JPH10149951A - Variable capacitance capacitor - Google Patents

Variable capacitance capacitor

Info

Publication number
JPH10149951A
JPH10149951A JP32083296A JP32083296A JPH10149951A JP H10149951 A JPH10149951 A JP H10149951A JP 32083296 A JP32083296 A JP 32083296A JP 32083296 A JP32083296 A JP 32083296A JP H10149951 A JPH10149951 A JP H10149951A
Authority
JP
Japan
Prior art keywords
electrode
substrate
movable
movable piece
facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32083296A
Other languages
Japanese (ja)
Inventor
Masaki Takeuchi
雅樹 竹内
Yukio Yoshino
幸夫 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP32083296A priority Critical patent/JPH10149951A/en
Publication of JPH10149951A publication Critical patent/JPH10149951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable capacitance capacitor, the capacitance change of which can be controlled with high accuracy. SOLUTION: Leg sections 2a and 2b are formed on a substrate 1 at an interval, and beam sections 4a and 4b are respectively extended from the sections 2a and 2b and connected to a common moving piece 5. The sections 4a and 4b and piece 5 are oppositely faced to the substrate 1 with gaps 10 in between, and reference substrates 8 are formed on the surfaces of the sections 4a and 4b and piece 5 facing the substrate 1. Then, drive electrodes 6a and 6b respectively faced to the sections 4a and 4b and a detecting electrode 7 faced to the piece 5 are formed on the substrate 1. The widths D of the beams of the sections 4a and 4b become narrower toward the piece 5 from their base end sections. When the sections 4a and 4b are deformed by bending the sections 4a and 4b toward the substrate 1, the interval between the reference electrode on the piece 5 and the detecting electrode 7 changes, and the change of the capacitance between the electrodes 7 and 8 can be controlled with accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は静電容量を可変する
ことが可能な可変容量コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable capacitor capable of changing the capacitance.

【0002】[0002]

【従来の技術】可変容量コンデンサとしては、バリコン
やバラクタダイオードが知られている。上記バリコン
は、周知のように、互いに対向する電極と、モーター等
の回動機構とを有し、上記回動機構によって互いに対向
する電極の対向面積を可変し、それら電極間の静電容量
を可変するものである。また、上記バラクタダイオード
は外部から印加される電圧の大きさにより寄生容量を可
変することができるものである。
2. Description of the Related Art Variable capacitors and varactor diodes are known as variable capacitance capacitors. As is well known, the variable condenser has electrodes facing each other and a rotating mechanism such as a motor, and varies the facing area of the electrodes facing each other by the rotating mechanism to reduce the capacitance between the electrodes. It is variable. The varactor diode can vary the parasitic capacitance according to the magnitude of the voltage applied from the outside.

【0003】このような可変容量コンデンサは発振回路
や変調回路等に組み込まれ、例えば、高周波信号が加え
られると、その可変容量コンデンサの静電容量の大きさ
に応じた出力電圧信号を出力するもので、可変容量コン
デンサを組み込む上記発振回路や変調回路等が所望の回
路出力を得ることができるように、その可変容量コンデ
ンサの静電容量(寄生容量)を可変設定して使用され
る。
[0003] Such a variable capacitor is incorporated in an oscillation circuit, a modulation circuit, or the like. For example, when a high-frequency signal is applied, the variable capacitor outputs an output voltage signal corresponding to the capacitance of the variable capacitor. Then, the capacitance (parasitic capacitance) of the variable capacitor is used variably so that the oscillation circuit or the modulation circuit incorporating the variable capacitor can obtain a desired circuit output.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記バ
リコンは構造が複雑であるし、静電容量を可変するのに
必要不可欠な回動機構は小型化が困難であることから、
バリコンの小型化を図ることが難しいという問題があ
る。
However, the structure of the variable condenser is complicated, and it is difficult to reduce the size of the rotating mechanism which is indispensable for changing the capacitance.
There is a problem that it is difficult to reduce the size of the variable condenser.

【0005】また、前記バラクタダイオードは単一素子
で形成することが可能であることから、小型化が容易で
あるが、耐圧を高めるために内部抵抗rを大きくしなけ
ればならず、この内部抵抗rの増大により次のような問
題が生じる。
Since the varactor diode can be formed by a single element, it is easy to reduce the size. However, the internal resistance r must be increased in order to increase the withstand voltage. The following problem arises due to the increase in r.

【0006】上記バラクタダイオードの出力電圧信号の
Q値は次式(1)に示すことができる。
The Q value of the output voltage signal of the varactor diode can be expressed by the following equation (1).

【0007】Q=1/(2πfcr)・・・・・(1)Q = 1 / (2πfcr) (1)

【0008】ただし、上式(1)に示すfはバラクタダ
イオードに加えられる高周波信号の周波数であり、cは
バラクタダイオードの寄生容量を示し、rはバラクタダ
イオードの内部抵抗を示している。
Here, f in the above equation (1) is the frequency of the high-frequency signal applied to the varactor diode, c indicates the parasitic capacitance of the varactor diode, and r indicates the internal resistance of the varactor diode.

【0009】前記の如く、バラクタダイオードの耐圧を
向上させるために内部抵抗rを大きくすると、上式
(1)に示されるように、Q値が大幅に低下してしま
う。このため、出力電圧信号のキャリアノイズが大きく
なって出力電圧信号のSN比を悪化させてしまう。この
ように、バラクタダイオードの耐圧を向上させるために
内部抵抗rを大きくすると、バラクタダイオードの出力
性能が悪化するという問題が生じる。
As described above, when the internal resistance r is increased in order to improve the withstand voltage of the varactor diode, the Q value is greatly reduced as shown in the above equation (1). For this reason, the carrier noise of the output voltage signal increases and the SN ratio of the output voltage signal deteriorates. As described above, when the internal resistance r is increased in order to improve the withstand voltage of the varactor diode, there arises a problem that the output performance of the varactor diode deteriorates.

【0010】本発明は上記課題を解決するためになされ
たものであり、その目的は、小型化が容易で、静電容量
の可変制御を精度良く行うことが可能であり、しかも、
出力電圧信号のQ値の向上が図れて可変容量コンデンサ
の出力性能を高めることができる可変容量コンデンサを
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to make it easy to reduce the size and to perform variable control of the capacitance with high accuracy.
An object of the present invention is to provide a variable capacitor capable of improving the Q value of an output voltage signal and improving the output performance of the variable capacitor.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
にこの発明は次のような構成をもって前記課題を解決す
る手段としている。すなわち、第1の発明は、基板と、
該基板に固定形成され互いに間隙を介して配設される複
数の脚部と、これら各脚部から伸長形成され前記基板と
間隙を介して対向配設される梁部と、これら各梁部の先
端側に共通に連接され前記基板と間隙を介して対向配設
される可動片と、この可動片の基板対向面と前記梁部の
基板対向面に形成される可動電極と、前記基板に形成さ
れ前記可動電極と間隙を介して対向配設される固定電極
とを有し、前記梁部は基端側よりも先端側の梁の幅が狭
く形成されている構成をもって前記課題を解決する手段
としている。
Means for Solving the Problems To achieve the above object, the present invention has the following structure to solve the above problems. That is, a first aspect of the present invention includes a substrate,
A plurality of legs fixedly formed on the substrate and disposed with a gap therebetween; a beam formed to extend from each of the legs and disposed to face the substrate with a gap therebetween; A movable piece commonly connected to the distal end side and disposed opposite to the substrate via a gap; a movable electrode formed on the substrate facing surface of the movable piece and the substrate facing surface of the beam portion; and a movable electrode formed on the substrate. Means for solving the above-mentioned problem, comprising a movable electrode and a fixed electrode disposed opposite to each other with a gap interposed therebetween, wherein the beam portion has a configuration in which the width of the beam on the distal end side is narrower than that on the base end side. And

【0012】第2の発明は、上記第1の発明を構成する
固定電極は可動片の基板対向面に対向する可動片対向電
極と、梁部の基板対向面に対向する梁部対向電極とに分
離形成され、上記可動片対向電極は可動電極との間の静
電容量を検出するための検出電極と成し、上記梁部対向
電極は梁部を撓み変形させるための駆動電極と成してい
る構成をもって前記課題を解決する手段としている。
According to a second aspect of the present invention, in the first aspect, the fixed electrode includes a movable piece facing electrode facing the substrate facing surface of the movable piece and a beam facing electrode facing the substrate facing surface of the beam. Separately formed, the movable piece counter electrode forms a detection electrode for detecting capacitance between the movable piece and the movable electrode, and the beam portion counter electrode forms a drive electrode for bending and deforming the beam portion. With such a configuration, the above-mentioned problem is solved.

【0013】第3の発明は、上記第1又は第2の発明を
構成する可動電極は可動片の基板対向面に形成される可
動電極と、梁部の基板対向面に形成される可動電極とに
分離形成され、上記可動片の可動電極は固定電極との間
の静電容量を検出するための検出用の基準電極と成し、
前記梁部の可動電極は梁部を撓み変形させるための駆動
用の基準電極と成している構成をもって前記課題を解決
する手段としている。
According to a third aspect of the present invention, in the first or second aspect, the movable electrode includes a movable electrode formed on a substrate facing surface of a movable piece and a movable electrode formed on a substrate facing surface of a beam. The movable electrode of the movable piece forms a detection reference electrode for detecting the capacitance between the fixed electrode and the movable electrode,
The movable electrode of the beam part serves as a means for solving the above problem by having a configuration in which the movable electrode serves as a reference electrode for driving for bending and deforming the beam part.

【0014】第4の発明は、基板と、該基板に固定形成
され互いに間隙を介して配設される複数の脚部と、これ
ら各脚部から伸長形成され前記基板と間隙を介して対向
配設される梁部と、これら各梁部の先端側に共通に連接
され前記基板と間隙を介して対向配設される可動片と、
この可動片の基板対向面と前記梁部の基板対向面に形成
される可動電極と、前記基板に形成され前記可動電極と
間隙を介して対向配設される固定電極とを有し、前記可
動片は梁部の先端側の幅よりも張り出して幅広面に形成
されている構成をもって前記課題を解決する手段として
いる。
According to a fourth aspect of the invention, there is provided a substrate, a plurality of legs fixedly formed on the substrate and disposed with a gap therebetween, and extended from each of the legs and opposed to the substrate with a gap therebetween. A beam portion to be provided, and a movable piece commonly connected to the distal end side of each of these beam portions and disposed to face the substrate with a gap therebetween,
A movable electrode formed on the substrate-facing surface of the movable piece and the substrate-facing surface of the beam, and a fixed electrode formed on the substrate and opposed to the movable electrode via a gap; The piece is formed as a means that solves the above-mentioned problem with a configuration in which the piece is formed so as to protrude beyond the width of the front end side of the beam portion and to have a wide surface.

【0015】第5の発明は、上記第4の発明を構成する
梁部は基端側よりも先端側の梁の幅が狭く形成されてい
る構成をもって前記課題を解決する手段としている。
A fifth aspect of the present invention is a means for solving the above-mentioned problem with a configuration in which the beam portion constituting the fourth aspect has a configuration in which the width of the beam on the distal end side is smaller than that on the base end side.

【0016】第6の発明は、上記第4又は第5の発明を
構成する固定電極は可動片の基板対向面に対向する可動
片対向電極と、梁部の基板対向面に対向する梁部対向電
極とに分離形成され、上記可動片対向電極は可動電極と
の間の静電容量を検出するための検出電極と成し、上記
梁部対向電極は梁部を撓み変形させるための駆動電極と
成している構成をもって前記課題を解決する手段として
いる。
According to a sixth aspect of the present invention, in the fourth or fifth aspect, the fixed electrode comprises a movable piece facing electrode facing the substrate facing surface of the movable piece and a beam facing the beam facing the substrate facing surface of the beam. The movable piece counter electrode is formed as a detection electrode for detecting the capacitance between the movable piece and the movable electrode, and the beam portion counter electrode is a drive electrode for bending and deforming the beam portion. The above configuration is a means for solving the above problem.

【0017】第7の発明は、上記第4又は第5又は第6
の発明を構成する可動電極は可動片の基板対向面に形成
される可動電極と、梁部の基板対向面に形成される可動
電極とに分離形成され、上記可動片の可動電極は固定電
極との間の静電容量を検出するための検出用の基準電極
と成し、前記梁部の可動電極は梁部を撓み変形させるた
めの駆動用の基準電極と成している構成をもって前記課
題を解決する手段としている。
According to a seventh aspect of the present invention, there is provided the fourth, fifth or sixth aspect.
The movable electrode which constitutes the invention of the above is separately formed into a movable electrode formed on the substrate facing surface of the movable piece and a movable electrode formed on the substrate facing surface of the beam, and the movable electrode of the movable piece is a fixed electrode. The above object is achieved by a configuration in which the movable electrode of the beam portion is configured as a reference electrode for driving for bending and deforming the beam portion. It is a means to solve.

【0018】上記構成の発明において、例えば、可変容
量コンデンサの可動電極と固定電極がそれぞれ発振回路
や変調回路等の回路の予め定められた接続部分に接続さ
れて上記回路に組み込まれ、また、上記可動電極と固定
電極にはその可動電極と固定電極間にバイアス電圧を印
加するための電圧印加手段が接続される。上記電圧印加
手段から上記可動電極と固定電極間に直流のバイアス電
圧が印加されると、可動電極と固定電極間にクーロン力
が作用し、可動電極が固定電極に引き付けられて梁部が
基板側に撓み変形し可動片が基板側に変位する。この梁
部と可動片の基板側への変位により、可動電極と固定電
極間の間隔が可変して可動電極と固定電極間の静電容量
が可変する。
In the invention having the above structure, for example, the movable electrode and the fixed electrode of the variable capacitor are respectively connected to predetermined connection portions of a circuit such as an oscillation circuit and a modulation circuit, and are incorporated in the circuit. A voltage applying means for applying a bias voltage between the movable electrode and the fixed electrode is connected to the movable electrode and the fixed electrode. When a DC bias voltage is applied between the movable electrode and the fixed electrode from the voltage applying means, Coulomb force acts between the movable electrode and the fixed electrode, the movable electrode is attracted to the fixed electrode, and the beam portion is positioned on the substrate side. The movable piece is displaced toward the substrate side. Due to the displacement of the beam portion and the movable piece toward the substrate, the distance between the movable electrode and the fixed electrode is changed, and the capacitance between the movable electrode and the fixed electrode is changed.

【0019】この状態で、外部から上記可動電極と固定
電極間に高周波信号が印加されると、上記可動電極と固
定電極間の静電容量の大きさに応じた出力電圧信号が外
部に出力される。
In this state, when a high-frequency signal is externally applied between the movable electrode and the fixed electrode, an output voltage signal corresponding to the magnitude of the capacitance between the movable electrode and the fixed electrode is output to the outside. You.

【0020】このように、可動電極と固定電極間の間隔
を可変することで可動電極と固定電極間の静電容量を可
変し、その可動電極と固定電極間の間隔の可変制御は精
度良く行うことが可能であることから、可動電極と固定
電極間の静電容量の可変制御が精度良く行われる。ま
た、上記発明の可変容量コンデンサは構造が簡単で、表
面マイクロマシニング技術を用いて製造可能であること
から、可変容量コンデンサの小型化を図るのが容易であ
る。
As described above, by changing the distance between the movable electrode and the fixed electrode, the capacitance between the movable electrode and the fixed electrode is changed, and the variable control of the distance between the movable electrode and the fixed electrode is performed with high precision. Therefore, the variable control of the capacitance between the movable electrode and the fixed electrode is performed with high accuracy. Further, since the variable capacitor of the present invention has a simple structure and can be manufactured using the surface micromachining technology, it is easy to reduce the size of the variable capacitor.

【0021】各梁部の幅を基端側よりも先端側が狭くな
るように構成したことにより、各梁部と固定電極の対向
面積が各梁部の基端側よりも先端側で減少するので、こ
の対向面積の減少に起因して、各梁部の基板対向面に形
成される可動電極と固定電極間に発生するクーロン力の
大きさを、対向面積の全域に渡り均一にすることができ
る。
Since the width of each beam portion is made smaller at the distal end side than at the proximal end side, the facing area between each beam portion and the fixed electrode is reduced at the distal end side than at the base end side of each beam portion. Due to the decrease in the facing area, the magnitude of the Coulomb force generated between the movable electrode and the fixed electrode formed on the substrate facing surface of each beam can be made uniform over the entire facing area. .

【0022】[0022]

【発明の実施の形態】以下に、この発明に係る実施形態
例を図面に基づき説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】図1の(a)には第1の実施形態例の可変
容量コンデンサが示され、図1の(b)には上記図1の
(a)に示す可変容量コンデンサのA−A部分の断面構
成が表されている。この実施形態例の可変容量コンデン
サは、基板1と、脚部2a,2bと、両持ち梁3と、梁
部対向電極である駆動電極6a,6bと、可動片対向電
極である検出電極7と、可動電極である基準電極8と、
引き出し電極11,12,13,14とを有して構成さ
れている。
FIG. 1A shows a variable capacitor according to the first embodiment, and FIG. 1B shows an AA portion of the variable capacitor shown in FIG. 1A. Is shown. The variable capacitor of this embodiment includes a substrate 1, legs 2a and 2b, a doubly supported beam 3, drive electrodes 6a and 6b serving as beam counter electrodes, and a detection electrode 7 serving as a movable piece counter electrode. A reference electrode 8 that is a movable electrode;
It has lead electrodes 11, 12, 13, and 14.

【0024】図1の(a)と(b)に示すように、基板
1に脚部2aと脚部2bが互いに間隙を介して配設され
ており、それら脚部2a,2bに掛け渡して両持ち梁3
が基板面と空隙10を介して対向配設されている。この
両持ち梁3は両端の固定端側から中央領域に向かうに従
って梁の幅Dが連続的に狭くなっている。この両持ち梁
3の基板対向面には可動電極8が形成されており、この
基準電極8と空隙10を介して対向配設される駆動電極
6a,6bおよび検出電極7が基板1に形成されてい
る。
As shown in FIGS. 1 (a) and 1 (b), a leg 2a and a leg 2b are arranged on a substrate 1 with a gap therebetween, and are extended over the legs 2a and 2b. Doubly supported beam 3
Are disposed opposite to the substrate surface with a gap 10 therebetween. In this doubly supported beam 3, the width D of the beam is continuously narrowed from the fixed ends on both ends toward the central region. A movable electrode 8 is formed on the substrate facing surface of the doubly supported beam 3, and drive electrodes 6 a and 6 b and a detection electrode 7 which are disposed to face the reference electrode 8 via a gap 10 are formed on the substrate 1. ing.

【0025】上記駆動電極6a,6bと検出電極7は互
いに間隙を介して両持ち梁3の伸長方向に配列形成され
ており、上記駆動電極6aは脚部2a寄り側に形成さ
れ、駆動電極6bは脚部2b寄り側に形成され、検出電
極7は両持ち梁3の中央領域に対向配設されている。こ
れら駆動電極6a,6bと検出電極7により固定電極が
構成される。
The drive electrodes 6a and 6b and the detection electrode 7 are arranged in the direction in which the doubly supported beam 3 extends with a gap therebetween. The drive electrode 6a is formed on the side closer to the leg 2a. Are formed on the side closer to the leg 2 b, and the detection electrode 7 is disposed opposite to the central region of the doubly supported beam 3. These drive electrodes 6a and 6b and the detection electrode 7 form a fixed electrode.

【0026】この実施形態例では、上記駆動電極6aと
空隙10を介して対向する両持ち梁3の部分が梁部4a
を構成し、駆動電極6bと空隙10を介して対向する両
持ち梁3の部分が梁部4bを構成し、検出電極7と空隙
10を介して対向する両持ち梁3の中央領域が可動片5
を構成している。
In this embodiment, the part of the doubly supported beam 3 facing the drive electrode 6a via the gap 10 is the beam portion 4a.
The portion of the doubly supported beam 3 facing the drive electrode 6b via the gap 10 constitutes a beam portion 4b, and the central region of the doubly supported beam 3 facing the detection electrode 7 via the gap 10 is a movable piece. 5
Is composed.

【0027】また、前記駆動電極6a,検出電極7,駆
動電極6b,基準電極8からそれぞれ引き出された引き
出し電極11,12,13,14が基板1に形成されて
いる。
Further, extraction electrodes 11, 12, 13, and 14 extracted from the driving electrode 6a, the detection electrode 7, the driving electrode 6b, and the reference electrode 8, respectively, are formed on the substrate 1.

【0028】なお、前記基板1は、ガラス、セラミック
ス等の絶縁体基板、あるいは、被覆膜(例えば、珪素酸
化物、珪素窒化物、樹脂)で被覆された珪素基板やヒ化
ガリウム基板や金属基板等で形成される。また、両持ち
梁3(梁部4a,4b,可動片5)は珪素酸化物、珪素
窒化物、珪素等により形成され、駆動電極6a,6bと
検出電極7と基準電極8と引き出し電極11,12,1
3,14は、アルミニウム、金、チタン、クロム、銀、
銅、パラジウム、白金、ニッケル、ニクロム等の金属
や、ボロン、砒素、リン、アンチモン等の不純物をドー
ピングした珪素等の半導体により形成される。
The substrate 1 may be an insulating substrate such as glass or ceramics, or a silicon substrate, a gallium arsenide substrate, or a metal coated with a coating film (for example, silicon oxide, silicon nitride, resin). It is formed of a substrate or the like. The cantilever 3 (beams 4a, 4b, movable piece 5) is formed of silicon oxide, silicon nitride, silicon, or the like, and includes drive electrodes 6a, 6b, a detection electrode 7, a reference electrode 8, an extraction electrode 11, 12,1
3, 14 are aluminum, gold, titanium, chromium, silver,
It is formed of a metal such as copper, palladium, platinum, nickel, and nichrome, or a semiconductor such as silicon doped with impurities such as boron, arsenic, phosphorus, and antimony.

【0029】この実施形態例の可変容量コンデンサは上
記のように構成されており、この実施形態例の可変容量
コンデンサが発振回路や変調回路等に組み込まれる場合
には、例えば、前記引き出し電極12,14が予め定め
られた回路の接続部分にそれぞれ接続されると共に、引
き出し電極11,13,14には図示されていない電圧
印加手段が接続されることになる。
The variable capacitor of this embodiment is configured as described above. When the variable capacitor of this embodiment is incorporated in an oscillation circuit, a modulation circuit, or the like, for example, the extraction electrode 12, 14 are connected to predetermined connection portions of the circuit, and voltage applying means (not shown) is connected to the lead electrodes 11, 13, and 14.

【0030】例えば、上記電圧印加手段から引き出し電
極11,13,14を介して駆動電極6a,6bと基準
電極8に電流が通電され、駆動電極6aと該駆動電極6
aに対向する梁部4a部分の基準電極8間、および、駆
動電極6bと該駆動電極6bに対向する梁部4b部分の
基準電極8間に直流のバイアス電圧が印加されると、駆
動電極6aと梁部4a部分の基準電極8間、駆動電極6
bと梁部4b部分の基準電極8間にクーロン力が作用す
る。
For example, a current is applied from the voltage applying means to the drive electrodes 6a, 6b and the reference electrode 8 via the extraction electrodes 11, 13, 14 so that the drive electrode 6a and the drive electrode 6
When a DC bias voltage is applied between the reference electrode 8 in the beam portion 4a opposing the driving electrode 6a and between the driving electrode 6b and the reference electrode 8 in the beam portion 4b opposing the driving electrode 6b, the driving electrode 6a Between the reference electrode 8 at the beam 4a and the drive electrode 6
A Coulomb force acts between the reference electrode 8 at the point b and the beam 4b.

【0031】このクーロン力により梁部4a部分の基準
電極8が駆動電極6aに、かつ、梁部4b部分の基準電
極8が駆動電極6bにそれぞれ引き付けられ、梁部4
a,4bが共に基板1側に撓み変形する。この梁部4
a,4bの基板1側への撓み変形に伴って可動片5が基
板1側に変位し、検出電極7と該検出電極7に対向する
可動片5部分の基準電極8間の間隔が狭くなり、検出電
極7と可動片5部分の基準電極8間の静電容量は増加す
る。
The Coulomb force attracts the reference electrode 8 at the beam 4a to the drive electrode 6a and the reference electrode 8 at the beam 4b to the drive electrode 6b.
Both a and 4b bend and deform toward the substrate 1 side. This beam part 4
The movable piece 5 is displaced toward the substrate 1 in accordance with the bending deformations a and 4b toward the substrate 1, and the distance between the detection electrode 7 and the reference electrode 8 of the movable piece 5 facing the detection electrode 7 is reduced. The capacitance between the detection electrode 7 and the reference electrode 8 in the movable piece 5 increases.

【0032】一方、外部から引き出し電極14を介して
検出電極7と可動片5部分の基準電極8間に高周波信号
が印加されると、検出電極7と可動片5部分の基準電極
8間の静電容量の大きさに応じた出力電圧信号が引き出
し電極12を介して外部に出力される。
On the other hand, when a high-frequency signal is applied between the detection electrode 7 and the reference electrode 8 of the movable piece 5 via the extraction electrode 14 from the outside, static electricity between the detection electrode 7 and the reference electrode 8 of the movable piece 5 is obtained. An output voltage signal corresponding to the capacitance is output to the outside via the extraction electrode 12.

【0033】このように、この可変容量コンデンサはク
ーロン力を利用して梁部4a,4bを撓み変形させ、可
動片5を変位させて検出電極7と可動片5部分の基準電
極8間の間隔を可変し、検出電極7と可動片5部分の基
準電極8間の静電容量を可変することができるものであ
る。
As described above, this variable capacitor uses the Coulomb force to bend and deform the beam portions 4a and 4b, displaces the movable piece 5, and moves the movable electrode 5 between the detection electrode 7 and the reference electrode 8 in the movable element 5 portion. And the capacitance between the detection electrode 7 and the reference electrode 8 of the movable piece 5 can be varied.

【0034】以下に、上記構成の可変容量コンデンサの
製造手法の一例を図2に基づき簡単に説明する。図2で
は図1に示すA−A部分の断面が模式的に表されてい
る。
Hereinafter, an example of a method of manufacturing the variable capacitor having the above configuration will be briefly described with reference to FIG. FIG. 2 schematically shows a cross section taken along the line AA shown in FIG.

【0035】まず、基板1の表面に駆動電極6a,6b
と検出電極7と引き出し電極11,12,13を構成す
る導体の膜を蒸着やスパッタやCVDや印刷等の成膜形
成技術により形成する。その導体膜の上側に駆動電極6
a,6bと検出電極7と引き出し電極11,12,13
の形成領域を定めるレジストパターンをフォトリソグラ
フィ等の手法により形成する。そのレジストパターン部
分以外の導体膜をエッチング除去し、その後、上記レジ
ストパターンを除去して、図2の(a)に示すように、
駆動電極6a,6bと検出電極7と引き出し電極11,
12,13が基板1に形成される。
First, the drive electrodes 6a, 6b
And a conductor film forming the detection electrode 7 and the extraction electrodes 11, 12, and 13 is formed by a film formation technique such as vapor deposition, sputtering, CVD, or printing. The drive electrode 6 is provided on the upper side of the conductive film.
a, 6b, the detection electrode 7, and the extraction electrodes 11, 12, 13
Is formed by a technique such as photolithography. The conductor film other than the resist pattern portion is removed by etching, and then the resist pattern is removed, as shown in FIG.
The drive electrodes 6a and 6b, the detection electrode 7, and the extraction electrode 11,
12 and 13 are formed on the substrate 1.

【0036】次に、基板1の予め定められた表面領域
に、図2の(b)に示すように、犠牲層(例えば、リン
ガラスやZnOの層)15を蒸着やスパッタやCVD等
により形成する。そして、その犠牲層15が形成された
基板1の上側に基準電極8と引き出し電極14を構成す
る導体の膜を蒸着やスパッタやCVDや印刷等の成膜形
成技術により形成する。その後、基準電極8と引き出し
電極14の形成領域を定めるレジストパターンをフォト
リソグラフィ等により形成し、然る後、上記レジストパ
ターン部分以外の余分な導体膜をエッチング除去する。
この余分な導体膜のエッチング除去の後、上記レジスト
パターンを除去し基準電極8と引き出し電極14が形成
される。
Next, as shown in FIG. 2B, a sacrifice layer (for example, a layer of phosphorus glass or ZnO) 15 is formed on a predetermined surface region of the substrate 1 by vapor deposition, sputtering, CVD, or the like. I do. Then, on the substrate 1 on which the sacrificial layer 15 is formed, a conductor film forming the reference electrode 8 and the lead electrode 14 is formed by a film formation technique such as vapor deposition, sputtering, CVD, or printing. Thereafter, a resist pattern for defining the formation region of the reference electrode 8 and the lead electrode 14 is formed by photolithography or the like, and thereafter, the excess conductor film other than the resist pattern portion is removed by etching.
After the etching of the excess conductive film, the resist pattern is removed, and the reference electrode 8 and the lead electrode 14 are formed.

【0037】さらに、その導体膜の上側に、脚部2a,
2bと両持ち梁3を形成する脚部・梁形成膜を形成し、
その上側に、脚部2a,2bと両持ち梁3の形成領域を
定めるレジストパターンをフォトリソグラフィ等により
形成し、そのレジストパターン部分以外の余分な脚部・
梁形成膜をエッチング除去する。そして、上記レジスト
パターンを除去して、図2の(c)に示すように、脚部
2a,2bと両持ち梁3が形成される。
Further, on the upper side of the conductor film, the legs 2a,
2b and a leg / beam forming film forming the doubly supported beam 3 are formed,
On the upper side, a resist pattern that defines the formation regions of the legs 2a and 2b and the doubly supported beam 3 is formed by photolithography or the like, and extra legs other than the resist pattern are formed.
The beam forming film is removed by etching. Then, the resist pattern is removed to form the legs 2a, 2b and the double-supported beam 3, as shown in FIG.

【0038】最後に、前記犠牲層15をエッチング除去
し、図2の(d)に示すように、基板1と両持ち梁3間
に空隙10が形成され、可変容量コンデンサが完成す
る。
Finally, the sacrificial layer 15 is removed by etching, and as shown in FIG. 2D, a gap 10 is formed between the substrate 1 and the cantilever 3 to complete a variable capacitor.

【0039】この実施形態例によれば、基板1に脚部2
a,2bを設け、これら脚部2a,2bに掛け渡して両
持ち梁3を形成して、この両持ち梁3の基板対向面に基
準電極8を、この基準電極8に空隙10を介して対向配
設する駆動電極6a,6bと検出電極7を基板1にそれ
ぞれ設けて可変容量コンデンサを構成したので、その構
造は簡単で、しかも、表面マイクロマシニング技術によ
り製造することが可能であることから、可変容量コンデ
ンサの小型化を図るのが容易である。
According to the embodiment, the leg 2 is attached to the substrate 1.
a, 2b are provided, and are bridged between the legs 2a, 2b to form a doubly supported beam 3. A reference electrode 8 is provided on the substrate facing surface of the doubly supported beam 3 and a gap 10 is provided between the reference electrode 8 and the gap 10. Since the drive electrodes 6a and 6b and the detection electrode 7 disposed opposite to each other are provided on the substrate 1 to form a variable capacitance capacitor, the structure is simple and can be manufactured by the surface micromachining technology. It is easy to reduce the size of the variable capacitor.

【0040】また、この実施形態例では、固定電極を駆
動電極6a,6bと、検出電極7とに分離形成し、駆動
電極6a,6bをそれぞれ梁部4a,4bに対向配設し
たので、駆動電極6aと梁部4a部分の基準電極8間お
よび駆動電極6bと梁部4b部分の基準電極8間にクー
ロン力を作用させることにより、梁部4a,4bを撓み
変形させることができる。
In this embodiment, the fixed electrodes are separately formed into the drive electrodes 6a and 6b and the detection electrode 7, and the drive electrodes 6a and 6b are disposed opposite to the beams 4a and 4b, respectively. By applying a Coulomb force between the electrode 6a and the reference electrode 8 at the beam 4a and between the drive electrode 6b and the reference electrode 8 at the beam 4b, the beams 4a and 4b can be bent and deformed.

【0041】上記梁部4a,4bの撓み変形に伴って可
動片5が基板側に変位し、この可動片5の変位量は梁部
4a,4bの撓み変形量(変位量)よりも多く、この実
施形態例では、その変位量が多い可動片5に対向する領
域に検出電極7を設けたので、低電圧で梁部4a,4b
を僅かに撓み変形させただけで、検出電極7と可動片5
部分の基準電極8間の間隔が大きく可変し検出電極7と
可動片5部分の基準電極8間の静電容量を大きく可変す
ることができる。
The movable piece 5 is displaced toward the substrate along with the bending deformation of the beams 4a and 4b, and the displacement of the movable piece 5 is larger than the bending deformation (displacement) of the beams 4a and 4b. In this embodiment, since the detection electrode 7 is provided in a region facing the movable piece 5 whose displacement amount is large, the beam portions 4a, 4b can be formed at a low voltage.
Is slightly bent and deformed, the detection electrode 7 and the movable piece 5
The distance between the reference electrodes 8 in the portion can be greatly varied, and the capacitance between the detection electrode 7 and the reference electrode 8 in the movable piece 5 can be greatly varied.

【0042】さらに、この実施形態例では、前記の如
く、両持ち梁3は、両端の固定端側から中央領域に向か
うに従って梁の幅が連続的に狭くなるように構成したの
で、次のような効果を奏することができる。
Further, in this embodiment, as described above, the doubly supported beam 3 is configured such that the width of the beam is continuously narrowed from the fixed ends on both ends toward the central region. Effects can be achieved.

【0043】例えば、図3に示すように、両持ち梁3が
両端の固定端側から中央領域にかけて梁の幅が等しい、
すなわち、長方形状に形成した構成である場合に、上記
基準電極8と固定電極6a,6b間にバイアス電圧を印
加してクーロン力を発生させると、上記両持ち梁3の中
央領域(可動片5)が過剰に基板1側に変位して可動片
5部分の基準電極8が検出電極7に密着してしまうこと
があるが、この実施形態例では、次のような理由によっ
て上記問題を回避することが可能である。
For example, as shown in FIG. 3, the width of the doubly supported beam 3 is equal from the fixed ends at both ends to the central region.
That is, in the case of a rectangular configuration, if a Coulomb force is generated by applying a bias voltage between the reference electrode 8 and the fixed electrodes 6a and 6b, the central region (the movable piece 5 ) May be excessively displaced toward the substrate 1 and the reference electrode 8 of the movable piece 5 may come into close contact with the detection electrode 7. In this embodiment, the above problem is avoided for the following reasons. It is possible.

【0044】上記図3に示す基準電極8と駆動電極6
a,6b間にバイアス電圧を印加したときに、駆動電極
6aと梁部4a部分の基準電極8間、駆動電極6bと梁
部4b部分の基準電極8間に下式(2)に従った大きさ
Fでクーロン力が発生し、このクーロン力により、両持
ち梁3の梁部4a,4bが基板1側に撓み変形し、この
梁部4a,4bの撓み変形に伴って両持ち梁3の可動片
5が必然的に基板1側に変位し、両持ち梁3と基板1の
間は両持ち梁3の固定端側から中央領域に向かうに従っ
て間隔が狭くなる。
The reference electrode 8 and the driving electrode 6 shown in FIG.
When a bias voltage is applied between the driving electrodes 6a and 6b, the size according to the following equation (2) is obtained between the driving electrode 6a and the reference electrode 8 at the beam portion 4a and between the driving electrode 6b and the reference electrode 8 at the beam portion 4b. A coulomb force is generated by the force F, and the beam portions 4a and 4b of the doubly supported beam 3 bend and deform toward the substrate 1 due to the Coulomb force. The movable piece 5 is inevitably displaced toward the substrate 1, and the distance between the doubly supported beam 3 and the substrate 1 becomes narrower from the fixed end of the doubly supported beam 3 toward the central region.

【0045】 F=−q・(Vd/d)・S・・・・・(2)F = −q · (Vd / d) · S (2)

【0046】ただし、上式(2)に示すqは予め定めら
れた単位電極面積当たりの電荷量を表し、Vdは電極間
に印加される電圧を表し、dは電極間の間隔を表し、S
は電極対向面積を表している。
Here, q in the above equation (2) represents a predetermined charge amount per unit electrode area, Vd represents a voltage applied between the electrodes, d represents a distance between the electrodes, and S represents
Represents an electrode facing area.

【0047】図3に示す構成では、上式(2)に示す
q,Vd,Sは両持ち梁3の固定端側から中央領域にか
けて等しい状態であり、梁部4a,4bを撓み変形させ
たときには、前記の如く、両持ち梁3と基板1の間は両
持ち梁3の固定端側から中央領域に向かうに従って間隔
が狭くなるので、両持ち梁3の梁部4a,4b部分と駆
動電極6a,6bの各対向領域において基端側よりも先
端側の間隔が狭くなる。このため、両持ち梁3の梁部4
a,4b部分の基準電極8と駆動電極6a,6bとの間
に作用するクーロン力は、両持ち梁3の梁部4a,4b
部分と駆動電極6a,6bの各対向領域において基端側
よりも先端側で格段に大きくなり、両持ち梁3の可動片
5が過剰に基板1側に変位することになる。
In the configuration shown in FIG. 3, q, Vd, and S shown in the above equation (2) are in the same state from the fixed end side of the doubly supported beam 3 to the central region, and the beam portions 4a and 4b are bent and deformed. In some cases, as described above, the distance between the doubly supported beam 3 and the substrate 1 becomes narrower from the fixed end of the doubly supported beam 3 toward the central region, so that the beam portions 4a and 4b of the doubly supported beam 3 and the driving electrode In each of the opposing regions 6a and 6b, the interval on the distal end side is smaller than that on the proximal end side. Therefore, the beam portion 4 of the doubly supported beam 3
The Coulomb force acting between the reference electrode 8 and the drive electrodes 6a, 6b in the portions a, 4b is the beam portion 4a, 4b of the doubly supported beam 3.
In each of the opposing regions of the portion and the drive electrodes 6a and 6b, the front end side is significantly larger than the base end side, and the movable piece 5 of the double-supported beam 3 is excessively displaced toward the substrate 1.

【0048】したがって、例えば、基準電極8と駆動電
極6a,6b間にバイアス電圧を印加して両持ち梁3の
梁部4a,4bを僅かに撓み変形させただけで、両持ち
梁3の可動片5が過剰に基板1側に変位し、可動片5部
分の基準電極8が検出電極7に密着してしまう虞があ
る。
Therefore, for example, the biasing voltage is applied between the reference electrode 8 and the driving electrodes 6a, 6b to slightly deform the beam portions 4a, 4b of the doubly supported beam 3 to move the doubly supported beam 3. The piece 5 may be excessively displaced toward the substrate 1, and the reference electrode 8 in the movable piece 5 may be in close contact with the detection electrode 7.

【0049】これに対して、この実施形態例では、前記
の如く、両持ち梁3は固定端側から中央領域に向かうに
従って梁の幅が狭くなっているので、梁部4a部分の基
準電極8と駆動電極6aの対向面積、梁部4b部分の基
準電極8と駆動電極6bの対向面積は両持ち梁3の固定
端側から中央領域に向かうに従って狭くなり、この対向
面積の減少に起因して梁部4a部分の基準電極8と駆動
電極6a間、梁部4b部分の基準電極8と駆動電極6b
間に発生するクーロン力の大きさを梁部4a部分の基準
電極8と駆動電極6a間、梁部4b部分の基準電極8と
駆動電極6b間の各対向領域の全領域に渡り均一にする
ことができ、両持ち梁3の可動片5部分に上記クーロン
力が過剰に作用して可動片5部分の基準電極8が検出電
極7に密着してしまうという問題を回避することができ
る。
On the other hand, in this embodiment, as described above, since the width of the doubly supported beam 3 becomes narrower from the fixed end toward the central region, the reference electrode 8 of the beam portion 4a is formed. And the opposing area of the driving electrode 6a and the opposing area of the reference electrode 8 and the driving electrode 6b in the beam portion 4b become narrower from the fixed end side of the doubly supported beam 3 toward the central region. The reference electrode 8 and the drive electrode 6b between the reference electrode 8 and the drive electrode 6a at the beam 4a, and between the reference electrode 8 and the drive electrode 6b at the beam 4b.
The magnitude of the Coulomb force generated therebetween is made uniform over the entire area of the opposing areas between the reference electrode 8 and the drive electrode 6a at the beam 4a and between the reference electrode 8 and the drive electrode 6b at the beam 4b. Thus, it is possible to avoid the problem that the Coulomb force excessively acts on the movable piece 5 of the doubly supported beam 3 and the reference electrode 8 of the movable piece 5 comes into close contact with the detection electrode 7.

【0050】また、可動片5部分の基準電極8と検出電
極7間の間隔の可変制御を精度良く行うことができ、可
動片5部分の基準電極8と検出電極7間の静電容量の高
精度な可変制御が可能となる。
Further, the variable control of the distance between the reference electrode 8 and the detection electrode 7 on the movable piece 5 can be accurately performed, and the capacitance between the reference electrode 8 and the detection electrode 7 on the movable piece 5 can be increased. Accurate variable control becomes possible.

【0051】また、前記図3に示す構成では、前記の如
く、梁部4a,4bを僅かに撓み変形させただけで可動
片5が過剰に基板1側に変位し可動片5部分の基準電極
8が検出電極7に密着してしまうことがあり、この場合
には、基準電極8と検出電極7間に印加するバイアス電
圧のレベルを高めても、基準電極8と検出電極7はショ
ート状態になってしまうので、基準電極8と検出電極7
間の静電容量を大きく可変することができない。
In the configuration shown in FIG. 3, as described above, the movable piece 5 is excessively displaced toward the substrate 1 just by slightly bending and deforming the beam portions 4a and 4b, so that the reference electrode of the movable piece 5 is formed. In some cases, even if the level of the bias voltage applied between the reference electrode 8 and the detection electrode 7 is increased, the reference electrode 8 and the detection electrode 7 are short-circuited. The reference electrode 8 and the detection electrode 7
The capacitance between them cannot be largely varied.

【0052】つまり、静電容量を可変制御するバイアス
電圧の制御電圧範囲が非常に狭く、静電容量の可変制御
が難しいという問題があるが、この実施形態例では、前
述したように、可動片5の過剰変位の問題を回避できる
ので、可動片5部分の基準電極8と検出電極7間の静電
容量を可変制御するバイアス電圧の可変領域を広くする
ことが可能である。このことから、静電容量の可変制御
を容易にすることができ、精度良く静電容量の可変制御
を行うことができる。
In other words, there is a problem that the control voltage range of the bias voltage for variably controlling the capacitance is very narrow and it is difficult to variably control the capacitance. However, in this embodiment, as described above, the movable piece Since the problem of excessive displacement of 5 can be avoided, the variable region of the bias voltage for variably controlling the capacitance between the reference electrode 8 and the detection electrode 7 in the movable piece 5 can be widened. Accordingly, the variable control of the capacitance can be facilitated, and the variable control of the capacitance can be performed with high accuracy.

【0053】さらに、この実施形態例の可変容量コンデ
ンサは、構造が簡単であるし、表面マイクロマシニング
技術を用いて形成することができるので、小型化が容易
である。
Further, the variable capacitor of this embodiment has a simple structure and can be formed by using the surface micromachining technology, so that the miniaturization is easy.

【0054】さらに、前記の如く、両持ち梁3の固定端
側から中央領域に向かうに従って両持ち梁3の梁の幅D
が狭くなっているので、両持ち梁3が図3に示すように
等幅である場合よりも両持ち梁3の共振周波数が高くな
る。このように共振周波数が高くなると、両持ち梁3の
共振周波数は振動ノイズの周波数から掛け離れることに
なり、この両持ち梁3の共振周波数に対応した周波数を
有する可変容量コンデンサの出力電圧信号に振動ノイズ
が乗らなくなり、可変容量コンデンサの出力電圧信号の
SN比を向上させることが可能である。
Further, as described above, the beam width D of the doubly supported beam 3 increases from the fixed end of the doubly supported beam 3 toward the central region.
, The resonance frequency of the doubly supported beam 3 becomes higher than that in the case where the doubly supported beam 3 has the same width as shown in FIG. When the resonance frequency is increased in this manner, the resonance frequency of the doubly supported beam 3 is far from the frequency of the vibration noise, and the output voltage signal of the variable capacitor having a frequency corresponding to the resonance frequency of the doubly supported beam 3 is generated. Vibration noise does not occur, and the S / N ratio of the output voltage signal of the variable capacitor can be improved.

【0055】さらに、可動片5を梁部4a,4bの複数
本の梁部により支持しているので、可動片5と基板1間
の間隔を可動片5と基板1の対向領域の全領域に渡り、
ほぼ均一にすることが可能であり、可動片5部分の基準
電極8と検出電極7間の間隔の制御が容易で、可動片5
部分の基準電極8と検出電極7間の静電容量の可変制御
を精度良く行うことができる。
Further, since the movable piece 5 is supported by the plurality of beams of the beam portions 4a and 4b, the distance between the movable piece 5 and the substrate 1 is set to the entire area of the opposing area of the movable piece 5 and the substrate 1. Crossing,
The distance between the reference electrode 8 and the detection electrode 7 in the movable piece 5 can be easily controlled.
The variable control of the capacitance between the reference electrode 8 and the detection electrode 7 in the portion can be performed with high accuracy.

【0056】さらに、外部から印加された高周波信号が
可動片5部分の基準電極8と検出電極7間の静電容量に
対応する出力電圧信号として外部に出力されるまでの信
号の通電経路の電気抵抗はその信号の通電経路の長さに
応じて大きくなるが、この実施形態例では、上記信号の
通電経路の長さは短く、通電経路の電気抵抗が小さい。
このことにより、出力電圧信号のQ値を格段に向上させ
ることができる。さらに、この出力電圧信号のQ値の向
上に起因して出力電圧信号の周波数が安定すると共に、
出力電圧信号のキャリアノイズを低減することができ
る。
Further, the electric path of the signal conduction path until the high frequency signal applied from the outside is output to the outside as an output voltage signal corresponding to the capacitance between the reference electrode 8 and the detection electrode 7 of the movable piece 5 is output. Although the resistance increases in accordance with the length of the current path of the signal, in this embodiment, the length of the current path of the signal is short, and the electric resistance of the current path is small.
As a result, the Q value of the output voltage signal can be significantly improved. Further, the frequency of the output voltage signal is stabilized due to the improvement of the Q value of the output voltage signal,
Carrier noise of the output voltage signal can be reduced.

【0057】なお、この実施形態例では、引き出し電極
14を介して高周波信号を可動片5部分の基準電極8と
検出電極7間に印加し、可動片5部分の基準電極8と検
出電極7間の静電容量に対応する出力電圧信号を引き出
し電極12から外部へ出力していたが、引き出し電極1
2を介して高周波信号を可動片5部分の基準電極8と検
出電極7間に印加し、出力電圧信号を引き出し電極14
を介して外部へ出力するようにしてもよい。
In this embodiment, a high-frequency signal is applied between the reference electrode 8 and the detection electrode 7 of the movable piece 5 via the extraction electrode 14, and the high-frequency signal is applied between the reference electrode 8 and the detection electrode 7 of the movable piece 5. Output voltage signal corresponding to the capacitance of the extraction electrode 12 was output from the extraction electrode 12 to the outside.
2, a high-frequency signal is applied between the reference electrode 8 and the detection electrode 7 of the movable piece 5 and an output voltage signal is extracted from the extraction electrode 14.
May be output to the outside via the.

【0058】また、この実施形態例では、両持ち梁3は
梁の幅が固定端側から中央領域に向かうに従って連続的
に狭くなっていたが、図4に示すように、両持ち梁3の
梁の幅を固定端側から中央領域に向かうに従って段階的
に狭くしてもよい。
Further, in this embodiment, the width of the doubly supported beam 3 is continuously narrowed from the fixed end toward the central region. However, as shown in FIG. The width of the beam may be gradually reduced from the fixed end toward the central region.

【0059】さらに、この実施形態例では、固定電極は
駆動電極6a,6bと検出電極7に分離形成されていた
が、基準電極8に対向配設し駆動電極6a,6bと検出
電極7の機能を兼用する固定電極を設けてもよい。
Further, in this embodiment, the fixed electrodes are formed separately from the drive electrodes 6a and 6b and the detection electrode 7. However, the fixed electrodes are disposed opposite to the reference electrode 8 so that the functions of the drive electrodes 6a and 6b and the detection electrode 7 are changed. May be provided.

【0060】この場合には、上記固定電極と基準電極8
の対向領域の全領域に渡り両持ち梁3を撓み変形させる
クーロン力が作用することになるが、両持ち梁3の梁の
幅が固定端側から中央領域に向かうに従って狭くなって
いることから、前記固定電極と基準電極8の対向面積が
両持ち梁3の固定端側から中央領域に向かうに従って狭
くなり、この固定電極と基準電極8の対向面積の減少に
起因して前記クーロン力を固定電極と基準電極8の対向
領域の全領域に渡り均一にすることが可能で、両持ち梁
3の中央領域の過剰撓み変形の問題を回避することがで
きる。
In this case, the fixed electrode and the reference electrode 8
Coulomb force acts to bend and deform the doubly supported beam 3 over the entire region of the opposing region, but since the width of the beam of the doubly supported beam 3 decreases from the fixed end toward the central region. The opposed area between the fixed electrode and the reference electrode 8 decreases from the fixed end of the doubly supported beam 3 toward the central region, and the Coulomb force is fixed due to the decrease in the opposed area between the fixed electrode and the reference electrode 8. It is possible to make it uniform over the entire area of the opposing area of the electrode and the reference electrode 8, and it is possible to avoid the problem of excessive bending deformation of the central area of the doubly supported beam 3.

【0061】さらに、上記可変容量コンデンサを製造す
る場合に、例えば、基板1に駆動電極6a,6b等を構
成する導体の膜を形成し、その導体膜の上側に駆動電極
6a,6b等の形成領域を定めるレジストパターンを形
成してレジストパターン以外の余分な導体膜を取り除
き、その後、レジストパターンを取り除いて駆動電極6
a,6b等が完成するという如く、型抜き手法により可
変容量コンデンサの各構成要素が製造されたが、例え
ば、基板1に駆動電極6a,6b等の形成領域を規制す
るマスクパターンを形成し、そのマスクパターンが形成
された基板1の上側に駆動電極6a,6b等を構成する
導体の膜を形成し、その後、上記マスクパターンを取り
除いて駆動電極6a,6b等が完成するというような型
取り手法により可変容量コンデンサの各構成要素を製造
してもよい。
Further, when manufacturing the above-mentioned variable capacitor, for example, a conductor film constituting the drive electrodes 6a, 6b, etc. is formed on the substrate 1, and the drive electrodes 6a, 6b, etc. are formed on the upper side of the conductor film. A resist pattern for defining a region is formed to remove an excess conductor film other than the resist pattern.
The components of the variable capacitor were manufactured by the die-cutting method such that the a, 6b and the like were completed. For example, a mask pattern for regulating the formation regions of the drive electrodes 6a and 6b on the substrate 1 was formed. A conductive film forming the drive electrodes 6a, 6b, etc. is formed on the upper side of the substrate 1 on which the mask pattern has been formed, and then the mask pattern is removed to complete the drive electrodes 6a, 6b, etc. Each component of the variable capacitor may be manufactured by a technique.

【0062】以下に、第2の実施形態例を説明する。こ
の実施形態例において特徴的なことは、図5に示すよう
に、各梁部4a,4bの先端側に共通に連接される可動
片5を梁部4a,4bの先端側の幅Dよりも張り出した
幅広面に形成したことである。それ以外の構成は前記第
1の実施形態例と同様であり、前記第1の実施形態例と
同一名称部分には同一符号を付し、その重複説明は省略
する。
Hereinafter, a second embodiment will be described. The feature of this embodiment is that, as shown in FIG. 5, the movable piece 5 commonly connected to the distal ends of the beams 4a and 4b is larger than the width D of the distal ends of the beams 4a and 4b. That is, it was formed on a protruding wide surface. The other configuration is the same as that of the first embodiment. The same reference numerals are given to the same components as those of the first embodiment, and the duplicated description will be omitted.

【0063】この実施形態例では、各梁部4a,4bの
先端側に共通に連接される可動片5は梁部4a,4bの
先端側の幅Dよりも張り出して幅広面に形成されてお
り、上記梁部4a,4bと可動片5の基板対向面には、
前記第1の実施形態例同様に、基準電極8が形成され
る。上記可動片5部分の基準電極8に対向配設される領
域には検出電極7が対向配設され、梁部4a,4b部分
の基準電極8に対向する領域には駆動電極6a,6bが
対向配設される。
In this embodiment, the movable piece 5 commonly connected to the distal ends of the beams 4a and 4b is formed wider than the width D of the distal ends of the beams 4a and 4b. , On the substrate facing surfaces of the beams 4a, 4b and the movable piece 5,
As in the case of the first embodiment, the reference electrode 8 is formed. A detection electrode 7 is provided in a region of the movable piece 5 facing the reference electrode 8, and a drive electrode 6a, 6b is provided in a region of the beam portion 4a, 4b facing the reference electrode 8. Will be arranged.

【0064】また、各梁部4a,4bの基端側(脚部
側)から先端側に至る梁の長さは等しくなるように形成
されており、このように、梁部4a,4bの梁の長さを
等しくすることにより、梁部4a,4bを撓み変形させ
たときに、可動片5の基板対向面が基板1と平行状態を
保ちながら可動片5を変位させることができ、可動片5
部分の基準電極8と検出電極7間の静電容量の可変制御
を精度良く行うことができる。
The beams from the base end (leg side) to the distal end of each of the beam portions 4a and 4b are formed to have the same length. When the beam portions 4a and 4b are flexed and deformed, the movable piece 5 can be displaced while the substrate facing surface of the movable piece 5 is kept parallel to the substrate 1, and the movable piece 5
The variable control of the capacitance between the reference electrode 8 and the detection electrode 7 in the portion can be performed with high accuracy.

【0065】この実施形態例によれば、前記第1の実施
形態例同様の効果を奏することができるうえに、可動片
5が幅広面に形成されているので、前記第1の実施形態
例に比べて、可動片5部分の基準電極8と検出電極7の
対向面積を広くすることができる。このことから、可変
容量コンデンサを組み込む回路に適合する静電容量が得
られるように、可動片5部分の基準電極8と検出電極7
の対向面積を大小自在に可変設定でき、所望の静電容量
を簡単に得ることができる。
According to this embodiment, the same effects as those of the first embodiment can be obtained, and the movable piece 5 is formed on a wide surface. In comparison, the opposing area between the reference electrode 8 and the detection electrode 7 in the movable piece 5 can be increased. From this, the reference electrode 8 and the detection electrode 7 of the movable piece 5 are so formed as to obtain an electrostatic capacity suitable for a circuit incorporating a variable capacitor.
Can be variably set to be large or small, and a desired capacitance can be easily obtained.

【0066】その上、上記の如く、可動片5部分の基準
電極8と検出電極7間の静電容量を大きくできるので、
出力電圧信号の電圧レベルを高めることができて出力電
圧信号のSN比をより向上させることができる。
In addition, as described above, the capacitance between the reference electrode 8 and the detection electrode 7 in the movable piece 5 can be increased.
The voltage level of the output voltage signal can be increased, and the S / N ratio of the output voltage signal can be further improved.

【0067】なお、この実施形態例では、梁部4a,4
bは基端側から先端側に向かうに従って梁の幅Dが連続
的に狭くなっていたが、図6に示すように、梁部4a,
4bの梁の幅を段階的に狭くしてもよい。また、可動片
5の形状は方形状であったが、図7の(a)や(b)に
示すように、円形状であってもよいし、三角形や、五角
形以上の多角形等、方形状以外の形状に形成してもよ
い。
In this embodiment, the beams 4a, 4a
As for b, the width D of the beam was continuously narrowed from the base end side to the tip end side, but as shown in FIG.
The width of the beam 4b may be gradually reduced. Although the movable piece 5 has a rectangular shape, the movable piece 5 may have a circular shape, as shown in FIGS. 7A and 7B, a triangular shape, a polygonal shape such as a pentagon or more. It may be formed in a shape other than the shape.

【0068】以下に、第3の実施形態例を説明する。こ
の実施形態例において特徴的なことは、図9や図10や
図11に示すように、可動片5を3本以上の梁部4(図
9や図10や図11に示す例では4本の梁部4a,4
b,4c,4d)で支持する構成としたことである。そ
れ以外の構成は前記各実施形態例同様であり、前記各実
施形態例と同一名称部分には同一符号を付し、その重複
説明は省略する。
Hereinafter, a third embodiment will be described. The feature of this embodiment is that, as shown in FIGS. 9, 10 and 11, the movable piece 5 has three or more beams 4 (four in the examples shown in FIGS. 9, 10 and 11). Beams 4a, 4
b, 4c, 4d). Other configurations are the same as those of the above-described embodiments, and the same reference numerals are assigned to the same names as those of the above-described embodiments, and the duplicated description thereof will be omitted.

【0069】この実施形態例では、基板1に3本以上の
脚部が互いに間隙を介して形成され、これら各脚部から
梁部4が上記複数の脚部により囲まれる領域の中央部に
向けてそれぞれ伸長形成され、これら各梁部4の先端側
には共通の可動片5が連接されている。上記梁部4と可
動片5は基板1と空隙10を介して対向配設されてい
る。また、上記各梁部4は基端側から先端側に至る梁の
長さが等しくなるように形成されている。
In this embodiment, three or more legs are formed on the substrate 1 with a gap therebetween, and the beam 4 is directed from each of these legs toward the center of the region surrounded by the plurality of legs. Each of the beam portions 4 is connected to a common movable piece 5 at the distal end thereof. The beam portion 4 and the movable piece 5 are disposed to face the substrate 1 with a gap 10 therebetween. Each of the beam portions 4 is formed so that the length of the beam from the base end to the tip end is equal.

【0070】上記各梁部4と可動片5の基板対向面には
基準電極8が形成されており、基板1には上記各梁部4
の基板対向面と空隙10を介してそれぞれ対向配設する
駆動電極6と、上記可動片5の基板対向面と空隙10を
介して対向配設する検出電極7とが形成されている。ま
た、上記各駆動電極6と検出電極7と基準電極8からそ
れぞれ引き出された引き出し電極(図示せず)が基板1
に形成される。
A reference electrode 8 is formed on the surface of each beam 4 and the movable piece 5 facing the substrate.
A drive electrode 6 is provided to face the substrate facing surface of the movable piece 5 via the gap 10, and a detection electrode 7 is provided to face the substrate facing surface of the movable piece 5 via the gap 10. Further, the extraction electrodes (not shown) extracted from the respective drive electrodes 6, the detection electrodes 7, and the reference electrodes 8 are connected to the substrate 1 respectively.
Formed.

【0071】この実施形態例の可変容量コンデンサは上
記のように構成されており、上記検出電極7の引き出し
電極と基準電極8の引き出し電極を発振回路や変調回路
等の回路の予め定められた接続部分に接続することで可
変容量コンデンサを上記回路に組み込むと共に、上記各
駆動電極6の引き出し電極と基準電極8の引き出し電極
を電圧印加手段に接続し、この電圧印加手段から各梁部
4部分の基準電極8と駆動電極6間に直流のバイアス電
圧を印加すると、それら電極間にクーロン力が作用し、
各梁部4部分の基準電極8が駆動電極6側に引き付けら
れ、各梁部4が基板側に撓み変形する。
The variable capacitor of this embodiment is configured as described above, and connects the extraction electrode of the detection electrode 7 and the extraction electrode of the reference electrode 8 to a predetermined connection of a circuit such as an oscillation circuit or a modulation circuit. By connecting the variable capacitance capacitor to the circuit, the extraction electrode of each drive electrode 6 and the extraction electrode of the reference electrode 8 are connected to voltage application means. When a DC bias voltage is applied between the reference electrode 8 and the drive electrode 6, a Coulomb force acts between the electrodes,
The reference electrode 8 at each beam portion 4 is attracted to the drive electrode 6 side, and each beam portion 4 bends and deforms toward the substrate.

【0072】この各梁部4の撓み変形に伴って可動片5
が基板側に変位し、可動片5部分の基準電極8と検出電
極7間の間隔が可変し、可動片5部分の基準電極8と検
出電極7間の静電容量を可変することができる。
The movable piece 5 is moved with the bending deformation of each beam 4.
Is displaced toward the substrate, the distance between the reference electrode 8 and the detection electrode 7 on the movable piece 5 is changed, and the capacitance between the reference electrode 8 and the detection electrode 7 on the movable piece 5 can be changed.

【0073】この実施形態例によれば、前記各実施形態
例同様の効果を奏することができる上に、可動片5を3
本以上の梁部4により支持する構成にしたので、振動に
起因した可動片5のぶれを格段に小さくすることができ
る。また、梁部4を撓み変形させたときに、可動片5の
基板対向面は基板面と平行状態を保ったまま基板側に変
位することができ、可動片5の基板対向面と基板面との
対向領域の全領域に渡り上記可動片5と基板1間の間隔
をより均一化することができる。
According to this embodiment, the same effects as those of the above-described embodiments can be obtained.
Since it is configured to be supported by the four or more beams 4, it is possible to significantly reduce the displacement of the movable piece 5 due to vibration. When the beam portion 4 is flexed and deformed, the movable piece 5 can be displaced toward the substrate while maintaining the parallel state with the substrate surface, and the movable piece 5 can be displaced toward the substrate. The distance between the movable piece 5 and the substrate 1 can be made more uniform over the entire area of the opposing area.

【0074】このことから、可動片5部分の基準電極8
と検出電極7間の間隔の可変制御をより精度良く行うこ
とができるようになり、可動片5部分の基準電極8と検
出電極7間の静電容量の可変制御の精度をより向上させ
ることができる。
From this, the reference electrode 8 of the movable piece 5
The variable control of the interval between the sensor electrode 7 and the detection electrode 7 can be performed with higher accuracy, and the accuracy of the variable control of the capacitance between the reference electrode 8 and the detection electrode 7 of the movable piece 5 can be further improved. it can.

【0075】なお、前記図9や図10や図11に示す例
では、可動片5を4本の梁部4で支持していたが、図1
3の(a)や(b)に示すように、3本の梁部4で可動
片5を支持してもよいし、5本以上の梁部4で可動片5
を支持してもよい。
In the examples shown in FIGS. 9, 10 and 11, the movable piece 5 is supported by the four beams 4,
As shown in FIGS. 3 (a) and 3 (b), the movable piece 5 may be supported by three beams 4, or the movable piece 5 may be supported by five or more beams 4.
May be supported.

【0076】以下に、第4の実施形態例を説明する。こ
の第4の実施形態例において特徴的なことは、図14に
示すように、基準電極8を梁部4(4a,4b)部分の
基準電極8(8a,8b)と可動片5部分の基準電極8
(17)とに分離形成したことである。それ以外の構成
は、前記各実施形態例と同様であり、この実施形態例で
は前記各実施形態例と同一名称部分には同一符号を付
し、その重複説明は省略する。
Hereinafter, a fourth embodiment will be described. The characteristic feature of the fourth embodiment is that, as shown in FIG. 14, the reference electrode 8 is connected to the reference electrode 8 (8a, 8b) of the beam portion 4 (4a, 4b) and the reference electrode 8 (8a, 8b) of the movable piece 5. Electrode 8
(17). Other configurations are the same as those of the above-described embodiments. In this embodiment, the same reference numerals are given to the same components as those of the above-described embodiments, and the description thereof will not be repeated.

【0077】この実施形態例では、前記の如く、基準電
極8は梁部4部分の基準電極8(8a,8b)と、可動
片5部分の基準電極8(17)とに分離形成され、上記
梁部4部分の基準電極8(8a,8b)は駆動電極6と
空隙10を介して対向配設され、駆動電極6との間にク
ーロン力を作用させて梁部4を撓み変形させるための駆
動用の基準電極と成している。
In this embodiment, as described above, the reference electrode 8 is separately formed into the reference electrode 8 (8a, 8b) of the beam portion 4 and the reference electrode 8 (17) of the movable piece 5 portion. The reference electrode 8 (8a, 8b) of the beam portion 4 is disposed to face the drive electrode 6 with a gap 10 interposed therebetween, and a Coulomb force acts between the reference electrode 8 and the drive electrode 6 to bend and deform the beam portion 4. This serves as a reference electrode for driving.

【0078】上記可動部5部分の基準電極8(17)は
検出電極7と空隙10を介して対向配設され、検出電極
7との間の静電容量を検出するための検出用の基準電極
と成している。上記駆動用の基準電極(8a,8b)と
検出用の基準電極17は間隙を介して設けられており、
絶縁された状態である。
The reference electrode 8 (17) of the movable part 5 is disposed to face the detection electrode 7 via the gap 10, and is a detection reference electrode for detecting the capacitance between the detection electrode 7 and the detection electrode 7. And The drive reference electrodes (8a, 8b) and the detection reference electrode 17 are provided with a gap therebetween.
It is in an insulated state.

【0079】上記各駆動用の基準電極(8a,8b)か
らそれぞれ引き出された引き出し電極が基板1に形成さ
れ、また、前記検出用の基準電極17には端子部が設け
られており、この端子部には検出用の基準電極17に外
部から高周波信号を加える、あるいは、検出用の基準電
極17から出力電圧信号を出力するためのリード導体が
接続される。
Extraction electrodes respectively extracted from the respective driving reference electrodes (8a, 8b) are formed on the substrate 1, and the detection reference electrode 17 is provided with a terminal portion. A lead conductor for applying a high-frequency signal to the reference electrode 17 for detection from the outside or outputting an output voltage signal from the reference electrode 17 for detection is connected to the portion.

【0080】この実施形態例の可変容量コンデンサは上
記のように構成されており、上記各駆動用の基準電極
(8a,8b)と各駆動電極6からそれぞれ引き出され
た各引き出し電極を電圧印加手段に接続して上記各駆動
用の基準電極(8a,8b)と駆動電極6間にバイアス
電圧を印加することで、各駆動用の基準電極(8a,8
b)と駆動電極6間にクーロン力を作用させ、このクー
ロン力により梁部4を撓み変形させて検出電極7と検出
用の基準電極17間の間隔を可変させることができ、検
出電極7と検出用の基準電極17間の静電容量を可変す
ることができる。
The variable capacitor of this embodiment is constructed as described above, and is connected to the reference electrodes (8a, 8b) for driving and the extraction electrodes respectively extracted from the driving electrodes 6 by voltage application means. , And a bias voltage is applied between the drive reference electrodes (8a, 8b) and the drive electrode 6 to thereby control the drive reference electrodes (8a, 8b).
b) and a coulomb force is applied between the drive electrode 6 and the beam portion 4 is flexed and deformed by the Coulomb force to change the distance between the detection electrode 7 and the reference electrode 17 for detection. The capacitance between the detection reference electrodes 17 can be varied.

【0081】そして、例えば、検出電極7から引き出さ
れた引き出し電極を介して外部から検出電極7と検出用
の基準電極17間に高周波信号が印加されると、検出電
極7と検出用の基準電極17間の静電容量に対応する出
力電圧信号が前記検出用の基準電極17の端子部から外
部に出力される。
For example, when a high-frequency signal is externally applied between the detection electrode 7 and the detection reference electrode 17 via an extraction electrode drawn out of the detection electrode 7, the detection electrode 7 and the detection reference electrode 17 are applied. An output voltage signal corresponding to the capacitance between the electrodes 17 is output from the terminal of the reference electrode 17 for detection to the outside.

【0082】この実施形態例によれば、前記各実施形態
例同様の効果を奏することができる上に、基準電極8を
駆動用の基準電極と検出用の基準電極に分離形成したの
で、駆動用の基準電極(8a,8b)と駆動電極6間に
印加される直流のバイアス電圧と、検出電極7と検出用
の基準電極17間の静電容量に対応する出力電圧信号と
を分離することができる。このことから、直流バイアス
電圧のノイズが出力電圧信号に重畳されることがなくな
り、出力電圧信号のノイズのより一層の低減を図ること
ができる。
According to this embodiment, the same effects as those of the above embodiments can be obtained, and the reference electrode 8 is formed separately for the drive reference electrode and the detection reference electrode. To separate the DC bias voltage applied between the reference electrodes (8a, 8b) and the drive electrode 6 from the output voltage signal corresponding to the capacitance between the detection electrode 7 and the reference electrode 17 for detection. it can. Accordingly, the noise of the DC bias voltage is not superimposed on the output voltage signal, and the noise of the output voltage signal can be further reduced.

【0083】なお、この発明は上記各実施形態例に限定
されるものではなく、様々な実施の形態を採り得る。例
えば、上記各実施形態例では、梁部4と可動片5を構成
する絶縁体基板に導体膜を形成して基準電極8を構成し
ていたが、上記梁部4と可動片5を導体により形成し、
梁部4と可動片5自体が基準電極8として機能する構成
としてもよい。また、梁部4と可動片5は、珪素酸化
物、珪素窒化物、珪素、アルミニウム、金、チタン、ク
ロム等の様々な材料のうち、いくつかを積層して形成す
るようにしてもよい。
Note that the present invention is not limited to the above embodiments, but can take various embodiments. For example, in each of the above embodiments, the reference electrode 8 is formed by forming a conductor film on the insulating substrate forming the beam 4 and the movable piece 5. However, the beam 4 and the movable piece 5 are formed of a conductor. Forming
The beam portion 4 and the movable piece 5 may be configured to function as the reference electrode 8. Further, the beam portion 4 and the movable piece 5 may be formed by laminating some of various materials such as silicon oxide, silicon nitride, silicon, aluminum, gold, titanium, and chromium.

【0084】さらに、梁部4と可動片5の形状は、上記
各実施形態例に限定されるものではなく、例えば、図8
や図12に示すような形状に形成してもよく、様々な形
状を採り得る。
Further, the shapes of the beam portion 4 and the movable piece 5 are not limited to those of the above-described embodiments.
12 and may be formed in various shapes.

【0085】さらに、上記各実施形態例では、駆動電極
6や検出電極7や基準電極8等の電極面は露出形成され
ていたが、それら電極のうち、1個以上の電極面に保護
膜を形成するようにしてもよい。この場合には、上記保
護膜により電極面を保護することができる。さらに、上
記各実施形態例では、クーロン力を利用して梁部4を撓
み変形させていたが、圧電素子や磁力等を用いて梁部4
を撓み変形するようにしてもよい。
Further, in each of the above embodiments, the electrode surfaces such as the drive electrode 6, the detection electrode 7, and the reference electrode 8 are exposed, but a protective film is formed on one or more of the electrodes. It may be formed. In this case, the electrode surface can be protected by the protective film. Further, in each of the above embodiments, the beam portion 4 is bent and deformed using Coulomb force, but the beam portion 4 is deformed using a piezoelectric element or a magnetic force.
May be bent and deformed.

【0086】[0086]

【発明の効果】この発明によれば、基板に形成される脚
部と、これら各脚部から伸長形成される梁部と、これら
各梁部の先端側に共通に連接される可動部とを設け、上
記各梁部と可動片の基板対向面に可動電極を形成し、上
記各梁部と可動片に対向配設される固定電極を基板に形
成する構成としたので、梁部を撓み変形させることによ
り可動電極と固定電極間の間隔が可変し、その可動電極
と固定電極間の静電容量を可変することができる。
According to the present invention, the legs formed on the substrate, the beams extending from the legs, and the movable portion commonly connected to the distal ends of the beams are formed. A movable electrode is formed on the substrate facing surface of each of the beam portions and the movable piece, and a fixed electrode disposed to face each of the beam portion and the movable piece is formed on the substrate. By doing so, the distance between the movable electrode and the fixed electrode can be changed, and the capacitance between the movable electrode and the fixed electrode can be changed.

【0087】その可動電極と固定電極間に外部から高周
波信号が印加されて上記可動電極と固定電極間の静電容
量の大きさに応じた出力電圧信号が外部に出力されるま
での信号の出力経路の電気抵抗は小さく、このことによ
り、出力電圧信号のQ値の向上を図ることができる。ま
た、この出力電圧信号のQ値の向上に伴って出力電圧信
号のキャリアノイズを削減することができ、出力電圧信
号のSN比を向上させることが可能であり、可変容量コ
ンデンサの出力性能の信頼性を高めることができる。
The output of a signal until a high-frequency signal is externally applied between the movable electrode and the fixed electrode and an output voltage signal corresponding to the magnitude of the capacitance between the movable electrode and the fixed electrode is output to the outside. The electric resistance of the path is small, which can improve the Q value of the output voltage signal. Further, with the improvement of the Q value of the output voltage signal, the carrier noise of the output voltage signal can be reduced, the SN ratio of the output voltage signal can be improved, and the reliability of the output performance of the variable capacitor can be improved. Can be enhanced.

【0088】さらに、この発明の可変容量コンデンサは
構造が簡単であるし、表面マイクロマシニング技術によ
り製造することが可能であることから、可変容量コンデ
ンサの小型化が容易である。
Further, since the variable capacitor of the present invention has a simple structure and can be manufactured by the surface micromachining technology, it is easy to reduce the size of the variable capacitor.

【0089】さらに、梁部の梁の幅が梁部の基端側より
も先端側が狭くなるように構成されているので、梁部が
基端側から先端側にかけて等幅である場合よりも、梁部
の共振周波数が高くなり、その梁部の共振周波数は振動
ノイズの周波数からより一層掛け離れることになるの
で、梁部の共振周波数に対応する周波数を有する出力電
圧信号に振動ノイズが乗らなくなり、出力電圧信号のS
N比を向上させることができる。
Further, since the width of the beam of the beam portion is configured to be smaller at the distal end side than at the proximal end side of the beam portion, the width of the beam portion is equal from the base end side to the distal end side as compared with the case where the beam width is equal. Since the resonance frequency of the beam portion becomes higher and the resonance frequency of the beam portion is further away from the frequency of the vibration noise, the vibration noise does not get on the output voltage signal having the frequency corresponding to the resonance frequency of the beam portion. , The output voltage signal S
The N ratio can be improved.

【0090】また、可動電極と固定電極間にクーロン力
を作用させて梁部を撓み変形させ、可動電極と固定電極
間の間隔を可変して可動電極と固定電極間の静電容量を
可変する場合には、上記のように梁の幅を梁部の基端側
よりも先端側を狭くすることにより、梁部部分の可動電
極と固定電極が対向する対向面積を梁部の基端側よりも
先端側を狭くすることが可能であり、この対向面積の減
少により、梁部部分の可動電極と固定電極間にクーロン
力を作用させたときに、その電極間の対向領域の全領域
に渡り上記クーロン力の大きさを均一にすることができ
る。
Further, the beam portion is bent and deformed by applying Coulomb force between the movable electrode and the fixed electrode, and the distance between the movable electrode and the fixed electrode is varied to change the capacitance between the movable electrode and the fixed electrode. In such a case, by making the width of the beam narrower at the distal end side than at the proximal end side of the beam portion as described above, the opposing area where the movable electrode and the fixed electrode of the beam portion oppose each other is smaller than the proximal end side of the beam portion. It is also possible to make the tip side narrower, and by reducing the facing area, when a Coulomb force is applied between the movable electrode and the fixed electrode in the beam portion, the entire area of the facing area between the electrodes is reduced. The magnitude of the Coulomb force can be made uniform.

【0091】このことから、上記クーロン力により梁部
の先端側(可動片)が過剰に変位して基板に密着し可動
電極と固定電極がショート状態になってしまうのを回避
することができる。また、上記のように、可動電極が固
定電極に密着する問題を回避することができるので、可
動電極と固定電極間の静電容量を可変制御するためのバ
イアス電圧レベルの可変範囲を拡大することができ、静
電容量の可変制御が容易となるうえに、より精度良く静
電容量を可変制御することができる。
Thus, it is possible to prevent the distal end side (movable piece) of the beam portion from being excessively displaced by the Coulomb force and coming into close contact with the substrate to cause a short circuit between the movable electrode and the fixed electrode. Further, as described above, since the problem that the movable electrode is in close contact with the fixed electrode can be avoided, the variable range of the bias voltage level for variably controlling the capacitance between the movable electrode and the fixed electrode can be increased. This makes it easy to variably control the capacitance, and variably controls the capacitance with higher accuracy.

【0092】可動片が梁部の先端側の幅よりも張り出し
て幅広面に形成されているものにあっては、クーロン力
により梁部の先端側(可動片)が過剰に変位して基板に
密着し可動電極と固定電極がショート状態になってしま
うことを回避することができると共に、可動片部分の可
動電極と固定電極が対向する対向面積を拡大することが
でき、このことにより、可動片部分の可動電極と固定電
極の対向面積を大小自在に可変設定でき、可変容量コン
デンサを組み込む回路に適応する所望の静電容量を得る
ことが容易となる。
In the case where the movable piece is formed on a wide surface so as to protrude beyond the width on the tip side of the beam portion, the tip side (movable piece) of the beam portion is excessively displaced by the Coulomb force and moves on the substrate. It is possible to prevent the movable electrode and the fixed electrode from being brought into close contact with each other and to be in a short-circuit state, and it is possible to enlarge the facing area of the movable piece portion where the movable electrode and the fixed electrode face each other. The opposing area of the movable electrode and the fixed electrode of the portion can be variably set to be large and small, and it is easy to obtain a desired capacitance suitable for a circuit incorporating a variable capacitor.

【0093】また、上記の如く、可動片部分の可動電極
と固定電極の対向面積を拡大することができることによ
り、可動片部分の可動電極と固定電極間の静電容量を大
きくすることができることから、出力電圧信号の電圧レ
ベルを高めることができるので、出力電圧信号のSN比
をより一層向上させることができる。
Further, as described above, since the facing area between the movable electrode and the fixed electrode of the movable piece can be increased, the capacitance between the movable electrode and the fixed electrode of the movable piece can be increased. Since the voltage level of the output voltage signal can be increased, the S / N ratio of the output voltage signal can be further improved.

【0094】固定電極を可動片対向電極と梁部対向電極
に分離形成したものや、可動電極を可動片部分の可動電
極と梁部部分の可動電極に分離形成したものにあって
は、可動電極と固定電極間にクーロン力を作用させて梁
部を撓み変形させる場合に、可動片の変位量は梁部の撓
み変形量(変位量)よりも多く、この可動片部分に対向
する領域に検出電極が存在することになり、低電圧で梁
部を僅かに撓み変形させただけで、検出電極と可動片部
分の基準電極間の間隔が大きく可変し、検出電極と可動
片部分の基準電極間の静電容量を大きく可変することが
できる。
In the case where the fixed electrode is formed separately into a movable piece counter electrode and a beam portion counter electrode, or when the movable electrode is formed separately into a movable electrode in a movable piece portion and a movable electrode in a beam portion, the movable electrode When the beam is flexed and deformed by applying a Coulomb force between the beam and the fixed electrode, the displacement of the movable piece is larger than the flexural deformation (displacement) of the beam, and the displacement is detected in a region facing the movable piece. Since the electrodes are present, the gap between the detection electrode and the reference electrode of the movable piece changes greatly, and the gap between the detection electrode and the reference electrode of the movable piece is greatly changed only by slightly bending and deforming the beam at a low voltage. Can be greatly varied.

【0095】固定電極を可動片対向電極と梁部対向電極
に分離形成し、かつ、可動電極を可動片部分の可動電極
と梁部部分の可動電極に分離形成したものにあっては、
梁部を撓み変形させるために可変容量コンデンサに加え
られるバイアス電圧と、静電容量の大きさに対応する出
力電圧信号とが重なり合うことがなく、上記バイアス電
圧のノイズが出力電圧信号に重畳するのを防止すること
ができ、出力電圧信号のSN比をさらに向上させること
ができる。
In the case where the fixed electrode is formed separately in the movable piece counter electrode and the beam counter electrode, and the movable electrode is formed separately in the movable piece portion movable electrode and the beam portion portion movable electrode,
The bias voltage applied to the variable capacitor for bending the beam portion does not overlap with the output voltage signal corresponding to the capacitance, and the noise of the bias voltage is superimposed on the output voltage signal. Can be prevented, and the S / N ratio of the output voltage signal can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態例の可変容量コンデンサを示す
説明図である。
FIG. 1 is an explanatory diagram showing a variable capacitor according to a first embodiment;

【図2】図1の可変容量コンデンサの製造手法の一例を
示す説明図である。
FIG. 2 is an explanatory view showing an example of a method for manufacturing the variable capacitor of FIG. 1;

【図3】等幅の両持ち梁の一例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an example of a doubly supported beam having an equal width.

【図4】梁部のその他の形状例を示す説明図である。FIG. 4 is an explanatory view showing another example of the shape of the beam portion.

【図5】第2の実施形態例の可変容量コンデンサを示す
説明図である。
FIG. 5 is an explanatory view showing a variable capacitor according to a second embodiment.

【図6】梁部のさらにその他の形状例を示す説明図であ
る。
FIG. 6 is an explanatory view showing still another example of the shape of the beam.

【図7】可動片のその他の形状例を示す説明図である。FIG. 7 is an explanatory view showing another example of the shape of the movable piece.

【図8】可動片のさらにその他の形状例を示す説明図で
ある。
FIG. 8 is an explanatory view showing still another example of the shape of the movable piece.

【図9】第3の実施形態例を示す説明図である。FIG. 9 is an explanatory diagram showing a third embodiment.

【図10】梁部が4本設けられた可変容量コンデンサの
実施形態例を示す説明図である。
FIG. 10 is an explanatory diagram showing an embodiment of a variable capacitor provided with four beams.

【図11】さらに梁部が4本設けられた可変容量コンデ
ンサの実施形態例を示す説明図である。
FIG. 11 is an explanatory diagram showing an embodiment of a variable capacitor further provided with four beam portions.

【図12】梁部と可動片のその他の形状例を示す説明図
である。
FIG. 12 is an explanatory view showing another example of the shape of the beam portion and the movable piece.

【図13】梁部が3本設けられた可変容量コンデンサの
実施形態例を示す説明図である。
FIG. 13 is an explanatory diagram showing an example of an embodiment of a variable capacitor provided with three beams.

【図14】第4の実施形態例を示す説明図である。FIG. 14 is an explanatory diagram showing a fourth embodiment.

【符号の説明】[Explanation of symbols]

1 基板 2a,2b 脚部 4,4a,4b,4c,4d 梁部 5 可動片 6,6a,6b,6c,6d 駆動電極 7 検出電極 8,8a,8b 基準電極 17 検出用の基準電極 DESCRIPTION OF SYMBOLS 1 Substrate 2a, 2b Leg 4,4a, 4b, 4c, 4d Beam 5 Movable piece 6,6a, 6b, 6c, 6d Driving electrode 7 Detecting electrode 8,8a, 8b Reference electrode 17 Reference electrode for detection

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板に固定形成され互いに間
隙を介して配設される複数の脚部と、これら各脚部から
伸長形成され前記基板と間隙を介して対向配設される梁
部と、これら各梁部の先端側に共通に連接され前記基板
と間隙を介して対向配設される可動片と、この可動片の
基板対向面と前記梁部の基板対向面に形成される可動電
極と、前記基板に形成され前記可動電極と間隙を介して
対向配設される固定電極とを有し、前記梁部は基端側よ
りも先端側の梁の幅が狭く形成されている構成としたこ
とを特徴とする可変容量コンデンサ。
1. A substrate, a plurality of legs fixedly formed on the substrate and disposed with a gap therebetween, and a beam extended from each of the legs and disposed opposite to the substrate with a gap therebetween. Part, a movable piece commonly connected to the distal end side of each of these beam parts and disposed to face the substrate via a gap, and formed on the substrate facing surface of the movable piece and the substrate facing surface of the beam part. A movable electrode, and a fixed electrode formed on the substrate and opposed to the movable electrode with a gap therebetween, wherein the beam is formed such that the width of the beam on the distal end side is narrower than that on the base end side. A variable capacitor having a configuration.
【請求項2】 固定電極は可動片の基板対向面に対向す
る可動片対向電極と、梁部の基板対向面に対向する梁部
対向電極とに分離形成され、上記可動片対向電極は可動
電極との間の静電容量を検出するための検出電極と成
し、上記梁部対向電極は梁部を撓み変形させるための駆
動電極と成している構成としたことを特徴とする請求項
1記載の可変容量コンデンサ。
2. The fixed electrode is formed separately into a movable piece facing electrode facing the substrate facing surface of the movable piece and a beam facing electrode facing the substrate facing surface of the beam. The movable piece facing electrode is a movable electrode. And a detection electrode for detecting a capacitance between the first and second beams, and the beam-facing electrode serves as a drive electrode for bending and deforming the beam. A variable capacitor as described.
【請求項3】 可動電極は可動片の基板対向面に形成さ
れる可動電極と、梁部の基板対向面に形成される可動電
極とに分離形成され、上記可動片の可動電極は固定電極
との間の静電容量を検出するための検出用の基準電極と
成し、前記梁部の可動電極は梁部を撓み変形させるため
の駆動用の基準電極と成している構成としたことを特徴
とする請求項1又は請求項2記載の可変容量コンデン
サ。
3. The movable electrode is formed separately from a movable electrode formed on a substrate facing surface of a movable piece and a movable electrode formed on a substrate facing surface of a beam. And a movable reference electrode for detecting a capacitance between the movable portion and the movable electrode of the beam portion serves as a drive reference electrode for bending and deforming the beam portion. The variable capacitor according to claim 1 or 2, wherein
【請求項4】 基板と、該基板に固定形成され互いに間
隙を介して配設される複数の脚部と、これら各脚部から
伸長形成され前記基板と間隙を介して対向配設される梁
部と、これら各梁部の先端側に共通に連接され前記基板
と間隙を介して対向配設される可動片と、この可動片の
基板対向面と前記梁部の基板対向面に形成される可動電
極と、前記基板に形成され前記可動電極と間隙を介して
対向配設される固定電極とを有し、前記可動片は梁部の
先端側の幅よりも張り出して幅広面に形成されている構
成としたことを特徴とする可変容量コンデンサ。
4. A substrate, a plurality of legs fixedly formed on the substrate and disposed with a gap therebetween, and a beam extended from each of the legs and opposed to the substrate with a gap therebetween. Part, a movable piece commonly connected to the distal end side of each of these beam parts and disposed to face the substrate via a gap, and formed on the substrate facing surface of the movable piece and the substrate facing surface of the beam part. A movable electrode, and a fixed electrode formed on the substrate and disposed to face the movable electrode with a gap therebetween, wherein the movable piece is formed to have a wider surface that protrudes beyond the width of the tip end side of the beam portion. A variable capacitor characterized by having a configuration as described above.
【請求項5】 梁部は基端側よりも先端側の梁の幅が狭
く形成されている構成としたことを特徴とする請求項4
記載の可変容量コンデンサ。
5. The beam portion has a configuration in which the width of the beam at the distal end side is smaller than that at the base end side.
A variable capacitor as described.
【請求項6】 固定電極は可動片の基板対向面に対向す
る可動片対向電極と、梁部の基板対向面に対向する梁部
対向電極とに分離形成され、上記可動片対向電極は可動
電極との間の静電容量を検出するための検出電極と成
し、上記梁部対向電極は梁部を撓み変形させるための駆
動電極と成している構成としたことを特徴とする請求項
4又は請求項5記載の可変容量コンデンサ。
6. The fixed electrode is formed separately into a movable piece facing electrode facing the substrate facing surface of the movable piece and a beam facing electrode facing the substrate facing surface of the beam, and the movable piece facing electrode is a movable electrode. And a detection electrode for detecting a capacitance between the first and second beams, and the beam-facing electrode serves as a drive electrode for bending and deforming the beam. Or the variable capacitor according to claim 5.
【請求項7】 可動電極は可動片の基板対向面に形成さ
れる可動電極と、梁部の基板対向面に形成される可動電
極とに分離形成され、上記可動片の可動電極は固定電極
との間の静電容量を検出するための検出用の基準電極と
成し、前記梁部の可動電極は梁部を撓み変形させるため
の駆動用の基準電極と成している構成としたことを特徴
とする請求項4又は請求項5又は請求項6記載の可変容
量コンデンサ。
7. The movable electrode is formed separately from a movable electrode formed on the substrate facing surface of the movable piece and a movable electrode formed on the substrate facing surface of the beam. And a movable reference electrode for detecting a capacitance between the movable portion and the movable electrode of the beam portion serves as a drive reference electrode for bending and deforming the beam portion. 7. The variable capacitor according to claim 4, wherein the capacitor is a variable capacitor.
JP32083296A 1996-11-15 1996-11-15 Variable capacitance capacitor Pending JPH10149951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32083296A JPH10149951A (en) 1996-11-15 1996-11-15 Variable capacitance capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32083296A JPH10149951A (en) 1996-11-15 1996-11-15 Variable capacitance capacitor

Publications (1)

Publication Number Publication Date
JPH10149951A true JPH10149951A (en) 1998-06-02

Family

ID=18125742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32083296A Pending JPH10149951A (en) 1996-11-15 1996-11-15 Variable capacitance capacitor

Country Status (1)

Country Link
JP (1) JPH10149951A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398804A2 (en) * 2002-07-30 2004-03-17 Matsushita Electric Industrial Co., Ltd. Variable capacitor and method for manufacturing same
WO2005117042A1 (en) * 2004-05-31 2005-12-08 Fujitsu Limited Variable capacitor and process for fabricating the same
US6992878B2 (en) 2002-03-25 2006-01-31 Fujitsu Limited Tunable capacitor and method of fabricating the same
US7027284B2 (en) 2002-03-08 2006-04-11 Murata Manufacturing Co., Ltd. Variable capacitance element
JP2006165380A (en) * 2004-12-09 2006-06-22 Kyocera Corp Variable capacitor
JP2006524581A (en) * 2003-04-25 2006-11-02 キャベンディッシュ・キネティックス・リミテッド Manufacturing method of micro mechanical element
JP2008199049A (en) * 2008-04-01 2008-08-28 Matsushita Electric Ind Co Ltd Variable capacitance device
JP2010158767A (en) * 2009-01-08 2010-07-22 Epcos Ag Resilient device
WO2011086767A1 (en) * 2010-01-14 2011-07-21 株式会社村田製作所 Variable capacitance device
JP2011216512A (en) * 2010-03-31 2011-10-27 Wacom Co Ltd Variable capacitor and position indicator
CN102674235A (en) * 2011-03-11 2012-09-19 株式会社东芝 MEMS and method of manufacturing the same
CN103183309A (en) * 2012-01-03 2013-07-03 国际商业机器公司 Micro-electro-mechanical system (MEMS) structures and design structures
JP2014525668A (en) * 2011-09-02 2014-09-29 キャベンディッシュ・キネティックス・インコーポレイテッド RF MEMS isolation, series and shunt DVC, and small MEMS

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027284B2 (en) 2002-03-08 2006-04-11 Murata Manufacturing Co., Ltd. Variable capacitance element
US6992878B2 (en) 2002-03-25 2006-01-31 Fujitsu Limited Tunable capacitor and method of fabricating the same
EP1398804A3 (en) * 2002-07-30 2007-12-05 Matsushita Electric Industrial Co., Ltd. Variable capacitor and method for manufacturing same
EP1398804A2 (en) * 2002-07-30 2004-03-17 Matsushita Electric Industrial Co., Ltd. Variable capacitor and method for manufacturing same
JP2006524581A (en) * 2003-04-25 2006-11-02 キャベンディッシュ・キネティックス・リミテッド Manufacturing method of micro mechanical element
US7772024B2 (en) 2003-04-25 2010-08-10 Cavendish Kinetics Ltd. Method of manufacturing a micro-mechanical element
WO2005117042A1 (en) * 2004-05-31 2005-12-08 Fujitsu Limited Variable capacitor and process for fabricating the same
JPWO2005117042A1 (en) * 2004-05-31 2008-04-03 富士通株式会社 Variable capacitor
US7446994B2 (en) 2004-05-31 2008-11-04 Fujitsu Limited Variable capacitor and manufacturing method thereof
JP4571127B2 (en) * 2004-05-31 2010-10-27 富士通株式会社 Variable capacitor
JP2006165380A (en) * 2004-12-09 2006-06-22 Kyocera Corp Variable capacitor
JP2008199049A (en) * 2008-04-01 2008-08-28 Matsushita Electric Ind Co Ltd Variable capacitance device
JP4645673B2 (en) * 2008-04-01 2011-03-09 パナソニック株式会社 Variable capacitance element
JP2010158767A (en) * 2009-01-08 2010-07-22 Epcos Ag Resilient device
WO2011086767A1 (en) * 2010-01-14 2011-07-21 株式会社村田製作所 Variable capacitance device
US9418793B2 (en) 2010-01-14 2016-08-16 Murata Manufacturing Co., Ltd. Variable capacitance device
JP5418604B2 (en) * 2010-01-14 2014-02-19 株式会社村田製作所 Variable capacity device
JP2011216512A (en) * 2010-03-31 2011-10-27 Wacom Co Ltd Variable capacitor and position indicator
CN102674235A (en) * 2011-03-11 2012-09-19 株式会社东芝 MEMS and method of manufacturing the same
JP2012191052A (en) * 2011-03-11 2012-10-04 Toshiba Corp Mems and manufacturing method thereof
US9287050B2 (en) 2011-03-11 2016-03-15 Kabushiki Kaisha Toshiba MEMS and method of manufacturing the same
JP2014525668A (en) * 2011-09-02 2014-09-29 キャベンディッシュ・キネティックス・インコーポレイテッド RF MEMS isolation, series and shunt DVC, and small MEMS
GB2498264B (en) * 2012-01-03 2014-07-16 Ibm Micro-electro-mechanical system (MEMS) structures and design structures
US8940570B2 (en) 2012-01-03 2015-01-27 International Business Machines Corporation Micro-electro-mechanical system (MEMS) structures and design structures
US9233831B2 (en) 2012-01-03 2016-01-12 International Business Machines Corporation Micro-electro-mechanical system (MEMS) structures and design structures
GB2498264A (en) * 2012-01-03 2013-07-10 Ibm MEMS structures having reduced snap down
CN103183309A (en) * 2012-01-03 2013-07-03 国际商业机器公司 Micro-electro-mechanical system (MEMS) structures and design structures
US9580298B2 (en) 2012-01-03 2017-02-28 International Business Machines Corporation Micro-electro-mechanical system (MEMS) structures and design structures
DE102012223968B4 (en) 2012-01-03 2021-09-23 International Business Machines Corporation Structures with a microelectromechanical system (MEMS)

Similar Documents

Publication Publication Date Title
JP4109182B2 (en) High frequency MEMS switch
US5375033A (en) Multi-dimensional precision micro-actuator
US5818683A (en) Variable capacitor
US6833985B2 (en) Variable capacitance element
US6856219B2 (en) Electrostatic actuator
US6232847B1 (en) Trimmable singleband and tunable multiband integrated oscillator using micro-electromechanical system (MEMS) technology
JPH10149951A (en) Variable capacitance capacitor
JP4186727B2 (en) switch
EP0516166A2 (en) Miniature dynamically tunable microwave and millimeter wave device
US7345866B1 (en) Continuously tunable RF MEMS capacitor with ultra-wide tuning range
JP3351180B2 (en) Variable capacitance capacitor
JP2005209625A (en) Micro electronic mechanical system switch
US6091125A (en) Micromechanical electronic device
JPH10149950A (en) Variable capacitance capacitor
JPH09199376A (en) Variable-capacitance capacitor
US6882255B2 (en) Device having a capacitor with alterable capacitance, in particular a high-frequency microswitch
US20040229440A1 (en) Micro-actuator, variable optical attenuator provided with micro-actuator and method for manufacturing the same
JP2007259669A (en) Piezoelectric actuator, micromechanical device using same, variable-capacitance capacitor, and switch
WO2011158708A1 (en) Variable capacitance device
JPH1079324A (en) Capacitance-variable-element
JP4628275B2 (en) Microswitching device and method for manufacturing microswitching device
JP3389769B2 (en) Variable capacitance capacitor
US6650530B2 (en) Microcomponent including a capacitive component
JPH11218545A (en) Capacitance type acceleration sensor and detecting method
JPH0955337A (en) Variable capacitor