WO2011158361A1 - 容量性負荷装置および容量性負荷装置の異常検出方法 - Google Patents
容量性負荷装置および容量性負荷装置の異常検出方法 Download PDFInfo
- Publication number
- WO2011158361A1 WO2011158361A1 PCT/JP2010/060284 JP2010060284W WO2011158361A1 WO 2011158361 A1 WO2011158361 A1 WO 2011158361A1 JP 2010060284 W JP2010060284 W JP 2010060284W WO 2011158361 A1 WO2011158361 A1 WO 2011158361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- load
- abnormality
- capacitive
- group
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/10—Preparation of ozone
- C01B13/11—Preparation of ozone by electric discharge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
- G01R19/2513—Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
- G01R31/3277—Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
Definitions
- the present invention relates to a device for detecting an abnormal current that flows when an abnormal state such as a short circuit occurs in a device in which a plurality of capacitive loads are connected to an AC power supply, and a method for detecting the same.
- an abnormal current flows due to a fault such as a short circuit in the device load
- the abnormal current is detected to shut off the power supply, or a fuse that is blown by the abnormal current is inserted between the power supply and the load.
- This protects the load and power supply.
- ozonizer 100 or more discharge tubes are used as a load connected to an AC power source.
- short-circuit discharge may occur in one discharge tube due to variations in the discharge tube, and arc discharge may occur in the discharge tube.
- Various techniques have been proposed to protect other loads and power sources or to continue operation when such an abnormality occurs.
- a voltage drop is output with a first time constant when an abnormality such as a broken glass tube occurs.
- an output circuit for a second voltage V2 that outputs a voltage drop at a second time constant slower than the first time constant, and a comparator connected to the output circuit for the second voltage V1
- Patent Document 2 determines an abnormality by a voltage drop
- this technology is applied to a device in which a large number of glass tubes are connected to the output of an inverter, such as a large-capacity ozone generator. Then, there is a problem that it is difficult to detect an abnormality because the voltage drop is small if only one glass tube is broken.
- An object of the present invention is to provide an apparatus capable of reliably detecting an abnormality with a simple configuration.
- the capacitive load device In the capacitive load device according to the present invention, a plurality of capacitive loads are connected in parallel, and current is supplied from an AC power source to a load group composed of the plurality of loads.
- a current detection sensor that detects current flowing in at least one small load group on the load side of the branch point divided into the plurality of small load groups, and current detection detected by the current detection sensor And a current abnormality detection unit that determines a load abnormality based on the signal.
- the abnormality detection method for a capacitive load device is a capacitive load in which a plurality of capacitive loads are connected in parallel and current is supplied from an AC power source to a load group composed of the plurality of loads.
- An abnormality detection method for detecting an abnormality of a device wherein a load group is divided into a plurality of load groups, and an electric current flowing into at least one load group of the plurality of load groups is detected to cause an abnormality in the current. In this case, it is determined that an abnormality has occurred in any one of the loads in the load group.
- the capacitive load device according to the present invention is configured as described above, an abnormality can be reliably detected with a simple configuration.
- FIG. 1 is a circuit diagram showing a schematic configuration of a capacitive load device according to Embodiment 1 of the present invention.
- 1 is an AC power source that generates high-frequency AC, such as an inverter
- 2 is a reactor
- 3-1, 3-2, and 3-n are n loads, for example, an ozone generator.
- n loads for example, an ozone generator.
- one discharge tube provided in plurality is shown.
- the entire load may be collectively referred to as a load group 3.
- CT is a current detection sensor that detects a current flowing through the second small load group 20
- 5 is a current abnormality detection unit that determines a current abnormality based on a current signal detected by the current detection sensor CT.
- the signal SS is output. This abnormal signal SS is input to, for example, the AC power source 1, and when an abnormality occurs, the output voltage of the AC power source 1 is reduced, the AC power source is stopped, or the AC power source is temporarily stopped, and the power source is turned on after a certain time has elapsed. Control such as restarting.
- the discharge tube of the ozone generator is formed by forming a metal film to be a high voltage electrode on the inner surface of a dielectric tube such as a glass tube, and inserting the glass tube into a metal tube having an inner diameter larger than the outer diameter of the glass tube. And the gas containing oxygen is made to flow through the gap between the outer surface of the glass tube and the inner surface of the metal tube.
- a high-voltage AC voltage between the metal film, which is a high-voltage electrode, and the metal tube, the gas in the gap is discharged, and oxygen is ozonized.
- FIG. 1 shows an example in which there are ten discharge tubes as loads.
- the ozone generator applies so-called silent discharge in which an alternating voltage is applied to a gas through a dielectric that is a glass tube to generate a discharge.
- the frequency of the alternating current applied is about several hundred Hz to 10 kHz, and the voltage is about 5 to 12 kV as the peak value.
- silent discharge when a discharge tube is viewed from a power source, a current is supplied to a discharge portion via a dielectric, so that the load is a capacitive load. For this reason, in FIG. 1, each load 3-1 etc. is described as including a capacitance, that is, a capacitor.
- the operation of a large number of discharge tubes, that is, devices connected with capacitive loads will be described with reference to FIG.
- the current flowing through the second small load group 20 is I 2
- the current flowing from the AC power source 1 through the reactor 2 into the branch point 4 that is, the current flowing from the power source to the first small load group 10 and the entire second small load group 20 is defined as I 0 .
- FIG. 2 shows a schematic current waveform in the case where a failure that causes a short circuit occurs in one load 300 of the first small load group 10 in FIG.
- FIG. 2 shows waveforms of I 0 , I 1 , and I 2 from the top.
- the rush current flowing into the load 300 is generated in the I 1, projecting current flowing in the second sub-load group 20 charges the load 300 which has been accumulated in occurs in the I 2.
- the current detection sensor CT is installed so as to detect the current I 2 flowing through the second small load group 20.
- the bottom waveform in FIG. 2 is detected, and the current I flowing through the second small load group 20 is related to the occurrence of a short circuit at one load of the first small load group 10.
- a short circuit occurring in one load of the first small load group 10 can be detected by the current detection sensor CT that detects 2 .
- Patent Document 1 discloses a technique for determining that an abnormality has occurred in a discharge element provided with the current detection unit when each discharge element includes a current detection unit and a detection value by the current detection unit exceeds a predetermined upper limit value. It is disclosed.
- the current detection sensor CT detects a waveform like I 2 in FIG. From this current waveform signal, for example, the current abnormality detection unit 5 determines that an abnormality has occurred when a current equal to or greater than a predetermined threshold value i0 indicated by a horizontal broken line in FIG. 2 is detected as an absolute value, and outputs an abnormality signal SS.
- a predetermined threshold value i0 indicated by a horizontal broken line in FIG. 2 is detected as an absolute value
- the number of loads is the same in the first small load group 10 and the second small load group 20, but it is not necessary to have the same number of loads in each small load group. Even if the number is not the same, since the charge accumulated in another small load group flows into a small load group having a failed load and an inrush current is generated, the occurrence of an abnormality can be determined in the same manner as described above. .
- a load group that is a mass of the plurality of capacitive loads is divided into two small load groups, 1 is divided into a first load group 10 and a second load group 20 and is divided into two small load groups from the AC power source 1 and at least one small load group on the load side from the branch point 4 for supplying current.
- the voltage application method using the resonance generated by the AC power source 1, the reactor 2, and the load group 3 has been described. However, even if the voltage application does not use the resonance, the load is directly applied from the AC power source 1. A voltage may be applied to the group 3. In addition, a voltage is applied from an AC power source through a reactor, and resonance may not be used. Any voltage application method may be used.
- FIG. FIG. 3 is a circuit diagram showing a schematic configuration of the capacitive load device according to the second embodiment of the present invention. 3, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
- the load group is divided into three small load groups, that is, the first small load group 10, the second small load group 20, and the third small load group 30, and each small load is divided.
- the group is supplied with electric power from the AC power source 1 via the branch point 4. Further, the current detection sensor CT is provided so as to detect the current flowing through the third small load group 30.
- FIG. 4 shows waveforms of currents flowing through the three small load groups in FIG.
- FIG. 4 shows waveforms of currents flowing through the three small load groups in FIG.
- the waveform shown in the middle of Figure 4 the waveform of the current I 2 flowing through the second sub-load group 20 in FIG. 4
- FIG. 4 shows the waveform of the current I 3 flowing through the third small load group 30.
- FIG. 4 shows waveforms of I 1 , I 2 , and I 3 when one load 300 in the first small load group 10 breaks down at time t1.
- the load 300 is short-circuit damaged at time t ⁇ b> 1 , and an inrush current flows as the current I ⁇ b> 1 of the first small load group 10.
- a projecting current is generated in which the charge accumulated in the second small load group 20 flows to the load 300.
- a protruding current is generated in which the charge accumulated in the third load group 30 flows to the load 300.
- a current sensor CT for detecting the current of the third small load group 30 is as I 3 in FIG. 4 Detects a simple waveform. From this current waveform signal, the current abnormality detection unit 5 determines that an abnormality has occurred and outputs an abnormality signal SS when, for example, an absolute value of a current equal to or greater than a predetermined threshold value i0 indicated by a horizontal broken line in FIG. 4 is detected. By performing control such as reducing or stopping the output of the AC power supply 1 with the abnormal signal SS, for example, it is possible to prevent influence on the power supply and loads other than the failed load.
- the current abnormality detection unit 5 can determine the occurrence of an abnormality based on the signal of the current detection sensor CT, that is, the current detection sensor CT that detects the current I 3 of the third small load group 30.
- the waveform of I 3 becomes like a waveform shown by I 1 in FIG. 4, the waveform of the I 1 and I 2 The waveform is as indicated by I 2 in FIG.
- the I 3 caused inrush current flowing into the load short-circuited, a current detection sensor CT, that is, the current abnormality detector 5 by the signal of the current sensor CT for detecting a current I 3 of the third light load group 30 in FIG. 3 Can determine the occurrence of abnormality.
- a load group that is a mass of the plurality of capacitive loads is divided into three small load groups, 3 is divided into the first small load group 10, the second small load group 20, and the third small load group 30, and is divided into three small load groups from the AC power supply 1 to supply a branch point 4
- the number of small load groups is further increased. If the number of small load groups is two or more, that is, a plurality of small load groups, the effect of the present invention is achieved. Note that the number of loads in the entire load group may be any number as long as each load group has a plurality of loads.
- FIG. 5 is a circuit diagram showing a schematic configuration of the capacitive load device according to the third embodiment of the present invention. 5, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
- the AC power supply 1, the first small load group 10, the second small load group 20, the branch point 4 and the like in FIG. 5 are the same as those in FIG.
- two current detection sensors, a current detection sensor CT1 for detecting a current flowing through the first small load group 10 and a current detection sensor CT2 for detecting a current flowing through the second small load group 20 are used.
- a current detection sensor CT1 for detecting a current flowing through the first small load group 10
- a current detection sensor CT2 for detecting a current flowing through the second small load group 20 are used.
- the difference amplifier 53 obtains a difference Iminus between the current detection signal of the current detection sensor CT1 and the current detection signal of the current detection sensor CT2, and the comparator 54 compares this Iminus with a predetermined threshold value. When Iminus is equal to or greater than a predetermined threshold, an abnormal signal SS is output.
- FIG. 6 shows a current waveform when one load 300 in the first small load group 10 is short-circuited at time t1. 6, from above, shows a first current I 1 of the small load group 10, the current I 2 of the second sub-load group 20, and the waveform of their difference IMINUS. Prior to time t1, currents having substantially the same value are flowing in the same phase in the first small load group 10 and the second small load group 20, and therefore, the output Iminus of the differential amplifier 53, which is the difference between them, is almost zero. When short-circuit current flowing through the load 300 at time t1, the current I 1 of the first sub-load group 10 and the current I 2 of the second sub-load group 20 which is the difference for the reverse current flows Iminus is A large peak value appears. By comparing this Iminus with a predetermined threshold value i0 (indicated by a horizontal broken line in the waveform diagram of Iminus in FIG. 6) by the comparator 54, an abnormality can be detected and an abnormality signal SS can be output.
- i0
- FIG. 1 An example is shown in FIG. In the second small load group 20, it is assumed that an abnormality occurs in the load for some reason at time t2 and the current decreases. That is, when the current waveform of the second small load group 20 becomes a waveform as indicated by I 2 in FIG. 7, the current I 1 of the first small load group 10 and the current I of the second small load group 20 The difference Iminus from 2 is substantially 0 before time t2, as shown by the waveform of Iminus in FIG. 7, but a value appears after time t2. By comparing this Iminus with a predetermined threshold value i0 (indicated by a horizontal broken line in the waveform diagram of Iminus in FIG. 7) by the comparator 54, an abnormality can be detected and an abnormality signal SS can be output.
- i0 a predetermined threshold value
- the current difference may not be zero due to various factors.
- the current flowing through the first small load group 10 and the current flowing through the second small load group 20 are slightly different due to variations in manufacturing of the load.
- the current detection sensors CT1 and CT2 have slightly different sensitivities. As these countermeasures, the amplification of the two input terminals of the differential amplifier 53 is made different so that the output Iminus of the differential amplifier 53 becomes 0 when the load is normal, or the outputs of the current detection sensors CT1 and CT2 are changed.
- each is input to a variable amplification amplifier, the amplification of each amplifier is adjusted, or when the current detection sensor is a current transformer, the resistor received by the output of the current transformer is adjusted as a variable resistor.
- Various compensation measures can be implemented.
- the load is a capacitive load, a capacitive load such as a dummy capacitor is inserted in parallel with the small load group on the smaller capacity side against unbalance caused by variations in load manufacturing.
- the load current imbalance between the small load groups can also be adjusted.
- the abnormality can be detected with very high accuracy.
- FIG. FIG. 8 is a circuit diagram showing a schematic configuration of the capacitive load device according to the fourth embodiment of the present invention. 8, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
- the AC power supply 1, the first small load group 10, the second small load group 20, the branch point 4 and the like in FIG. 8 are the same as those in FIG.
- the present embodiment 4 is configured to output a difference Iminus current I 2 of the current I 1 and the second sub-load group 20 which flows in the current detection sensor CT3 itself to the first sub-load group 10.
- This output Iminus is compared with a predetermined threshold value by the comparator 54, and an abnormal signal SS is output when Iminus is equal to or greater than the threshold value.
- FIG. 9 is a diagram showing another current detection sensor according to Embodiment 4 of the present invention.
- the difference Iminus between the current I 1 and the current I 2 is output by one current transformer.
- the output of the current transformer CT11 that is a current detection sensor for detecting the current I 1 is output.
- the current waveform is obtained which is proportional to the difference Iminus current I 1 and the current I 2 as an output .
- This output signal is compared with a predetermined threshold by a comparator 54 similar to that in FIG. 8, and an abnormal signal SS is output when Iminus is equal to or greater than the threshold.
- FIG. 10 is a circuit diagram showing a schematic configuration of the capacitive load device according to the fourth embodiment of the present invention. 10, the same reference numerals as those in FIG. 8 denote the same or corresponding parts.
- the number of loads is the same in the first small load group 10 and the second small load group 20, and the current flowing during normal operation is the same in both small load groups. It was made to become.
- the number of loads is different between the first small load group 11 and the second small load group 21.
- the difference between the two is obtained by making one of the outputs the same as the other output with a multiplier etc.
- a current waveform with the same difference as in the fourth embodiment can be obtained.
- the output of the differential amplifier can be made substantially zero during normal operation, and the output can be obtained by the differential amplifier only at the time of abnormality so that abnormality can be detected. it can.
- the ratio between the detection sensitivity of the current I 1 and the detection sensitivity of the current I 2 is the ratio of the number of loads in each small load group.
- the output at the time of normal operation can be made almost zero, and the output can be obtained only at the time of abnormality.
- the current detection sensor is a current transformer
- normal operation is achieved by making the turns ratio with the current I 1 as input and the turns ratio with the current I 2 as input differ by the ratio of the number of loads in each small load group.
- the output of the hour can be made almost zero.
- FIG. 11 is a circuit diagram showing a schematic configuration of the capacitive load device according to the sixth embodiment of the present invention. 11, the same reference numerals as those in FIGS. 1 to 10 denote the same or corresponding parts.
- the load group is divided into two small load groups, and abnormality is detected based on the signal of the difference in current flowing through each load group.
- the load group is divided into two groups. Is not limited.
- the light load group is divided into three light load groups, a first light load group 12, a second light load group 22, and a third light load group 32.
- the current I 1 of the first small load group 12 is detected by the current detection sensor CT12
- the current I 2 of the second small load group 22 is detected by the current detection sensor CT22
- the outputs of both current detection sensors are differential amplifiers.
- the difference Iminus12 between the current I 1 and the current I 2 is obtained.
- This Iminus12 and the threshold value 551 are compared by a comparator 541, and if Iminus12 is greater than the threshold value 551, an abnormal signal SS1 is output.
- the differential amplifier 531, the comparator 541, and the threshold value 551 constitute a first current abnormality detection unit 501.
- the current I 2 and the current are output from the output of the current detection sensor CT 22 that detects the current I 2 of the second small load group 22 and the output of the current detection sensor CT 32 that detects the current I 3 of the third small load group 32. obtaining a difference Iminus23 between I 3.
- the second small load group 22 has a load number n2 of 3
- the third small load group 32 has a load number n3 of 4. Therefore, a current detection sensor for detecting the current I2 of the second small load group 22 is used.
- the multiplier 562 the output of CT22, namely those times 4/3, the difference in the differential amplifier 532 the output of the current detection sensor CT32 for detecting a current I 3 of the third light load group 32 obtaining a difference Iminus23 between the 4/3 and the current I 2 of the current I 2 by taking.
- This Iminus23 and the threshold value 552 are compared by the comparator 542, and when the Iminus23 is larger than the threshold value 552, an abnormal signal SS2 is output.
- the multiplier 562, the differential amplifier 532, the comparator 542, and the threshold value 552 constitute a second current abnormality detection unit 502. With this configuration, when a failure occurs in any load in the second small load group 22 or any load in the third small load group 32, the abnormal signal SS2 is output. Become.
- the abnormality signal SS1 is output from the first current abnormality detection unit 501 or when the abnormality signal SS2 is output from the second current abnormality detection unit 502, that is, by ORing the abnormality signals SS1 and SS2, When such a signal is output, the output of the AC power supply 1 is reduced or stopped because an abnormality has occurred in the load.
- the division of the entire load group into the small load groups is not essential, and two small load groups out of the plurality of small load groups can be divided into any number.
- the effect of the present invention can be obtained by detecting the current and obtaining the difference. Increasing the number of load groups makes it easier to identify a portion where an abnormality has occurred in a narrower range. On the contrary, the configuration of the apparatus becomes simpler when the number of load groups is small.
- FIG. FIG. 12 is a circuit diagram showing a schematic configuration of the capacitive load device according to the seventh embodiment of the present invention. 12, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
- the control for stopping the output of the AC power supply is performed. However, even when the output of the AC power supply is stopped, a certain load is short-circuited. The charge outflow from the other capacitive load does not stop until the charge accumulated in the other capacitive load is completely discharged. If the number of loads in the small load group is large, this charge amount may cause a problem.
- the switch 41 when an abnormal current is detected by providing a current interrupting element such as a switch 41 between the small load group 10 and the small load group 20, that is, when an abnormal signal SS is output, While the AC power supply 1 is stopped, the switch 41 is opened to cut off the current, thereby preventing the outflow of charges from the small load group (small load group 20 in the example of FIG. 12) having no short-circuit load.
- FIG. 13 is a circuit diagram showing a schematic configuration of another capacitive load device according to Embodiment 7 of the present invention. 13, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
- switches 42 and 43 are provided on the small load group side from the branch point 4.
- the current abnormality detection unit 5 detects the direction of the abnormal current. When the abnormal current is detected, the current abnormality detection unit 5 determines in which of the small load groups 10 and 20 an abnormality has occurred. Control is performed to open the switch on the side where the error occurs. By controlling in this way, it is possible to prevent charge outflow from a small load group without a short-circuit load. Without stopping the AC power supply 1, the operation of the small load group in which no abnormality has occurred can be continued.
- the configuration in which a switch is inserted for each small load group in this way can also be applied to the case where there are three or more small load groups as in the sixth embodiment.
- the switches 41, 42, 43, etc. may be current interrupting elements that interrupt current by themselves, such as fuses.
- Load 4 Branch point 5
- 50, 501, 502 Current abnormality detection unit 10, 11, 12, 20, 21 , 22, 30, 32: small load groups CT1, CT2, CT3, CT11, CT12: current detection sensors CT21, CT22, CT32: current detection sensors 41, 42, 43: switches (current interrupting elements)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Engineering & Computer Science (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Control Of Voltage And Current In General (AREA)
- Emergency Protection Circuit Devices (AREA)
- Inverter Devices (AREA)
Abstract
Description
また、この発明に係る容量性負荷装置の異常検出方法は、複数の容量性の負荷が並列に接続され、これら複数の負荷で構成される負荷群に交流電源から電流が供給される容量性負荷装置の異常を検出する異常検出方法であって、負荷群を複数の負荷群に分割するとともに、これら複数の負荷群の少なくとも一つの負荷群に流れ込む電流を検出して、この電流に異常が生じた場合に、負荷群のなかのいずれかの負荷に異常が生じたと判断するものである。
図1は、本発明の実施の形態1による容量性負荷装置の概略構成を示す回路図である。図1において、1はインバータなど、高周波交流を発生する交流電源、2はリアクトル、3-1、3-2、3-nは、n個備えられている負荷を示し、例えばオゾン発生器であれば、複数備えられた放電管の1本1本を示す。負荷全体はまとめて負荷群3と記載することもある。図1においてはn=10の例を示している。10は10個ある負荷の内5個をまとめた第一の小負荷群、20は残りの負荷5個をまとめた第二の小負荷群で、第一の小負荷群10と第二の小負荷群20には分岐点4を介して交流電源1からそれぞれ電力が供給される。CTは第二の小負荷群20に流れる電流を検出する電流検出センサ、5は電流検出センサCTで検出した電流信号によって電流の異常を判断する電流異常検出部で、異常と判断した場合に異常信号SSを出力する。この異常信号SSは、例えば交流電源1に入力されて、異常の場合に交流電源1の出力電圧を低下させる、交流電源を停止する、あるいは交流電源を一旦停止した後、一定時間経過後に電源を再起動する、などの制御を行う。
源1からリアクトル2を通じて負荷3-1~3-nに加えられる交流電圧に応じて、負荷の放電管で放電が生じて交流電流が流れる。負荷としての放電管は非線形の動作をするため、電源の電圧が正弦波であっても、流れる電流は印加される電圧に応じた正弦波にはならず歪んだ波形となるが、ここでは簡単のため電流も正弦波として説明する。
図3は、本発明の実施の形態2による容量性負荷装置の概略構成を示す回路図である。図3において、図1と同一符号は同一または相当する部分を示す。本実施の形態2においては、負荷群を3つの小負荷群、すなわち、第一の小負荷群10、第二の小負荷群20、第三の小負荷群30に分割し、それぞれの小負荷群に、分岐点4を介して交流電源1から電力を供給するようにしたものである。また、電流検出センサCTを第三の小負荷群30に流れる電流を検出するように設けている。
なお、負荷群全体における負荷の数は、各負荷群が複数の負荷を有するような数であれば幾つでも良い。
図5は、本発明の実施の形態3による容量性負荷装置の概略構成を示す回路図である。図5において、図1と同一符号は同一または相当する部分を示す。図5の交流電源1、第一の小負荷群10、第二の小負荷群20、分岐点4などは図1と同様である。本実施の形態3では、第一の小負荷群10に流れる電流を検出する電流検出センサCT1、および第二の小負荷群20に流れる電流を検出する電流検出センサCT2、の2つの電流検出センサを設けた。電流異常検出部50において、差分増幅器53により電流検出センサCT1の電流検出信号と電流検出センサCT2の電流検出信号との差Iminusを求め、比較器54でこのIminusと所定の閾値を比較して、Iminusが所定の閾値以上の場合、異常信号SSを出力するようにしている。
図8は、本発明の実施の形態4による容量性負荷装置の概略構成を示す回路図である。図8において、図1と同一符号は同一または相当する部分を示す。図8の交流電源1、第一の小負荷群10、第二の小負荷群20、分岐点4などは図1と同様である。本実施の形態4は、電流検出センサCT3自身で第一の小負荷群10に流れる電流I1と第二の小負荷群20の電流I2の差Iminusを出力するものである。電流検出センサCT3を電流トランスとして、電流I1と電流I2とが逆方向に流れるように電流トランスの入力とすることで、電流トランスの出力に電流I1と電流I2の差Iminusが現れるようにした。この出力Iminusを比較器54で所定の閾値と比較してIminusが閾値以上の場合に異常信号SSを出力するようにしている。
図10は、本発明の実施の形態4による容量性負荷装置の概略構成を示す回路図である。図10において、図8と同一符号は同一または相当する部分を示す。実施の形態3や実施の形態4においては、第一の小負荷群10と第二の小負荷群20とで負荷の数を同数として、正常動作時に流れる電流を、両小負荷群で同じになるようにした。本実施の形態5では、第一の小負荷群11と第二の小負荷群21とで、負荷の数が異なっている。このように負荷の数が異なり、正常動作時においても両負荷群に流れる電流が異なる場合でも、いずれかの出力を乗算器などで他の出力と同じになるようにして両者の差を求めることで、実施の形態4と同様な差の電流波形が得られる。
図11は、本発明の実施の形態6による容量性負荷装置の概略構成を示す回路図である。図11において、図1~図10と同一符号は同一または相当する部分を示す。実施の形態3~5では、負荷群を2つの小負荷群に分割して、それぞれの負荷群に流れる電流の差の信号を基に異常を検出したが、負荷群の分割数は2つには限られない。本実施の形態6では、小負荷群を、第一の小負荷群12、第二の小負荷群22、および第三の小負荷群32の3つの小負荷群に分割している。
図12は、本発明の実施の形態7による容量性負荷装置の概略構成を示す回路図である。図12において、図1と同一符号は同一または相当する部分を示す。実施の形態1~6では、異常電流を検出した場合、例えば交流電源の出力を停止する制御を行うこととしたが、交流電源の出力を停止しても、ある負荷が短絡状態になった場合、他の容量性負荷に蓄積されていた電荷が放電し終わるまで、他の容量性負荷からの電荷流出が停止しない。小負荷群の負荷の数が多いとこの電荷量が問題となる場合がある。このため、本実施の形態7では、小負荷群10と小負荷群20の間にスイッチ41などの電流遮断素子を設けて、異常電流を検出した場合、すなわち異常信号SSが出力された場合、交流電源1を停止するとともに、スイッチ41を開放して電流を遮断し、短絡負荷がない小負荷群(図12の例では小負荷群20)からの電荷流出を防止する。
なお、スイッチ41、42、43などは、ヒューズのような自己で電流を遮断する電流遮断素子でも良い。
3、300、3-1、3-2、3-i、3-n:負荷
4:分岐点
5、50、501、502:電流異常検出部
10、11、12、20、21、22、30、32:小負荷群
CT1、CT2、CT3、CT11、CT12:電流検出センサ
CT21、CT22、CT32:電流検出センサ
41、42、43:スイッチ(電流遮断素子)
Claims (10)
- 複数の容量性の負荷が並列に接続され、これら複数の負荷で構成される負荷群に交流電源から電流が供給される容量性負荷装置において、
上記負荷群が複数の小負荷群に分割され、この複数の小負荷群に分割された分岐点よりも負荷側で少なくとも一つの小負荷群に流れる電流を検出する電流検出センサと、この電流検出センサにより検出された電流検出信号により負荷の異常を判断する電流異常検出部とを備えたことを特徴とする容量性負荷装置。 - 複数の小負荷群のうちの2つの負荷群に流れる電流をそれぞれ検出する電流検出センサを備えたことを特徴とする請求項1に記載の容量性負荷装置。
- それぞれの電流検出センサからの出力の差を求め、この差が所定の閾値以上となった場合に電流異常検出部が負荷に異常が生じたと判断することを特徴とする請求項2に記載の容量性負荷装置。
- それぞれの電流検出センサの出力を、それぞれの小負荷群の負荷の数に対応した乗数で乗算して差を求めることを特徴とする請求項3に記載の容量性負荷装置。
- 負荷群を2つの小負荷群に分割したことを特徴とする請求項2乃至4いずれか1項に記載の容量性負荷装置。
- 分岐点よりも少なくとも1つの小負荷群側に電流遮断素子を設け、電流異常検出部が負荷に異常が生じたと判断した場合に上記電流遮断素子により電流を遮断するよう制御することを特徴とする請求項1に記載の容量性負荷装置。
- 分岐点よりも少なくとも1つの小負荷群側にヒューズを設けたことを特徴とする請求項1に記載の容量性負荷装置。
- 複数の容量性の負荷が並列に接続され、これら複数の負荷で構成される負荷群に交流電源から電流が供給される容量性負荷装置の異常を検出する異常検出方法であって、
上記負荷群を複数の小負荷群に分割するとともに、これら複数の小負荷群の少なくとも一つの負荷群に流れ込む電流を検出して、この電流に異常が生じた場合に、上記負荷群のうちのいずれかの負荷に異常が生じたと判断することを特徴とする容量性負荷装置の異常検出方法。 - 複数の小負荷群のうちの二つの小負荷群に流れる電流の差が所定の閾値以上の場合に、上記二つの小負荷群のうちいずれかの小負荷群の負荷に異常が生じたと判断することを特徴とする請求項8に記載の容量性負荷装置の異常検出方法。
- 負荷群を2つの小負荷群に分割したことを特徴とする請求項9に記載の容量性負荷装置の異常検出方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2803049A CA2803049C (en) | 2010-06-17 | 2010-06-17 | Device having capacitive loads and abnormality detecting method thereof |
JP2012520219A JP5619157B2 (ja) | 2010-06-17 | 2010-06-17 | 容量性負荷装置および容量性負荷装置の異常検出方法 |
EP10853242.5A EP2584365A4 (en) | 2010-06-17 | 2010-06-17 | CAPACITIVE LOAD DEVICE AND METHOD FOR DETECTING ANOMALIES IN SAID DEVICE |
PCT/JP2010/060284 WO2011158361A1 (ja) | 2010-06-17 | 2010-06-17 | 容量性負荷装置および容量性負荷装置の異常検出方法 |
US13/582,661 US8896316B2 (en) | 2010-06-17 | 2010-06-17 | Device having capacitive loads and abnormality detecting method thereof |
CN201080067438.1A CN102933973B (zh) | 2010-06-17 | 2010-06-17 | 电容性负载装置及电容性负载装置的异常检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/060284 WO2011158361A1 (ja) | 2010-06-17 | 2010-06-17 | 容量性負荷装置および容量性負荷装置の異常検出方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011158361A1 true WO2011158361A1 (ja) | 2011-12-22 |
WO2011158361A8 WO2011158361A8 (ja) | 2012-10-11 |
Family
ID=45347782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060284 WO2011158361A1 (ja) | 2010-06-17 | 2010-06-17 | 容量性負荷装置および容量性負荷装置の異常検出方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8896316B2 (ja) |
EP (1) | EP2584365A4 (ja) |
JP (1) | JP5619157B2 (ja) |
CN (1) | CN102933973B (ja) |
CA (1) | CA2803049C (ja) |
WO (1) | WO2011158361A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017128479A (ja) * | 2016-01-20 | 2017-07-27 | 株式会社東芝 | オゾン発生装置および電源装置 |
JP6818958B1 (ja) * | 2020-05-20 | 2021-01-27 | 三菱電機株式会社 | マルチユニット式オゾン発生器 |
JP2021046331A (ja) * | 2019-09-17 | 2021-03-25 | 株式会社東芝 | オゾン発生器異常検出装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105043464A (zh) * | 2015-06-30 | 2015-11-11 | 柳州弘天科技有限公司 | 蒸汽涡街流量计的检测方法 |
CN108132394A (zh) * | 2017-11-28 | 2018-06-08 | 上海芯导电子科技有限公司 | 一种微负载自动检测电路 |
CN108802554B (zh) * | 2018-06-13 | 2021-05-11 | 中车株洲电力机车有限公司 | 一种电容漏电异常检测方法及系统、计算机设备 |
WO2020140250A1 (en) * | 2019-01-04 | 2020-07-09 | Abb Schweiz Ag | Apparatus and method for monitoring capacitor bank |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01136468U (ja) * | 1988-03-10 | 1989-09-19 | ||
JPH1129306A (ja) * | 1997-06-11 | 1999-02-02 | Kobe Steel Ltd | オゾン発生装置の制御装置 |
JP2001037071A (ja) * | 1999-07-16 | 2001-02-09 | Auto Network Gijutsu Kenkyusho:Kk | 車両の給電回路における断線検知方法及び装置並びに過熱防止方法及び装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3916309A (en) * | 1974-09-30 | 1975-10-28 | S & C Electric Co | Short circuit capacity measuring device |
DE2451353C2 (de) * | 1974-10-29 | 1976-08-19 | Siemens AG, 1000 Berlin und 8000 München | Schutzschaltungsanordnung für einen Hochspannungskondensatorblock |
DE3020128A1 (de) * | 1980-05-27 | 1981-12-03 | Siemens AG, 1000 Berlin und 8000 München | Ueberwachungseinrichtung fuer eine kondensatorbatterie an einem wechselspannungsnetz |
US4425541A (en) * | 1981-09-14 | 1984-01-10 | Commonwealth Edison Co. | Apparatus for identifying defective electric power distribution capacitors |
JP3019560B2 (ja) | 1991-12-09 | 2000-03-13 | 富士電機株式会社 | 送電線用避雷装置の続流遮断試験方法 |
JPH0959005A (ja) | 1995-08-25 | 1997-03-04 | Meidensha Corp | オゾン発生装置の放電管破壊監視装置 |
JP3704400B2 (ja) * | 1996-07-03 | 2005-10-12 | ファナック株式会社 | モータのインバータ駆動制御装置における異常診断方法 |
JP3163994B2 (ja) * | 1996-10-07 | 2001-05-08 | トヨタ自動車株式会社 | 内燃機関関係機器の異常検出装置およびこれを備える動力出力装置 |
US6181113B1 (en) * | 1999-07-29 | 2001-01-30 | Abb Power T&D Company Inc. | Harmonic resonance control and protection system for switched power factor control capacitor devices |
JP3936169B2 (ja) * | 2001-11-06 | 2007-06-27 | パナソニック・イーブイ・エナジー株式会社 | 組電池システムの異常検出方法及び装置 |
JP3935117B2 (ja) * | 2003-07-08 | 2007-06-20 | 本田技研工業株式会社 | バッテリの負荷電力検出装置 |
US7852606B2 (en) | 2005-08-24 | 2010-12-14 | Leviton Manufacturing Company, Inc. | Self-testing circuit interrupting device |
US7477505B2 (en) * | 2005-10-18 | 2009-01-13 | General Hydrogen Corporation | Capacitor bank for electrical generator |
JP4845529B2 (ja) | 2006-02-17 | 2011-12-28 | 三菱電機株式会社 | オゾン発生装置 |
EP2166635B1 (en) * | 2008-09-23 | 2012-02-29 | ABB Oy | Current measurement in an inverter unit and a frequency converter |
-
2010
- 2010-06-17 EP EP10853242.5A patent/EP2584365A4/en not_active Withdrawn
- 2010-06-17 CA CA2803049A patent/CA2803049C/en active Active
- 2010-06-17 WO PCT/JP2010/060284 patent/WO2011158361A1/ja active Application Filing
- 2010-06-17 US US13/582,661 patent/US8896316B2/en active Active
- 2010-06-17 JP JP2012520219A patent/JP5619157B2/ja active Active
- 2010-06-17 CN CN201080067438.1A patent/CN102933973B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01136468U (ja) * | 1988-03-10 | 1989-09-19 | ||
JPH1129306A (ja) * | 1997-06-11 | 1999-02-02 | Kobe Steel Ltd | オゾン発生装置の制御装置 |
JP2001037071A (ja) * | 1999-07-16 | 2001-02-09 | Auto Network Gijutsu Kenkyusho:Kk | 車両の給電回路における断線検知方法及び装置並びに過熱防止方法及び装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2584365A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017128479A (ja) * | 2016-01-20 | 2017-07-27 | 株式会社東芝 | オゾン発生装置および電源装置 |
JP2021046331A (ja) * | 2019-09-17 | 2021-03-25 | 株式会社東芝 | オゾン発生器異常検出装置 |
JP7346191B2 (ja) | 2019-09-17 | 2023-09-19 | 株式会社東芝 | オゾン発生器異常検出装置、およびオゾン発生装置 |
JP6818958B1 (ja) * | 2020-05-20 | 2021-01-27 | 三菱電機株式会社 | マルチユニット式オゾン発生器 |
WO2021234833A1 (ja) * | 2020-05-20 | 2021-11-25 | 三菱電機株式会社 | マルチユニット式オゾン発生器 |
Also Published As
Publication number | Publication date |
---|---|
US8896316B2 (en) | 2014-11-25 |
CA2803049A1 (en) | 2011-12-22 |
EP2584365A4 (en) | 2016-11-30 |
CA2803049C (en) | 2016-02-23 |
JP5619157B2 (ja) | 2014-11-05 |
CN102933973B (zh) | 2015-08-05 |
JPWO2011158361A1 (ja) | 2013-08-15 |
WO2011158361A8 (ja) | 2012-10-11 |
EP2584365A1 (en) | 2013-04-24 |
US20120319696A1 (en) | 2012-12-20 |
CN102933973A (zh) | 2013-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5619157B2 (ja) | 容量性負荷装置および容量性負荷装置の異常検出方法 | |
US8575941B2 (en) | Apparatus and method for identifying a faulted phase in a shunt capacitor bank | |
US8878546B2 (en) | Apparatus and method for quickly determining fault in electric power system | |
JP5819602B2 (ja) | 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム | |
JP5180783B2 (ja) | 超電導コイルクエンチの検出装置及び検出方法 | |
US9625516B2 (en) | Device and method for monitoring a photovoltaic system | |
CN107155353A (zh) | 电动机的诊断装置 | |
JP6711462B2 (ja) | 地絡検出器およびパワーコンディショナ | |
KR102128442B1 (ko) | 메인 변압기의 oltc 보호장치 | |
US11754613B2 (en) | Locating a ground fault in a DC network | |
KR101402350B1 (ko) | 유전정접을 이용한 콘덴서 뱅크의 열화 예측 방법 | |
JP2007192615A (ja) | 電圧センサの異常検出方法、異常検出装置および電圧センサ | |
JP2012059502A (ja) | 転流式遮断装置 | |
JP5198491B2 (ja) | 負荷の異常検出装置 | |
JP2018100877A (ja) | アーク故障検出システム | |
JP5221238B2 (ja) | 無効電力補償装置の地絡検出装置 | |
JP3515147B2 (ja) | レーザ発振器の高周波電源の位相検出による異常検出装置 | |
KR100637619B1 (ko) | 병렬 커패시터 뱅크의 전압 차동 보호 방법 및 장치 | |
JP2008043173A (ja) | 車両用電源装置 | |
KR20190019764A (ko) | 고조파 차단 기능을 제공하는 중성점 접지 장치 및 그의 제조 방법 | |
JP7007068B2 (ja) | Crサプレッサ用抵抗器不良検出装置 | |
JP2008072799A (ja) | ウイスカ溶断除去方法、ウイスカ溶断除去装置 | |
JPH06237522A (ja) | 直列コンデンサ保護装置 | |
JP2002101549A (ja) | 地絡方向継電装置 | |
JPH0937563A (ja) | インバータ装置の保護回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080067438.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10853242 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012520219 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13582661 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010853242 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2803049 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |