WO2011152192A1 - Variable capacitance element - Google Patents

Variable capacitance element Download PDF

Info

Publication number
WO2011152192A1
WO2011152192A1 PCT/JP2011/061146 JP2011061146W WO2011152192A1 WO 2011152192 A1 WO2011152192 A1 WO 2011152192A1 JP 2011061146 W JP2011061146 W JP 2011061146W WO 2011152192 A1 WO2011152192 A1 WO 2011152192A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance forming
side capacitance
voltage
forming portion
driving
Prior art date
Application number
PCT/JP2011/061146
Other languages
French (fr)
Japanese (ja)
Inventor
小中義宏
丹羽亮介
吉田康一
吉田順一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2011152192A1 publication Critical patent/WO2011152192A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/0008Structures for avoiding electrostatic attraction, e.g. avoiding charge accumulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0221Variable capacitors

Definitions

  • the present invention relates to a variable capacitance element capable of changing a capacitance by using a MEMS driven by electrostatic force.
  • MEMS driven by electrostatic force may be used as an electrostatic drive actuator (see Patent Document 1).
  • FIG. 1 is a diagram for explaining a configuration example of a switch composed of a conventional electrostatic drive actuator.
  • the switch 110 includes a movable plate 120, a folding spring 122, an anchor 124, a substrate 112, a bottom electrode 114, and a signal line 118.
  • the signal line 118 is provided with an electrode gap at a position facing the movable plate 120.
  • the movable plate 120 is a rectangular flat plate made of a conductive material, and one end of a folding spring 122 is connected to four corners. The other end of the folding spring 122 is connected to the anchor 124.
  • the anchor 124 is joined to the substrate 112, and supports the movable plate 120 and the folding spring 122 in a state of being lifted from the substrate 112.
  • a driving DC voltage is applied between the bottom electrode 114 and the movable plate 120, and the movable plate 120 is attracted to the substrate 112 by electrostatic attraction acting by the driving DC voltage.
  • the electrode gap provided in the signal line 118 is conducted through the movable plate 120, and the signal line is switched from the disconnected state to the connected state.
  • an electrostatic drive actuator is configured to generate a capacitance by providing a dielectric film at a position to be an electrical contact and switch the capacitance value. It may be used as a variable capacitance element.
  • a substrate or an insulating film may be charged by a driving DC voltage or the like (hereinafter, this phenomenon is referred to as charge-up) in a portion where an interval between opposed electrodes is narrow.
  • charge-up a sticking phenomenon may occur that the movable plate sticks to the substrate and the MEMS operation cannot be performed properly.
  • the force (elastic force) of the spring that supports the movable plate needs to be large enough to resist charge-up.
  • a drive DC voltage needs to be increased in order to make contact or close, and a large-scale booster circuit is required, which increases costs.
  • an object of the present invention is to provide a variable capacitance element that can prevent malfunction of the MEMS due to charge-up without increasing the drive DC voltage.
  • variable capacitance element includes a plurality of beam-side capacitance forming portions, and a plurality of beam-side capacitance forming portions, and a support portion that supports any of the plurality of beam-side capacitance forming portions.
  • a movable beam that bends and deforms in a direction perpendicular to the arrangement of the forming parts;
  • a housing for accommodating the movable beam in the internal space;
  • a plurality of fixed-side capacitance forming portions that are provided in the internal space of the housing and face each other in the bending direction of the plurality of beam-side capacitance forming portions, and form a capacitance with the beam-side capacitance forming portion, respectively;
  • a variable capacitance element that deflects a movable beam in a bending direction by applying a predetermined driving DC voltage between any of the beam-side capacitance forming portions and a fixed-side capacitance forming portion facing the beam-side capacitance forming portion.
  • the internal space is in a reduced-pressure atmosphere, and when a driving DC voltage is applied, the beam-side capacitance forming portion other than the beam-side capacitance forming portion supported by the support portion is in a state of facing the fixed-side capacitance forming portion and supported by the support portion.
  • the beam-side capacitance forming portion is in a non-facing state to the fixed-side capacitance forming portion so that the displacement of the movable beam passes too far in the non-application state due to the change from the application state of the drive DC voltage to the non-application state. Has been.
  • the mechanical Q value of the movable beam is increased by making the internal space of the housing a reduced pressure atmosphere.
  • the beam-side capacitance forming portion supported by the support portion not to face the fixed-side capacitance forming portion even when the driving DC voltage is applied, the electric field generated between the two is reduced, Charge up at this part is reduced. Then, when the movable beam tries to return to the initial position by the restoring force of the elastic deformation by switching the application state of the driving DC voltage, the beam-side capacitance forming portion with little charge-up goes past the initial position, that is, overshoots.
  • the kinetic energy of the movable beam increases as the beam-side capacitance forming portion having a large charge-up is separated from the fixed-side capacitance forming portion. From the above, it is possible to suppress the occurrence of sticking phenomenon due to charge-up without increasing the spring constant of the movable beam and without increasing the drive DC voltage, and to obtain a highly reliable and low-cost variable capacitance element. be able to.
  • the mechanical Q value of the movable beam is increased by setting the internal space of the housing to a reduced-pressure atmosphere, and the beam-side capacitance forming portion supported by the support portion is applied with the drive DC voltage.
  • the charge-up at this portion is reduced.
  • the movable beam is separated from the fixed-side capacitance forming portion, and sticking by charge-up is performed without increasing the spring constant of the movable beam and without increasing the driving DC voltage. The occurrence of the phenomenon can be suppressed, and a variable capacitor having high reliability and low cost can be obtained.
  • variable capacitor A configuration example of a variable capacitor according to an embodiment of the present invention will be described with reference to the drawings.
  • an orthogonal coordinate XYZ axis is attached, the thickness direction of the movable beam is the Z-axis direction, the principal axis direction is the X-axis direction, and the width direction is the Y-axis direction.
  • FIG. 2A is an XZ sectional view of the variable capacitance element 1 according to the first embodiment.
  • FIG. 2B is a partial perspective view of the movable beam 3 included in the variable capacitance element 1.
  • FIG. 2C is a drive circuit diagram of the variable capacitance element 1.
  • the variable capacitance element 1 has a movable beam 3, lower drive electrodes 6A to 6C, upper drive electrodes 7A to 7C, and equipotential electrodes 8A to 8C in a housing formed of a lower substrate 2A, an upper substrate 2B, and a frame 2C.
  • the same potential stoppers 9A to 9C and external connection electrodes 10A to 10C are provided.
  • the lower substrate 2A and the upper substrate 2B are glass substrates.
  • the frame 2C is formed of a metal film.
  • the inside of the housing composed of the lower substrate 2A, the upper substrate 2B, and the frame 2C is in a reduced pressure atmosphere (about 1000 Pa).
  • the movable beam 3 has a cantilever structure, and has a large mechanical Q value by being housed in a housing under a reduced pressure atmosphere.
  • the movable beam 3 has a structure including beam-side capacitance forming portions 3A to 3C and a support portion 3D formed of a metal film.
  • the support portion 3D is joined to the upper substrate 2B and the lower substrate 2A, functions as an anchor portion of the movable beam 3, and supports the beam side capacitance forming portions 3A to 3C in a state of being separated from the lower substrate 2A and the upper substrate 2B.
  • Each of the beam side capacitance forming portions 3A to 3C is a thick portion (about 10 ⁇ m), and the beam side capacitance is formed from the movable end side (X-axis positive direction side) to the fixed end side (X-axis negative direction side).
  • the portions 3A, the beam-side capacitance forming portion 3B, and the beam-side capacitance forming portion 3C are arranged in this order, and are connected to each other through a thin (about 3 ⁇ m) portion.
  • Lower drive electrodes 6A to 6C and equipotential electrodes 8A to 8C are formed on the upper surface of lower substrate 2A.
  • the upper drive electrodes 7A to 7C and the same potential stoppers 9A to 9C are formed on the lower surface of the upper substrate 2B.
  • the lower drive electrodes 6A to 6C and the upper drive electrodes 7A to 7C are fixed side capacitance forming portions.
  • the lower drive electrode 6A and the upper drive electrode 7A are arranged so as to face each other, and the beam-side capacitance forming portion 3A is arranged at a position sandwiched between both electrodes.
  • the lower drive electrode 6B and the upper drive electrode 7B are also arranged so as to face each other, and the beam-side capacitance forming portion 3B is arranged at a position sandwiched between both electrodes.
  • the lower drive electrode 6C and the upper drive electrode 7C are also arranged to face each other, and the beam-side capacitance forming portion 3C is arranged at a position sandwiched between both electrodes.
  • the equipotential electrode 8A is disposed on the side of the lower drive electrode 6A on the X axis positive direction side, and faces the periphery of the end of the beam side capacitance forming portion 3A on the X axis positive direction side.
  • a stopper portion 11A that protrudes toward the same potential electrode 8A is provided at a position where the beam side capacitance forming portion 3A faces the same potential electrode 8A.
  • the equipotential electrode 8B is disposed on both sides of the lower drive electrode 6B in the X-axis direction, and is opposed to the periphery of both ends in the X-axis direction of the beam side capacitance forming portion 3B.
  • a stopper portion 11B that protrudes toward the same potential electrode 8B is provided at a position where the beam side capacitance forming portion 3B faces the same potential electrode 8B.
  • the equipotential electrode 8C is arranged on the side of the lower drive electrode 6C on the X axis negative direction side, and faces the periphery of the end of the beam side capacitance forming portion 3C in the X axis negative direction.
  • a stopper portion 11C that protrudes toward the same potential electrode 8C is provided at a position where the beam side capacitance forming portion 3C faces the same potential electrode 8C.
  • Each of the stopper portions 11A to 11C is in contact with the opposite equipotential electrodes 8A to 8C, thereby securing a gap space between the beam side capacitance forming portions 3A to 3C and the lower drive electrodes 6A to 6C.
  • the beam side capacitance forming portions 3A to 3C and the equipotential electrodes 8A to 8C are brought into conduction through .about.11C.
  • the same potential stopper 9A is disposed on the side of the X-axis positive direction side of the upper drive electrode 7A so as to protrude from the upper drive electrode 7A toward the beam side capacitance forming portion 3A side. It faces the periphery of the end on the X axis positive direction side.
  • the same potential stopper 9B is arranged on both sides in the X-axis direction of the upper drive electrode 7B so as to protrude from the upper drive electrode 7B to the beam side capacitance forming portion 3B side. It faces the periphery of both ends in the axial direction.
  • the same potential stopper 9C is arranged on the side of the X-axis negative direction side of the upper drive electrode 7C so as to protrude from the upper drive electrode 7C to the beam side capacitance forming portion 3C side. It faces the periphery of the end in the negative direction of the X axis.
  • Each of the equipotential stoppers 9A to 9C is in contact with the opposite beam side capacitance forming portions 3A to 3C, thereby securing a gap space between the beam side capacitance forming portions 3A to 3C and the upper drive electrodes 7A to 7C. Conduction is made to the beam side capacitance forming portions 3A to 3C.
  • External connection electrodes 10A to 10C are formed on the lower surface of the lower substrate 2A and are used for mounting the variable capacitance element 1.
  • Each external connection electrode 10A to 10C is connected to each electrode inside the housing and the movable beam 3 through a through electrode provided on the lower substrate 2A.
  • the configuration of the drive circuit of the variable capacitance element 1 will be described based on a connection configuration example showing an equivalent circuit configuration in FIG.
  • the configuration of the drive circuit is not limited to this example.
  • the equivalent capacitance + Cac formed between the lower drive electrode 6A and the lower drive electrode 6C and the movable beam 3, and the upper drive electrode 7A and the upper drive electrode 7C are connected to each other.
  • An equivalent capacitance -Cac formed between the movable beam 3 and the movable beam 3 is connected to the driving DC voltage source V via the signal cutting resistor R and the switch circuit SW.
  • the capacitor Cb formed between the movable beam 3 and the lower drive electrode 6B is connected to a signal line between the high-frequency signal input terminal RF-IN and the output terminal RF-OUT.
  • the equivalent capacitance + Cac or the equivalent capacitance ⁇ Cac is selected so as to function as a drive capacitance that controls the MEMS operation of the variable capacitance element 1, and the capacitance Cb is the variable capacitance element 1. It functions as a variable capacitor (RF capacitor) to be controlled.
  • FIG. 3 is a partially enlarged view of the internal space of the housing in the variable capacitance element 1.
  • the switch circuit SW is not connected and both the capacitors + Cac and ⁇ Cac are turned off, the movable beam 3 becomes flat as shown in FIG. 3A, and the distance between the movable beam 3 and the upper drive electrodes 7A to 7C. , And the distance between the movable beam 3 and the lower drive electrodes 6A to 6C is kept constant.
  • the spring constant and the drive DC voltage of the movable beam 3 are set so that the beam-side capacitance forming portion 3C does not face the lower substrate 2A side completely in this state.
  • the beam-side capacitance forming portion 3C has a large distance from the lower drive electrode 6C, so the applied electric field is small, the charge-up is small, and the electrostatic attractive force acting on the lower drive electrode 6C side is small.
  • the switch SW circuit When the switch SW circuit is connected to the upper drive electrodes 7A and 7C from there and the capacitance + Cac is turned off and the capacitance ⁇ Cac is turned on, the elastic beam is restored to the movable beam 3 and the upper drive electrodes 7A and 7C.
  • the electrostatic attractive force from the side acts to return to the state of FIG.
  • the beam-side capacitance forming portion 3C has a small electrostatic attraction from the lower substrate 2A side due to the charge-up as described above, and is easily separated from the lower substrate 2A as shown in FIG.
  • the beam-side capacitance forming portion 3B and the beam-side capacitance forming portion 3A can be given more kinetic energy to overcome the charge-up, and the beam-side capacitance forming portion 3B and the beam-side capacitance forming portion 3A can be moved from the lower substrate 2A. Can be easily separated.
  • the electrostatic attractive force due to charge-up from the lower substrate 2A side decreases, and conversely, the electrostatic attractive force due to the drive DC voltage from the upper substrate 2B side decreases.
  • the movable beam 3 is drawn toward the upper substrate 2B as shown in FIG.
  • the beam-side capacitance forming portion 3B comes into contact with the same potential stopper 9B and comes into close contact with the upper drive electrode 7B so that the capacitance Cb, that is, the RF capacitance is minimized.
  • the spring constant and the drive DC voltage of the movable beam 3 are set so that the beam-side capacitance forming portion 3C does not face the upper substrate 2B side completely in this state.
  • the beam-side capacitance forming portion 3C has a large distance from the upper drive electrode 7C, so that the applied electric field is small, the charge-up is small, and the electrostatic attractive force from the upper drive electrode 7C is also small. Therefore, when the switch circuit SW is next connected to the lower drive electrodes 6A and 6C to turn on the capacitor + Cac and turn off the capacitor -Cac, the same phenomenon occurs as described above, overcoming the charge-up and the lower substrate 2A side.
  • the movable beam 3 can be displaced.
  • FIG. 4 and 5 are schematic views at each process stage for explaining the manufacturing process of the variable capacitance element 1.
  • a glass substrate 20 to be the lower substrate 2A is prepared, and a glass protective film 21 is formed on the upper surface (see FIG. 4A).
  • an electrode pattern 22 to be the lower drive electrodes 6A to 6C and the same potential electrodes 8A to 8C is formed on the upper surface of the glass protective film 21 (see FIG. 4B).
  • a laminated electrode made of Au / Pt / Cr is used.
  • the first sacrificial layer pattern 23 is formed on the upper surface of the glass protective film 21, the second sacrificial layer pattern 24 is formed on the upper surfaces of the electrode pattern 22 and the first sacrificial layer pattern 23, and the second sacrificial layer pattern 24 is formed.
  • a third sacrificial layer pattern 25 is formed on the upper surface (see FIG. 4C).
  • the first sacrificial layer pattern 23 has the same thickness as the electrode pattern 22.
  • the second sacrificial layer pattern 24 has the same thickness as the distance between the stopper portions 11A to 11C and the electrode pattern 22.
  • the third sacrificial layer pattern 25 has the same thickness as the height of the stopper portions 11A to 11C.
  • Ti is used as a material for the sacrificial layer pattern.
  • the electrode pattern 26 to be the movable beam 3 and the frame 2C is formed on the upper surfaces of the sacrificial layer patterns 23 to 25 and the electrode pattern 22, and the bonding Au pattern 28 is formed on the upper surface of the electrode pattern 26 (FIG. 4 (D).)
  • the electrode pattern 26 is made of Cu.
  • the sacrificial layer patterns 23 to 25 are removed by etching to form a space 29 (see FIG. 4E).
  • hydrofluoric acid is used as an etchant, but other materials may be used as long as they have selectivity capable of removing the sacrifice layer patterns 23 to 25 made of Ti and leaving the electrode pattern 26 made of Cu.
  • the upper substrate 2B side is manufactured independently of the manufacturing process on the lower substrate 2A side described above.
  • an electrode pattern 32 to be the upper drive electrodes 7A to 7C and the same potential stoppers 9A to 9C is formed on the glass substrate 30, and a bonding Au pattern 38 is formed on the electrode pattern 32 (FIG. 5F )reference.).
  • the structure on the upper substrate 2B side and the structure on the lower substrate 2A side are diffusion bonded with the bonding Au patterns 28 and 38 (see FIG. 5G).
  • diffusion bonding is performed in a reduced pressure atmosphere, and the inside space of the housing is set to a reduced pressure atmosphere.
  • variable capacitance element 1 can be manufactured.
  • the present invention can be implemented, but the configuration of the equipotential electrode, the stopper portion, and the equipotential stopper may be any configuration, and the structure of the equipotential stopper and the equipotential electrode is not adopted. Only the structure of the same potential stopper or the structure of the same potential electrode or the stopper portion may be employed instead of employing the structure of the same potential stopper.

Abstract

Provided is a variable capacitance element capable of preventing an MEMS operation failure caused by charge-up without increasing a driving DC voltage. The variable capacitance element (1) is characterized as follows: A movable beam (3) including beam-side capacitance forming portions (3A to 3C) and a support portion (3D) is housed in a chassis. Lower driving electrodes (6A to 6C) and upper driving electrodes (7A to 7C) are provided facing the beam-side capacitance forming portions (3A to 3C). The space inside the chassis is set to a reduced-pressure atmosphere. When a driving DC voltage is applied, the beam-side capacitance forming portions (3A, 3B) are directly faced to the lower driving electrodes (6A, 6B) or the upper driving electrodes (7A, 7B), but the beam-side capacitance forming portion (3C) is not directly faced to the lower driving electrodes (6C) or the upper driving electrodes (7C). The transition from a state in which the driving DC voltage is applied to a state in which the driving DC voltage is not applied makes the displacement of the movable beam (3) overshoot the position in the state in which the driving DC voltage is not applied.

Description

可変容量素子Variable capacitance element
 この発明は、静電力により駆動するMEMSを用いて容量を変えることができる可変容量素子に関するものである。 The present invention relates to a variable capacitance element capable of changing a capacitance by using a MEMS driven by electrostatic force.
 近年、静電力により駆動するMEMSが静電駆動アクチュエータとして利用されることがある(特許文献1参照。)。 In recent years, MEMS driven by electrostatic force may be used as an electrostatic drive actuator (see Patent Document 1).
 図1は、従来の静電駆動アクチュエータで構成されるスイッチの構成例を説明する図である。
 スイッチ110は、可動板120と、折り返しバネ122と、アンカー124と、基板112と、底部電極114と、信号ライン118とを備える。信号ライン118は、可動板120と対向する位置に電極間隙部が設けられている。可動板120は導電性材料からなる矩形平板であり、四隅に折り返しバネ122の一端が接続される。折り返しバネ122の他端は、アンカー124に接続される。アンカー124は基板112に接合され、可動板120および折り返しバネ122を基板112から浮き上がらせた状態で支持する。底部電極114は可動板120との間に駆動DC電圧が印加されるものであり、その駆動DC電圧により作用する静電引力により可動板120を基板112に引き寄せる。この可動板120の動作により、信号ライン118に設けられた電極間隙部が可動板120を介して導通し、信号ラインが断線状態から接続状態に切り替わる。
FIG. 1 is a diagram for explaining a configuration example of a switch composed of a conventional electrostatic drive actuator.
The switch 110 includes a movable plate 120, a folding spring 122, an anchor 124, a substrate 112, a bottom electrode 114, and a signal line 118. The signal line 118 is provided with an electrode gap at a position facing the movable plate 120. The movable plate 120 is a rectangular flat plate made of a conductive material, and one end of a folding spring 122 is connected to four corners. The other end of the folding spring 122 is connected to the anchor 124. The anchor 124 is joined to the substrate 112, and supports the movable plate 120 and the folding spring 122 in a state of being lifted from the substrate 112. A driving DC voltage is applied between the bottom electrode 114 and the movable plate 120, and the movable plate 120 is attracted to the substrate 112 by electrostatic attraction acting by the driving DC voltage. By the operation of the movable plate 120, the electrode gap provided in the signal line 118 is conducted through the movable plate 120, and the signal line is switched from the disconnected state to the connected state.
 また、上述のように電気的接点の接続を切り替える他にも、電気的接点となる位置に誘電体膜を設けて容量を発生させ、その容量値を切り替えるように静電駆動アクチュエータを構成して可変容量素子として利用することもある。 In addition to switching the connection of electrical contacts as described above, an electrostatic drive actuator is configured to generate a capacitance by providing a dielectric film at a position to be an electrical contact and switch the capacitance value. It may be used as a variable capacitance element.
特開2001-143594号公報JP 2001-143594 A
 従来の可変容量素子では、対向する電極の間隔が狭い部分で、駆動DC電圧などによって基板や絶縁膜が帯電(以下、この現象をチャージアップと称する。)することがある。このチャージアップの帯電量によっては、可動板が基板に貼り付いてMEMS動作が適切に行えなくなるスティッキング現象が引き起こされることがあった。
 このチャージアップによるスティッキング現象の発生を防ぐためには、可動板を支持するバネの力(弾性力)を、チャージアップに対抗しうる大きさにする必要があるが、その場合、可動板を基板に接触または近接させるために駆動DC電圧を大きくする必要が生じ、大規模な昇圧回路が必要となってコストアップの要因となる。
In a conventional variable capacitance element, a substrate or an insulating film may be charged by a driving DC voltage or the like (hereinafter, this phenomenon is referred to as charge-up) in a portion where an interval between opposed electrodes is narrow. Depending on the charge amount of this charge-up, a sticking phenomenon may occur that the movable plate sticks to the substrate and the MEMS operation cannot be performed properly.
In order to prevent the occurrence of sticking due to charge-up, the force (elastic force) of the spring that supports the movable plate needs to be large enough to resist charge-up. A drive DC voltage needs to be increased in order to make contact or close, and a large-scale booster circuit is required, which increases costs.
 そこで本発明の目的は、駆動DC電圧を大きくすることなく、チャージアップによるMEMSの動作不良を防ぐことができる可変容量素子を提供することにある。 Therefore, an object of the present invention is to provide a variable capacitance element that can prevent malfunction of the MEMS due to charge-up without increasing the drive DC voltage.
 この発明の可変容量素子は、互いに連結して配列される複数の梁側容量形成部と、複数の梁側容量形成部のいずれかを支持する支持部と、を備えて、複数の梁側容量形成部の配列に垂直な方向に撓み変形する可動梁と、
 可動梁を内部空間に収容する筐体と、
 筐体の内部空間に設けられ、複数の梁側容量形成部の撓み方向に対向して、それぞれ梁側容量形成部と容量を形成する複数の固定側容量形成部と、
を備え、
 梁側容量形成部のいずれかと、該梁側容量形成部と対向する固定側容量形成部との間に所定の駆動DC電圧を印加して可動梁を撓み方向に撓ませる可変容量素子であって、
 内部空間を減圧雰囲気とし、駆動DC電圧の印加時に、支持部に支持される梁側容量形成部を除く他の梁側容量形成部を固定側容量形成部に正対する状態とし、支持部に支持される梁側容量形成部を固定側容量形成部に非正対な状態とし、駆動DC電圧の印加状態から非印加状態への変化により可動梁の変位が非印加状態での位置を行き過ぎるようにされている。
The variable capacitance element according to the present invention includes a plurality of beam-side capacitance forming portions, and a plurality of beam-side capacitance forming portions, and a support portion that supports any of the plurality of beam-side capacitance forming portions. A movable beam that bends and deforms in a direction perpendicular to the arrangement of the forming parts;
A housing for accommodating the movable beam in the internal space;
A plurality of fixed-side capacitance forming portions that are provided in the internal space of the housing and face each other in the bending direction of the plurality of beam-side capacitance forming portions, and form a capacitance with the beam-side capacitance forming portion, respectively;
With
A variable capacitance element that deflects a movable beam in a bending direction by applying a predetermined driving DC voltage between any of the beam-side capacitance forming portions and a fixed-side capacitance forming portion facing the beam-side capacitance forming portion. ,
The internal space is in a reduced-pressure atmosphere, and when a driving DC voltage is applied, the beam-side capacitance forming portion other than the beam-side capacitance forming portion supported by the support portion is in a state of facing the fixed-side capacitance forming portion and supported by the support portion. The beam-side capacitance forming portion is in a non-facing state to the fixed-side capacitance forming portion so that the displacement of the movable beam passes too far in the non-application state due to the change from the application state of the drive DC voltage to the non-application state. Has been.
 この構成では、筐体の内部空間を減圧雰囲気とすることで可動梁の機械的Q値が大きくなる。また、支持部に支持される梁側容量形成部を駆動DC電圧の印加時であっても固定側容量形成部と正対しない状態とすることで、両者の間に発生する電界が小さくなり、この部分でのチャージアップが少なくなる。すると、駆動DC電圧の印加状態を切り替えることで可動梁が弾性変形の復元力で初期位置に戻ろうとする際に、チャージアップの少ない梁側容量形成部が初期位置を行き過ぎる、すなわちオーバーシュートするようになり、その他のチャージアップが大きな梁側容量形成部が固定側容量形成部から引き離されるほど可動梁の運動エネルギーが大きくなる。以上のことから、可動梁のバネ定数を大きくすることなく、また、駆動DC電圧を大きくすることなく、チャージアップによるスティッキング現象の発生を抑制でき、信頼性が高く低コストな可変容量素子を得ることができる。 In this configuration, the mechanical Q value of the movable beam is increased by making the internal space of the housing a reduced pressure atmosphere. In addition, by setting the beam-side capacitance forming portion supported by the support portion not to face the fixed-side capacitance forming portion even when the driving DC voltage is applied, the electric field generated between the two is reduced, Charge up at this part is reduced. Then, when the movable beam tries to return to the initial position by the restoring force of the elastic deformation by switching the application state of the driving DC voltage, the beam-side capacitance forming portion with little charge-up goes past the initial position, that is, overshoots. Accordingly, the kinetic energy of the movable beam increases as the beam-side capacitance forming portion having a large charge-up is separated from the fixed-side capacitance forming portion. From the above, it is possible to suppress the occurrence of sticking phenomenon due to charge-up without increasing the spring constant of the movable beam and without increasing the drive DC voltage, and to obtain a highly reliable and low-cost variable capacitance element. be able to.
 なお、梁側容量形成部を挟んで対向するように配置される2つの固定側容量部に対して、駆動DC電圧の印加状態と駆動DC電圧の非印加状態とを排他的に切り替えて、可動梁の撓み方向を切り替えると好適である。 In addition, it is possible to switch between the application state of the drive DC voltage and the non-application state of the drive DC voltage exclusively for the two fixed-side capacitor portions arranged so as to face each other with the beam-side capacitor formation portion interposed therebetween. It is preferable to switch the bending direction of the beam.
 この発明によれば、筐体の内部空間を減圧雰囲気とすることで可動梁の機械的Q値が大きくなり、支持部に支持される梁側容量形成部を駆動DC電圧の印加時であっても固定側容量形成部と正対しない状態とすることで、この部分でのチャージアップが少なくなる。すると、チャージアップが有っても可動梁が固定側容量形成部から引き離されるようになり、可動梁のバネ定数を大きくすることなく、また、駆動DC電圧を大きくすることなく、チャージアップによるスティッキング現象の発生を抑制でき、信頼性が高く低コストな可変容量素子を得ることができる。 According to the present invention, the mechanical Q value of the movable beam is increased by setting the internal space of the housing to a reduced-pressure atmosphere, and the beam-side capacitance forming portion supported by the support portion is applied with the drive DC voltage. However, by not facing the fixed-side capacitance forming portion, the charge-up at this portion is reduced. Then, even if there is a charge-up, the movable beam is separated from the fixed-side capacitance forming portion, and sticking by charge-up is performed without increasing the spring constant of the movable beam and without increasing the driving DC voltage. The occurrence of the phenomenon can be suppressed, and a variable capacitor having high reliability and low cost can be obtained.
従来の静電駆動アクチュエータで構成されるスイッチの構成例を説明する図である。It is a figure explaining the structural example of the switch comprised with the conventional electrostatic drive actuator. 本発明の第1の実施形態に係る可変容量素子の構成例を説明する図である。It is a figure explaining the structural example of the variable capacitance element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る可変容量素子の動作を説明する図である。It is a figure explaining operation | movement of the variable capacitance element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る可変容量素子の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the variable capacitance element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る可変容量素子の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the variable capacitance element which concerns on the 1st Embodiment of this invention.
 本発明の実施形態に係る可変容量素子の構成例について図を参照して説明する。なお、各図には直交座標形のX-Y-Z軸を付し、可動梁の厚み方向をZ軸方向、主軸方向をX軸方向、幅方向をY軸方向とする。 A configuration example of a variable capacitor according to an embodiment of the present invention will be described with reference to the drawings. In each figure, an orthogonal coordinate XYZ axis is attached, the thickness direction of the movable beam is the Z-axis direction, the principal axis direction is the X-axis direction, and the width direction is the Y-axis direction.
《第1の実施形態》
 図2(A)は、第1の実施形態に係る可変容量素子1のX-Z断面図である。図2(B)は、可変容量素子1が備える可動梁3の部分斜視図である。図2(C)は、可変容量素子1の駆動回路図である。
<< First Embodiment >>
FIG. 2A is an XZ sectional view of the variable capacitance element 1 according to the first embodiment. FIG. 2B is a partial perspective view of the movable beam 3 included in the variable capacitance element 1. FIG. 2C is a drive circuit diagram of the variable capacitance element 1.
 可変容量素子1は、下基板2Aと上基板2Bと枠体2Cとから成る筐体の内部に、可動梁3と下駆動電極6A~6Cと上駆動電極7A~7Cと同電位電極8A~8Cと同電位ストッパ9A~9Cと外部接続電極10A~10Cとを設けた構成である。 The variable capacitance element 1 has a movable beam 3, lower drive electrodes 6A to 6C, upper drive electrodes 7A to 7C, and equipotential electrodes 8A to 8C in a housing formed of a lower substrate 2A, an upper substrate 2B, and a frame 2C. The same potential stoppers 9A to 9C and external connection electrodes 10A to 10C are provided.
 下基板2Aおよび上基板2Bは、ガラス基板である。枠体2Cは、金属膜で形成されている。下基板2Aと上基板2Bと枠体2Cとから成る筐体の内部は、減圧雰囲気(約1000Pa)とされている。可動梁3は片持ち梁構造のものであり、減圧雰囲気下の筐体内部に収容されることで機械的Q値が大きなものとなる。 The lower substrate 2A and the upper substrate 2B are glass substrates. The frame 2C is formed of a metal film. The inside of the housing composed of the lower substrate 2A, the upper substrate 2B, and the frame 2C is in a reduced pressure atmosphere (about 1000 Pa). The movable beam 3 has a cantilever structure, and has a large mechanical Q value by being housed in a housing under a reduced pressure atmosphere.
 また可動梁3は、金属膜で形成された梁側容量形成部3A~3Cと支持部3Dとを備える構成である。支持部3Dは上基板2Bおよび下基板2Aに接合され、可動梁3のアンカー部として機能し、梁側容量形成部3A~3Cを下基板2Aおよび上基板2Bから離間した状態で支持する。梁側容量形成部3A~3Cはそれぞれ厚肉(約10μm)に形成された部分であり、可動端側(X軸正方向側)から固定端側(X軸負方向側)に梁側容量形成部3A、梁側容量形成部3B、梁側容量形成部3Cの順に配列され、薄肉(約3μm)な部分を介して互いに連結されている。 The movable beam 3 has a structure including beam-side capacitance forming portions 3A to 3C and a support portion 3D formed of a metal film. The support portion 3D is joined to the upper substrate 2B and the lower substrate 2A, functions as an anchor portion of the movable beam 3, and supports the beam side capacitance forming portions 3A to 3C in a state of being separated from the lower substrate 2A and the upper substrate 2B. Each of the beam side capacitance forming portions 3A to 3C is a thick portion (about 10 μm), and the beam side capacitance is formed from the movable end side (X-axis positive direction side) to the fixed end side (X-axis negative direction side). The portions 3A, the beam-side capacitance forming portion 3B, and the beam-side capacitance forming portion 3C are arranged in this order, and are connected to each other through a thin (about 3 μm) portion.
 下駆動電極6A~6Cおよび同電位電極8A~8Cは、下基板2Aの上面に形成される。上駆動電極7A~7Cおよび同電位ストッパ9A~9Cは、上基板2Bの下面に形成される。下駆動電極6A~6Cおよび上駆動電極7A~7Cは、固定側容量形成部である。下駆動電極6Aおよび上駆動電極7Aは互いに対向するように配置されていて、両電極間に挟まれる位置に梁側容量形成部3Aが配置されている。同様に、下駆動電極6Bおよび上駆動電極7Bも互いに対向するように配置されていて、両電極間に挟まれる位置に梁側容量形成部3Bが配置されている。下駆動電極6Cおよび上駆動電極7Cも互いに対向するように配置されていて、両電極間に挟まれる位置に梁側容量形成部3Cが配置されている。 Lower drive electrodes 6A to 6C and equipotential electrodes 8A to 8C are formed on the upper surface of lower substrate 2A. The upper drive electrodes 7A to 7C and the same potential stoppers 9A to 9C are formed on the lower surface of the upper substrate 2B. The lower drive electrodes 6A to 6C and the upper drive electrodes 7A to 7C are fixed side capacitance forming portions. The lower drive electrode 6A and the upper drive electrode 7A are arranged so as to face each other, and the beam-side capacitance forming portion 3A is arranged at a position sandwiched between both electrodes. Similarly, the lower drive electrode 6B and the upper drive electrode 7B are also arranged so as to face each other, and the beam-side capacitance forming portion 3B is arranged at a position sandwiched between both electrodes. The lower drive electrode 6C and the upper drive electrode 7C are also arranged to face each other, and the beam-side capacitance forming portion 3C is arranged at a position sandwiched between both electrodes.
 同電位電極8Aは、下駆動電極6AのX軸正方向側の脇に配置されていて、梁側容量形成部3AのX軸正方向側の端部周辺と対向している。可動梁3において、梁側容量形成部3Aが同電位電極8Aと対向する位置には、同電位電極8A側に突出するストッパ部11Aが設けられている。同電位電極8Bは、下駆動電極6BのX軸方向の両脇に配置されていて、梁側容量形成部3BのX軸方向の両端部周辺と対向している。可動梁3において、梁側容量形成部3Bが同電位電極8Bと対向する位置には、同電位電極8B側に突出するストッパ部11Bが設けられている。同電位電極8Cは、下駆動電極6CのX軸負方向側の脇に配置されていて、梁側容量形成部3CのX軸負方向の端部周辺と対向している。可動梁3において、梁側容量形成部3Cが同電位電極8Cと対向する位置には、同電位電極8C側に突出するストッパ部11Cが設けられている。 The equipotential electrode 8A is disposed on the side of the lower drive electrode 6A on the X axis positive direction side, and faces the periphery of the end of the beam side capacitance forming portion 3A on the X axis positive direction side. In the movable beam 3, a stopper portion 11A that protrudes toward the same potential electrode 8A is provided at a position where the beam side capacitance forming portion 3A faces the same potential electrode 8A. The equipotential electrode 8B is disposed on both sides of the lower drive electrode 6B in the X-axis direction, and is opposed to the periphery of both ends in the X-axis direction of the beam side capacitance forming portion 3B. In the movable beam 3, a stopper portion 11B that protrudes toward the same potential electrode 8B is provided at a position where the beam side capacitance forming portion 3B faces the same potential electrode 8B. The equipotential electrode 8C is arranged on the side of the lower drive electrode 6C on the X axis negative direction side, and faces the periphery of the end of the beam side capacitance forming portion 3C in the X axis negative direction. In the movable beam 3, a stopper portion 11C that protrudes toward the same potential electrode 8C is provided at a position where the beam side capacitance forming portion 3C faces the same potential electrode 8C.
 各ストッパ部11A~11Cは、対向する同電位電極8A~8Cに接触することで、梁側容量形成部3A~3Cと下駆動電極6A~6Cとの間にギャップ空間を確保し、ストッパ部11A~11Cを介して梁側容量形成部3A~3Cと同電位電極8A~8Cとを導通させる。 Each of the stopper portions 11A to 11C is in contact with the opposite equipotential electrodes 8A to 8C, thereby securing a gap space between the beam side capacitance forming portions 3A to 3C and the lower drive electrodes 6A to 6C. The beam side capacitance forming portions 3A to 3C and the equipotential electrodes 8A to 8C are brought into conduction through .about.11C.
 同電位ストッパ9Aは、梁側容量形成部3A側に上駆動電極7Aよりも突出するようにして上駆動電極7AのX軸正方向側の脇に配置されていて、梁側容量形成部3AのX軸正方向側の端部周辺と対向している。同電位ストッパ9Bは、梁側容量形成部3B側に上駆動電極7Bよりも突出するようにして上駆動電極7BのX軸方向の両脇に配置されていて、梁側容量形成部3BのX軸方向の両端部周辺と対向している。同電位ストッパ9Cは、梁側容量形成部3C側に上駆動電極7Cよりも突出するようにして上駆動電極7CのX軸負方向側の脇に配置されていて、梁側容量形成部3CのX軸負方向の端部周辺と対向している。 The same potential stopper 9A is disposed on the side of the X-axis positive direction side of the upper drive electrode 7A so as to protrude from the upper drive electrode 7A toward the beam side capacitance forming portion 3A side. It faces the periphery of the end on the X axis positive direction side. The same potential stopper 9B is arranged on both sides in the X-axis direction of the upper drive electrode 7B so as to protrude from the upper drive electrode 7B to the beam side capacitance forming portion 3B side. It faces the periphery of both ends in the axial direction. The same potential stopper 9C is arranged on the side of the X-axis negative direction side of the upper drive electrode 7C so as to protrude from the upper drive electrode 7C to the beam side capacitance forming portion 3C side. It faces the periphery of the end in the negative direction of the X axis.
 各同電位ストッパ9A~9Cは、対向する梁側容量形成部3A~3Cに接触することで、梁側容量形成部3A~3Cと上駆動電極7A~7Cとの間にギャップ空間を確保し、梁側容量形成部3A~3Cに導通する。 Each of the equipotential stoppers 9A to 9C is in contact with the opposite beam side capacitance forming portions 3A to 3C, thereby securing a gap space between the beam side capacitance forming portions 3A to 3C and the upper drive electrodes 7A to 7C. Conduction is made to the beam side capacitance forming portions 3A to 3C.
 外部接続電極10A~10Cは、下基板2Aの下面に形成されていて、可変容量素子1の実装に用いられる。各外部接続電極10A~10Cは下基板2Aに設けられた貫通電極を介して、筐体内部の各電極および可動梁3に接続される。 External connection electrodes 10A to 10C are formed on the lower surface of the lower substrate 2A and are used for mounting the variable capacitance element 1. Each external connection electrode 10A to 10C is connected to each electrode inside the housing and the movable beam 3 through a through electrode provided on the lower substrate 2A.
 ここで可変容量素子1の駆動回路の構成について、図2(C)に等価的な回路構成を示す接続構成例に基づいて説明する。なお、駆動回路の構成はこの例に限られるものではない。ここでは、下駆動電極6Aと下駆動電極6Cとを相互に接続して可動梁3との間に形成される等価容量+Cacと、上駆動電極7Aと上駆動電極7Cとを相互に接続して可動梁3との間に形成される等価容量-Cacとを、信号カット用抵抗Rおよびスイッチ回路SWを介して駆動DC電圧源Vに接続する。そして、可動梁3と下駆動電極6Bとの間に形成される容量Cbを、高周波信号の入力端子RF-INと、出力端子RF-OUTとの間の信号ラインに接続する。 Here, the configuration of the drive circuit of the variable capacitance element 1 will be described based on a connection configuration example showing an equivalent circuit configuration in FIG. The configuration of the drive circuit is not limited to this example. Here, the equivalent capacitance + Cac formed between the lower drive electrode 6A and the lower drive electrode 6C and the movable beam 3, and the upper drive electrode 7A and the upper drive electrode 7C are connected to each other. An equivalent capacitance -Cac formed between the movable beam 3 and the movable beam 3 is connected to the driving DC voltage source V via the signal cutting resistor R and the switch circuit SW. The capacitor Cb formed between the movable beam 3 and the lower drive electrode 6B is connected to a signal line between the high-frequency signal input terminal RF-IN and the output terminal RF-OUT.
 このような可変容量素子1の駆動回路では、等価容量+Cacまたは等価容量-Cacが、可変容量素子1のMEMS動作を制御する駆動容量として機能するように選択され、容量Cbが可変容量素子1の制御対象である可変容量(RF容量)として機能することになる。 In such a drive circuit of the variable capacitance element 1, the equivalent capacitance + Cac or the equivalent capacitance −Cac is selected so as to function as a drive capacitance that controls the MEMS operation of the variable capacitance element 1, and the capacitance Cb is the variable capacitance element 1. It functions as a variable capacitor (RF capacitor) to be controlled.
 次に、可変容量素子1の具体的な動作例を説明する。図3は可変容量素子1における筐体内部空間の部分拡大図である。
 前述のスイッチ回路SWを無接続状態として容量+Cac,-Cacともにオフにすると、図3(A)に示すように可動梁3は平坦状となり、可動梁3と上駆動電極7A~7Cとの間隔、および可動梁3と下駆動電極6A~6Cとの間隔が、それぞれ一定に保たれる。
Next, a specific operation example of the variable capacitance element 1 will be described. FIG. 3 is a partially enlarged view of the internal space of the housing in the variable capacitance element 1.
When the switch circuit SW is not connected and both the capacitors + Cac and −Cac are turned off, the movable beam 3 becomes flat as shown in FIG. 3A, and the distance between the movable beam 3 and the upper drive electrodes 7A to 7C. , And the distance between the movable beam 3 and the lower drive electrodes 6A to 6C is kept constant.
 この状態からスイッチ回路SWを下駆動電極6A,6C側に接続して容量+Cacをオンにし容量-Cacをオフにすると、下駆動電極6A,6Cとの間に作用する静電引力によって、可動梁3は図3(B)に示すように下基板2A側に撓む。すると、ストッパ部11Bと同電位電極8Bとが接触して梁側容量形成部3Bが下駆動電極6Bに近接して正対する状態となり、容量Cb、即ちRF容量が最大となる。本実施形態では、この状態の時に梁側容量形成部3Cが完全に下基板2A側に近接して正対しないように可動梁3のバネ定数および駆動DC電圧を設定している。この状態では、梁側容量形成部3Cは下駆動電極6Cとの間隔が大きいため作用電界が小さく、チャージアップが少なく下駆動電極6C側に作用する静電引力が小さい。 In this state, when the switch circuit SW is connected to the lower drive electrodes 6A and 6C, the capacitance + Cac is turned on and the capacitance −Cac is turned off, the movable beam is caused by electrostatic attraction acting between the lower drive electrodes 6A and 6C. 3 is bent toward the lower substrate 2A as shown in FIG. Then, the stopper portion 11B and the same potential electrode 8B come into contact with each other so that the beam side capacitance forming portion 3B comes close to and directly faces the lower drive electrode 6B, and the capacitance Cb, that is, the RF capacitance is maximized. In the present embodiment, the spring constant and the drive DC voltage of the movable beam 3 are set so that the beam-side capacitance forming portion 3C does not face the lower substrate 2A side completely in this state. In this state, the beam-side capacitance forming portion 3C has a large distance from the lower drive electrode 6C, so the applied electric field is small, the charge-up is small, and the electrostatic attractive force acting on the lower drive electrode 6C side is small.
 そこからスイッチSW回路を上駆動電極7A,7C側に接続して容量+Cacをオフにし容量-Cacをオンにすると、可動梁3には弾性変形の復元力が作用するとともに上駆動電極7A,7C側からの静電引力が作用することにより、図3(A)の状態に戻ろうとする。この際、前述のように梁側容量形成部3Cはチャージアップによる下基板2A側からの静電引力が小さく、図3(C)に示すように下基板2Aから容易に離れることになる。 When the switch SW circuit is connected to the upper drive electrodes 7A and 7C from there and the capacitance + Cac is turned off and the capacitance −Cac is turned on, the elastic beam is restored to the movable beam 3 and the upper drive electrodes 7A and 7C. The electrostatic attractive force from the side acts to return to the state of FIG. At this time, the beam-side capacitance forming portion 3C has a small electrostatic attraction from the lower substrate 2A side due to the charge-up as described above, and is easily separated from the lower substrate 2A as shown in FIG.
 この状態では、筐体内部空間が減圧雰囲気であるためエアダンピングによる梁側容量形成部3Cの運動エネルギーのロスが非常に小さく、梁側容量形成部3Cに図3(A)の初期位置を行き過ぎる、すなわちオーバーシュートするほどの大きな運動エネルギーを持たせることができる。すると、梁側容量形成部3Bや梁側容量形成部3Aにもチャージアップに打ち勝つほど大きな運動エネルギーを持たせることができ、梁側容量形成部3Bや梁側容量形成部3Aを下基板2Aから容易に離れさせることができる。 In this state, since the internal space of the casing is in a reduced pressure atmosphere, the loss of kinetic energy of the beam side capacitance forming portion 3C due to air damping is very small, and the initial position of FIG. That is, it is possible to have a large kinetic energy enough to overshoot. As a result, the beam-side capacitance forming portion 3B and the beam-side capacitance forming portion 3A can be given more kinetic energy to overcome the charge-up, and the beam-side capacitance forming portion 3B and the beam-side capacitance forming portion 3A can be moved from the lower substrate 2A. Can be easily separated.
 その後、可動梁3の下基板2Aからの距離が大きくなることで下基板2A側からのチャージアップによる静電引力が小さくなり、逆に、上基板2B側からの駆動DC電圧による静電引力が大きくなり、可動梁3は図3(D)に示すように上基板2B側に引き寄せられることになる。すると、同電位ストッパ9Bに梁側容量形成部3Bが接触して上駆動電極7Bに近接して正対する状態となり、容量Cb即ちRF容量が最小となる。本実施形態では、この状態の時に梁側容量形成部3Cが完全に上基板2B側に近接して正対しないように可動梁3のバネ定数および駆動DC電圧を設定している。この状態では、梁側容量形成部3Cは上駆動電極7Cとの間隔が大きいため作用電界が小さく、チャージアップが少なく上駆動電極7Cからの静電引力も小さい。従って、次にスイッチ回路SWを下駆動電極6A,6C側に接続して容量+Cacをオンにし容量-Cacをオフにする場合も先ほどと同様の現象が起こり、チャージアップに打ち勝って下基板2A側に可動梁3を変位させることができる。 Thereafter, as the distance from the lower substrate 2A of the movable beam 3 increases, the electrostatic attractive force due to charge-up from the lower substrate 2A side decreases, and conversely, the electrostatic attractive force due to the drive DC voltage from the upper substrate 2B side decreases. As the size of the movable beam 3 increases, the movable beam 3 is drawn toward the upper substrate 2B as shown in FIG. Then, the beam-side capacitance forming portion 3B comes into contact with the same potential stopper 9B and comes into close contact with the upper drive electrode 7B so that the capacitance Cb, that is, the RF capacitance is minimized. In this embodiment, the spring constant and the drive DC voltage of the movable beam 3 are set so that the beam-side capacitance forming portion 3C does not face the upper substrate 2B side completely in this state. In this state, the beam-side capacitance forming portion 3C has a large distance from the upper drive electrode 7C, so that the applied electric field is small, the charge-up is small, and the electrostatic attractive force from the upper drive electrode 7C is also small. Therefore, when the switch circuit SW is next connected to the lower drive electrodes 6A and 6C to turn on the capacitor + Cac and turn off the capacitor -Cac, the same phenomenon occurs as described above, overcoming the charge-up and the lower substrate 2A side. The movable beam 3 can be displaced.
 次に、可変容量素子1の製造プロセスについて説明する。図4,5は可変容量素子1の製造プロセスを説明する各プロセス段階での模式図である。
 まず、下基板2Aとなるガラス基板20を用意し、その上面にガラス保護膜21を成膜する(図4(A)参照。)。
Next, a manufacturing process of the variable capacitance element 1 will be described. 4 and 5 are schematic views at each process stage for explaining the manufacturing process of the variable capacitance element 1.
First, a glass substrate 20 to be the lower substrate 2A is prepared, and a glass protective film 21 is formed on the upper surface (see FIG. 4A).
 次に、ガラス保護膜21の上面に下駆動電極6A~6Cや同電位電極8A~8Cとなる電極パターン22を形成する(図4(B)参照。)。ここでは、Au/Pt/Crからなる積層電極を用いている。 Next, an electrode pattern 22 to be the lower drive electrodes 6A to 6C and the same potential electrodes 8A to 8C is formed on the upper surface of the glass protective film 21 (see FIG. 4B). Here, a laminated electrode made of Au / Pt / Cr is used.
 次に、ガラス保護膜21の上面に第1犠牲層パターン23を形成し、電極パターン22および第1犠牲層パターン23の上面に第2犠牲層パターン24を形成し、第2犠牲層パターン24の上面に第3犠牲層パターン25を形成する(図4(C)参照。)。なお、第1犠牲層パターン23は電極パターン22と同じ厚みとする。第2犠牲層パターン24はストッパ部11A~11Cと電極パターン22との間の間隔と同じ厚みとする。第3犠牲層パターン25はストッパ部11A~11Cの高さと同じ厚みとする。ここでは、犠牲層パターンの材料としてTiを用いている。 Next, the first sacrificial layer pattern 23 is formed on the upper surface of the glass protective film 21, the second sacrificial layer pattern 24 is formed on the upper surfaces of the electrode pattern 22 and the first sacrificial layer pattern 23, and the second sacrificial layer pattern 24 is formed. A third sacrificial layer pattern 25 is formed on the upper surface (see FIG. 4C). The first sacrificial layer pattern 23 has the same thickness as the electrode pattern 22. The second sacrificial layer pattern 24 has the same thickness as the distance between the stopper portions 11A to 11C and the electrode pattern 22. The third sacrificial layer pattern 25 has the same thickness as the height of the stopper portions 11A to 11C. Here, Ti is used as a material for the sacrificial layer pattern.
 次に、各犠牲層パターン23~25および電極パターン22の上面に、可動梁3や枠体2Cとなる電極パターン26を形成し、電極パターン26の上面に接合用Auパターン28を形成する(図4(D)参照。)。電極パターン26はCuで構成している。 Next, the electrode pattern 26 to be the movable beam 3 and the frame 2C is formed on the upper surfaces of the sacrificial layer patterns 23 to 25 and the electrode pattern 22, and the bonding Au pattern 28 is formed on the upper surface of the electrode pattern 26 (FIG. 4 (D).) The electrode pattern 26 is made of Cu.
 次に、犠牲層パターン23~25をエッチングにより除去して空間29を形成する(図4(E)参照。)。本実施形態ではエッチャントとしてフッ酸を用いるが、Tiからなる犠牲層パターン23~25を除去しCuからなる電極パターン26を残すことができる選択性を持つものであれば他の材料でもかまわない。 Next, the sacrificial layer patterns 23 to 25 are removed by etching to form a space 29 (see FIG. 4E). In this embodiment, hydrofluoric acid is used as an etchant, but other materials may be used as long as they have selectivity capable of removing the sacrifice layer patterns 23 to 25 made of Ti and leaving the electrode pattern 26 made of Cu.
 また、前述の下基板2A側の製造プロセスと独立に上基板2B側を製造する。下基板2A側と同様、ガラス基板30に上駆動電極7A~7Cや同電位ストッパ9A~9Cとなる電極パターン32を形成し、電極パターン32に接合用Auパターン38を形成する(図5(F)参照。)。 Also, the upper substrate 2B side is manufactured independently of the manufacturing process on the lower substrate 2A side described above. Similarly to the lower substrate 2A side, an electrode pattern 32 to be the upper drive electrodes 7A to 7C and the same potential stoppers 9A to 9C is formed on the glass substrate 30, and a bonding Au pattern 38 is formed on the electrode pattern 32 (FIG. 5F )reference.).
 次に上基板2B側の構造体と下基板2A側の構造体とを接合用Auパターン28,38同士で拡散接合する(図5(G)参照。)。この際、拡散接合を減圧雰囲気下で行い、筐体内部空間を減圧雰囲気とする。 Next, the structure on the upper substrate 2B side and the structure on the lower substrate 2A side are diffusion bonded with the bonding Au patterns 28 and 38 (see FIG. 5G). At this time, diffusion bonding is performed in a reduced pressure atmosphere, and the inside space of the housing is set to a reduced pressure atmosphere.
 その後、基板薄肉化や、貫通孔の形成、貫通電極や外部接続電極の形成を行う(図5(H)参照。)。このようにして、可変容量素子1を製造することができる。 Thereafter, the substrate is thinned, through holes are formed, and through electrodes and external connection electrodes are formed (see FIG. 5H). In this way, the variable capacitance element 1 can be manufactured.
 以上の実施形態で説明したように本発明は実施できるが、同電位電極やストッパ部、同電位ストッパの構成は、どのようなものでもよく、同電位ストッパや同電位電極の構造を採用せずに同電位ストッパの構造のみを採用したり、逆に同電位ストッパの構造を採用せずに同電位電極やストッパ部の構造のみを採用してもよい。 As described in the above embodiments, the present invention can be implemented, but the configuration of the equipotential electrode, the stopper portion, and the equipotential stopper may be any configuration, and the structure of the equipotential stopper and the equipotential electrode is not adopted. Only the structure of the same potential stopper or the structure of the same potential electrode or the stopper portion may be employed instead of employing the structure of the same potential stopper.
1…可変容量素子
2A…下基板
2B…上基板
2C…枠体
3…可動梁
3A~C…梁側容量形成部
3D…支持部
6A~6C…下駆動電極
7A~7C…上駆動電極
8A~8C…同電位電極
9A~9C…同電位ストッパ
10A~10C…外部接続電極
11A~11C…ストッパ部
DESCRIPTION OF SYMBOLS 1 ... Variable capacitance element 2A ... Lower board | substrate 2B ... Upper board | substrate 2C ... Frame 3 ... Movable beam 3A-C ... Beam side capacity | capacitance formation part 3D ... Support part 6A-6C ... Lower drive electrode 7A-7C ... Upper drive electrode 8A- 8C: equipotential electrodes 9A to 9C ... equipotential stoppers 10A to 10C ... external connection electrodes 11A to 11C ... stopper portion

Claims (2)

  1.  互いに連結して配列される複数の梁側容量形成部と、前記複数の梁側容量形成部のいずれかを支持する支持部と、を備えて、前記複数の梁側容量形成部の配列に垂直な方向に撓み変形する可動梁と、
     前記可動梁を内部空間に収容する筐体と、
     前記筐体の内部空間に設けられ、前記複数の梁側容量形成部の撓み方向に対向して、それぞれ前記梁側容量形成部と容量を形成する複数の固定側容量形成部と、
    を備え、
     前記梁側容量形成部のいずれかと、該梁側容量形成部と対向する前記固定側容量形成部との間に所定の駆動DC電圧を印加して前記可動梁を前記撓み方向に撓ませる可変容量素子であって、
     前記内部空間を減圧雰囲気とし、前記駆動DC電圧の印加時に、前記支持部に支持される梁側容量形成部を除く他の梁側容量形成部を前記固定側容量形成部に正対する状態とし、前記支持部に支持される梁側容量形成部を前記固定側容量形成部に非正対な状態とし、前記駆動DC電圧の印加状態から非印加状態への変化により前記可動梁の変位が非印加状態での位置を行き過ぎるようにされていることを特徴とする可変容量素子。
    A plurality of beam-side capacitance forming portions arranged in connection with each other; and a support portion that supports any of the plurality of beam-side capacitance forming portions; and perpendicular to the arrangement of the plurality of beam-side capacitance forming portions A movable beam that bends and deforms in any direction,
    A housing for accommodating the movable beam in an internal space;
    A plurality of fixed-side capacitance forming portions that are provided in an internal space of the housing and face each other in a bending direction of the plurality of beam-side capacitance forming portions;
    With
    A variable capacitance that deflects the movable beam in the bending direction by applying a predetermined driving DC voltage between any of the beam-side capacitance forming portions and the fixed-side capacitance forming portion facing the beam-side capacitance forming portion. An element,
    The internal space is in a reduced pressure atmosphere, and when the driving DC voltage is applied, the beam side capacitance forming portion other than the beam side capacitance forming portion supported by the support portion is in a state of facing the fixed side capacitance forming portion, The beam-side capacitance forming portion supported by the support portion is in a non-facing state with respect to the fixed-side capacitance forming portion, and the displacement of the movable beam is not applied due to the change from the application state of the driving DC voltage to the non-application state. A variable capacitance element characterized in that the position in the state is excessively passed.
  2.  前記梁側容量形成部を挟んで対向するように配置される2つの前記固定側容量部に対して、前記駆動DC電圧の印加状態と前記駆動DC電圧の非印加状態とを排他的に切り替えて、前記可動梁の撓み方向を切り替えることを特徴とする、請求項1に記載の可変容量素子。 The driving DC voltage application state and the driving DC voltage non-application state are exclusively switched with respect to the two fixed-side capacitance portions arranged so as to face each other with the beam-side capacitance formation portion interposed therebetween. The variable capacitance element according to claim 1, wherein the bending direction of the movable beam is switched.
PCT/JP2011/061146 2010-05-31 2011-05-16 Variable capacitance element WO2011152192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-124442 2010-05-31
JP2010124442 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011152192A1 true WO2011152192A1 (en) 2011-12-08

Family

ID=45066571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061146 WO2011152192A1 (en) 2010-05-31 2011-05-16 Variable capacitance element

Country Status (1)

Country Link
WO (1) WO2011152192A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140217552A1 (en) * 2011-11-08 2014-08-07 Murata Manufacturing Co., Ltd. Variable capacitance device
CN106477509A (en) * 2015-09-01 2017-03-08 阿自倍尔株式会社 Fine Machinery device
CN106477508A (en) * 2015-09-01 2017-03-08 阿自倍尔株式会社 Fine Machinery device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213282A (en) * 1995-02-01 1996-08-20 Murata Mfg Co Ltd Variable capacitance capacitor
JP2003209027A (en) * 2001-10-31 2003-07-25 Agilent Technol Inc Micro-fabricated varactor
JP2003264123A (en) * 2002-03-11 2003-09-19 Murata Mfg Co Ltd Variable capacitance element
JP2006147995A (en) * 2004-11-24 2006-06-08 Nippon Telegr & Teleph Corp <Ntt> Variable capacitance element and manufacturing method thereof
JP2008536308A (en) * 2005-03-29 2008-09-04 インテル コーポレイション Collapsing zipper varactor with interdigitated drive electrode for variable filter
JP2009226499A (en) * 2008-03-19 2009-10-08 Toshiba Corp Micromechanical apparatus and manufacturing method of micromechanical apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213282A (en) * 1995-02-01 1996-08-20 Murata Mfg Co Ltd Variable capacitance capacitor
JP2003209027A (en) * 2001-10-31 2003-07-25 Agilent Technol Inc Micro-fabricated varactor
JP2003264123A (en) * 2002-03-11 2003-09-19 Murata Mfg Co Ltd Variable capacitance element
JP2006147995A (en) * 2004-11-24 2006-06-08 Nippon Telegr & Teleph Corp <Ntt> Variable capacitance element and manufacturing method thereof
JP2008536308A (en) * 2005-03-29 2008-09-04 インテル コーポレイション Collapsing zipper varactor with interdigitated drive electrode for variable filter
JP2009226499A (en) * 2008-03-19 2009-10-08 Toshiba Corp Micromechanical apparatus and manufacturing method of micromechanical apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140217552A1 (en) * 2011-11-08 2014-08-07 Murata Manufacturing Co., Ltd. Variable capacitance device
US9087929B2 (en) * 2011-11-08 2015-07-21 Murata Manufacturing Co., Ltd. Variable capacitance device
CN106477509A (en) * 2015-09-01 2017-03-08 阿自倍尔株式会社 Fine Machinery device
CN106477508A (en) * 2015-09-01 2017-03-08 阿自倍尔株式会社 Fine Machinery device

Similar Documents

Publication Publication Date Title
US8564176B2 (en) Piezoelectric MEMS switch and method of manufacturing piezoelectric MEMS switch
TWI466374B (en) Electronic device, variable capacitor, micro switch, method of driving the micro switch and mems type electronic device
US6828888B2 (en) Micro relay of which movable contact remains separated from ground contact in non-operating state
JP5588663B2 (en) Micro electromechanical system switch
JP4879760B2 (en) Microswitching device and method for manufacturing microswitching device
US6396372B1 (en) Electrostatic micro relay
JP4731388B2 (en) Displacement device and variable capacitor, switch and acceleration sensor using the same
JP4739173B2 (en) Micro switching element
US20020109436A1 (en) Piezoelectrically actuated tunable electronic device
WO2011152192A1 (en) Variable capacitance element
JP4231062B2 (en) MEMS element
JP2003264123A (en) Variable capacitance element
JP2013051297A (en) Variable capacitance device
JP2009238547A (en) Mems switch
JP2007168065A (en) Structure of vertical comb electrode, micro light scanner provided with this, micro-actuator and electrostatic sensor
JP2007259691A (en) Electrostatic drive method of mems, electrostatic actuator, and microswitch
JP4443438B2 (en) Electromechanical switch
CN1234144C (en) Static micro relay, radio device and measuring device and contact point switching method
JP3393678B2 (en) Electrostatic relay
JP2010021252A (en) Variable capacitance element, and method of manufacturing the same
KR100485899B1 (en) Seesaw type RF MEMS switch
JP2009252516A (en) Mems switch
CN111627759A (en) Reconfigurable drive voltage RF MEMS switch based on electret and preparation method thereof
JP5812096B2 (en) MEMS switch
JP2892527B2 (en) Electrostatic relay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP