WO2011158619A1 - Variable capacitance device - Google Patents

Variable capacitance device Download PDF

Info

Publication number
WO2011158619A1
WO2011158619A1 PCT/JP2011/061924 JP2011061924W WO2011158619A1 WO 2011158619 A1 WO2011158619 A1 WO 2011158619A1 JP 2011061924 W JP2011061924 W JP 2011061924W WO 2011158619 A1 WO2011158619 A1 WO 2011158619A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable beam
dielectric film
capacitance
drive
capacitor
Prior art date
Application number
PCT/JP2011/061924
Other languages
French (fr)
Japanese (ja)
Inventor
梅田圭一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2011158619A1 publication Critical patent/WO2011158619A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • H01G5/18Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes due to change in inclination, e.g. by flexing, by spiral wrapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details

Definitions

  • the present invention relates to a variable capacity device capable of changing an RF (Radio Frequency) capacity using a MEMS driven by an electrostatic force.
  • RF Radio Frequency
  • FIG. 1 is a diagram illustrating a configuration example of a conventional variable capacitance device.
  • the variable capacity device 101 includes movable plates 102 and 103.
  • the movable plates 102 and 103 each have a doubly supported beam structure and are made of a conductive material.
  • the movable plate 102 and the movable plate 103 are spaced apart from each other.
  • the movable plate 103 has a convex surface facing the movable plate 102 and includes a dielectric layer 104 on the surface.
  • the distance between the movable plates 102 and 103 is narrowed by the driving capacity generated by applying the driving DC voltage between the movable plates 102 and 103, and the dielectric layer 104 is passed from the convex tip region of the movable plate 103 to the movable plate 102.
  • the RF capacity of the variable capacitance device 101 changes according to the contact area.
  • variable capacitance device since the driving DC voltage and the RF signal are applied to the common electrode, a resistor and a capacitor for separating the direct current component and the alternating current component are required for the driving circuit. Since insertion of a resistor or a capacitor causes a complicated circuit configuration and an increase in insertion loss, the applicant of the present application has developed a variable capacitance device that does not require such a resistor or capacitor.
  • 2A is a plan view showing a configuration example of the variable capacitance device 201
  • FIG. 2B is a side sectional view thereof.
  • the variable capacity device 201 includes a support plate 202 and a movable beam 203.
  • the movable beam 203 has a cantilever structure that is supported in parallel to the support plate 202.
  • the support plate 202 is provided with two linear line-shaped electrodes 204 in parallel along the main axis direction of the movable beam 203, and the U-shaped line-shaped electrodes 205 are disposed between both ends of the support plate 202.
  • dielectric films 208A and 208B are provided so as to cover the electrodes 204 and 205, respectively.
  • the movable beam 203 includes one rectangular electrode 206 (shown in FIG. 2B) facing the two electrodes 204 and a U-shaped electrode 207 facing the electrode 205 (see FIG. 2B). 2 (B).).
  • the electrode 204 and the electrode 206 are opposed to each other via the dielectric film 208A and function as an RF capacitor portion, and the electrode 205 and the electrode 207 are opposed to each other via the dielectric film 208B and function as a drive capacitor portion.
  • the drive capacity unit deforms the movable beam 203 by electrostatic attraction by a drive capacity generated by applying a drive DC voltage.
  • the RF capacitor unit is used as an RF capacitor whose capacitance can be changed by connecting the electrode 204 to a high frequency circuit.
  • the variable capacitance device 201 has a structure in which the electrodes 205 and 207 to which the driving DC voltage is applied and the electrodes 204 and 206 to which the RF signal is applied are structurally separated.
  • FIG. 2C is a diagram showing a typical example of driving DC voltage-RF capacitance characteristics in the variable capacitance device having the above-described configuration.
  • the driving DC voltage is in the range from zero to V O
  • the movable beam is in a state of being separated from the dielectric film, and the RF capacitance hardly changes even if the driving DC voltage changes.
  • the driving DC voltage V O ready to tip of the movable beam is brought into line contact with the dielectric film, RF capacity is C O.
  • the tilt angle of the movable beam with respect to the support plate changes while the tip is in line contact with the dielectric film. Almost no change.
  • the driving DC voltage is V MIN
  • the tip of the movable beam is in surface contact with the dielectric film
  • the RF capacitance is C MIN .
  • the drive DC voltage is in the range from V MIN to V MAX
  • the contact area between the movable beam and the dielectric film changes linearly according to the drive DC voltage, and the RF capacity increases as the drive DC voltage increases.
  • V MAX the contact area between the movable beam and the dielectric film is almost maximized, and the RF capacitance is C MAX .
  • the contact area between the movable beam and the dielectric film remains almost maximized, and the RF capacitance hardly changes.
  • variable capacitance device it is desirable that the variable ratio of the RF capacitance is large. Therefore, it is desired that the CMIN, which is the RF capacitance in a state where the tip of the movable beam is in surface contact with the dielectric film, is smaller. It is desirable that C MAX, which is the RF capacity in a state where the contact area with maximizes, is larger.
  • the RF capacitor C MAX can be set to a large one by extending the line length of the electrode serving as the RF capacitor portion.
  • the RF capacitor C MIN is set depending on the line length of the electrode serving as the RF capacitor portion. I could't.
  • an object of the present invention is to provide a variable capacitance device capable of making the minimum value of the RF capacitance in a state where the movable beam is in surface contact with the dielectric film smaller than that of the conventional one.
  • the variable capacitance device of the present invention includes a support plate, a movable beam, a drive capacitance portion, and an RF capacitance portion.
  • the movable beam is supported in parallel with the main surface of the support plate.
  • the drive capacitor unit includes a pair of drive capacitor electrodes provided to be opposed to each other on the movable beam and the support plate along the main axis direction of the movable beam, and a dielectric film laminated on at least one of the drive capacitor electrodes, Consists of.
  • the drive capacity unit deforms the movable beam based on the drive capacity generated between the pair of drive capacity electrodes.
  • the RF capacitor unit includes a pair of RF capacitor electrodes provided in a long manner along the main axis direction of the movable beam so as to face the movable beam and the support plate, and a dielectric film laminated on at least one of the RF capacitor electrodes; Consists of.
  • the RF capacitor unit propagates an RF signal through an RF capacitor generated between a pair of RF capacitor electrodes.
  • the RF capacitance section has an electrode facing area, which is an area where a pair of RF capacitance electrodes face each other via a dielectric film, locally around a position where the amount of deformation in the movable beam is maximized. The configuration is reduced.
  • the area where the pair of RF capacitive electrodes are opposed to each other through the dielectric film is locally reduced around the position where the amount of deformation in the movable beam is maximized, so that the movable beam becomes dielectric.
  • the minimum value of the RF capacity generated in contact with the body membrane can be reduced.
  • the drive capacitor section of the present invention has a configuration in which the electrode facing area, which is an area where the pair of drive capacitor electrodes face each other through a dielectric film, is locally reduced around the position where the amount of deformation in the movable beam is maximized. Is preferred.
  • the minimum value of the drive capacity generated when the movable beam is in contact with the dielectric film can be reduced as in the case of the RF capacity.
  • the correlation between the capacitance change of the drive capacitance and the capacitance change of the RF capacitance increases, and it becomes easy to precisely control the RF capacitance by the drive DC voltage.
  • variable capacitance device of the present invention it is preferable that the dimension in the width direction of the RF capacitance electrode on the support plate side constituting the RF capacitance portion is locally narrow around the position where the amount of deformation in the movable beam is maximized. Further, it is preferable that the density per unit area in the dielectric film is locally small around the position where the deformation amount in the movable beam is maximized. In addition, it is preferable that the dimension in the width direction of the RF capacitive electrode on the movable beam side constituting the RF capacitive portion is locally narrow around the position where the deformation amount in the movable beam is maximized.
  • the movable beam of the present invention may have a cantilever structure supported by a support plate at one end in the main axis direction, or a double-supported beam structure supported by a support plate at both ends in the main axis direction.
  • the electrode facing area at this position is locally reduced.
  • the minimum value of the RF capacitance generated when the movable beam is in contact with the dielectric film can be reduced. This makes it possible to increase the variable ratio of the RF capacitance in the variable capacitance device.
  • variable capacitance apparatus It is a figure explaining the structural example of the conventional variable capacitance apparatus. It is a figure explaining the structural example of another variable capacity apparatus. It is a figure explaining the example of composition of the variable capacity device concerning a 1st embodiment of the present invention. It is a figure explaining the operation
  • variable capacitance apparatus It is a figure explaining the other structural example of the variable capacitance apparatus which concerns on the 3rd Embodiment of this invention. It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 4th Embodiment of this invention. It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 5th Embodiment of this invention.
  • variable capacitance device A configuration example of a variable capacitance device according to an embodiment of the present invention will be described with reference to the drawings.
  • an orthogonal coordinate XYZ axis is attached, the thickness direction of the movable beam is the Z-axis direction, the principal axis direction is the X-axis direction, and the width direction is the Y-axis direction.
  • FIG. 3A is an XY plane plan view of the variable capacitance device 1 according to the first embodiment.
  • FIG. 3B is a cross-sectional view of the variable capacitance device 1 taken along the XZ plane.
  • FIG. 3C is a YZ plane cross-sectional view of the variable capacitance device 1.
  • the variable capacitance device 1 includes a support plate 2, a movable beam 3, an upper RF capacitive electrode 6, lower RF capacitive electrodes 4A and 4B, upper drive capacitive electrodes 7A and 7B, and lower drive capacitive electrodes 5A and 5B. And a dielectric film 8.
  • the support plate 2 is made of a rectangular glass substrate in plan view.
  • the movable beam 3 is made of a high-resistance silicon substrate (insulating material), and includes two connecting portions 3B, a movable portion 3C, a support portion 3A, and a ladder portion 3D, and is a substantially L-shaped piece as viewed from the XZ plane. It is a cantilever structure.
  • the support portion 3A is long in the Y-axis direction, has a columnar shape standing from the support plate 2 in the Z-axis direction, is provided at the X-axis negative direction end of the movable beam 3, and is connected to the connecting portion 3B.
  • the movable part 3 ⁇ / b> C is supported in a state of being separated from the support plate 2.
  • the movable portion 3C has a flat plate shape that is long in the X-axis direction when viewed from the XY plane, and is provided at the end portion of the movable beam 3 in the X-axis positive direction.
  • Each of the two connecting portions 3B has a meander line shape meandering with respect to the X-axis, and is erected in the X-axis direction from both ends of the Y-axis direction of the support portion 3A so as to extend between the support portion 3A and the movable portion 3C.
  • the support end of the movable beam 3 is supported as a rotation end instead of a fixed end.
  • the movable portion 3C is partitioned into three regions arranged in the Y-axis direction by two ladder portions 3D, and each region has a flat plate shape elongated in the X-axis direction.
  • the ladder portion 3D includes a plurality of openings arranged along the X axis.
  • the lower RF capacitive electrodes 4A and 4B and the lower drive capacitive electrodes 5A and 5B are line-shaped electrodes that are formed on the upper surface of the support plate 2 and are long in the X-axis direction.
  • Lower drive capacitance electrodes 5A and 5B are arranged on both sides of 4B in the Y-axis direction.
  • the upper RF capacitive electrode 6 and the upper drive capacitive electrodes 7A and 7B are line-shaped electrodes that are formed on the lower surface of the movable beam 3 and are long in the X-axis direction.
  • the upper RF capacitive electrode 6 is the lower RF capacitive electrode.
  • the upper drive capacitance electrodes 7A and 7B are provided so as to face the lower drive capacitance electrodes 5A and 5B.
  • the dielectric film 8 is made of tantalum pentoxide, and is laminated on the upper surface region of the support plate 2 so as to cover the lower RF capacitor electrodes 4A and 4B and the lower drive capacitor electrodes 5A and 5B.
  • the lower RF capacitive electrode 4A is connected to an RF signal input terminal (or output terminal), and the lower RF capacitive electrode 4B is connected to an RF signal output terminal (or input terminal).
  • the lower drive capacitance electrodes 5A and 5B are connected to a drive DC voltage terminal via a signal cut resistance element.
  • the upper drive capacitance electrodes 7A and 7B are connected to the ground GND through signal-cutting resistive elements.
  • the lower RF capacitive electrodes 4A and 4B constitute RF capacitive portions C1A and C1B together with the opposing regions of the upper RF capacitive electrode 6 and the dielectric film 8, respectively.
  • the lower drive capacitor electrodes 5A and 5B constitute drive capacitor portions C2A and C2B together with the opposing regions of the upper drive capacitor electrodes 7A and 7B and the dielectric film 8, respectively.
  • the drive capacitors C2A and C2B serve as drive capacitors that attract the movable beam 3 to the support plate 2 side by the electrostatic attractive force and bring the movable beam 3 into contact with the dielectric film 8 from the tip (end on the X axis positive direction side). Function.
  • the RF capacitors C1A and C1B are used in a high-frequency circuit of several hundred MHz to several GHz, and function as RF capacitors whose capacitance changes depending on the contact area between the movable beam 3 and the dielectric film 8. .
  • the variable capacitance device 1 of the present embodiment has a configuration in which the width dimension of the upper RF capacitance electrode 6 is locally reduced by making the end portion in the positive direction of the X axis into a step shape.
  • the electrode facing areas in the capacitor portions C1A and C1B are locally reduced at the end portion in the positive direction of the X axis, which is the movable end of the movable beam 3.
  • FIG. 4A is a diagram for explaining changes in the contact area of the movable beam 3 with the dielectric film 8 due to the driving DC voltage
  • FIG. 4B is a graph showing the RF capacitance-driving DC voltage characteristics of the variable capacitance device 1. It is a figure which shows an example.
  • the solid line in FIG. 4B shows the characteristics of the variable capacitance device 1, and the broken line in the figure shows the characteristics of the comparative configuration in which the width dimension of the upper RF capacitive electrode 6 is made uniform.
  • the movable beam is in a state of being separated from the dielectric film in the range of the driving DC voltage from zero to V O , and the RF capacitance hardly changes even when the driving DC voltage changes.
  • the driving DC voltage V O ready to tip of the movable beam is brought into line contact with the dielectric film, RF capacity is C O.
  • the tilt angle of the movable beam with respect to the support plate changes while the tip is in line contact with the dielectric film. Almost no change.
  • the driving DC is at the voltage V MIN
  • the tip of the movable beam is in surface contact with the dielectric film, and the RF capacitance is C MIN .
  • the contact area between the movable beam and the dielectric film changes linearly according to the drive DC voltage, and as shown in FIG. 4A, the drive DC voltage increases.
  • the contact area is increased, which increases the RF capacity.
  • the drive DC voltage is V MAX
  • the contact area between the movable beam and the dielectric film is almost maximized, and the RF capacitance is C MAX .
  • the contact area between the movable beam and the dielectric film remains almost maximized, and the RF capacitance hardly changes.
  • the width dimension of the upper RF capacitive electrode 6 is reduced as described above in the region where the movable beam and the dielectric film are in contact with each other when the drive DC voltage is V O or V MIN.
  • the RF capacitance C0 and the RF capacitance CMIN are smaller than in the comparative configuration. Therefore, the gradient of the change in the RF capacitance from the drive DC voltage from V MIN to V MAX is increased, and the variable ratio of the RF capacitance can be increased.
  • FIG. 5 is an XY plane plan view of another configuration example of the variable capacitance device 1.
  • the lower RF capacitive electrodes 4A and 4B and the lower drive capacitive electrodes 5A and 5B are not shown.
  • the variable capacitance devices 1A and 1B include upper RF capacitance electrodes 6A and 6B that are different in shape from the variable capacitance device 1 described above.
  • the upper RF capacitance electrode 6A is formed in a conical shape in the vicinity of the end in the positive direction of the X axis in plan view. As shown in FIG.
  • the upper RF capacitance electrode 6B is formed in a conical shape in plan view from the end in the positive direction of the X axis to the vicinity of the center. Even with these configurations, the RF capacitance C O and the RF capacitance C MIN can be reduced. In addition, the change in the RF capacitance C MIN from the surface contact state becomes continuous, and a smoother change in the RF capacitance can be realized.
  • FIG. 6 is an XY plane plan view of the variable capacitance devices 11A and 11B according to the second embodiment.
  • the variable capacitance devices 11A and 11B include an upper RF capacitance electrode 6 and upper drive capacitance electrodes 7A and 7B having the same shape or rectangular shape as those in the first embodiment.
  • Illustration of the drive capacity electrodes 7A and 7B is omitted.
  • the variable capacitance devices 11 ⁇ / b> A and 11 ⁇ / b> B include lower RF capacitance electrodes 14 ⁇ / b> A and 14 ⁇ / b> B that are different in shape from the variable capacitance device 1 described above. As shown in FIG.
  • the lower RF capacitance electrodes 14A and 14B are stepped in a region where the movable beam 3 faces the vicinity of the end in the positive direction of the X axis in plan view. Is formed.
  • the lower RF capacitance electrodes 14A and 14B have a conical shape when the area facing the end in the positive X-axis direction of the movable beam 3 is viewed in plan view. Is formed.
  • the minimum value of the RF capacitor when the movable beam is in contact with the dielectric film can be reduced. it can.
  • the shape of the lower RF capacitive electrode is conical, so that the capacitance change of the RF capacitance can be made continuous.
  • FIG. 7 is an XY plane plan view of the variable capacitance devices 21A and 21B according to the third embodiment of the present invention.
  • the variable capacitance devices 21A and 21B include an RF capacitance electrode and a drive capacitance electrode having the same shape or rectangular shape as those in the first or second embodiment. In the figure, the RF capacitance electrode and the drive capacitance electrode are illustrated. Is omitted.
  • the variable capacitance devices 21A and 21B include dielectric films 28A and 28B whose shapes are different from those of the above-described embodiment.
  • the dielectric films 28 ⁇ / b> A and 28 ⁇ / b> B have a configuration in which a plurality of grooves are provided in a region facing the X-axis positive direction end of the movable beam 3.
  • the dimension in the Y-axis direction of each groove may be longer for the groove on the tip side in the positive direction of the X axis and shorter for the groove on the negative side of the X axis.
  • FIG. 8 is a YZ plane sectional view showing another configuration example of the variable capacitance devices 21A and 21B according to the third embodiment of the present invention.
  • the depth in the Z-axis direction of the groove portion of the dielectric film described above may leave the dielectric film at the bottom of the groove portion as shown in FIG. 8A, as shown in FIG.
  • the lower RF capacitive electrodes 4A and 4B may be configured to be exposed at the bottom of the groove.
  • the minimum value of the RF capacity when the movable beam is in contact with the dielectric film can be reduced.
  • FIG. 9A is an XY plane plan view of the variable capacitance device 31 according to the fourth embodiment.
  • the variable capacitance device 31 includes a dielectric film 38 having a shape different from that of the above-described embodiment, and has a configuration in which a plurality of groove portions are provided in the dielectric film 38 not only in the RF capacitance portion but also in the drive capacitance portion.
  • FIG. 9B is a diagram showing the RF capacitance-drive DC voltage characteristics in the variable capacitance device 31. The broken line in the figure indicates the characteristic of the variable capacitance device 1 described above, and the solid line in the figure indicates the characteristic of the variable capacitance device 31.
  • the electrode facing area is reduced not only in the RF capacitor unit but also in the drive capacitor unit, and the minimum value of the RF capacitor when the movable beam is in contact with the dielectric film is reduced.
  • the correlation between the capacitance change of the drive capacitance and the capacitance change of the RF capacitance is increased, and the capacitance change in the vicinity of the RF capacitance CMIN when the movable beam comes into surface contact can be smoothed.
  • FIG. 10A is an XY plane plan view of the variable capacitance device 41 according to the fifth embodiment.
  • the variable capacitance device 41 is different from the above-described embodiment in that it includes a movable beam 43 having a doubly supported beam configuration.
  • the upper RF capacitance electrode 46 is arranged in the Y-axis direction. It has a step shape with reduced width. Even with such a configuration, it is possible to increase the variable ratio of the RF capacitance by reducing the RF capacitance in the region where the upper RF capacitive electrode first makes line contact or surface contact with the dielectric film. become.
  • the RF capacitance is reduced by changing the shape of the lower RF capacitive electrode and the dielectric film instead of the upper RF capacitive electrode as shown in the second to third embodiments. May be adopted.
  • FIG. 10B is an XY plane plan view of another configuration example of the variable capacitance device 41 according to the fifth embodiment.
  • This variable capacity device 41 has a configuration in which a meander-shaped connecting and fixing portion 43A is provided at the end of the movable beam in the X-axis positive direction, and the spring constant of the connecting and fixing portion 43A is the spring constant of the connecting portion 3B in the X-axis negative direction.
  • the movable beam 43 comes into contact with the dielectric film from the end in the positive direction of the X axis.
  • the movable beam comes into contact with the dielectric film not from the periphery of the central region of the movable beam but from the end in the positive direction of the X axis even in the double-supported beam structure.
  • FIG. 10C is an XY plane plan view of another configuration example of the variable capacitance device 41 according to the fifth embodiment.
  • the variable capacitance device 41 includes a connecting portion 43B having a high-rigidity beam-like portion extending along the X-axis and a low-rigidity meander-like portion, and the meander-like portion in the X-axis positive direction of the movable beam. It is the structure which connects to an edge part and connects a beam-shaped part to 3 A of support parts. Even in this configuration, the movable beam comes into contact with the dielectric film not from the central region of the movable beam but around the end in the positive direction of the X axis even in the case of the double-supported beam structure. By reducing the electrode facing area of the RF capacitor in the region around the end, it is possible to increase the variable ratio of the RF capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Abstract

Provided is a variable capacitance device in which the minimum RF capacitance when the movable beam is in contact with the dielectric film can be made smaller than was previously possible. The variable capacitance device (1) includes a support plate (2), a movable beam (3), drive capacitor sections (C2A, C2B), and RF capacitor sections (C1A, C1B). The movable beam (3) is cantilevered in parallel with the principal surface of the support plate (2). Each drive capacitor section (C2A, C2B), as well as each RF capacitor section (C1A, C1B), is made up of: a pair of drive capacitor electrodes, or a pair of RF capacitor electrodes, that are provided so as to respectively face the movable beam (3) and the support plate (2) lengthwise along the direction of the principal axis of the movable beam (3); and a dielectric film (8) provided between the electrodes. Each RF capacitor section (C1A, C1B) has a structure in which the area defined by the pair of RF capacitor electrodes opposing one another across the dielectric film (8) is locally reduced in the periphery of the movable end of the movable beam (3).

Description

可変容量装置Variable capacity device
 この発明は、静電力により駆動するMEMSを用いてRF(Radio Frequency)容量を変えることができる可変容量装置に関するものである。 The present invention relates to a variable capacity device capable of changing an RF (Radio Frequency) capacity using a MEMS driven by an electrostatic force.
 近年、可変容量装置に静電力により駆動するMEMSが利用されることがある(特許文献1,2参照。)。 In recent years, MEMS driven by electrostatic force is sometimes used for variable capacitance devices (see Patent Documents 1 and 2).
 図1は、従来の可変容量装置の構成例を説明する図である。
 可変容量装置101は、可動板102,103を備える。可動板102,103はそれぞれ両持ち梁構造であり、導電性材料からなる。可動板102と可動板103とは、互いに間隔を隔てて配置されている。可動板103は、可動板102との対向面が凸形状であり、誘電体層104を表面に備える。可動板102,103間に駆動DC電圧を印加することで生じる駆動容量によって、可動板102,103間の間隔が狭まって可動板103の凸形状先端領域から可動板102に誘電体層104を介して接触し、接触面積に応じて可変容量装置101のRF容量が変わる。
FIG. 1 is a diagram illustrating a configuration example of a conventional variable capacitance device.
The variable capacity device 101 includes movable plates 102 and 103. The movable plates 102 and 103 each have a doubly supported beam structure and are made of a conductive material. The movable plate 102 and the movable plate 103 are spaced apart from each other. The movable plate 103 has a convex surface facing the movable plate 102 and includes a dielectric layer 104 on the surface. The distance between the movable plates 102 and 103 is narrowed by the driving capacity generated by applying the driving DC voltage between the movable plates 102 and 103, and the dielectric layer 104 is passed from the convex tip region of the movable plate 103 to the movable plate 102. The RF capacity of the variable capacitance device 101 changes according to the contact area.
特開2006-210843号公報Japanese Patent Laid-Open No. 2006-210843 特開2008-182134号公報JP 2008-182134 A
 従来の可変容量装置では、駆動DC電圧とRF信号とが共通する電極に印加されるため、直流成分と交流成分とを分離するための抵抗やコンデンサが駆動回路に必要であった。抵抗やコンデンサの挿入によって回路構成の複雑化と挿入損失の増大が引き起こされるため、本願出願人はそのような抵抗やコンデンサが不要な可変容量装置の開発を行っている。図2(A)はその可変容量装置201の構成例を示す平面図であり、図2(B)はその側面断面図である。
 可変容量装置201は、支持板202と可動梁203とを備える。可動梁203は、支持板202に対して平行に支持される片持ち梁構造である。支持板202には、可動梁203の主軸方向に沿う直線線路状の電極204が平行に2つ設けられているとともに、コの字線路状の電極205が支持板202の両端部の間に電極204を挟むように設けられており、さらに、電極204および電極205それぞれを覆うように誘電体膜208A,208Bが設けられている。また、可動梁203には、2つの電極204に対向する1つの矩形状の電極206(図2(B)に図示する。)と、電極205に対向するコの字線路状の電極207(図2(B)に図示する。)とが設けられている。電極204と電極206とは、誘電体膜208Aを介して対向してRF容量部として機能し、電極205と電極207とは、誘電体膜208Bを介して対向して駆動容量部として機能する。駆動容量部は駆動DC電圧が印加されることで生じる駆動容量によって、静電引力で可動梁203を変形させる。RF容量部は、電極204を高周波回路に接続することによって、容量を変えることができるRF容量として利用される。このように可変容量装置201は、駆動DC電圧が印加される電極205,207と、RF信号が印加される電極204,206とを構造的に分離した構成である。
In the conventional variable capacitance device, since the driving DC voltage and the RF signal are applied to the common electrode, a resistor and a capacitor for separating the direct current component and the alternating current component are required for the driving circuit. Since insertion of a resistor or a capacitor causes a complicated circuit configuration and an increase in insertion loss, the applicant of the present application has developed a variable capacitance device that does not require such a resistor or capacitor. 2A is a plan view showing a configuration example of the variable capacitance device 201, and FIG. 2B is a side sectional view thereof.
The variable capacity device 201 includes a support plate 202 and a movable beam 203. The movable beam 203 has a cantilever structure that is supported in parallel to the support plate 202. The support plate 202 is provided with two linear line-shaped electrodes 204 in parallel along the main axis direction of the movable beam 203, and the U-shaped line-shaped electrodes 205 are disposed between both ends of the support plate 202. In addition, dielectric films 208A and 208B are provided so as to cover the electrodes 204 and 205, respectively. In addition, the movable beam 203 includes one rectangular electrode 206 (shown in FIG. 2B) facing the two electrodes 204 and a U-shaped electrode 207 facing the electrode 205 (see FIG. 2B). 2 (B).). The electrode 204 and the electrode 206 are opposed to each other via the dielectric film 208A and function as an RF capacitor portion, and the electrode 205 and the electrode 207 are opposed to each other via the dielectric film 208B and function as a drive capacitor portion. The drive capacity unit deforms the movable beam 203 by electrostatic attraction by a drive capacity generated by applying a drive DC voltage. The RF capacitor unit is used as an RF capacitor whose capacitance can be changed by connecting the electrode 204 to a high frequency circuit. As described above, the variable capacitance device 201 has a structure in which the electrodes 205 and 207 to which the driving DC voltage is applied and the electrodes 204 and 206 to which the RF signal is applied are structurally separated.
 図2(C)は、上述のような構成の可変容量装置における駆動DC電圧-RF容量特性の典型例を示す図である。
 駆動DC電圧がゼロからVまでの範囲では、可動梁は誘電体膜から離間した状態であり駆動DC電圧が変化してもRF容量は殆ど変化しない。駆動DC電圧がVでは、可動梁の先端が誘電体膜に線接触する状態になり、RF容量がCとなる。駆動DC電圧がVからVMINまでの範囲では、可動梁は先端が誘電体膜に線接触する状態で支持板に対する傾斜角が変化し、その間は駆動DC電圧が変化してもRF容量は殆ど変化しない。駆動DC電圧がVMINでは、可動梁の先端が誘電体膜に面接触する状態になり、RF容量がCMINとなる。駆動DC電圧がVMINからVMAXまでの範囲では、可動梁と誘電体膜との接触面積が駆動DC電圧に応じて線形変化し、駆動DC電圧の増加につれてRF容量が増加する。駆動DC電圧VMAXでは、可動梁と誘電体膜との接触面積がほぼ最大化した状態になり、RF容量がCMAXとなる。駆動DC電圧がVMAXを超えても、可動梁と誘電体膜との接触面積はほぼ最大化した状態のままであり、RF容量は殆ど変化しなくなる。
FIG. 2C is a diagram showing a typical example of driving DC voltage-RF capacitance characteristics in the variable capacitance device having the above-described configuration.
When the driving DC voltage is in the range from zero to V O , the movable beam is in a state of being separated from the dielectric film, and the RF capacitance hardly changes even if the driving DC voltage changes. The driving DC voltage V O, ready to tip of the movable beam is brought into line contact with the dielectric film, RF capacity is C O. In the range of the driving DC voltage from V O to V MIN , the tilt angle of the movable beam with respect to the support plate changes while the tip is in line contact with the dielectric film. Almost no change. When the driving DC voltage is V MIN , the tip of the movable beam is in surface contact with the dielectric film, and the RF capacitance is C MIN . When the drive DC voltage is in the range from V MIN to V MAX , the contact area between the movable beam and the dielectric film changes linearly according to the drive DC voltage, and the RF capacity increases as the drive DC voltage increases. At the drive DC voltage V MAX , the contact area between the movable beam and the dielectric film is almost maximized, and the RF capacitance is C MAX . Even when the drive DC voltage exceeds V MAX , the contact area between the movable beam and the dielectric film remains almost maximized, and the RF capacitance hardly changes.
 可変容量装置ではRF容量の可変比が大きいほうが望ましいため、可動梁の先端が誘電体膜に面接触する状態でのRF容量であるCMINはより小さいことが望まれ、可動梁と誘電体膜との接触面積が最大化する状態でのRF容量であるCMAXはより大きいことが望まれる。RF容量CMAXについては、RF容量部となる電極の線路長を伸長することで大きなものに設定することができるが、RF容量CMINについては、RF容量部となる電極の線路長によっては設定することができなかった。 In the variable capacitance device, it is desirable that the variable ratio of the RF capacitance is large. Therefore, it is desired that the CMIN, which is the RF capacitance in a state where the tip of the movable beam is in surface contact with the dielectric film, is smaller. It is desirable that C MAX, which is the RF capacity in a state where the contact area with maximizes, is larger. The RF capacitor C MAX can be set to a large one by extending the line length of the electrode serving as the RF capacitor portion. The RF capacitor C MIN is set depending on the line length of the electrode serving as the RF capacitor portion. I couldn't.
 そこで本発明の目的は、可動梁が誘電体膜に面接触する状態でのRF容量の最小値を従来よりも小さくすることができる可変容量装置を提供することにある。 Therefore, an object of the present invention is to provide a variable capacitance device capable of making the minimum value of the RF capacitance in a state where the movable beam is in surface contact with the dielectric film smaller than that of the conventional one.
 この発明の可変容量装置は、支持板と可動梁と駆動容量部とRF容量部とを備える。可動梁は支持板の主面に平行に支持される。駆動容量部は、可動梁の主軸方向に沿って長尺に可動梁と支持板とに互いに対向して設けられる一対の駆動容量電極と、駆動容量電極の少なくとも一方に積層される誘電体膜とからなる。駆動容量部は、一対の駆動容量電極の間に生じる駆動容量に基づいて可動梁を変形させる。RF容量部は、可動梁の主軸方向に沿って長尺に可動梁と支持板とに互いに対向して設けられる一対のRF容量電極と、RF容量電極の少なくとも一方に積層される誘電体膜とからなる。RF容量部は、一対のRF容量電極の間に生じるRF容量を介してRF信号を伝搬させる。このような可変容量装置において、RF容量部は、誘電体膜を介して一対のRF容量電極が対向する面積である電極対向面積を、可動梁における変形量が最大となる位置周辺で局所的に低減した構成である。
 この構成では、可動梁における変形量が最大となる位置周辺で、誘電体膜を介して一対のRF容量電極が対向する面積である電極対向面積を局所的に低減することで、可動梁が誘電体膜に接触した状態で生じるRF容量の最小値を小さくすることができる。
The variable capacitance device of the present invention includes a support plate, a movable beam, a drive capacitance portion, and an RF capacitance portion. The movable beam is supported in parallel with the main surface of the support plate. The drive capacitor unit includes a pair of drive capacitor electrodes provided to be opposed to each other on the movable beam and the support plate along the main axis direction of the movable beam, and a dielectric film laminated on at least one of the drive capacitor electrodes, Consists of. The drive capacity unit deforms the movable beam based on the drive capacity generated between the pair of drive capacity electrodes. The RF capacitor unit includes a pair of RF capacitor electrodes provided in a long manner along the main axis direction of the movable beam so as to face the movable beam and the support plate, and a dielectric film laminated on at least one of the RF capacitor electrodes; Consists of. The RF capacitor unit propagates an RF signal through an RF capacitor generated between a pair of RF capacitor electrodes. In such a variable capacitance device, the RF capacitance section has an electrode facing area, which is an area where a pair of RF capacitance electrodes face each other via a dielectric film, locally around a position where the amount of deformation in the movable beam is maximized. The configuration is reduced.
In this configuration, the area where the pair of RF capacitive electrodes are opposed to each other through the dielectric film is locally reduced around the position where the amount of deformation in the movable beam is maximized, so that the movable beam becomes dielectric. The minimum value of the RF capacity generated in contact with the body membrane can be reduced.
 この発明の駆動容量部は、可動梁における変形量が最大となる位置周辺で誘電体膜を介して一対の駆動容量電極が対向する面積である電極対向面積を局所的に低減した構成であると好適である。
 この構成では、RF容量と同様に、可動梁が誘電体膜に接触した状態で生じる駆動容量の最小値を小さくすることができる。これにより、駆動容量の容量変化とRF容量の容量変化との相関性が高まり、駆動DC電圧によるRF容量の制御を精緻に行うことが容易になる。
The drive capacitor section of the present invention has a configuration in which the electrode facing area, which is an area where the pair of drive capacitor electrodes face each other through a dielectric film, is locally reduced around the position where the amount of deformation in the movable beam is maximized. Is preferred.
In this configuration, the minimum value of the drive capacity generated when the movable beam is in contact with the dielectric film can be reduced as in the case of the RF capacity. As a result, the correlation between the capacitance change of the drive capacitance and the capacitance change of the RF capacitance increases, and it becomes easy to precisely control the RF capacitance by the drive DC voltage.
 この発明の可変容量装置は、RF容量部を構成する支持板側のRF容量電極における幅方向の寸法が、可動梁における変形量が最大となる位置周辺で局所的に狭いと好適である。また、誘電体膜における単位面積当たり密度が、可動梁における変形量が最大となる位置周辺で局所的に小さいと好適である。また、RF容量部を構成する可動梁側のRF容量電極における幅方向の寸法が、可動梁における変形量が最大となる位置周辺で局所的に狭いと好適である。 In the variable capacitance device of the present invention, it is preferable that the dimension in the width direction of the RF capacitance electrode on the support plate side constituting the RF capacitance portion is locally narrow around the position where the amount of deformation in the movable beam is maximized. Further, it is preferable that the density per unit area in the dielectric film is locally small around the position where the deformation amount in the movable beam is maximized. In addition, it is preferable that the dimension in the width direction of the RF capacitive electrode on the movable beam side constituting the RF capacitive portion is locally narrow around the position where the deformation amount in the movable beam is maximized.
 この発明の可動梁は、主軸方向の一端で支持板に支持される片持ち梁構造であってもよく、主軸方向の両端で支持板に支持される両持ち梁構造であってもよい。 The movable beam of the present invention may have a cantilever structure supported by a support plate at one end in the main axis direction, or a double-supported beam structure supported by a support plate at both ends in the main axis direction.
 この発明によれば、片持ち梁構造または両持ち梁構造の可動梁において変形量が最大となる位置が最初に誘電体膜に接触するので、この位置での電極対向面積を局所的に小さくすることにより、可動梁が誘電体膜に接触した状態で生じるRF容量の最小値を小さくすることができる。これにより、可変容量装置におけるRF容量の可変比を大きくすることが可能になる。 According to the present invention, since the position where the amount of deformation is maximum first contacts the dielectric film in the movable beam having the cantilever structure or the double-supported structure, the electrode facing area at this position is locally reduced. As a result, the minimum value of the RF capacitance generated when the movable beam is in contact with the dielectric film can be reduced. This makes it possible to increase the variable ratio of the RF capacitance in the variable capacitance device.
従来の可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the conventional variable capacitance apparatus. 他の可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of another variable capacity apparatus. 本発明の第1の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the example of composition of the variable capacity device concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る可変容量装置の駆動時の動作を説明する図である。It is a figure explaining the operation | movement at the time of the drive of the variable capacitance apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る可変容量装置の他の構成例を説明する図である。It is a figure explaining the other structural example of the variable capacitance apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る可変容量装置の他の構成例を説明する図である。It is a figure explaining the other structural example of the variable capacitance apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 5th Embodiment of this invention.
 本発明の実施形態に係る可変容量装置の構成例について、図を参照して説明する。なお、各図には直交座標形のX-Y-Z軸を付し、可動梁の厚み方向をZ軸方向、主軸方向をX軸方向、幅方向をY軸方向とする。 A configuration example of a variable capacitance device according to an embodiment of the present invention will be described with reference to the drawings. In each figure, an orthogonal coordinate XYZ axis is attached, the thickness direction of the movable beam is the Z-axis direction, the principal axis direction is the X-axis direction, and the width direction is the Y-axis direction.
《第1の実施形態》
 図3(A)は、第1の実施形態に係る可変容量装置1のX-Y面平面図である。図3(B)は、可変容量装置1のX-Z面断面図である。図3(C)は、可変容量装置1のY-Z面断面図である。
<< First Embodiment >>
FIG. 3A is an XY plane plan view of the variable capacitance device 1 according to the first embodiment. FIG. 3B is a cross-sectional view of the variable capacitance device 1 taken along the XZ plane. FIG. 3C is a YZ plane cross-sectional view of the variable capacitance device 1.
 可変容量装置1は、支持板2と、可動梁3と、上側RF容量電極6と、下側RF容量電極4A,4Bと、上側駆動容量電極7A,7Bと、下側駆動容量電極5A,5Bと、誘電体膜8とを備える。
 支持板2は、平面視して矩形状のガラス基板からなる。
 可動梁3は高抵抗シリコン基板(絶縁材料)からなり、2本の連結部3Bと可動部3Cと支持部3Aとラダー部3Dとを備え、X-Z面を視て略L字状の片持ち梁構造である。支持部3Aは、Y軸方向に長尺であって、支持板2からZ軸方向に立設する柱状であり、可動梁3のX軸負方向端部に設けられていて、連結部3Bと可動部3Cとを支持板2から離間した状態で支持する。可動部3Cは、X-Y面を視てX軸方向に長尺な平板状であり、可動梁3のX軸正方向端部に設けられている。2本の連結部3Bは、それぞれX軸に対して蛇行するミアンダライン状であり、支持部3AのY軸方向両端からX軸方向に立設して支持部3Aと可動部3Cとの間を接続し、可動梁3の支持端を固定端ではなく回転端として支持する。
 可動部3Cは、2本のラダー部3DによってY軸方向に並ぶ3つの領域に区画されていて、各領域はX軸方向に長尺な平板状となっている。ラダー部3Dは、X軸に沿って配列される複数の開口部を備える。
The variable capacitance device 1 includes a support plate 2, a movable beam 3, an upper RF capacitive electrode 6, lower RF capacitive electrodes 4A and 4B, upper drive capacitive electrodes 7A and 7B, and lower drive capacitive electrodes 5A and 5B. And a dielectric film 8.
The support plate 2 is made of a rectangular glass substrate in plan view.
The movable beam 3 is made of a high-resistance silicon substrate (insulating material), and includes two connecting portions 3B, a movable portion 3C, a support portion 3A, and a ladder portion 3D, and is a substantially L-shaped piece as viewed from the XZ plane. It is a cantilever structure. The support portion 3A is long in the Y-axis direction, has a columnar shape standing from the support plate 2 in the Z-axis direction, is provided at the X-axis negative direction end of the movable beam 3, and is connected to the connecting portion 3B. The movable part 3 </ b> C is supported in a state of being separated from the support plate 2. The movable portion 3C has a flat plate shape that is long in the X-axis direction when viewed from the XY plane, and is provided at the end portion of the movable beam 3 in the X-axis positive direction. Each of the two connecting portions 3B has a meander line shape meandering with respect to the X-axis, and is erected in the X-axis direction from both ends of the Y-axis direction of the support portion 3A so as to extend between the support portion 3A and the movable portion 3C. The support end of the movable beam 3 is supported as a rotation end instead of a fixed end.
The movable portion 3C is partitioned into three regions arranged in the Y-axis direction by two ladder portions 3D, and each region has a flat plate shape elongated in the X-axis direction. The ladder portion 3D includes a plurality of openings arranged along the X axis.
 下側RF容量電極4A,4Bと下側駆動容量電極5A,5Bとは、それぞれ支持板2の上面に形成されたX軸方向に長尺な線路状電極であり、下側RF容量電極4A,4BのY軸方向の両脇に下側駆動容量電極5A,5Bが配置されている。上側RF容量電極6と上側駆動容量電極7A,7Bとは、それぞれ可動梁3の下面に形成されたX軸方向に長尺な線路状電極であり、上側RF容量電極6は下側RF容量電極4A,4Bに対向するように設けられており、上側駆動容量電極7A,7Bは下側駆動容量電極5A,5Bに対向するように設けられている。誘電体膜8は、五酸化タンタルからなり、下側RF容量電極4A,4Bと下側駆動容量電極5A,5Bとを覆うように、支持板2の上面領域に積層されている。下側RF容量電極4AはRF信号の入力端子(または出力端子)に接続され、下側RF容量電極4BはRF信号の出力端子(または入力端子)に接続されている。下側駆動容量電極5A,5Bは、信号カット用の抵抗素子を介して駆動DC電圧端子に接続されている。上側駆動容量電極7A,7Bは、信号カット用の抵抗素子を介してグランドGNDに接続されている。
 このため、下側RF容量電極4A,4Bは、それぞれ上側RF容量電極6および誘電体膜8の対向する領域とともにRF容量部C1A,C1Bを構成している。下側駆動容量電極5A,5Bは、それぞれ上側駆動容量電極7A,7Bおよび誘電体膜8の対向する領域とともに駆動容量部C2A,C2Bを構成している。
The lower RF capacitive electrodes 4A and 4B and the lower drive capacitive electrodes 5A and 5B are line-shaped electrodes that are formed on the upper surface of the support plate 2 and are long in the X-axis direction. Lower drive capacitance electrodes 5A and 5B are arranged on both sides of 4B in the Y-axis direction. The upper RF capacitive electrode 6 and the upper drive capacitive electrodes 7A and 7B are line-shaped electrodes that are formed on the lower surface of the movable beam 3 and are long in the X-axis direction. The upper RF capacitive electrode 6 is the lower RF capacitive electrode. The upper drive capacitance electrodes 7A and 7B are provided so as to face the lower drive capacitance electrodes 5A and 5B. The dielectric film 8 is made of tantalum pentoxide, and is laminated on the upper surface region of the support plate 2 so as to cover the lower RF capacitor electrodes 4A and 4B and the lower drive capacitor electrodes 5A and 5B. The lower RF capacitive electrode 4A is connected to an RF signal input terminal (or output terminal), and the lower RF capacitive electrode 4B is connected to an RF signal output terminal (or input terminal). The lower drive capacitance electrodes 5A and 5B are connected to a drive DC voltage terminal via a signal cut resistance element. The upper drive capacitance electrodes 7A and 7B are connected to the ground GND through signal-cutting resistive elements.
For this reason, the lower RF capacitive electrodes 4A and 4B constitute RF capacitive portions C1A and C1B together with the opposing regions of the upper RF capacitive electrode 6 and the dielectric film 8, respectively. The lower drive capacitor electrodes 5A and 5B constitute drive capacitor portions C2A and C2B together with the opposing regions of the upper drive capacitor electrodes 7A and 7B and the dielectric film 8, respectively.
 駆動容量部C2A,C2Bは、その静電引力により可動梁3を支持板2側に引き付け、可動梁3を先端(X軸正方向側の端部)から誘電体膜8に接触させる駆動容量として機能する。駆動DC電圧が高電圧であるほど、可動梁3と誘電体膜8との接触面積は大きくなる。
 RF容量部C1A,C1Bは、数百MHz~数GHzの高周波回路の中で使用され、可動梁3と誘電体膜8との接触面積に応じて容量の大きさが変化するRF容量として機能する。
The drive capacitors C2A and C2B serve as drive capacitors that attract the movable beam 3 to the support plate 2 side by the electrostatic attractive force and bring the movable beam 3 into contact with the dielectric film 8 from the tip (end on the X axis positive direction side). Function. The higher the driving DC voltage is, the larger the contact area between the movable beam 3 and the dielectric film 8 is.
The RF capacitors C1A and C1B are used in a high-frequency circuit of several hundred MHz to several GHz, and function as RF capacitors whose capacitance changes depending on the contact area between the movable beam 3 and the dielectric film 8. .
 本実施形態の可変容量装置1においては、前述の上側RF容量電極6における幅寸法を、X軸正方向の端部を段形状にすることで局所的に低減した構成であり、これにより、RF容量部C1A,C1Bにおける電極対向面積を、可動梁3の可動端であるX軸正方向の端部で局所的に低減している。このような構成とすることにより、上側RF容量電極6が誘電体膜8に線接触または面接触する際のRF容量を低減できる。 The variable capacitance device 1 of the present embodiment has a configuration in which the width dimension of the upper RF capacitance electrode 6 is locally reduced by making the end portion in the positive direction of the X axis into a step shape. The electrode facing areas in the capacitor portions C1A and C1B are locally reduced at the end portion in the positive direction of the X axis, which is the movable end of the movable beam 3. With this configuration, it is possible to reduce the RF capacitance when the upper RF capacitive electrode 6 is in line contact or surface contact with the dielectric film 8.
 図4(A)は可動梁3における誘電体膜8との接触面積の駆動DC電圧による変化を説明する図であり、図4(B)は可変容量装置1におけるRF容量-駆動DC電圧特性の一例を示す図である。 FIG. 4A is a diagram for explaining changes in the contact area of the movable beam 3 with the dielectric film 8 due to the driving DC voltage, and FIG. 4B is a graph showing the RF capacitance-driving DC voltage characteristics of the variable capacitance device 1. It is a figure which shows an example.
図4(B)中の実線が可変容量装置1での特性を示し、図中の破線は上側RF容量電極6の幅寸法を一様にした比較構成での特性を示している。 The solid line in FIG. 4B shows the characteristics of the variable capacitance device 1, and the broken line in the figure shows the characteristics of the comparative configuration in which the width dimension of the upper RF capacitive electrode 6 is made uniform.
 本構成および比較構成はいずれも、駆動DC電圧がゼロからVまでの範囲では、可動梁は誘電体膜から離間した状態であり、駆動DC電圧が変化してもRF容量は殆ど変化しない。駆動DC電圧がVでは、可動梁の先端が誘電体膜に線接触する状態になり、RF容量がCとなる。駆動DC電圧がVからVMINまでの範囲では、可動梁は先端が誘電体膜に線接触する状態で支持板に対する傾斜角が変化し、その間は駆動DC電圧が変化してもRF容量は殆ど変化しない。駆動DCが電圧VMINでは、可動梁の先端が誘電体膜に面接触する状態になり、RF容量がCMINとなる。駆動DC電圧がVMINからVMAXまでの範囲では、可動梁と誘電体膜との接触面積が駆動DC電圧に応じて線形変化し、図4(A)に示すように駆動DC電圧の増加につれて接触面積が増大し、これによりRF容量が増加する。駆動DC電圧がVMAXでは、可動梁と誘電体膜との接触面積がほぼ最大化した状態になり、RF容量がCMAXとなる。駆動DC電圧がVMAXを超えても、可動梁と誘電体膜との接触面積はほぼ最大化した状態のままであり、RF容量は殆ど変化しなくなる。 In both this configuration and the comparison configuration, the movable beam is in a state of being separated from the dielectric film in the range of the driving DC voltage from zero to V O , and the RF capacitance hardly changes even when the driving DC voltage changes. The driving DC voltage V O, ready to tip of the movable beam is brought into line contact with the dielectric film, RF capacity is C O. In the range of the driving DC voltage from V O to V MIN , the tilt angle of the movable beam with respect to the support plate changes while the tip is in line contact with the dielectric film. Almost no change. When the driving DC is at the voltage V MIN , the tip of the movable beam is in surface contact with the dielectric film, and the RF capacitance is C MIN . When the drive DC voltage is in the range from V MIN to V MAX , the contact area between the movable beam and the dielectric film changes linearly according to the drive DC voltage, and as shown in FIG. 4A, the drive DC voltage increases. The contact area is increased, which increases the RF capacity. When the drive DC voltage is V MAX , the contact area between the movable beam and the dielectric film is almost maximized, and the RF capacitance is C MAX . Even when the drive DC voltage exceeds V MAX , the contact area between the movable beam and the dielectric film remains almost maximized, and the RF capacitance hardly changes.
 本構成では、駆動DC電圧がV又はVMINの状態で可動梁と誘電体膜とが接触する領域において、前述のように上側RF容量電極6の幅寸法が低減されているため、本構成でのRF容量CおよびRF容量CMINは比較構成よりも小さくなる。そのため、駆動DC電圧がVMINからVMAXまでのRF容量の変化の傾きが大きくなり、RF容量の可変比を大きくすることが可能になる。 In this configuration, the width dimension of the upper RF capacitive electrode 6 is reduced as described above in the region where the movable beam and the dielectric film are in contact with each other when the drive DC voltage is V O or V MIN. The RF capacitance C0 and the RF capacitance CMIN are smaller than in the comparative configuration. Therefore, the gradient of the change in the RF capacitance from the drive DC voltage from V MIN to V MAX is increased, and the variable ratio of the RF capacitance can be increased.
 次に、第1の実施形態に係る可変容量装置の他の構成例を説明する。図5は、可変容量装置1の他の構成例のX-Y面平面図である。なお、同図中では下側RF容量電極4A,4Bと下側駆動容量電極5A,5Bとの図示を省いている。
 この可変容量装置1A,1Bは、前述の可変容量装置1とは形状が相違する上側RF容量電極6A,6Bを備える。図5(A)に示すように、可変容量装置1Aでは、上側RF容量電極6Aは、X軸正方向の端部近傍が平面視して錐状に形成されている。図5(B)に示すように、可変容量装置1Bでは、上側RF容量電極6Bは、X軸正方向の端部から中央部付近まで平面視して錐状に形成されている。これらの構成でもRF容量CおよびRF容量CMINを小さくすることができる。その上、面接触する状態からのRF容量CMINの変化が連続的になり、より滑らかなRF容量の変化を実現することが可能になる。
Next, another configuration example of the variable capacitance device according to the first embodiment will be described. FIG. 5 is an XY plane plan view of another configuration example of the variable capacitance device 1. In the figure, the lower RF capacitive electrodes 4A and 4B and the lower drive capacitive electrodes 5A and 5B are not shown.
The variable capacitance devices 1A and 1B include upper RF capacitance electrodes 6A and 6B that are different in shape from the variable capacitance device 1 described above. As shown in FIG. 5A, in the variable capacitance device 1A, the upper RF capacitance electrode 6A is formed in a conical shape in the vicinity of the end in the positive direction of the X axis in plan view. As shown in FIG. 5B, in the variable capacitance device 1B, the upper RF capacitance electrode 6B is formed in a conical shape in plan view from the end in the positive direction of the X axis to the vicinity of the center. Even with these configurations, the RF capacitance C O and the RF capacitance C MIN can be reduced. In addition, the change in the RF capacitance C MIN from the surface contact state becomes continuous, and a smoother change in the RF capacitance can be realized.
《第2の実施形態》
 図6は、第2の実施形態に係る可変容量装置11A,11BのX-Y面平面図である。なお、可変容量装置11A,11Bは第1の実施形態と同形状または矩形状の上側RF容量電極6と上側駆動容量電極7A,7Bとを備えるが、同図中では上側RF容量電極6と上側駆動容量電極7A,7Bとの図示を省いている。
 可変容量装置11A,11Bは、前述の可変容量装置1とは形状が相違する下側RF容量電極14A,14Bを備える。図6(A)に示すように、可変容量装置11Aでは、下側RF容量電極14A,14Bは、可動梁3におけるX軸正方向の端部近傍と対面する領域が平面視して段状に形成されている。図6(B)に示すように、可変容量装置11Bでは、下側RF容量電極14A,14Bは、可動梁3におけるX軸正方向の端部近傍と対面する領域が平面視して錐状に形成されている。
 これらの構成のように、下側RF容量電極の形状によってRF容量部の電極対向面積を低減しても、可動梁が誘電体膜に接触する状態でのRF容量の最小値を小さくすることができる。そして、上側RF容量電極の場合と同様に下側RF容量電極の形状を錐状にすることで、RF容量の容量変化を連続的にすることができる。
<< Second Embodiment >>
FIG. 6 is an XY plane plan view of the variable capacitance devices 11A and 11B according to the second embodiment. The variable capacitance devices 11A and 11B include an upper RF capacitance electrode 6 and upper drive capacitance electrodes 7A and 7B having the same shape or rectangular shape as those in the first embodiment. In FIG. Illustration of the drive capacity electrodes 7A and 7B is omitted.
The variable capacitance devices 11 </ b> A and 11 </ b> B include lower RF capacitance electrodes 14 </ b> A and 14 </ b> B that are different in shape from the variable capacitance device 1 described above. As shown in FIG. 6A, in the variable capacitance device 11A, the lower RF capacitance electrodes 14A and 14B are stepped in a region where the movable beam 3 faces the vicinity of the end in the positive direction of the X axis in plan view. Is formed. As shown in FIG. 6 (B), in the variable capacitance device 11B, the lower RF capacitance electrodes 14A and 14B have a conical shape when the area facing the end in the positive X-axis direction of the movable beam 3 is viewed in plan view. Is formed.
As in these configurations, even if the electrode facing area of the RF capacitor portion is reduced due to the shape of the lower RF capacitor electrode, the minimum value of the RF capacitor when the movable beam is in contact with the dielectric film can be reduced. it can. Then, similarly to the case of the upper RF capacitive electrode, the shape of the lower RF capacitive electrode is conical, so that the capacitance change of the RF capacitance can be made continuous.
《第3の実施形態》
 図7は、本発明の第3の実施形態に係る可変容量装置21A,21BのX-Y面平面図である。なお、可変容量装置21A,21Bは第1または第2の実施形態と同形状または矩形状のRF容量電極と駆動容量電極とを備えるが、同図中ではRF容量電極と駆動容量電極との図示を省いている。
 可変容量装置21A,21Bは、前述の実施形態とは形状が相違する誘電体膜28A,28Bを備える。誘電体膜28A,28Bは、可動梁3のX軸正方向端部と対向する領域に複数の溝部を設けた構成である。なお誘電体膜28Bのように、各溝部のY軸方向の寸法を、X軸正方向先端側の溝部ほど長く、X軸負方向側の溝部ほど短く構成してもよい。
<< Third Embodiment >>
FIG. 7 is an XY plane plan view of the variable capacitance devices 21A and 21B according to the third embodiment of the present invention. The variable capacitance devices 21A and 21B include an RF capacitance electrode and a drive capacitance electrode having the same shape or rectangular shape as those in the first or second embodiment. In the figure, the RF capacitance electrode and the drive capacitance electrode are illustrated. Is omitted.
The variable capacitance devices 21A and 21B include dielectric films 28A and 28B whose shapes are different from those of the above-described embodiment. The dielectric films 28 </ b> A and 28 </ b> B have a configuration in which a plurality of grooves are provided in a region facing the X-axis positive direction end of the movable beam 3. As in the dielectric film 28B, the dimension in the Y-axis direction of each groove may be longer for the groove on the tip side in the positive direction of the X axis and shorter for the groove on the negative side of the X axis.
 図8は、本発明の第3の実施形態に係る可変容量装置21A,21Bの他の構成例を示すY-Z面断面図である。前述の誘電体膜の溝部のZ軸方向の深さは、図8(A)に示すように、溝部の底部分に誘電体膜を残すようにしてもよく、図8(B)に示すように、溝部の底部分に下側RF容量電極4A,4Bが露出するように構成してもよい。
 これらの構成のように、誘電体膜の形状によってRF容量部の電極対向面積を低減しても、可動梁が誘電体膜に接触する状態でのRF容量の最小値を低減することができる。いずれの構成であっても、可動梁の先端ほどRF容量が小さくなるように勾配をつけることで、RF容量の容量変化を連続的にすることが可能になる。
FIG. 8 is a YZ plane sectional view showing another configuration example of the variable capacitance devices 21A and 21B according to the third embodiment of the present invention. The depth in the Z-axis direction of the groove portion of the dielectric film described above may leave the dielectric film at the bottom of the groove portion as shown in FIG. 8A, as shown in FIG. In addition, the lower RF capacitive electrodes 4A and 4B may be configured to be exposed at the bottom of the groove.
As in these configurations, even if the electrode facing area of the RF capacitor portion is reduced depending on the shape of the dielectric film, the minimum value of the RF capacity when the movable beam is in contact with the dielectric film can be reduced. In any configuration, it is possible to continuously change the capacitance of the RF capacitance by providing a gradient so that the RF capacitance becomes smaller at the tip of the movable beam.
《第4の実施形態》
 図9(A)は、第4の実施形態に係る可変容量装置31のX-Y面平面図である。可変容量装置31は、前述の実施形態とは形状が相違する誘電体膜38を備え、RF容量部だけでなく、駆動容量部でも誘電体膜38に複数の溝部を設けた構成である。
 図9(B)は、可変容量装置31におけるRF容量-駆動DC電圧特性を示す図である。図中の破線は前述の可変容量装置1の特性を示し、図中の実線は可変容量装置31の特性を示している。
 本実施形態ではRF容量部だけでなく駆動容量部でも電極対向面積を低減し、可動梁が誘電体膜に接触する状態でのRF容量の最小値を低減する。この場合、駆動容量の容量変化とRF容量の容量変化との相関性が高まり、可動梁が面接触する際のRF容量CMIN近傍での容量変化を滑らかにすることができる。
<< Fourth Embodiment >>
FIG. 9A is an XY plane plan view of the variable capacitance device 31 according to the fourth embodiment. The variable capacitance device 31 includes a dielectric film 38 having a shape different from that of the above-described embodiment, and has a configuration in which a plurality of groove portions are provided in the dielectric film 38 not only in the RF capacitance portion but also in the drive capacitance portion.
FIG. 9B is a diagram showing the RF capacitance-drive DC voltage characteristics in the variable capacitance device 31. The broken line in the figure indicates the characteristic of the variable capacitance device 1 described above, and the solid line in the figure indicates the characteristic of the variable capacitance device 31.
In the present embodiment, the electrode facing area is reduced not only in the RF capacitor unit but also in the drive capacitor unit, and the minimum value of the RF capacitor when the movable beam is in contact with the dielectric film is reduced. In this case, the correlation between the capacitance change of the drive capacitance and the capacitance change of the RF capacitance is increased, and the capacitance change in the vicinity of the RF capacitance CMIN when the movable beam comes into surface contact can be smoothed.
《第5の実施形態》
 図10(A)は、第5の実施形態に係る可変容量装置41のX-Y面平面図である。可変容量装置41は両持ち梁構成の可動梁43を備える点で上述の実施形態と相違し、ここでは可動梁43における変位が最も大きい中央領域近傍において、上側RF容量電極46のY軸方向の幅寸法を低減した段形状としている。このような構成であっても、やはり最初に上側RF容量電極が誘電体膜に線接触、または面接触する領域でのRF容量を低減することで、RF容量の可変比を大きくすることが可能になる。
 なお、本実施形態の構成で、上述の第2乃至第3の実施形態に示したような上側RF容量電極ではなく下側RF容量電極や誘電体膜の形状変更により、RF容量を低減する構造を採用しても良い。
<< Fifth Embodiment >>
FIG. 10A is an XY plane plan view of the variable capacitance device 41 according to the fifth embodiment. The variable capacitance device 41 is different from the above-described embodiment in that it includes a movable beam 43 having a doubly supported beam configuration. Here, in the vicinity of the central region where the displacement of the movable beam 43 is the largest, the upper RF capacitance electrode 46 is arranged in the Y-axis direction. It has a step shape with reduced width. Even with such a configuration, it is possible to increase the variable ratio of the RF capacitance by reducing the RF capacitance in the region where the upper RF capacitive electrode first makes line contact or surface contact with the dielectric film. become.
In the configuration of the present embodiment, the RF capacitance is reduced by changing the shape of the lower RF capacitive electrode and the dielectric film instead of the upper RF capacitive electrode as shown in the second to third embodiments. May be adopted.
 図10(B)は、第5の実施形態に係る可変容量装置41の他の構成例のX-Y面平面図である。この可変容量装置41は可動梁におけるX軸正方向の端部にミアンダ状の連結固定部43Aを設けた構成であり、連結固定部43Aのバネ定数をX軸負方向の連結部3Bのバネ定数よりも大幅に小さくし、これにより可動梁43がX軸正方向の端部から誘電体膜に接触するようにした構成である。
 このような構成においては、両持ち梁構造ではあっても可動梁の中央領域周辺ではなくX軸正方向の端部周辺から可動梁が誘電体膜に接触するようになるので、このX軸正方向の端部周辺の領域でRF容量部の電極対向面積を低減することで、やはりRF容量の可変比を大きくすることが可能になる。
FIG. 10B is an XY plane plan view of another configuration example of the variable capacitance device 41 according to the fifth embodiment. This variable capacity device 41 has a configuration in which a meander-shaped connecting and fixing portion 43A is provided at the end of the movable beam in the X-axis positive direction, and the spring constant of the connecting and fixing portion 43A is the spring constant of the connecting portion 3B in the X-axis negative direction. In this configuration, the movable beam 43 comes into contact with the dielectric film from the end in the positive direction of the X axis.
In such a configuration, the movable beam comes into contact with the dielectric film not from the periphery of the central region of the movable beam but from the end in the positive direction of the X axis even in the double-supported beam structure. By reducing the electrode facing area of the RF capacitor portion in the region around the end portion in the direction, it is possible to increase the variable ratio of the RF capacitor.
 図10(C)は、第5の実施形態に係る可変容量装置41の他の構成例のX-Y面平面図である。この可変容量装置41は、X軸に沿って延設する高剛性の梁状部分と、低剛性のミアンダ状部分とを有する連結部43Bを備え、ミアンダ状部分を可動梁におけるX軸正方向の端部に接続し、梁状部分を支持部3Aに接続する構成である。この構成においても、両持ち梁構造ではあっても可動梁の中央領域周辺ではなくX軸正方向の端部周辺から可動梁が誘電体膜に接触するようになるので、このX軸正方向の端部周辺の領域でRF容量部の電極対向面積を低減することで、やはりRF容量の可変比を大きくすることが可能になる。 FIG. 10C is an XY plane plan view of another configuration example of the variable capacitance device 41 according to the fifth embodiment. The variable capacitance device 41 includes a connecting portion 43B having a high-rigidity beam-like portion extending along the X-axis and a low-rigidity meander-like portion, and the meander-like portion in the X-axis positive direction of the movable beam. It is the structure which connects to an edge part and connects a beam-shaped part to 3 A of support parts. Even in this configuration, the movable beam comes into contact with the dielectric film not from the central region of the movable beam but around the end in the positive direction of the X axis even in the case of the double-supported beam structure. By reducing the electrode facing area of the RF capacitor in the region around the end, it is possible to increase the variable ratio of the RF capacitor.
 以上の各実施形態で説明したように本発明は実施できるが、本発明の範囲は上述の実施形態の記載に制限されるものではなく、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図されるものである。 As described in the above embodiments, the present invention can be implemented, but the scope of the present invention is not limited to the description of the above-described embodiments, and the scope of the present invention is indicated by the claims, and It is intended that all modifications within the meaning and scope equivalent to the terms of the claims are included.
C1A,C1B…RF容量部
C2A,C2B…駆動容量部
1,11,21,31,41…可変容量装置
2…支持板
3,43…可動梁
3A,43A…支持部
3B,43B…連結部
3C…可動部
3D…ラダー部
4A,4B,14A,14B…下側RF容量電極
5A,5B…下側駆動容量電極
6,6A,6B,46…上側RF容量電極
7A,7B…上側駆動容量電極
8,28,38…誘電体膜
C1A, C1B... RF capacitor section C2A, C2B... Drive capacitor section 1, 11, 21, 31, 41... Variable capacity device 2... Support plate 3, 43. ... movable part 3D ... ladder parts 4A, 4B, 14A, 14B ... lower RF capacitive electrodes 5A, 5B ... lower drive capacitive electrodes 6, 6A, 6B, 46 ... upper RF capacitive electrodes 7A, 7B ... upper drive capacitive electrode 8 , 28, 38 ... Dielectric film

Claims (7)

  1.  支持板と、
     前記支持板の主面に平行に支持される可動梁と、
     前記可動梁の主軸方向に沿って長尺に前記可動梁と前記支持板とに互いに対向して設けられる一対の駆動容量電極と、駆動容量電極の少なくとも一方に積層される誘電体膜とからなり、前記一対の駆動容量電極の間に生じる駆動容量に基づいて前記可動梁を変形させる駆動容量部と、
     前記可動梁の主軸方向に沿って長尺に前記可動梁と前記支持板とに互いに対向して設けられる一対のRF容量電極と、RF容量電極の少なくとも一方に積層される誘電体膜とからなり、前記一対のRF容量電極の間に生じるRF容量を介してRF信号を伝搬させるRF容量部と、
     を備え、
     前記RF容量部は、前記誘電体膜を介して前記一対のRF容量電極が対向する面積である電極対向面積を、前記可動梁における変形量が最大となる位置周辺で局所的に低減した構成である、可変容量装置。
    A support plate;
    A movable beam supported parallel to the main surface of the support plate;
    A pair of drive capacitor electrodes provided to be opposed to each other on the movable beam and the support plate along the main axis direction of the movable beam, and a dielectric film laminated on at least one of the drive capacitor electrodes. A drive capacity unit that deforms the movable beam based on a drive capacity generated between the pair of drive capacity electrodes;
    A pair of RF capacitive electrodes provided to be opposed to each other on the movable beam and the support plate along the main axis direction of the movable beam, and a dielectric film laminated on at least one of the RF capacitive electrodes. An RF capacitor unit for propagating an RF signal through an RF capacitor generated between the pair of RF capacitor electrodes;
    With
    The RF capacitor unit has a configuration in which an electrode facing area, which is an area where the pair of RF capacitor electrodes face each other through the dielectric film, is locally reduced around a position where the amount of deformation in the movable beam is maximized. There is a variable capacity device.
  2.  前記駆動容量部は、可動梁における変形量が最大となる位置周辺で前記誘電体膜を介して前記一対の駆動容量電極が対向する面積である電極対向面積を局所的に低減した構成である、請求項1に記載の可変容量装置。 The drive capacitor section has a configuration in which an electrode facing area, which is an area where the pair of drive capacitor electrodes face each other via the dielectric film, is locally reduced around a position where the amount of deformation in the movable beam is maximized. The variable capacitance device according to claim 1.
  3.  前記RF容量部を構成する支持板側のRF容量電極における幅方向の寸法が、前記可動梁における変形量が最大となる位置周辺で局所的に狭い、請求項1または2に記載の可変容量装置。 3. The variable capacitance device according to claim 1, wherein a dimension in a width direction of an RF capacitance electrode on a support plate side constituting the RF capacitance portion is locally narrow around a position where a deformation amount in the movable beam is maximized. .
  4.  前記誘電体膜における単位面積当たり密度が、前記可動梁における変形量が最大となる位置周辺で局所的に低減する、請求項1~3のいずれかに記載の可変容量装置。 4. The variable capacitance device according to claim 1, wherein the density per unit area in the dielectric film is locally reduced around a position where the amount of deformation in the movable beam is maximized.
  5.  前記RF容量部を構成する可動梁側のRF容量電極における幅方向の寸法が、前記可動梁における変形量が最大となる位置周辺で局所的に狭い、請求項1~4のいずれかに記載の可変容量装置。 The dimension in the width direction of the RF capacitive electrode on the movable beam side constituting the RF capacitive section is locally narrow around a position where the amount of deformation in the movable beam is maximized. Variable capacity device.
  6.  前記可動梁は、主軸方向の一端で前記支持板に支持される片持ち梁構造である、請求項1~5のいずれかに記載の可変容量装置。 The variable capacity device according to any one of claims 1 to 5, wherein the movable beam has a cantilever structure supported by the support plate at one end in a main axis direction.
  7.  前記可動梁は、主軸方向の両端で前記支持板に支持される両持ち梁構造である、請求項1~5のいずれかに記載の可変容量装置。 The variable capacity device according to any one of claims 1 to 5, wherein the movable beam has a double-supported beam structure supported by the support plate at both ends in a main axis direction.
PCT/JP2011/061924 2010-06-14 2011-05-25 Variable capacitance device WO2011158619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-134629 2010-06-14
JP2010134629 2010-06-14

Publications (1)

Publication Number Publication Date
WO2011158619A1 true WO2011158619A1 (en) 2011-12-22

Family

ID=45348028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061924 WO2011158619A1 (en) 2010-06-14 2011-05-25 Variable capacitance device

Country Status (1)

Country Link
WO (1) WO2011158619A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149950A (en) * 1996-11-15 1998-06-02 Murata Mfg Co Ltd Variable capacitance capacitor
JP2006165380A (en) * 2004-12-09 2006-06-22 Kyocera Corp Variable capacitor
JP2008005642A (en) * 2006-06-23 2008-01-10 Toshiba Corp Piezoelectric-driving mems actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149950A (en) * 1996-11-15 1998-06-02 Murata Mfg Co Ltd Variable capacitance capacitor
JP2006165380A (en) * 2004-12-09 2006-06-22 Kyocera Corp Variable capacitor
JP2008005642A (en) * 2006-06-23 2008-01-10 Toshiba Corp Piezoelectric-driving mems actuator

Similar Documents

Publication Publication Date Title
US7242273B2 (en) RF-MEMS switch and its fabrication method
US6853534B2 (en) Tunable capacitor
TW582043B (en) Membrane for micro-electro-mechanical switch, and methods of making and using it
JP4506529B2 (en) Electrostatic microswitch and method for manufacturing the same, and apparatus provided with electrostatic microswitch
KR100699957B1 (en) Variable capacitor and method of manufacturing variable capacitor
KR101424297B1 (en) Electronic element, variable capacitor, micro switch, method for driving micro switch, mems type electronic element, micro actuator and mems optical element
JP5363005B2 (en) Variable capacitance element, matching circuit element, and portable terminal device
US8363381B2 (en) Variable capacitive element, variable capacitive device, and method for driving the variable capacitive element
US7830068B2 (en) Actuator and electronic hardware using the same
JP3709847B2 (en) Electrostatic actuator
JP2013051297A (en) Variable capacitance device
US20140125897A1 (en) Electric device having variable capacitance element and its manufacture
WO2011158619A1 (en) Variable capacitance device
WO2011158708A1 (en) Variable capacitance device
JP2007259691A (en) Electrostatic drive method of mems, electrostatic actuator, and microswitch
JPWO2013108705A1 (en) Micro movable mechanism and variable capacitor
JPH10149950A (en) Variable capacitance capacitor
WO2011058826A1 (en) Variable capacitance device
US10439591B2 (en) MEMS device with large out-of-plane actuation and low-resistance interconnect and methods of use
WO2011158620A1 (en) Variable capacitance device
JP2012178379A (en) Variable capacitance element
JP2010199214A (en) Mems tunable capacitor
JP2012009637A (en) Variable capacity device
JP5368214B2 (en) Micro electromechanical element
WO2012066901A1 (en) Variable capacitance device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP