WO2011158620A1 - Variable capacitance device - Google Patents

Variable capacitance device Download PDF

Info

Publication number
WO2011158620A1
WO2011158620A1 PCT/JP2011/061925 JP2011061925W WO2011158620A1 WO 2011158620 A1 WO2011158620 A1 WO 2011158620A1 JP 2011061925 W JP2011061925 W JP 2011061925W WO 2011158620 A1 WO2011158620 A1 WO 2011158620A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric film
drive
electrodes
capacitor
movable beam
Prior art date
Application number
PCT/JP2011/061925
Other languages
French (fr)
Japanese (ja)
Inventor
梅田圭一
柴原輝久
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2011158620A1 publication Critical patent/WO2011158620A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • H01G5/18Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes due to change in inclination, e.g. by flexing, by spiral wrapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details

Definitions

  • the present invention relates to a variable capacity device capable of changing an RF (Radio Frequency) capacity using a MEMS driven by an electrostatic force.
  • RF Radio Frequency
  • FIG. 1 is a diagram illustrating a configuration example of a conventional variable capacitance device.
  • the variable capacity device 101 includes movable beams 102 and 103.
  • the movable beams 102 and 103 each have a doubly supported beam structure and are made of a conductive material.
  • the movable beam 102 and the movable beam 103 are arranged at a distance from each other.
  • the movable beam 103 has a convex surface facing the movable beam 102 and includes a dielectric layer 104 on the surface.
  • the driving capacity generated by applying a driving DC voltage between the movable beams 102 and 103 Due to the driving capacity generated by applying a driving DC voltage between the movable beams 102 and 103, the distance between the movable beams 102 and 103 is narrowed, and the convex tip end region of the movable beam 103 is passed through the dielectric layer 104 to the movable beam 102.
  • the RF capacity of the variable capacitance device 101 changes continuously according to the contact area.
  • variable capacitance device since the driving DC voltage and the RF signal are applied to the common electrode, a resistor and a capacitor for separating the direct current component and the alternating current component are required for the driving circuit. Since insertion of a resistor or a capacitor causes a complicated circuit configuration and an increase in insertion loss, the applicant of the present application has developed a variable capacitance device that does not require such a resistor or capacitor.
  • 2A is a plan view showing a configuration example of the variable capacitance device 201
  • FIG. 2B is a side sectional view thereof.
  • the variable capacity device 201 includes a support plate 202 and a movable beam 203.
  • the movable beam 203 has a cantilever structure that is supported in parallel to the support plate 202.
  • the support plate 202 is provided with two linear line-shaped electrodes 204 in parallel along the main axis direction of the movable beam 203, and the U-shaped line-shaped electrodes 205 are disposed between both ends of the support plate 202.
  • dielectric films 208A and 208B are provided so as to cover the electrodes 204 and 205, respectively.
  • the movable beam 203 includes one rectangular electrode 206 (shown in FIG. 2B) facing the two electrodes 204 and a U-shaped electrode 207 facing the electrode 205 (FIG. 2). (Illustrated in (B)).
  • the electrode 204 and the electrode 206 are opposed to each other via the dielectric film 208A and function as an RF capacitor portion, and the electrode 205 and the electrode 207 are opposed to each other via the dielectric film 208B and function as a drive capacitor portion.
  • the drive capacity unit deforms the movable beam 203 so that the contact area between the electrode 207 and the dielectric film 208B is continuously changed by electrostatic attraction by the drive capacity generated by applying the drive DC voltage.
  • the RF capacitor unit is used as an RF capacitor whose capacitance can be continuously changed by connecting the electrode 204 to a high frequency circuit.
  • the variable capacitance device 201 has a structure in which the electrodes 205 and 207 to which the driving DC voltage is applied and the electrodes 204 and 206 to which the RF signal is applied are structurally separated.
  • variable capacitance device when the RF capacitance is controlled by applying the drive DC voltage to the drive capacitance section, the electrodes constituting the drive capacitance section and the dielectric film are in contact with each other. Then, the drive DC voltage is directly applied to the dielectric film, and the dielectric film is charged (hereinafter, this phenomenon is referred to as charge-up). Depending on the charge amount of this charge-up, a sticking phenomenon may occur in which the movable beam sticks to the support plate and the MEMS operation cannot be performed properly.
  • variable capacitance device configured as described above, since the drive capacitor unit and the RF capacitor unit are separated, the capacitance change of the RF capacitor unit is likely to be unstable with respect to the capacitance change of the drive capacitor unit, In order to keep the correlation between the driving capacity and the RF capacity constant, it is necessary to configure the variable capacity device with extremely high shape accuracy.
  • an object of the present invention is to provide a variable capacitance device that can prevent malfunction of the MEMS due to charge-up and that can easily keep the correlation between the drive capacitance and the RF capacitance constant.
  • the variable capacitance device of the present invention includes a support plate, a movable beam, a drive capacitance portion, an RF capacitance portion, a stopper portion, and an equipotential electrode portion.
  • the movable beam is supported in parallel to the main surface of the support plate.
  • the drive capacitor unit includes a pair of drive capacitor electrodes provided to be opposed to each other on the movable beam and the support plate along the main axis direction of the movable beam, and a dielectric film laminated on at least one of the drive capacitor electrodes, Consists of.
  • the drive capacity unit deforms the movable beam based on the drive capacity generated between the pair of drive capacity electrodes.
  • the RF capacitor unit includes a pair of RF capacitor electrodes provided in a long manner along the main axis direction of the movable beam so as to face the movable beam and the support plate, and a dielectric film laminated on at least one of the RF capacitor electrodes; Consists of.
  • the RF capacitor unit propagates an RF signal through an RF capacitor generated between a pair of RF capacitor electrodes.
  • the stopper portion is provided so as to protrude into the gap space between the drive capacitor electrode and the dielectric film in the drive capacitor portion.
  • the stopper portion is provided along the main axis direction of the movable beam.
  • the equipotential electrode portion is provided along the principal axis direction of the movable beam at a position facing the stopper portion, It is connected to the same potential as the opposing drive capacitor electrode through the gap space.
  • a gap space is secured between the drive capacitor electrode and the dielectric film in the drive capacitor portion even when the movable beam and the support plate are in the proximity state by the stopper portion. For this reason, even if the movable beam and the support plate are close to each other, the dielectric film is sandwiched between the pair of drive capacitance electrodes via the gap space or the stopper portion. Since the gap space has a sufficiently low dielectric constant, and the stopper portion is sandwiched between the drive capacitance electrode and the same potential electrode portion having the same potential, the charge amount of the dielectric film is reduced. In addition, the stopper portion and the same potential electrode are provided along the main axis direction of the movable beam. As a result, the distance between the drive capacitor electrode and the dielectric film through the gap space in the proximity state can be made uniform in the principal axis direction of the movable beam, and the correlation between the drive capacitor and the RF capacitor is constant. Easy to keep in.
  • the stopper portion of the present invention is preferably provided only at a position where the drive capacitor electrode and the same potential electrode portion face each other. In this configuration, the stopper portion is not interposed between the drive capacitance electrodes, and charging of the dielectric film in the drive capacitance portion can be prevented more reliably.
  • the thickness of the dielectric film in the RF capacitor portion of the present invention may be equal to the sum of the thickness of the dielectric film in the drive capacitor portion and the thickness of the stopper portion.
  • the movable beam and the support plate are in the proximity state, there is no gap space in the RF capacitor portion, and the RF capacitor electrode and the dielectric film are reliably in contact with each other. For this reason, it is easy to increase the capacitance value in the RF capacitor section, and a desired RF capacitor can be secured even with a small chip area.
  • the thickness of the dielectric film in the RF capacitor portion of the present invention may be equal to the thickness of the dielectric film in the drive capacitor portion.
  • the same forming process can be adopted for forming the dielectric film in the RF capacitor unit and the drive capacitor unit, and the thickness of the dielectric film can be matched without being affected by the process accuracy. For this reason, it becomes easy to keep the correlation between the drive capacity and the RF capacity constant.
  • the RF capacitor portion is also provided with a stopper portion, the distance from the dielectric film through the gap space can be almost completely matched between the RF capacitor portion and the drive capacitor portion. Therefore, it becomes easier to keep the correlation between the drive capacity and the RF capacity constant.
  • the stopper portion of the present invention may be made of the same material as the dielectric film.
  • the dielectric film may be partially thickened and the protruding portion may be used as the stopper portion.
  • a dielectric film may be formed with a uniform thickness, and a protruding portion due to the thickness of the same potential electrode may be used as a stopper portion.
  • the manufacturing equipment used for the process for forming the stopper portion can be made common with the manufacturing equipment used for the process for forming the dielectric film, and the manufacturing equipment can be simplified.
  • the stopper portion of the present invention may be made of a conductive material.
  • the stopper portion may be stacked on the dielectric film and connected to the same potential electrode and the same potential, and the dielectric film is not formed on the non-formed portion of the dielectric film.
  • a projecting portion may be used as a stopper portion by laminating conductive materials. In this case, charging of the dielectric film in the drive capacitor unit can be prevented more reliably.
  • the gap portion is secured between the drive capacitor electrode and the dielectric film in the drive capacitor portion even when the movable beam and the support plate are close to each other by the stopper portion, the movable beam and the support plate
  • the dielectric film is sandwiched between the pair of drive capacitance electrodes via the gap space or the stopper portion.
  • the gap space has a sufficiently low dielectric constant, and the stopper portion is sandwiched between the drive capacitance electrode and the same potential electrode portion having the same potential, so that the charge amount of the dielectric film can be reduced and the charge can be increased. Occurrence of the sticking phenomenon based on this can be prevented.
  • the stopper portion and the equipotential electrode are provided along the principal axis direction of the movable beam, so that the distance between the drive capacitor electrode and the dielectric film through the gap space in the proximity state of the movable beam and the support plate is It can be made uniform in the main axis direction of the movable beam, and it becomes easy to keep the correlation between the drive capacity and the RF capacity constant.
  • variable capacitance apparatus It is a figure explaining the structural example of the conventional variable capacitance apparatus. It is a figure explaining the structural example of another variable capacity apparatus. It is a figure explaining the example of composition of the variable capacity device concerning a 1st embodiment of the present invention. It is a figure explaining the operation
  • variable capacitance device A configuration example of a variable capacitance device according to an embodiment of the present invention will be described with reference to the drawings.
  • an orthogonal coordinate XYZ axis is attached, the thickness direction of the movable beam is the Z-axis direction, the principal axis direction is the X-axis direction, and the width direction is the Y-axis direction.
  • FIG. 3A is an XY plane plan view of the variable capacitance device 1 according to the first embodiment.
  • FIG. 3B is a cross-sectional view of the variable capacitance device 1 taken along the XZ plane.
  • FIG. 3C is a YZ plane cross-sectional view of the variable capacitance device 1.
  • the variable capacitance device 1 includes a support plate 2, a movable beam 3, an upper RF capacitive electrode 6, lower RF capacitive electrodes 4A and 4B, upper drive capacitive electrodes 7A and 7B, and lower drive capacitive electrodes 5A and 5B. And a dielectric film 8 and equipotential electrodes 9A and 9B.
  • the support plate 2 is made of a rectangular glass substrate in plan view.
  • the movable beam 3 is made of a high-resistance silicon substrate (insulating material) having a thickness of about 20 to 30 ⁇ m, and includes two connecting portions 3B, a movable portion 3C, a support portion 3A, and a ladder portion 3D, as viewed from the XZ plane. It is a substantially L-shaped cantilever structure.
  • the support portion 3A is long in the Y-axis direction, has a columnar shape standing from the support plate 2 in the Z-axis direction, and is provided at the end portion of the movable beam 3 in the X-axis negative direction.
  • 3C is supported in a state of being separated from the support plate 2.
  • the movable portion 3C has a flat plate shape that is long in the X-axis direction when viewed from the XY plane, and is provided at the end portion of the movable beam 3 in the X-axis positive direction.
  • Each of the two connecting portions 3B has a meander line shape meandering with respect to the X axis, and is erected in the X axis direction from both ends of the Y axis direction of the support portion 3A to connect the support portion 3A and the movable portion 3C. Then, the support end of the movable beam 3 is supported as a rotation end instead of a fixed end.
  • the movable portion 3C is partitioned into three regions arranged in the Y-axis direction by two ladder portions 3D, and each region has a flat plate shape elongated in the X-axis direction.
  • the ladder portion 3D includes a plurality of openings arranged along the X axis.
  • the lower RF capacitive electrodes 4A and 4B and the lower drive capacitive electrodes 5A and 5B are line-like electrodes that are formed on the upper surface of the support plate 2 with a thickness of 2000 nm and are long in the X-axis direction.
  • the lower drive capacitance electrodes 5A and 5B are arranged on both sides of the electrodes 4A and 4B in the Y-axis direction.
  • the equipotential electrodes 9A and 9B have both arms (9A1, 9A2) and (9B1, 9B2), respectively, and have a U-shape that opens in the negative X-axis direction.
  • Each arm portion 9A1, 9A2, 9B1, 9B2 has a long line shape in the X-axis direction
  • the lower drive capacitance electrodes 5A, 5B are both arm portions (9A1, 9A2), (9B1, 9B2) is formed on the upper surface of the support plate 2 with a thickness of 2000 nm so as to be sandwiched between them.
  • the upper RF capacitive electrode 6 and the upper drive capacitive electrodes 7A and 7B are line-like electrodes that are formed on the lower surface of the movable beam 3 with a thickness of 200 nm and are long in the X-axis direction.
  • the upper drive capacitive electrodes 7A and 7B are provided to face the lower drive capacitive electrodes 5A and 5B.
  • the dielectric film 8 is made of Ta 2 O 5 having a thickness of 150 nm to 200 nm and covers the lower RF capacitor electrodes 4A and 4B, the lower drive capacitor electrodes 5A and 5B, and the same potential electrodes 9A and 9B. Are stacked on the upper surface region.
  • the lower RF capacitive electrode 4A is connected to an RF signal input terminal (or output terminal), and the lower RF capacitive electrode 4B is connected to an RF signal output terminal (or input terminal).
  • the lower drive capacitance electrodes 5A and 5B are connected to the drive DC voltage terminal.
  • the upper drive capacitance electrodes 7A and 7B are connected to the ground GND.
  • the equipotential electrodes 9A and 9B are connected to the ground GND. Due to such a connection form, the lower RF capacitive electrodes 4A and 4B constitute RF capacitive portions C1A and C1B together with the opposing regions of the upper RF capacitive electrode 6 and the dielectric film 8, respectively.
  • the lower drive capacitance electrodes 5A and 5B constitute drive capacitance portions C2A and C2B together with the opposing regions of the upper drive capacitance electrodes 7A and 7B and the dielectric film 8, respectively.
  • FIG. 4 is a diagram showing a change in the area close to the dielectric film 8 in the movable beam 3 due to the drive DC voltage. The higher the driving DC voltage, the larger the proximity area between the movable beam 3 and the dielectric film 8.
  • the RF capacitors C1A and C1B are used in a high-frequency circuit of several hundred MHz to several GHz, and function as an RF capacitor whose capacitance value changes according to the proximity area between the movable beam 3 and the dielectric film 8. .
  • the dielectric film 8 of the present embodiment includes a dividing groove 11 (see FIG. 3C) at the boundary between the lower drive capacitance electrodes 5A and 5B and the same potential electrodes 9A and 9B.
  • the body is divided into body division regions 8A to 8E (see FIG. 3C).
  • the dielectric division region 8A is provided so as to cover the lower RF capacitive electrodes 4A and 4B and the arm portions 9A1 and 9B1.
  • the dielectric division regions 8B and 8C are provided so as to cover the lower drive capacitance electrodes 5A and 5B, respectively.
  • the dielectric division regions 8D and 8E are provided so as to cover the arm portions 9A2 and 9B2, respectively.
  • the dielectric film 8 includes a stopper portion 12 on the surface of the region covering each arm portion 9A1, 9A2, 9B1, 9B2.
  • Each stopper portion 12 is a portion that protrudes approximately 20 nm to 50 nm from the surface of the dielectric film 8 along the X-axis, and includes a portion on the lower drive capacitance electrodes 5A and 5B and the upper drive capacitance. It is provided to ensure a gap space between the electrodes 7A and 7B.
  • the thickness of the dielectric film 8 in the region where the stopper portion 12 is formed is equal to the region where the RF capacitor portions C1A and C1B are formed, and is thicker than the region where the drive capacitor portions C2A and C2B are formed.
  • the dielectric division regions 8B and 8C have a gap space between the upper drive capacitance electrodes 7A and 7B and the lower drive capacitance electrodes 5A and 5B even when the movable beam 3 and the support plate 2 are in proximity to each other. Will be sandwiched through. Since the dielectric constant of the gap space is sufficiently low, the charge amount of the dielectric divided regions 8B and 8C is extremely reduced. Further, the dielectric division regions 8D and 8E come into contact with the upper drive capacitance electrodes 7A and 7B through the stopper portion 12 when the movable beam 3 and the support plate 2 are brought into proximity.
  • the electric field does not act between the upper drive capacitance electrodes 7A, 7B and the same potential electrodes 9A, 9B because they are at the same potential, and the dielectric division regions 8D, 8E are not charged.
  • the dielectric division region 8A comes into contact with the upper drive capacitor electrodes 7A and 7B via the stopper portion 12.
  • the same potential electrodes 9A and 9B are provided at positions facing the upper drive capacitance electrodes 7A and 7B. Since the upper drive capacitance electrodes 7A and 7B and the same potential electrodes 9A and 9B are at the same potential, an electric field is generated. It does not act, and the dielectric division region 8A is hardly charged.
  • the dielectric film 8 is hardly charged, and sticking due to charging can be prevented from occurring.
  • the upper RF capacitive electrode 6 and the lower RF capacitive electrodes 4A and 4B are opposed to each other through only the dielectric division region 8A without a gap space, a large RF capacitance is provided in the RF capacitive portions C1A and C1B. Obtainable.
  • the stopper portion 12 and the equipotential electrodes 9A and 9B are provided in parallel with the lower drive capacitance electrodes 5A and 5B with the main axis direction of the movable beam 3 as the longitudinal direction, and the height of the stopper portion 12 is uniform.
  • the distance between the upper drive capacitance electrodes 7A, 7B and the dielectric film 8 through the gap space when the movable beam 3 and the support plate 2 are close to each other is made uniform in the main axis direction of the movable beam 3. This makes it easy to keep the correlation between the drive capacity and the RF capacity constant.
  • FIG. 5A is an XY plane plan view of the variable capacitance device 21 according to the second embodiment of the present invention.
  • FIG. 5B is a YZ plane cross-sectional view of the variable capacitance device 21.
  • the variable capacitance device 21 includes a dielectric film 28 having a shape different from that of the variable capacitance device 1 described above. As in the first embodiment, the dielectric film 28 is divided into dielectric division regions 28A to 28E by the division groove 11, and the stopper portion 12 is provided at a position facing the same potential electrodes 9A and 9B.
  • the stopper portion 22 is provided at a position facing the lower RF capacitive electrodes 4A and 4B in the dielectric division region 28A.
  • the stopper portion 22 has the same thickness as the stopper portion 12 and protrudes from the upper surface of the dielectric film 28 with the X-axis direction as the longitudinal direction. Therefore, in the RF capacitor portions C1A and C1B, the upper RF capacitor electrode 6 and the lower RF capacitor electrodes 4A and 4B are in contact with each other via the stopper portion 22 of the dielectric division region 28A.
  • the dielectric film 28 is formed by forming a Ta 2 O 5 film by a film formation process by sputtering, providing stopper portions 12 and 22 by a primary RIE etching process, and providing a dividing groove 11 by a secondary RIE etching process. Can be formed.
  • the etching amount may deviate from the assumption in the primary RIE etching process, but in this configuration, the deviation does not cause a variation in the correlation between the RF capacitance and the drive capacitance, and the RF A high correlation between the capacity and the drive capacity can be stably obtained.
  • FIG. 6A is an XY plane plan view of the variable capacitance device 31 according to the third embodiment of the present invention.
  • illustration of the movable beam 3 is omitted.
  • 6B is a cross-sectional view of the variable capacitance device 31 taken along the YZ plane.
  • the variable capacitance device 31 includes a dielectric film 38 having a shape different from that of the variable capacitance device 1 described above.
  • the dielectric film 38 is divided into dielectric division regions 38A to 38E by the division groove 11, and the stopper portion 12 is provided at a position facing the same potential electrodes 9A and 9B.
  • a plurality of circular stopper portions 32 are provided in the dielectric division regions 38B and 38C. These stopper portions 32 have the same thickness as the stopper portion 12 and protrude from the upper surface of the dielectric film 38.
  • variable capacitance device 31 when a high drive DC voltage is applied to the drive capacitor portions C2A and C2B, the position between the arm portions (9A1, 9A2) and (9B1, 9B2) of the movable beam 3 is in contact with each other. An electrostatic attractive force that bends toward the support plate 2 side acts on the portion. In this configuration, the electrostatic attracting force is supported by the stopper portion 32 to prevent the movable beam 3 from being bent. As a result, the drive capacity maintains an appropriate capacity value, and a high correlation between the RF capacity and the drive capacity can be stably obtained.
  • FIG. 7 is a schematic diagram for explaining an arrangement configuration example of stopper portions and equipotential electrodes in the variable capacitance device of the present invention.
  • the variable capacitance device 41A illustrated in FIG. 7A has a configuration in which the stopper portion 42A is disposed not on both sides of the lower drive capacitance electrodes 5A and 5B constituting the drive capacitance portion but on one side.
  • the same potential electrode (not shown) is preferably provided at the same position as the stopper portion 42A.
  • the stopper portion 42B is not a single long shape but a shorter strip shape, and a plurality of stopper portions 42B are arranged in the longitudinal direction of the movable beam. It is a configuration.
  • the equipotential electrode (not shown) is preferably a single elongated shape as in the above-described embodiment.
  • a variable capacitance device 41C illustrated in FIG. 7C has a configuration in which the lower drive capacitance electrode is divided into two regions (5A1, 5A2) and (5B1, 5B2), and a stopper portion 42C is disposed therebetween.
  • the equipotential electrode (not shown) is preferably a single elongated shape as in the above-described embodiment.
  • the stopper portion 42D is also disposed between the two lower RF capacitance electrodes 4A and 4B constituting the RF capacitance portion, and the plurality of stopper portions 42D are equally spaced. It is the structure arranged by. By setting it as such an arrangement
  • the equipotential electrode may not be provided at the opposing position.
  • the stopper portion can have various arrangement configurations.
  • FIG. 8A is an XY plane plan view of a variable capacitance device 51A according to the fifth embodiment of the present invention.
  • the variable capacitance device 51A includes a movable beam 53 having a doubly supported beam structure, and is provided between the lower RF capacitive electrode 4A and the lower drive capacitive electrode 5A, and between the lower RF capacitive electrode 4B and the lower drive capacitive electrode 5B.
  • the stopper portion 52 is provided at the position, and the same potential electrode (not shown) is provided at the position overlapping the stopper portion 52.
  • the lower drive capacitance electrodes 5A and 5B and the upper drive capacitance electrodes 7A and 7B (not shown) constituting the drive capacitance portion are formed by the stopper portion 52 as in the above-described embodiment. A gap space can be secured between them.
  • FIG. 8B is an XY plane plan view of a variable capacitance device 51B according to the fifth embodiment of the present invention.
  • This variable capacity device 51B is configured to support the end of the movable beam 53 in the positive X-axis direction on the support plate 2 by means of a meander-shaped connecting part 53A.
  • the spring constant of the connecting part 53A is connected to the connecting part in the X-axis negative direction.
  • the spring constant is significantly smaller than 3B, so that the movable beam 53 comes into contact with the dielectric film from the end in the positive direction of the X axis.
  • variable capacitance device 51B As well as the variable capacitance device 51A, between the lower RF capacitance electrode 4A and the lower drive capacitance electrode 5A and between the lower RF capacitance electrode 4B and the lower drive capacitance electrode 5B.
  • a stopper portion 52 is provided at a position, and the same potential electrode (not shown) is provided at a position overlapping the stopper portion 52.
  • FIG. 8C is an XY plane plan view of a variable capacitance device 51C according to the fifth embodiment of the present invention.
  • the variable capacity device 51C connects the connecting portion 53B to the end portion of the movable beam 53 in the positive direction of the X axis and draws the connecting portion 53B to the vicinity of the end portion of the movable beam 53 in the negative direction of the X axis. It is configured to connect to a common support portion 3A, and the spring constant of the connecting portion 53B is made significantly smaller than the spring constant of the connecting portion 3B in the negative X-axis direction, whereby the movable beam 53 is the end portion in the positive X-axis direction.
  • the dielectric film is in contact with the dielectric film.
  • this variable capacitance device 51C similarly to the variable capacitance devices 51A and 51B, between the lower RF capacitance electrode 4A and the lower drive capacitance electrode 5A and between the lower RF capacitance electrode 4B and the lower drive capacitance electrode 5B.
  • a stopper portion 52 is provided at a position therebetween, and the same potential electrode (not shown) is provided at a position overlapping the stopper portion 52.
  • FIG. 9A is an XY plane plan view of a variable capacitance device 61A according to the sixth embodiment of the present invention.
  • the variable capacitance device 61A includes an equipotential electrode 69A having an electrode thickness thicker than the electrode thicknesses of the lower RF capacitance electrodes 4A and 4B and the lower drive capacitance electrodes 5A and 5B.
  • the height of the stopper portion can be adjusted by adjusting the thickness of the equipotential electrode 69A. If the equipotential electrode 69A is formed using a deposition process and a lift-off process by vapor deposition, the height of the equipotential electrode 69A is increased. Therefore, the height of the stopper portion can be adjusted with high accuracy.
  • FIG. 9B is an XY plane plan view of the variable capacitance device 61B according to the sixth embodiment of the present invention.
  • the variable capacitance device 61B has a configuration in which the same potential electrode 69B is formed so as to protrude from the dielectric film 8.
  • the stopper portion is composed of the equipotential electrode 69B, when the equipotential electrode 69B is formed by employing a deposition process and a lift-off process, the height of the stopper portion can be adjusted with high accuracy. Can do.
  • the dielectric film 8 does not come into contact with the upper drive capacitor electrodes 7A and 7B in the drive capacitor portion, and reliable charging prevention can be achieved.
  • FIG. 9C is an XY plane plan view of a variable capacitance device 61C according to the sixth embodiment of the present invention.
  • the variable capacitance device 61C includes a stopper portion 62 made of a conductive material, and is configured to connect the stopper portion 62 to the same potential as the same potential electrodes 9A and 9B and the upper drive capacitance electrodes 7A and 7B.
  • the stopper portion is made of a conductive material, the dielectric film 8 does not come into contact with the upper drive capacitance electrodes 7A and 7B in the drive capacitance portion, and reliable charging prevention can be achieved.
  • FIG. 9D is an XY plane plan view of the variable capacitance device 61D according to the sixth embodiment of the present invention.
  • the variable capacitance device 61D includes the circular stopper portion 32 described in the third embodiment, and also includes a stopper portion 62 made of a conductive material.
  • the stopper portion 62 includes the same potential electrodes 9A and 9B and the upper drive capacitance electrode. 7A and 7B are connected to the same potential. Even in this configuration, since the stopper portion is made of a conductive material, the dielectric film 8 does not come into contact with the upper drive capacitance electrodes 7A and 7B in the drive capacitance portion, so that reliable charging prevention can be achieved.
  • the dielectric film is charged with plasma when a process using plasma such as a RIE etching process or a film formation process by sputtering is employed. Even if this occurs, the presence of the stopper portion makes it less likely to be adversely affected by charging, and process accuracy can be improved.
  • Variable capacitor device 2 ... Support plate 3, 53 ... Movable beam 3A ... Support portion 3B , 53A, 53B ... connecting part 3C ... movable part 3D ... ladder part 4A, 4B ... lower RF capacitive electrodes 4A, 4B 5A, 5B ... Lower drive capacitance electrode 6 ... Upper RF capacitance electrode 7A, 7B ... Upper drive capacitance electrodes 8, 28, 38 ... Dielectric films 8A-8E, 28A-28E, 38A-38E ...
  • Dielectric divided region 9A, 9B, 69A, 69B equipotential electrodes 9A1, 9A2, 9B1, 9B2 ... arm 11 ... dividing grooves 12, 22, 32, 42A to 42D, 52, 62 ... stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Abstract

Provided is a variable capacitance device which can prevent a failure of a MEMS, caused due to an electrostatic charge, and can easily maintain a constant correlation between a drive capacitance and a radio frequency (RF) capacitance. A variable capacitance device (1) is provided with a support plate (2), a movable beam (3), drive capacitance units (C2A, C2B), RF capacitance units (C1A, C1B), a stopper unit (12), and unipotential electrodes (9A, 9B). The movable beam (3) has a cantilever beam structure parallel to the main surface of the support plate (2). The stopper unit (12) is provided so that the longitudinal direction thereof is along the main axis direction of the movable beam, on the area of a dielectric film (8) opposite to the drive capacitance electrodes (7A, 7B) constituting the drive capacitance units (C2A, C2B), via a gap. The unipotential electrodes (9A, 9B) are opposite to the area on which the stopper unit (12) is provided, via the dielectric film (8), and are connected to the drive capacitance electrodes (7A, 7B) at the same potential.

Description

可変容量装置Variable capacity device
 この発明は、静電力により駆動するMEMSを用いてRF(Radio Frequency)容量を変えることができる可変容量装置に関するものである。 The present invention relates to a variable capacity device capable of changing an RF (Radio Frequency) capacity using a MEMS driven by an electrostatic force.
 近年、可変容量装置に静電力により駆動するMEMSが利用されることがある(特許文献1,2参照。)。 In recent years, MEMS driven by electrostatic force is sometimes used for variable capacitance devices (see Patent Documents 1 and 2).
 図1は、従来の可変容量装置の構成例を説明する図である。
 可変容量装置101は、可動梁102,103を備える。可動梁102,103はそれぞれ両持ち梁構造であり、導電性材料からなる。可動梁102と可動梁103とは、互いに間隔を隔てて配置されている。可動梁103は、可動梁102との対向面が凸形状であり、誘電体層104を表面に備える。可動梁102,103間に駆動DC電圧を印加することで生じる駆動容量によって、可動梁102,103間の間隔が狭まって可動梁103の凸形状先端領域から可動梁102に誘電体層104を介して接触し、接触面積に応じて可変容量装置101のRF容量が連続的に変わる。
FIG. 1 is a diagram illustrating a configuration example of a conventional variable capacitance device.
The variable capacity device 101 includes movable beams 102 and 103. The movable beams 102 and 103 each have a doubly supported beam structure and are made of a conductive material. The movable beam 102 and the movable beam 103 are arranged at a distance from each other. The movable beam 103 has a convex surface facing the movable beam 102 and includes a dielectric layer 104 on the surface. Due to the driving capacity generated by applying a driving DC voltage between the movable beams 102 and 103, the distance between the movable beams 102 and 103 is narrowed, and the convex tip end region of the movable beam 103 is passed through the dielectric layer 104 to the movable beam 102. The RF capacity of the variable capacitance device 101 changes continuously according to the contact area.
特開2006-210843号公報Japanese Patent Laid-Open No. 2006-210843 特開2008-182134号公報JP 2008-182134 A
 従来の可変容量装置では、駆動DC電圧とRF信号とが共通する電極に印加されるため、直流成分と交流成分とを分離するための抵抗やコンデンサが駆動回路に必要であった。抵抗やコンデンサの挿入によって回路構成の複雑化と挿入損失の増大が引き起こされるため、本願出願人はそのような抵抗やコンデンサが不要な可変容量装置の開発を行っている。図2(A)はその可変容量装置201の構成例を示す平面図であり、図2(B)はその側面断面図である。
 可変容量装置201は、支持板202と可動梁203とを備える。可動梁203は、支持板202に対して平行に支持される片持ち梁構造である。支持板202には、可動梁203の主軸方向に沿う直線線路状の電極204が平行に2つ設けられているとともに、コの字線路状の電極205が支持板202の両端部の間に電極204を挟むように設けられており、さらに、電極204および電極205それぞれを覆うように誘電体膜208A,208Bが設けられている。また、可動梁203には、2つの電極204に対向する1つの矩形状の電極206(図2(B)に図示する)と、電極205に対向するコの字線路状の電極207(図2(B)に図示する)とが設けられている。電極204と電極206とは、誘電体膜208Aを介して対向してRF容量部として機能し、電極205と電極207とは、誘電体膜208Bを介して対向して駆動容量部として機能する。駆動容量部は駆動DC電圧が印加されることで生じる駆動容量によって、静電引力で電極207と誘電体膜208Bとの接触面積が連続的に変化するように可動梁203を変形させる。RF容量部は、電極204を高周波回路に接続することによって、連続的に容量を変えることができるRF容量として利用される。このように可変容量装置201は、駆動DC電圧が印加される電極205,207と、RF信号が印加される電極204,206とを構造的に分離した構成である。
In the conventional variable capacitance device, since the driving DC voltage and the RF signal are applied to the common electrode, a resistor and a capacitor for separating the direct current component and the alternating current component are required for the driving circuit. Since insertion of a resistor or a capacitor causes a complicated circuit configuration and an increase in insertion loss, the applicant of the present application has developed a variable capacitance device that does not require such a resistor or capacitor. 2A is a plan view showing a configuration example of the variable capacitance device 201, and FIG. 2B is a side sectional view thereof.
The variable capacity device 201 includes a support plate 202 and a movable beam 203. The movable beam 203 has a cantilever structure that is supported in parallel to the support plate 202. The support plate 202 is provided with two linear line-shaped electrodes 204 in parallel along the main axis direction of the movable beam 203, and the U-shaped line-shaped electrodes 205 are disposed between both ends of the support plate 202. In addition, dielectric films 208A and 208B are provided so as to cover the electrodes 204 and 205, respectively. The movable beam 203 includes one rectangular electrode 206 (shown in FIG. 2B) facing the two electrodes 204 and a U-shaped electrode 207 facing the electrode 205 (FIG. 2). (Illustrated in (B)). The electrode 204 and the electrode 206 are opposed to each other via the dielectric film 208A and function as an RF capacitor portion, and the electrode 205 and the electrode 207 are opposed to each other via the dielectric film 208B and function as a drive capacitor portion. The drive capacity unit deforms the movable beam 203 so that the contact area between the electrode 207 and the dielectric film 208B is continuously changed by electrostatic attraction by the drive capacity generated by applying the drive DC voltage. The RF capacitor unit is used as an RF capacitor whose capacitance can be continuously changed by connecting the electrode 204 to a high frequency circuit. As described above, the variable capacitance device 201 has a structure in which the electrodes 205 and 207 to which the driving DC voltage is applied and the electrodes 204 and 206 to which the RF signal is applied are structurally separated.
 上述のような構成の可変容量装置においては、駆動容量部への駆動DC電圧の印加によりRF容量を制御する際に、駆動容量部を構成する電極と誘電体膜とが接触する状態になるため、誘電体膜に駆動DC電圧が直接印加されて誘電体膜が帯電する(以下、この現象をチャージアップと称する。)。このチャージアップの帯電量によっては、可動梁が支持板に貼り付いてMEMS動作が適切に行えなくなるスティッキング現象が引き起こされることがあった。 In the variable capacitance device configured as described above, when the RF capacitance is controlled by applying the drive DC voltage to the drive capacitance section, the electrodes constituting the drive capacitance section and the dielectric film are in contact with each other. Then, the drive DC voltage is directly applied to the dielectric film, and the dielectric film is charged (hereinafter, this phenomenon is referred to as charge-up). Depending on the charge amount of this charge-up, a sticking phenomenon may occur in which the movable beam sticks to the support plate and the MEMS operation cannot be performed properly.
 また、上述のような構成の可変容量装置では、駆動容量部とRF容量部とが分離された構成であるため、駆動容量部の容量変化に対するRF容量部の容量変化が不安定になりやすく、駆動容量とRF容量との相関関係を一定に保つためには、極めて高い形状精度で可変容量装置を構成する必要があった。 Further, in the variable capacitance device configured as described above, since the drive capacitor unit and the RF capacitor unit are separated, the capacitance change of the RF capacitor unit is likely to be unstable with respect to the capacitance change of the drive capacitor unit, In order to keep the correlation between the driving capacity and the RF capacity constant, it is necessary to configure the variable capacity device with extremely high shape accuracy.
 そこで本発明の目的は、チャージアップによるMEMSの動作不良を防ぐことができ、さらには駆動容量とRF容量との相関関係を一定に保つことが容易な、可変容量装置を提供することにある。 Therefore, an object of the present invention is to provide a variable capacitance device that can prevent malfunction of the MEMS due to charge-up and that can easily keep the correlation between the drive capacitance and the RF capacitance constant.
 この発明の可変容量装置は、支持板と、可動梁と、駆動容量部と、RF容量部と、ストッパ部と、同電位電極部とを備える。可動梁は、支持板の主面に平行に支持される。駆動容量部は、可動梁の主軸方向に沿って長尺に可動梁と支持板とに互いに対向して設けられる一対の駆動容量電極と、駆動容量電極の少なくとも一方に積層される誘電体膜とからなる。駆動容量部は、一対の駆動容量電極の間に生じる駆動容量に基づいて可動梁を変形させる。RF容量部は、可動梁の主軸方向に沿って長尺に可動梁と支持板とに互いに対向して設けられる一対のRF容量電極と、RF容量電極の少なくとも一方に積層される誘電体膜とからなる。RF容量部は、一対のRF容量電極の間に生じるRF容量を介してRF信号を伝搬させる。ストッパ部は、駆動容量部における駆動容量電極と誘電体膜との間のギャップ空間に突出して設けられる。ストッパ部は、可動梁の主軸方向に沿って設けられる。同電位電極部は、ストッパ部に対向する位置に可動梁の主軸方向に沿って設けられ、
ギャップ空間を介して対向する駆動容量電極と同電位に接続される。
The variable capacitance device of the present invention includes a support plate, a movable beam, a drive capacitance portion, an RF capacitance portion, a stopper portion, and an equipotential electrode portion. The movable beam is supported in parallel to the main surface of the support plate. The drive capacitor unit includes a pair of drive capacitor electrodes provided to be opposed to each other on the movable beam and the support plate along the main axis direction of the movable beam, and a dielectric film laminated on at least one of the drive capacitor electrodes, Consists of. The drive capacity unit deforms the movable beam based on the drive capacity generated between the pair of drive capacity electrodes. The RF capacitor unit includes a pair of RF capacitor electrodes provided in a long manner along the main axis direction of the movable beam so as to face the movable beam and the support plate, and a dielectric film laminated on at least one of the RF capacitor electrodes; Consists of. The RF capacitor unit propagates an RF signal through an RF capacitor generated between a pair of RF capacitor electrodes. The stopper portion is provided so as to protrude into the gap space between the drive capacitor electrode and the dielectric film in the drive capacitor portion. The stopper portion is provided along the main axis direction of the movable beam. The equipotential electrode portion is provided along the principal axis direction of the movable beam at a position facing the stopper portion,
It is connected to the same potential as the opposing drive capacitor electrode through the gap space.
 この構成では、ストッパ部によって、可動梁と支持板とが近接状態であっても駆動容量部において駆動容量電極と誘電体膜との間にギャップ空間が確保される。このため、可動梁と支持板とが近接状態であっても、誘電体膜はギャップ空間またはストッパ部を介して一対の駆動容量電極に挟まれることになる。ギャップ空間は誘電率が十分に低く、また、ストッパ部は、互いに同電位な駆動容量電極と同電位電極部とによって挟まれているため、誘電体膜の帯電量は低減される。
 また、ストッパ部および同電位電極は可動梁の主軸方向に沿って設けられるものとする。これにより、前記近接状態でのギャップ空間を介した駆動容量電極と誘電体膜との間隔を、可動梁の主軸方向に一様にすることができ、駆動容量とRF容量との相関関係を一定に保つことが容易になる。
In this configuration, a gap space is secured between the drive capacitor electrode and the dielectric film in the drive capacitor portion even when the movable beam and the support plate are in the proximity state by the stopper portion. For this reason, even if the movable beam and the support plate are close to each other, the dielectric film is sandwiched between the pair of drive capacitance electrodes via the gap space or the stopper portion. Since the gap space has a sufficiently low dielectric constant, and the stopper portion is sandwiched between the drive capacitance electrode and the same potential electrode portion having the same potential, the charge amount of the dielectric film is reduced.
In addition, the stopper portion and the same potential electrode are provided along the main axis direction of the movable beam. As a result, the distance between the drive capacitor electrode and the dielectric film through the gap space in the proximity state can be made uniform in the principal axis direction of the movable beam, and the correlation between the drive capacitor and the RF capacitor is constant. Easy to keep in.
 この発明のストッパ部は、駆動容量電極と同電位電極部とが対面する位置にのみ設けられると好適である。
 この構成では、駆動容量電極の間にはストッパ部が介在することがなく、より確実に駆動容量部における誘電体膜の帯電を防ぐことができる。
The stopper portion of the present invention is preferably provided only at a position where the drive capacitor electrode and the same potential electrode portion face each other.
In this configuration, the stopper portion is not interposed between the drive capacitance electrodes, and charging of the dielectric film in the drive capacitance portion can be prevented more reliably.
 この発明のRF容量部における誘電体膜の厚みは、駆動容量部における誘電体膜の厚みとストッパ部の厚みとを加算したものに等しくてもよい。この場合、可動梁と支持板とが近接状態となる際に、RF容量部においてギャップ空間がなくなり、RF容量電極と誘電体膜とが確実に接触する。このため、RF容量部における容量値を大きく取ることが容易になり、小さなチップ面積であっても所望のRF容量を確保することが可能になる。 The thickness of the dielectric film in the RF capacitor portion of the present invention may be equal to the sum of the thickness of the dielectric film in the drive capacitor portion and the thickness of the stopper portion. In this case, when the movable beam and the support plate are in the proximity state, there is no gap space in the RF capacitor portion, and the RF capacitor electrode and the dielectric film are reliably in contact with each other. For this reason, it is easy to increase the capacitance value in the RF capacitor section, and a desired RF capacitor can be secured even with a small chip area.
 この発明のRF容量部における誘電体膜の厚みは、駆動容量部における誘電体膜の厚みに等しくてもよい。この場合、RF容量部と駆動容量部とで誘電体膜の成形に同一の成形プロセスを採用でき、プロセス精度の影響を受けずに誘電体膜の厚みを一致させることができる。このため、駆動容量とRF容量との相関関係を一定に保つことが容易となる。 The thickness of the dielectric film in the RF capacitor portion of the present invention may be equal to the thickness of the dielectric film in the drive capacitor portion. In this case, the same forming process can be adopted for forming the dielectric film in the RF capacitor unit and the drive capacitor unit, and the thickness of the dielectric film can be matched without being affected by the process accuracy. For this reason, it becomes easy to keep the correlation between the drive capacity and the RF capacity constant.
 またこの場合、RF容量部にもストッパ部を設けると、ギャップ空間を介した誘電体膜との間隔を、RF容量部と駆動容量部とでほぼ完全に一致させることができる。したがって、駆動容量とRF容量との相関関係を一定に保つことがさらに容易となる。 In this case, if the RF capacitor portion is also provided with a stopper portion, the distance from the dielectric film through the gap space can be almost completely matched between the RF capacitor portion and the drive capacitor portion. Therefore, it becomes easier to keep the correlation between the drive capacity and the RF capacity constant.
 この発明のストッパ部は、誘電体膜と同一の材料で構成してもよく、その場合、誘電体膜を部分的に厚くし、その突出部分をストッパ部として利用してもよい。また、誘電体膜を一様な厚みで成膜し、同電位電極の厚みによる突出部分をストッパ部として利用してもよい。この場合、ストッパ部の形成プロセスに用いる製造設備を、誘電体膜の形成プロセスに用いる製造設備と共通化することができ、製造設備の簡易化を進展させられる。 The stopper portion of the present invention may be made of the same material as the dielectric film. In this case, the dielectric film may be partially thickened and the protruding portion may be used as the stopper portion. Alternatively, a dielectric film may be formed with a uniform thickness, and a protruding portion due to the thickness of the same potential electrode may be used as a stopper portion. In this case, the manufacturing equipment used for the process for forming the stopper portion can be made common with the manufacturing equipment used for the process for forming the dielectric film, and the manufacturing equipment can be simplified.
 この発明のストッパ部は導電性材料で構成してもよく、その場合、ストッパ部を誘電体膜に積層して同電位電極と同電位に接続してもよく、誘電体膜の非形成部分に導電性材料を積層して、突出部分をストッパ部として利用してもよい。この場合、駆動容量部における誘電体膜の帯電をより確実に防ぐことができる。 The stopper portion of the present invention may be made of a conductive material. In that case, the stopper portion may be stacked on the dielectric film and connected to the same potential electrode and the same potential, and the dielectric film is not formed on the non-formed portion of the dielectric film. A projecting portion may be used as a stopper portion by laminating conductive materials. In this case, charging of the dielectric film in the drive capacitor unit can be prevented more reliably.
 この発明によれば、ストッパ部によって、可動梁と支持板とが近接状態であっても駆動容量部において駆動容量電極と誘電体膜との間にギャップ空間を確保するので、可動梁と支持板との近接状態で、誘電体膜はギャップ空間またはストッパ部を介して一対の駆動容量電極に挟まれることになる。ギャップ空間は誘電率が十分に低く、また、ストッパ部は、互いに同電位な駆動容量電極と同電位電極部とによって挟まれるため、誘電体膜の帯電量を低減することができ、チャージアップに基づくスティッキング現象の発生を防ぐことができる。
 また、ストッパ部および同電位電極は可動梁の主軸方向に沿って設けられることにより、可動梁と支持板との近接状態でのギャップ空間を介した駆動容量電極と誘電体膜との間隔を、可動梁の主軸方向に一様にすることができ、駆動容量とRF容量との相関関係を一定に保つことが容易になる。
According to the present invention, since the gap portion is secured between the drive capacitor electrode and the dielectric film in the drive capacitor portion even when the movable beam and the support plate are close to each other by the stopper portion, the movable beam and the support plate The dielectric film is sandwiched between the pair of drive capacitance electrodes via the gap space or the stopper portion. The gap space has a sufficiently low dielectric constant, and the stopper portion is sandwiched between the drive capacitance electrode and the same potential electrode portion having the same potential, so that the charge amount of the dielectric film can be reduced and the charge can be increased. Occurrence of the sticking phenomenon based on this can be prevented.
Further, the stopper portion and the equipotential electrode are provided along the principal axis direction of the movable beam, so that the distance between the drive capacitor electrode and the dielectric film through the gap space in the proximity state of the movable beam and the support plate is It can be made uniform in the main axis direction of the movable beam, and it becomes easy to keep the correlation between the drive capacity and the RF capacity constant.
従来の可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the conventional variable capacitance apparatus. 他の可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of another variable capacity apparatus. 本発明の第1の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the example of composition of the variable capacity device concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る可変容量装置の駆動時の動作を説明する図である。It is a figure explaining the operation | movement at the time of the drive of the variable capacitance apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 6th Embodiment of this invention.
 本発明の実施形態に係る可変容量装置の構成例について、図を参照して説明する。なお、各図には直交座標形のX-Y-Z軸を付し、可動梁の厚み方向をZ軸方向、主軸方向をX軸方向、幅方向をY軸方向とする。 A configuration example of a variable capacitance device according to an embodiment of the present invention will be described with reference to the drawings. In each figure, an orthogonal coordinate XYZ axis is attached, the thickness direction of the movable beam is the Z-axis direction, the principal axis direction is the X-axis direction, and the width direction is the Y-axis direction.
《第1の実施形態》
 図3(A)は、第1の実施形態に係る可変容量装置1のX-Y面平面図である。図3(B)は、可変容量装置1のX-Z面断面図である。図3(C)は、可変容量装置1のY-Z面断面図である。
<< First Embodiment >>
FIG. 3A is an XY plane plan view of the variable capacitance device 1 according to the first embodiment. FIG. 3B is a cross-sectional view of the variable capacitance device 1 taken along the XZ plane. FIG. 3C is a YZ plane cross-sectional view of the variable capacitance device 1.
 可変容量装置1は、支持板2と、可動梁3と、上側RF容量電極6と、下側RF容量電極4A,4Bと、上側駆動容量電極7A,7Bと、下側駆動容量電極5A,5Bと、誘電体膜8と、同電位電極9A,9Bとを備える。 The variable capacitance device 1 includes a support plate 2, a movable beam 3, an upper RF capacitive electrode 6, lower RF capacitive electrodes 4A and 4B, upper drive capacitive electrodes 7A and 7B, and lower drive capacitive electrodes 5A and 5B. And a dielectric film 8 and equipotential electrodes 9A and 9B.
 支持板2は、平面視して矩形状のガラス基板からなる。
 可動梁3は約20から30μm厚の高抵抗シリコン基板(絶縁材料)からなり、2本の連結部3Bと可動部3Cと支持部3Aとラダー部3Dとを備え、X-Z面を視て略L字状の片持ち梁構造である。支持部3Aは、Y軸方向に長尺で、支持板2からZ軸方向に立設する柱状であり、可動梁3のX軸負方向端部に設けられていて、連結部3Bと可動部3Cとを支持板2から離間した状態で支持する。可動部3Cは、X-Y面を視てX軸方向に長尺な平板状であり、可動梁3のX軸正方向端部に設けられている。2本の連結部3BはそれぞれX軸に対して蛇行するミアンダライン状であり、支持部3AのY軸方向両端からX軸方向に立設して支持部3Aと可動部3Cとの間を接続し、可動梁3の支持端を固定端ではなく回転端として支持する。
 可動部3Cは、2本のラダー部3DによってY軸方向に並ぶ3つの領域に区画されていて、各領域はX軸方向に長尺な平板状となっている。ラダー部3Dは、X軸に沿って配列される複数の開口部を備える。
The support plate 2 is made of a rectangular glass substrate in plan view.
The movable beam 3 is made of a high-resistance silicon substrate (insulating material) having a thickness of about 20 to 30 μm, and includes two connecting portions 3B, a movable portion 3C, a support portion 3A, and a ladder portion 3D, as viewed from the XZ plane. It is a substantially L-shaped cantilever structure. The support portion 3A is long in the Y-axis direction, has a columnar shape standing from the support plate 2 in the Z-axis direction, and is provided at the end portion of the movable beam 3 in the X-axis negative direction. 3C is supported in a state of being separated from the support plate 2. The movable portion 3C has a flat plate shape that is long in the X-axis direction when viewed from the XY plane, and is provided at the end portion of the movable beam 3 in the X-axis positive direction. Each of the two connecting portions 3B has a meander line shape meandering with respect to the X axis, and is erected in the X axis direction from both ends of the Y axis direction of the support portion 3A to connect the support portion 3A and the movable portion 3C. Then, the support end of the movable beam 3 is supported as a rotation end instead of a fixed end.
The movable portion 3C is partitioned into three regions arranged in the Y-axis direction by two ladder portions 3D, and each region has a flat plate shape elongated in the X-axis direction. The ladder portion 3D includes a plurality of openings arranged along the X axis.
 下側RF容量電極4A,4Bと下側駆動容量電極5A,5Bとは、それぞれ支持板2の上面に2000nm厚で形成されたX軸方向に長尺な線路状電極であり、下側RF容量電極4A,4BのY軸方向の両脇に下側駆動容量電極5A,5Bが配置された構成である。同電位電極9A,9Bはそれぞれ両腕部(9A1,9A2),(9B1,9B2)を備え、X軸負方向が開口するコの字状である。各腕部9A1,9A2,9B1,9B2は、それぞれX軸方向に長尺な線路状であり、下側駆動容量電極5A,5BをY軸方向に両腕部(9A1,9A2),(9B1,9B2)で挟むように支持板2の上面に2000nm厚で形成されている。上側RF容量電極6と上側駆動容量電極7A,7Bとは、それぞれ可動梁3の下面に200nm厚で形成されたX軸方向に長尺な線路状電極であり、上側RF容量電極6は下側RF容量電極4A,4Bに対向し、上側駆動容量電極7A,7Bは下側駆動容量電極5A,5Bに対向するように設けられている。誘電体膜8は、150nm~200nm厚のTa2O5からなり、下側RF容量電極4A,4B、下側駆動容量電極5A,5Bおよび同電位電極9A,9Bを覆うように、支持板2の上面領域に積層されている。 The lower RF capacitive electrodes 4A and 4B and the lower drive capacitive electrodes 5A and 5B are line-like electrodes that are formed on the upper surface of the support plate 2 with a thickness of 2000 nm and are long in the X-axis direction. The lower drive capacitance electrodes 5A and 5B are arranged on both sides of the electrodes 4A and 4B in the Y-axis direction. The equipotential electrodes 9A and 9B have both arms (9A1, 9A2) and (9B1, 9B2), respectively, and have a U-shape that opens in the negative X-axis direction. Each arm portion 9A1, 9A2, 9B1, 9B2 has a long line shape in the X-axis direction, and the lower drive capacitance electrodes 5A, 5B are both arm portions (9A1, 9A2), (9B1, 9B2) is formed on the upper surface of the support plate 2 with a thickness of 2000 nm so as to be sandwiched between them. The upper RF capacitive electrode 6 and the upper drive capacitive electrodes 7A and 7B are line-like electrodes that are formed on the lower surface of the movable beam 3 with a thickness of 200 nm and are long in the X-axis direction. Opposite to the RF capacitive electrodes 4A and 4B, the upper drive capacitive electrodes 7A and 7B are provided to face the lower drive capacitive electrodes 5A and 5B. The dielectric film 8 is made of Ta 2 O 5 having a thickness of 150 nm to 200 nm and covers the lower RF capacitor electrodes 4A and 4B, the lower drive capacitor electrodes 5A and 5B, and the same potential electrodes 9A and 9B. Are stacked on the upper surface region.
 下側RF容量電極4AはRF信号の入力端子(または出力端子)に接続され、下側RF容量電極4BはRF信号の出力端子(または入力端子)に接続されている。下側駆動容量電極5A,5Bは、駆動DC電圧端子に接続されている。上側駆動容量電極7A,7Bは、グランドGNDに接続されている。また、同電位電極9A,9Bは、グランドGNDに接続されている。このような接続形態のため、下側RF容量電極4A,4Bは、それぞれ上側RF容量電極6および誘電体膜8の対向する領域とともにRF容量部C1A,C1Bを構成する。下側駆動容量電極5A,5Bは、それぞれ上側駆動容量電極7A,7Bおよび誘電体膜8の対向する領域とともに駆動容量部C2A,C2Bを構成する。 The lower RF capacitive electrode 4A is connected to an RF signal input terminal (or output terminal), and the lower RF capacitive electrode 4B is connected to an RF signal output terminal (or input terminal). The lower drive capacitance electrodes 5A and 5B are connected to the drive DC voltage terminal. The upper drive capacitance electrodes 7A and 7B are connected to the ground GND. The equipotential electrodes 9A and 9B are connected to the ground GND. Due to such a connection form, the lower RF capacitive electrodes 4A and 4B constitute RF capacitive portions C1A and C1B together with the opposing regions of the upper RF capacitive electrode 6 and the dielectric film 8, respectively. The lower drive capacitance electrodes 5A and 5B constitute drive capacitance portions C2A and C2B together with the opposing regions of the upper drive capacitance electrodes 7A and 7B and the dielectric film 8, respectively.
 駆動容量部C2A,C2Bは、その静電引力により可動梁3を支持板2側に引き付け、可動梁3を先端(X軸正方向側の端部)から誘電体膜8に近接させる駆動容量として機能する。図4は可動梁3における誘電体膜8との近接面積の駆動DC電圧による変化を示す図である。駆動DC電圧が高電圧であるほど、可動梁3と誘電体膜8との近接面積は大きくなる。一方、RF容量部C1A,C1Bは、数百MHz~数GHzの高周波回路の中で使用され、可動梁3と誘電体膜8との近接面積に応じて容量値が変化するRF容量として機能する。 The drive capacitors C2A and C2B serve as drive capacitors that attract the movable beam 3 to the support plate 2 side by the electrostatic attractive force and bring the movable beam 3 close to the dielectric film 8 from the tip (end on the X axis positive direction side). Function. FIG. 4 is a diagram showing a change in the area close to the dielectric film 8 in the movable beam 3 due to the drive DC voltage. The higher the driving DC voltage, the larger the proximity area between the movable beam 3 and the dielectric film 8. On the other hand, the RF capacitors C1A and C1B are used in a high-frequency circuit of several hundred MHz to several GHz, and function as an RF capacitor whose capacitance value changes according to the proximity area between the movable beam 3 and the dielectric film 8. .
 本実施形態の誘電体膜8は、下側駆動容量電極5A,5Bと同電位電極9A,9Bとの境界部分に分割溝11(図3(C)参照。)を備え、分割溝11によって誘電体分割領域8A~8E(図3(C)参照。)に分割されている。誘電体分割領域8Aは、下側RF容量電極4A,4Bと腕部9A1,9B1とを覆うように設けられている。誘電体分割領域8B,8Cは、それぞれ下側駆動容量電極5A,5Bを覆うように設けられている。誘電体分割領域8D,8Eは、それぞれ腕部9A2,9B2を覆うように設けられている。このように分割溝11によって誘電体膜8を分割することにより、下側駆動容量電極5A,5Bと同電位電極9A,9Bとの間が容量結合することを抑制している。 The dielectric film 8 of the present embodiment includes a dividing groove 11 (see FIG. 3C) at the boundary between the lower drive capacitance electrodes 5A and 5B and the same potential electrodes 9A and 9B. The body is divided into body division regions 8A to 8E (see FIG. 3C). The dielectric division region 8A is provided so as to cover the lower RF capacitive electrodes 4A and 4B and the arm portions 9A1 and 9B1. The dielectric division regions 8B and 8C are provided so as to cover the lower drive capacitance electrodes 5A and 5B, respectively. The dielectric division regions 8D and 8E are provided so as to cover the arm portions 9A2 and 9B2, respectively. By dividing the dielectric film 8 by the dividing grooves 11 in this manner, capacitive coupling between the lower drive capacitance electrodes 5A and 5B and the same potential electrodes 9A and 9B is suppressed.
 また誘電体膜8は、各腕部9A1,9A2,9B1,9B2を覆う領域の表面にストッパ部12を備える。各ストッパ部12はX軸に沿って長尺に誘電体膜8の表面から約20nmから50nm突出する部位であり、誘電体膜8の下側駆動容量電極5A,5B上の部分と上側駆動容量電極7A,7Bとの間にギャップ空間を確保するために設けられている。なお、ストッパ部12の形成領域における誘電体膜8の厚みは、RF容量部C1A,C1Bの形成領域と等しくし、駆動容量部C2A,C2Bの形成領域よりも厚くしている。 Further, the dielectric film 8 includes a stopper portion 12 on the surface of the region covering each arm portion 9A1, 9A2, 9B1, 9B2. Each stopper portion 12 is a portion that protrudes approximately 20 nm to 50 nm from the surface of the dielectric film 8 along the X-axis, and includes a portion on the lower drive capacitance electrodes 5A and 5B and the upper drive capacitance. It is provided to ensure a gap space between the electrodes 7A and 7B. The thickness of the dielectric film 8 in the region where the stopper portion 12 is formed is equal to the region where the RF capacitor portions C1A and C1B are formed, and is thicker than the region where the drive capacitor portions C2A and C2B are formed.
 この構成において誘電体分割領域8B,8Cは、可動梁3と支持板2とが近接状態であっても、上側駆動容量電極7A,7Bと下側駆動容量電極5A,5Bとの間にギャップ空間を介して挟まれることになる。ギャップ空間の誘電率は十分に低いため、この誘電体分割領域8B,8Cの帯電量は極めて低減されることになる。
 また、誘電体分割領域8D,8Eは、可動梁3と支持板2とが近接状態となると、ストッパ部12を介して上側駆動容量電極7A,7Bに接触する。しかし上側駆動容量電極7A,7Bと同電位電極9A,9Bとの間には、両者が同電位であるため電界が作用せず、誘電体分割領域8D,8Eが帯電することはない。
 また、誘電体分割領域8Aは、可動梁3と支持板2とが近接状態となると、ストッパ部12を介して上側駆動容量電極7A,7Bに接触する。しかし、上側駆動容量電極7A,7Bと対向する位置には同電位電極9A,9Bが設けられており、上側駆動容量電極7A,7Bと同電位電極9A,9Bとは同電位であるため電界が作用せず、誘電体分割領域8Aはほとんど帯電することはない。
 以上のようなことから、駆動容量部C2A,C2Bにおいては誘電体膜8の帯電が殆ど無く、帯電によるスティッキングが発生することを防ぐことができる。一方、上側RF容量電極6と下側RF容量電極4A,4Bとは、ギャップ空間を介さずに誘電体分割領域8Aのみを介して対向するため、RF容量部C1A,C1Bにおいては大きなRF容量を得ることができる。
In this configuration, the dielectric division regions 8B and 8C have a gap space between the upper drive capacitance electrodes 7A and 7B and the lower drive capacitance electrodes 5A and 5B even when the movable beam 3 and the support plate 2 are in proximity to each other. Will be sandwiched through. Since the dielectric constant of the gap space is sufficiently low, the charge amount of the dielectric divided regions 8B and 8C is extremely reduced.
Further, the dielectric division regions 8D and 8E come into contact with the upper drive capacitance electrodes 7A and 7B through the stopper portion 12 when the movable beam 3 and the support plate 2 are brought into proximity. However, the electric field does not act between the upper drive capacitance electrodes 7A, 7B and the same potential electrodes 9A, 9B because they are at the same potential, and the dielectric division regions 8D, 8E are not charged.
Further, when the movable beam 3 and the support plate 2 are in the proximity state, the dielectric division region 8A comes into contact with the upper drive capacitor electrodes 7A and 7B via the stopper portion 12. However, the same potential electrodes 9A and 9B are provided at positions facing the upper drive capacitance electrodes 7A and 7B. Since the upper drive capacitance electrodes 7A and 7B and the same potential electrodes 9A and 9B are at the same potential, an electric field is generated. It does not act, and the dielectric division region 8A is hardly charged.
As described above, in the drive capacitor portions C2A and C2B, the dielectric film 8 is hardly charged, and sticking due to charging can be prevented from occurring. On the other hand, since the upper RF capacitive electrode 6 and the lower RF capacitive electrodes 4A and 4B are opposed to each other through only the dielectric division region 8A without a gap space, a large RF capacitance is provided in the RF capacitive portions C1A and C1B. Obtainable.
 また、ストッパ部12および同電位電極9A,9Bは可動梁3の主軸方向を長手として下側駆動容量電極5A,5Bと平行に設けられていて、ストッパ部12の高さは一様なものとされている。これにより、可動梁3と支持板2とが近接状態でのギャップ空間を介した上側駆動容量電極7A,7Bと誘電体膜8との間隔を、可動梁3の主軸方向に一様にすることができ、駆動容量とRF容量との相関関係を一定に保つことが容易になる。 Further, the stopper portion 12 and the equipotential electrodes 9A and 9B are provided in parallel with the lower drive capacitance electrodes 5A and 5B with the main axis direction of the movable beam 3 as the longitudinal direction, and the height of the stopper portion 12 is uniform. Has been. As a result, the distance between the upper drive capacitance electrodes 7A, 7B and the dielectric film 8 through the gap space when the movable beam 3 and the support plate 2 are close to each other is made uniform in the main axis direction of the movable beam 3. This makes it easy to keep the correlation between the drive capacity and the RF capacity constant.
《第2の実施形態》
 図5(A)は、本発明の第2の実施形態に係る可変容量装置21のX-Y面平面図である。なお、同図中では可動梁3の図示を省いている。図5(B)は、可変容量装置21のY-Z面断面図である。
 可変容量装置21は、前述の可変容量装置1とは形状が相違する誘電体膜28を備える。誘電体膜28は、第1の実施形態と同様に、分割溝11によって誘電体分割領域28A~28Eに分割され、同電位電極9A,9Bに対向する位置にストッパ部12が設けられている。本実施形態では、誘電体分割領域28Aにおける下側RF容量電極4A,4Bに対向する位置にストッパ部22が設けられている。ストッパ部22は、ストッパ部12と同様な厚みで、X軸方向を長手として誘電体膜28の上面から突出する。このため、このRF容量部C1A,C1Bでは、上側RF容量電極6と下側RF容量電極4A,4Bとが誘電体分割領域28Aのストッパ部22を介して接触する。
<< Second Embodiment >>
FIG. 5A is an XY plane plan view of the variable capacitance device 21 according to the second embodiment of the present invention. In addition, in the same figure, illustration of the movable beam 3 is omitted. FIG. 5B is a YZ plane cross-sectional view of the variable capacitance device 21.
The variable capacitance device 21 includes a dielectric film 28 having a shape different from that of the variable capacitance device 1 described above. As in the first embodiment, the dielectric film 28 is divided into dielectric division regions 28A to 28E by the division groove 11, and the stopper portion 12 is provided at a position facing the same potential electrodes 9A and 9B. In the present embodiment, the stopper portion 22 is provided at a position facing the lower RF capacitive electrodes 4A and 4B in the dielectric division region 28A. The stopper portion 22 has the same thickness as the stopper portion 12 and protrudes from the upper surface of the dielectric film 28 with the X-axis direction as the longitudinal direction. Therefore, in the RF capacitor portions C1A and C1B, the upper RF capacitor electrode 6 and the lower RF capacitor electrodes 4A and 4B are in contact with each other via the stopper portion 22 of the dielectric division region 28A.
 この構成でも、第1の実施形態と同様の効果が得られる。なお誘電体膜28は、スパッタリング法による成膜プロセスでTa2O5膜を成膜し、1次RIEエッチングプロセスによりストッパ部12,22を設け、2次RIEエッチングプロセスにより分割溝11を設けることで形成することができる。そのようなプロセスを採用する場合、1次RIEエッチングプロセスではエッチング量が想定からずれることがあるが、本構成ではそのずれがRF容量と駆動容量との相関性のばらつきを引き起こすことが無く、RF容量と駆動容量との高い相関性を安定的に得ることができる。 Even with this configuration, the same effects as those of the first embodiment can be obtained. The dielectric film 28 is formed by forming a Ta 2 O 5 film by a film formation process by sputtering, providing stopper portions 12 and 22 by a primary RIE etching process, and providing a dividing groove 11 by a secondary RIE etching process. Can be formed. When such a process is adopted, the etching amount may deviate from the assumption in the primary RIE etching process, but in this configuration, the deviation does not cause a variation in the correlation between the RF capacitance and the drive capacitance, and the RF A high correlation between the capacity and the drive capacity can be stably obtained.
《第3の実施形態》
 図6(A)は、本発明の第3の実施形態に係る可変容量装置31のX-Y面平面図である。なお、同図中では可動梁3の図示を省いている。図6(B)は、可変容量装置31のY-Z面断面図である。
 可変容量装置31は、前述の可変容量装置1とは形状が相違する誘電体膜38を備える。誘電体膜38は、第1の実施形態と同様に、分割溝11によって誘電体分割領域38A~38Eに分割され、同電位電極9A,9Bに対向する位置にストッパ部12が設けられている。本実施形態では、誘電体分割領域38B,38Cに複数の円形のストッパ部32が設けられている。これらのストッパ部32はストッパ部12と同様な厚みで、誘電体膜38の上面から突出する。
<< Third Embodiment >>
FIG. 6A is an XY plane plan view of the variable capacitance device 31 according to the third embodiment of the present invention. In addition, in the same figure, illustration of the movable beam 3 is omitted. 6B is a cross-sectional view of the variable capacitance device 31 taken along the YZ plane.
The variable capacitance device 31 includes a dielectric film 38 having a shape different from that of the variable capacitance device 1 described above. As in the first embodiment, the dielectric film 38 is divided into dielectric division regions 38A to 38E by the division groove 11, and the stopper portion 12 is provided at a position facing the same potential electrodes 9A and 9B. In the present embodiment, a plurality of circular stopper portions 32 are provided in the dielectric division regions 38B and 38C. These stopper portions 32 have the same thickness as the stopper portion 12 and protrude from the upper surface of the dielectric film 38.
 可変容量装置31において、駆動容量部C2A,C2Bに高電圧の駆動DC電圧が印加されると、可動梁3における両腕部(9A1,9A2),(9B1,9B2)に接触する位置の間の部分に、支持板2側に撓むような静電引力が作用する。本構成では、ストッパ部32によってこの静電引力を支え、可動梁3が撓むことを防いでいる。これにより、駆動容量が適正な容量値を維持することになり、RF容量と駆動容量との高い相関性を安定的に得ることができる。 In the variable capacitance device 31, when a high drive DC voltage is applied to the drive capacitor portions C2A and C2B, the position between the arm portions (9A1, 9A2) and (9B1, 9B2) of the movable beam 3 is in contact with each other. An electrostatic attractive force that bends toward the support plate 2 side acts on the portion. In this configuration, the electrostatic attracting force is supported by the stopper portion 32 to prevent the movable beam 3 from being bent. As a result, the drive capacity maintains an appropriate capacity value, and a high correlation between the RF capacity and the drive capacity can be stably obtained.
《第4の実施形態》
 図7は、本発明の可変容量装置におけるストッパ部や同電位電極の配置構成例を説明する模式図である。
 図7(A)に図示する可変容量装置41Aは、ストッパ部42Aを駆動容量部を構成する下側駆動容量電極5A,5Bの両脇ではなく、一方の脇に配置する構成である。なお、この場合、同電位電極(不図示)はストッパ部42Aと同様の位置に設けると良い。
 図7(B)に図示する可変容量装置41Bは、ストッパ部42Bを一本の長尺な形状ではなく、より短い短冊状の形状とし、複数のストッパ部42Bを可動梁の長手方向に配列した構成である。なお、この場合、同電位電極(不図示)は前述の実施形態と同様に一本の長尺な形状とするとよい。
 図7(C)に図示する可変容量装置41Cは、下側駆動容量電極を2つの領域(5A1,5A2),(5B1,5B2)に分割し、その間にストッパ部42Cを配置した構成である。なお、この場合、同電位電極(不図示)は前述の実施形態と同様に一本の長尺な形状とするとよい。
 図7(D)に図示する可変容量装置41Dは、ストッパ部42DをRF容量部を構成する2本の下側RF容量電極4A,4Bの間にも配置し、複数のストッパ部42Dを等間隔で配置した構成である。このような配置とすることで、可動梁の撓みを極めて低減することが可能になる。なお、この場合、下側RF容量電極4A,4Bの間のストッパ部42Dにおいては、対向する位置に同電位電極が設けられていなくてもよい。
 以上のように、ストッパ部は様々な配置構成とすることができる。
<< Fourth Embodiment >>
FIG. 7 is a schematic diagram for explaining an arrangement configuration example of stopper portions and equipotential electrodes in the variable capacitance device of the present invention.
The variable capacitance device 41A illustrated in FIG. 7A has a configuration in which the stopper portion 42A is disposed not on both sides of the lower drive capacitance electrodes 5A and 5B constituting the drive capacitance portion but on one side. In this case, the same potential electrode (not shown) is preferably provided at the same position as the stopper portion 42A.
In the variable capacitance device 41B illustrated in FIG. 7B, the stopper portion 42B is not a single long shape but a shorter strip shape, and a plurality of stopper portions 42B are arranged in the longitudinal direction of the movable beam. It is a configuration. In this case, the equipotential electrode (not shown) is preferably a single elongated shape as in the above-described embodiment.
A variable capacitance device 41C illustrated in FIG. 7C has a configuration in which the lower drive capacitance electrode is divided into two regions (5A1, 5A2) and (5B1, 5B2), and a stopper portion 42C is disposed therebetween. In this case, the equipotential electrode (not shown) is preferably a single elongated shape as in the above-described embodiment.
In the variable capacitance device 41D illustrated in FIG. 7D, the stopper portion 42D is also disposed between the two lower RF capacitance electrodes 4A and 4B constituting the RF capacitance portion, and the plurality of stopper portions 42D are equally spaced. It is the structure arranged by. By setting it as such an arrangement | positioning, it becomes possible to reduce the bending of a movable beam extremely. In this case, in the stopper portion 42D between the lower RF capacitive electrodes 4A and 4B, the equipotential electrode may not be provided at the opposing position.
As described above, the stopper portion can have various arrangement configurations.
《第5の実施形態》
 次に、本発明において、可変容量装置の可動梁を両持ち梁構造にする場合の構成例を説明する。
<< Fifth Embodiment >>
Next, in the present invention, a configuration example in the case where the movable beam of the variable capacitance device has a double-supported beam structure will be described.
 図8(A)は、本発明の第5の実施形態に係る可変容量装置51AのX-Y面平面図である。なお、同図中ではラダー部の図示を省いている。
 可変容量装置51Aは両持ち梁構成の可動梁53を備え、下側RF容量電極4Aと下側駆動容量電極5Aとの間、および下側RF容量電極4Bと下側駆動容量電極5Bとの間の位置にストッパ部52を設け、同電位電極(不図示)をストッパ部52と重なる位置に設けた構成である。このような構成であっても、前述の実施形態と同様に、ストッパ部52により、駆動容量部を構成する下側駆動容量電極5A,5Bと上側駆動容量電極7A,7B(不図示)との間にギャップ空間を確保することができる。
FIG. 8A is an XY plane plan view of a variable capacitance device 51A according to the fifth embodiment of the present invention. In addition, in the same figure, illustration of the ladder part is omitted.
The variable capacitance device 51A includes a movable beam 53 having a doubly supported beam structure, and is provided between the lower RF capacitive electrode 4A and the lower drive capacitive electrode 5A, and between the lower RF capacitive electrode 4B and the lower drive capacitive electrode 5B. The stopper portion 52 is provided at the position, and the same potential electrode (not shown) is provided at the position overlapping the stopper portion 52. Even in such a configuration, the lower drive capacitance electrodes 5A and 5B and the upper drive capacitance electrodes 7A and 7B (not shown) constituting the drive capacitance portion are formed by the stopper portion 52 as in the above-described embodiment. A gap space can be secured between them.
 図8(B)は、本発明の第5の実施形態に係る可変容量装置51BのX-Y面平面図である。なお、同図中ではラダー部と誘電体膜の図示を省いている。
 この可変容量装置51Bは、可動梁53におけるX軸正方向の端部をミアンダ状の連結部53Aにより支持板2に支持する構成であり、連結部53Aのバネ定数をX軸負方向の連結部3Bのバネ定数よりも大幅に小さくし、これにより可動梁53がX軸正方向の端部から誘電体膜に接触するようにした構成である。
 この可変容量装置51Bでも、可変容量装置51Aと同様に、下側RF容量電極4Aと下側駆動容量電極5Aとの間、および下側RF容量電極4Bと下側駆動容量電極5Bとの間の位置にストッパ部52を設け、同電位電極(不図示)をストッパ部52と重なる位置に設けている。
FIG. 8B is an XY plane plan view of a variable capacitance device 51B according to the fifth embodiment of the present invention. In the figure, the ladder part and the dielectric film are not shown.
This variable capacity device 51B is configured to support the end of the movable beam 53 in the positive X-axis direction on the support plate 2 by means of a meander-shaped connecting part 53A. The spring constant of the connecting part 53A is connected to the connecting part in the X-axis negative direction. The spring constant is significantly smaller than 3B, so that the movable beam 53 comes into contact with the dielectric film from the end in the positive direction of the X axis.
In this variable capacitance device 51B as well as the variable capacitance device 51A, between the lower RF capacitance electrode 4A and the lower drive capacitance electrode 5A and between the lower RF capacitance electrode 4B and the lower drive capacitance electrode 5B. A stopper portion 52 is provided at a position, and the same potential electrode (not shown) is provided at a position overlapping the stopper portion 52.
 図8(C)は、本発明の第5の実施形態に係る可変容量装置51CのX-Y面平面図である。なお、同図中ではラダー部と誘電体膜の図示を省いている。
 この可変容量装置51Cは、可動梁53におけるX軸正方向の端部に連結部53Bを接続し、連結部53Bを可動梁53におけるX軸負方向の端部付近まで引き回して、連結部3Bと共通の支持部3Aに接続する構成であり、連結部53Bのバネ定数をX軸負方向の連結部3Bのバネ定数よりも大幅に小さくし、これにより可動梁53がX軸正方向の端部から誘電体膜に接触するようにした構成である。
 この可変容量装置51Cでも、可変容量装置51A,51Bと同様に、下側RF容量電極4Aと下側駆動容量電極5Aとの間、および下側RF容量電極4Bと下側駆動容量電極5Bとの間の位置にストッパ部52を設け、同電位電極(不図示)をストッパ部52と重なる位置に設けている。
FIG. 8C is an XY plane plan view of a variable capacitance device 51C according to the fifth embodiment of the present invention. In the figure, the ladder part and the dielectric film are not shown.
The variable capacity device 51C connects the connecting portion 53B to the end portion of the movable beam 53 in the positive direction of the X axis and draws the connecting portion 53B to the vicinity of the end portion of the movable beam 53 in the negative direction of the X axis. It is configured to connect to a common support portion 3A, and the spring constant of the connecting portion 53B is made significantly smaller than the spring constant of the connecting portion 3B in the negative X-axis direction, whereby the movable beam 53 is the end portion in the positive X-axis direction. In this configuration, the dielectric film is in contact with the dielectric film.
Also in this variable capacitance device 51C, similarly to the variable capacitance devices 51A and 51B, between the lower RF capacitance electrode 4A and the lower drive capacitance electrode 5A and between the lower RF capacitance electrode 4B and the lower drive capacitance electrode 5B. A stopper portion 52 is provided at a position therebetween, and the same potential electrode (not shown) is provided at a position overlapping the stopper portion 52.
《第6の実施形態》
 次に、本発明の可変容量装置の断面構造の構成例を説明する。
<< Sixth Embodiment >>
Next, a configuration example of a cross-sectional structure of the variable capacitance device of the present invention will be described.
 図9(A)は、本発明の第6の実施形態に係る可変容量装置61AのX-Y面平面図である。
 この可変容量装置61Aは、下側RF容量電極4A,4B及び下側駆動容量電極5A,5Bの電極厚より厚い電極厚の同電位電極69Aを備える。この構成では、ストッパ部の高さ調整を同電位電極69Aの厚み調整によって行え、同電位電極69Aを蒸着法による成膜プロセスとリフトオフプロセスとを採用して成形すると、同電位電極69Aの高さを極めて高精度にできるため、ストッパ部の高さを高精度に調整することができる。
FIG. 9A is an XY plane plan view of a variable capacitance device 61A according to the sixth embodiment of the present invention.
The variable capacitance device 61A includes an equipotential electrode 69A having an electrode thickness thicker than the electrode thicknesses of the lower RF capacitance electrodes 4A and 4B and the lower drive capacitance electrodes 5A and 5B. In this configuration, the height of the stopper portion can be adjusted by adjusting the thickness of the equipotential electrode 69A. If the equipotential electrode 69A is formed using a deposition process and a lift-off process by vapor deposition, the height of the equipotential electrode 69A is increased. Therefore, the height of the stopper portion can be adjusted with high accuracy.
 図9(B)は、本発明の第6の実施形態に係る可変容量装置61BのX-Y面平面図である。
 この可変容量装置61Bは、同電位電極69Bを誘電体膜8から突出するように形成した構成である。この構成では、ストッパ部を同電位電極69Bで構成するので、同電位電極69Bを蒸着法による成膜プロセスとリフトオフプロセスとを採用して成形すると、ストッパ部の高さを高精度に調整することができる。さらには、駆動容量部において誘電体膜8が上側駆動容量電極7A,7Bと接触することが無くなり、確実な帯電防止が図れる。
FIG. 9B is an XY plane plan view of the variable capacitance device 61B according to the sixth embodiment of the present invention.
The variable capacitance device 61B has a configuration in which the same potential electrode 69B is formed so as to protrude from the dielectric film 8. In this configuration, since the stopper portion is composed of the equipotential electrode 69B, when the equipotential electrode 69B is formed by employing a deposition process and a lift-off process, the height of the stopper portion can be adjusted with high accuracy. Can do. Furthermore, the dielectric film 8 does not come into contact with the upper drive capacitor electrodes 7A and 7B in the drive capacitor portion, and reliable charging prevention can be achieved.
 図9(C)は、本発明の第6の実施形態に係る可変容量装置61CのX-Y面平面図である。
 この可変容量装置61Cは、導電性材料からなるストッパ部62を備え、ストッパ部62を同電位電極9A,9Bおよび上側駆動容量電極7A,7Bと同電位に接続する構成である。この構成では、ストッパ部を導電性材料で構成するので、駆動容量部において誘電体膜8が上側駆動容量電極7A,7Bと接触することが無くなり、確実な帯電防止が図れる。
FIG. 9C is an XY plane plan view of a variable capacitance device 61C according to the sixth embodiment of the present invention.
The variable capacitance device 61C includes a stopper portion 62 made of a conductive material, and is configured to connect the stopper portion 62 to the same potential as the same potential electrodes 9A and 9B and the upper drive capacitance electrodes 7A and 7B. In this configuration, since the stopper portion is made of a conductive material, the dielectric film 8 does not come into contact with the upper drive capacitance electrodes 7A and 7B in the drive capacitance portion, and reliable charging prevention can be achieved.
 図9(D)は、本発明の第6の実施形態に係る可変容量装置61DのX-Y面平面図である。
 この可変容量装置61Dは、第3の実施形態で説明した円形のストッパ部32を備えるとともに、導電性材料からなるストッパ部62を備え、ストッパ部62を同電位電極9A,9Bおよび上側駆動容量電極7A,7Bと同電位に接続する構成である。この構成でも、ストッパ部を導電性材料で構成するので、駆動容量部において誘電体膜8が上側駆動容量電極7A,7Bと接触することが無くなり、確実な帯電防止が図れる。
FIG. 9D is an XY plane plan view of the variable capacitance device 61D according to the sixth embodiment of the present invention.
The variable capacitance device 61D includes the circular stopper portion 32 described in the third embodiment, and also includes a stopper portion 62 made of a conductive material. The stopper portion 62 includes the same potential electrodes 9A and 9B and the upper drive capacitance electrode. 7A and 7B are connected to the same potential. Even in this configuration, since the stopper portion is made of a conductive material, the dielectric film 8 does not come into contact with the upper drive capacitance electrodes 7A and 7B in the drive capacitance portion, so that reliable charging prevention can be achieved.
 なお、上述のような導電性材料からなるストッパ部を設ける場合には、RIEエッチングプロセスやスパッタ法による成膜プロセスのようなプラズマを利用するプロセスを採用する際に、誘電体膜にプラズマによる帯電が発生しても、ストッパ部の存在によって帯電による悪影響を受けにくくなり、プロセス精度を改善することができる。 In the case where the stopper portion made of the conductive material as described above is provided, the dielectric film is charged with plasma when a process using plasma such as a RIE etching process or a film formation process by sputtering is employed. Even if this occurs, the presence of the stopper portion makes it less likely to be adversely affected by charging, and process accuracy can be improved.
 本発明は上述の実施形態の記載に制限されるものではなく、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図されるものである。 The present invention is not limited to the description of the above-described embodiment, and the scope of the present invention is defined by the scope of claims, and includes meanings equivalent to the scope of claims and all modifications within the scope. Is intended.
C1A,C1B…RF容量部
C2A,C2B…駆動容量部
1,21,31,41A~41D,51A~51C,61A~61D…可変容量装置
2…支持板
3,53…可動梁
3A…支持部
3B,53A,53B…連結部
3C…可動部
3D…ラダー部
4A,4B…下側RF容量電極4A,4B
5A,5B…下側駆動容量電極
6…上側RF容量電極
7A,7B…上側駆動容量電極
8,28,38…誘電体膜
8A~8E,28A~28E,38A~38E…誘電体分割領域
9A,9B,69A,69B…同電位電極
9A1,9A2,9B1,9B2…腕部
11…分割溝
12,22,32,42A~42D,52,62…ストッパ部
C1A, C1B... RF capacitors C2A, C2B... Drive capacitors 1, 21, 31, 41A to 41D, 51A to 51C, 61A to 61D ... Variable capacitor device 2 ... Support plate 3, 53 ... Movable beam 3A ... Support portion 3B , 53A, 53B ... connecting part 3C ... movable part 3D ... ladder part 4A, 4B ... lower RF capacitive electrodes 4A, 4B
5A, 5B ... Lower drive capacitance electrode 6 ... Upper RF capacitance electrode 7A, 7B ... Upper drive capacitance electrodes 8, 28, 38 ... Dielectric films 8A-8E, 28A-28E, 38A-38E ... Dielectric divided region 9A, 9B, 69A, 69B ... equipotential electrodes 9A1, 9A2, 9B1, 9B2 ... arm 11 ... dividing grooves 12, 22, 32, 42A to 42D, 52, 62 ... stoppers

Claims (9)

  1.  支持板と、
     前記支持板の主面に平行に支持される可動梁と、
     前記可動梁の主軸方向に沿って長尺に前記可動梁と前記支持板とに互いに対向して設けられる一対の駆動容量電極と、駆動容量電極の少なくとも一方に積層される誘電体膜とからなり、前記一対の駆動容量電極の間に生じる駆動容量に基づいて前記可動梁を変形させる駆動容量部と、
     前記可動梁の主軸方向に沿って長尺に前記可動梁と前記支持板とに互いに対向して設けられる一対のRF容量電極と、RF容量電極の少なくとも一方に積層される誘電体膜とからなり、前記一対のRF容量電極の間に生じるRF容量を介してRF信号を伝搬させるRF容量部と、
     前記駆動容量部における前記駆動容量電極と前記誘電体膜との間のギャップ空間に突出し、可動梁の主軸方向に沿って設けられるストッパ部と、
     前記ストッパ部に対向する位置に可動梁の主軸方向に沿って設けられ、前記ギャップ空間を介して対向する前記駆動容量電極と同電位に接続される同電位電極部と、
    を備える可変容量装置。
    A support plate;
    A movable beam supported parallel to the main surface of the support plate;
    A pair of drive capacitor electrodes provided to be opposed to each other on the movable beam and the support plate along the main axis direction of the movable beam, and a dielectric film laminated on at least one of the drive capacitor electrodes. A drive capacity unit that deforms the movable beam based on a drive capacity generated between the pair of drive capacity electrodes;
    A pair of RF capacitive electrodes provided to be opposed to each other on the movable beam and the support plate along the main axis direction of the movable beam, and a dielectric film laminated on at least one of the RF capacitive electrodes. An RF capacitor unit for propagating an RF signal through an RF capacitor generated between the pair of RF capacitor electrodes;
    A stopper that protrudes into the gap space between the drive capacitor electrode and the dielectric film in the drive capacitor, and is provided along the principal axis direction of the movable beam;
    An equipotential electrode portion provided at a position facing the stopper portion along the principal axis direction of the movable beam and connected to the same potential as the drive capacitor electrode facing the gap space;
    A variable capacity device.
  2.  前記ストッパ部は、前記駆動容量電極と前記同電位電極部とが対面する位置にのみ設けられる、請求項1に記載の可変容量装置。 The variable capacitance device according to claim 1, wherein the stopper portion is provided only at a position where the drive capacitance electrode and the equipotential electrode portion face each other.
  3.  前記RF容量部における誘電体膜の厚みは、前記駆動容量部における誘電体膜の厚みと前記ストッパ部の厚みとを加算したものに等しい、請求項1または2に記載の可変容量装置。 The variable capacitance device according to claim 1 or 2, wherein a thickness of the dielectric film in the RF capacitor section is equal to a sum of a thickness of the dielectric film in the drive capacitor section and a thickness of the stopper section.
  4.  前記RF容量部における誘電体膜の厚みは、前記駆動容量部における誘電体膜の厚みに等しい、請求項1または2に記載の可変容量装置。 The variable capacitance device according to claim 1 or 2, wherein a thickness of the dielectric film in the RF capacitor section is equal to a thickness of the dielectric film in the drive capacitor section.
  5.  前記RF容量部における誘電体膜の厚みは、前記駆動容量部における誘電体膜の厚みに等しく、前記RF容量部にもストッパ部を設ける請求項1または2に記載の可変容量装置。 3. The variable capacitance device according to claim 1, wherein a thickness of the dielectric film in the RF capacitor unit is equal to a thickness of the dielectric film in the drive capacitor unit, and a stopper unit is provided in the RF capacitor unit.
  6.  前記ストッパ部は、前記誘電体膜を部分的に厚くした突出部分である、請求項1~4のいずれかに記載の可変容量装置。 5. The variable capacitance device according to claim 1, wherein the stopper portion is a protruding portion obtained by partially thickening the dielectric film.
  7.  前記ストッパ部は、前記同電位電極部に前記誘電体膜が積層されて突出する部分である、請求項1~4のいずれかに記載の可変容量装置。 5. The variable capacitance device according to claim 1, wherein the stopper portion is a portion where the dielectric film is laminated on the equipotential electrode portion and protrudes.
  8.  前記ストッパ部は、前記誘電体膜よりも厚い同電位電極部の前記誘電体膜からの突出部分である、請求項1~4のいずれかに記載の可変容量装置。 5. The variable capacitance device according to claim 1, wherein the stopper portion is a protruding portion of the same potential electrode portion thicker than the dielectric film from the dielectric film.
  9.  前記ストッパ部は、前記同電位電極部に積層された前記誘電体膜に積層される電極である、請求項1~4のいずれかに記載の可変容量装置。 5. The variable capacitance device according to claim 1, wherein the stopper portion is an electrode laminated on the dielectric film laminated on the equipotential electrode portion.
PCT/JP2011/061925 2010-06-14 2011-05-25 Variable capacitance device WO2011158620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010134843 2010-06-14
JP2010-134843 2010-06-14

Publications (1)

Publication Number Publication Date
WO2011158620A1 true WO2011158620A1 (en) 2011-12-22

Family

ID=45348029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061925 WO2011158620A1 (en) 2010-06-14 2011-05-25 Variable capacitance device

Country Status (1)

Country Link
WO (1) WO2011158620A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449354A (en) * 2012-04-25 2013-12-18 阿尔卑斯电气株式会社 MEMS sensor and producing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039392A (en) * 2001-07-27 2003-02-13 Japan Aviation Electronics Industry Ltd Electrostatic drive device
JP2006165380A (en) * 2004-12-09 2006-06-22 Kyocera Corp Variable capacitor
JP2008005642A (en) * 2006-06-23 2008-01-10 Toshiba Corp Piezoelectric-driving mems actuator
JP2008300284A (en) * 2007-06-01 2008-12-11 Toshiba Corp Semiconductor device
JP2009212451A (en) * 2008-03-06 2009-09-17 Murata Mfg Co Ltd Varactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039392A (en) * 2001-07-27 2003-02-13 Japan Aviation Electronics Industry Ltd Electrostatic drive device
JP2006165380A (en) * 2004-12-09 2006-06-22 Kyocera Corp Variable capacitor
JP2008005642A (en) * 2006-06-23 2008-01-10 Toshiba Corp Piezoelectric-driving mems actuator
JP2008300284A (en) * 2007-06-01 2008-12-11 Toshiba Corp Semiconductor device
JP2009212451A (en) * 2008-03-06 2009-09-17 Murata Mfg Co Ltd Varactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449354A (en) * 2012-04-25 2013-12-18 阿尔卑斯电气株式会社 MEMS sensor and producing method thereof

Similar Documents

Publication Publication Date Title
KR101424297B1 (en) Electronic element, variable capacitor, micro switch, method for driving micro switch, mems type electronic element, micro actuator and mems optical element
US7486002B2 (en) Lateral piezoelectric driven highly tunable micro-electromechanical system (MEMS) inductor
US7466474B2 (en) Micromechanical device with tilted electrodes
TW582043B (en) Membrane for micro-electro-mechanical switch, and methods of making and using it
US7242273B2 (en) RF-MEMS switch and its fabrication method
US6853534B2 (en) Tunable capacitor
US7466060B2 (en) Piezoelectric driving type MEMS apparatus
US8363381B2 (en) Variable capacitive element, variable capacitive device, and method for driving the variable capacitive element
JP5363005B2 (en) Variable capacitance element, matching circuit element, and portable terminal device
US6856219B2 (en) Electrostatic actuator
US7830068B2 (en) Actuator and electronic hardware using the same
JP2009194291A (en) Actuator
WO2014034602A1 (en) Electrostatic induction conversion device and dc-dc converter
WO2011158620A1 (en) Variable capacitance device
JPH10149951A (en) Variable capacitance capacitor
WO2011058826A1 (en) Variable capacitance device
WO2011158708A1 (en) Variable capacitance device
JP5590251B2 (en) Variable capacity device
JPH10149950A (en) Variable capacitance capacitor
WO2011152192A1 (en) Variable capacitance element
US10439591B2 (en) MEMS device with large out-of-plane actuation and low-resistance interconnect and methods of use
JP2004127973A (en) Variable capacitor and its manufacturing process
WO2011158619A1 (en) Variable capacitance device
JP2012009637A (en) Variable capacity device
JP2012176445A (en) Mems actuator and variable capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP