WO2011158697A1 - Flexible substrate module - Google Patents

Flexible substrate module Download PDF

Info

Publication number
WO2011158697A1
WO2011158697A1 PCT/JP2011/063035 JP2011063035W WO2011158697A1 WO 2011158697 A1 WO2011158697 A1 WO 2011158697A1 JP 2011063035 W JP2011063035 W JP 2011063035W WO 2011158697 A1 WO2011158697 A1 WO 2011158697A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
printed wiring
flexible
flexible substrate
Prior art date
Application number
PCT/JP2011/063035
Other languages
French (fr)
Japanese (ja)
Inventor
良啓 赤羽
秀樹 松原
裕久 齊藤
裕之 松村
和宏 鬼頭
浩 奥山
Original Assignee
住友電気工業株式会社
住友電工プリントサーキット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工プリントサーキット株式会社 filed Critical 住友電気工業株式会社
Priority to CN201180019703.3A priority Critical patent/CN102893707B/en
Publication of WO2011158697A1 publication Critical patent/WO2011158697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink

Definitions

  • the present invention relates to a flexible substrate module, and more particularly to a flexible substrate module in which a heat source is mounted.
  • Patent Document 1 discloses a lighting device in which a plurality of light emitting diodes are mounted on a flexible substrate.
  • Patent Document 1 discloses that the structure of a flexible substrate on which a light emitting diode is mounted is preferably a multilayer substrate including a metal layer made of copper or the like, or a graphite layer in order to obtain thermal conductivity. It is only an abstract suggestion and ends up with no concreteness.
  • a flexible substrate mounted with a light-emitting heat source such as an LED tends to have insufficient heat dissipation.
  • the advantage of using a flexible substrate is that it is easy to make a three-dimensional structure because the flexible substrate can be bent and attached to the chassis after the luminescent heat source is mounted on the flexible substrate. It is difficult to press and paste the flexible board in accordance with the shape of the case, and especially under and near the light-emitting heat source such as LEDs, it is difficult to apply pressure, so the air layer is not attached to the case when bonding. There is also a problem that the heat dissipation is more difficult to improve due to the interposition between them.
  • heat sources that need to be cooled in addition to the light emitting heat source.
  • a CPU, MPU, power transistor, laser diode, or the like generates a large amount of heat. Examples include electrical elements and devices.
  • the heat dissipating technology has become a major issue as in the case of the above-described light emitting diode.
  • the present invention aims to solve the above-mentioned problems in the prior art, and to provide a flexible substrate module that uses a flexible substrate and that is sufficiently excellent in heat dissipation with respect to a mounted heat source, and that is sufficiently excellent in flexibility and integration. To do.
  • the flexible substrate module of the present invention that solves the above problems is a flexible substrate module in which a printed wiring layer is formed as a surface layer laminated on the surface side of a flexible insulating base material and a heat source is mounted on the printed wiring layer. A heat spot that is transferred from the heat source to the printed wiring layer as a back surface layer that is laminated on the back surface side of the flexible insulating base material when attached to the housing that is the mounting partner.
  • the first feature is that a plurality of heat diffusion promoting layers made of a high thermal conductive material for promoting expansion toward the casing which is the mounting partner are laminated.
  • the thermal diffusion promoting layer is at least a thermal diffusion layer directly bonded to the immediate back surface of the flexible insulating base material as the uppermost layer of the back surface layer.
  • a second feature is that it includes an enhancement layer and a thermal diffusion enhancement layer made of a highly thermally conductive metal sheet that is in contact with the housing as the lowest layer of the back layer.
  • the flexible substrate module of the present invention comprises a flexible printed wiring board including a heat diffusion promoting layer, which is the uppermost layer of the back surface layer, the flexible insulating base material, and the printed wiring layer.
  • the third feature of the present invention is that a plurality of heat sources are mounted on the flexible printed wiring board, and the high thermal conductive metal sheet is divided and arranged corresponding to each of one to a plurality of heat sources.
  • the flexible substrate module of the present invention comprises a flexible printed wiring board including a heat diffusion promoting layer, which is the uppermost layer of the back surface layer, the flexible insulating base material, and the printed wiring layer.
  • a plurality of heat sources are mounted on the printed wiring layer of the flexible printed wiring board, and a highly heat conductive metal sheet that can be bent is arranged in common on the entire back surface of the flexible printed wiring board (a single high heat conductive metal sheet is used for flexible printing).
  • the fourth feature is that it is disposed on the entire back surface of the wiring board.
  • the flexible substrate module of the present invention has a fifth feature that, in addition to any one of the first to fourth features, the housing is a housing of an illumination unit.
  • the flexible substrate module by mounting the heat source on the flexible substrate, it is possible to provide a module having excellent heat source integration and three-dimensional mounting flexibility.
  • a back surface layer laminated on the back surface side of the flexible insulating base material a high heat for encouraging expansion of the area of the heat spot transferred from the heat source to the printed wiring layer toward the housing to which it is attached
  • laminating a plurality of heat diffusion promoting layers made of a conductive material it is possible to exhibit sufficiently good heat dissipation due to the presence of the heat diffusion promoting layer, and to maintain the heat source performance and lifetime well. Became possible.
  • the heat diffusion assisting directly bonded to the immediate back surface of the flexible insulating base material as the uppermost layer of the back surface layer By the layer, the heat spot transferred from the heat source to the printed wiring layer can be quickly transferred to the back surface layer of the flexible substrate through the flexible substrate. And the expansion of the area of the heat spot transferred to the back surface layer of the flexible base material can be promoted downward.
  • the heat diffusion promoting layer made of a highly thermally conductive metal sheet that is in contact with the casing as the lowest layer of the back surface layer further reduces the area of the heat spot with the casing. Enlargement can be encouraged to approach the contact area.
  • the heat spot transferred from the heat source can be transferred to the casing while rapidly expanding to a state close to the contact surface area with the casing.
  • heat transferred from the heat source to the printed wiring layer can be transferred to the housing more efficiently and smoothly in a large area, and good heat dissipation can be achieved.
  • the flexible board module is attached to the casing in contact with the casing. In addition, it is easy to bring them into close contact with each other, and therefore it is possible to sufficiently prevent the air layer from intervening without applying a large pressure between them. As a result, it is possible to ensure good heat dissipation without the presence of an air layer.
  • each of the heat sources corresponds to the flexible printed wiring board on which a plurality of heat sources are mounted. Since the high thermal conductivity metal sheet is divided and arranged, the flexible board module can be flexibly continued in each gap of the divided high thermal conductivity metal sheet even if the thickness of the high thermal conductivity metal sheet is increased. Can be bent. Therefore, the three-dimensional arrangement of the heat source can be easily made possible. In addition, since the thickness of the high heat conductive metal sheet can be increased, the area of the heat spot by the heat source can be expanded more smoothly and can be made closer to the contact surface area with the housing. Therefore, the heat dissipation efficiency can be improved more effectively.
  • a highly heat-conductive metal sheet that can be bent is commonly disposed on the entire back surface of the flexible printed wiring board on which a plurality of heat sources are mounted. Therefore, by using a highly heat conductive metal sheet rich in bendability, the metal sheet has good heat dissipation and bend flexibility as a whole without reducing the thickness of the metal sheet so much. It is possible to provide a flexible substrate module in which heat sources can be arranged in three dimensions.
  • the casing is the casing of the lighting unit.
  • the flexible substrate unit can be flexibly bent and attached, and the heat generated from the heat source can be quickly dissipated to maintain the performance and life of the lighting unit favorably.
  • the flexible substrate module of the present invention it is possible to provide a flexible substrate module that ensures good heat dissipation with respect to the mounted heat source and also ensures good flexibility.
  • the flexible substrate module 1 is a module that is attached so as to be in contact with the housing K to be attached.
  • a printed wiring layer 12 is formed via an adhesive layer a.
  • a light emitting heat source 14 is mounted at a predetermined mounting position of the printed wiring layer 12 via solder 13.
  • the printed wiring layer 12 is covered with a cover lay 15 through an adhesive layer a.
  • the adhesive layer a is integrated with the flexible insulating base material 11 or the cover lay 15, so that the adhesive layer a is eventually formed.
  • the flexible insulating substrate 11 uses an insulating resin film having flexibility such as polyimide and polyester.
  • the thickness can be on the order of several tens of microns, for example 25 ⁇ m.
  • the printed wiring layer 12 can be configured by forming a wiring pattern from the copper foil using a material obtained by attaching a copper foil to the flexible insulating substrate 11 via an adhesive layer a. Although it is easy to use the thickness used for a normal flexible printed wiring board, such as 18 micrometers or 35 micrometers, as the thickness of the printed wiring layer 12, it shall not be limited to the thickness.
  • the solder 13 can be a general lead-free solder or a lead-containing solder made of an alloy such as Sn, Ag, or Cu.
  • the solder 13 is preferably one having good heat conductivity in terms of heat dissipation and good heat durability in terms of life and deterioration.
  • the light emission heat source 14 is specifically various LEDs. Of course, the light emission heat source 14 is intended to emit light and is accompanied by the generation of heat.
  • the coverlay 15 may be a commonly used coverlay material, such as thin glass or epoxy, in addition to the polyimide and polyester described above. In this embodiment, polyimide is used. In the case of polyimide, the thickness can be the thickness used for a normal flexible printed wiring board, such as 12.5 ⁇ m and 25 ⁇ m.
  • the adhesive layer a for example, an adhesive made of an acrylic resin or an epoxy resin which is a thermosetting type can be used. Since it is used for adhesion to the printed wiring layer 12, it is an insulating adhesive.
  • the thickness can be a thickness generally used for an ordinary flexible printed wiring board, such as 25 ⁇ m.
  • the adhesive layer a may be a general epoxy resin or an acrylic resin, or may be a silicone type suitable for ultraviolet use. It can also be used by hot laminating with a hot melt type resin such as a polyimide resin.
  • a plurality of heat diffusion assisting layers 21 and 23 are laminated.
  • the heat diffusion promoting layers 21 and 23 promote, that is, expand, the area of a heat spot (region where the temperature is higher than the surroundings) transferred from the light emitting heat source 14 to the printed wiring layer 12 through the solder 13 downward. Fulfills the function.
  • the heat spot transferred from the light emitting heat source 14 to the printed wiring layer 12 through the solder 13 corresponds to the area of the lower surface of the solder 13. It can be said that the lower surface area of the solder 13 is very small compared to the contact surface area between the casing K and the lowermost layer of the back surface layer of the flexible insulating base material 11.
  • the heat radiation efficiency through the housing K is poor, and the temperature of the light emitting heat source 14 and the surrounding flexible substrate module 1 can be preferably lowered. Can not.
  • the area of the heat spot at the time when the heat spot reaches the housing K becomes closer to the contact area between the lowermost layer of the back surface layer of the flexible insulating base material 11 and the housing K.
  • the present inventor has learned that heat dissipation can be maximized as a result of various experiments and thoughts and errors.
  • the thermal diffusion facilitating layers 21 and 23 fulfill the function of rapidly expanding the area of the heat spot.
  • the thermal diffusion facilitating layer 21 is directly bonded to the immediate back surface of the flexible insulating substrate 11 via the adhesive layer b as the uppermost layer among the back layers laminated on the back surface side of the flexible insulating substrate 11.
  • the thermal diffusion facilitating layer 21 is intended to increase the area of the heat spot and can be a copper foil.
  • a copper foil is greatly different from a double-sided copper-clad substrate used as a substrate of a conventional flexi printed wiring board.
  • both the front and back copper foils are mainly intended to form a wiring layer, and therefore the thickness of the copper foil is very thin suitable for the production of printed wiring.
  • the copper-clad substrate of the conventional printed wiring board has a thickness of about 35 ⁇ m or less even when the copper foil is thick.
  • the thickness of the copper foil is preferably set to a thickness exceeding 35 ⁇ m because of the role of diffusing the heat of the heat spot.
  • the thickness of the copper foil as the thermal diffusion promoting layer 21 is 70 ⁇ m.
  • the thermal diffusion promoting layer 21 does not necessarily need to use Cu.
  • a highly heat conductive metal such as aluminum can be used.
  • graphite such as natural graphite or artificial graphite can be used, or a carbon fiber material containing long carbon fiber, short carbon fiber, or the like, or other non-metallic high thermal conductivity material can be used.
  • the adhesive layer b of the back surface layer laminated on the back surface side of the flexible insulating base material 11 does not include the printed wiring layer 12 as described above, it does not necessarily require insulation, but rather has high heat dissipation.
  • An adhesive can also be used.
  • a paste containing a high heat dissipation filler such as silver powder, copper powder, AlN powder, diamond powder, Al2O3 powder, and short carbon fiber can be used in a paste form or a sheet form. .
  • the content of filler can be increased compared to the case of using only short carbon fibers by embedding AlN powder between the short carbon fibers. Can be raised.
  • the adhesive layer b may be made of the same material as the adhesive layer a.
  • the adhesive layer b is integrated with the flexible insulating base material 11 or the cover lay 22 when the same material as that of the flexible insulating base material 11 or the cover lay 22 is used for the bonding. It may be in a nonexistent state.
  • the heat diffusion promoting layer 23 is a highly thermally conductive metal sheet that is in contact with the housing K as the lowest layer among the back layers laminated on the back side of the flexible insulating substrate 11.
  • a sheet made of an aluminum material can be used as the high thermal conductivity metal sheet as the thermal diffusion promoting layer 23.
  • a metal sheet having high thermal conductivity such as copper or silver can be used.
  • pure aluminum (A1) 1.5 mm thick aluminum can be used as a specific example of the high thermal conductivity metal sheet.
  • the thickness of the aluminum can be in the range of 0.2 mm to 20 mm, for example.
  • the thickness of the copper foil used for the heat diffusion facilitating layer 21 is, for example, 70 ⁇ m, which is thicker, for example, about 0.3 mm to 20 mm. It is possible in the range.
  • the metal sheet can be attached by bonding via the adhesive layer b.
  • a thermosetting adhesive bonding sheet
  • the thermal diffusion promotion layers 21 and 23 are provided. However, one or more thermal diffusion promotion layers may be interposed therebetween. Thereby, the area of the heat spot can be promoted more quickly.
  • the heat diffusion facilitating layer 21 is important for quickly transferring a heat spot thermally conducted from the light emitting heat source 14 to the printed wiring layer 12 to the back surface side of the flexible insulating base material 11 with the housing K. And it is important for enlarging the area of a heat spot toward the lower part where the housing
  • the heat diffusion promoting layer 23 is important for further expanding and promoting the area of the heat spot that has been transferred to transfer heat to the housing K.
  • the thermal diffusion promoting layer 23 as a metal sheet, it is easy to obtain a flat surface by rolling or the like, and the adhesion between the two can be sufficiently enhanced when contacting and attaching to the housing K. As a result, even in a position directly below the light-emitting heat source 14 where it is difficult to apply pressure, it is possible to ensure good adhesion between the two without air or the like and to obtain good heat dissipation.
  • the flexible insulating substrate 11, the printed wiring layer 12 on the front surface side, the cover lay 15 thereon, the thermal diffusion facilitating layer 21 on the back side, and the cover lay 22 covering it You may make it make it independent as the high heat dissipation flexible printed wiring board H with the adhesive layers a and b interposed between them.
  • the cover lay 22 covering the heat diffusion promoting layer 21 and the adhesive layer b joining the same protect the copper foil surface from rust, like the cover lay 15 on the surface side and the adhesive layer a joining it. It is provided as a thing.
  • a high heat conductive metal sheet which is a heat diffusion promoting layer 23 is attached to the high heat dissipation flexible printed wiring board H via the adhesive layer b.
  • the flexible substrate module 1 is configured by mounting and mounting the light emitting heat source 14 via the solder 13.
  • the flexible board module 1 is attached to the housing K via the adhesive layer b.
  • the reason that the heat dissipation characteristics are greatly improved by providing the thermal diffusion promoting layers 21 and 23 is that the area of the heat spot thermally conducted from the light emitting heat source 14 to the printed wiring layer 12 is promoted in the above case. Said that it was due to That is, this increases the heat dissipation path through the housing K, thereby reducing the thermal resistance and achieving rapid heat dissipation.
  • the heat generated by the light emitting heat source 14 such as an LED progresses while spreading to other members by thermal conduction, but the higher the thermal conductivity, the easier it is to spread far. When the thermal conductivity is isotropic, it spreads concentrically.
  • the thermal diffusion promoting layers 21 and 23 the heat diffusion is made smoother by the high thermal conductivity, and the casing below Heat is transmitted to K in a wider area.
  • the heat dissipation is promoted, and the temperature near the light emitting heat source 14 is lowered.
  • the heat radiation path from the light emission heat source 14 can be sufficiently expanded, and the thermal load applied to the light emission heat source 14, the solder 13, and the substrate can be reduced. .
  • the flexible substrate module 1 of the present invention is constituted by the high heat dissipation flexible printed wiring board H, the light emission heat source 14 and the heat diffusion promoting layer 23 made of a highly heat conductive metal sheet will be further described.
  • One or a plurality of light-emitting heat sources 14 can be mounted on the high heat dissipation flexible printed wiring board H.
  • a thermal diffusion promoting layer 23 made of a single highly thermally conductive metal sheet is provided corresponding to all the light emitting heat sources 14.
  • the high heat dissipation flexible printed wiring board H can be arranged in common. As shown in FIG.
  • a heat diffusion facilitating layer 23 made of a highly heat conductive metal sheet is formed to correspond to each of one to a plurality of the light emitting heat sources 14.
  • the heat dissipating flexible printed wiring board H can be divided and configured.
  • a first embodiment of the flexible substrate module 1 will be described with reference to FIG.
  • a highly heat-dissipating flexible printed wiring board H provided with a thermal diffusion promoting layer 21 is prepared, and a thermal diffusion promoting layer 23 made of a highly thermally conductive metal sheet is joined to the back side (A).
  • the bonding can be performed via the adhesive layer b by hot pressing using a thermosetting adhesive (bonding sheet).
  • a plurality of light-emitting heat sources 14 are mounted on the surface of the printed wiring layer 12 on the surface side of the highly heat-dissipating flexible printed wiring board H by a surface mounting through a reflow furnace via the solder 13 (B).
  • the flexible substrate module 1 is configured.
  • the obtained flexible substrate module 1 is attached in contact with the housing K (C).
  • a second embodiment of the flexible substrate module 1 will be described with reference to FIG.
  • a highly heat-dissipating flexible printed wiring board H provided with a heat diffusion promoting layer 21 is prepared, and a heat diffusion promoting layer 23 made of a highly heat conductive metal sheet is divided into a plurality of pieces on the back surface side.
  • Arrange (A) In this case, each of the divided thermal diffusion facilitating layers 23 (high thermal conductivity metal sheet) is arranged with respect to a region corresponding to a region where one or more of the light emission heat sources 14 are to be mounted. Will be.
  • each of the heat diffusion promoting layers 23 can be bonded through the adhesive layer b by hot pressing using a thermosetting adhesive (bonding sheet).
  • a plurality of light-emitting heat sources 14 are mounted on the surface of the printed wiring layer 12 on the surface side of the highly heat-dissipating flexible printed wiring board H by a surface mounting through a reflow furnace via the solder 13 (B).
  • one light-emitting heat source 14 is depicted corresponding to one heat diffusion assisting layer 23 (high thermal conductivity metal sheet).
  • a plurality of light-emitting heat sources 14 may correspond to one thermal diffusion promoting layer 23 (high thermal conductivity metal sheet).
  • the flexible substrate module 1 is configured.
  • the thermal diffusion promoting layer 23 (high thermal conductive metal sheet) is divided and attached, so that the individual thermal diffusion promoting layer 23 (high thermal conductive metal sheet) is suitable for bending. Even if it is thick enough, it is possible to easily bend the highly heat-dissipating flexible printed wiring board H at a portion where the thermal diffusion promoting layer 23 is not attached, and to make a three-dimensional configuration. (C). Therefore, the highly heat-dissipating flexible printed wiring board H can be bent in accordance with the case K having a three-dimensionally bent structure, and each heat diffusion assisting layer 23 (high heat conductive metal sheet) can be used for the case. It can be attached in contact with the body K (D).
  • the flexible substrate module 1 having excellent heat dissipation and mounting a plurality of light emitting heat sources 14 can be easily bent into a three-dimensional shape according to the three-dimensional shape of the casing K, and is in contact with the surface of the casing K. Can be installed in a state.
  • the flexible substrate module 1 of the said 1st Embodiment it is the case where the common heat diffusion assisting layer 23 (high heat conductive metal sheet) is attached to the high heat dissipation flexible printed wiring board H. Even if it exists, the flexible substrate module 1 can be made to be able to be bent positively by setting the material and the sheet thickness of the high thermal conductivity metal sheet as the heat diffusion promoting layer 23 to be bendable conditions. For example, in the case where the high thermal conductivity metal sheet as the thermal diffusion promoting layer 23 is a pure aluminum-based aluminum rolled sheet, the thickness is set to about 0.2 mm to 0.7 mm so that the contact surface with the casing K is provided. The flexible substrate module 1 having a suitable flatness and suitable for bending processing following the three-dimensional shape of the housing K can be obtained.
  • the flexible substrate module of the present invention has high industrial applicability in the field of manufacturing various lighting units and lighting devices using the units.

Abstract

Disclosed is a flexible substrate module that uses a flexible substrate and has sufficiently excellent heat dissipation properties against a mounted heat source, and sufficiently excellent flexibility and accumulation. The flexible substrate module (1) is configured such that a printed wiring layer (12) is formed as a surface layer laminated to the surface side of a flexible insulated base material (11), and a heat source (14) is mounted on the printed wiring layer (12); and is characterized by having, as rear surface layers that are laminated on to the rear surface side of the flexible insulated base material (11), a plurality of laminated thermal expansion promotion layers (21, 23) in the flexible substrate module (1) facing and attached to a casing (K) to which the module is to be attached, made from a highly heat conductive material and for promoting expansion, towards the casing (K) to which the module is to be attached, of the surface area of hot spots that are heat-transferred from the heat source (14) to the printed wiring layer (12).

Description

フレキシブル基板モジュールFlexible board module
 本発明は、フレキシブル基板モジュールに関し、より詳しくは熱源を搭載するようにしたフレキシブル基板モジュールに関する。 The present invention relates to a flexible substrate module, and more particularly to a flexible substrate module in which a heat source is mounted.
 従来、例えば発光ダイオードを用いて照明ユニットを構成する場合、フレキシブル基板を用いて、そのプリント配線層に発光ダイオードを集積することで光量を容易に大きくすることができる。またフレキシブル基板を用いることで、三次元的な立体化が容易にできるメリットがある。
 特開2002-184209号公報(特許文献1)には、フレキシブル基板上に複数の発光ダイオードを搭載した照明装置が開示されている。
Conventionally, when an illumination unit is configured using, for example, a light emitting diode, the amount of light can be easily increased by integrating the light emitting diode on the printed wiring layer using a flexible substrate. In addition, the use of a flexible substrate has an advantage that three-dimensional three-dimensionalization can be easily performed.
Japanese Patent Laid-Open No. 2002-184209 (Patent Document 1) discloses a lighting device in which a plurality of light emitting diodes are mounted on a flexible substrate.
特開2002-184209号公報JP 2002-184209 A
 しかしながら上記特許文献1に記載の照明装置の場合、発光ダイオードを集積搭載したフレキシブル基板において、前記発光ダイオードは一般に熱に弱く、pn接合部の温度が例えば130℃を超えると、輝度低下や寿命低下を引き起こす問題があった。特に最近の高輝度LEDの場合には、如何に放熱の問題を解消するかが大きな課題となっていた。
 特許文献1には発光ダイオードを搭載するフレキシブル基板の構造として、熱伝導性を得るため、例えば銅等からなる金属層やグラファイト層を含む多層基板からなることが好ましいと開示されているが、単なる抽象的な示唆に過ぎず、具体性のないものに終わっている。
 上述したように、LED等の発光熱源を搭載したフレキシブル基板を単に照明装置等の筐体に取り付けるだけでは、放熱作用が不十分となり易い。フレキシブル基板を用いることで、三次元的な立体化が容易にできるメリットがあるのは、発光熱源をフレキシブル基板に一括実装した後にフレキシブル基板を曲げて筐体に取り付けられるからであるが、複雑な筐体の形に合わせてフレキシブル基板をプレスして貼り付けるのは難しく、特にLED等の発光熱源の直下及びその近傍は圧力をあまりかけられないので、接着の際に空気層が筐体との間に介在し易くなり、放熱性の向上が一層、図り難い問題もあった。一方、フレキシブル基板を筐体にプレスで貼り付けてから発光熱源を貼り付けるのは、前述のように複雑な筐体の形に合わせてフレキシブル基板を貼り付ける困難さがあるという問題に加え、発光熱源の配置が水平でない場合には発光熱源の実装を半田リフローの工程を通すことは半田溶融時に発光熱源が脱落するため難しく、発光熱源の半田実装が一つずつ手作業になり、フレキシブル基板のメリットが出せないという問題がある。このようなことから放熱性を十分確保する必要があるような場合には、仕方なくメタルPCBを使用することが多かった。
 なお、上記では熱源として発光ダイオードからなる発光熱源を例に説明したが、冷却が必要な熱源には発光熱源以外にも様々あり、例えばCPU、MPU、パワートランジスター、レーザーダイオード等の発熱量の大きな電気素子、デバイス類があげられる。近年、これらの熱源の発熱量の増加に伴い、その放熱技術が大きな課題となっているのは、上記の発光ダイオードの場合と同様である。
However, in the case of the illumination device described in Patent Document 1, in a flexible substrate on which light emitting diodes are integrated and mounted, the light emitting diodes are generally vulnerable to heat. There was a problem causing. In particular, in the case of recent high-brightness LEDs, how to solve the problem of heat dissipation has become a major issue.
Patent Document 1 discloses that the structure of a flexible substrate on which a light emitting diode is mounted is preferably a multilayer substrate including a metal layer made of copper or the like, or a graphite layer in order to obtain thermal conductivity. It is only an abstract suggestion and ends up with no concreteness.
As described above, simply attaching a flexible substrate mounted with a light-emitting heat source such as an LED to a housing such as a lighting device tends to have insufficient heat dissipation. The advantage of using a flexible substrate is that it is easy to make a three-dimensional structure because the flexible substrate can be bent and attached to the chassis after the luminescent heat source is mounted on the flexible substrate. It is difficult to press and paste the flexible board in accordance with the shape of the case, and especially under and near the light-emitting heat source such as LEDs, it is difficult to apply pressure, so the air layer is not attached to the case when bonding. There is also a problem that the heat dissipation is more difficult to improve due to the interposition between them. On the other hand, attaching the light emitting heat source after the flexible substrate is attached to the housing with a press has the problem that, as described above, it is difficult to attach the flexible substrate in accordance with the complicated shape of the housing. If the heat source is not horizontal, it is difficult to pass the mounting of the light emitting heat source through the solder reflow process because the light emitting heat source falls off when the solder melts, and the solder mounting of the light emitting heat source becomes a manual operation one by one. There is a problem that merit cannot be achieved. For this reason, when it is necessary to ensure sufficient heat dissipation, a metal PCB is often used.
In the above description, a light emitting heat source composed of a light emitting diode is described as an example of the heat source. However, there are various heat sources that need to be cooled in addition to the light emitting heat source. For example, a CPU, MPU, power transistor, laser diode, or the like generates a large amount of heat. Examples include electrical elements and devices. In recent years, with the increase in the amount of heat generated by these heat sources, the heat dissipating technology has become a major issue as in the case of the above-described light emitting diode.
 そこで本発明は上記従来技術における問題点を解消し、フレキシブル基板を用い、しかも搭載される熱源に対する放熱性に十分優れ、且つ柔軟性、集積性にも十分優れたフレキシブル基板モジュールの提供を課題とする。 Accordingly, the present invention aims to solve the above-mentioned problems in the prior art, and to provide a flexible substrate module that uses a flexible substrate and that is sufficiently excellent in heat dissipation with respect to a mounted heat source, and that is sufficiently excellent in flexibility and integration. To do.
 上記課題を解決する本発明のフレキシブル基板モジュールは、フレキシブル絶縁基材の表面側に積層される表面層としてプリント配線層を形成すると共にそのプリント配線層に熱源を搭載するようにしたフレキシブル基板モジュールであって、取り付け相手である筐体に対して接面して取り付けられるものにおいて、前記フレキシブル絶縁基材の裏面側に積層される裏面層として、前記熱源からプリント配線層に伝熱された熱スポットの面積を前記取り付け相手である筐体に向けて拡大を助長するための高熱伝導材からなる熱拡散助長層を、複数に亘って積層してあることを第1の特徴としている。
 また本発明のフレキシブル基板モジュールは、上記第1の特徴に加えて、熱拡散助長層は、少なくとも、前記裏面層のうちの最上位層としてフレキシブル絶縁基材の直ぐ裏面に直接貼り合わされる熱拡散助長層と、前記裏面層のうちの最下位層として前記筐体に対して接面される高熱伝導性金属シートからなる熱拡散助長層とを備えていることを第2の特徴としている。
 また本発明のフレキシブル基板モジュールは、上記第2の特徴に加えて、前記裏面層の最上位層である熱拡散助長層と前記フレキシブル絶縁基材と前記プリント配線層とでフレキシブルプリント配線板を構成し、このフレキシブルプリント配線板に対して、複数の熱源を搭載すると共に熱源の1乃至複数個毎にそれぞれ対応して前記高熱伝導性金属シートを分割配置してあることを第3の特徴としている。
 また本発明のフレキシブル基板モジュールは、上記第2の特徴に加えて、前記裏面層の最上位層である熱拡散助長層と前記フレキシブル絶縁基材と前記プリント配線層とでフレキシブルプリント配線板を構成し、このフレキシブルプリント配線板のプリント配線層に複数の熱源を搭載すると共にフレキシブルプリント配線板の裏面全体に屈曲可能な高熱伝導性金属シートを共通配置(1枚の高熱伝導性金属シートでフレキシブルプリント配線板の裏面全体に配置する)してあることを第4の特徴としている。
 また本発明のフレキシブル基板モジュールは、上記第1~第4の何れか1つの特徴に加えて、筐体が照明ユニットの筐体であることを第5特徴としている。
The flexible substrate module of the present invention that solves the above problems is a flexible substrate module in which a printed wiring layer is formed as a surface layer laminated on the surface side of a flexible insulating base material and a heat source is mounted on the printed wiring layer. A heat spot that is transferred from the heat source to the printed wiring layer as a back surface layer that is laminated on the back surface side of the flexible insulating base material when attached to the housing that is the mounting partner The first feature is that a plurality of heat diffusion promoting layers made of a high thermal conductive material for promoting expansion toward the casing which is the mounting partner are laminated.
Further, in the flexible substrate module of the present invention, in addition to the first feature, the thermal diffusion promoting layer is at least a thermal diffusion layer directly bonded to the immediate back surface of the flexible insulating base material as the uppermost layer of the back surface layer. A second feature is that it includes an enhancement layer and a thermal diffusion enhancement layer made of a highly thermally conductive metal sheet that is in contact with the housing as the lowest layer of the back layer.
In addition to the second feature described above, the flexible substrate module of the present invention comprises a flexible printed wiring board including a heat diffusion promoting layer, which is the uppermost layer of the back surface layer, the flexible insulating base material, and the printed wiring layer. The third feature of the present invention is that a plurality of heat sources are mounted on the flexible printed wiring board, and the high thermal conductive metal sheet is divided and arranged corresponding to each of one to a plurality of heat sources. .
In addition to the second feature described above, the flexible substrate module of the present invention comprises a flexible printed wiring board including a heat diffusion promoting layer, which is the uppermost layer of the back surface layer, the flexible insulating base material, and the printed wiring layer. In addition, a plurality of heat sources are mounted on the printed wiring layer of the flexible printed wiring board, and a highly heat conductive metal sheet that can be bent is arranged in common on the entire back surface of the flexible printed wiring board (a single high heat conductive metal sheet is used for flexible printing). The fourth feature is that it is disposed on the entire back surface of the wiring board.
Further, the flexible substrate module of the present invention has a fifth feature that, in addition to any one of the first to fourth features, the housing is a housing of an illumination unit.
 上記第1の特徴によるフレキシブル基板モジュールによれば、熱源を、フレキシブル基板を用いて、これに搭載することで、熱源の集積性と立体的な取り付け柔軟性とに優れたモジュールを提供できる。特に、フレキシブル絶縁基材の裏面側に積層される裏面層として、前記熱源からプリント配線層に伝熱された熱スポットの面積を前記取り付け相手である筐体に向けて拡大を助長するための高熱伝導材からなる熱拡散助長層を複数に亘って積層してあることにより、熱拡散助長層の介在により十分良好な放熱性を発揮させることができ、熱源の性能や寿命を良好に維持することが可能となった。 According to the flexible substrate module according to the first feature described above, by mounting the heat source on the flexible substrate, it is possible to provide a module having excellent heat source integration and three-dimensional mounting flexibility. In particular, as a back surface layer laminated on the back surface side of the flexible insulating base material, a high heat for encouraging expansion of the area of the heat spot transferred from the heat source to the printed wiring layer toward the housing to which it is attached By laminating a plurality of heat diffusion promoting layers made of a conductive material, it is possible to exhibit sufficiently good heat dissipation due to the presence of the heat diffusion promoting layer, and to maintain the heat source performance and lifetime well. Became possible.
 上記第2の特徴によるフレキシブル基板モジュールによれば、上記第1の特徴による作用効果に加えて、前記裏面層のうちの最上位層としてフレキシブル絶縁基材の直ぐ裏面に直接貼り合わされる熱拡散助長層により、熱源からプリント配線層に伝熱した熱スポットをフレキシブル基材を介してフレキシブル基材の裏面層に速やかに伝熱させることができる。そしてフレキシブル基材の裏面層に伝熱した熱スポットの面積を下方に向けて拡大を助長することができる。加えて、前記裏面層のうちの最下位層として前記筐体に対して接面される高熱伝導性金属シートからなる熱拡散助長層により、更に下方に向けて熱スポットの面積を筐体との接面面積に近づけるように拡大を助長することができる。即ち熱源から伝熱した熱スポットを、筐体との接面面積に近い状態へと速やかに拡大しながら筐体へ伝熱することができる。その結果として、熱源からプリント配線層に伝熱した熱を大きな面積でより効率よくスムーズに筐体に伝熱し、良好な放熱を図ることができる。
 加えて、上記第2の特徴においては、要するに、筐体と接面するフレキシブル基板モジュールの最下層を金属シートで構成するようにしているので、フレキシブル基板モジュールを筐体に接面して取り付ける際に、両者を密着させ易く、よって両者間に大きな圧力を加えなくとも、空気層の介在を十分に防ぐことができる。これにより空気層の介在をなくして良好な放熱性を確保することができる。
According to the flexible substrate module according to the second feature, in addition to the function and effect of the first feature, the heat diffusion assisting directly bonded to the immediate back surface of the flexible insulating base material as the uppermost layer of the back surface layer. By the layer, the heat spot transferred from the heat source to the printed wiring layer can be quickly transferred to the back surface layer of the flexible substrate through the flexible substrate. And the expansion of the area of the heat spot transferred to the back surface layer of the flexible base material can be promoted downward. In addition, the heat diffusion promoting layer made of a highly thermally conductive metal sheet that is in contact with the casing as the lowest layer of the back surface layer further reduces the area of the heat spot with the casing. Enlargement can be encouraged to approach the contact area. That is, the heat spot transferred from the heat source can be transferred to the casing while rapidly expanding to a state close to the contact surface area with the casing. As a result, heat transferred from the heat source to the printed wiring layer can be transferred to the housing more efficiently and smoothly in a large area, and good heat dissipation can be achieved.
In addition, in the second feature, in short, since the lowermost layer of the flexible board module that contacts the casing is made of a metal sheet, the flexible board module is attached to the casing in contact with the casing. In addition, it is easy to bring them into close contact with each other, and therefore it is possible to sufficiently prevent the air layer from intervening without applying a large pressure between them. As a result, it is possible to ensure good heat dissipation without the presence of an air layer.
 上記第3の特徴によるフレキシブル基板モジュールによれば、上記第2の特徴による作用効果に加えて、複数の熱源を搭載したフレキシブルプリント配線板に対して、前記熱源の1乃至複数個毎にそれぞれ対応して前記高熱伝導性金属シートを分割配置する構成であるので、高熱伝導性金属シートの厚みを厚くしても、分割された高熱伝導性金属シートの各間隙において、引き続きフレキシブル基板モジュールを柔軟に曲げることができる。よって熱源の立体的配置を容易に可能とすることができる。加えて、高熱伝導性金属シートの厚みを厚くすることができるので、熱源による熱スポットの面積を下方に向けてよりスムーズに拡大助長し、筐体との接面面積により近づけることができる。よって放熱効率をより効果的に向上させることができる。 According to the flexible board module according to the third feature, in addition to the function and effect of the second feature, each of the heat sources corresponds to the flexible printed wiring board on which a plurality of heat sources are mounted. Since the high thermal conductivity metal sheet is divided and arranged, the flexible board module can be flexibly continued in each gap of the divided high thermal conductivity metal sheet even if the thickness of the high thermal conductivity metal sheet is increased. Can be bent. Therefore, the three-dimensional arrangement of the heat source can be easily made possible. In addition, since the thickness of the high heat conductive metal sheet can be increased, the area of the heat spot by the heat source can be expanded more smoothly and can be made closer to the contact surface area with the housing. Therefore, the heat dissipation efficiency can be improved more effectively.
 上記第4の特徴によるフレキシブル基板モジュールによれば、上記第2の特徴による作用効果に加えて、複数の熱源を搭載したフレキシブルプリント配線板の裏面全体に屈曲可能な高熱伝導性金属シートを共通配置する構成であるので、屈曲性に富んだ高熱伝導性の金属シートを用いることで、該金属シートの厚みをそれほど薄くすることなく、全体として良好な放熱性と屈曲柔軟性を保有し、複数の熱源を立体配置することが容易なフレキシブル基板モジュールを提供することができる。 According to the flexible substrate module according to the fourth feature, in addition to the function and effect of the second feature, a highly heat-conductive metal sheet that can be bent is commonly disposed on the entire back surface of the flexible printed wiring board on which a plurality of heat sources are mounted. Therefore, by using a highly heat conductive metal sheet rich in bendability, the metal sheet has good heat dissipation and bend flexibility as a whole without reducing the thickness of the metal sheet so much. It is possible to provide a flexible substrate module in which heat sources can be arranged in three dimensions.
 上記第5の特徴によるフレキシブル基板モジュールによれば、上記第1~第4の何れかに記載の構成による作用効果に加えて、筐体が照明ユニットの筐体であることにより、照明ユニットの筐体の立体構造に合わせて、フレキシブル基板ユニットを柔軟に屈曲させて取り付けることができると共に、熱源から発生する熱を速やかに放熱させて照明ユニットの性能や寿命を良好に維持することができる。 According to the flexible substrate module of the fifth feature, in addition to the operational effects of the configuration according to any one of the first to fourth aspects, the casing is the casing of the lighting unit. In accordance with the three-dimensional structure of the body, the flexible substrate unit can be flexibly bent and attached, and the heat generated from the heat source can be quickly dissipated to maintain the performance and life of the lighting unit favorably.
 本発明のフレキシブル基板モジュールによれば、搭載した熱源に対して良好な放熱性を確保すると共に、良好な柔軟性をも確保したフレキシブル基板モジュールを提供することができる。 According to the flexible substrate module of the present invention, it is possible to provide a flexible substrate module that ensures good heat dissipation with respect to the mounted heat source and also ensures good flexibility.
本発明のフレキシブル基板モジュールを説明する断面図である。It is sectional drawing explaining the flexible substrate module of this invention. 本発明のフレキシブル基板モジュールの第1の実施形態を説明する図で、(A)、(B)、(C)のそれぞれにおいて、左右に断面図と平面図とを示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining 1st Embodiment of the flexible substrate module of this invention, In each of (A), (B), (C), sectional drawing and a top view are shown on right and left. 本発明のフレキシブル基板モジュールの第2の実施形態を説明する図で、(A)、(B)、(C)、(D)のそれぞれにおいて、左右に断面図と平面図とを示す。It is a figure explaining 2nd Embodiment of the flexible substrate module of this invention, In each of (A), (B), (C), (D), sectional drawing and a top view are shown right and left.
 以下の図面を参照して、本発明に係るフレキシブル基板モジュールの実施形態を説明し、本発明の理解に供する。しかし、以下の説明は本発明の実施形態であって、特許請求の範囲に記載の内容を限定するものではない。 DETAILED DESCRIPTION Embodiments of a flexible substrate module according to the present invention will be described with reference to the following drawings for understanding of the present invention. However, the following description is an embodiment of the present invention, and does not limit the contents described in the claims.
 先ず図1を参照して、本発明の実施形態に係るフレキシブル基板モジュールについて説明する。
 実施形態に係るフレキシブル基板モジュール1は、取り付け対象である筐体Kに対して接面して取り付けられるようにしたモジュールである。
 フレキシブル絶縁基材11の表面側に積層される表面層として、接着層aを介してプリント配線層12を形成している。このプリント配線層12の所定の取り付け位置に半田13を介して発光熱源14が搭載される。前記プリント配線層12は接着層aを介してカバーレイ15で被覆されている。なお接着層aは、その接着の際にフレキシブル絶縁基材11やカバーレイ15と同じ材質を使うときには、フレキシブル絶縁基材11若しくはカバーレイ15と一体となることで、結果的に接着層aが存在しない状態であってもよい。
 前記フレキシブル絶縁基材11は、ポリイミドやポリエステル等の柔軟性をもつ絶縁性樹脂フィルムを用いている。その厚みは、例えば25μm等、数十ミクロンのオーダーとすることができる。
 前記プリント配線層12は、前記フレキシブル絶縁基材11に接着層aを介して銅箔を貼ったものを用いて、その銅箔から配線パターンを形成して構成することができる。プリント配線層12の厚みは、18μm或いは35μm等、通常のフレキシブルプリント配線板に用いられる厚みを使うのが使い易いが、その厚みに限定されないものとする。
 前記半田13は、例えばSn、Ag、Cuなどの合金からなる一般的な鉛フリー半田や鉛含有半田を用いることができる。半田13としては、放熱性の点で熱伝導性が良好なもの、また寿命や劣化の点で熱耐久性の良いものが好ましい。
 前記発光熱源14は、具体的には種々のLEDである。勿論、発光を目的とするものであって、熱の発生を伴うものは、この発光熱源14の範疇である。
 前記カバーレイ15としては、一般的に使われるカバーレイ材料でよく、既述したポリイミドやポリエステルの他、薄手のガラス・エポキシ等の材料がある。本実施形態ではポリイミドを用いている。その厚みはポリイミドの場合、例えば12.5μm、25μm等、通常のフレキシブルプリント配線板に用いられる厚みとすることができる。但し、白カバーレイを使うと、見た目もよく、反射率も上がるので、LED等の発光熱源14からの散乱光が有効利用できるため、照明やバックライト等の照明ユニットに好ましい。
 前記接着層aは、例えば熱硬化タイプであるアクリル樹脂やエポキシ樹脂からなる接着剤を用いることができる。プリント配線層12との接着に使用することから、絶縁性接着剤である。その厚みは、例えば25μm等、通常のフキシブルプリント配線板に一般的に用いられる厚みとすることができる。接着層aとしては、一般的なエポキシ樹脂やアクリル樹脂でもよいし、紫外線用途に適したシリコーン系でもよい。またホットメルトタイプの樹脂、例えばポリイミド樹脂で熱ラミネートしても使うことができる。
First, a flexible substrate module according to an embodiment of the present invention will be described with reference to FIG.
The flexible substrate module 1 according to the embodiment is a module that is attached so as to be in contact with the housing K to be attached.
As a surface layer laminated on the surface side of the flexible insulating base material 11, a printed wiring layer 12 is formed via an adhesive layer a. A light emitting heat source 14 is mounted at a predetermined mounting position of the printed wiring layer 12 via solder 13. The printed wiring layer 12 is covered with a cover lay 15 through an adhesive layer a. When the same material as the flexible insulating base material 11 and the cover lay 15 is used for the bonding, the adhesive layer a is integrated with the flexible insulating base material 11 or the cover lay 15, so that the adhesive layer a is eventually formed. It may be in a nonexistent state.
The flexible insulating substrate 11 uses an insulating resin film having flexibility such as polyimide and polyester. The thickness can be on the order of several tens of microns, for example 25 μm.
The printed wiring layer 12 can be configured by forming a wiring pattern from the copper foil using a material obtained by attaching a copper foil to the flexible insulating substrate 11 via an adhesive layer a. Although it is easy to use the thickness used for a normal flexible printed wiring board, such as 18 micrometers or 35 micrometers, as the thickness of the printed wiring layer 12, it shall not be limited to the thickness.
The solder 13 can be a general lead-free solder or a lead-containing solder made of an alloy such as Sn, Ag, or Cu. The solder 13 is preferably one having good heat conductivity in terms of heat dissipation and good heat durability in terms of life and deterioration.
The light emission heat source 14 is specifically various LEDs. Of course, the light emission heat source 14 is intended to emit light and is accompanied by the generation of heat.
The coverlay 15 may be a commonly used coverlay material, such as thin glass or epoxy, in addition to the polyimide and polyester described above. In this embodiment, polyimide is used. In the case of polyimide, the thickness can be the thickness used for a normal flexible printed wiring board, such as 12.5 μm and 25 μm. However, when using a white coverlay, the appearance is good and the reflectance is increased, so that the scattered light from the light-emitting heat source 14 such as an LED can be used effectively, which is preferable for an illumination unit such as an illumination or a backlight.
For the adhesive layer a, for example, an adhesive made of an acrylic resin or an epoxy resin which is a thermosetting type can be used. Since it is used for adhesion to the printed wiring layer 12, it is an insulating adhesive. The thickness can be a thickness generally used for an ordinary flexible printed wiring board, such as 25 μm. The adhesive layer a may be a general epoxy resin or an acrylic resin, or may be a silicone type suitable for ultraviolet use. It can also be used by hot laminating with a hot melt type resin such as a polyimide resin.
 フレキシブル絶縁基材11の裏面側に積層される裏面層として、複数の熱拡散助長層21、23を積層している。
 前記熱拡散助長層21、23は、前記発光熱源14から半田13を介してプリント配線層12に伝熱した熱スポット(温度が周囲より高い領域)の面積を下方に向けて助長、即ち拡張する機能を果たす。
 前記発光熱源14から半田13を介してプリント配線層12に伝熱した熱スポットは、半田13の下面の面積に相当する。半田13の下面面積は、前記筐体Kと前記フレキシブル絶縁基材11の裏面層の最下位層との接面面積に比べて、非常に小さいと言える。この小さい面積の熱スポットがあまり大きくなることなく筐体Kにまで及ぶときには、筐体Kを介しての放熱効率が悪く、発光熱源14及びその周囲のフレキシブル基板モジュール1の温度を好ましく下げることができない。熱スポットが筐体Kに達した時点での熱スポットの面積が、フレキシブル絶縁基材11の裏面層の最下位層と筐体Kとの接面面積により近くなることで、筐体Kを通じての放熱性を最大限に上げることができることを、本発明者は種々の実験と思考錯誤を重ねた結果、知得した。熱スポットの面積を速やかに拡張させる機能を果たすのが熱拡散助長層21、23である。
As a back surface layer laminated on the back surface side of the flexible insulating base material 11, a plurality of heat diffusion assisting layers 21 and 23 are laminated.
The heat diffusion promoting layers 21 and 23 promote, that is, expand, the area of a heat spot (region where the temperature is higher than the surroundings) transferred from the light emitting heat source 14 to the printed wiring layer 12 through the solder 13 downward. Fulfills the function.
The heat spot transferred from the light emitting heat source 14 to the printed wiring layer 12 through the solder 13 corresponds to the area of the lower surface of the solder 13. It can be said that the lower surface area of the solder 13 is very small compared to the contact surface area between the casing K and the lowermost layer of the back surface layer of the flexible insulating base material 11. When the heat spot of this small area reaches the housing K without becoming too large, the heat radiation efficiency through the housing K is poor, and the temperature of the light emitting heat source 14 and the surrounding flexible substrate module 1 can be preferably lowered. Can not. The area of the heat spot at the time when the heat spot reaches the housing K becomes closer to the contact area between the lowermost layer of the back surface layer of the flexible insulating base material 11 and the housing K. The present inventor has learned that heat dissipation can be maximized as a result of various experiments and thoughts and errors. The thermal diffusion facilitating layers 21 and 23 fulfill the function of rapidly expanding the area of the heat spot.
 前記熱拡散助長層21は、フレキシブル絶縁基材11の裏面側に積層される裏面層のうちの最上位層として、フレキシブル絶縁基材11の直ぐ裏面に接着層bを介して直接貼り合わされる。
 熱拡散助長層21は、熱スポットの面積の増加を目的としたもので、銅箔とすることができる。但し銅箔であっても、従来のフレキシプリント配線板の基板として用いられる両面銅張り基板とは大きく異なる。従来の両面銅張り基板は、表裏面の銅箔は何れも配線層を形成することを主たる目的としたものであり、従って銅箔の厚みがプリント配線の作製用に適して非常に薄い。即ち、従来のプリント配線板の銅張基板は、銅箔の厚みが厚くとも35μm程度以下である。これに対して本発明では、銅箔の厚みは、熱スポットの熱を拡散させる役割から、前記35μmを上回る厚みとすることが望ましい。本実施形態では、熱拡散助長層21としての銅箔の厚みを70μmとしている。
 熱拡散助長層21はCuを必ずしも用いる必要はない。熱拡散を目的とするものとして、アルミ等の高熱伝導性金属を用いることができる。また天然グラファイトや人工グラファイト等のグラファイトを用い、或いは長炭素繊維や短炭素繊維等を含む炭素繊維材、その他の非金属高熱伝導性材を用いることができる。
 前記フレキシブル絶縁基材11の裏面側に積層される裏面層の接着層bは、上記のようなプリント配線層12を含まないことから、絶縁性を必ずしも必要とせず、むしろ高放熱性を保有した接着剤を用いることもできる。このような高放熱性の接着剤としては、銀粉、銅粉、AlN粉、ダイヤモンド粉、Al2O3粉、短炭素繊維などの高放熱フィラーを含有したものを、ペースト状やシート状で用いることができる。例えば短炭素繊維とAlN粉を混ぜれば、短炭素繊維の間にAlN粉が埋まることにより、フィラーの含有率を短炭素繊維のみの場合に比べて上げることができ、より熱伝導性・放熱特性を上げることができる。勿論、接着層bは接着層aと同じ材質であってもよい。
 なお接着層bは、その接着の際にフレキシブル絶縁基材11やカバーレイ22と同じ材質を使うときには、フレキシブル絶縁基材11もしくはカバーレイ22と一体となることで、結果的に接着層bが存在しない状態であってもよい。
The thermal diffusion facilitating layer 21 is directly bonded to the immediate back surface of the flexible insulating substrate 11 via the adhesive layer b as the uppermost layer among the back layers laminated on the back surface side of the flexible insulating substrate 11.
The thermal diffusion facilitating layer 21 is intended to increase the area of the heat spot and can be a copper foil. However, even a copper foil is greatly different from a double-sided copper-clad substrate used as a substrate of a conventional flexi printed wiring board. In the conventional double-sided copper-clad substrate, both the front and back copper foils are mainly intended to form a wiring layer, and therefore the thickness of the copper foil is very thin suitable for the production of printed wiring. That is, the copper-clad substrate of the conventional printed wiring board has a thickness of about 35 μm or less even when the copper foil is thick. On the other hand, in the present invention, the thickness of the copper foil is preferably set to a thickness exceeding 35 μm because of the role of diffusing the heat of the heat spot. In the present embodiment, the thickness of the copper foil as the thermal diffusion promoting layer 21 is 70 μm.
The thermal diffusion promoting layer 21 does not necessarily need to use Cu. For the purpose of thermal diffusion, a highly heat conductive metal such as aluminum can be used. In addition, graphite such as natural graphite or artificial graphite can be used, or a carbon fiber material containing long carbon fiber, short carbon fiber, or the like, or other non-metallic high thermal conductivity material can be used.
Since the adhesive layer b of the back surface layer laminated on the back surface side of the flexible insulating base material 11 does not include the printed wiring layer 12 as described above, it does not necessarily require insulation, but rather has high heat dissipation. An adhesive can also be used. As such a high heat dissipation adhesive, a paste containing a high heat dissipation filler such as silver powder, copper powder, AlN powder, diamond powder, Al2O3 powder, and short carbon fiber can be used in a paste form or a sheet form. . For example, if short carbon fibers and AlN powder are mixed, the content of filler can be increased compared to the case of using only short carbon fibers by embedding AlN powder between the short carbon fibers. Can be raised. Of course, the adhesive layer b may be made of the same material as the adhesive layer a.
The adhesive layer b is integrated with the flexible insulating base material 11 or the cover lay 22 when the same material as that of the flexible insulating base material 11 or the cover lay 22 is used for the bonding. It may be in a nonexistent state.
 一方、前記熱拡散助長層23は、フレキシブル絶縁基材11の裏面側に積層される裏面層のうちの最下位層として、前記筐体Kに対して接面される高熱伝導性金属シートとしている。
 この熱拡散助長層23としての高熱伝導性金属シートは、例えばアルミ材料からなるシートを用いることができる。勿論、その他、銅、銀等の高熱伝導性の金属シートを用いることができる。前記高熱伝導性金属シートの具体例として、例えば純アルミ系(A1系)の1.5mm厚のアルミを用いることができる。勿論、前記アルミの厚みは、例えば0.2mm~20mmの範囲で可能である。また高熱伝導性金属シートを銅シートとする場合においても、その厚みは、前記熱拡散助長層21に用いられる銅箔が例えば70μm厚であるのに対し、更に厚い、例えば0.3mm~20mm程度の範囲で可能である。
 熱拡散助長層23としての高熱伝導性金属シートを筐体Kに対して接面状態に取り付けるには、接着層bを介して接着させることで取り付けることができる。この場合、空気層が両者間に介在することがないようにするには、接着剤として、熱硬化性の接着剤(ボンディングシート)を用い、ホットプレスで両者を接着するのが好ましい。また両者の接着は発光熱源14を実装する前に行うのが好ましい。
 また熱拡散助長層23としての高熱伝導性金属シートと筐体Kとを接面状態に取り付ける方法としては、両者が金属シート同士で平滑度が良好であれば、螺子止めによる取り付けも可能である。その場合、必要に応じてサーマルグリースや熱伝導シート等の緩衝材を介在させて両者の密着性を確保することができる。螺子止めによる場合は、フレキシブル基板モジュール1の交換が可能となるメリットがある。
On the other hand, the heat diffusion promoting layer 23 is a highly thermally conductive metal sheet that is in contact with the housing K as the lowest layer among the back layers laminated on the back side of the flexible insulating substrate 11. .
For example, a sheet made of an aluminum material can be used as the high thermal conductivity metal sheet as the thermal diffusion promoting layer 23. Of course, a metal sheet having high thermal conductivity such as copper or silver can be used. As a specific example of the high thermal conductivity metal sheet, for example, pure aluminum (A1) 1.5 mm thick aluminum can be used. Of course, the thickness of the aluminum can be in the range of 0.2 mm to 20 mm, for example. In the case where a copper sheet is used as the high thermal conductive metal sheet, the thickness of the copper foil used for the heat diffusion facilitating layer 21 is, for example, 70 μm, which is thicker, for example, about 0.3 mm to 20 mm. It is possible in the range.
In order to attach the highly thermally conductive metal sheet as the heat diffusion promoting layer 23 to the housing K in a contact surface state, the metal sheet can be attached by bonding via the adhesive layer b. In this case, it is preferable to use a thermosetting adhesive (bonding sheet) as an adhesive and to bond them by hot pressing so that an air layer is not interposed between them. Also, it is preferable to bond the two before mounting the light-emitting heat source 14.
Further, as a method of attaching the high thermal conductivity metal sheet as the heat diffusion promoting layer 23 and the housing K in contact with each other, if both are metal sheets and have good smoothness, attachment by screwing is also possible. . In that case, the adhesiveness of both can be ensured by interposing a cushioning material such as thermal grease or a heat conductive sheet as necessary. In the case of screwing, there is an advantage that the flexible substrate module 1 can be replaced.
 本実施形態では熱拡散助長層21、23を設けたが、それらの間に更に1乃至複数の熱拡散助長層を介在させて設けることができる。これにより熱スポットの面積の助長を一層速やかに行うことができる。
 前記熱拡散助長層21は、発光熱源14からプリント配線層12に熱伝導した熱スポットを、筐体Kのあるフレキシブル絶縁基材11の裏面側へ速やかに伝熱させるのに重要である。そして筐体Kのある下方に向けて熱スポットの面積を拡大させるのに重要である。
 また前記熱拡散助長層23は、伝熱してきた熱スポットの面積を更に拡張、助長して筐体Kに伝熱するのに重要である。加えて熱拡散助長層23を金属シートとすることで、圧延等により平坦面を得易く、筐体Kに接面して取り付ける際に、両者間の密着性を十分に高めることができる。これによって、圧力を加え難い発光熱源14の直下の位置にあっても、空気等の介在のない状態での両者の密着を確保して、良好な放熱性を得ることができる。
In the present embodiment, the thermal diffusion promotion layers 21 and 23 are provided. However, one or more thermal diffusion promotion layers may be interposed therebetween. Thereby, the area of the heat spot can be promoted more quickly.
The heat diffusion facilitating layer 21 is important for quickly transferring a heat spot thermally conducted from the light emitting heat source 14 to the printed wiring layer 12 to the back surface side of the flexible insulating base material 11 with the housing K. And it is important for enlarging the area of a heat spot toward the lower part where the housing | casing K exists.
The heat diffusion promoting layer 23 is important for further expanding and promoting the area of the heat spot that has been transferred to transfer heat to the housing K. In addition, by using the thermal diffusion promoting layer 23 as a metal sheet, it is easy to obtain a flat surface by rolling or the like, and the adhesion between the two can be sufficiently enhanced when contacting and attaching to the housing K. As a result, even in a position directly below the light-emitting heat source 14 where it is difficult to apply pressure, it is possible to ensure good adhesion between the two without air or the like and to obtain good heat dissipation.
 なお、前記フレキシブル絶縁基材11と、その表面側のある前記プリント配線層12と、その上のカバーレイ15と、裏面側にある前記熱拡散助長層21と、それを覆うカバーレイ22と、それらの間に介在する接着層a、bとでもって、高放熱性フレキシブルプリント配線板Hとして独立させるようにしてもよい。この場合、前記熱拡散助長層21を覆うカバーレイ22及びそれを接合する接着層bは、表面側のカバーレイ15及びそれを接合する接着層aと同様に、銅箔表面を錆から保護するものとして設けられる。
 前記高放熱性フレキシブルプリント配線板Hを独立した部材とする場合には、この高放熱性フレキシブルプリント配線板Hに対して熱拡散助長層23である高熱伝導性金属シートを接着層bを介して取り付け、また発光熱源14を半田13を介して搭載することで、フレキシブル基板モジュール1が構成されることになる。そしてこのフレキシブル基板モジュール1が、筐体Kに対して、接着層bを介して取り付けられることになる。
The flexible insulating substrate 11, the printed wiring layer 12 on the front surface side, the cover lay 15 thereon, the thermal diffusion facilitating layer 21 on the back side, and the cover lay 22 covering it, You may make it make it independent as the high heat dissipation flexible printed wiring board H with the adhesive layers a and b interposed between them. In this case, the cover lay 22 covering the heat diffusion promoting layer 21 and the adhesive layer b joining the same protect the copper foil surface from rust, like the cover lay 15 on the surface side and the adhesive layer a joining it. It is provided as a thing.
When the high heat dissipation flexible printed wiring board H is an independent member, a high heat conductive metal sheet which is a heat diffusion promoting layer 23 is attached to the high heat dissipation flexible printed wiring board H via the adhesive layer b. The flexible substrate module 1 is configured by mounting and mounting the light emitting heat source 14 via the solder 13. The flexible board module 1 is attached to the housing K via the adhesive layer b.
 本発明において、熱拡散助長層21、23を設けることにより放熱特性が大きく改善する理由は、上記において、発光熱源14からプリント配線層12に熱伝導した熱スポットの面積を助長させて筐体Kに至らしめることによると述べた。即ち、これによって筐体Kを通じての放熱パスが広がり、それにより熱抵抗が下がり、速やかなる放熱が達成されるからである。
 LED等の発光熱源14で発生した熱が熱伝導で他部材へ拡がりながら進んでいくが、熱伝導率が高いほど遠くまで広がり易い。熱伝導率が等方性とした場合、同心円状に拡がって行くが、熱拡散助長層21、23を設けることにより、その高熱伝導率によって熱の拡散がよりスムーズになされ、下方にある筐体Kにもより広い領域で熱が伝わる。筐体Kへ達する熱領域の面積が大きくなることで、より大きな熱面積からの放熱が期待されることになり、結果として放熱が促進され、発光熱源14付近での温度低下がなされる。
 以上のように、本発明のフレキシブル基板モジュール1では、発光熱源14からの放熱パスを十分に拡げることが可能となり、発光熱源14、半田13、基板に加わる熱負荷を軽減することができるのである。
In the present invention, the reason that the heat dissipation characteristics are greatly improved by providing the thermal diffusion promoting layers 21 and 23 is that the area of the heat spot thermally conducted from the light emitting heat source 14 to the printed wiring layer 12 is promoted in the above case. Said that it was due to That is, this increases the heat dissipation path through the housing K, thereby reducing the thermal resistance and achieving rapid heat dissipation.
The heat generated by the light emitting heat source 14 such as an LED progresses while spreading to other members by thermal conduction, but the higher the thermal conductivity, the easier it is to spread far. When the thermal conductivity is isotropic, it spreads concentrically. However, by providing the thermal diffusion promoting layers 21 and 23, the heat diffusion is made smoother by the high thermal conductivity, and the casing below Heat is transmitted to K in a wider area. By increasing the area of the heat region reaching the housing K, heat dissipation from a larger heat area is expected. As a result, heat dissipation is promoted, and the temperature near the light emitting heat source 14 is lowered.
As described above, in the flexible substrate module 1 of the present invention, the heat radiation path from the light emission heat source 14 can be sufficiently expanded, and the thermal load applied to the light emission heat source 14, the solder 13, and the substrate can be reduced. .
 本発明のフレキシブル基板モジュール1を、前記高放熱性フレキシブルプリント配線板Hと発光熱源14と高熱伝導性金属シートからなる熱拡散助長層23とで構成する場合について、更に言及する。
 高放熱性フレキシブルプリント配線板Hに対しては、1乃至複数個の発光熱源14を搭載することができる。
 この場合において、図2に示すように、フレキシブル基板モジュール1の第1の実施形態として、前記全ての発光熱源14に対応して、1枚の高熱伝導性金属シートからなる熱拡散助長層23を高放熱性フレキシブルプリント配線板Hに共通配置して構成することができる。
 また図3に示すように、フレキシブル基板モジュール1の第2の実施形態として、前記発光熱源14の1乃至複数個毎にそれぞれ対応して、高熱伝導性金属シートからなる熱拡散助長層23を高放熱性フレキシブルプリント配線板Hに分割配置して構成することができる。
The case where the flexible substrate module 1 of the present invention is constituted by the high heat dissipation flexible printed wiring board H, the light emission heat source 14 and the heat diffusion promoting layer 23 made of a highly heat conductive metal sheet will be further described.
One or a plurality of light-emitting heat sources 14 can be mounted on the high heat dissipation flexible printed wiring board H.
In this case, as shown in FIG. 2, as a first embodiment of the flexible substrate module 1, a thermal diffusion promoting layer 23 made of a single highly thermally conductive metal sheet is provided corresponding to all the light emitting heat sources 14. The high heat dissipation flexible printed wiring board H can be arranged in common.
As shown in FIG. 3, as a second embodiment of the flexible substrate module 1, a heat diffusion facilitating layer 23 made of a highly heat conductive metal sheet is formed to correspond to each of one to a plurality of the light emitting heat sources 14. The heat dissipating flexible printed wiring board H can be divided and configured.
 図2を参照して、フレキシブル基板モジュール1の第1の実施形態を説明する。
 先ず、熱拡散助長層21を備えた高放熱性フレキシブルプリント配線板Hを用意し、この裏面側に高熱伝導性金属シートからなる熱拡散助長層23を接合する(A)。接合は、既述したように熱硬化性の接着剤(ボンディングシート)を用いたホットプレスにて接着層bを介して行うことができる。
 次に高放熱性フレキシブルプリント配線板Hの表面側のプリント配線層12に発光熱源14を複数個、それぞれ半田13を介してリフロー炉を通して表面実装することで一度に取り付ける(B)。これによりフレキシブル基板モジュール1が構成される。
 得られたフレキシブル基板モジュール1を筐体Kに対して接面して取り付ける(C)。
A first embodiment of the flexible substrate module 1 will be described with reference to FIG.
First, a highly heat-dissipating flexible printed wiring board H provided with a thermal diffusion promoting layer 21 is prepared, and a thermal diffusion promoting layer 23 made of a highly thermally conductive metal sheet is joined to the back side (A). As described above, the bonding can be performed via the adhesive layer b by hot pressing using a thermosetting adhesive (bonding sheet).
Next, a plurality of light-emitting heat sources 14 are mounted on the surface of the printed wiring layer 12 on the surface side of the highly heat-dissipating flexible printed wiring board H by a surface mounting through a reflow furnace via the solder 13 (B). Thereby, the flexible substrate module 1 is configured.
The obtained flexible substrate module 1 is attached in contact with the housing K (C).
 図3を参照して、フレキシブル基板モジュール1の第2の実施形態を説明する。
 先ず、熱拡散助長層21を備えた高放熱性フレキシブルプリント配線板Hを用意し、この裏面側に高熱伝導性金属シートからなる熱拡散助長層23を、複数個に分割した状態で、それぞれ接合、配置する(A)。この場合において、分割された状態の各熱拡散助長層23(高熱伝導性金属シート)は、それぞれ発光熱源14の1乃至複数個が搭載されることとなる領域に対応する領域に対して配置されることになる。各熱拡散助長層23の接合は、既述したように熱硬化性の接着剤(ボンディングシート)を用いたホットプレスにて接着層bを介して行うことができる。
 次に高放熱性フレキシブルプリント配線板Hの表面側のプリント配線層12に発光熱源14を複数個、それぞれ半田13を介してリフロー炉を通して表面実装することで一度に取り付ける(B)。図面上は、1つの熱拡散助長層23(高熱伝導性金属シート)に対して1個の発光熱源14が対応した状態に描かれている。しかし勿論、1つの熱拡散助長層23(高熱伝導性金属シート)に対して複数個の発光熱源14が対応するものであってもよいことは上述した通りである。これによりフレキシブル基板モジュール1が構成される。
 得られたフレキシブル基板モジュール1は、熱拡散助長層23(高熱伝導性金属シート)が分割されて取り付けられているので、例え個々の熱拡散助長層23(高熱伝導性金属シート)が屈曲に適さない程厚肉になっている場合であっても、熱拡散助長層23の取り付けられていない部分において高放熱性フレキシブルプリント配線板Hを容易に屈曲させて、立体的構成とすることが可能となる(C)。
 よって立体的に屈曲された構造の筐体Kに対しても、それに合わせて高放熱性フレキシブルプリント配線板Hを屈曲させることができ、各熱拡散助長層23(高熱伝導性金属シート)で筐体Kに接面して取り付けることができる(D)。即ち、放熱性に優れ且つ複数の発光熱源14を搭載させたフレキシブル基板モジュール1を、筐体Kの立体形状に合わせて容易に立体形状に屈曲させることができ、筐体Kの表面に接面状態で取り付けることができる。
A second embodiment of the flexible substrate module 1 will be described with reference to FIG.
First, a highly heat-dissipating flexible printed wiring board H provided with a heat diffusion promoting layer 21 is prepared, and a heat diffusion promoting layer 23 made of a highly heat conductive metal sheet is divided into a plurality of pieces on the back surface side. Arrange (A). In this case, each of the divided thermal diffusion facilitating layers 23 (high thermal conductivity metal sheet) is arranged with respect to a region corresponding to a region where one or more of the light emission heat sources 14 are to be mounted. Will be. As described above, each of the heat diffusion promoting layers 23 can be bonded through the adhesive layer b by hot pressing using a thermosetting adhesive (bonding sheet).
Next, a plurality of light-emitting heat sources 14 are mounted on the surface of the printed wiring layer 12 on the surface side of the highly heat-dissipating flexible printed wiring board H by a surface mounting through a reflow furnace via the solder 13 (B). In the drawing, one light-emitting heat source 14 is depicted corresponding to one heat diffusion assisting layer 23 (high thermal conductivity metal sheet). However, of course, as described above, a plurality of light-emitting heat sources 14 may correspond to one thermal diffusion promoting layer 23 (high thermal conductivity metal sheet). Thereby, the flexible substrate module 1 is configured.
In the obtained flexible substrate module 1, the thermal diffusion promoting layer 23 (high thermal conductive metal sheet) is divided and attached, so that the individual thermal diffusion promoting layer 23 (high thermal conductive metal sheet) is suitable for bending. Even if it is thick enough, it is possible to easily bend the highly heat-dissipating flexible printed wiring board H at a portion where the thermal diffusion promoting layer 23 is not attached, and to make a three-dimensional configuration. (C).
Therefore, the highly heat-dissipating flexible printed wiring board H can be bent in accordance with the case K having a three-dimensionally bent structure, and each heat diffusion assisting layer 23 (high heat conductive metal sheet) can be used for the case. It can be attached in contact with the body K (D). That is, the flexible substrate module 1 having excellent heat dissipation and mounting a plurality of light emitting heat sources 14 can be easily bent into a three-dimensional shape according to the three-dimensional shape of the casing K, and is in contact with the surface of the casing K. Can be installed in a state.
 なお、上記第1の実施形態のフレキシブル基板モジュール1に示すように、1枚の共通の熱拡散助長層23(高熱伝導性金属シート)を高放熱性フレキシブルプリント配線板Hに取り付けている場合であっても、この熱拡散助長層23である高熱伝導性金属シートの材質及びシート厚を屈曲可能な条件とすることで、フレキシブル基板モジュール1を、正に屈曲可能なものとすることができる。例えば熱拡散助長層23である高熱伝導性金属シートを純アルミ系のアルミ圧延シートとする場合には、厚みを0.2mm~0.7mm程度とすることで、筐体Kとの接面に適した平坦度を有し、且つ筐体Kの立体形状に追従した曲げ加工にも適した、フレキシブル基板モジュール1を得ることができる。 In addition, as shown in the flexible substrate module 1 of the said 1st Embodiment, it is the case where the common heat diffusion assisting layer 23 (high heat conductive metal sheet) is attached to the high heat dissipation flexible printed wiring board H. Even if it exists, the flexible substrate module 1 can be made to be able to be bent positively by setting the material and the sheet thickness of the high thermal conductivity metal sheet as the heat diffusion promoting layer 23 to be bendable conditions. For example, in the case where the high thermal conductivity metal sheet as the thermal diffusion promoting layer 23 is a pure aluminum-based aluminum rolled sheet, the thickness is set to about 0.2 mm to 0.7 mm so that the contact surface with the casing K is provided. The flexible substrate module 1 having a suitable flatness and suitable for bending processing following the three-dimensional shape of the housing K can be obtained.
 本発明のフレキシブル基板モジュールによれば、種々の照明ユニットやそのユニットを用いた照明装置の製造分野おいて産業上の利用性が高い。 The flexible substrate module of the present invention has high industrial applicability in the field of manufacturing various lighting units and lighting devices using the units.
 1     フレキシブル基板モジュール
 11    フレキシブル絶縁基材
 12    プリント配線層
 13    半田
 14    発光熱源
 15    カバーレイ
 21    熱拡散助長層
 22    カバーレイ
 23    熱拡散助長層(高熱伝導性金属シート)
 H     高放熱性フレキシブルプリント配線板
 K     筐体
 a     接着層
 b     接着層
DESCRIPTION OF SYMBOLS 1 Flexible substrate module 11 Flexible insulating base material 12 Printed wiring layer 13 Solder 14 Luminous heat source 15 Coverlay 21 Thermal diffusion promotion layer 22 Coverlay 23 Thermal diffusion promotion layer (high thermal conductivity metal sheet)
H High heat dissipation flexible printed wiring board K Case a Adhesive layer b Adhesive layer

Claims (5)

  1.  フレキシブル絶縁基材の表面側に積層される表面層としてプリント配線層を形成すると共にそのプリント配線層に熱源を搭載するようにしたフレキシブル基板モジュールであって、取り付け相手である筐体に対して接面して取り付けられるものにおいて、前記フレキシブル絶縁基材の裏面側に積層される裏面層として、前記熱源からプリント配線層に伝熱された熱スポットの面積を前記取り付け相手である筐体に向けて拡大を助長するための高熱伝導材からなる熱拡散助長層を、複数に亘って積層してあることを特徴とするフレキシブル基板モジュール。 A flexible circuit board module in which a printed wiring layer is formed as a surface layer to be laminated on the surface side of a flexible insulating base material, and a heat source is mounted on the printed wiring layer, and is in contact with a housing to be attached. As the back surface layer laminated on the back surface side of the flexible insulating base material, the area of the heat spot transferred from the heat source to the printed wiring layer is directed to the housing that is the mounting partner. A flexible substrate module, wherein a plurality of heat diffusion promoting layers made of a high thermal conductive material for promoting expansion are laminated.
  2.  熱拡散助長層は、少なくとも、前記裏面層のうちの最上位層としてフレキシブル絶縁基材の直ぐ裏面に直接貼り合わされる熱拡散助長層と、前記裏面層のうちの最下位層として前記筐体に対して接面される高熱伝導性金属シートからなる熱拡散助長層とを備えていることを特徴とする請求項1に記載のフレキシブル基板モジュール。 The thermal diffusion promoting layer is at least a thermal diffusion promoting layer that is directly bonded to the immediate back surface of the flexible insulating substrate as the uppermost layer of the back surface layer, and the lower layer of the back surface layer on the casing. The flexible substrate module according to claim 1, further comprising a heat diffusion promoting layer made of a highly thermally conductive metal sheet that is in contact with the metal sheet.
  3.  前記裏面層の最上位層である熱拡散助長層と前記フレキシブル絶縁基材と前記プリント配線層とでフレキシブルプリント配線板を構成し、このフレキシブルプリント配線板に対して、複数の熱源を搭載すると共に熱源の1乃至複数個毎にそれぞれ対応して前記高熱伝導性金属シートを分割配置してあることを特徴とする請求項2に記載のフレキシブル基板モジュール。 A flexible printed wiring board is constituted by the heat diffusion promoting layer, the flexible insulating base material, and the printed wiring layer which are the uppermost layers of the back layer, and a plurality of heat sources are mounted on the flexible printed wiring board. 3. The flexible substrate module according to claim 2, wherein the high thermal conductivity metal sheet is divided and arranged corresponding to each of one to a plurality of heat sources.
  4.  前記裏面層の最上位層である熱拡散助長層と前記フレキシブル絶縁基材と前記プリント配線層とでフレキシブルプリント配線板を構成し、このフレキシブルプリント配線板のプリント配線層に複数の熱源を搭載すると共にフレキシブルプリント配線板の裏面全体に屈曲可能な高熱伝導性金属シートを共通配置してあることを特徴とする請求項2に記載のフレキシブル基板モジュール。 A flexible printed wiring board is constituted by the heat diffusion promoting layer which is the uppermost layer of the back layer, the flexible insulating base material, and the printed wiring layer, and a plurality of heat sources are mounted on the printed wiring layer of the flexible printed wiring board. The flexible board module according to claim 2, wherein a bendable high thermal conductive metal sheet is disposed in common on the entire back surface of the flexible printed wiring board.
  5.  筐体が照明ユニットの筐体であることを特徴とする請求項1~4の何れかに記載のフレキシブル基板モジュール。 5. The flexible substrate module according to claim 1, wherein the casing is a casing of a lighting unit.
PCT/JP2011/063035 2010-06-15 2011-06-07 Flexible substrate module WO2011158697A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180019703.3A CN102893707B (en) 2010-06-15 2011-06-07 flexible substrate module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010135694A JP5629135B2 (en) 2010-06-15 2010-06-15 Flexible board module
JP2010-135694 2010-06-15

Publications (1)

Publication Number Publication Date
WO2011158697A1 true WO2011158697A1 (en) 2011-12-22

Family

ID=45348102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063035 WO2011158697A1 (en) 2010-06-15 2011-06-07 Flexible substrate module

Country Status (4)

Country Link
JP (1) JP5629135B2 (en)
CN (1) CN102893707B (en)
TW (1) TWI482536B (en)
WO (1) WO2011158697A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020096031A (en) * 2018-12-11 2020-06-18 株式会社小糸製作所 Circuit board and vehicle lamp

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6259576B2 (en) * 2013-03-05 2018-01-10 株式会社小糸製作所 Light source unit and vehicle lamp
JP6528503B2 (en) * 2015-03-30 2019-06-12 大日本印刷株式会社 LED BACKLIGHT AND LED DISPLAY USING THE SAME
JP2020205206A (en) * 2019-06-19 2020-12-24 株式会社小糸製作所 Lamp unit
JP2020205207A (en) * 2019-06-19 2020-12-24 株式会社小糸製作所 Lamp unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261165A (en) * 1999-03-04 2000-09-22 Osram Opt Semiconductors Gmbh & Co Offene Handels G Flexible led multiple module
JP2002184209A (en) * 2000-12-19 2002-06-28 Matsushita Electric Ind Co Ltd Lighting system
JP2003086747A (en) * 2001-09-10 2003-03-20 Hitachi Ltd Insulation circuit board, its manufacturing method and semiconductor power element using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007139195A1 (en) * 2006-05-31 2009-10-15 電気化学工業株式会社 LED light source unit
JP5279225B2 (en) * 2007-09-25 2013-09-04 三洋電機株式会社 Light emitting module and manufacturing method thereof
JP5154387B2 (en) * 2008-12-01 2013-02-27 日本発條株式会社 Printed wiring board and manufacturing method thereof, printed wiring board semi-finished product chain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261165A (en) * 1999-03-04 2000-09-22 Osram Opt Semiconductors Gmbh & Co Offene Handels G Flexible led multiple module
JP2002184209A (en) * 2000-12-19 2002-06-28 Matsushita Electric Ind Co Ltd Lighting system
JP2003086747A (en) * 2001-09-10 2003-03-20 Hitachi Ltd Insulation circuit board, its manufacturing method and semiconductor power element using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020096031A (en) * 2018-12-11 2020-06-18 株式会社小糸製作所 Circuit board and vehicle lamp
WO2020121961A1 (en) * 2018-12-11 2020-06-18 株式会社小糸製作所 Circuit board and vehicle light
JP7297431B2 (en) 2018-12-11 2023-06-26 株式会社小糸製作所 Circuit board and vehicle lamp

Also Published As

Publication number Publication date
CN102893707B (en) 2016-02-03
CN102893707A (en) 2013-01-23
TWI482536B (en) 2015-04-21
JP2012004195A (en) 2012-01-05
TW201223350A (en) 2012-06-01
JP5629135B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
US8410672B2 (en) Thermally conductive mounting element for attachment of printed circuit board to heat sink
US9445490B2 (en) Film system for LED applications
JP5458926B2 (en) Flexible substrate, flexible substrate module, and manufacturing method thereof
JP2008028377A (en) Cooling device for led module and method for fabricating the same
JP2008287960A (en) Lighting system
JP3128955U (en) Electric circuit board structure with heat dissipation sheet
JP5629135B2 (en) Flexible board module
JP2010010437A (en) Optical semiconductor device
JP2011238367A (en) Light source mounting structure of plane light-emitting device
JP2008042120A (en) Heat conducting substrate, manufacturing method thereof, and electronic apparatus employing the same
US20200344884A1 (en) Circuit board and display device
US8279608B2 (en) Heatsink device directly contacting a heat source to achieve a quick dissipation effect
JP2007300111A (en) Light emitting device
WO2012017725A1 (en) Substrate module for having heat generating source mounted thereon, and lighting device
JP5011441B1 (en) Light emitting unit and lighting device
CN113796168A (en) Flexible printed circuit board with heat-conducting connection to a heat sink
CN220582250U (en) LED lamp panel
CN109524374B (en) LED light-emitting module
TW201106510A (en) Light emitting module
JP2012119509A (en) Circuit module and lighting device equipped with the circuit module
JP5549393B2 (en) Flexible printed wiring board
JP2008042121A (en) Heat conducting substrate, manufacturing method thereof, and electronic apparatus employing the same
KR200433460Y1 (en) Circuit board with heat radiating sheet
JP2010129915A (en) Shell type led mounted substrate
TWM410427U (en) Improved structure for metal core printed circuit board

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019703.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795605

Country of ref document: EP

Kind code of ref document: A1