility in a neutral solution such as seawater when the electrolyte is seawater, so that it can be dissolved and discharged out by continuous inflow of seawater.
  • the filter vessel 12 has a filtration size ranging from 0.01 to 2 mm, coarse magnesium balls 2 or spring catalysts 4 are not discharged out, and magnesium hydroxide sludge is easily discharged to the outside together with the used electrolyte. It is to let.
  • the spring catalyst 4 is nickel, silver, gold, palladium, rhodium, platinum on a wire of any metal selected from iron, nickel, inconel, copper, brass, bronze, titanium or a metal alloy containing the metal. Or at least one metal selected from platinum group metals.
  • the coil diameter of the spring catalyst 4 has a range of 5 to 30 mm, a wire diameter of 0.3 to 3 mm, a pitch interval of 1 to 10 mm, and a length of 10 to 100 mm.
  • Spring catalysts include both modified and tapered forms within this range. It is more advantageous in mass production because only the most tapered general round shape is convenient and inexpensive to manufacture.
  • the advantage of the spring catalyst 4 of the spring coil shape is that the magnesium ball 2 can be easily inserted into the center space of the spring catalyst 4 while securing a large amount of empty space, but the space occupied by the spring catalyst 4 is small. It is easy to restore and insert magnesium balls of various sizes to open the passage of magnesium hydroxide sludge.
  • the magnesium balls 2 are evenly mixed and moved to increase the contact area, thereby exhibiting a high hydrogen generation rate and making it easy to replace the aged spring catalysts 4. .
  • the reaction vessel 10 is filled with evenly distributed spring catalyst 4 so that the magnesium balls 4 can be easily inserted into the empty space inside and next to the spring catalyst 4.
  • the spring catalyst 4 is made of a material having excellent elasticity and resilience to form and accommodate a space when the magnesium balls 2 are injected.
  • the vibration caused by the generation of hydrogen gas causes the spring catalyst 4 to continuously vibrate to deform and recover, and thus to strike and remove magnesium hydroxide sludge, which is a corrosion product generated on the surface of the magnesium ball 2.
  • the hydrogen gas bubbles generated by the corrosion reaction are small in size but grow as they collide with each other and grow into large bubbles, and the spring catalyst 4 and the magnesium ball 2 are shaken by the bubble rising. As it is further filled, and evenly added to the magnesium ball (2) serves to position evenly inside.
  • the life of the spring catalyst 4 is not long, especially if there is a plated layer, so more so, after a period of time it must be replaced with new spring catalyst (4).
  • the short spring catalyst 4 can be easily replaced. Therefore, the spring shape is most ideal as the shape of the catalyst.
  • the upper part of the reaction tank 10 has a gas filter 14 for separating the hydrogen gas and the electrolyte.
  • the gas filter 12 is selected from a porous cloth treated with a hydrophobic treatment, a filter woven from a fluorocarbon fiber such as Teflon, or a porous Teflon membrane to prevent water from seeping and discharge only hydrogen gas from the electrolyte. use.
  • Hydrogen gas generated in the reaction tank 10 is discharged to the upper portion through the hydrogen discharge unit 20, but when the hydrogen gas is blocked without consuming hydrogen, the hydrogen gas is filled in the reaction tank 10, the magnesium ball present in the hydrogen reducing atmosphere As (2) no longer corrodes, no additional hydrogen is generated.
  • the spring catalyst 4 is pre-filled in the reaction tank 10, and the electrolyte and the magnesium balls 2 have been described in which the injection portion 30 is supplied from the outside.
  • the magnesium ball 2 and the spring catalyst 4 are pre-filled in the reaction tank 10 and supplied only from the outside, or the electrolyte and the spring catalyst 4 are pre-filled in the reaction tank 10, and the magnesium ball (2) can be configured to generate hydrogen by opening the lid of the reactor (10).
  • reaction tank 10 when the reaction tank 10 is manufactured in a small size, although not shown in the drawing, an internal cylinder (not shown) having an internal cylinder (not shown) capable of lifting upwards according to the hydrogen generating pressure is provided in the reaction tank 10.
  • Magnesium ball (2) and the spring catalyst (4) stored in the may be configured to gradually reduce the contact with the electrolyte stored in the reaction tank to control the rate of hydrogen generation.
  • the amount of hydrogen generated can be automatically adjusted according to the elevation of the inner cylinder.
  • a plurality of spring catalysts 4 are prefilled in the filter vessel 12 in the reaction vessel 10.
  • the magnesium ball 2 having various sizes is injected through the hopper 36 of the injection part 30 and injected from the injection pipe 32 through the three-way valve 38 opened through the branch pipe 34. It moves along with electrolyte solution and is supplied to the inside of the reaction tank 10.
  • the magnesium balls 2 supplied into the reaction tank 10 are immersed in the filter vessel 12 and cause corrosion reactions with the spring catalyst 4 and the electrolyte solution that were previously inside to generate hydrogen.
  • the generated hydrogen gas bubbles are small in size and move upwards, colliding with each other, and gradually become large bubbles.
  • the large bubbles collide with the spring catalyst 4 to generate vibration and deform and recover.
  • magnesium hydroxide is generated on the surface of the magnesium ball 2 to become suspended, bumping against the vibrating spring catalyst (4) to promote the separation of magnesium hydroxide sludge, the generated magnesium hydroxide sludge is spring It moves between the coil spaces of the catalyst 4 and is easily discharged.
  • the generated hydrogen is moved upward and separated from the water of the electrolyte in the gas filter 14 is supplied to the required place to the outside through the hydrogen discharge unit 20 pipe.
  • the magnesium hydroxide sludge and the used electrolyte are moved to the outside by moving the discharge pump 54, which is the control unit 50, through the discharge unit 40 pipe by the pumping operation.
  • the injection pump 52 and the discharge pump 54, the adjusting unit 50 by adjusting the level of the electrolyte solution in the reaction tank 10 by the interlocking control operation of the control unit 56 by the magnesium ball (2) and the spring catalyst
  • the contact area between (4) and the electrolyte By adjusting the contact area between (4) and the electrolyte, the amount of hydrogen generated can be adjusted.
  • the hydrogen generator according to the present invention By using the hydrogen generator according to the present invention, a large amount of hydrogen can be obtained in a safe manner. For example, since 12 grams of magnesium balls (2) obtain 1 gram of hydrogen, a high energy density hydrogen generator can be realized. This is one of the more efficient hydrogen storage materials currently realized.
  • magnesium is the best choice for submersibles, such as submersibles, where space is important as a hydrogen supply medium for submarine hydrogen fuel cells.
  • the hydrogen generating device of the present invention can be applied not only as an auxiliary power source for fuel cell vehicles, unmanned weapons, etc., but also as an auxiliary power source for various machines and devices requiring other hydrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)

Abstract

수소 발생 장치에 대한 발명이 개시된다. 개시된 수소 발생 장치는 전해액, 마그네슘 볼 및 스프링 촉매의 접촉으로 인한 부식반응으로 수소를 발생하고, 수산화마그네슘이 생성되는 반응조 및 반응조에서 발생된 수소를 배출하는 수소배출부를 포함하고, 스프링 촉매는 마그네슘 볼의 크기를 고려한 스프링 코일형으로 제작되어 빈 공간 형성과 변형 및 복원이 수월하여 마그네슘 볼의 수용과 접촉이 용이하고, 수산화마그네슘 슬러지의 이동통로 역활을 하는 것을 특징으로 한다.

Description

수소 발생 장치
본 발명은 수소 발생 장치에 관한 것으로서, 더욱 상세하게는, 마그네슘 볼과 해수 또는 염수를 주입부를 통해 반응조로 공급하여 수소를 발생하고, 수소반응으로 생성된 수산화마그네슘을 배출부로 배출하므로 고 에너지 밀도를 갖으며, 안전한 방법으로 다량의 수소를 얻을 수 있는 수소 발생 장치에 관한 것이다.
일반적으로, 수소를 연료로 사용하는 기술은 현재까지 많은 발전을 이루었지만 아직도 수소를 안전하게 생산하고, 저장하거나 이송하는 기술은 수소 연료전지에서 요구하는 성능에 많이 미치지 못하고 있다.
현재 추세는 수소를 발생시키고 저장하는 기술에 많은 노력이 집중되고 있으며, 그 중에 금속의 부식반응을 이용하여 수소를 발생하는 기술에는 이미 많은 선행 기술들이 존재하고 있다. 하지만, 아직도 수소를 발생하거나 저장하는 기술은 그 밀도가 충분치 않고 위험요소들이 많아 상업화에 어려움을 겪고 있는 실정이다.
수소는 환경친화적인 깨끗한 연료이지만, 저장하는 데는 높은 압력과 안전장치로 인해 각별한 주의를 기울어야 하고, 그로 인해 수소 제조 비용이 많이 소모되며, 수소를 담는 용기의 무게가 문제가 된다.
그리고, 비교적 안전하게 수소를 발생할 수 있도록 하는 방법으로서 수소화붕소 나트륨(NaBH4)이나 히드라 진(H2NNH2, 수소와 질소의 화합물)과 같은 수소를 발생하는 불안정한 화합물을 사용하는 것이 일반적으로 알려져 있다.
또한, 알루미늄 금속을 알칼리 용액에 넣어 수소를 발생하는 장치나, 마그네슘 금속을 전해액(소금물)이 채워진 용기 내에 구비된 백금이 코팅된 금속 망에 넣어 수소를 발생하는 장치가 알려져 있다.
그러나, 이러한 방법 역시, 발생되는 수소를 조절하는 방법이 용이하지 않고 위험할 뿐만 아니라, 셀 자체의 압력도 높아지게 되므로 그 용기가 압력을 견디기 위하여 부피가 크고 무거워지며 복잡해지는 단점을 지닌다.
알루미늄이나 아연을 전극으로 사용하는 경우에는, 일부 전해액(소금물)에서 부식 반응에 의해 수소가스를 발생하지만, 마그네슘보다는 반응이 느리며 일부 부도체 피막형성에 의해 부식반응이 방해를 받아 비 활성화될 수도 있다. 이런 경우 전해액에 약간의 알칼리를 첨가하면 수소 발생이 촉진되지만, 간혹 부식반응이 조절이 안 되거나, 다시 비활성 표면이 형성되어 반응이 정지될 수 있다.
그리고, 수소발생 음극(캐소드)과 접촉했을 경우, 이 부식반응이 촉진되어 지속적인 수소발생을 일으킬 수 있다. 또한, 알루미늄이나 아연 전극을 다공성으로 만들어 접촉면적을 증대하거나, 분말을 압착한 활성이 강한 형태를 사용하면 수소를 더 용이하게 얻을 수 있다.
현재, 일부 연료전지 자동차, 무인 병기 및 디젤 잠수함의 보조 전원으로서 수소연료전지가 사용되고 있으며, 그 중 디젤 잠수함 용으로는 사용되는 용량이 크기 때문에 많은 양의 수소를 필요로 하게 되고, 다량의 고압 수소 용기나 수소 저장물질로 채워서 사용해야 하므로 안전성 문제가 제기되고 수소가스 충전시간이 길어지는 문제점이 있다.
한편, 마그네슘과 물을 반응시키면 물에서 수소를 분리할 수 있으므로, 풍부한 해수 속에서 운항하는 잠수함이야말로 적합한 사용처이다. 마그네슘이 부식이 되면 물 분자의 산소가 소모되고 남은 수소는 기체가 되어 물속에서 생성되어 떠오르게 된다.
마그네슘은 쉽게 부식이 되는 금속 중 하나이지만, 일반적인 부식속도로는 충분하지 않기 때문에 촉매를 사용하여 더 높은 부식 속도 즉 수소 발생 속도를 얻게 하고 있다.
우선, 마그네슘 부식에 의한 수소 발생을 표현하는 화학반응식을 살펴보면,
[반응식]
Mg + 2H2O = Mg(OH)2 + H2(gas) : 전체반응식, 이 식을 전기화학적인 반전지식으로 바꾸면,
Mg + 2OH- = Mg(OH)2 + 2e : 애노드 반응,
2H2O + 2e = 2OH- + H2(g) : 캐소드 반응,
으로 나뉘어 진다.
캐소드 반응은 마그네슘 표면에서도 일어날 수 있지만 촉매 전극과 접촉이 일어나면 촉매전극에서 우선적으로 일어나며 전체적으로 높은 반응속도를 가져온다. 촉매전극은 마그네슘에 비해 노블한 재료 즉 내식성이 더 높은 재료 즉 이온화 경향이 낮은 금속 중에서 수소 발생 과전압이 낮은 것으로 구성한다.
한편, 수소발생장치를 제시한 선행기술을 살펴보도록 한다.
일본특허 JP5610981에서는 밀폐된 용기 안에 철이나 니켈로써 만들어진 그물망에 마그네슘 금속 조각들을 넣어서 수소를 발생하는 기기를 제안하였다. 금속 그물망과 마그네슘 입자들의 접촉에 의 해 부식이 촉진되도록 하였다.
일본특허 JP2008/56551에서는 백금이 도금된 티타늄 그물망에 마그네슘 금속 조각들을 넣어서 수소를 발생하는 장치를 제안하였다. 백금이 도금된 망을 사용하면 촉매효과가 더 높아져서 속도의 상승 효과가 있다. 티타늄 금속망 위에 도금을 하였기 때문에 내식성과 내구성이 더 보장된다. 이 두 기술들은 고정된 금속망들을 사용하므로 반응이 고른 위치에서 일어나지 않으며 생성된 수산화마그네슘 입자들이 그물망에 들러붙어 반응성을 현저히 낮추게 되는 단점을 갖고 있다.
미국특허 US 2007/0237994에서는 마그네슘이나 아연, 알루미늄 분말을 넣은 밀폐 용기에 부식성 전해액을 넣어서 발생한 수소를 밖으로 뽑아내는 장치를 제안하였다. 부식성 전해액을 투입한 양에 따라 수소가 발생하는 이점은 있으나 분말을 밀폐한 용기를 취급하는 불편함과 전해액을 별도로 준비하여야 하는 단점이 있다. 또한, 알루미늄 분말은 반응속도가 높아 폭발의 가능성이 있으며 비산하는 분말이 배기 시스템에 손상을 가할 수가 있다.
일본특허 JP 2007/238383에서는 부식성이 있는 전해질이 채워진 용기에 알루미늄 입자들을 투입함으로써 발생한 수소를 뽑아내는 장치를 제안하였다. 알루미늄 입자들을 투입하는 경우 가스 밀폐 문제와. 과량의 알칼리 전해질이 구비되어야 하는 단점이 있다.
일본특허 JP 2003-221202에서는 촉매 금속 입자들이 박혀 있는 마그네슘 금속 덩어리를 전해액에 떨어뜨려 부식반응을 촉진시키는 방법을 제안하였다.
이 방법은, 전해액과 반응하여 수소를 발생하는 재료로서 유용하지만 귀금속 입자들을 포함하는 마그네슘 제품을 제조하는 것이 비용이 많이 들고 일반 마그네슘 합금재를 사용할 수 없다는 단점이 있다.
또한, 마그네슘 덩어리들을 수소 요구량에 따라 투입 속도를 조절해 주어야 하고 셀 내부에 마그네슘 덩어리들을 강제적으로 이동시켜야 하는 메카니즘이 구비되어야 하므로 구성이 복잡해지는 문제점을 지닌다.
미국특허 US 2008/0245673에서는 캐소드를 알루미늄으로 애노드를 마그네슘으로 연결한 전극쌍에 외부 전압을 걸어주어 수소발생속도를 촉진하는 방법을 제안하였다.
이 방법은, 속도를 증가시킬 수는 있으나 외부 전원을 사용하여 전압을 걸어주는 별도의 장치가 필요하다는 단점이 있다.
또한, 이러한 반응들에 의해 발생한 수소를 포집하기 위해서는 금속을 모두 안전한 용기 안에 넣어서 밀폐해야 한다. 그렇기 때문에 용기가 커지고 많은 양의 전해액이 필요하게 된다.
마그네슘을 사용할 때는 대략 마그네슘 무게의 1.5배의 물이 소요되지만 시스템으로부터 제거하기 위한 유동성을 가지기 위해서는 5배의 물이 소요된다. 또한 생성된 수산화마그네슘 슬러지를 지니고 다녀야 하는 부담이 있다. 해수를 사용할 수 있는 환경에서는 이러한 물의 부담을 가질 필요가 없기 때문에 마그네슘을 사용하는 장점이 극대화된다.
마그네슘을 사용하는 경우 판재나 분말을 사용할 수 있으며 이것은 밀폐된 용기 안에서의 반응에 의해 수소를 얻을 수 있다. 그렇지만 구조와 효율의 문제가 제기되며, 안전성 또한 고려해야 할 문제점이다.
전술한 선행특허는 본 발명이 속하는 기술분야의 배경기술을 의미하며, 종래 기술을 의미하는 것은 아니다.
따라서, 해수 혹은 염수를 사용하는 마그네슘 부식에 의한 수소발생장치를 개선할 필요성이 대두 되었다.
본 발명은 상기와 같은 문제점을 개선하기 위해 창출된 것으로서, 마그네슘 볼과 해수 또는 염수를 주입부를 통해 반응조로 공급하여 수소를 발생하고, 수소반응으로 생성된 수산화 마그네슘을 배출부로 배출하므로 고 에너지 밀도를 갖으며, 안전한 방법으로 다량의 수소를 얻을 수 있는 수소 발생 장치를 제공하는 것이 목적이다.
또한, 본 발명은 상기와 같은 문제점을 개선하기 위해 창출된 것으로서, 마그네슘 볼을 연속적으로 투입하여 연속적인 사용이 가능하며, 마그네슘 볼과 반응할 촉매들은 균일하고 충분한 공간을 갖도록 분포되므로 반응면적을 증가시키고 발생한 수산화 슬러지를 용이하게 제거할 수 있는 수소 발생 장치를 제공하는 것이 목적이다.
또한, 본 발명은 상기와 같은 문제점을 개선하기 위해 창출된 것으로서, 사용되는 촉매의 수명이 길지 않으므로 내부에서 교체가 용이하여야 하고, 발생된 수소로 인해 지나치게 높은 압력이 발생되지 않도록 수소의 발생을 간편하게 정지하거나 조절할 수 있도록 하는 수소 발생 장치를 제공하는 것이 목적이다.
상기한 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 수소 발생 장치는 전해액, 마그네슘 볼 및 스프링 촉매의 접촉으로 인한 부식반응으로 수소를 발생하고, 수산화마그네슘이 생성되는 반응조; 및 상기 반응조에서 발생된 수소를 배출하는 수소배출부를 포함하고, 상기 스프링 촉매는 상기 마그네슘 볼의 크기를 고려한 코일형 스프링으로 제작되어 빈 공간 형성과 변형 및 복원이 수월하여 마그네슘 볼의 수용과 접촉이 용이하고, 상기 수산화마그네슘 슬러지의 이동통로 역활을 하는 것을 특징으로 한다.
또한, 상기 마그네슘 볼은 0.5 ~ 20 mm 범위의 직경을 갖고, 마그네슘 혹은 마그네슘 합금인 것을 특징으로 한다.
또한, 상기 반응조의 외부에는 상기 반응조 내부로 상기 전해액과 상기 마그네슘 볼을 공급하는 주입부; 상기 반응조 내의 수산화마그네슘과 사용된 전해액을 외부로 배출하는 배출부; 및 상기 반응조 내의 전해액의 수위를 조절하여 수소 발생속도를 조절하는 조절부를 포함하는 것을 특징으로 한다.
또한, 상기 주입부는 상기 반응조의 일측에 연결되어 전해액을 공급하는 주입관; 상기 주입관에서 분기되는 분기관; 상기 분기관의 단부에 연결되어 마그네슘 볼을 투입하는 호퍼; 및 상기 주입관과 상기 분기관의 연결지점에 구비되어 전해액과 마그네슘 볼을 선택 공급하는 삼방밸브를 포함하는 것을 특징으로 한다.
또한, 상기 호퍼는 상기 반응조의 높이보다 더 높은 위치에 형성되는 것을 특징으로 한다.
또한, 상기 주입관의 전해액 공급압력은 상기 반응조의 내부 압력보다 높고, 상기 호퍼의 위치로 인한 압력보다 낮은 압력을 유지함으로써, 상기 반응조 내의 수소의 역류와 전해액이 상기 호퍼의 외측으로 배출되는 것을 방지하고, 상기 분기관에 전해액이 채워지게 하여 상기 호퍼에 마그네슘 볼 투입시, 공기가 호퍼 방향으로 배출되게 하여 상기 반응조 내에 공기가 혼입되는 것을 방지하는 것을 특징으로 한다.
또한, 상기 주입관과 상기 분기관의 내벽면에는 상기 마그네슘 볼과 전해액이 머무르거나 이동시, 수산화마그네슘이 발생하여 관로를 차단하는 것을 방지하기 위해 테플론 혹은 불소수지의 절연 코팅층이 형성된 것을 특징으로 한다.
또한, 상기 조절부는 상기 주입부에 연결되어 전해액을 공급하는 주입펌프; 상기 배출부에 연결되어 수산화마그네슘과 사용된 전해액을 배출하는 배출펌프; 및 상기 주입펌프와 상기 배출펌프를 상호 연동하여 반응조의 수위를 제어하여 수소발생을 조절하는 제어부를 포함하는 것을 특징으로 한다.
또한, 상기 반응조의 내부에는 금속 그물망, 섬유 그물망 및 다공성 금속용기 중에 선택된 어느 하나인 필터용기가 구비되고, 상기 필터용기의 개방 공간 간격은 0.01 ~ 3mm 이하의 범위를 갖는 것을 특징으로 한다.
또한, 상기 필터용기 내에는 상기 마그네슘 볼이 공급되기 전에 상기 스프링 촉매가 미리 채워져 있는 것을 특징으로 한다.
또한, 상기 스프링 촉매는, 철, 니켈, 인코넬, 구리, 황동, 청동, 티타늄 중에 선택된 어느 하나의 금속 또는 이 금속을 포함하는 금속합금의 선(wire)에 니켈, 은, 금, 팔라듐, 로듐, 백금 또는 백금족 금속 중에 선택된 적어도 어느 하나의 금속을 도금하는 것을 특징으로 한다.
또한, 상기 스프링 촉매의 코일 직경은 5 ~ 30 mm, 선경은 0.3 ~ 3 mm, 피치 간격은 1 ~ 10 mm, 길이는 10 ~ 100 mm 범위를 갖는 것을 특징으로 한다. 스프링 촉매는 이 범위 안에서 변형된 것이나 테이퍼진 형태를 모두 포함한다. 단지 가장 테이퍼 없는 일반적인 원형의 형태가 제작상 편리하고 저렴하기 때문에 양산시 더 유리하다.
또한, 상기 반응조의 상부에는 수소가스와 전해액과 분리를 하기 위한 가스필터가 내재한 것을 특징으로 한다.
또한, 상기 가스필터는 물이 스며들지 않게 하고 전해액에서 수소가스만 걸러서 상부로 배출되도록 소수성 처리가 된 다공성 천, 혹은 불소수지 섬유로 짠 필터, 또는 다공성 테플론 멤브레인 중에 어느 하나인 것을 특징으로 한다.
또한, 상기 반응조 내부에 수소 발생압력에 따라 상,하측으로 승강 가능한 내부실린더를 구비하여 상기 내부실린더에 보관된 마그네슘 볼과 스프링 촉매가 전해액과의 접촉을 서서히 줄여주거나 늘려주어 수소 발생속도를 조절하도록 구성된 것을 특징으로 한다.
또한, 상기 전해액은 해수 또는 염수인 것을 특징으로 한다.
이상에서 설명한 바와 같이, 본 발명에 따른 수소 발생 장치는 마그네슘 볼과 해수 또는 염수를 주입부를 통해 반응조로 공급하여 수소를 발생하고, 수소반응으로 생성된 수산화 마그네슘을 배출부로 배출하므로 고 에너지 밀도를 갖으며, 안전한 방법으로 다량의 수소를 얻을 수 있다.
또한, 본 발명에 따른 수소 발생 장치는 마그네슘 볼을 연속적으로 투입하여 연속적인 사용이 가능하며, 마그네슘 볼과 반응할 촉매들은 균일하고 충분한 공간을 갖도록 분포되므로 반응면적을 증가시키고 발생한 수산화 슬러지를 용이하게 배출하여 제거할 수 있다.
또한, 본 발명에 따른 수소 발생 장치는 사용되는 촉매의 수명이 길지 않으므로 내부에서 교체가 용이하여야 하고, 발생된 수소로 인해 지나치게 높은 압력이 발생되지 않도록 수소의 발생을 간편하게 정지하거나 조절하므로 사용상의 편리함을 제공할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 수소 발생 장치의 일부 절개 사시도.
도 2는 본 발명의 일 실시 예에 따른 수소 발생 장치의 전체 구성 단면도.
도 3은 도 2에서 본 발명의 일 실시예에 따른 수소 배출 구성의 확대도.
도 4는 도 3에서 본 발명의 일 실시예에 따른 주입구의 확대도.
도 5는 본 발명의 일 실시 예에 따른 수소 발생 장치에서 스프링 촉매와 마그네슘 볼이 접촉되어 수소가 발생되는 상태를 보인 도면.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예에 따른 수소 발생 장치를 설명하도록 한다.
이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 일 실시 예에 따른 수소 발생 장치의 일부 절개 사시도이고, 도 2는 본 발명의 일 실시 예에 따른 수소 발생 장치의 전체 구성 단면도이며, 도 3은 도 2에서 본 발명의 일 실시예에 따른 수소 배출 구성의 확대도이고, 도 4는 도 3에서 본 발명의 일 실시예에 따른 주입구의 확대도이며, 도 5는 본 발명의 일 실시 예에 따른 수소 발생 장치에서 스프링 촉매와 마그네슘 볼이 접촉되어 수소가 발생되는 상태를 보인 도면이다.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 수소 발생 장치는, 전해액, 마그네슘 볼(2) 및 스프링 촉매(4)의 접촉으로 인한 부식반응으로 수소를 발생하고, 부식생성물인 수산화마그네슘이 생성되는 반응조(10) 및 반응조(10)에서 발생된 수소를 배출하는 수소배출부(20)를 포함한다.
스프링 촉매(4)는 마그네슘 볼(2)의 크기를 고려한 스프링 코일형으로 제작되어 빈 공간 형성과 변형 및 복원이 수월하여 마그네슘 볼(2)의 수용과 접촉이 용이하고, 수산화마그네슘 슬러지의 이동통로 역활을 하도록 구성된다.
전해액은 해수(海水) 또는 염수를 사용한다.
마그네슘 볼(2)은 0.5 ~ 20 mm 범위의 직경을 갖고, 마그네슘 혹은 마그네슘 합금으로 제조된다. 특히, 2 ~ 10 mm 범위를 갖는 것이 가장 바람직하다.
마그네슘 볼(2)은 반응조(2) 내에 외부에서 공급하거나 내부에 미리 저장되어 사용될 수 있으며, 마그네슘 볼(2) 사이의 공간으로 진입되도록 다양한 크기로 제작된다.
마그네슘 볼(2)은 그 형상이 구에 가까워 흐름성이 좋으므로 장치나 배관 내부에서 용이하게 이동할 수 있다.
마그네슘 볼(2)은 마그네슘 고순도 즉 99% 이상의 것으로서, 다량으로 생산되고 그 형상은 구에 가까워 흐름성이 좋으므로 장치나 배관 내부를 이동하게 할 수 있다.
마그네슘 볼(2)은 반응조(10) 내부로 투입되면 부식이 진행되면서 크기가 점점 작아지게 되고 아주 작은 크기가 되면 자체적으로 부식이 충분히 진행되기 때문에 굳이 스프링 촉매(4)와의 접촉이 없어도 부식 반응을 종결할 수 있게 된다.
한편, 반응조(10)의 외부에는 반응조(10) 내부로 전해액과 마그네슘 볼(2)을 공급하는 주입부(30)를 구비한다.
주입부(30)는 반응조(10)의 일측에 연결되어 전해액을 공급하는 주입관(32), 주입관(32)에서 분기되는 분기관(34), 분기관(34)의 단부에 연결되어 마그네슘 볼(2)을 투입하는 호퍼(36) 및 주입관(32)과 분기관(34)의 연결지점에 구비되어 전해액과 마그네슘 볼(2)을 선택 공급하는 삼방밸브(38)를 포함한다.
호퍼(36)는 반응조(10)의 높이보다 더 높은 위치에 형성된다.
주입관(32)의 전해액 공급압력은 반응조(10)의 내부 압력보다 높고, 호퍼(36) 위치(높이)로 인한 압력보다 낮은 압력을 유지함으로써, 반응조(10) 내의 수소의 역류와 전해액이 호퍼(36)의 외측으로 배출되는 것을 방지하고, 분기관(34)에 전해액이 채워지게 하여 호퍼(36)에 마그네슘 볼(2) 투입시, 공기가 호퍼(36) 의 상측 방향으로 배출되게 하여 반응조(10) 내에 공기가 혼입되는 것을 방지하도록 구성된다.
이때, 주입관(36)을 통해 전해액을 반응조(10)로 주입하지 않을 경우에는 삼방밸브(38)를 차단함으로써, 주입관(32)의 전해액 공급압력을 높게 유지하여 수소 의 역류와, 분기관(34)과 호퍼(36)를 통해 수소가 상부로 배출되는 것을 방지할 수 있다.
주입관(32)과 분기관(34)의 내벽면에는 마그네슘 볼(2)과 전해액이 머무르거나 이동시, 수산화마그네슘가 발생하여 관로를 차단하는 것을 방지하기 위해 테플론 혹은 불소수지의 절연 코팅층(35)이 형성된다.
비중이 1.8 밖에 되지 않은 마그네슘 볼(2)은 전해액인 해수의 흐름에 쉽게 이동할 수 있으므로 전해액과 함께 주입됨으로서 보다 편리한 장입을 할 수 있게 된다. 종래와 달리 스크류나 기타이동수단을 사용하지 않아도 되므로 종래기술보다 월등한 장점을 지닌다.
반응조(10)의 외부에는 반응조(10) 내의 부식생성물인 수산화마그네슘 슬러지와 사용된 전해액을 외부로 배출하는 배출부(40)를 구비한다.
배출부(40)는 반응조(10)의 하단 일측에 연결되어 부식반응으로 발생된 수산화마그네슘 슬러지와 부식반응으로 사용된 전해액을 배출하는 배출관이다.
반응조(10)의 외부에는 반응조(10) 내의 전해액의 수위를 조절하여 수소 발생속도를 조절하는 조절부(50)를 구비한다.
조절부(50)는 주입부(30)의 주입관(32)에 연결되어 전해액을 공급하는 주입펌프(52), 배출부(40)에 연결되어 수산화마그네슘과 사용된 전해액을 배출하는 배출펌프(54) 및 주입펌프(52)와 배출펌프(54)를 상호 연동하여 반응조(10)의 수위를 제어하여 수소발생을 조절하는 제어부(56)를 포함한다.
예를 들어, 반응조(10) 내에서 수소가 발생이 많아지거나 수소발생을 조절하고자 하는 경우, 주입펌프(52)의 전해액 공급속도를 조절하고, 배출펌프(54)를 가동하여 반응조(10) 내측의 전해액 수위를 조절함으로써 마그네슘 볼(2) 및 스프링 촉매(4)가 전해액과, 접촉되는 면적을 줄여주어 수소의 발생을 조절할 수 있고, 반응조 (10) 내에 전해액을 모두 제거하면, 수소는 반응조(10) 내에서 더 이상 발생되지 않는다.
반응조(10)의 내부에는 금속 그물망, 섬유 그물망 및 다공성 금속용기 중에 선택된 어느 하나인 필터용기(12)가 구비된다.
필터용기(12) 내에는 마그네슘 볼(2)이 외부에서 공급되기 전에 스프링 촉매(4)가 미리 채워져 있다. 물론, 주입부(30)를 통하여 스프링 촉매(4)를 공급시킬 수도 있다.
필터용기(12)는 상측이 개방되게 형성되어 스프링 촉매(4)와 주입부(30)로 주입되는 마그네슘 볼(2)을 저장한다.
마그네슘 볼(2)은 전해액과 접촉되면, 부식반응에 의하여 점차적으로 수소를 발생하면서 수산화마그네슘으로 슬러지화 되어 필터용기(12)의 개방 공간 사이로 배출되어 배출부(40)를 통하여 외부에 배출된다.
그러나, 스프링 촉매(4)는 마그네슘 볼(2)과 전해액 사이에서 서로 부식이 잘 이루어지도록 도와주는 촉매 역활은 하지만, 자체적으로 작아지지 않으므로 필터 용기(12)의 개방 공간 사이로 배출되지 않는다.
따라서, 대략 1년 정도의 장시간 사용 후에 반응조(10)를 분리하여 도금층이 손상되어 촉매작용이 저하된 스프링 촉매(12)를 교환하도록 한다.
필터용기(12)의 개방 공간 간격은 0.01 ~ 2mm 범위를 갖는다.
수산화마그네슘은 전해액이 해수인 경우, 해수와 같은 중성용액 내에서는 용해도가 높으므로 지속적인 해수의 유입에 의해 용해되어 밖으로 배출할 수가 있다.
즉, 필터 용기(12)는 여과 크기가 0.01 ~ 2mm 범위이므로 굵은 마그네슘 볼(2) 들이나 스프링 촉매(4)가 밖으로 배출되지 않도록 함과 동시에 수산화마그네슘 슬러지는 사용된 전해액과 함께 외부로 용이하게 배출시키는 것이다.
스프링 촉매(4)는 철, 니켈, 인코넬, 구리, 황동, 청동, 티타늄 중에 선택된 어느 하나의 금속 또는 이 금속을 포함하는 금속합금의 선(wire)에 니켈, 은, 금, 팔라듐, 로듐, 백금 또는 백금족 금속 중에 선택된 적어도 어느 하나의 금속을 도금하여 형성된다.
스프링 촉매(4)의 코일 직경은 5 ~ 30 mm, 선경은 0.3 ~ 3 mm, 피치 간격은 1 ~ 10 mm, 길이는 10 ~ 100 mm 범위를 갖는다. 스프링 촉매는 이 범위 안에서 변형된 것이나 테이퍼진 형태를 모두 포함한다. 단지 가장 테이퍼 없는 일반적인 원형의 형태가 제작상 편리하고 저렴하기 때문에 양산시 더 유리하다.
도 5에 도시된 바와 같이, 투입되는 마그네슘 볼(2)의 크기가 작을수록 스프링 촉매(4)의 크기도 작아야 하고, 스프링 촉매(4)의 길이가 너무 길면 서로 엉키게 되어 유동성이 줄어들게 된다.
스프링 코일 형상의 스프링 촉매(4)의 장점은 빈공간을 많이 확보하여 마그네슘 볼(2)들이 스프링 촉매(4)의 중심 공간 내측으로 끼어 들어오기 쉽게 하면서도 자신이 차지하는 공간은 작다는 것이며, 변형과 복원이 수월하여 다양한 크기의 마그네슘 볼들을 끼워 넣고 수산화마그네슘 슬러지들의 이동통로를 열어 줄 수 있는 점이다.
스프링 촉매(4)는 코일 형상으로 형성됨으로 인해 마그네슘 볼(2)이 균등하게 섞이고 이동하도록 하여 접촉면적을 크게 함으로써 높은 수소 발생 속도를 보이고 노화된 스프링 촉매(4)들을 교체하기 쉽게 하는 효과를 지닌다.
반응조(10) 안에는 고르게 분포하는 스프링 촉매(4)로 채워져 있으며 이 스프링 촉매(4)의 내부, 옆의 빈 공간에 마그네슘 볼(4)들이 쉽게 삽입되도록 한다. 스프링 촉매(4)는 탄력과 복원력이 우수한 소재로 제작하여 마그네슘 볼(2)들을 주입할 때 공간을 형성하여 수용한다.
수소 가스의 발생으로 인한 진동은 스프링 촉매(4)로 하여금 지속적인 진동을 하게 하여 변형, 복원되면서 마그네슘 볼(2)의 표면에서 발생한 부식 생성물인 수산화마그네슘 슬러지에 부딪혀 제거하는 역할을 한다.
즉, 부식반응에 의해 발생한 수소가스 기포는 작은 크기지만 여러 입자들과 서로 충돌하면서 성장하여 큰 기포가 되어 위로 상승하고, 기포 상승에 의해 스프링 촉매(4)과 마그네슘 볼(2)은 요동하면서 아래로 더 충진되고, 마그네슘 볼(2)의 추가 투입시에도 내부에 골고루 위치하게 하는 역할을 한다.
전해액이 염수나 해수인 경우, 스프링 촉매(4)의 수명이 길지 않으며 특히 도금층이 있는 경우, 더 그러하므로 일정기간이 되면 새 스프링 촉매(4)들로 교체를 해 주어야 한다. 짧은 스프링 촉매(4)는 쉽게 교체할 수 있다. 따라서 촉매의 형상으로서는 스프링 형상이 가장 이상적이다.
반응조(10)의 상부에는 수소가스와 전해액과 분리를 하기 위한 가스필터(14)가 내재 된다.
가스필터(12)는 물이 스며들지 않게 하고 전해액에서 수소가스만 걸러서 상부로 배출되도록 소수성 처리가 된 다공성 천, 혹은 테플론과 같은 불소수지 섬유로 짠 필터, 또는 다공성 테플론 멤브레인 중에 어느 하나를 선택하여 사용한다.
반응조(10) 내에서 발생한 수소가스는 수소배출부(20)를 통해 상부로 배출되지만 수소를 소모하지 않고 차단하면, 반응조(10) 내부에 수소 가스가 차게 되어 수소 환원분위기 상태에 존재하는 마그네슘 볼(2)이 더 이상 부식반응을 하지 않으므로 추가적인 수소가 발생하지 않게 된다.
이때, 반응조(10) 내에 수소를 채우는 경우, 반응조(1) 내부에서 공간을 차지하는 전해액의 공급을 차단하고 배출하여 공간을 확보해야 하므로 조절부(50)인 주입펌프(52)의 가동을 정지하여 전해액 공급을 차단하고, 배출펌프(54)에서 반응조(10) 내에 있는 전해액을 배출하므로 수위를 낮추어서 수소를 채울 수 있고, 전해액이 없어지므로 인해 수소는 더 이상 발생하지 않게 된다.
한편, 본 발명의 일 실시예에서는 반응조(10) 내에 스프링 촉매(4)은 미리 채우고, 전해액과 마그네슘 볼(2)은 주입부(30)를 외부에서 공급하는 상태를 설명하였으나, 필요에 따라서 본 발명의 다른 실시예에서는 반응조(10) 내에 마그네슘 볼(2)과 스프링 촉매(4)를 미리 채우고 전해액만 외부에서 공급하거나, 반응조 (10) 내에 전해액과 스프링 촉매(4)을 미리 채우고, 마그네슘 볼(2)을 반응조(10) 뚜껑을 열고 공급하여 수소를 발생하도록 구성할 수 있다.
즉, 다른 실시예로서, 반응조(10)를 소형으로 제작하는 경우, 도면에 도시하지는 않았지만, 반응조(10) 내부에 수소 발생압력에 따라 상측으로 승강 가능한 내부실린더(미도시)를 구비하여 내부실린더에 보관된 마그네슘 볼(2)과 스프링 촉매(4)가 반응조에 저장된 전해액과의 접촉을 서서히 줄여주어 수소 발생속도를 조절하도록 구성할 수도 있다.
이때, 반응조에서 내부실린더가 최대한 상승하는 경우, 마그네슘 볼(2)과 스프링 촉매(4)가 전해액과 접촉되지 않으므로 수소 발생이 자동 정지되고, 수소가 소모되어지면 내부실린더가 하강하여 다시 마그네슘 볼(2)과 스프링 촉매(4)가 전해액에 접촉되어 부식 반응을 통해 수소를 다시 발생한다.
즉, 내부실린더의 승강에 따라 수소 발생량을 자동조절시킬 수 있는 것이다.
이하, 첨부도면을 참조하여 본 발명의 일 실시예에 따른 수소 발생 장치의 작용을 살펴보도록 한다.
우선, 반응조(10) 내의 필터용기(12)에 다수의 스프링 촉매(4)를 미리 채운다.
그리고, 다양한 크기를 갖는 마그네슘 볼(2)을 주입부(30)의 호퍼(36)를 통해 투입하여 분기관(34)을 거쳐 개방된 삼방밸브(38)을 거쳐 주입관(32)에서 주입되는 전해액과 함께, 이동하여 반응조(10) 내부로 공급된다.
연이어, 반응조(10) 내부로 공급되는 마그네슘 볼(2)은 필터용기(12)에 담겨지면서 내부에 미리 있던 스프링 촉매(4)와 전해액과 부식반응을 일으켜 수소를 발생한다.
발생된 수소가스 기포는 작은 크기였다가 상측으로 이동하면서, 서로 충돌하면서 점차적으로 크기가 큰 기포가 되고, 이 큰 기포는 스프링 촉매(4)에 부딪쳐서 진동을 발생하여 변형 및 복원되는 과정을 반복적으로 거치면서 부식반응을 활성화 시키므로 일정 시간이 지나도 수소 발생 효과가 지속적으로 유지되게 해준다.
한편, 반응이 진행됨에 따라 마그네슘 볼(2)의 표면에는 수산화마그네슘이 발생되어 부유하게 되고, 진동하는 스프링 촉매(4)에 부딪치면서 수산화마그네슘 슬러지의 분리를 촉진하고, 발생된 수산화마그네슘 슬러지가 스프링 촉매(4)의 코일 공간 사이로 이동하여 배출이 용이하게 된다.
그리고, 발생된 수소는 상측으로 이동하여 가스필터(14)에서 전해액의 수분과 분리되어 수소배출부(20) 관로를 통해 외부에 필요 사용처로 공급된다.
그리고, 수산화마그네슘 슬러지와 사용된 전해액은 조절부(50)인 배출펌프(54)를 펌핑작동으로 배출부(40) 관로를 통해 이동하여 외부로 버려진다.
한편, 조절부(50)인 주입펌프(52)와 배출펌프(54)는 제어부(56)의 연동 제어작동에 의해 반응조(10) 내부에서 전해액의 수위를 조절하여 마그네슘 볼(2) 및 스프링 촉매(4)와 전해액의 접촉면적을 조절함으로써, 수소발생량을 조절할 수 있다.
본 발명에 따른 수소 발생 장치를 사용하면, 안전한 방법으로 다량의 수소를 얻을 수가 있으며, 예를 들어, 마그네슘 볼(2) 12 그램이 수소 1그램을 얻게 하므로 높은 에너지 밀도의 수소발생장치를 실현할 수 있으며, 이는 현재 실현한 수소 저장 물질들 중 효율이 높은 편에 속한다.
따라서 해저용 수소연료전지의 수소 공급 매체로서 공간확보가 중요한 잠수정과 같은 종류들에 대해서는 마그네슘은 가장 우월한 선택이라고 할 수 있다.
종래의 고압가스 충진 장비들을 동원할 필요 없이, 이 경우는 마그네슘 볼(2)을 투입하면 수소가 발생되므로 편리성과 안전성을 가진다. 마그네슘 볼(2)이 다 소진되면 언제고 새로운 마그네슘 볼(2)들을 재투입하여 수소를 생산할 수 있으며 그 과정도 단순하고 안전하므로 잠수함 등의 해저 운송수단의 연료로서 유리하다.
물론, 본 발명의 수소발생장치는 연료전지 자동차, 무인 병기 등의 보조전원으로 뿐만 아니라 기타 수소를 필요로 하는 다양한 기계 및 장치의 보조전원으로 적용하는 것이 가능하다.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.
따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.

Claims (16)

  1. 전해액, 마그네슘 볼 및 스프링 촉매의 접촉으로 인한 부식반응으로 수소를 발생하고, 수산화마그네슘이 생성되는 반응조; 및
    상기 반응조에서 발생된 수소를 배출하는 수소배출부를 포함하고,
    상기 스프링 촉매는 상기 마그네슘 볼의 크기를 고려한 코일형 스프링으로 제작되어 빈 공간 형성과 변형 및 복원이 수월하여 마그네슘 볼의 수용과 접촉이 용이하고, 상기 수산화마그네슘 슬러지의 이동통로 역활을 하는 것을 특징으로 하는 수소 발생 장치.
  2. 제 1 항에 있어서,
    상기 마그네슘 볼은 0.5 ~ 20 mm 범위의 직경을 갖고, 마그네슘 혹은 마그네슘 합금인 것을 특징으로 하는 수소 발생 장치.
  3. 제 1 항에 있어서,
    상기 반응조의 외부에는 상기 반응조 내부로 상기 전해액과 상기 마그네슘 볼을 공급하는 주입부;
    상기 반응조 내의 수산화마그네슘과 사용된 전해액을 외부로 배출하는 배출부; 및
    상기 반응조 내의 전해액의 수위를 조절하여 수소 발생속도를 조절하는 조절부를 포함하는 것을 특징으로 하는 수소 발생 장치.
  4. 제 3 항에 있어서, 상기 주입부는
    상기 반응조의 일측에 연결되어 전해액을 공급하는 주입관;
    상기 주입관에서 분기되는 분기관;
    상기 분기관의 단부에 연결되어 마그네슘 볼을 투입하는 호퍼; 및
    상기 주입관과 상기 분기관의 연결지점에 구비되어 전해액과 마그네슘 볼을 선택 공급하는 삼방밸브를 포함하는 것을 특징으로 하는 수소 발생 장치.
  5. 제 4 항에 있어서,
    상기 호퍼는 상기 반응조의 높이보다 더 높은 위치에 형성되는 것을 특징으로 하는 수소 발생 장치.
  6. 제 4 항에 있어서,
    상기 주입관의 전해액 공급압력은 상기 반응조의 내부 압력보다 높고, 상기 호퍼의 위치로 인한 압력보다 낮은 압력을 유지함으로써, 상기 반응조 내의 수소의 역류와 전해액이 상기 호퍼의 외측으로 배출되는 것을 방지하고, 상기 분기관에 전해액이 채워지게 하여 상기 호퍼에 마그네슘 볼 투입시, 공기가 호퍼 방향으로 배출되게 하여 상기 반응조 내에 공기가 혼입되는 것을 방지하는 것을 특징으로 하는 수소 발생장치.
  7. 제 4 항에 있어서,
    상기 주입관과 상기 분기관의 내벽면에는 상기 마그네슘 볼과 전해액이 머무르거나 이동시, 수산화마그네슘이 발생하여 관로를 차단하는 것을 방지하기 위해 테플론 혹은 불소수지의 절연 코팅층이 형성된 것을 특징으로 하는 수소 발생 장치.
  8. 제 3 항에 있어서, 상기 조절부는
    상기 주입부에 연결되어 전해액을 공급하는 주입펌프;
    상기 배출부에 연결되어 수산화마그네슘과 사용된 전해액을 배출하는 배출펌프; 및
    상기 주입펌프와 상기 배출펌프를 상호 연동하여 반응조의 수위를 제어하여 수소발생을 조절하는 제어부를 포함하는 것을 특징으로 하는 수소 발생장치.
  9. 제 1 항에 있어서,
    상기 반응조의 내부에는 금속 그물망, 섬유 그물망 및 다공성 금속용기 중에 선택된 어느 하나인 필터용기가 구비되고,
    상기 필터용기의 개방 공간 간격은 0.01 ~ 3mm 이하의 범위를 갖는 것을 특징으로 하는 수소 발생 장치.
  10. 제 9 항에 있어서,
    상기 필터용기 내에는 상기 마그네슘 볼이 공급되기 전에 상기 스프링 촉매가 미리 채워져 있는 것을 특징으로 하는 수소 발생장치.
  11. 제 1 항에 있어서,
    상기 스프링 촉매는, 철, 니켈, 인코넬, 구리, 황동, 청동, 티타늄 중에 선택된 어느 하나의 금속 또는 이 금속을 포함하는 금속합금의 선(wire)에 니켈, 은, 금, 팔라듐, 로듐, 백금 또는 백금족 금속 중에 선택된 적어도 어느 하나의 금속을 도금하는 것을 특징으로 하는 수소 발생 장치.
  12. 제 1 항에 있어서,
    상기 스프링 촉매의 코일 직경은 5 ~ 30 mm, 선경은 0.3 ~ 3 mm, 피치 간격은 1 ~ 10 mm, 길이는 10 ~ 100 mm 범위를 갖는 것을 특징으로 하는 수소 발생 장치.
  13. 제 1 항에 있어서,
    상기 반응조의 상부에는 수소가스와 전해액과 분리를 하기 위한 가스필터가 내재한 것을 특징으로 하는 수소 발생 장치.
  14. 제 13 항에 있어서,
    상기 가스필터는 물이 스며들지 않게 하고 전해액에서 수소가스만 걸러서 상부로 배출되도록 소수성 처리가 된 다공성 천, 혹은 불소수지 섬유로 짠 필터, 또는 다공성 테플론 멤브레인 중에 어느 하나인 것을 특징으로 하는 수소 발생 장치.
  15. 제 1 항에 있어서,
    상기 반응조 내부에 수소 발생압력에 따라 상,하측으로 승강 가능한 내부실린더를 구비하여 상기 내부실린더에 보관된 마그네슘 볼과 스프링 촉매가 전해액과의 접촉을 서서히 줄여주거나 늘려주어 수소 발생속도를 조절하도록 구성된 것을 특징으로 하는 수소 발생 장치.
  16. 제 1 항 내지 제 14 항 중 어느 한 항에 있어서,
    상기 전해액은 해수 또는 염수인 것을 특징으로 하는 수소 발생 장치.
PCT/KR2011/001244 2010-06-18 2011-02-23 수소 발생 장치 WO2011159011A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0058249 2010-06-18
KR1020100058249A KR101023411B1 (ko) 2010-06-18 2010-06-18 수소 발생 장치

Publications (1)

Publication Number Publication Date
WO2011159011A1 true WO2011159011A1 (ko) 2011-12-22

Family

ID=43939147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001244 WO2011159011A1 (ko) 2010-06-18 2011-02-23 수소 발생 장치

Country Status (2)

Country Link
KR (1) KR101023411B1 (ko)
WO (1) WO2011159011A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014158202A1 (en) * 2013-03-14 2014-10-02 Sanko Tekstil Isletmeleri Sanayi Ve Ticaret A.S. Active volume energy level large scale sub-sea energy fluids storage methods and apparatus for power generation and integration of renewable energy sources

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063852B (zh) * 2020-09-14 2022-07-05 湘潭云萃环保技术有限公司 一种含铜污泥中回收贵金属的设备
KR102443878B1 (ko) * 2020-12-14 2022-09-16 재단법인대구경북과학기술원 수소 발생 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340580A (en) * 1978-11-13 1982-07-20 Masahiro Suzuki Method of producing hydrogen
US20020048548A1 (en) * 2000-08-14 2002-04-25 Chaklader Asoke Chandra Das Hydrogen generation from water split reaction
JP2003313001A (ja) * 2002-02-22 2003-11-06 Iwatani Internatl Corp 水素発生方法及び水素発生装置
JP2008056551A (ja) * 2006-08-29 2008-03-13 Liangfeng Plastic Machinery Co マグネシウムの廃棄材料で水素を産出する方法及びその設備
US7648540B2 (en) * 2003-01-20 2010-01-19 Vellore Institute Of Technology System for production of hydrogen with metal hydride and a method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340580A (en) * 1978-11-13 1982-07-20 Masahiro Suzuki Method of producing hydrogen
US20020048548A1 (en) * 2000-08-14 2002-04-25 Chaklader Asoke Chandra Das Hydrogen generation from water split reaction
JP2003313001A (ja) * 2002-02-22 2003-11-06 Iwatani Internatl Corp 水素発生方法及び水素発生装置
US7648540B2 (en) * 2003-01-20 2010-01-19 Vellore Institute Of Technology System for production of hydrogen with metal hydride and a method
JP2008056551A (ja) * 2006-08-29 2008-03-13 Liangfeng Plastic Machinery Co マグネシウムの廃棄材料で水素を産出する方法及びその設備

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014158202A1 (en) * 2013-03-14 2014-10-02 Sanko Tekstil Isletmeleri Sanayi Ve Ticaret A.S. Active volume energy level large scale sub-sea energy fluids storage methods and apparatus for power generation and integration of renewable energy sources
US9045209B2 (en) 2013-03-14 2015-06-02 Sanko Tekstil Isletmeleri Sanayi Ve Ticaret A.S. Active volume energy level large scale sub-sea energy fluids storage methods and apparatus for power generation and integration of renewable energy sources

Also Published As

Publication number Publication date
KR101023411B1 (ko) 2011-03-25

Similar Documents

Publication Publication Date Title
KR100593790B1 (ko) LiCl-Li₂O 용융염계를 이용하여 산화물핵연료로부터 핵연료 금속을 제조하는 방법, 상기 방법을구현하기 위한 환원전극, 및 상기 환원전극을 포함하는환원장치
US7691527B2 (en) Method and apparatus for generating hydrogen
US7198867B2 (en) Electrochemical generation, storage and reaction of hydrogen and oxygen
US20050016840A1 (en) Method and apparatus for generating hydrogen
US6770186B2 (en) Rechargeable hydrogen-fueled motor vehicle
CN1163637C (zh) 稀土类金属的制法
WO2011159011A1 (ko) 수소 발생 장치
EP2929586B1 (en) Anaerobic aluminum-water electrochemical cell
CN102367577B (zh) 制备Na2[Pb(OH)4]溶液和从含铅废料中回收铅的方法
CN101103140A (zh) 制备氢方法和装置
US3294586A (en) Fuel cell with movable casing and electrodes and method for operating fuel cell withan anode containing an alkaline earth metal
KR102101259B1 (ko) 금속산화물의 전해환원장치 및 이를 이용한 금속산화물의 전해환원방법
JP2015103430A (ja) 金属空気電池
JP2009252433A (ja) 制御弁式鉛蓄電池の製造方法および製造装置
KR102182475B1 (ko) 전해환원 장치 및 전해환원 방법
CN1257315C (zh) 水浸式高效电解池及氢气制取方法
JPS61253391A (ja) プラセオジム−鉄若しくはプラセオジム−ネオジム−鉄合金の製造方法並びにその製造装置
CN109975706A (zh) 一种氧还原阴极寿命的测试方法
KR102094481B1 (ko) 사용후핵연료 환원방법 및 환원장치
CN213203223U (zh) 一种车载制氢装置
WO2023206323A1 (zh) 一种水下作业设备
US20230126106A1 (en) Electrolyzer for spontaneously generating hydrogen and a method for implementing same
CN113668016B (zh) 一种固相电解还原回收金属铅的方法和一种带有压滤式板框的电解槽
KR20200001417A (ko) 염 유동식 사용후핵연료 환원 방법 및 환원 시스템
JP3921300B2 (ja) 水素発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795877

Country of ref document: EP

Kind code of ref document: A1