JPH0955337A - Variable capacitor - Google Patents

Variable capacitor

Info

Publication number
JPH0955337A
JPH0955337A JP7227314A JP22731495A JPH0955337A JP H0955337 A JPH0955337 A JP H0955337A JP 7227314 A JP7227314 A JP 7227314A JP 22731495 A JP22731495 A JP 22731495A JP H0955337 A JPH0955337 A JP H0955337A
Authority
JP
Japan
Prior art keywords
electrode
movable electrode
movable
reference electrode
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7227314A
Other languages
Japanese (ja)
Inventor
Yasuhiro Negoro
泰宏 根来
Masaya Tamura
昌弥 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP7227314A priority Critical patent/JPH0955337A/en
Publication of JPH0955337A publication Critical patent/JPH0955337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable capacitor which allows large variable rate of electrostatic capacity. SOLUTION: A driving electrode 10 and support parts 16, 17 are fixed and formed on a board 3 and a movable electrode 6 is connected to an upper part of the support part 16 through a beam 15. The movable electrode 6 has an electrode part 19 at the side of a board which faces the driving electrode 10 with a clearance between and a comb-like electrode part 18 which is connected to the electrode part 19 and is expanded and formed in a horizontal direction along a board surface with a clearance to a board surface. A reference electrode 4 is expanded and formed in a direction from the support part 17 toward the movable electrode 6, an electrode surface 4a of the reference electrode 4 and an electrode surface 18a of the electrode part 18 of the movable electrode 6 face each other with a clearance between in a horizontal direction and a capacity capacitor is formed of the electrodes. When a bias voltage is applied between the movable electrode 6 and the driving electrode 10 by a bias voltage application means 12, the movable electrode 6 is displaced to the side of the board 3 according to a size of a voltage, an overlap area of an electrode surface of the movable electrode 6 and the reference electrode 4 changes and electrostatic capacity of the capacitor becomes variable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種の電子回路に
使用される静電容量の可変制御が可能な可変容量コンデ
ンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable capacitance capacitor capable of variably controlling electrostatic capacitance used in various electronic circuits.

【0002】[0002]

【従来の技術】図3には、可変容量コンデンサの一例と
して、特開平5−74655号公報に提案されている可
変容量コンデンサ1の要部構成が示されており、この可
変容量コンデンサ1は表面マイクロマシニング技術を用
いて形成されている。同図において、シリコンからなる
基板3には凹部8が形成されており、この凹部8の底面
5の中央領域に、アルミニウムの蒸着等によって薄膜体
に形成された基準電極4が基板3に固定されて配設され
ている。また、凹部8の上端には、凹部開口に掛け渡し
て、基準電極4の電極面4aと対向させた可動電極6が
凹部開口の両端側で固定されて形成されており、これら
可動電極6と基準電極4により容量コンデンサが形成さ
れている。なお、可動電極6も基準電極4と同様に、ア
ルミニウムの蒸着等により薄膜体に形成されている。
2. Description of the Related Art FIG. 3 shows an essential structure of a variable capacitor 1 proposed in Japanese Patent Laid-Open No. 5-74655 as an example of the variable capacitor. It is formed using micromachining technology. In the figure, a concave portion 8 is formed in a substrate 3 made of silicon, and a reference electrode 4 formed in a thin film body by vapor deposition of aluminum or the like is fixed to the substrate 3 in a central region of a bottom surface 5 of the concave portion 8. Are arranged. A movable electrode 6 is formed at the upper end of the recess 8 so as to extend over the recess opening and face the electrode surface 4a of the reference electrode 4 fixed at both ends of the recess opening. The reference electrode 4 forms a capacitance capacitor. Like the reference electrode 4, the movable electrode 6 is also formed into a thin film body by vapor deposition of aluminum or the like.

【0003】上記基準電極4と固定電極6により形成さ
れる容量コンデンサには、この容量コンデンサにバイア
ス電圧を印加するバイアス電圧印加手段12が接続されて
おり、可動電極6と基準電極4のそれぞれの一端側から
引き出し形成された端子部(図示せず)間に、バイアス
電圧印加手段12からの直流のバイアス電圧を印加するこ
とにより、基準電極4と可動電極6に電位差を与えるよ
うになっている。
Bias voltage applying means 12 for applying a bias voltage to the capacitance capacitor is connected to the capacitance capacitor formed by the reference electrode 4 and the fixed electrode 6, and each of the movable electrode 6 and the reference electrode 4 is connected. By applying a DC bias voltage from the bias voltage applying means 12 between terminal portions (not shown) formed to be drawn out from one end side, a potential difference is applied to the reference electrode 4 and the movable electrode 6. .

【0004】上記構成の可変容量コンデンサにおいて
は、前記バイアス電圧印加手段12により、基準電極4と
可動電極6との間に外部バイアス電圧を印加して基準電
極4と可動電極6に電位差を与えると、可動電極6がク
ーロン力の作用(静電力作用)により基準電極4側に撓
み変形し、図3の鎖線に示すような状態となり、それに
より、可動電極6と基準電極4との間の間隙、すなわ
ち、電極間距離が変化する。そうすると、可動電極6お
よび基準電極4における静電容量が、両電極間に印加し
た外部バイアス電圧に対応して変化することとなり、印
加した外部バイアス電圧によって制御される可変容量コ
ンデンサとして働くことになる。
In the variable capacitor having the above structure, when the bias voltage applying means 12 applies an external bias voltage between the reference electrode 4 and the movable electrode 6 to give a potential difference to the reference electrode 4 and the movable electrode 6. , The movable electrode 6 is bent and deformed toward the reference electrode 4 side by the action of the Coulomb force (electrostatic force action), and the state shown by the chain line in FIG. 3 is obtained, whereby the gap between the movable electrode 6 and the reference electrode 4 is formed. That is, the distance between the electrodes changes. Then, the electrostatic capacitances of the movable electrode 6 and the reference electrode 4 change in accordance with the external bias voltage applied between both electrodes, and the capacitance works as a variable capacitor controlled by the applied external bias voltage. .

【0005】この提案の可変容量コンデンサは、上記の
ように単一素子によって構成されており、従来用いられ
ていた可変空気コンデンサ(バリコン)のように回転機
構等の複雑な機構を必要としないために作製が容易で小
型化が可能であるといった利点があり、また、バラクタ
ダイオードのように耐圧が低く、耐圧の向上を図ろうと
して内部抵抗を大きくした場合にQ値の低下が生じると
いった問題もなく、耐圧およびQ値の高い優れた可変容
量コンデンサとして注目されている。
The proposed variable capacitor is composed of a single element as described above, and does not require a complicated mechanism such as a rotating mechanism unlike the conventionally used variable air capacitor (varicon). In addition, it has an advantage that it is easy to manufacture and can be miniaturized. Further, it has a low withstand voltage like a varactor diode, and if the internal resistance is increased to increase the withstand voltage, the Q value is lowered. However, it is attracting attention as an excellent variable capacitor having a high withstand voltage and a high Q value.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記提
案の可変容量コンデンサにおいては、可動電極6に加わ
るクーロン力と、そのクーロン力の作用により撓み変形
した可動電極6が変形前の元の位置に戻ろうとするばね
力との関係から、可動電極6の変位量に限界があり、し
たがって、可動電極6の撓み変形によって得られる容量
変化率を容易に大きくすることができないといった問題
があった。
However, in the above-mentioned proposed variable capacitor, the Coulomb force applied to the movable electrode 6 and the movable electrode 6 flexibly deformed by the action of the Coulomb force are returned to the original position before the deformation. There is a problem in that the amount of displacement of the movable electrode 6 is limited due to the relationship with the spring force to be tried, and therefore the rate of change in capacitance obtained by the bending deformation of the movable electrode 6 cannot be easily increased.

【0007】それというのは、可動電極6の変形量が、
基準電極4と可動電極6との電極間距離の1/3よりも
大きくなると、以下に述べる関係から、前記ばね力と前
記クーロン力との釣り合いがとれにくいために、容量変
化率を容易に大きくすることができないのである。
This is because the amount of deformation of the movable electrode 6 is
When the distance becomes larger than 1/3 of the distance between the reference electrode 4 and the movable electrode 6, it is difficult to balance the spring force and the Coulomb force from the relationship described below. You cannot do it.

【0008】以下、可動電極6の変化量と、そのときに
可動電極6に加わるクーロン力および、ばね力の関係を
述べる。可動電極6は、可動電極6と基準電極4に与え
られる電位差により可動電極6に加わるクーロン力と、
そのクーロン力の作用により可動電極6が撓み変形した
ときに可動電極6が元の位置(変形していないときの位
置)に戻ろうとするばね力とが釣り合った位置で固定さ
れることになるために、このとき、次式(1)の関係が
成り立つことが分かる。
The relationship between the amount of change in the movable electrode 6 and the Coulomb force and spring force applied to the movable electrode 6 at that time will be described below. The movable electrode 6 has a Coulomb force applied to the movable electrode 6 due to a potential difference between the movable electrode 6 and the reference electrode 4,
Since the movable electrode 6 is bent and deformed by the action of the Coulomb force, the movable electrode 6 is fixed at a position balanced with the spring force that tries to return to the original position (the position when it is not deformed). At this time, it can be seen that the relationship of the following expression (1) is established.

【0009】 F=kx=(1/2)・εS{V/(x0 −x)}2 ・・・・・(1)F = kx = (1/2) · εS {V / (x 0 −x)} 2 (1)

【0010】なお、式(1)において、kは可動電極6
のばね定数、Sは可動電極6の基準電極4との対向面
積、εは誘電率、Vは電極4と6との間の電位差、x0
は可動電極6と基準電極4の電極間距離、xは可動電極
6の変位量である。ここで、u=x/x0 ,K=εS/
2kx0 3として上記式(1)を整理すると、次式(2)
となる。
In the equation (1), k is the movable electrode 6
Spring constant, S is the area of the movable electrode 6 facing the reference electrode 4, ε is the dielectric constant, V is the potential difference between the electrodes 4 and 6, and x 0
Is the distance between the movable electrode 6 and the reference electrode 4, and x is the amount of displacement of the movable electrode 6. Here, u = x / x 0 , K = εS /
Rearranging the above formula (1) as 2kX 0 3, the following equation (2)
Becomes

【0011】 u(1−u)2 =KV2 ・・・・・(2)U (1-u) 2 = KV 2 (2)

【0012】この式(2)から、u(1−u)2 =f
(u)とすると、図4に示す関係が導かれ、関数f
(u)は、u=1/3のときにKV2 が約0.15でピーク
を有する3次関数となる。この図からVが大きくなり、
uが1/3を越えると前記ばね力とクーロン力との釣り
合いがとれなくなることが分かり、そうなると、可動電
極6は基準電極4に接触してしまう。また、uが1/3
を越えた状態で、ばね力とクーロン力との釣り合いをと
ることも可能であるが、この場合は、何らかの制御でバ
イアス電圧Vをばね力に応じてコントロールする必要が
ある。
From this equation (2), u (1-u) 2 = f
(U) leads to the relationship shown in FIG. 4, and the function f
(U) is a cubic function having a peak at KV 2 of about 0.15 when u = 1/3. V becomes large from this figure,
When u exceeds 1/3, it is found that the spring force and the Coulomb force cannot be balanced, and then the movable electrode 6 comes into contact with the reference electrode 4. Also, u is 1/3
It is possible to balance the spring force and the Coulomb force in a state of exceeding the above condition, but in this case, it is necessary to control the bias voltage V according to the spring force by some control.

【0013】したがって、可動電極6の変位量は、可動
電極6と基準電極4との電極間距離の1/3までが限界
となり、この可変容量コンデンサの容量変化率は最大で
50%となり、これ以上大きな可変率を得ることができな
かった。
Therefore, the displacement amount of the movable electrode 6 is limited to 1/3 of the distance between the movable electrode 6 and the reference electrode 4, and the capacity change rate of this variable capacitor is maximum.
It was 50%, and it was not possible to obtain a larger variable rate.

【0014】本発明は、上記課題を解決するためになさ
れたものであり、その目的は、大きな可変率(容量変化
率)を取ることができる可変容量コンデンサを提供する
ことにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a variable capacitor capable of achieving a large variable ratio (capacity change ratio).

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に本発明は次のような手段を講じている。すなわち、本
発明は、基板上に可動電極の支持部が設けられ、この支
持部に可動電極の基端側が連接されて可動電極の先端側
が基板面に対し隙間を介して基板面に沿うほぼ水平方向
に伸張形成されており、この可動電極の伸張先端側と対
向する向い側からは基準電極が可動電極側に伸張形成さ
れ、前記可動電極と基準電極の伸張先端側は両電極の伸
張方向と交差する水平方向の隙間を介しており、前記可
動電極に対して上下の一方側の間隔を介した対向位置に
は静電力によって可動電極を上下方向に変位させて該可
動電極と基準電極とのオーバーラップ面積を可変調整す
る駆動電極が配設されている構成をもって、前記課題を
解決する手段としている。
In order to achieve the above object, the present invention takes the following means. That is, according to the present invention, a supporting portion for the movable electrode is provided on the substrate, the base end side of the movable electrode is connected to the supporting portion, and the tip end side of the movable electrode is substantially horizontal along the substrate surface with a gap from the substrate surface. The reference electrode is extended from the opposite side of the movable electrode facing the extension tip side of the movable electrode to the movable electrode side, and the extension tip side of the movable electrode and the reference electrode is the extension direction of both electrodes. The movable electrode is vertically displaced by an electrostatic force at a position facing the movable electrode with an interval between the movable electrode on one side above and below the movable electrode, and the movable electrode and the reference electrode are separated from each other. The means for solving the above-mentioned problem is provided with a structure in which drive electrodes for variably adjusting the overlap area are provided.

【0016】上記構成の本発明において、駆動電極と可
動電極間に電圧を印加することにより、可動電極が静電
力(クーロン力)によって駆動電極に引き寄せられ、可
動電極は上記印加電圧の大きさに応じて駆動電極に向か
う方向に変位する。このことにより、可動電極と基準電
極とのオーバーラップ面積が上記可動電極の変位量に対
応して可変し、可動電極と基準電極間(コンデンサ)の
静電容量が可変される。
In the present invention having the above structure, by applying a voltage between the drive electrode and the movable electrode, the movable electrode is attracted to the drive electrode by an electrostatic force (Coulomb force), and the movable electrode has a magnitude of the applied voltage. Accordingly, it is displaced in the direction toward the drive electrode. As a result, the overlap area between the movable electrode and the reference electrode is changed according to the displacement amount of the movable electrode, and the electrostatic capacitance between the movable electrode and the reference electrode (capacitor) is changed.

【0017】本発明では、可動電極の先端側が自由端と
なっているので、例えば、従来例に示した両端が固定さ
れている形態の可動電極における中央部分の撓み変位よ
りも、可動電極の先端側を大きく変位させることができ
る。すなわち、可動電極と基準電極とのオーバーラップ
面積を大きく変化させることが可能であり、可動電極と
基準電極間の静電容量の可変率を大きく取ることがで
き、従来における静電容量の可変率が小さいという問題
が解決される。
In the present invention, since the tip end side of the movable electrode is a free end, for example, the tip end of the movable electrode is more flexible than the flexural displacement of the central portion of the movable electrode of the conventional example in which both ends are fixed. The side can be greatly displaced. That is, it is possible to greatly change the overlap area between the movable electrode and the reference electrode, and it is possible to take a large variable rate of the electrostatic capacitance between the movable electrode and the reference electrode. Solves the problem of small.

【0018】[0018]

【発明の実施の形態】以下に、本発明の実施の形態例を
図面に基づき説明する。なお、以下に説明する実施の形
態例の説明において、従来例と同一名称部分には同一符
号を付し、その重複説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In the following description of the embodiments, the same reference numerals are given to the same parts as those in the conventional example, and the overlapping description will be omitted.

【0019】図1には本発明に係る可変容量コンデンサ
の実施の形態例が示されている。この可変容量コンデン
サ1は、表面マイクロマシニング技術を用いて基板3に
形成される駆動電極10と基準電極4と可動電極6と梁15
と支持部16,17とを有して構成されており、この可変容
量コンデンサには静電容量の可変制御を行うバイアス電
圧印加手段12が接続される。
FIG. 1 shows an embodiment of a variable capacitor according to the present invention. This variable capacitor 1 comprises a drive electrode 10, a reference electrode 4, a movable electrode 6 and a beam 15 formed on a substrate 3 by using a surface micromachining technique.
Bias voltage applying means 12 for variably controlling the electrostatic capacitance is connected to the variable capacitor.

【0020】同図において、基板3上には同図の(b)
に示すように駆動電極10が配設され、同図の(a)に示
すように駆動電極10の近傍には該駆動電極10に間隔を介
して支持部16A,16B,17が基板3に固定形成されてお
り、支持部16A,16Bの上部には梁15を介し可動電極6
が連接され、また、支持部17の上部には基準電極4が連
接されている。
In FIG. 2, the substrate 3 is shown on the substrate (b) in FIG.
The drive electrode 10 is arranged as shown in FIG. 3, and the supporting portions 16A, 16B, 17 are fixed to the substrate 3 near the drive electrode 10 with a space therebetween as shown in FIG. The movable electrode 6 is formed above the supporting portions 16A and 16B through the beam 15.
, And the reference electrode 4 is connected to the upper portion of the support portion 17.

【0021】上記可動電極6は基準電極対向電極部18と
駆動電極対向電極部19とを有して構成されており、先端
側の基準電極対向電極部18と基端側の駆動電極対向電極
部19とが一体的に形成されている。駆動電極対向電極部
19は、前記駆動電極10に間隙を介し対向形成され、前記
梁15を介し支持部16に連接され両持ち梁形状で支持され
ている。この駆動電極対向電極部19に連接する基準電極
対向電極部18は櫛歯形状であり、基板面に対し間隙を介
し基板面に沿う水平方向に伸張形成され、その伸張先端
側は自由端となっており、駆動電極対向電極部19を介し
て梁15に片持ち梁形状で支持されている。
The movable electrode 6 comprises a reference electrode counter electrode portion 18 and a drive electrode counter electrode portion 19, and the reference electrode counter electrode portion 18 on the front end side and the drive electrode counter electrode portion on the base end side. And 19 are integrally formed. Drive electrode Counter electrode part
19 is formed to face the drive electrode 10 with a gap, and is connected to the support portion 16 via the beam 15 and is supported in a doubly supported beam shape. The reference electrode counter electrode portion 18 connected to the drive electrode counter electrode portion 19 has a comb-teeth shape and is formed to extend in the horizontal direction along the substrate surface with a gap from the substrate surface, and the extended tip side is a free end. The beam 15 is supported in a cantilever shape via the drive electrode counter electrode portion 19.

【0022】基準電極対向電極部18の伸張先端側と対向
する向い側からは前記支持部17に連接された櫛歯形状の
基準電極4が基準電極対向電極部18に噛み合うように伸
張形成され、基準電極4の電極面4aと基準電極対向電
極部18の電極面18aが両電極4,18の伸張方向と交差す
る(図示の例では直交する)水平方向に間隙を介し対向
配設されている。これら基準電極4と基準電極対向電極
部18により容量コンデンサが形成されている。
The comb-teeth-shaped reference electrode 4 connected to the supporting portion 17 is extended and formed so as to mesh with the reference electrode facing electrode portion 18 from the side opposite to the extending tip side of the reference electrode facing electrode portion 18. The electrode surface 4a of the reference electrode 4 and the electrode surface 18a of the reference electrode counter electrode portion 18 are arranged to face each other with a gap in the horizontal direction intersecting the extending direction of the electrodes 4 and 18 (orthogonal in the example shown in the drawing). . The reference electrode 4 and the reference electrode counter electrode portion 18 form a capacitor.

【0023】上記構成の可変容量コンデンサ1におい
て、図1の(a)に示すように、駆動電極対向電極部19
と駆動電極10とに、直流のバイアス電圧を印加するバイ
アス電圧印加手段12が接続される。このバイアス電圧印
加手段12により、駆動電極対向電極部19と駆動電極10と
の間に直流のバイアス電圧を印加し、駆動電極対向電極
部19と駆動電極10に電位差を与えると、クーロン力(静
電力)によって駆動電極対向電極部19は上記バイアス電
圧の大きさに応じ駆動電極10側(基板3側)に変位し、
この変位により基準電極対向電極部18が同図の(b)の
点線で示すように基板3側に変位する。このように基準
電極対向電極部18が下方向に変位すると、基準電極対向
電極部18と基準電極4とのオーバーラップ面積が変化し
て基準電極対向電極部18と基準電極4から成る容量コン
デンサの静電容量が変化する。すなわち、容量コンデン
サの静電容量は前記バイアス電圧の大きさに対応して変
化することになり、容量コンデンサはバイアス電圧によ
って静電容量の可変制御が成される。
In the variable capacitor 1 having the above structure, as shown in FIG.
Bias voltage applying means 12 for applying a DC bias voltage is connected to the drive electrode 10 and the drive electrode 10. By applying a DC bias voltage between the drive electrode counter electrode section 19 and the drive electrode 10 by the bias voltage applying means 12 to give a potential difference between the drive electrode counter electrode section 19 and the drive electrode 10, the Coulomb force (static Drive electrode counter electrode portion 19 is displaced to the drive electrode 10 side (substrate 3 side) according to the magnitude of the bias voltage by the electric power),
Due to this displacement, the reference electrode counter electrode portion 18 is displaced toward the substrate 3 side as shown by the dotted line in FIG. When the reference electrode counter electrode portion 18 is displaced downward in this manner, the overlap area between the reference electrode counter electrode portion 18 and the reference electrode 4 changes, and the capacitance capacitor of the reference electrode counter electrode portion 18 and the reference electrode 4 changes. The capacitance changes. That is, the capacitance of the capacitance capacitor changes according to the magnitude of the bias voltage, and the capacitance of the capacitance capacitor is variably controlled by the bias voltage.

【0024】なお、上記図1に示す可変容量コンデンサ
1は、前記バイアス電圧の大きさが大きくなるに従い、
基準電極対向電極部18と基準電極4とのオーバーラップ
面積が減少し、つまり、容量コンデンサの静電容量が減
少していく構成となっている。
In the variable capacitor 1 shown in FIG. 1, the larger the bias voltage becomes,
The overlap area between the reference electrode counter electrode portion 18 and the reference electrode 4 is reduced, that is, the electrostatic capacitance of the capacitance capacitor is reduced.

【0025】この実施の形態例によれば、可動電極6の
駆動電極対向電極部19が両持ち梁形状で支持され、駆動
電極対向電極部19に連接して伸張形成される基準電極対
向電極部18の伸張先端側は自由端となっている(基準電
極対向電極部18は駆動電極対向電極部19を介して梁15に
片持ち梁形状で支持されている)ので、バイアス電圧印
加手段12により駆動電極対向電極部19と駆動電極10間に
バイアス電圧が印加されると、両持ち梁で支持されてい
る駆動電極対向電極部19が梁15の撓みに連動して下方向
に撓み変位し、さらに片持ち梁で支持されている基準電
極対向電極部18が駆動電極対向電極部19を基端にして撓
み変位し、駆動電極対向電極部19と基準電極対向電極部
18の変位が相乗的に作用して基準電極対向電極部18を基
準電極4に対し大きく変位させることができる。したが
って、従来例に示した可動電極6の両端を固定する形態
の可動電極6の中央部分の撓み変位よりも、図1に示す
形態では可動電極6の基準電極対向電極部18を大きく変
位させることができ、すなわち、基準電極対向電極部18
と基準電極4のオーバーラップ面積を大きく変化させる
ことができ、基準電極対向電極部18と基準電極4から成
る容量コンデンサの静電容量の可変率を大きく取ること
が可能となる。
According to this embodiment, the drive electrode counter electrode portion 19 of the movable electrode 6 is supported in a double-supported beam shape, and the reference electrode counter electrode portion is formed so as to be connected to the drive electrode counter electrode portion 19 and extend. Since the extended tip side of 18 is a free end (the reference electrode counter electrode portion 18 is supported by the beam 15 in a cantilever shape via the drive electrode counter electrode portion 19), the bias voltage applying means 12 is used. When a bias voltage is applied between the drive electrode counter electrode portion 19 and the drive electrode 10, the drive electrode counter electrode portion 19 supported by the double-supported beam is flexibly displaced downward in conjunction with the deflection of the beam 15. Further, the reference electrode counter electrode portion 18 supported by the cantilever is flexibly displaced with the drive electrode counter electrode portion 19 as a base end, and the drive electrode counter electrode portion 19 and the reference electrode counter electrode portion.
The displacement of 18 acts synergistically and the reference electrode counter electrode portion 18 can be largely displaced with respect to the reference electrode 4. Therefore, in the configuration shown in FIG. 1, the reference electrode counter electrode portion 18 of the movable electrode 6 should be displaced by a larger amount than the bending displacement of the central portion of the movable electrode 6 in which both ends of the movable electrode 6 are fixed as shown in the conventional example. That is, the reference electrode counter electrode portion 18
Therefore, the overlap area of the reference electrode 4 can be greatly changed, and the variable rate of the electrostatic capacitance of the capacitance capacitor formed of the reference electrode counter electrode portion 18 and the reference electrode 4 can be increased.

【0026】また、上記の如く、基準電極対向電極部18
が駆動電極対向電極部19よりも大きく変位する構成であ
るので、例えば、容量コンデンサの静電容量を可変率X
だけ可変するときの印加バイアス電圧の大きさは、従来
の構成の可変容量コンデンサの静電容量を可変率Xだけ
可変するのに必要とするバイアス電圧よりも小さくてよ
く、可変容量コンデンサの静電容量の可変制御に要する
消費電力を小さくすることができる。
Further, as described above, the reference electrode counter electrode portion 18
Is displaced more than the drive electrode counter electrode portion 19, so that, for example, the electrostatic capacity of the capacitive capacitor is changed by the variable rate X.
The magnitude of the applied bias voltage when the variable capacitance is varied may be smaller than the bias voltage required to vary the capacitance of the conventional variable capacitance capacitor by the variable rate X. The power consumption required for variable control of the capacity can be reduced.

【0027】なお、本発明は上記実施の形態例に限定さ
れるものではなく、様々な実施の形態を採り得る。例え
ば、上記実施の形態例では、図1の(b)に示すよう
に、基準電極対向電極部18(可動電極6)と基準電極4
とは基板3の基板面からの高さを合わせて形成されてい
たが、図2に示すように、可動電極6を基準電極4より
も上側にずらして形成してもよい。図2に示す可変容量
コンデンサ1では、駆動電極対向電極部19と駆動電極10
の間に印加するバイアス電圧が大きくなるに従い基準電
極対向電極部18と基準電極4のオーバーラップ面積が増
加し、基準電極対向電極部18と基準電極4から成る容量
コンデンサの静電容量が増加する方向に可変制御され
る。
The present invention is not limited to the above embodiment, but various embodiments can be adopted. For example, in the above-described embodiment, as shown in FIG. 1B, the reference electrode counter electrode portion 18 (movable electrode 6) and the reference electrode 4 are provided.
In the above description, the heights of the substrate 3 and the substrate surface of the substrate 3 are matched, but as shown in FIG. 2, the movable electrode 6 may be formed so as to be displaced above the reference electrode 4. In the variable capacitor 1 shown in FIG. 2, the drive electrode counter electrode portion 19 and the drive electrode 10 are
As the bias voltage applied between the reference electrode counter electrode portion 18 and the reference electrode 4 increases, the capacitance of the capacitance capacitor composed of the reference electrode counter electrode portion 18 and the reference electrode 4 increases. It is variably controlled in the direction.

【0028】さらに、上記実施の形態例では可動電極6
の駆動電極対向電極部19は両持ちの梁15で支持されてい
たが、片持ちの梁で支持してもよい。さらに、上記実施
の形態例では、基準電極対向電極部18および基準電極4
は櫛歯形状であったが、必ずしも櫛歯でなくてもよい。
ただし、基準電極対向電極部18の電極面18aと基準電極
4の電極面4aは、もちろん、両電極18,4の伸張方向
に交差する水平方向に間隙を介し少なくとも一部がオー
バーラップ(駆動していないときにオーバーラップして
いなくても駆動したときに少なくとも一部がオーバーラ
ップする場合も含む)するように設けなければならな
い。ただ、上記実施の形態例で示したように、櫛歯形状
に形成する場合には容量コンデンサの静電容量の可変率
をより大きく取ることができる。
Further, in the above embodiment, the movable electrode 6 is used.
Although the drive electrode counter electrode portion 19 of is supported by the beam 15 supported at both ends, it may be supported by the beam supported at one end. Furthermore, in the above-described embodiment, the reference electrode counter electrode portion 18 and the reference electrode 4 are provided.
Has a comb tooth shape, but it does not necessarily have to be a comb tooth.
However, the electrode surface 18a of the reference electrode facing electrode portion 18 and the electrode surface 4a of the reference electrode 4 are, of course, at least partially overlapped (driven) with a gap in the horizontal direction intersecting the extending direction of both electrodes 18, 4. Even if they do not overlap when they are not in operation, at least some of them overlap when they are driven). However, as shown in the above embodiment, when the comb-shaped structure is used, the variable rate of the capacitance of the capacitance capacitor can be increased.

【0029】さらにまた、上記実施の形態例では、駆動
電極10は可動電極6の駆動電極対向電極部19の下側、つ
まり、基板3側に配設されたが、図1の(b)の鎖線で
示すように上側に形成する等、駆動電極10の配設位置
は、静電力によって可動電極6を上下方向に変位させ可
動電極6と基準電極4とのオーバーラップ面積を可変調
整して可動電極6と基準電極4によるコンデンサの静電
容量を可変できる位置であればよい。
Furthermore, in the above embodiment, the drive electrode 10 is arranged below the drive electrode counter electrode portion 19 of the movable electrode 6, that is, on the substrate 3 side. The position where the drive electrode 10 is disposed is movable by vertically displacing the movable electrode 6 by electrostatic force and variably adjusting the overlap area between the movable electrode 6 and the reference electrode 4, as shown by the chain line. It may be any position where the capacitance of the capacitor formed by the electrode 6 and the reference electrode 4 can be changed.

【0030】[0030]

【発明の効果】本発明によれば、可動電極の基端側が支
持部に連接され、可動電極の伸張先端側が自由端となっ
ているので、従来における可動電極の両端が固定されて
いる形態で、可動電極の中央部分を撓み変位させるもの
よりも、本発明での可動電極の先端側は大きく変位する
ことが可能となり、つまり、可動電極と基準電極とのオ
ーバーラップ面積を大きく変化させることができ、可動
電極と基準電極から成る容量コンデンサの静電容量の可
変率を従来よりも大きくすることが可能となる。
According to the present invention, since the base end side of the movable electrode is connected to the support portion and the extending front end side of the movable electrode is a free end, both ends of the conventional movable electrode are fixed. The tip end side of the movable electrode according to the present invention can be displaced more than the one in which the central portion of the movable electrode is flexibly displaced, that is, the overlap area between the movable electrode and the reference electrode can be largely changed. This makes it possible to increase the variable rate of the electrostatic capacity of the capacitive capacitor including the movable electrode and the reference electrode as compared with the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る可変容量コンデンサの実施の一形
態例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of an embodiment of a variable capacitor according to the present invention.

【図2】その他の実施の形態例を示す説明図である。FIG. 2 is an explanatory diagram showing another embodiment example.

【図3】従来例を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional example.

【図4】図3に示した可変容量コンデンサにおける可動
電極の変位率とばね力との関係を示すグラフである。
4 is a graph showing a relationship between a displacement rate of a movable electrode and a spring force in the variable capacitance capacitor shown in FIG.

【符号の説明】[Explanation of symbols]

1 可変容量コンデンサ 3 基板 4 基準電極 6 可動電極 10 駆動電極 16 支持部 1 Variable Capacitor 3 Substrate 4 Reference Electrode 6 Movable Electrode 10 Drive Electrode 16 Support

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に可動電極の支持部が設けられ、
この支持部に可動電極の基端側が連接されて可動電極の
先端側が基板面に対し隙間を介して基板面に沿うほぼ水
平方向に伸張形成されており、この可動電極の伸張先端
側と対向する向い側からは基準電極が可動電極側に伸張
形成され、前記可動電極と基準電極の伸張先端側は両電
極の伸張方向と交差する水平方向の隙間を介しており、
前記可動電極に対して上下の一方側の間隔を介した対向
位置には静電力によって可動電極を上下方向に変位させ
て該可動電極と基準電極とのオーバーラップ面積を可変
調整する駆動電極が配設されていることを特徴とする可
変容量コンデンサ。
1. A support portion for a movable electrode is provided on a substrate,
The base end side of the movable electrode is connected to the support portion, and the tip end side of the movable electrode is extended and formed in a substantially horizontal direction along the substrate surface with a gap from the substrate surface and faces the extended tip end side of the movable electrode. From the opposite side, the reference electrode is extendedly formed on the movable electrode side, and the extension tip side of the movable electrode and the reference electrode is provided with a horizontal gap that intersects the extension direction of both electrodes,
A drive electrode for displacing the movable electrode in the vertical direction by electrostatic force and variably adjusting the overlap area of the movable electrode and the reference electrode is arranged at a position facing the movable electrode with a space on one side above and below. A variable capacitor that is installed.
JP7227314A 1995-08-11 1995-08-11 Variable capacitor Pending JPH0955337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7227314A JPH0955337A (en) 1995-08-11 1995-08-11 Variable capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7227314A JPH0955337A (en) 1995-08-11 1995-08-11 Variable capacitor

Publications (1)

Publication Number Publication Date
JPH0955337A true JPH0955337A (en) 1997-02-25

Family

ID=16858867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7227314A Pending JPH0955337A (en) 1995-08-11 1995-08-11 Variable capacitor

Country Status (1)

Country Link
JP (1) JPH0955337A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084148A (en) * 2000-06-27 2002-03-22 Nokia Mobile Phones Ltd Matching circuit and method for adapting amplifier to load impedance
US6543285B2 (en) 2000-02-15 2003-04-08 Toyota Jidosha Kabushiki Kaisha Physical quantity detector apparatus
US6818959B2 (en) 2002-03-12 2004-11-16 Btg International Limited MEMS devices with voltage driven flexible elements
US7088030B2 (en) * 2003-05-06 2006-08-08 Walsin Lihwa Corporation High-aspect-ratio-microstructure (HARM)
JP2008536308A (en) * 2005-03-29 2008-09-04 インテル コーポレイション Collapsing zipper varactor with interdigitated drive electrode for variable filter
WO2012164974A1 (en) 2011-06-02 2012-12-06 アルプス電気株式会社 Variable capacitance capacitor
WO2013168191A1 (en) * 2012-05-08 2013-11-14 パイオニア株式会社 Electrostatic actuator and variable-capacity device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543285B2 (en) 2000-02-15 2003-04-08 Toyota Jidosha Kabushiki Kaisha Physical quantity detector apparatus
JP2002084148A (en) * 2000-06-27 2002-03-22 Nokia Mobile Phones Ltd Matching circuit and method for adapting amplifier to load impedance
US6818959B2 (en) 2002-03-12 2004-11-16 Btg International Limited MEMS devices with voltage driven flexible elements
US7088030B2 (en) * 2003-05-06 2006-08-08 Walsin Lihwa Corporation High-aspect-ratio-microstructure (HARM)
JP2008536308A (en) * 2005-03-29 2008-09-04 インテル コーポレイション Collapsing zipper varactor with interdigitated drive electrode for variable filter
JP4885209B2 (en) * 2005-03-29 2012-02-29 インテル コーポレイション Collapsing zipper varactor with interdigitated drive electrode for variable filter
WO2012164974A1 (en) 2011-06-02 2012-12-06 アルプス電気株式会社 Variable capacitance capacitor
US9240282B2 (en) 2011-06-02 2016-01-19 Alps Electric Co., Ltd. Variable capacitor
WO2013168191A1 (en) * 2012-05-08 2013-11-14 パイオニア株式会社 Electrostatic actuator and variable-capacity device

Similar Documents

Publication Publication Date Title
US5901031A (en) Variable capacitor
KR100941403B1 (en) Micro-shaking device and method of driving the same
JP4011617B2 (en) Tunable micromechanical resonator based on capacitance
US6595055B1 (en) Micromechanical component comprising an oscillating body
JP3351180B2 (en) Variable capacitance capacitor
US7545239B2 (en) Serrated MEMS resonators
US6856219B2 (en) Electrostatic actuator
US7705514B2 (en) Bi-directional actuator utilizing both attractive and repulsive electrostatic forces
US20050132805A1 (en) Capacitance accelerometer having compensation electrode
JP4540443B2 (en) Electrostatic relay
JPH0963890A (en) Variable capacitance capacitor
US6058027A (en) Micromachined circuit elements driven by micromachined DC-to-DC converter on a common substrate
JPH0955337A (en) Variable capacitor
US7545237B2 (en) Serrated MEMS resonators
US6091125A (en) Micromechanical electronic device
JPH08213282A (en) Variable capacitance capacitor
US20070222334A1 (en) Microelectromechanical step actuator capable of both analog and digital movements
JPH10149951A (en) Variable capacitance capacitor
US7545238B2 (en) Serrated MEMS resonators
JP3389769B2 (en) Variable capacitance capacitor
JPH10149950A (en) Variable capacitance capacitor
JPH08181038A (en) Variable capacitance capacitor
JP4670271B2 (en) Semiconductor device
JPH1079324A (en) Capacitance-variable-element
JP2002373829A (en) Variable capacitor