JP4645673B2 - Variable capacitance element - Google Patents

Variable capacitance element Download PDF

Info

Publication number
JP4645673B2
JP4645673B2 JP2008094697A JP2008094697A JP4645673B2 JP 4645673 B2 JP4645673 B2 JP 4645673B2 JP 2008094697 A JP2008094697 A JP 2008094697A JP 2008094697 A JP2008094697 A JP 2008094697A JP 4645673 B2 JP4645673 B2 JP 4645673B2
Authority
JP
Japan
Prior art keywords
electrode
voltage
variable capacitance
capacitance element
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008094697A
Other languages
Japanese (ja)
Other versions
JP2008199049A (en
Inventor
邦彦 中村
淑人 中西
紀智 清水
康幸 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008094697A priority Critical patent/JP4645673B2/en
Publication of JP2008199049A publication Critical patent/JP2008199049A/en
Application granted granted Critical
Publication of JP4645673B2 publication Critical patent/JP4645673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Description

本発明は機械式の可変容量素子に関し、特に高密度に集積化された電気回路において、小型で高性能、高品質の可変容量素子とその形成方法に関する。   The present invention relates to a mechanical variable capacitance element, and more particularly, to a small, high-performance, high-quality variable capacitance element and a method for forming the same in an electric circuit integrated with high density.

従来の可変容量素子について、可変容量構造を利用した図10の微小機械スイッチを参照して説明する。図10はIEEE MTT−S Digest 1999、pp.1923−1926に紹介されているマイクロ波スイッチである。シリコン片持ち梁1の先端下部に絶縁層5を介して金の接点部6が設けられ、接点部6に相対する面には、接点部との接触により閉回路を形成する回路端子部7と、接点部6に静電力を与えてシリコン片持ち梁1を撓ませる駆動電極8が設けられている。シリコン片持ち梁の長さは約200μm、幅は約20μm、厚みは約2.5μmである。接点部6と回路端子部7の隙間は10μm以下に設定されおり、駆動電極8に50V以上の電圧を加えることで梁1が撓んで接点部6が回路端子部7に接触し、接点が閉じられる。
IEEE MTT−S Digest 1999、pp.1923−1926
A conventional variable capacitance element will be described with reference to the micromechanical switch of FIG. 10 using a variable capacitance structure. FIG. 10 shows IEEE MTT-S Digest 1999, pp. It is a microwave switch introduced in 1923-1926. A gold contact portion 6 is provided at the lower end of the tip of the silicon cantilever 1 via an insulating layer 5, and a circuit terminal portion 7 that forms a closed circuit by contact with the contact portion is provided on a surface facing the contact portion 6. A driving electrode 8 is provided that applies an electrostatic force to the contact portion 6 to bend the silicon cantilever 1. The length of the silicon cantilever is about 200 μm, the width is about 20 μm, and the thickness is about 2.5 μm. The gap between the contact portion 6 and the circuit terminal portion 7 is set to 10 μm or less. When a voltage of 50 V or more is applied to the drive electrode 8, the beam 1 is bent and the contact portion 6 contacts the circuit terminal portion 7, and the contact is closed. It is done.
IEEE MTT-S Digest 1999, pp. 1923-1926

しかし、接点を閉じるために必要な電圧が50V以上と高いために、専用の昇圧回路を搭載する必要があり、スイッチ素子の小型化を阻害していた。またシリコン梁先端に形成されているパッドは面積が広いほど上下に駆動するときに雰囲気の空気の粘性抵抗を受けて動作が遅くなり、数μsレベルの高速スイッチング動作は難しくなる。   However, since the voltage required to close the contact is as high as 50 V or more, it is necessary to mount a dedicated booster circuit, which hinders downsizing of the switch element. Further, the pad formed at the tip of the silicon beam has a larger area, so that the operation is slowed down due to the viscous resistance of atmospheric air when driven up and down, and a high-speed switching operation of several μs level becomes difficult.

図11は低電圧駆動と数μsレベルのスイッチング速度を達成できる梁構造である。梁1の寸法は幅W=2μm、厚さt=2μm、長さL=500μmである。梁1とは0.6μmの空隙を介して膜厚0.1μmの絶縁層5を表面に形成した電極2が基板4上に配置されている。梁1と電極2間に電圧Vを加えると、梁は静電力により−z方向にたわむ。プルイン電圧(引き込み電圧)以上になると梁の復元力よりも静電力の方が圧倒して力を増すため、梁1は絶縁層5上に急激に吸着される。さらに電圧を上げると梁1は絶縁層5との接触面積を増やしながら梁−電極間の容量を漸増させる。このように梁の長さを長くすることで梁のバネ性を弱め、また梁の幅を細くすることで空気の粘性抵抗を小さくすることで、低電圧駆動と数μsレベルのスイッチング速度が達成できる。梁の材料としてヤング率77GPaのアルミニウムを用いたとき、プルイン電圧は、梁を片持ちとした場合は0.25V、両持ちとした場合は1.72Vとなった。   FIG. 11 shows a beam structure that can achieve low voltage driving and a switching speed of several μs level. The beam 1 has a width W = 2 μm, a thickness t = 2 μm, and a length L = 500 μm. An electrode 2 having a 0.1 μm thick insulating layer 5 formed on the surface of the beam 1 with a 0.6 μm gap is disposed on the substrate 4. When a voltage V is applied between the beam 1 and the electrode 2, the beam bends in the −z direction by an electrostatic force. When the pull-in voltage (pull-in voltage) or higher is reached, the electrostatic force is overwhelmingly increased rather than the restoring force of the beam, so that the beam 1 is rapidly adsorbed on the insulating layer 5. When the voltage is further increased, the beam 1 gradually increases the capacitance between the beam and the electrode while increasing the contact area with the insulating layer 5. In this way, by increasing the length of the beam, the spring property of the beam is weakened, and by reducing the width of the beam, the viscous resistance of the air is reduced to achieve low voltage drive and a switching speed of several μs level. it can. When aluminum having a Young's modulus of 77 GPa was used as the material of the beam, the pull-in voltage was 0.25 V when the beam was cantilevered and 1.72 V when the beam was both supported.

しかし、このような細長い梁形状で顕著になる問題は、(1)残留応力、(2)熱膨張、(3)スティクションである。   However, the problems that become prominent with such an elongated beam shape are (1) residual stress, (2) thermal expansion, and (3) stiction.

第一の残留応力の問題について述べる。微小な梁形成には、半導体プロセスを用いた薄膜構造や、薄い圧延材料の接合構造などが利用されるが、いずれの場合も梁内部の残留応力が問題となる。この残留応力には2種類があり、一つは梁の長さ方向への圧縮/引っ張り応力、もう一つは梁の厚み方向への応力勾配である。   The first problem of residual stress will be described. For forming a minute beam, a thin film structure using a semiconductor process, a joining structure of a thin rolled material, or the like is used. In either case, residual stress inside the beam becomes a problem. There are two types of residual stress, one is compressive / tensile stress in the length direction of the beam, and the other is a stress gradient in the thickness direction of the beam.

例えば図11の梁を両持ち梁とした場合、図中のxおよびy方向に過度の圧縮応力が残留すると、y方向の応力解放は梁形状に大きな変化はもたらさないが、梁端面の拘束を受けているx方向に関しては、応力を解放しようとして座屈を起こし、静電力の印加とは無関係に梁は撓んでしまう。逆に引っ張り応力が残留する場合は見かけ上梁1に変化はないが、図12のグラフに示したように、残留引っ張り応力が大きくなるほどプルイン電圧が大きくなり、梁の駆動特性が著しく変化してしまう。すなわち、残留応力0で梁が生成されるのが理想であるが、梁の製造工程で内部応力を精度よく再現できないと、座屈やプルイン電圧のばらつきを招き、素子の品質が劣化する。なお、片持ち梁についてはこの種類の応力は解放されるので座屈やプルイン電圧のばらつきは生じない。   For example, if the beam in FIG. 11 is a doubly-supported beam, if excessive compressive stress remains in the x and y directions in the figure, the stress release in the y direction does not cause a significant change in the beam shape, but the beam end face is restrained. With respect to the x direction, the beam is buckled in an attempt to release the stress, and the beam bends regardless of the application of electrostatic force. Conversely, when tensile stress remains, the beam 1 does not seem to change, but as shown in the graph of FIG. 12, the pull-in voltage increases as the residual tensile stress increases, and the driving characteristics of the beam change significantly. End up. That is, it is ideal that the beam is generated with a residual stress of 0. However, if the internal stress cannot be accurately reproduced in the beam manufacturing process, buckling and pull-in voltage variations are caused, and the quality of the element deteriorates. It should be noted that this kind of stress is released for the cantilever beam, so that no buckling or pull-in voltage variation occurs.

しかし、図11の梁1を片持ち梁としたとき、z方向、すなわち梁の厚み方向に応力勾配が存在すると、応力解放により梁が反り上がる。例えば梁内部にz方向に沿ってプラスの応力勾配2MPa/μmが存在すると梁1の先端は約2μm反り上がる。この応力勾配の値を梁の製造工程で精度よく再現できないと、この反りの度合いがばらつき、梁1と電極2間距離が増すことによる容量減少のばらつきとプルイン電圧増大のばらつきを抑えることができなくなる。例えば応力勾配0で反りのない場合のプルイン電圧が0.25Vであるのに対して、先端が2μmそり上がった状態でのプルイン電圧は1.2Vまで増大する。   However, when the beam 1 of FIG. 11 is a cantilever beam, if a stress gradient exists in the z direction, that is, the thickness direction of the beam, the beam is warped by stress release. For example, if a positive stress gradient of 2 MPa / μm exists along the z direction inside the beam, the tip of the beam 1 warps by about 2 μm. If this stress gradient value cannot be accurately reproduced in the beam manufacturing process, the degree of warpage will vary, and variations in capacity reduction and increase in pull-in voltage due to an increase in the distance between the beam 1 and the electrode 2 can be suppressed. Disappear. For example, the pull-in voltage when the stress gradient is 0 and there is no warp is 0.25 V, while the pull-in voltage when the tip is raised by 2 μm increases to 1.2 V.

この梁の長さ方向の圧縮・引っ張り応力や厚み方向の応力勾配を製造工程で制御するのは非常に難しい。製造工程における応力緩和方法として「やきなまし」があるが、素子を高温に晒すためにその温度は、素子を構成する梁以外の他の各種部材、例えば電極の金属や、梁を架橋構造にするために一時的に梁の下部に設けられ最終的にエッチングされる犠牲層材料などがその材料特性を変化させない温度にまで制限されるため、完全に応力を緩和することはできない。   It is very difficult to control the compressive / tensile stress in the length direction of the beam and the stress gradient in the thickness direction in the manufacturing process. There is "Yananami" as a stress relaxation method in the manufacturing process, but in order to expose the element to a high temperature, the temperature is changed to various members other than the beam constituting the element, for example, the metal of the electrode or the bridge to the bridge structure. Therefore, since the sacrificial layer material or the like that is temporarily provided under the beam and is finally etched is limited to a temperature that does not change the material properties, the stress cannot be completely relieved.

第二の熱膨張の問題について述べる。素子の周辺温度の上昇により梁は長さ方向に熱膨張を起こすが、両端を拘束される両持ち梁構造では梁が座屈を起こし、静電力の印加とは無関係に梁は撓んでしまう。   The second problem of thermal expansion will be described. Although the beam thermally expands in the length direction due to an increase in the ambient temperature of the element, the beam buckles in a double-supported beam structure in which both ends are constrained, and the beam bends regardless of the application of electrostatic force.

第三のスティクションの問題について述べる。図13は図11の梁1を両持ち型としたときの構成で、残留応力をほぼ0とおさえた場合の電圧と容量の関係をあらわしている。電圧を加えると1.72Vでプルインを起こし、それ以上の電圧印加を行うと梁1と電極2は絶縁層5を介して接触し、接触面積を増加させて容量を増す。逆に電圧を下げていくと0.64Vまで電圧を降下させても梁と電極の接触は解消されない。これは梁のバネ性、すなわちバネの復元力が弱いことに起因する。このことは、電圧を0Vに戻しても、接触領域において、雰囲気中の水分子を介した吸着力、またはわずかな残留電荷による吸着力、またはvan der Waals力などが存在すると、梁は初期状態に戻れなくなる可能性が高いことを意味する。これを回避するには梁を電極から離す方向に強制的に梁を駆動する機構、例えば図11の梁1の上面を静電力で引き戻す電極を新たに設けるなど、複雑な構造をとる必要がある。   Describe the third problem of stiction. FIG. 13 shows a configuration in which the beam 1 of FIG. 11 is a double-supported type, and shows the relationship between the voltage and the capacity when the residual stress is suppressed to approximately zero. When a voltage is applied, pull-in occurs at 1.72 V, and when a voltage higher than that is applied, the beam 1 and the electrode 2 come into contact with each other through the insulating layer 5 to increase the contact area and increase the capacity. Conversely, when the voltage is lowered, the contact between the beam and the electrode is not eliminated even if the voltage is lowered to 0.64V. This is because the spring property of the beam, that is, the restoring force of the spring is weak. This means that even if the voltage is returned to 0 V, if there is an adsorption force through water molecules in the atmosphere, an adsorption force due to a slight residual charge, or a van der Waals force in the contact region, the beam is in the initial state. This means that there is a high possibility that it will not be possible to return to. In order to avoid this, it is necessary to adopt a complicated structure such as a mechanism for forcibly driving the beam in a direction away from the electrode, for example, an electrode for pulling back the upper surface of the beam 1 in FIG. .

本発明は、このように低電圧・高速駆動が可能な機械的な可変容量素子において、簡易な構成で高品質の可変容量機能を具現し、例えば微小機械スイッチとして提供することを目的とする。   It is an object of the present invention to implement a high-quality variable capacitance function with a simple configuration, for example, as a micromechanical switch, in such a mechanical variable capacitance element capable of low voltage and high speed driving.

本発明は、可撓性を有する梁と、梁との間にコンデンサを形成するために梁に近接して設置された電極とから構成され、梁と電極間に電圧をかけて梁を静電力で撓ませることで両者間の静電容量を変化させることを特徴とする可変容量素子であり、撓ませた前記梁と電極とを、少なくとも一方の表面上に形成された絶縁層を介して接触させて接触面積を変化させることで静電容量を変化させることを特徴とし、前記電極が複数個に分割されていることを特徴とする。また、前記電極の一部が他の電極表面の高さよりも低い凹部を絶縁層に設け、凹部の前記梁と他の電極との間に電圧を加え、凹部内部に梁を引き寄せることにより、凹部の一部である段差発生部を支点とした梁の反対部位を電極から離す力を発生させることを特徴とする。したがって、梁を静電力により撓ませる電極を複数個に分割し、それぞれに梁先端を支持する機能、交流信号ラインとしての機能、スティクションを解消する機能を付与することで、簡易な構成にて残留応力、熱膨張、スティクションによる品質や性能の劣化を抑制することができる。   The present invention is composed of a flexible beam and an electrode installed in the vicinity of the beam to form a capacitor between the beam, and an electrostatic force is applied to the beam by applying a voltage between the beam and the electrode. The variable capacitance element is characterized in that the capacitance between the two is changed by bending the electrode with the electrode, and the bent beam and the electrode are brought into contact with each other via an insulating layer formed on at least one surface. The capacitance is changed by changing the contact area and the electrode is divided into a plurality of parts. In addition, a recess is formed in the insulating layer in which a part of the electrode is lower than the height of the other electrode surface, a voltage is applied between the beam of the recess and the other electrode, and the beam is drawn into the recess to A force is generated that separates the opposite part of the beam from the electrode, with the step generation part as a fulcrum. Therefore, by dividing the electrode that bends the beam by electrostatic force into a plurality of parts, each of which has a function to support the beam tip, a function as an AC signal line, and a function to eliminate stiction, with a simple configuration Degradation of quality and performance due to residual stress, thermal expansion, and stiction can be suppressed.

以上のように本発明によれば、電極を複数個に分割し、それぞれに梁先端を支持する機能、交流信号ラインとしての機能、スティクションを解消する機能を付与することで、簡易な構成にて残留応力、熱膨張、スティクションによる品質や性能の劣化を抑制することができるという効果を有する。これにより低電圧・高速駆動が可能な小型・高品質の可変容量素子やこれを応用したRFスイッチの実現ができるという効果が得られる。   As described above, according to the present invention, the electrode is divided into a plurality of parts, and each of them has a function of supporting the beam tip, a function as an AC signal line, and a function of eliminating stiction. Thus, it is possible to suppress deterioration of quality and performance due to residual stress, thermal expansion, and stiction. As a result, a small and high quality variable capacitor capable of low voltage and high speed driving and an RF switch using the same can be realized.

以下、本発明の実施の形態について、図1から図9を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

(実施の形態1)
図1は、本発明の実施の形態1に関わる可変容量素子の概要図である。梁1はその一端をアンカー部3により基板4上に固定された片持ち梁であり、厚みt=2μm、幅W=2μm、長さL=500μmである。ここでは梁の材料としてヤング率77GPaのアルミニウムを用いている。電極2a、2bは梁1の側面に平行に位置して基板4上に固定されている。電極2aの長さlaは約50μm、電極2bの長さはlbは約450μmとなっており、梁1と電極2の電気的短絡を避けるために、絶縁層5が電極2の梁との対向面上に0.1μmほど形成されている。ここでは梁1上面の高さh1よりも電極2の上面高さh2を高くしている。
(Embodiment 1)
FIG. 1 is a schematic diagram of a variable capacitance element according to Embodiment 1 of the present invention. The beam 1 is a cantilever whose one end is fixed on the substrate 4 by the anchor portion 3 and has a thickness t = 2 μm, a width W = 2 μm, and a length L = 500 μm. Here, aluminum having a Young's modulus of 77 GPa is used as the material of the beam. The electrodes 2 a and 2 b are fixed on the substrate 4 so as to be parallel to the side surface of the beam 1. The length la of the electrode 2 a is about 50 μm, the length of the electrode 2 b is about 450 μm, and the insulating layer 5 is opposed to the beam of the electrode 2 in order to avoid an electrical short circuit between the beam 1 and the electrode 2. About 0.1 μm is formed on the surface. Here, the height h2 of the upper surface of the electrode 2 is set higher than the height h1 of the upper surface of the beam 1.

梁1は片持ち梁であるため、x方向、y方向の引っ張り/圧縮応力や、z方向への応力勾配を解放することができる。図2に応力解放後の実際の梁の形状を示す。z方向への応力勾配は2MPa/μmほど残留していたため、先端は約2μmほどz方向に反り上がっている、電極2の高さはそれを充分補うだけの高さh2を有しているために、梁1と電極2間の対向面積は変化せず、従って静電容量の減少はない。図2のように梁1を接地、電極2に電圧を印加すると、梁はy方向に引き寄せられて0.25Vでプルインを起こし、0.20Vに電圧を若干戻すことで図3の上面図に示すように梁先端部は電極2a上に固定支持された状態となる。片持ち梁は外部振動の影響を受けやすいので、通常は図3の両端固定支持状態を維持し、必要に応じて電圧を解放して片持ち梁状態に戻して、熱膨張による内部応力の発生を緩和させるリフレッシュ動作を行うことができる。   Since the beam 1 is a cantilever beam, the tensile / compressive stress in the x direction and the y direction and the stress gradient in the z direction can be released. FIG. 2 shows the actual beam shape after stress release. Since the stress gradient in the z direction remains about 2 MPa / μm, the tip warps in the z direction by about 2 μm. The height of the electrode 2 has a height h2 enough to compensate for it. Further, the facing area between the beam 1 and the electrode 2 does not change, and therefore the capacitance does not decrease. When the beam 1 is grounded and a voltage is applied to the electrode 2 as shown in FIG. 2, the beam is pulled in the y direction to cause pull-in at 0.25 V, and the voltage is slightly returned to 0.20 V, so that the top view of FIG. As shown, the beam tip is fixedly supported on the electrode 2a. Since cantilever beams are easily affected by external vibrations, the both ends fixed support state shown in Fig. 3 is normally maintained, the voltage is released as needed to return to the cantilever state, and internal stress is generated due to thermal expansion. It is possible to perform a refresh operation that alleviates this.

もし図1でh2をh1と等しくすると、応力解放による梁1のz方向への反りにより、梁1と電極2間の対向面積が減少し、プルイン電圧は0.42Vと高くなってしまう。このことからh2をh1よりも高くすることでプルイン電圧の上昇を抑制する効果が得られることがわかる。   If h2 is equal to h1 in FIG. 1, the opposing area between the beam 1 and the electrode 2 decreases due to warpage of the beam 1 in the z direction due to stress release, and the pull-in voltage becomes as high as 0.42V. From this, it can be seen that an effect of suppressing an increase in the pull-in voltage can be obtained by setting h2 higher than h1.

図2の構成では、梁1に静電力を加えて撓ませるための電極2を分割して、その一部である電極2bに入力ポートPiと出力ポートPoを設けた交流信号ラインとしての機能も持たせ、交流信号回路を形成している。図2の構成を単なるアクチュエータと考え、梁1に連結する可動部材を設けて、この可動部材で交流信号専用の可変容量部を形成することも可能であるが、構造が複雑となる上、梁1を含めた可動部材の質量が増えてしまうために動作速度、特にスイッチとして用いる場合のスイッチング速度が低下してしまうという問題がある。そのため、本発明の実施例では、図2のように、電極2の一部を交流信号ラインとして兼用する構造をとり、構成の簡素化を図り、高速スイッチングを達成している。   In the configuration of FIG. 2, the electrode 2 for bending the beam 1 by applying an electrostatic force is divided, and the function as an AC signal line in which the input port Pi and the output port Po are provided on the electrode 2b which is a part of the electrode 2b. An AC signal circuit is formed. Although it is possible to consider the configuration of FIG. 2 as a simple actuator and to provide a movable member connected to the beam 1 and to form a variable capacitor dedicated to an AC signal with this movable member, the structure becomes complicated and the beam Since the mass of the movable member including 1 increases, there is a problem that the operation speed, particularly the switching speed when used as a switch is lowered. Therefore, in the embodiment of the present invention, as shown in FIG. 2, a structure in which a part of the electrode 2 is also used as an AC signal line is adopted, the configuration is simplified, and high-speed switching is achieved.

図3の状態からさらに電圧を加えると梁1と電極2bは絶縁層5を介して接触面積を増やし静電容量は増加する。梁1と電極2bはシャント型のスイッチを形成しているため、図4のように電圧3.8Vを印加した状態では、梁1と電極2の対向面積の80%が接触状態となり、Pi−Po間の交流伝送線路をシャントでゼロ電位に落とした状態を作ることができる。   When a voltage is further applied from the state of FIG. 3, the contact area between the beam 1 and the electrode 2b is increased through the insulating layer 5, and the capacitance is increased. Since the beam 1 and the electrode 2b form a shunt-type switch, when a voltage of 3.8 V is applied as shown in FIG. 4, 80% of the opposed area of the beam 1 and the electrode 2 is in a contact state, and Pi− A state in which the AC transmission line between Pos is shunted to zero potential can be created.

図3の状態、すなわちシャントによる接地を行わない状態において、梁1と電極2bが近接しているA部近辺の容量が寄生容量として無視できない場合は、図5の構成をとることで解消することができる。ここでは電極2aを2bよりも梁1に近接させるとともに、電極2bを2b’と2b”に分割し、交流信号はA部より遠い位置にある電極2b”を通過するようにする。図5の構成により梁1と電極2bとの距離が離れるので寄生容量成分を抑制することができる。このとき電極2b’は梁を駆動する役割を担うために省くことはできない。   In the state shown in FIG. 3, that is, when the shunt is not grounded, if the capacitance in the vicinity of the part A where the beam 1 and the electrode 2b are close to each other cannot be ignored as the parasitic capacitance, the configuration shown in FIG. Can do. Here, the electrode 2a is brought closer to the beam 1 than 2b, and the electrode 2b is divided into 2b 'and 2b "so that the AC signal passes through the electrode 2b" located farther from the part A. Since the distance between the beam 1 and the electrode 2b is increased by the configuration of FIG. 5, the parasitic capacitance component can be suppressed. At this time, the electrode 2b 'cannot be omitted because it plays a role of driving the beam.

次に本実施例の概要図である図1を構成するために用いた製作工程を示す。図6は図1のA−A’断面を用いた工程断面図である。高抵抗シリコン基板9上に熱酸化することで、シリコン酸化膜10を300nmの膜厚で形成する。その後、シリコン窒化膜11を減圧CVD法を用いて200nmの膜厚で堆積する。さらにシリコン酸化膜12を50nmの膜厚で減圧CVD法を用いて堆積する。図6a)参照。   Next, the manufacturing process used to construct FIG. 1 which is a schematic diagram of the present embodiment will be described. FIG. 6 is a process sectional view using the A-A ′ section of FIG. 1. By thermally oxidizing the high resistance silicon substrate 9, the silicon oxide film 10 is formed with a thickness of 300 nm. Thereafter, a silicon nitride film 11 is deposited with a film thickness of 200 nm using a low pressure CVD method. Further, a silicon oxide film 12 is deposited with a thickness of 50 nm by using a low pressure CVD method. See Figure 6a).

しかる後、シリコン酸化膜12にフォトレジストからなる犠牲層を膜厚2μmでスピンコート、露光、現像したのち、ホットプレートで140℃10分のベークを行うことで犠牲層13を形成する。図6b)参照。   Thereafter, a sacrificial layer made of a photoresist is spin-coated, exposed and developed on the silicon oxide film 12 at a film thickness of 2 μm, and then the sacrificial layer 13 is formed by baking at 140 ° C. for 10 minutes on a hot plate. See Figure 6b).

しかる後、図6c)に示すごとく、基板全面にアルミニウム14をスパッタにより2μmの膜厚で堆積し、所定の領域にレジストが残るようにフォトレジストによるパターン15aの形成を行い、レジストパターン15aの貫通穴よりアルミニウム14の一部の高さをエッチングにより低くする。   Thereafter, as shown in FIG. 6c), aluminum 14 is deposited on the entire surface of the substrate to a thickness of 2 μm by sputtering, and a pattern 15a is formed by photoresist so that the resist remains in a predetermined region, and the resist pattern 15a is penetrated. The height of a part of the aluminum 14 is lowered by etching from the hole.

次に図6d)に示すように再びフォトレジストによるパターン15bを形成する。   Next, as shown in FIG. 6d), a photoresist pattern 15b is formed again.

次に、前記フォトレジストからなるパターン15bをマスクとしてアルミニウムのドライエッチングを行うことで、梁16を形成し、さらに酸素プラズマによりフォトレジストからなるパターン15bならびに犠牲層13を除去する。これにより基板表面と間隙17を有する梁が形成される。図6e)参照。   Next, the beam 16 is formed by performing dry etching of aluminum using the photoresist pattern 15b as a mask, and the photoresist pattern 15b and the sacrificial layer 13 are removed by oxygen plasma. As a result, a beam having the substrate surface and the gap 17 is formed. See Figure 6e).

さらに、図6f)に示すごとく全面にプラズマCVDによりシリコン窒化膜18を膜厚50nmで堆積することで、基板表面のシリコン酸化膜12上ならびに梁16の周辺にシリコン窒化膜18が形成される。   Furthermore, as shown in FIG. 6f), a silicon nitride film 18 is deposited on the entire surface by plasma CVD to a thickness of 50 nm, thereby forming a silicon nitride film 18 on the silicon oxide film 12 on the substrate surface and around the beam 16.

最後に図6g)に示すようにシリコン窒化膜を異方性を有するドライエッチング法にて前記堆積膜厚以上の膜厚例えば100nmでシリコン酸化膜と選択比を有する条件でエッチバックすることで、上面にシリコン窒化膜がなく側面に窒化膜が残った梁19を形成し、梁上面から電気的導通をとることができるようになる。   Finally, as shown in FIG. 6g), the silicon nitride film is etched back by a dry etching method having anisotropy at a film thickness equal to or greater than the deposited film thickness, for example, 100 nm, under a condition having a selectivity with the silicon oxide film. A beam 19 having no silicon nitride film on the upper surface and a nitride film remaining on the side surface is formed, and electrical conduction can be obtained from the upper surface of the beam.

なお本実施の形態では基板に関して、高抵抗シリコン基板を用いたが、通常のシリコン基板、化合物半導体基板、絶縁材料基板を用いても良い。   Note that although a high-resistance silicon substrate is used as the substrate in this embodiment mode, a normal silicon substrate, a compound semiconductor substrate, or an insulating material substrate may be used.

また、高抵抗シリコン基板9上に絶縁膜としてシリコン酸化膜10、シリコン窒化膜11、シリコン酸化膜12を形成したが、基板の抵抗が十分高い場合これら絶縁性膜の形成を省略しても良い。また、シリコン基板上にシリコン酸化膜10、シリコン窒化膜11、シリコン酸化膜12と3層構造の絶縁膜としたが、前記シリコン窒化膜11の膜厚が、梁上に堆積するシリコン窒化膜と比較して十分厚い膜厚、いわゆるエッチバック工程を経ても消失しない膜厚である場合、シリコン酸化膜12形成工程は省略することが可能である。   Further, although the silicon oxide film 10, the silicon nitride film 11, and the silicon oxide film 12 are formed as insulating films on the high resistance silicon substrate 9, the formation of these insulating films may be omitted if the resistance of the substrate is sufficiently high. . In addition, the silicon oxide film 10, the silicon nitride film 11, and the silicon oxide film 12 are formed on the silicon substrate as an insulating film having a three-layer structure, but the silicon nitride film 11 has a thickness of the silicon nitride film deposited on the beam. If the film thickness is sufficiently thick, that is, a film thickness that does not disappear even after a so-called etch-back process, the silicon oxide film 12 forming process can be omitted.

なお、本実施の形態では梁を形成する材料としてアルミニウムを用いたが、他の金属材料Mo、Ti、Au、Cu、ならびに高濃度に不純物導入された半導体材料例えばアモルファスシリコン、導電性を有する高分子材料などを用いても良い。さらに成膜方法としてスパッタを用いたがCVD法、メッキ法などを用いて形成しても良い。   Note that although aluminum is used as a material for forming the beam in this embodiment mode, other metal materials Mo, Ti, Au, Cu, and a semiconductor material into which impurities are introduced at a high concentration, for example, amorphous silicon, a highly conductive material Molecular materials or the like may be used. Further, although sputtering is used as a film forming method, it may be formed using a CVD method, a plating method, or the like.

(実施の形態2)
図7は図11の構成で梁1を両持ち梁とし、梁1を一度プルインにより絶縁層5に接触させた後に電圧を解除したが、スティクションにより梁中央部が絶縁層5から離脱できない状態を示している。これを解決する本発明の実施例を図8に示す。図8(a)はスティクションを起こしている梁1の中央部の拡大図であり、梁1は電極2上の絶縁層5に面接触している。この接触面には雰囲気中の水分子を介した吸着力や残留電荷による静電力やvan del Walls力などが作用している。電極2’は電極2よりも梁から離れて凹部を形成しており、梁との接触はない。ここで電極2’に電圧を印加すると図8(b)に示すように凹部に梁1を引きこみ、段差発生部Bを支点として梁1の電極2への付着を引き離す力を及ぼし、スティクションを解消することができる。図9は電極2、2’ともに表面は同一面内にあるが、絶縁層のみに凹部を設けている構造であり、同様にスティクション解消の効果を得ることができる。
(Embodiment 2)
FIG. 7 shows the structure of FIG. 11 in which the beam 1 is a double-supported beam, and the voltage is released after the beam 1 is once brought into contact with the insulating layer 5 by pull-in, but the central portion of the beam cannot be detached from the insulating layer 5 by stiction. Is shown. An embodiment of the present invention for solving this is shown in FIG. FIG. 8A is an enlarged view of the central portion of the beam 1 causing stiction. The beam 1 is in surface contact with the insulating layer 5 on the electrode 2. Adsorption force via water molecules in the atmosphere, electrostatic force due to residual charge, van del Walls force, etc. act on this contact surface. The electrode 2 ′ forms a concave portion farther from the beam than the electrode 2 and does not contact the beam. Here, when a voltage is applied to the electrode 2 ′, the beam 1 is drawn into the concave portion as shown in FIG. 8B, and a force that separates the attachment of the beam 1 to the electrode 2 with the stepped portion B serving as a fulcrum is exerted. Can be eliminated. FIG. 9 shows a structure in which the surfaces of both the electrodes 2 and 2 ′ are in the same plane, but a recess is provided only in the insulating layer, and the effect of eliminating stiction can be obtained similarly.

なお、本実施例の可変容量素子を真空封止することで雰囲気中の水分子によるスティクションを低減することができるので、本実施例で示した構造のスティクション解消機能はさらに効果的になる。   In addition, since the stiction due to water molecules in the atmosphere can be reduced by vacuum-sealing the variable capacitance element of this embodiment, the stiction elimination function of the structure shown in this embodiment is more effective. .

第1の実施例における可変容量素子の外観図External view of variable capacitance element in first embodiment 梁内部応力の解放による梁の形状変化をあらわす図Diagram showing beam shape change due to release of internal stress of beam 第1の実施例において梁先端を静電力で支持した状態をあらわす上面図The top view showing the state which supported the beam tip in the 1st example by electrostatic force 第1の実施例において交流信号ラインにシャント型のスイッチを付与した状態をあらわす上面図The top view showing the state which gave the shunt type switch to the AC signal line in the first embodiment 第1の実施例において信号ラインの寄生容量を減らす構造をあらわす上面図The top view showing the structure which reduces the parasitic capacitance of a signal line in a 1st Example 第1の実施例における構成の薄膜作製技術による製作工程図Manufacturing process diagram by the thin film manufacturing technique having the configuration in the first embodiment 両持ち梁がスティクションを起こした状態をあらわす図A diagram showing the state where stiction occurred on both sides of the beam 第2の実施例におけるスティクション解消構造の原理図Principle diagram of stiction elimination structure in the second embodiment 第2の実施例において絶縁層のみの段差で凹部を形成した構造をあらわす図The figure showing the structure which formed the recessed part with the level | step difference only of an insulating layer in 2nd Example. 従来の可変容量構造を応用したマイクロ波スイッチの構造を示す図The figure which shows the structure of the microwave switch which applied the conventional variable capacity structure 従来の低電圧・高速動作が可能な可変容量構造を示す図Figure showing a conventional variable capacitance structure capable of low-voltage and high-speed operation 両持ち梁とした図10の構造において、梁内部のx、y方向の内部残留応力とプルイン電圧の関係をあらわす図10 shows the relationship between the internal residual stress in the x and y directions inside the beam and the pull-in voltage in the structure of FIG. 残留応力がほぼ0の両持ち梁とした図10の構造において、印加電圧と容量変化の関係をあらわす図A diagram showing the relationship between applied voltage and capacitance change in the structure of FIG.

符号の説明Explanation of symbols

1 梁
2 電極
3 アンカー部
4 基板
5 絶縁層
6 接点部
7 回路端子部
8 駆動電極
9 シリコン基板
10 シリコン酸化膜
11 シリコン窒化膜
12 シリコン酸化膜
13 犠牲層
14 アルミニウム
15 レジストパターン
16 梁
17 梁−基板間の間隙
18 シリコン窒化膜
19 上面の窒化膜が除かれた梁
DESCRIPTION OF SYMBOLS 1 Beam 2 Electrode 3 Anchor part 4 Board | substrate 5 Insulation layer 6 Contact part 7 Circuit terminal part 8 Drive electrode 9 Silicon substrate 10 Silicon oxide film 11 Silicon nitride film 12 Silicon oxide film 13 Sacrificial layer 14 Aluminum 15 Resist pattern 16 Beam 17 Beam- Gap between substrates 18 Silicon nitride film 19 Beam from which nitride film on top surface is removed

Claims (3)

可撓性を有する梁と、前記梁との間にコンデンサを形成するために前記梁に近接して設置された電極とから構成され、前記梁と前記電極間に電圧をかけて前記梁を静電力で撓ませることで両者間の静電容量を変化させる可変容量素子であって、前記電極が複数個に分割されており、前記電極の一部が前記梁の自由端を静電力で吸着して支持されており、前記梁の自由端を静電力で支持する電極と梁との距離が、他の電極よりも梁に近接して配置されており、前記複数個の電極の一部を交流信号ラインとすることを特徴とする可変容量素子。 A beam having flexibility, and an electrode disposed in proximity to the beam to form a capacitor between the beam and applying a voltage between the beam and the electrode to A variable capacitance element that changes capacitance between the two by bending with electric power, wherein the electrode is divided into a plurality of parts, and a part of the electrode adsorbs the free end of the beam with electrostatic force. The distance between the beam that supports the free end of the beam with an electrostatic force and the beam is arranged closer to the beam than other electrodes, and a part of the plurality of electrodes is exchanged A variable capacitance element characterized by being a signal line. 請求項1に記載の可変容量素子を真空封止した可変容量素子。 A variable capacitance element obtained by vacuum-sealing the variable capacitance element according to claim 1. 請求項1に記載の可変容量素子を利用したスイッチ。 A switch using the variable capacitance element according to claim 1.
JP2008094697A 2008-04-01 2008-04-01 Variable capacitance element Expired - Fee Related JP4645673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094697A JP4645673B2 (en) 2008-04-01 2008-04-01 Variable capacitance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094697A JP4645673B2 (en) 2008-04-01 2008-04-01 Variable capacitance element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002221010A Division JP4151338B2 (en) 2002-07-30 2002-07-30 Variable capacitance element and method for forming the same

Publications (2)

Publication Number Publication Date
JP2008199049A JP2008199049A (en) 2008-08-28
JP4645673B2 true JP4645673B2 (en) 2011-03-09

Family

ID=39757653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094697A Expired - Fee Related JP4645673B2 (en) 2008-04-01 2008-04-01 Variable capacitance element

Country Status (1)

Country Link
JP (1) JP4645673B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181038A (en) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd Variable capacitance capacitor
JPH0963890A (en) * 1995-08-18 1997-03-07 Murata Mfg Co Ltd Variable capacitance capacitor
JPH1041464A (en) * 1996-07-23 1998-02-13 Murata Mfg Co Ltd Variable capacitance capacitor and its manufacture
JPH10149951A (en) * 1996-11-15 1998-06-02 Murata Mfg Co Ltd Variable capacitance capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181038A (en) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd Variable capacitance capacitor
JPH0963890A (en) * 1995-08-18 1997-03-07 Murata Mfg Co Ltd Variable capacitance capacitor
JPH1041464A (en) * 1996-07-23 1998-02-13 Murata Mfg Co Ltd Variable capacitance capacitor and its manufacture
JPH10149951A (en) * 1996-11-15 1998-06-02 Murata Mfg Co Ltd Variable capacitance capacitor

Also Published As

Publication number Publication date
JP2008199049A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP4151338B2 (en) Variable capacitance element and method for forming the same
JP5123532B2 (en) Micro cantilever
JP4465341B2 (en) High frequency micromachine switch and method of manufacturing the same
US7209019B2 (en) Switch
JP5588663B2 (en) Micro electromechanical system switch
US7755459B2 (en) Micro-switching device and method of manufacturing the same
JP2007535797A (en) Beam for micromachine technology (MEMS) switches
CN102185517B (en) Electrostatic actuator
JP4739173B2 (en) Micro switching element
JP2006159356A (en) Piezoelectric driving type micro electro mechanical system device
JP4231062B2 (en) MEMS element
JP4645673B2 (en) Variable capacitance element
JP2005251549A (en) Microswitch and driving method for microswitch
JP2009266615A (en) Electric micro mechanical switch
JP5812096B2 (en) MEMS switch
JP2007196303A (en) Micro-structure manufacturing method and micro-structure
TWI384518B (en) Low pull-in voltage rf-mems switch and method for preparing the same
JPH10106184A (en) Microactuator
JP5314932B2 (en) Electric micro mechanical switch
JP5180683B2 (en) Switched capacitor
JP2007207487A (en) Microswitching element, and manufacturing method of same
JP2009218418A (en) Variable capacitance element
JP2006073337A (en) Manufacturing method of bimorph element
JPH0714483A (en) Micro bi-metal relay and its manufacture
JP4349548B2 (en) Manufacturing method of light modulation device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4645673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees