WO2011158845A1 - 誘導多能性幹細胞の製造方法、及びその製造方法により得られる誘導多能性幹細胞 - Google Patents

誘導多能性幹細胞の製造方法、及びその製造方法により得られる誘導多能性幹細胞 Download PDF

Info

Publication number
WO2011158845A1
WO2011158845A1 PCT/JP2011/063632 JP2011063632W WO2011158845A1 WO 2011158845 A1 WO2011158845 A1 WO 2011158845A1 JP 2011063632 W JP2011063632 W JP 2011063632W WO 2011158845 A1 WO2011158845 A1 WO 2011158845A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
pluripotent stem
induced pluripotent
producing
pulse power
Prior art date
Application number
PCT/JP2011/063632
Other languages
English (en)
French (fr)
Inventor
秋山 秀典
絵吏 白石
健 北野
Original Assignee
国立大学法人 熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 熊本大学 filed Critical 国立大学法人 熊本大学
Priority to JP2012520464A priority Critical patent/JPWO2011158845A1/ja
Publication of WO2011158845A1 publication Critical patent/WO2011158845A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2529/00Culture process characterised by the use of electromagnetic stimulation

Definitions

  • the present invention relates to a method for producing induced pluripotent stem cells by applying pulse power to somatic cells or fertilized eggs, and induced pluripotent stem cells obtained by the method.
  • the present invention also relates to a method for producing Nanog gene-expressing cells by applying pulse power to somatic cells or fertilized eggs, and Nanog gene-expressing cells obtained by the method.
  • Induced pluripotent stem cells are cells that have the pluripotency that can differentiate into many cells, such as embryonic stem cells, and the ability to self-replicate while maintaining pluripotency.
  • Induced pluripotent stem cells were prepared by a group of Prof. Shinya Yamanaka from Kyoto University, a group of Rudolf Jaenisch et al. At Massachusetts Institute of Technology, a group of James Thomson et al. At University of Wisconsin, Harvard University Several groups have been successful, including the group by Konrad Hochedlinger et al. Induced pluripotent stem cells have great expectations as ideal pluripotent cells without rejection and ethical problems.
  • Induced pluripotent stem cells can be produced using human dermal fibroblasts, blood cells, and other somatic cells as materials, regardless of whether they are healthy or patients.
  • Induced pluripotent stem cells like embryonic stem cells (ES cells), are cells that have the potential to differentiate into any cell and can be expanded indefinitely by culturing under appropriate conditions. Is a possible cell. Furthermore, the cells can be easily introduced by using a method such as electroporation.
  • ES cells embryonic stem cells
  • human embryos are not required for the production of induced pluripotent stem cells, ethical problems that hinder the use of embryonic stem cells can be avoided.
  • Today, development of new methods for producing induced pluripotent stem cells is progressing, and development of a technique for producing induced pluripotent stem cells that are more efficient and less dangerous in use is expected in the future.
  • genes for reprogramming factors such as Oct family genes, Sox family genes, Klf family genes, Myc family genes, etc. are used using retroviral vectors.
  • somatic cells By introducing into somatic cells and culturing for a long time, expression of the nanog gene is induced in the cells, and induced pluripotent stem cells have been prepared (see, for example, Patent Documents 1 to 5).
  • the gene of the reprogramming factor remains as it is in the genome of the induced pluripotent stem cell produced, and c-Myc, especially in the reprogramming factor, is overexpressed. It is known that it has a powerful action to cause canceration of cells. In fact, it has been reported that in a chimeric mouse derived from a mouse induced pluripotent stem cell, cancer was observed when the introduced c-Myc gene was reactivated and expressed. Thus, in differentiated cells generated from induced pluripotent stem cells, the introduced reprogramming gene may be expressed again, and the cells may become cancerous. In order to realize application to regenerative medicine, etc.
  • Kazutoshi Takahashi and Shinya Yamanaka Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676, 2006. Kazutoshi Takahashi, Koji Tanabe, Mari Ohnuki, Megumi Narita, Tomoko Ichisaka, Kiichiro Tomoda, and Shinya Yamanaka. Induction of pluripotent stem cells from Adult 2007 Keisuke Okita, Tomoko Ichisaka and Shinya Yamanaka. Generation of germline-competent induced pluripotent stem cells. Nature 19, 313-318, 2007.
  • An object of the present invention is to provide a method for producing induced pluripotent stem cells by a simpler operation and a safer induced pluripotent stem cell obtained by the method.
  • the present inventors increase the expression of the Nanog gene, which is an induced pluripotent stem cell marker gene, by applying pulse power to somatic cells that have undergone differentiation. I discovered that.
  • the present invention has been completed based on such findings.
  • the aspect of the present invention relates to the following.
  • a method for producing induced pluripotent stem cells comprising a step of applying pulse power to somatic cells or fertilized eggs.
  • a method for producing Nanog gene-expressing cells comprising a step of applying pulse power to somatic cells or fertilized eggs.
  • (14) Applying pulse power to somatic cells or fertilized eggs in the solution using an apparatus comprising at least a pulse generator and a container containing an electrode and containing the solution, (9) to (13) A method for producing a Nanog gene-expressing cell according to any one of the above.
  • (15) A Nanog gene-expressing cell obtained by the method for producing a Nanog gene-expressing cell according to any one of (9) to (14).
  • a method for producing a differentiated cell comprising: (17) The method for producing a differentiated cell according to (16), wherein the differentiated cell is a germ cell.
  • a pulse power application device comprising at least a pulse generator and a container containing an electrode and containing a solution, wherein any of (1) to (7) and (9) to (14) An apparatus for producing induced pluripotent stem cells or Nanog gene-expressing cells by the method described above.
  • induced pluripotent stem cells and Nanog gene-expressing cells can be produced by a simple operation of applying pulse power to a somatic cell or a fertilized egg. Induced pluripotent stem cells can be produced in various biological species.
  • the induced pluripotent stem cells and Nanog gene-expressing cells provided by the present invention can be induced to differentiate into any tissue or organ constituting the living body, and produce a tissue or organ for transplantation without rejection. It is possible. Further, in the present invention, since an early embryo is not used as in the case of ES cells, it can be applied to regenerative medicine without facing ethical problems.
  • the induced pluripotent stem cells and Nanog gene-expressing cells produced according to the present invention do not have reprogramming genes introduced from the outside, so that the possibility that differentiated cells become cancerous is very low. Therefore, it is possible to provide induced pluripotent stem cells with higher safety.
  • various cells for example, cardiomyocytes, hepatocytes, etc.
  • the induced pluripotent stem cells and Nanog gene-expressing cells of the present invention can be applied to new solid mass growth by differentiating into germ cells and performing artificial insemination.
  • FIG. It is a figure which shows the outline
  • FIG. It is a figure which shows the result of the expression analysis of Nanog gene which is an induced pluripotent stem cell marker gene in the induced pluripotent stem cell manufactured in Example 1.
  • Example 2 it is a figure which shows the result of the expression analysis of a differentiation marker gene and an induction
  • 6 is a diagram showing an outline of an experimental procedure in Example 3.
  • FIG. It is a setup figure of the pulse power generator used in the Example.
  • 2 is a battery charger
  • 3 is a controller
  • 4 is a pulse generator
  • 5 is a micro cuvette (can be a container in which electrodes are placed)
  • 6 is an electrode (for experiments) Is 4 mm between electrodes)
  • 7 is a solution (PBS is used)
  • 8 is a tissue or somatic cell or fertilized egg
  • 9 is current monitor
  • 10 is High voltage probe
  • 11 is a Digital scope (oscilloscope).
  • It is a figure which shows the result of the pulse power application to a mouse embryonic fibroblast (MEF) in Example 5, and a Nanog gene expression analysis. The pulse power (30 kV / cm) is shown.
  • the method for producing induced pluripotent stem cells and the method for producing Nanog gene-expressing cells of the present invention are characterized by including a step of applying pulse power to somatic cells or fertilized eggs.
  • the induced pluripotent stem cell referred to in the present invention has a self-replicating ability over a long period of time under a predetermined culture condition (for example, under the condition of culturing ES cells), and to various cells under a predetermined differentiation-inducing condition.
  • the Nanog gene is one of the major marker genes of induced pluripotent stem cells, and the expression of the gene means that the in-vivo cells or fertilized eggs have changed to induced pluripotent stem cells.
  • the type of somatic cell or fertilized egg used in the production method of the present invention is not particularly limited, and any somatic cell or fertilized egg can be used.
  • the somatic cells referred to in the present invention include all cells other than germ cells among the cells constituting the living body, and may be differentiated somatic cells or undifferentiated stem cells.
  • the origin of the somatic cells or fertilized eggs used in the present invention may be any of mammals, birds, fishes, reptiles and amphibians, but is not particularly limited, but is preferably fish, and particularly preferably medaka.
  • human somatic cells any fetal, neonatal or adult somatic cells may be used.
  • the induced pluripotent stem cells or Nanog gene-expressing cells produced by the method of the present invention are used for treatment of diseases such as regenerative medicine, it is preferable to use somatic cells isolated from the patient suffering from the disease.
  • an arbitrary tissue or cell can be collected from the target species and, if necessary, cultured for a certain period of time and used for the production method of the present invention.
  • the type of tissue from which somatic cells are collected is not particularly limited.
  • the somatic cells are derived from fish, it is preferably derived from salmon.
  • fish sharks fish sharks such as medaka are cut and immersed in water or PBS, the sharks are transferred to a micro cuvette, and pulse power is applied.
  • pulse power may be applied after breeding with medaka fertilized egg breeding water (ERM) at 26 ° C. until 6 hours after fertilization.
  • EEM medaka fertilized egg breeding water
  • pulse power means a huge amount of power that is generated in a very short time.
  • energy stored with a small amount of power is released in a time sufficiently shorter than the storage time, the energy is compressed and a large amount of pulsed power is obtained.
  • the pulse power of the present invention includes a large power that can be supplied to a narrow space with a short rise time, a short pulse width, and a large power.
  • induced pluripotent stem cells and Nanog gene-expressing cells can be obtained by applying such power to somatic cells or fertilized eggs.
  • the step of applying pulse power to somatic cells or fertilized eggs can be performed by using, for example, a pulse power generator disclosed in JP 2006-135947 A, JP 2005-153492 A, or the like.
  • a pulse power generator disclosed in JP 2006-135947 A, JP 2005-153492 A, or the like.
  • the setup figure of the pulse power generator used in the following examples is shown in FIG.
  • an MPC magnetic pulse compression method
  • a commercial product other than the MPC may be used as the pulse power generator, and the pulse power generator is not limited to the MPC (magnetic pulse compression) system pulse power generator.
  • the step of applying the pulse power to the somatic cell or the fertilized egg is specifically performed by using a pulse power generator connected to the electrode to bring the desired somatic cell or the fertilized egg into PBS ( Suspended in water or cell culture medium), put between electrodes in a container with a pair of opposing electrodes, and use the above-mentioned pulse power generator to apply pulse power to the suspension of somatic cells or fertilized eggs.
  • PBS Suspended in water or cell culture medium
  • the intensity of the pulse power to be applied is not particularly limited as long as the optimum condition is selected according to the somatic cell or fertilized egg species used, the type of tissue from which the somatic cell is derived, etc.
  • 100 kv / cm or less is preferable, specifically 0.01 to 100 kv / cm, more preferably 0.1 to 100 kv / cm, still more preferably 0.5 to 100 kv / cm, and still more preferably 0.5 to 50 kv / cm. cm, more preferably 0.5 to 40 kv / cm.
  • the unit “kv / cm” relating to the intensity of the pulse power means the intensity of the electric field in which the voltage is generated only in a certain space by the pulse power generator. For example, an electric field is generated between a pair of opposing electrodes by connecting a pulse power generating device to the opposing electrodes, and the electric field strength of the pulse power is calculated based on the distance between the electrodes.
  • the step of applying pulse power to somatic cells or fertilized eggs can be performed by applying pulse power to somatic cells or fertilized eggs for a predetermined time.
  • pulse power For example, it can be applied at 1000 ns or less, preferably 500 ns or less, more preferably 300 ns or less, more preferably 100 ns or less, more preferably 60 ns or less.
  • the number of times of applying the pulse power to the somatic cell or the fertilized egg may be one time, but the pulse power may be intermittently applied over a plurality of times.
  • the step of applying pulse power to somatic cells or fertilized eggs can also be performed by applying pulse power to somatic cells or fertilized eggs at a predetermined rise time.
  • a rise time For example, it can be applied with a rise time of 100 ns or less.
  • the rise time is a time interval until the instantaneous value of the pulse first reaches the specified lower limit value and then reaches the specified upper limit value.
  • the lower limit and the upper limit value are 10% and 90% of the peak value. %.
  • the uses of the induced pluripotent stem cells and Nanog gene-expressing cells of the present invention are not particularly limited, and can be used for various tests / researches and disease treatments.
  • a growth factor such as retinoic acid, EGF, or glucocorticoid
  • a desired differentiated cell for example, neuronal cell, cardiomyocyte, hepatocyte, Pancreatic cells, blood cells, etc.
  • stem cell therapy by autologous cell transplantation can be achieved by returning the differentiated cells thus obtained to the patient.
  • Examples of central nervous system diseases that can be treated using the induced pluripotent stem cells and Nanog gene-expressing cells of the present invention include Parkinson's disease, Alzheimer's disease, multiple sclerosis, cerebral infarction, and spinal cord injury.
  • the induced pluripotent stem cells or Nanog gene-expressing cells of the present invention can be differentiated into dopaminergic neurons and transplanted to the striatum of Parkinson's disease patients. Differentiation into dopaminergic neurons can be promoted by co-culturing the mouse stromal cell line PA6 cells and the induced pluripotent stem cells or Nanog gene-expressing cells of the present invention under serum-free conditions.
  • the induced pluripotent stem cells or Nanog gene-expressing cells of the present invention can be induced to differentiate into neural stem cells and then transplanted to the injury site.
  • the induced pluripotent stem cells and Nanog gene-expressing cells of the present invention can be used for the treatment of liver diseases such as hepatitis, cirrhosis and liver failure.
  • the induced pluripotent stem cells or Nanog gene-expressing cells of the present invention can be differentiated into hepatocytes or hepatic stem cells and transplanted. It is possible to obtain hepatocytes or hepatic stem cells by culturing the induced pluripotent stem cells or Nanog gene-expressing cells of the present invention in the presence of activin A for 5 days and then culturing with hepatocyte growth factor (HGF) for about 1 week. it can.
  • HGF hepatocyte growth factor
  • the induced pluripotent stem cells and Nanog gene-expressing cells of the present invention can be used for the treatment of pancreatic diseases such as type I diabetes.
  • pancreatic diseases such as type I diabetes
  • the induced pluripotent stem cells or Nanog gene-expressing cells of the present invention can be differentiated into pancreatic ⁇ cells and transplanted into the pancreas.
  • the method of differentiating induced pluripotent stem cells or Nanog gene-expressing cells of the present invention into pancreatic ⁇ cells can be performed according to the method of differentiating ES cells into pancreatic ⁇ cells.
  • the induced pluripotent stem cells and Nanog gene-expressing cells of the present invention can be used for the treatment of heart failure associated with ischemic heart disease.
  • the induced pluripotent stem cells or Nanog gene-expressing cells of the present invention are preferably differentiated into cardiomyocytes and then transplanted to the injury site.
  • the induced pluripotent stem cell or Nanog gene-expressing cell of the present invention can obtain cardiomyocytes in about 2 weeks after embryoid body formation by adding noggin from the 3 days before embryoid body formation and adding it to the medium. it can.
  • the induced pluripotent stem cell and Nanog gene-expressing cell of the present invention can be differentiated into germ cells, and can also be used to produce new individuals from the germ cells.
  • the present invention is applied to farmed animals such as livestock animals and fish, the induced pluripotent stem cells and Nanog gene-expressing cells of these animals are differentiated into germ cells, and artificial insemination is performed, so that these species can be proliferated in large quantities. Can be made possible.
  • the present invention can be applied to biological species that are threatened with extinction, and in the same manner, mass propagation of these biological species can be enabled.
  • Example 1 Induced pluripotent stem cells were prepared by applying pulse power to sputum cells collected from adult medaka fish. An outline of the creation method is shown in FIG. 1, and the procedure will be described below.
  • FIG. 5 shows a setup diagram of the pulse power generator used in the examples. An MPC capable of generating a high voltage pulse was used as the pulse generator.
  • Nanog gene which is the main marker gene of induced pluripotent stem cells, was examined by real-time quantitative PCR for the cells that had not been subjected to the pulse power and the cells to which pulse power was applied at each intensity. It was. The procedure will be described below.
  • the instrument used for quantitative PCR analysis was LightCycler 480 Instrument II (Roche Applied Science), which was performed using a LightCycler 480 SYBR Green I Master according to the attached protocol.
  • the used primer is as follows.
  • nanog forward primer 5'-GTTCTTCAGACAGATCCTGT-3 '(SEQ ID NO: 1) nanog reverse primer, 5'-CATCTGCCAGGTTCTTCATC-3 '(SEQ ID NO: 2) ef1 forward primer, 5'-TGAGATGGGCAAGGGCTCCT-3 '(SEQ ID NO: 3) ef1 reverse primer, 5'-GCTGGGTTGTAGCCGATCTT-3 '(SEQ ID NO: 4)
  • FIG. 2 The results of the real-time quantitative PCR are shown in FIG. As shown in FIG. 2, it was revealed that the expression of the Nanog gene was significantly increased in cells to which pulse power was applied, as compared to cells to which pulse power was not applied. Since the Nanog gene is a major marker gene of induced pluripotent stem cells, this result indicates that induced pluripotent stem cells can be produced by applying pulse power to somatic cells. In particular, when the pulse power was applied under the condition of 5 kv / cm, the expression level of the Nanog gene increased significantly.
  • Example 2 Expression levels of differentiation marker genes (rx2, pax6, adh) and induced pluripotent stem cell marker genes (Nanog, Oct4) in medaka fertilized eggs (day 1 embryos) to which pulse power was applied were analyzed. The procedure will be described below.
  • RNA is extracted from each fertilized egg as one pool in the follicular phase, and RNA PCR Kit (Applied Biosystems) is used.
  • Applied Biosystems RNA PCR Kit
  • the instrument used for quantitative PCR analysis was LightCycler 480 Instrument II (Roche Applied Science), and was performed based on the attached protocol using LightCycler 480 SYBR Green I Master. The primer sequences used are shown in Table 1.
  • Example 3 From the olvas-DsRed transgenic medaka that can visualize germ cells that express the olvas gene, which is a germ cell marker gene, with DsRed (red fluorescent protein), the sputum tissue or sputum cells are collected in the same manner as in Example 1, and the pulse power Is applied to produce induced pluripotent stem cells.
  • the induced pluripotent stem cells thus obtained are transplanted into a medaka fertilized egg (host) that is not olvas-DsRed transgenic.
  • host medaka fertilized egg
  • the donor-derived DsRed positive germ cells will appear in the host. That is, it is confirmed that the transplanted nanog-expressing cells have the ability to differentiate into germ cells.
  • An outline of the experimental procedure is shown in FIG. 4, and the procedure will be described below.
  • Transplantation of cells with pulse power Apply the cell suspension treated with trypsin or collagenase to the sputum tissue to which the pulse power is applied, or the suspension of sputum cells to which the pulse power is applied, into the transplantation needle.
  • a transplant needle is set in a microinjector, and a sputum cell to which pulse power is applied is transplanted by inserting the transplant needle into a medaka fertilized egg (host) that is not olvas-DsRed transgenic.
  • the fertilized egg after transplantation is bred in an ERM solution at 26 ° C., and it is confirmed whether germ cells emitting red fluorescence appear under a fluorescent stereomicroscope. That is, if a cell that emits red fluorescence appears in the host, it is a cell that has been differentiated from a pluripotent stem cell produced by applying pulse power to a germ cell. It may be possible to differentiate.
  • Example 4 Gene expression analysis after application of pulse power (5 kV / cm) to sputum cells Using cells that had not been subjected to pulse power treatment and cells to which pulse power had been applied, Nanog gene, Yamanaka factor (oct4, sox2, klf4 , myc) was examined by real-time quantitative PCR. The procedure will be described below.
  • the instrument used for quantitative PCR analysis was LightCycler 480 Instrument II (Roche Applied Science), and was performed based on the attached protocol using LightCycler 480 SYBR Green I Master. Moreover, the used primer is as follows.
  • nanog forward primer 5'-GTTCTTCAGACAGATCCTGT-3 '(SEQ ID NO: 15) nanog reverse primer, 5'-CATCTGCCAGGTTCTTCATC-3 '(SEQ ID NO: 16) ef1 forward primer, 5'-TGAGATGGGCAAGGGCTCCT-3 '(SEQ ID NO: 17) ef1 reverse primer, 5'-GCTGGGTTGTAGCCGATCTT-3 '(SEQ ID NO: 18) oct4 forward primer, 5'- TTCGCGAAGGAGCTGAAACA -3 '(SEQ ID NO: 19) oct4 reverse primer, 5'-TCCGGTTGCAGAACCAAACA-3 '(SEQ ID NO: 20) sox2 forward primer, 5'-GCACCAACCAGAAAAACAGC -3 '(SEQ ID NO: 21) sox2 reverse primer, 5'-ACTGTCCATCCGCTGGTTAA-3 '(SEQ ID NO: 22) klf4 forward primer, 5'-
  • Example 5 Application of pulse power to mouse embryonic fibroblasts (MEF) and analysis of Nanog gene expression
  • Mouse embryonic fibroblasts (MEFs) were mixed with 10% FBS (Fetal bovine serum) -containing DMEM (Dulbecco's Modified Eagle). Medium) seeded in a petri dish containing medium and cultured in a CO 2 incubator at 37 ° C. until confluent.
  • MEF cells were treated with Trypsin-EDTA, centrifuged, and suspended in DMEM containing 10% FBS, and the number of cells was counted.
  • the MEF cells were centrifuged again, the cells were suspended in PBS ( ⁇ ), and the cells were put between the electrodes in the micro cuvette in which a pair of opposed electrodes were arranged.
  • a pulse power generator connected to the electrode, a pulse power of 0.5, 1, 5 kV / cm and a pulse width of 60 ns was applied.
  • 1 ⁇ 10 3 MEF cells were seeded in a petri dish and cultured in a CO 2 incubator at 37 ° C. for 24 hours.
  • MEF cells suspended in PBS (-) were placed in a cuvette, immediately centrifuged without pulse application, and resuspended in 10% FBS-containing DMEM medium. 1 ⁇ 10 3 MEF cells were seeded in a petri dish and cultured. Regarding the above operation, measurement was performed 3 times in the case of pulse-applied cells under each application condition, and 6 times in the case of control.
  • the instrument used for quantitative PCR analysis was LightCycler 480 Instrument II (Roche Applied Science), which was performed based on the attached protocol using LightCycler 480 SYBR Green I Master.
  • the used primer is as follows.

Abstract

 本発明の課題は、より簡便な操作により誘導多能性幹細胞を製造する方法及びNanog遺伝子発現細胞の製造方法を提供することにある。本発明によれば、体細胞又は受精卵にパルスパワーを印加する工程を含むことを特徴とする、誘導多能性幹細胞の製造方法及びNanog遺伝子発現細胞の製造方法が提供される。

Description

誘導多能性幹細胞の製造方法、及びその製造方法により得られる誘導多能性幹細胞
 本発明は、体細胞又は受精卵にパルスパワーを印加することによる誘導多能性幹細胞を製造する方法、及び該方法により得られる誘導多能性幹細胞に関する。また、本発明は、体細胞又は受精卵にパルスパワーを印加することによるNanog遺伝子発現細胞を製造する方法、及び該方法により得られるNanog遺伝子発現細胞に関する。
 誘導多能性幹細胞(induced pluripotent stem cell; iPS細胞)とは、胚性幹細胞のように多くの細胞に分化できる多能性と、多能性を維持したまま自己複製できる特徴とを有する細胞を言う(非特許文献1~3参照)。誘導多能性幹細胞の作製は、京都大学の山中伸弥教授らのグループ、マサチューセッツ工科大学のルドルフ・ヤニッシュ(Rudolf Jaenisch)らのグループ、ウイスコンシン大学のジェームズ・トムソン(James Thomson)らのグループ、ハーバード大学のコンラッド・ホッケドリンガー(Konrad Hochedlinger)らのグループなどを含む複数のグループが成功している。誘導多能性幹細胞は、拒絶反応や倫理的問題のない理想的な多能性細胞として大きな期待を集めている。
 誘導多能性幹細胞は、健康人・患者を問わず、ヒトの皮膚線維芽細胞や血液細胞などの体細胞を材料として作製することが可能である。誘導多能性幹細胞は、胚性幹細胞(ES細胞)と同様に、あらゆる細胞に分化する潜在的能力を秘めた細胞であり、かつ、適切な条件の下で培養することにより無尽蔵に増殖させることが可能な細胞である。さらに、電気穿孔法などの方法を用いることにより、容易に遺伝子導入を施すことが可能な細胞である。一方で、誘導多能性幹細胞の作製には、ヒト胚を必要としないため、胚性幹細胞の使用に際して障害となる倫理的な問題を回避できる。今日、誘導多能性幹細胞を作製する新たな方法の開発が進んでおり、今後、より効率の良い、かつ、使用に際して危険性の低い人工多能性幹細胞の作製技術の開発が期待される。
 これまで報告されている一般的な誘導多能性幹細胞の作製においては、レトロウイルスベクター等を用いて、Octファミリー遺伝子、Soxファミリー遺伝子、Klfファミリー遺伝子、Mycファミリー遺伝子等の初期化因子の遺伝子を体細胞へ導入して長期培養することで、その細胞でnanog遺伝子の発現を誘導し、誘導多能性幹細胞が作成されている(例えば、特許文献1~5参照)。
 しかしながら、上記従来の方法では、作製された誘導多能性幹細胞のゲノム中に初期化因子の遺伝子がそのまま残存しており、初期化因子の中で、特にc-Mycは、過剰に発現した場合に細胞のがん化を引き起こす強力な作用を有していることが知られている。実際に、マウスの誘導多能性幹細胞に由来するキメラマウスにおいて、導入されたc-Myc遺伝子が再活性化して発現することにより、がんの発生が認められたことが報告されている。このように、誘導多能性幹細胞から発生した分化細胞においては、導入初期化遺伝子が再度発現し、細胞が癌化する可能性があり、再生医療への応用等を実現するためには、導入初期化遺伝子を有さず、がん化の可能性の低い人工多能性幹細胞の作製技術の開発が求められている。また、上記従来技の方法は、遺伝子導入ベクターの作成、遺伝子導入後の細胞の長期培養といった煩雑な工程を含むため、より簡便な誘導多能性幹細胞の製造技術の開発が求められている。さらに、上記従来技の方法では、哺乳類のみでしか誘導多能性幹細胞の作成に成功しておらず、より幅広い生物種において誘導多能性幹細胞の製造技術の開発が求められている。
特開2008-283972 特開2009-165478 特開2009-165479 特開2009-165480 国際公開WO2007/069666号公報
Kazutoshi Takahashi and Shinya Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676, 2006. Kazutoshi Takahashi, Koji Tanabe, Mari Ohnuki, Megumi Narita, Tomoko Ichisaka, Kiichiro Tomoda, and Shinya Yamanaka. Induction of pluripotent stem cells from Adult Human fibroblasts by defined factors. Cell 131, 861-872, 2007. Keisuke Okita, Tomoko Ichisaka and Shinya Yamanaka. Generation of germline-competent induced pluripotent stem cells. Nature 19, 313-318, 2007.
 本発明の課題は、より簡便な操作により誘導多能性幹細胞を製造する方法、及び該方法により得られる、より安全性の高い誘導多能性幹細胞を提供することにある。
 本発明者らは、上記課題を解決すべく、鋭意検討した結果、分化の進んだ体細胞等にパルスパワーを印加することにより、誘導多能性幹細胞マーカー遺伝子であるNanog遺伝子の発現が上昇することを発見した。本発明は、かかる知見に基づいて完成されたものである。
 すなわち、本発明の態様は以下に関する。
(1) 体細胞又は受精卵にパルスパワーを印加する工程を含むことを特徴とする、誘導多能性幹細胞の製造方法。
(2) 前記体細胞又は受精卵が、魚の体細胞又は受精卵である、(1)に記載の誘導多能性幹細胞の製造方法。
(3) 前記体細胞が、魚の鰭に由来する細胞である、(1)又は(2)に記載の誘導多能性幹細胞の製造方法。
(4) 50kv/cm以下の電場の条件下で、前記パルスパワーの印加を行う、(1)~(3)のいずれかに記載の誘導多能性幹細胞の製造方法。
(5) パルスパワーのパルス幅が1000ns以下である、(1)~(4)のいずれかに記載の誘導多能性幹細胞の製造方法。
(6) 誘導多能性幹細胞がNanog遺伝子発現細胞である、(1)~(5)のいずれかに記載の誘導多能性幹細胞の製造方法。
(7) 少なくともパルス発生器、並びに溶液を含み電極が設置された容器から構成される装置を用いて、上記溶液中の体細胞又は受精卵にパルスパワーを印加する、(1)~(6)のいずれかに記載の誘導多能性幹細胞の製造方法。
(8) (1)~(7)のいずれかに記載の誘導多能性幹細胞の製造方法により得られる、誘導多能性幹細胞。
(9) 体細胞又は受精卵にパルスパワーを印加する工程を含むことを特徴とする、Nanog遺伝子発現細胞の製造方法。
(10) 前記体細胞又は受精卵が、魚の体細胞又は受精卵である、(9)に記載のNanog遺伝子発現細胞の製造方法。
(11) 前記体細胞が、魚の鰭に由来する細胞である、(9)又は(10)に記載のNanog遺伝子発現細胞の製造方法。
(12) 50kv/cm以下の電場の条件下で、前記パルスパワーの印加を行う、(9)~(11)のいずれかに記載のNanog遺伝子発現細胞の製造方法。
(13) パルスパワーのパルス幅が1000ns以下である、(9)~(12)のいずれかに記載のNanog遺伝子発現細胞の製造方法。
(14) 少なくともパルス発生器、並びに溶液を含み電極が設置された容器から構成される装置を用いて、上記溶液中の体細胞又は受精卵にパルスパワーを印加する、(9)~(13)のいずれかに記載のNanog遺伝子発現細胞の製造方法。
(15) (9)~(14)のいずれかに記載のNanog遺伝子発現細胞の製造方法により得られる、Nanog遺伝子発現細胞。
(16) (a)(1)~(7)及び(9)~(14)のいずれかに記載の方法により、誘導多能性幹細胞又はNanog遺伝子発現細胞を製造する工程;及び
(b)工程(a)で得られた細胞を分化させる工程、
を含むことを特徴とする、分化細胞を製造する方法。
(17) 分化細胞が生殖細胞である、(16)に記載の分化細胞を製造する方法。
(18) 少なくともパルス発生器、並びに溶液を含み電極が設置された容器から構成されるパルスパワー印加装置であって、(1)~(7)及び(9)~(14)のいずれかに記載の方法により誘導多能性幹細胞又はNanog遺伝子発現細胞を製造するための装置。
 本発明の製造方法によれば、体細細胞又は受精卵へのパルスパワーの印加という簡便な操作により、誘導多能性幹細胞及びNanog遺伝子発現細胞を製造することが可能であり、哺乳類のみならず、様々な生物種において誘導多能性幹細胞を製造することができる。本発明により提供される誘導多能性幹細胞及びNanog遺伝子発現細胞は、生体を構成する任意の組織又は臓器に分化誘導することが可能であり、拒絶反応が無い移植用の組織や臓器を作製することが可能である。また、本発明では、ES細胞の場合のように初期胚を使用することもないため、倫理的問題に直面することなく再生医療に応用することが可能である。特に、本発明により製造される誘導多能性幹細胞及びNanog遺伝子発現細胞は外部から導入された初期化遺伝子を有していないため、分化した細胞が癌化する可能性が非常に低いという利点を有しており、より安全性の高い誘導多能性幹細胞を提供することができる。また、本発明の誘導多能性幹細胞及びNanog遺伝子発現細胞を分化させることにより得られる各種細胞(例えば心筋細胞、肝細胞など)は各種の薬剤や毒物などの薬効や毒性を評価するためのシステムとして使用することもできる。さらに、本発明の誘導多能性幹細胞及びNanog遺伝子発現細胞は、生殖細胞に分化させ、人工授精を行うことにより、新たな固体の大量増殖に適用することもできる。
実施例1におけるパルスパワーを用いた誘導多能性幹細胞の製造方法の概要を示す図である。 実施例1において製造した誘導多能性幹細胞における、誘導多能性幹細胞マーカー遺伝子であるNanog遺伝子の発現解析の結果を示す図である。 実施例2において、パルスパワーを印加したメダカ受精卵(1日目胚)における分化マーカー遺伝子及び誘導多能性幹細胞マーカー遺伝子の発現解析の結果を示す図である。 実施例3における実験手順の概略を示す図である。 実施例で使用したパルスパワー発生装置のセットアップ図である。2は充電器(Battery charger)、3はコントローラー(Controller)、4はパルス発生器(pulse generator)、5はマイクロキュベット(電極が配置された容器でも可)、6は電極(electrode)(実験には電極間4mmのものを使用した)、7は溶液(PBSを使用)、8は組織もしくは体細胞または受精卵、9はcurrent monitor、10はHigh voltage probe、11はDigital scope(オシロスコープ)を示す。 実施例4における鰭細胞へのパルスパワー(5kV/cm)印加後の遺伝子発現解析の結果を示す図である。 実施例5におけるマウス胎児繊維芽細胞(MEF)へのパルスパワー印加とNanog遺伝子発現解析の結果を示す図である。 パルスパワー(30kV/cm)を示す。
 本発明の誘導多能性幹細胞の製造方法及びNanog遺伝子発現細胞の製造方法は、体細胞又は受精卵にパルスパワーを印加する工程を含むことを特徴とする。
 本発明で言う誘導多能性幹細胞とは、所定の培養条件下(例えば、ES細胞を培養する条件下)において長期にわたって自己複製能を有し、また所定の分化誘導条件下において多種の細胞への多分化能を有する幹細胞のことを言う。また、Nanog遺伝子は、誘導多能性幹細胞の主要なマーカー遺伝子の一つであり、当該遺伝子の発現は、現体細胞又は受精卵が誘導多能性幹細胞に変化したことを意味する。
 本発明の製造方法において用いる体細胞又は受精卵の種類は特に限定されず、任意の体細胞又は受精卵を用いることができる。本発明で言う体細胞とは、生体を構成する細胞のうち生殖細胞以外の全ての細胞を包含し、分化した体細胞でもよいし、未分化の幹細胞でもよい。本発明で用いられる体細胞又は受精卵の由来は、哺乳動物、鳥類、魚類、爬虫類、両生類の何れでもよく特に限定されないが、好ましくは魚類であり、特に好ましくはメダカである。また、ヒトの体細胞を用いる場合、胎児、新生児又は成人の何れの体細胞を用いてもよい。本発明の方法で製造される誘導多能性幹細胞ないしNanog遺伝子発現細胞を再生医療など疾患の治療に用いる場合には、該疾患を患う患者自身から分離した体細胞を用いることが好ましい。
 本発明の製造方法において体細胞を用いる場合、目的とする生物種から任意の組織または細胞を採取し、必要であれば、一定期間培養し、本発明の製造方法に供試することができる。体細胞を採取する組織の種類は特に限定されないが、例えば、体細胞が魚類に由来する場合、鰭に由来するものであることが好ましい。例えば、魚類の鰭に由来する細胞を使用する場合には、メダカ等の魚類の鰭を切断して水やPBSに浸し、その鰭をマイクロキュベットに移してパルスパワーを印加すればよい。また、受精卵を使用する場合には、例えば、26℃のメダカ受精卵飼育水(ERM)で受精後6時間後まで飼育した後、パルスパワーを印加すればよい。
 本発明において、パルスパワーとは、ごく短い時間ではあるが生成される巨大な電力を意味する。小さな電力で蓄えたエネルギーを蓄積時間よりも十分短い時間で放出すると、エネルギーは圧縮され、パルス状の大電力が得られる。また、本発明のパルスパワーには、大電力である、立ち上がり時間が短い、パルス幅が短い、狭い空間に供給できる大電力を含む。本発明では、このような電力を目的とする体細胞又は受精卵に印加することにより、誘導多能性幹細胞及びNanog遺伝子発現細胞を得ることができる。
 本発明の製造方法において、体細胞又は受精卵にパルスパワーを印加する工程は、例えば、特開2006-135947や特開2005-153492等に開示のパルスパワー発生装置を用いることにより行うことができる。なお、以下の実施例で使用したパルスパワー発生装置のセットアップ図を図5に示す。実施例では、パルスジェネレータとして、高電圧パルスを発生することができるMPC(磁気パルス圧縮方式)を使用した。但し、パルスパワー発生装置はMPC以外の市販品を使用してもよく、MPC(磁気パルス圧縮)方式パルスパワー発生装置に限定されるものではない。
 本発明の製造方法において、体細胞又は受精卵にパルスパワーを印加する工程は、具体的には、前記電極に接続されたパルスパワー発生装置を用いて、所望の体細胞又は受精卵をPBS(水や細胞培地でも良い)に懸濁し、対向する一対の電極を配置した容器内の電極間に投入し、上述のパルスパワー発生装置を用いて、体細胞又は受精卵の懸濁溶液にパルスパワーを印加することで行うことができる。印加するパルスパワーの強度は、用いる体細胞又は受精卵の生物種や、体細胞が由来する組織の種類等に応じて最適な条件を選択すればよく、特に限定されるものではないが、例えば100kv/cm以下が好ましく、具体的には0.01~100kv/cm、より好ましくは0.1~100kv/cm、さらに好ましくは0.5~100kv/cm、さらに好ましくは0.5~50kv/cm、さらに好ましくは0.5~40kv/cmである。
 ここで、パルスパワーの強度に関する単位「kv/cm」とは、パルスパワー発生装置により、ある一定の空間にのみ電圧が生成されている電界の強度を意味する。例えば対向する電極にパルスパワー発生装置を接続することで、対向する一対の電極間に電界が発生するが、その電極間の距離により算出されるパルスパワーの電界強度である。
 本発明の製造方法において、体細胞又は受精卵にパルスパワーを印加する工程は、所定の時間、体細胞又は受精卵にパルスパワーを与えることにより行うことができる。例えば、1000ns以下、好ましくは500ns以下、より好ましくは300ns以下、より好ましくは100ns以下、より好ましくは60ns以下で印加することができる。また、体細胞又は受精卵にパルスパワーを印加する回数は、1回でも良いが、複数回に渡り断続的にパルスパワーを印加することもできる。
 本発明の製造方法において、体細胞又は受精卵にパルスパワーを印加する工程は、所定の立ち上がり時間で体細胞又は受精卵にパルスパワーを与えることにより行うこともできる。例えば、100ns以下の立ち上がり時間で印加することができる。なお、立ち上がり時間とは、パルスの瞬時値が最初に規定した下限値に到達し、その後規定された上限値に到達するまでの時間間隔であり、下限及び上限値はピーク値の10%及び90%である。
 本発明の誘導多能性幹細胞及びNanog遺伝子発現細胞の用途は特に限定されず、各種の試験・研究や疾病の治療などに使用することができる。例えば、本発明の方法により得られた誘導多能性幹細胞をレチノイン酸、EGFなどの増殖因子、又はグルココルチコイドなどで処理することにより、所望の分化細胞(例えば神経細胞、心筋細胞、肝細胞、膵臓細胞、血球細胞など)を誘導することができ、そのようにして得られた分化細胞を患者に戻すことにより自家細胞移植による幹細胞療法を達成することができる。
 本発明の誘導多能性幹細胞及びNanog遺伝子発現細胞を用いて治療を行うことができる中枢神経系の疾患としてはパーキンソン病、アルツハイマー病、多発性硬化症、脳梗塞、脊髄損傷などが挙げられる。パーキンソン病の治療のためには、本発明の誘導多能性幹細胞又はNanog遺伝子発現細胞をドーパミン作動性ニューロンへと分化しパーキンソン病患者の線条体に移植することができる。ドーパミン作動性ニューロンへの分化はマウスのストローマ細胞株であるPA6細胞と本発明の誘導多能性幹細胞又はNanog遺伝子発現細胞を無血清条件で共培養することで進めることができる。アルツイハイマー病、脳梗塞、脊髄損傷の治療においては本発明の誘導多能性幹細胞又はNanog遺伝子発現細胞を神経幹細胞に分化誘導した後に、傷害部位に移植することができる。
 また、本発明の誘導多能性幹細胞及びNanog遺伝子発現細胞は肝炎、肝硬変、肝不全などの肝疾患の治療に用いることができる。これら疾患を治療するには、本発明の誘導多能性幹細胞又はNanog遺伝子発現細胞を肝細胞あるいは肝幹細胞に分化し移植することができる。本発明の誘導多能性幹細胞又はNanog遺伝子発現細胞をアクチビンA存在下で5日間培養し、その後肝細胞増殖因子(HGF)で1週間程度培養することで肝細胞あるいは肝幹細胞を取得することができる。
 さらに本発明の誘導多能性幹細胞及びNanog遺伝子発現細胞はI型糖尿病などのすい臓疾患の治療に用いることができる。I型糖尿病の場合には、本発明の誘導多能性幹細胞又はNanog遺伝子発現細胞を膵臓β細胞に分化させ、膵臓に移植することができる。本発明の誘導多能性幹細胞又はNanog遺伝子発現細胞を膵臓β細胞に分化させる方法は、ES細胞を膵臓β細胞に分化させる方法に準じて行うことができる。
 さらに本発明の誘導多能性幹細胞及びNanog遺伝子発現細胞は虚血性心疾患に伴う心不全の治療に用いることができる。心不全の治療には、本発明の誘導多能性幹細胞又はNanog遺伝子発現細胞を心筋細胞に分化させた後に傷害部位に移植することが好ましい。本発明の誘導多能性幹細胞又はNanog遺伝子発現細胞は胚様体を形成させる3日前よりノギンを添加し培地中に添加することで、胚様体形成後2週間程度で心筋細胞を得ることができる。
 また、本発明の誘導多能性幹細胞及びNanog遺伝子発現細胞は、生殖細胞へ分化させることができ、その生殖細胞から新たな個体を生産することに用いることもできる。例えば、本発明を畜産動物、魚類等の養殖動物に適用し、それら動物の誘導多能性幹細胞及びNanog遺伝子発現細胞を生殖細胞に分化させ、人工授精を行うことにより、それら生物種の大量増殖を可能とすることができる。また、本発明を絶滅が危惧される生物種に適用し、同様にして、それら生物種の大量増殖を可能とすることができる。
 以下の実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。
[実施例1]
 メダカ成魚から採取した鰭細胞にパルスパワーを印加して、誘導多能性幹細胞の作製を行った。その作成方法の概要を図1に示し、以下、その手順について説明する。
1.メダカからの鰭細胞の採取及び培養
 メダカ成魚の鰭(尾鰭、腹鰭、背鰭や胸鰭)の組織を切断し、水またはPBS(-)に投入した。なお、必要に応じ、鰭組織のトリプシンもしくはコラゲナーゼ酵素処理を行い、鰭細胞の懸濁液を調製してもよい。
2.鰭細胞へのパルスパワーの印加
 上記の鰭組織もしくは鰭細胞の懸濁液をPBS(-)に浸し、これを対向する一対の電極を配置したマイクロキュベット内の電極間に投入し、前記電極に接続されたパルスパワー発生装置を用いて、鰭組織もしくは鰭細胞へ0.5~30kv/cm、50~100nsのパルスパワーを印加した。印加した鰭組織もしくは鰭細胞はPBSへ投入して1~数時間インキュベートした。実施例で使用したパルスパワー発生装置のセットアップ図を図5に示す。なお、パルスジェネレータとして、高電圧パルスを発生することができるMPCを使用した。
3.Nanog遺伝子の発現量の解析
 上記パルスパワー未処理の細胞、各強度におけるパルスパワーを印加した細胞について、リアルタイム定量PCRにより、誘導多能性幹細胞の主要なマーカー遺伝子であるNanog遺伝子の発現量について調べた。以下に、その手順を説明する。
 上記パルスパワーを印加して培養1時間後の組織もしくは細胞からRNAを抽出し、RNA PCR Kit(Applied Biosystems)を用いて、添付プロトコルに従いcDNAを合成した。定量的PCR解析に使用した機器はLightCycler 480 InstrumentII(Roche Applied Science)であり、LightCycler 480 SYBR Green I Masterを用いて、添付プロトコルに基づいて行った。また、使用したプライマーは以下の通りである。
nanog forward primer、5'-GTTCTTCAGACAGATCCTGT-3'(配列番号1)
nanog reverse primer、5'-CATCTGCCAGGTTCTTCATC-3' (配列番号2)
ef1 forward primer、5'-TGAGATGGGCAAGGGCTCCT-3' (配列番号3)
ef1 reverse primer、5'-GCTGGGTTGTAGCCGATCTT-3' (配列番号4)
(結果)
 上記リアルタイム定量PCRの結果を図2に示す。図2に示される通り、パルスパワーを印加した細胞では、パルスパワーを印加していない細胞と比較して、Nanog遺伝子の発現が有意に増加することが明らかとなった。Nanog遺伝子は誘導多能性幹細胞の主要なマーカー遺伝子であることから、この結果は、体細胞にパルスパワーを印加することにより、誘導多能性幹細胞を製造できることを示す。なお、特に、5kv/cmの条件下でパルスパワーを印加する場合に、Nanog遺伝子の発現量が顕著に増加した。
[実施例2]
 パルスパワーを印加したメダカ受精卵(1日目胚)における分化マーカー遺伝子(rx2、pax6、adh)及び誘導多能性幹細胞マーカー遺伝子(Nanog、Oct4)の発現量を解析した。その手順を以下に説明する。
1.メダカ受精卵の調整
 産卵直後の受精卵を採取したのち、受精卵の付着毛を丁寧に取り除き、水温26℃のメダカ生理食塩水(ERM)を投入した小型容器に移して6時間インキュベートした。なお、メダカ受精卵の発生は水温により制御でき、26℃水温下では受精後6時間で後期桑実胚期を迎える。
2.受精卵へのパルスパワーの印加
 上記の受精卵1個をPBS(-)が入ったマイクロキュベットへ投入した後、このマイクロキュベットをパルスパワー発生装置にセットし、パルスパワー発生装置を用いて0.5~30kv/cm、50~100nsのパルスパワーを印加した。印加した受精卵はすぐにERMが入った小型シャーレに投入して、水温26℃でインキュベートした。
3.各マーカー遺伝子の発現量の解析
 上記のパルスパワー(30kv/cm)を印加した受精卵とパルスパワーを印加していない受精卵について、リアルタイム定量PCRにより、誘導多能性幹細胞の主要なマーカー遺伝子であるnanog遺伝子と分化マーカー遺伝子であるrx2、pax6及びadh遺伝子の発現量について調べた。以下に、その手順を説明する。
 パルスパワーを印加していないメダカ受精卵及びパルスパワーを印加したメダカ受精卵を用いて、眼胞形成期に各々受精卵10個を1プールとしてRNAを抽出し、RNA PCR Kit(Applied Biosystems)を用いてcDNAを合成した。定量的PCR解析に使用した機器はLightCycler 480 Instrument II(Roche Applied Science)であり、LightCycler 480 SYBR Green I Masterを用いて、添付プロトコルに基づいて行った。また、使用したプライマー配列を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(結果)
 上記リアルタイム定量PCRによる各マーカー遺伝子の発現解析の結果を図3に示す。パルスパワーを印加した受精卵では、パルスパワーを印加していない受精卵と比較して、誘導多能性幹細胞マーカー遺伝子である、Nanog遺伝子及びOct4遺伝子の発現量が顕著に増加した。また、パルスパワーを印加した受精卵では、パルスパワーを印加していない受精卵と比較して、分化マーカー遺伝子であるrx2、pax6及びadh遺伝子の発現量は減少した。
 このように、本発明により、メダカ受精卵から誘導多能性幹細胞を製造可能であることが示された。
[実施例3]
 生殖細胞マーカー遺伝子であるolvas遺伝子を発現する生殖細胞をDsRed(赤色蛍光タンパク質)で可視化できるolvas-DsRedトランスジェニックメダカから、実施例1と同様にして、鰭組織もしくは鰭細胞を採取し、パルスパワーを印加して、誘導多能性幹細胞を製造する。このように得られた誘導多能性幹細胞を、olvas-DsRedトランスジェニックではないメダカ受精卵(ホスト)に移植する。その結果、移植したnanog発現細胞のうち全ての細胞もしくはいくつかの細胞が生殖細胞へ分化することができれば、そのホストにおいて、上記ドナー由来のDsRedポジティブ生殖細胞が出現する。すなわち、移植したnanog発現細胞が生殖細胞へ分化できる能力を持つことが確認される。その実験手順の概略を図4に示し、以下、その手順について説明する。
1.メダカからの鰭細胞の採取及び培養
 olvas-DsRedトランスジェニックメダカの鰭(尾鰭、腹鰭、背鰭もしくは胸鰭)を切断し、水またはPBSに投入する。また、必要であれば鰭組織のトリプシンもしくはコラゲナーゼ酵素処理を行い、鰭細胞の懸濁液を調整する。
2.鰭細胞へのパルスパワーの印加
 上記の鰭組織もしくは鰭細胞の懸濁液を、対向する一対の電極を配置した容器(マイクロキュベット)内の電極間に投入し、前記電極に接続されたパルスパワー発生装置を用いて、鰭組織もしくは鰭細胞へ0.5~30kv/cm、50~100nsのパルスパワーを印加する。
3.パルスパワー印加細胞の移植
 上記のパルスパワーを印加した鰭組織をトリプシンもしくはコラゲナーゼ処理した細胞懸濁液、もしくはパルスパワーを印加した鰭細胞の懸濁液を、移植針に細胞懸濁液を充填する。移植針をマイクロインジェクターにセットし、olvas-DsRedトランスジェニックではないメダカ受精卵(ホスト)に移植針を刺してパルスパワーを印加した鰭細胞を移植する。移植後の受精卵は、26℃のERM溶液で飼育し、蛍光実体顕微鏡下で赤色蛍光を発する生殖細胞が出現するかどうかを確認する。すなわち、ホストにおいて赤色蛍光を発する細胞が出現するならば、それはパルスパワーを印加して作製された多能性幹細胞から生殖細胞へ分化した細胞であり、上述の手順で多能性幹細胞から生殖細胞へ分化させることができるのではないかと考えられる。
[実施例4]鰭細胞へのパルスパワー(5kV/cm)印加後の遺伝子発現解析
 パルスパワー未処理の細胞とパルスパワーを印加した細胞を用いて、Nanog遺伝子、山中ファクター(oct4, sox2, klf4, myc)を、リアルタイム定量PCR法により調べた。以下に、その手順を説明する。
 上記パルスパワーを印加してから5時間後の組織もしくは細胞からRNAを抽出し、RNA PCR Kit(Applied Biosystems)を用いて、添付プロトコルに従いcDNAを合成した。定量的PCR解析に使用した機器はLightCycler 480 InstrumentII(Roche Applied Science)であり、LightCycler 480 SYBR Green I Masterを用いて、添付プロトコルに基づいて行った。また、使用したプライマーは以下の通りである。
nanog forward primer、5'-GTTCTTCAGACAGATCCTGT-3'(配列番号15)
nanog reverse primer、5'-CATCTGCCAGGTTCTTCATC-3' (配列番号16)
ef1 forward primer、5'-TGAGATGGGCAAGGGCTCCT-3' (配列番号17)
ef1 reverse primer、5'-GCTGGGTTGTAGCCGATCTT-3' (配列番号18)
oct4 forward primer、5'- TTCGCGAAGGAGCTGAAACA -3' (配列番号19)
oct4 reverse primer、5'- TCCGGTTGCAGAACCAAACA -3' (配列番号20)
sox2 forward primer、5'- GCACCAACCAGAAAAACAGC -3' (配列番号21)
sox2 reverse primer、5'- ACTGTCCATCCGCTGGTTAA -3' (配列番号22)
klf4 forward primer、5'- CGCCAGTGAGCTCTTGTACA -3' (配列番号23)
klf4 reverse primer、5'- TGATATCCCTGCGGAGGTAG -3' (配列番号24)
myc forward primer、5'- CAGAAGACGAAGAGGAGGAA -3' (配列番号25)
myc reverse primer、5'- TCTGTCGCCTTTCTCAGGAT -3' (配列番号26)
(結果)
 上記リアルタイム定量PCRの結果を図6に示す。パルスパワーを印加した細胞では、パルスパワーを印加していない細胞と比較して、Nanog、oct4、sox2、klf4遺伝子の発現が有意に増加することが明らかとなった。一方で、癌遺伝子であるmyc遺伝子の発現には影響を及ぼさなかった。この結果は、体細胞にパルスパワーを印加するだけで、細胞の癌化を抑えた誘導多能性幹細胞を製造できることを示す。
[実施例5]マウス胎児繊維芽細胞(MEF)へのパルスパワー印加とNanog遺伝子発現解析
 マウス繊維芽細胞(mouse embryonic fibroblast : MEF)を、10%FBS(Fetal bovine serum)含有DMEM(Dulbecco's Modified Eagle Medium)培地入りシャーレに播種し、コンフルエントになるまで37℃のCO2インキュベータで培養した。MEF細胞をTrypsin-EDTA処理、遠心分離し、10%FBS含有DMEMに懸濁してから細胞数を計数した。その後、MEF細胞を再度遠心分離して細胞をPBS(-)で懸濁し、これを対向する一対の電極を配置したマイクロキュベット内の電極間に投入した。前記電極に接続されたパルスパワー発生装置を用いて、0.5、1、5kV/cmでパルス幅が60nsのパルスパワーを印加した。印加したMEF細胞を遠心分離し、10%FBS含有DMEM培地に置換した後、1x103個のMEF細胞をシャーレに播いて、37℃のCO2インキュベータで24時間培養した。また、コントロールとして、PBS(-)で懸濁したMEF細胞をキュベット内に投入し、パルス印加を行わずに直ちにMEF細胞を遠心分離して、10%FBS含有DMEM培地で再懸濁した後に、1x103個のMEF細胞をシャーレに播いて細胞培養した。上記の操作について、各印加条件のパルス印加細胞の場合は3回測定を、コントロールの場合は6回測定を実施した。
 上記MEF細胞からRNAを抽出し、RNA PCR Kit(Applied Biosystems)を用いて、添付プロトコルに従いcDNAを合成した。定量的PCR解析に使用した機器はLightCycler 480 InstrumentII (Roche Applied Science)であり、LightCycler 480 SYBR Green I Masterを用いて、添付プロトコルに基づいて行った。また、使用したプライマーは以下の通りである。
Nanog forward primer 5'-CAGCCCTGATTCTTCTACCA-3'(配列番号27)
Nanog reverse primer 5'-TCTGCTTCTGAAACCTGTCC-3'(配列番号28)
Activin-beta forward primer 5'-TCTACAATGAGCTGCGTGTG-3'(配列番号29)
Activin-beta reverse primer 5'-ATCACAATGCCTGTGGTACG-3'(配列番号30)
(結果)
 上記リアルタイム定量PCRの結果を図7に示す。パルスパワーを印加したMEF細胞では、未処理細胞と比較してNanog遺伝子の発現が増加する傾向が観察された。

Claims (18)

  1. 体細胞又は受精卵にパルスパワーを印加する工程を含むことを特徴とする、誘導多能性幹細胞の製造方法。
  2. 前記体細胞又は受精卵が、魚の体細胞又は受精卵である、請求項1に記載の誘導多能性幹細胞の製造方法。
  3. 前記体細胞が、魚の鰭に由来する細胞である、請求項1又は2に記載の誘導多能性幹細胞の製造方法。
  4. 50kv/cm以下の電場の条件下で、前記パルスパワーの印加を行う、請求項1~3のいずれか1項に記載の誘導多能性幹細胞の製造方法。
  5. パルスパワーのパルス幅が1000ns以下である、請求項1~4のいずれか1項に記載の誘導多能性幹細胞の製造方法。
  6. 誘導多能性幹細胞がNanog遺伝子発現細胞である、請求項1~5のいずれか1項に記載の誘導多能性幹細胞の製造方法。
  7. 少なくともパルス発生器、並びに溶液を含み電極が設置された容器から構成される装置を用いて、上記溶液中の体細胞又は受精卵にパルスパワーを印加する、請求項1~6のいずれか1項に記載の誘導多能性幹細胞の製造方法。
  8. 請求項1~7のいずれか1項に記載の誘導多能性幹細胞の製造方法により得られる、誘導多能性幹細胞。
  9. 体細胞又は受精卵にパルスパワーを印加する工程を含むことを特徴とする、Nanog遺伝子発現細胞の製造方法。
  10. 前記体細胞又は受精卵が、魚の体細胞又は受精卵である、請求項9に記載のNanog遺伝子発現細胞の製造方法。
  11. 前記体細胞が、魚の鰭に由来する細胞である、請求項9又は10に記載のNanog遺伝子発現細胞の製造方法。
  12. 50kv/cm以下の電場の条件下で、前記パルスパワーの印加を行う、請求項9~11のいずれか1項に記載のNanog遺伝子発現細胞の製造方法。
  13. パルスパワーのパルス幅が1000ns以下である、請求項9~12のいずれか1項に記載のNanog遺伝子発現細胞の製造方法。
  14. 少なくともパルス発生器、並びに溶液を含み電極が設置された容器から構成される装置を用いて、上記溶液中の体細胞又は受精卵にパルスパワーを印加する、請求項9~13のいずれか1項に記載のNanog遺伝子発現細胞の製造方法。
  15. 請求項9~14のいずれか1項に記載のNanog遺伝子発現細胞の製造方法により得られる、Nanog遺伝子発現細胞。
  16. (a)請求項1~7及び9~14のいずれか1項に記載の方法により、誘導多能性幹細胞又はNanog遺伝子発現細胞を製造する工程;及び
    (b)工程(a)で得られた細胞を分化させる工程、
    を含むことを特徴とする、分化細胞を製造する方法。
  17. 分化細胞が生殖細胞である、請求項16に記載の分化細胞を製造する方法。
  18. 少なくともパルス発生器、並びに溶液を含み電極が設置された容器から構成されるパルスパワー印加装置であって、請求項1~7及び9~14のいずれか1項に記載の方法により誘導多能性幹細胞又はNanog遺伝子発現細胞を製造するための装置。
PCT/JP2011/063632 2010-06-15 2011-06-15 誘導多能性幹細胞の製造方法、及びその製造方法により得られる誘導多能性幹細胞 WO2011158845A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012520464A JPWO2011158845A1 (ja) 2010-06-15 2011-06-15 誘導多能性幹細胞の製造方法、及びその製造方法により得られる誘導多能性幹細胞

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010135921 2010-06-15
JP2010-135921 2010-06-15

Publications (1)

Publication Number Publication Date
WO2011158845A1 true WO2011158845A1 (ja) 2011-12-22

Family

ID=45348242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063632 WO2011158845A1 (ja) 2010-06-15 2011-06-15 誘導多能性幹細胞の製造方法、及びその製造方法により得られる誘導多能性幹細胞

Country Status (2)

Country Link
JP (1) JPWO2011158845A1 (ja)
WO (1) WO2011158845A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITGE20120073A1 (it) * 2012-07-23 2014-01-24 Carlo Tremolada Metodo e dispositivo per la preparazione di cellule staminali non embrionali
WO2015049897A1 (ja) * 2013-10-04 2015-04-09 ネッパジーン株式会社 エレクトロポレーションを利用した哺乳類の遺伝子改変方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089018A (ja) * 2002-08-29 2004-03-25 Japan Science & Technology Corp 電気刺激装置及びその電気刺激装置を用いた生体細胞若しくは生体組織の成長促進又は抑制方法
JP2004105148A (ja) * 2002-09-20 2004-04-08 National Cardiovascular Center 細胞分化誘導法
JP2004357543A (ja) * 2003-06-03 2004-12-24 Institute Of Physical & Chemical Research Es細胞の電気パルス処理によって得られた神経細胞

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089018A (ja) * 2002-08-29 2004-03-25 Japan Science & Technology Corp 電気刺激装置及びその電気刺激装置を用いた生体細胞若しくは生体組織の成長促進又は抑制方法
JP2004105148A (ja) * 2002-09-20 2004-04-08 National Cardiovascular Center 細胞分化誘導法
JP2004357543A (ja) * 2003-06-03 2004-12-24 Institute Of Physical & Chemical Research Es細胞の電気パルス処理によって得られた神経細胞

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAMITSU, S ET AL.: "Embryonic development of Oryzias latipes (medaka) after pulsed electric field application.", THE PAPERS OF TECHNICAL MEETING ON PULSED POWER TECHNOLOGY, vol. PPT-09, no. 102-10, 23 October 2009 (2009-10-23), JAPAN, pages 27 - 31 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITGE20120073A1 (it) * 2012-07-23 2014-01-24 Carlo Tremolada Metodo e dispositivo per la preparazione di cellule staminali non embrionali
WO2014016750A1 (en) * 2012-07-23 2014-01-30 Lipogems International Srl Method and device for preparing non-embryonic stem cells
US10689623B2 (en) 2012-07-23 2020-06-23 Lipogems International S.P.A. Method and device for preparing non-embryonic stem cells
WO2015049897A1 (ja) * 2013-10-04 2015-04-09 ネッパジーン株式会社 エレクトロポレーションを利用した哺乳類の遺伝子改変方法
JP2015070825A (ja) * 2013-10-04 2015-04-16 国立大学法人京都大学 エレクトロポレーションを利用した哺乳類の遺伝子改変方法

Also Published As

Publication number Publication date
JPWO2011158845A1 (ja) 2013-08-19

Similar Documents

Publication Publication Date Title
JP6080871B2 (ja) 神経幹細胞を調製するための培養培地およびその使用
Tanabe et al. Induction of pluripotency by defined factors
CN1860222A (zh) 用于临床和商业用途的干细胞
JP6868565B2 (ja) 不死化幹細胞、及びその作製方法
Liu et al. Mouse-induced pluripotent stem cells generated under hypoxic conditions in the absence of viral infection and oncogenic factors and used for ischemic stroke therapy
JP2013545480A (ja) 人工多能性幹細胞の調製方法及び人工多能性幹細胞の調製用培地
Takata et al. Stem cells and genome editing: approaches to tissue regeneration and regenerative medicine
EP2481795A1 (en) Method of generating induced pluripotent stem cells and differentiated cells
WO2011158845A1 (ja) 誘導多能性幹細胞の製造方法、及びその製造方法により得られる誘導多能性幹細胞
JP6040494B2 (ja) 発酵能を有する細菌を用いた多能性細胞の製造方法
KR101548534B1 (ko) 전자기장을 이용한 성체세포를 유도만능 줄기세포로 역분화시키는 방법
JP6698626B2 (ja) 哺乳動物多能性幹細胞、それらの調製のための方法、およびその使用
Panda et al. Non-viral reprogramming and induced pluripotent stem cells for cardiovascular therapy
JP2011004674A (ja) 誘導多能性幹細胞(iPS細胞)の製造方法
Li et al. Using microRNAs to enhance the generation of induced pluripotent stem cells
JP6785516B2 (ja) ヒト臍帯由来間葉系幹細胞から骨芽細胞の製造を目的としたアクチン重合阻害剤による分化誘導技術
US9976118B2 (en) Method for inducing tailored pluripotent stem cells using extract of plant stem cells or plant dedifferentiated stem cells, and pluripotent stem cells produced by means of the method
WO2021081721A1 (en) New induced pluripotent stem cells (ipscs) and applications thereof
US20220243175A1 (en) Method for isolating and culturing neural stem cells with high efficiency
KR101744053B1 (ko) 인장 자극을 이용한 유도만능 줄기세포의 생성 방법
KR101671882B1 (ko) 지방-유래 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하여 신경세포로 분화 시키는 방법
TWI769410B (zh) 新穎誘導性多能幹細胞(ipscs)及其應用
Huang et al. Induced pluripotent stem cell technologies for tissue engineering
CN1610738A (zh) 诱导中胚层干细胞,es细胞,或无限增殖化的中胚层干细胞分化成神经细胞的方法
Lucena et al. Plasticity of mesenchymal stem cells from mouse bone marrow in the presence of conditioned medium of the facial nerve and fibroblast growth factor-2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795749

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012520464

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795749

Country of ref document: EP

Kind code of ref document: A1