WO2011158361A1 - 容量性負荷装置および容量性負荷装置の異常検出方法 - Google Patents

容量性負荷装置および容量性負荷装置の異常検出方法 Download PDF

Info

Publication number
WO2011158361A1
WO2011158361A1 PCT/JP2010/060284 JP2010060284W WO2011158361A1 WO 2011158361 A1 WO2011158361 A1 WO 2011158361A1 JP 2010060284 W JP2010060284 W JP 2010060284W WO 2011158361 A1 WO2011158361 A1 WO 2011158361A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
load
abnormality
capacitive
group
Prior art date
Application number
PCT/JP2010/060284
Other languages
English (en)
French (fr)
Other versions
WO2011158361A8 (ja
Inventor
一豪 倉橋
熊谷 隆
民田 太一郎
中谷 元
大輔 高内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CA2803049A priority Critical patent/CA2803049C/en
Priority to JP2012520219A priority patent/JP5619157B2/ja
Priority to EP10853242.5A priority patent/EP2584365A4/en
Priority to PCT/JP2010/060284 priority patent/WO2011158361A1/ja
Priority to US13/582,661 priority patent/US8896316B2/en
Priority to CN201080067438.1A priority patent/CN102933973B/zh
Publication of WO2011158361A1 publication Critical patent/WO2011158361A1/ja
Publication of WO2011158361A8 publication Critical patent/WO2011158361A8/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to a device for detecting an abnormal current that flows when an abnormal state such as a short circuit occurs in a device in which a plurality of capacitive loads are connected to an AC power supply, and a method for detecting the same.
  • an abnormal current flows due to a fault such as a short circuit in the device load
  • the abnormal current is detected to shut off the power supply, or a fuse that is blown by the abnormal current is inserted between the power supply and the load.
  • This protects the load and power supply.
  • ozonizer 100 or more discharge tubes are used as a load connected to an AC power source.
  • short-circuit discharge may occur in one discharge tube due to variations in the discharge tube, and arc discharge may occur in the discharge tube.
  • Various techniques have been proposed to protect other loads and power sources or to continue operation when such an abnormality occurs.
  • a voltage drop is output with a first time constant when an abnormality such as a broken glass tube occurs.
  • an output circuit for a second voltage V2 that outputs a voltage drop at a second time constant slower than the first time constant, and a comparator connected to the output circuit for the second voltage V1
  • Patent Document 2 determines an abnormality by a voltage drop
  • this technology is applied to a device in which a large number of glass tubes are connected to the output of an inverter, such as a large-capacity ozone generator. Then, there is a problem that it is difficult to detect an abnormality because the voltage drop is small if only one glass tube is broken.
  • An object of the present invention is to provide an apparatus capable of reliably detecting an abnormality with a simple configuration.
  • the capacitive load device In the capacitive load device according to the present invention, a plurality of capacitive loads are connected in parallel, and current is supplied from an AC power source to a load group composed of the plurality of loads.
  • a current detection sensor that detects current flowing in at least one small load group on the load side of the branch point divided into the plurality of small load groups, and current detection detected by the current detection sensor And a current abnormality detection unit that determines a load abnormality based on the signal.
  • the abnormality detection method for a capacitive load device is a capacitive load in which a plurality of capacitive loads are connected in parallel and current is supplied from an AC power source to a load group composed of the plurality of loads.
  • An abnormality detection method for detecting an abnormality of a device wherein a load group is divided into a plurality of load groups, and an electric current flowing into at least one load group of the plurality of load groups is detected to cause an abnormality in the current. In this case, it is determined that an abnormality has occurred in any one of the loads in the load group.
  • the capacitive load device according to the present invention is configured as described above, an abnormality can be reliably detected with a simple configuration.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a capacitive load device according to Embodiment 1 of the present invention.
  • 1 is an AC power source that generates high-frequency AC, such as an inverter
  • 2 is a reactor
  • 3-1, 3-2, and 3-n are n loads, for example, an ozone generator.
  • n loads for example, an ozone generator.
  • one discharge tube provided in plurality is shown.
  • the entire load may be collectively referred to as a load group 3.
  • CT is a current detection sensor that detects a current flowing through the second small load group 20
  • 5 is a current abnormality detection unit that determines a current abnormality based on a current signal detected by the current detection sensor CT.
  • the signal SS is output. This abnormal signal SS is input to, for example, the AC power source 1, and when an abnormality occurs, the output voltage of the AC power source 1 is reduced, the AC power source is stopped, or the AC power source is temporarily stopped, and the power source is turned on after a certain time has elapsed. Control such as restarting.
  • the discharge tube of the ozone generator is formed by forming a metal film to be a high voltage electrode on the inner surface of a dielectric tube such as a glass tube, and inserting the glass tube into a metal tube having an inner diameter larger than the outer diameter of the glass tube. And the gas containing oxygen is made to flow through the gap between the outer surface of the glass tube and the inner surface of the metal tube.
  • a high-voltage AC voltage between the metal film, which is a high-voltage electrode, and the metal tube, the gas in the gap is discharged, and oxygen is ozonized.
  • FIG. 1 shows an example in which there are ten discharge tubes as loads.
  • the ozone generator applies so-called silent discharge in which an alternating voltage is applied to a gas through a dielectric that is a glass tube to generate a discharge.
  • the frequency of the alternating current applied is about several hundred Hz to 10 kHz, and the voltage is about 5 to 12 kV as the peak value.
  • silent discharge when a discharge tube is viewed from a power source, a current is supplied to a discharge portion via a dielectric, so that the load is a capacitive load. For this reason, in FIG. 1, each load 3-1 etc. is described as including a capacitance, that is, a capacitor.
  • the operation of a large number of discharge tubes, that is, devices connected with capacitive loads will be described with reference to FIG.
  • the current flowing through the second small load group 20 is I 2
  • the current flowing from the AC power source 1 through the reactor 2 into the branch point 4 that is, the current flowing from the power source to the first small load group 10 and the entire second small load group 20 is defined as I 0 .
  • FIG. 2 shows a schematic current waveform in the case where a failure that causes a short circuit occurs in one load 300 of the first small load group 10 in FIG.
  • FIG. 2 shows waveforms of I 0 , I 1 , and I 2 from the top.
  • the rush current flowing into the load 300 is generated in the I 1, projecting current flowing in the second sub-load group 20 charges the load 300 which has been accumulated in occurs in the I 2.
  • the current detection sensor CT is installed so as to detect the current I 2 flowing through the second small load group 20.
  • the bottom waveform in FIG. 2 is detected, and the current I flowing through the second small load group 20 is related to the occurrence of a short circuit at one load of the first small load group 10.
  • a short circuit occurring in one load of the first small load group 10 can be detected by the current detection sensor CT that detects 2 .
  • Patent Document 1 discloses a technique for determining that an abnormality has occurred in a discharge element provided with the current detection unit when each discharge element includes a current detection unit and a detection value by the current detection unit exceeds a predetermined upper limit value. It is disclosed.
  • the current detection sensor CT detects a waveform like I 2 in FIG. From this current waveform signal, for example, the current abnormality detection unit 5 determines that an abnormality has occurred when a current equal to or greater than a predetermined threshold value i0 indicated by a horizontal broken line in FIG. 2 is detected as an absolute value, and outputs an abnormality signal SS.
  • a predetermined threshold value i0 indicated by a horizontal broken line in FIG. 2 is detected as an absolute value
  • the number of loads is the same in the first small load group 10 and the second small load group 20, but it is not necessary to have the same number of loads in each small load group. Even if the number is not the same, since the charge accumulated in another small load group flows into a small load group having a failed load and an inrush current is generated, the occurrence of an abnormality can be determined in the same manner as described above. .
  • a load group that is a mass of the plurality of capacitive loads is divided into two small load groups, 1 is divided into a first load group 10 and a second load group 20 and is divided into two small load groups from the AC power source 1 and at least one small load group on the load side from the branch point 4 for supplying current.
  • the voltage application method using the resonance generated by the AC power source 1, the reactor 2, and the load group 3 has been described. However, even if the voltage application does not use the resonance, the load is directly applied from the AC power source 1. A voltage may be applied to the group 3. In addition, a voltage is applied from an AC power source through a reactor, and resonance may not be used. Any voltage application method may be used.
  • FIG. FIG. 3 is a circuit diagram showing a schematic configuration of the capacitive load device according to the second embodiment of the present invention. 3, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the load group is divided into three small load groups, that is, the first small load group 10, the second small load group 20, and the third small load group 30, and each small load is divided.
  • the group is supplied with electric power from the AC power source 1 via the branch point 4. Further, the current detection sensor CT is provided so as to detect the current flowing through the third small load group 30.
  • FIG. 4 shows waveforms of currents flowing through the three small load groups in FIG.
  • FIG. 4 shows waveforms of currents flowing through the three small load groups in FIG.
  • the waveform shown in the middle of Figure 4 the waveform of the current I 2 flowing through the second sub-load group 20 in FIG. 4
  • FIG. 4 shows the waveform of the current I 3 flowing through the third small load group 30.
  • FIG. 4 shows waveforms of I 1 , I 2 , and I 3 when one load 300 in the first small load group 10 breaks down at time t1.
  • the load 300 is short-circuit damaged at time t ⁇ b> 1 , and an inrush current flows as the current I ⁇ b> 1 of the first small load group 10.
  • a projecting current is generated in which the charge accumulated in the second small load group 20 flows to the load 300.
  • a protruding current is generated in which the charge accumulated in the third load group 30 flows to the load 300.
  • a current sensor CT for detecting the current of the third small load group 30 is as I 3 in FIG. 4 Detects a simple waveform. From this current waveform signal, the current abnormality detection unit 5 determines that an abnormality has occurred and outputs an abnormality signal SS when, for example, an absolute value of a current equal to or greater than a predetermined threshold value i0 indicated by a horizontal broken line in FIG. 4 is detected. By performing control such as reducing or stopping the output of the AC power supply 1 with the abnormal signal SS, for example, it is possible to prevent influence on the power supply and loads other than the failed load.
  • the current abnormality detection unit 5 can determine the occurrence of an abnormality based on the signal of the current detection sensor CT, that is, the current detection sensor CT that detects the current I 3 of the third small load group 30.
  • the waveform of I 3 becomes like a waveform shown by I 1 in FIG. 4, the waveform of the I 1 and I 2 The waveform is as indicated by I 2 in FIG.
  • the I 3 caused inrush current flowing into the load short-circuited, a current detection sensor CT, that is, the current abnormality detector 5 by the signal of the current sensor CT for detecting a current I 3 of the third light load group 30 in FIG. 3 Can determine the occurrence of abnormality.
  • a load group that is a mass of the plurality of capacitive loads is divided into three small load groups, 3 is divided into the first small load group 10, the second small load group 20, and the third small load group 30, and is divided into three small load groups from the AC power supply 1 to supply a branch point 4
  • the number of small load groups is further increased. If the number of small load groups is two or more, that is, a plurality of small load groups, the effect of the present invention is achieved. Note that the number of loads in the entire load group may be any number as long as each load group has a plurality of loads.
  • FIG. 5 is a circuit diagram showing a schematic configuration of the capacitive load device according to the third embodiment of the present invention. 5, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the AC power supply 1, the first small load group 10, the second small load group 20, the branch point 4 and the like in FIG. 5 are the same as those in FIG.
  • two current detection sensors, a current detection sensor CT1 for detecting a current flowing through the first small load group 10 and a current detection sensor CT2 for detecting a current flowing through the second small load group 20 are used.
  • a current detection sensor CT1 for detecting a current flowing through the first small load group 10
  • a current detection sensor CT2 for detecting a current flowing through the second small load group 20 are used.
  • the difference amplifier 53 obtains a difference Iminus between the current detection signal of the current detection sensor CT1 and the current detection signal of the current detection sensor CT2, and the comparator 54 compares this Iminus with a predetermined threshold value. When Iminus is equal to or greater than a predetermined threshold, an abnormal signal SS is output.
  • FIG. 6 shows a current waveform when one load 300 in the first small load group 10 is short-circuited at time t1. 6, from above, shows a first current I 1 of the small load group 10, the current I 2 of the second sub-load group 20, and the waveform of their difference IMINUS. Prior to time t1, currents having substantially the same value are flowing in the same phase in the first small load group 10 and the second small load group 20, and therefore, the output Iminus of the differential amplifier 53, which is the difference between them, is almost zero. When short-circuit current flowing through the load 300 at time t1, the current I 1 of the first sub-load group 10 and the current I 2 of the second sub-load group 20 which is the difference for the reverse current flows Iminus is A large peak value appears. By comparing this Iminus with a predetermined threshold value i0 (indicated by a horizontal broken line in the waveform diagram of Iminus in FIG. 6) by the comparator 54, an abnormality can be detected and an abnormality signal SS can be output.
  • i0
  • FIG. 1 An example is shown in FIG. In the second small load group 20, it is assumed that an abnormality occurs in the load for some reason at time t2 and the current decreases. That is, when the current waveform of the second small load group 20 becomes a waveform as indicated by I 2 in FIG. 7, the current I 1 of the first small load group 10 and the current I of the second small load group 20 The difference Iminus from 2 is substantially 0 before time t2, as shown by the waveform of Iminus in FIG. 7, but a value appears after time t2. By comparing this Iminus with a predetermined threshold value i0 (indicated by a horizontal broken line in the waveform diagram of Iminus in FIG. 7) by the comparator 54, an abnormality can be detected and an abnormality signal SS can be output.
  • i0 a predetermined threshold value
  • the current difference may not be zero due to various factors.
  • the current flowing through the first small load group 10 and the current flowing through the second small load group 20 are slightly different due to variations in manufacturing of the load.
  • the current detection sensors CT1 and CT2 have slightly different sensitivities. As these countermeasures, the amplification of the two input terminals of the differential amplifier 53 is made different so that the output Iminus of the differential amplifier 53 becomes 0 when the load is normal, or the outputs of the current detection sensors CT1 and CT2 are changed.
  • each is input to a variable amplification amplifier, the amplification of each amplifier is adjusted, or when the current detection sensor is a current transformer, the resistor received by the output of the current transformer is adjusted as a variable resistor.
  • Various compensation measures can be implemented.
  • the load is a capacitive load, a capacitive load such as a dummy capacitor is inserted in parallel with the small load group on the smaller capacity side against unbalance caused by variations in load manufacturing.
  • the load current imbalance between the small load groups can also be adjusted.
  • the abnormality can be detected with very high accuracy.
  • FIG. FIG. 8 is a circuit diagram showing a schematic configuration of the capacitive load device according to the fourth embodiment of the present invention. 8, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the AC power supply 1, the first small load group 10, the second small load group 20, the branch point 4 and the like in FIG. 8 are the same as those in FIG.
  • the present embodiment 4 is configured to output a difference Iminus current I 2 of the current I 1 and the second sub-load group 20 which flows in the current detection sensor CT3 itself to the first sub-load group 10.
  • This output Iminus is compared with a predetermined threshold value by the comparator 54, and an abnormal signal SS is output when Iminus is equal to or greater than the threshold value.
  • FIG. 9 is a diagram showing another current detection sensor according to Embodiment 4 of the present invention.
  • the difference Iminus between the current I 1 and the current I 2 is output by one current transformer.
  • the output of the current transformer CT11 that is a current detection sensor for detecting the current I 1 is output.
  • the current waveform is obtained which is proportional to the difference Iminus current I 1 and the current I 2 as an output .
  • This output signal is compared with a predetermined threshold by a comparator 54 similar to that in FIG. 8, and an abnormal signal SS is output when Iminus is equal to or greater than the threshold.
  • FIG. 10 is a circuit diagram showing a schematic configuration of the capacitive load device according to the fourth embodiment of the present invention. 10, the same reference numerals as those in FIG. 8 denote the same or corresponding parts.
  • the number of loads is the same in the first small load group 10 and the second small load group 20, and the current flowing during normal operation is the same in both small load groups. It was made to become.
  • the number of loads is different between the first small load group 11 and the second small load group 21.
  • the difference between the two is obtained by making one of the outputs the same as the other output with a multiplier etc.
  • a current waveform with the same difference as in the fourth embodiment can be obtained.
  • the output of the differential amplifier can be made substantially zero during normal operation, and the output can be obtained by the differential amplifier only at the time of abnormality so that abnormality can be detected. it can.
  • the ratio between the detection sensitivity of the current I 1 and the detection sensitivity of the current I 2 is the ratio of the number of loads in each small load group.
  • the output at the time of normal operation can be made almost zero, and the output can be obtained only at the time of abnormality.
  • the current detection sensor is a current transformer
  • normal operation is achieved by making the turns ratio with the current I 1 as input and the turns ratio with the current I 2 as input differ by the ratio of the number of loads in each small load group.
  • the output of the hour can be made almost zero.
  • FIG. 11 is a circuit diagram showing a schematic configuration of the capacitive load device according to the sixth embodiment of the present invention. 11, the same reference numerals as those in FIGS. 1 to 10 denote the same or corresponding parts.
  • the load group is divided into two small load groups, and abnormality is detected based on the signal of the difference in current flowing through each load group.
  • the load group is divided into two groups. Is not limited.
  • the light load group is divided into three light load groups, a first light load group 12, a second light load group 22, and a third light load group 32.
  • the current I 1 of the first small load group 12 is detected by the current detection sensor CT12
  • the current I 2 of the second small load group 22 is detected by the current detection sensor CT22
  • the outputs of both current detection sensors are differential amplifiers.
  • the difference Iminus12 between the current I 1 and the current I 2 is obtained.
  • This Iminus12 and the threshold value 551 are compared by a comparator 541, and if Iminus12 is greater than the threshold value 551, an abnormal signal SS1 is output.
  • the differential amplifier 531, the comparator 541, and the threshold value 551 constitute a first current abnormality detection unit 501.
  • the current I 2 and the current are output from the output of the current detection sensor CT 22 that detects the current I 2 of the second small load group 22 and the output of the current detection sensor CT 32 that detects the current I 3 of the third small load group 32. obtaining a difference Iminus23 between I 3.
  • the second small load group 22 has a load number n2 of 3
  • the third small load group 32 has a load number n3 of 4. Therefore, a current detection sensor for detecting the current I2 of the second small load group 22 is used.
  • the multiplier 562 the output of CT22, namely those times 4/3, the difference in the differential amplifier 532 the output of the current detection sensor CT32 for detecting a current I 3 of the third light load group 32 obtaining a difference Iminus23 between the 4/3 and the current I 2 of the current I 2 by taking.
  • This Iminus23 and the threshold value 552 are compared by the comparator 542, and when the Iminus23 is larger than the threshold value 552, an abnormal signal SS2 is output.
  • the multiplier 562, the differential amplifier 532, the comparator 542, and the threshold value 552 constitute a second current abnormality detection unit 502. With this configuration, when a failure occurs in any load in the second small load group 22 or any load in the third small load group 32, the abnormal signal SS2 is output. Become.
  • the abnormality signal SS1 is output from the first current abnormality detection unit 501 or when the abnormality signal SS2 is output from the second current abnormality detection unit 502, that is, by ORing the abnormality signals SS1 and SS2, When such a signal is output, the output of the AC power supply 1 is reduced or stopped because an abnormality has occurred in the load.
  • the division of the entire load group into the small load groups is not essential, and two small load groups out of the plurality of small load groups can be divided into any number.
  • the effect of the present invention can be obtained by detecting the current and obtaining the difference. Increasing the number of load groups makes it easier to identify a portion where an abnormality has occurred in a narrower range. On the contrary, the configuration of the apparatus becomes simpler when the number of load groups is small.
  • FIG. FIG. 12 is a circuit diagram showing a schematic configuration of the capacitive load device according to the seventh embodiment of the present invention. 12, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the control for stopping the output of the AC power supply is performed. However, even when the output of the AC power supply is stopped, a certain load is short-circuited. The charge outflow from the other capacitive load does not stop until the charge accumulated in the other capacitive load is completely discharged. If the number of loads in the small load group is large, this charge amount may cause a problem.
  • the switch 41 when an abnormal current is detected by providing a current interrupting element such as a switch 41 between the small load group 10 and the small load group 20, that is, when an abnormal signal SS is output, While the AC power supply 1 is stopped, the switch 41 is opened to cut off the current, thereby preventing the outflow of charges from the small load group (small load group 20 in the example of FIG. 12) having no short-circuit load.
  • FIG. 13 is a circuit diagram showing a schematic configuration of another capacitive load device according to Embodiment 7 of the present invention. 13, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • switches 42 and 43 are provided on the small load group side from the branch point 4.
  • the current abnormality detection unit 5 detects the direction of the abnormal current. When the abnormal current is detected, the current abnormality detection unit 5 determines in which of the small load groups 10 and 20 an abnormality has occurred. Control is performed to open the switch on the side where the error occurs. By controlling in this way, it is possible to prevent charge outflow from a small load group without a short-circuit load. Without stopping the AC power supply 1, the operation of the small load group in which no abnormality has occurred can be continued.
  • the configuration in which a switch is inserted for each small load group in this way can also be applied to the case where there are three or more small load groups as in the sixth embodiment.
  • the switches 41, 42, 43, etc. may be current interrupting elements that interrupt current by themselves, such as fuses.
  • Load 4 Branch point 5
  • 50, 501, 502 Current abnormality detection unit 10, 11, 12, 20, 21 , 22, 30, 32: small load groups CT1, CT2, CT3, CT11, CT12: current detection sensors CT21, CT22, CT32: current detection sensors 41, 42, 43: switches (current interrupting elements)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Inverter Devices (AREA)

Abstract

 多数の容量性負荷が交流電源に接続されている装置において、簡単な構成で確実に異常を検出できる装置を提供する。 複数の容量性の負荷が並列に接続され、これら複数の負荷で構成される負荷群に交流電源から電流が供給される容量性負荷装置において、負荷群が複数の小負荷群に分割され、この複数の小負荷群に分割された分岐点よりも負荷側で少なくとも一つの小負荷群に流れる電流を検出する電流検出センサと、この電流検出センサにより検出された電流検出信号により負荷の異常を判断する電流異常検出部とを備えた。

Description

容量性負荷装置および容量性負荷装置の異常検出方法
 この発明は、交流電源に複数の容量性負荷が接続されている装置において、一部の負荷が短絡など異常状態になった場合に流れる異常電流を検出する装置ならびに検出する方法に関するものである。
 一般に、装置の負荷が短絡などの故障により異常電流が流れた場合に、異常電流を検知して電源を遮断する、あるいは異常電流により溶断するヒューズを電源と負荷の間に挿入する、などの方法により負荷や電源を保護している。ところで、大容量のオゾン発生装置(オゾナイザ)では、交流電源に接続される負荷として放電管が100本以上用いられている。このようなオゾナイザでは、放電管のばらつきにより、1本の放電管に短絡放電が生じてその放電管でアーク放電が生じることがある。このような異常発生時に、他の負荷や電源を保護するために、あるいは運転を継続させるために種々の技術が提案されている。
 例えば、複数の放電素子を備えたオゾン発生装置において、オゾン発生運転中に一もしくは複数の放電素子に異常が発生すると、各放電素子に接続されたそれぞれの異常検出手段によりその放電素子の異常を検出、交流電源回路の出力を所定の出力値まで低下させる。これにより、異常が発生した放電素子が電気的に切り離された後も、他の正常な放電素子に対してオーバーロードとなるような電流が流れることがなく、正常な放電素子が連鎖的に破壊される事態が回避でき、オゾンの発生を中断することなく残りの正常な放電素子で運転を継続することができるようにしたものがある。(特許文献1)。
 また、インバータの出力にガラス管で構成される放電管を接続してオゾンを発生するオゾン発生器において、ガラス管が破損したなどの異常発生時に、第1の時定数で電圧降下を出力する第1の電圧V1の出力回路と、第1の時定数より遅い第2の時定数で電圧降下を出力する第2の電圧V2の出力回路とを備え、これらに接続される比較器が第2の電圧出力V2>第1の電圧出力V1となったとき、異常発生信号を出力するように構成したものがある(特許文献2)。
特開平11-29306号公報 特開2007-217237号公報
 特許文献1の装置では、各放電素子に異常検出手段を設ける必要があるため、大容量のオゾン発生装置のように放電素子が多数接続されている場合、異常検出手段も多数必要となり、装置が複雑となる問題があった。
 また、特許文献2の技術では電圧の低下で異常を判断しているため、大容量のオゾン発生器のように多数のガラス管がインバータの出力に接続されている装置にこの技術を適用しようとすると、一つのガラス管が破損しただけでは、電圧の低下が小さいため、異常の検知が難しいという問題があった。
 この発明は、上記のような問題点を解決するためになされたものであり、多数の負荷、特に大容量のオゾナイザのように多数の容量性負荷が交流電源に接続されている装置において、簡単な構成で確実に異常を検出できる装置を提供することを目的とする。
 この発明に係る容量性負荷装置は、複数の容量性の負荷が並列に接続され、これら複数の負荷で構成される負荷群に交流電源から電流が供給されるものにおいて、負荷群が複数の小負荷群に分割され、この複数の小負荷群に分割された分岐点よりも負荷側で少なくとも一つの小負荷群に流れる電流を検出する電流検出センサと、この電流検出センサにより検出された電流検出信号により負荷の異常を判断する電流異常検出部とを備えたものである。
 また、この発明に係る容量性負荷装置の異常検出方法は、複数の容量性の負荷が並列に接続され、これら複数の負荷で構成される負荷群に交流電源から電流が供給される容量性負荷装置の異常を検出する異常検出方法であって、負荷群を複数の負荷群に分割するとともに、これら複数の負荷群の少なくとも一つの負荷群に流れ込む電流を検出して、この電流に異常が生じた場合に、負荷群のなかのいずれかの負荷に異常が生じたと判断するものである。
 この発明に係る容量性負荷装置は上記のように構成されているため、簡単な構成で確実に異常を検出できる。
この発明の実施の形態1による容量性負荷装置の概略構成を示す回路図である。 この発明の実施の形態1による容量性負荷装置の動作を説明するための模式図である。 この発明の実施の形態2による容量性負荷装置の概略構成を示す回路図である。 この発明の実施の形態2による容量性負荷装置の動作を説明するための模式図である。 この発明の実施の形態3による容量性負荷装置の概略構成を示す回路図である。 この発明の実施の形態3による容量性負荷装置の動作を説明するための模式図である。 この発明の実施の形態3による容量性負荷装置の他の動作を説明するための模式図である。 この発明の実施の形態4による容量性負荷装置の概略構成を示す回路図である。 この発明の実施の形態4による容量性負荷装置の別の電流検出センサの詳細を示す図である。 この発明の実施の形態5による容量性負荷装置の概略構成を示す回路図である。 この発明の実施の形態6による容量性負荷装置の概略構成を示す回路図である。 この発明の実施の形態7による容量性負荷装置の概略構成を示す回路図である。 この発明の実施の形態7による別の容量性負荷装置の概略構成を示す回路図である。
実施の形態1.
 図1は、本発明の実施の形態1による容量性負荷装置の概略構成を示す回路図である。図1において、1はインバータなど、高周波交流を発生する交流電源、2はリアクトル、3-1、3-2、3-nは、n個備えられている負荷を示し、例えばオゾン発生器であれば、複数備えられた放電管の1本1本を示す。負荷全体はまとめて負荷群3と記載することもある。図1においてはn=10の例を示している。10は10個ある負荷の内5個をまとめた第一の小負荷群、20は残りの負荷5個をまとめた第二の小負荷群で、第一の小負荷群10と第二の小負荷群20には分岐点4を介して交流電源1からそれぞれ電力が供給される。CTは第二の小負荷群20に流れる電流を検出する電流検出センサ、5は電流検出センサCTで検出した電流信号によって電流の異常を判断する電流異常検出部で、異常と判断した場合に異常信号SSを出力する。この異常信号SSは、例えば交流電源1に入力されて、異常の場合に交流電源1の出力電圧を低下させる、交流電源を停止する、あるいは交流電源を一旦停止した後、一定時間経過後に電源を再起動する、などの制御を行う。
 以下、負荷群3がオゾン発生器の多数の放電管である場合について説明する。オゾン発生器の放電管は、ガラス管などの誘電体管の内面に高圧電極となる金属膜を形成し、このガラス管を該ガラス管の外径よりも大きな寸法の内径を有する金属管に挿入して、ガラス管の外面と金属管の内面との間の隙間に酸素を含むガスを流す構成となっている。高圧電極である金属膜と金属管との間に高圧の交流電圧を印加することにより隙間のガスが放電して酸素をオゾン化する。このオゾン発生器を例えば上水道の水処理に用いる場合、処理する水の量が多量であるため、処理に必要なオゾンの量も多量となり、大容量のオゾン発生器が必要となる。大容量のオゾン発生器では、一つの装置で放電管が数百本、時には1000本以上の放電管を備えることとなる。図1では説明のために負荷として放電管が10個の例を示しているが、実際には、上記のように負荷の数n=1000といった非常に多数の負荷が接続されることも珍しくない。
 以上のように、オゾン発生器では、ガラス管である誘電体を介してガスに交流電圧を印加して放電を発生させる、いわゆる無声放電を応用している。印加する交流の周波数としては数百Hz~10kHz程度、電圧は波高値として5~12kV程度である。無声放電においては、電源から放電管をみると誘電体を介して放電部分に電流を供給しているため、負荷としては容量性負荷となっている。このため、図1において各負荷3-1などは容量、すなわちコンデンサを含む記載としている。
 以下、図1を用いて、多数の放電管、すなわち容量性負荷が接続された装置の動作を説明する。図1に示すように、第一の小負荷群10に流れる電流、すなわち分岐点4を通って第一の小負荷群10に流れる電流をI、第二の小負荷群20に流れる電流、すなわち分岐点4を通って第二の小負荷群20に流れる電流をI2とする。また交流電源1からリアクトル2を通って分岐点4に流れ込む電流、すなわち電源から第一の小負荷群10と第二の小負荷群20全体に流れ込む電流をI0とする。放電管が正常である場合は、交流電
源1からリアクトル2を通じて負荷3-1~3-nに加えられる交流電圧に応じて、負荷の放電管で放電が生じて交流電流が流れる。負荷としての放電管は非線形の動作をするため、電源の電圧が正弦波であっても、流れる電流は印加される電圧に応じた正弦波にはならず歪んだ波形となるが、ここでは簡単のため電流も正弦波として説明する。
 何らかの原因で複数の放電管のうちの一つが破損して、破損した放電管でアーク放電が生じて短絡する故障が生じたと仮定する。例えば、図1における第一の小負荷群10の一つの負荷300で短絡する故障が生じたとした場合の模式的な電流波形を図2に示す。図2は上からI0、I、I2の波形を示している。時刻t1に負荷300で短絡が生じると、負荷300には他の負荷に蓄積されている電荷が流入する。このため、図2に示すように、Iには負荷300に流れ込む突入電流が生じ、I2には第二の小負荷群20に蓄積されていた電荷が負荷300に流れ出す突出電流が生じる。一方、I0に関しては、リアクトル2があるため、急激な突入電流はほとんど生じない。また、図1においては、交流電源1とリアクトル2、および負荷全体で共振するような条件で電圧が印加されるようになっている。これは、負荷に印加される電圧を上げるためであるが、一つの負荷が短絡状態となると共振条件からずれるため、負荷に印加される電圧が下がり、時刻t1以降は電源から流入する電流が低下する。
 本実施の形態1では電流検出センサCTは第二の小負荷群20に流れる電流I2を検出するように設置している。この場合、図2の一番下の波形を検出することになり、第一の小負荷群10の一つの負荷で短絡が生じたにも関わらす、第二の小負荷群20に流れる電流I2を検出する電流検出センサCTによって、第一の小負荷群10の一つの負荷で生じた短絡を検知できる。特許文献1では、各放電素子に電流検出手段を備えて電流検出手段による検出値が所定の上限値を超えたことで、当該電流検出手段を備えた放電素子に異常が生じたと判断する技術が開示されている。従来は、特許文献1に記載されているように、多数の放電素子のそれぞれの異常は、その放電素子に流れる電流を検出することによってのみ検出できると考えられていた。しかしながら、本発明者らは、オゾン発生器のように複数の容量性負荷が並列に接続されている装置において、一つの負荷に放電破壊などで短絡の故障が生じた場合、他の負荷から故障が生じた負荷に電荷が流れ込む現象があることに気付き、負荷全ての電流を検出しなくても、故障が生じていない負荷から故障が生じた負荷に流れ込む電流を検出することで異常が検知できることを見出したのである。
 以上のように、第一の小負荷群10の一つの負荷に短絡の異常が発生した場合、電流検出センサCTは図2のI2のような波形を検出する。この電流波形の信号から電流異常検出部5は例えば絶対値として図2中の横破線で示す所定の閾値i0以上の電流を検出した場合に異常が生じたと判断して異常信号SSを出力する。異常信号SSにより、例えば交流電源1の出力を低下させる、あるいは停止させるなどの制御を行うことにより電源や、故障した負荷以外の負荷への影響を防止できる。
 なお、図1、図2では、第一の小負荷群10のうちの一つの負荷で短絡故障が生じた場合を説明したが、第二の小負荷群20のうちの一つの負荷で短絡故障が生じた場合は、I2の波形が図2のIで示す波形の様になり、Iの波形が図2のI2で示す波形の様になる。I2には短絡故障した負荷に流れ込む突入電流が生じ、図1の電流検出センサCT、すなわち第二の小負荷群20の電流I2を検出する電流検出センサCTの信号により電流異常検出部5において異常の発生を判断できる。
 図1では、第一の小負荷群10と第二の小負荷群20で負荷の数を同数としているが、各小負荷群で負荷を同数とする必要はない。同数でなくても、故障した負荷を有する小負荷群には、別の小負荷群に蓄積された電荷が流れ込み、突入電流が生じるから、上記で説明したのと同様に異常の発生を判断できる。
 このように、本発明の実施の形態1によれば、複数の容量性の負荷が並列に接続された装置において、これら複数の容量性負荷の塊である負荷群を2つの小負荷群、図1では第一の負荷群10と第二の負荷群20とに分割し、交流電源1から二つの小負荷群に分けて電流を供給する分岐点4よりも負荷側において少なくとも一つの小負荷群に流れる電流を検出することで、いずれの小負荷群で短絡故障の異常が生じても異常を判断できるという効果がある。
 上記では、交流電源1とリアクトル2と負荷群3とで生じる共振を利用した電圧印加方法によるものを説明したが、電圧の印加は共振を利用したものでなくても、交流電源1からそのまま負荷群3に電圧を印加するものであってもよい。また、交流電源からリアクトルを通して電圧を印加するものであって、共振を利用しないものであっても良く、電圧の印加方法はどのようなものであっても良い。
実施の形態2.
 図3は、本発明の実施の形態2による容量性負荷装置の概略構成を示す回路図である。図3において、図1と同一符号は同一または相当する部分を示す。本実施の形態2においては、負荷群を3つの小負荷群、すなわち、第一の小負荷群10、第二の小負荷群20、第三の小負荷群30に分割し、それぞれの小負荷群に、分岐点4を介して交流電源1から電力を供給するようにしたものである。また、電流検出センサCTを第三の小負荷群30に流れる電流を検出するように設けている。
 図4に、図3における3つの小負荷群に流れる電流波形を示す。すなわち、図4の最上部に示す波形は第一の小負荷群10に流れる電流Iの波形、図4の中央に示す波形は第二の小負荷群20に流れる電流I2の波形、図4の最下部に示す波形は第三の小負荷群30に流れる電流Iの波形を示している。図4では、時刻t1において第一の小負荷群10の内の一つの負荷300が短絡破壊した場合のI、I2、Iの波形を示している。図4に示すように、時刻t1で負荷300が短絡破損し、第一の小負荷群10の電流Iとして突入電流が流れる。また、第二の小負荷群20の電流I2には第二の小負荷群20に蓄積されていた電荷が負荷300に流れ出す突出電流が生じる。同様に、第三の小負荷群30の電流Iには第三の負荷群30に蓄積されていた電荷が負荷300に流れ出す突出電流が生じる。
 以上のように、第一の小負荷群10の一つの負荷300に短絡の異常が発生した場合、第三の小負荷群30の電流を検出する電流検出センサCTは図4のIのような波形を検出する。この電流波形の信号から電流異常検出部5は例えば絶対値として図4中の横破線で示す所定の閾値i0以上の電流を検出した場合に異常が生じたと判断して異常信号SSを出力する。異常信号SSにより、例えば交流電源1の出力を低下させる、あるいは停止させるなどの制御を行うことにより電源や、故障した負荷以外の負荷への影響を防止できる。
 なお、図3、図4では、第一の小負荷群10のうちの一つの負荷で短絡故障が生じた場合を説明したが、第二の小負荷群20のうちの一つの負荷で短絡故障が生じた場合も、第三の小負荷群30の電流Iは上記の第一の小負荷群10のうちの一つの負荷で短絡故障が生じたのと同様の電流波形となり、図3の電流検出センサCT、すなわち第三の小負荷群30の電流Iを検出する電流検出センサCTの信号により電流異常検出部5が異常の発生を判断できる。
 また、第三の小負荷群30のうちの一つの負荷で短絡故障が生じた場合は、Iの波形が図4のIで示す波形の様になり、IおよびIの波形が図4のI2で示す波形の様になる。Iには短絡故障した負荷に流れ込む突入電流が生じ、図3の電流検出センサCT、すなわち第三の小負荷群30の電流Iを検出する電流検出センサCTの信号により電流異常検出部5が異常の発生を判断できる。
 このように、本発明の実施の形態2によれば、複数の容量性の負荷が並列に接続された装置において、これら複数の容量性負荷の塊である負荷群を3つの小負荷群、図3では第一の小負荷群10、第二の小負荷群20、および第三の小負荷群30、に分割し、交流電源1から三つの小負荷群に分けて電流を供給する分岐点4よりも負荷側において少なくとも一つの小負荷群に流れる電流を検出することで、いずれの負荷群で短絡故障の異常が生じても異常を判断できるという効果がある。さらに小負荷群の数を増加させても同様であり、小負荷群の数は2以上、すなわち複数であれば本発明の効果を奏する。
 なお、負荷群全体における負荷の数は、各負荷群が複数の負荷を有するような数であれば幾つでも良い。
実施の形態3.
 図5は、本発明の実施の形態3による容量性負荷装置の概略構成を示す回路図である。図5において、図1と同一符号は同一または相当する部分を示す。図5の交流電源1、第一の小負荷群10、第二の小負荷群20、分岐点4などは図1と同様である。本実施の形態3では、第一の小負荷群10に流れる電流を検出する電流検出センサCT1、および第二の小負荷群20に流れる電流を検出する電流検出センサCT2、の2つの電流検出センサを設けた。電流異常検出部50において、差分増幅器53により電流検出センサCT1の電流検出信号と電流検出センサCT2の電流検出信号との差Iminusを求め、比較器54でこのIminusと所定の閾値を比較して、Iminusが所定の閾値以上の場合、異常信号SSを出力するようにしている。
 図6に、時刻t1で第一の小負荷群10のうちの一つの負荷300が短絡故障した場合の電流波形を示す。図6において、上から、第一の小負荷群10の電流I、第二の小負荷群20の電流I、およびそれらの差Iminusの波形を示している。時刻t1以前は第一の小負荷群10と第二の小負荷群20には同相でほぼ同じ値の電流が流れているので、その差である差分増幅器53の出力Iminusはほぼ0となる。時刻t1で負荷300に短絡電流が流れると、第一の小負荷群10の電流Iと第二の小負荷群20の電流Iとは逆の電流が流れるためその差であるIminusには大きなピーク値が現れる。このIminusを比較器54で所定の閾値i0(図6のIminusの波形図において横破線で示している。)と比較することで異常を検出でき異常信号SSを出力できる。
 また、ある負荷が短絡した場合のみならず、何らかの原因で負荷が故障し、その負荷の電流が他の負荷とは違った電流波形となった場合も検知できる。図7にその例を示す。第二の小負荷群20において、時刻t2に何らかの原因で負荷に異常が発生して電流が減少したとする。すなわち、第二の小負荷群20の電流波形が図7のIで示すような波形となった場合、第一の小負荷群10の電流Iと第二の小負荷群20の電流Iとの差Iminusは図7のIminusの波形で示すように、時刻t2以前はほぼ0となっているが、時刻t2以降は値が現れる。このIminusを比較器54で所定の閾値i0(図7のIminusの波形図において横破線で示している。)と比較することで異常を検出でき異常信号SSを出力できる。
 なお、負荷が正常に動作している場合に、種々の要因で電流の差分が0とならないことが考えられる。例えば、負荷の製造時のばらつきなどが原因で、第一の小負荷群10に流れる電流と、第二の小負荷群20に流れる電流がわずかに異なることが考えられる。また、電流検出センサCT1とCT2の感度がわずかに異なることが考えられる。これらの対策としては、負荷の正常時に差分増幅器53の出力Iminusが0となるように差分増幅器53の2つの入力端子の増幅度を異なるものにする、または各電流検出センサCT1とCT2の出力を、一旦それぞれ増幅度可変の増幅器に入力しそれぞれの増幅器の増幅度を調整する、あるいは電流検出センサが電流トランスの場合、電流トランスの出力が受ける抵抗器を可変抵抗器として調整する、など一般的な様々な補償対策を実施することができる。また、負荷が容量性負荷であるから、負荷の製造時のばらつきなどが原因のアンバランスに対しては、容量が小さい側の小負荷群に並列にダミーのコンデンサなど容量性負荷を挿入して小負荷群間の負荷電流のアンバランスを調整することもできる。あるいは、2つの小負荷群10と20の特性が非線形でその非線形性が異なることも考えられる。その場合は、それぞれの電流検出センサの出力を別々の非線形増幅器で増幅し、それぞれの出力を線形化した後に差動増幅することが考えられる。以上の小負荷群や電流検出センサのアンバランスの補償は、以下の実施の形態においても、必要に応じて実施できることは言うまでもない。
 以上のように、本実施の形態2では、第一の小負荷群10の電流Iと第二の小負荷群20の電流Iの差Iminusを求めることで、異常時にのみ大きな信号を得ることができるため、非常に精度良く異常を検出できる。
実施の形態4.
 図8は、本発明の実施の形態4による容量性負荷装置の概略構成を示す回路図である。図8において、図1と同一符号は同一または相当する部分を示す。図8の交流電源1、第一の小負荷群10、第二の小負荷群20、分岐点4などは図1と同様である。本実施の形態4は、電流検出センサCT3自身で第一の小負荷群10に流れる電流Iと第二の小負荷群20の電流Iの差Iminusを出力するものである。電流検出センサCT3を電流トランスとして、電流Iと電流Iとが逆方向に流れるように電流トランスの入力とすることで、電流トランスの出力に電流Iと電流Iの差Iminusが現れるようにした。この出力Iminusを比較器54で所定の閾値と比較してIminusが閾値以上の場合に異常信号SSを出力するようにしている。
 図9は、本発明の実施の形態4による別の電流検出センサを示す図である。図8では、一つの電流トランスで電流Iと電流Iの差Iminusを出力するようにしたが、図9に示すように、電流Iを検出する電流検出センサである電流トランスCT11の出力と、電流Iを検出する電流検出センサである電流トランスCT22の出力とを逆位相で直列に接続することで、出力として電流Iと電流Iの差Iminusに比例した電流波形が得られる。この出力信号を図8と同様の比較器54で所定の閾値と比較してIminusが閾値以上の場合に異常信号SSを出力するようにする。
 以上のように、本実施の形態4においては、電流検出センサ自身で第一の小負荷群10に流れる電流Iと第二の小負荷群20の電流Iの差Iminusを出力するようにしたので、差分増幅器を設ける必要がなく、より簡単な構成で精度良く異常を検出することができる。
実施の形態5.
 図10は、本発明の実施の形態4による容量性負荷装置の概略構成を示す回路図である。図10において、図8と同一符号は同一または相当する部分を示す。実施の形態3や実施の形態4においては、第一の小負荷群10と第二の小負荷群20とで負荷の数を同数として、正常動作時に流れる電流を、両小負荷群で同じになるようにした。本実施の形態5では、第一の小負荷群11と第二の小負荷群21とで、負荷の数が異なっている。このように負荷の数が異なり、正常動作時においても両負荷群に流れる電流が異なる場合でも、いずれかの出力を乗算器などで他の出力と同じになるようにして両者の差を求めることで、実施の形態4と同様な差の電流波形が得られる。
 例えば図10に示すように第一の小負荷群11における負荷の数n1が3で、第二の小負荷群21における負荷の数n2が7の場合、第一の小負荷群11に流れる電流Iの電流を検出する電流検出センサCT1の出力を乗算器56でn2/n1倍、すなわち7/3倍して、差分増幅器53で第二の小負荷群21に流れる電流Iの電流を検出する電流検出センサCT2の出力との差分を出力することで、正常動作時には差分増幅器の出力をほぼ0とすることができ、異常時にのみ差分増幅器で出力が得られ、異常を検出することができる。
 さらに、実施の形態4で示した電流検出センサ自身で差分出力を得るものにおいても、電流Iの検出感度と電流Iの検出感度との比を各小負荷群の負荷の数の比とすることで、正常動作時の出力をほぼ0とすることができ、異常時にのみ出力を得るようにすることができる。例えば、電流検出センサが電流トランスである場合、電流Iを入力とする巻数比と電流Iを入力とする巻数比を各小負荷群の負荷の数の比で異ならせることで、正常動作時の出力をほぼ0とすることができる。
実施の形態6.
 図11は、本発明の実施の形態6による容量性負荷装置の概略構成を示す回路図である。図11において、図1~図10と同一符号は同一または相当する部分を示す。実施の形態3~5では、負荷群を2つの小負荷群に分割して、それぞれの負荷群に流れる電流の差の信号を基に異常を検出したが、負荷群の分割数は2つには限られない。本実施の形態6では、小負荷群を、第一の小負荷群12、第二の小負荷群22、および第三の小負荷群32の3つの小負荷群に分割している。
 第一の小負荷群12の電流Iを電流検出センサCT12で検出し、第二の小負荷群22の電流I2を電流検出センサCT22で検出して両電流検出センサの出力を差動増幅器531で差分を取ることにより電流Iと電流I2をとの差Iminus12を得る。このIminus12と閾値551とを比較器541で比較し、Iminus12が閾値551より大きい場合異常信号SS1を出力する。これらの差動増幅器531、比較器541、閾値551とで第一の電流異常検出部501を構成する。このように構成することで、第一の小負荷群12のいずれかの負荷、あるいは第二の小負荷群22のいずれかの負荷に故障が生じた場合に異常信号SS1が出力されることになる。
 また、第二の小負荷群22の電流Iを検出する電流検出センサCT22の出力と、第三の小負荷群32の電流Iを検出する電流検出センサCT32の出力から電流Iと電流Iとの差Iminus23を得る。第二の小負荷群22は負荷の個数n2が3、第三の小負荷群32の負荷の個数n3が4であるから、第二の小負荷群22の電流Iを検出する電流検出センサCT22の出力を乗算器562でn3/n2倍、すなわち4/3倍したものと、第三の小負荷群32の電流Iを検出する電流検出センサCT32の出力を差動増幅器532で差分を取ることにより電流Iの4/3倍と電流I2をとの差Iminus23を得る。このIminus23と閾値552とを比較器542で比較し、Iminus23が閾値552より大きい場合異常信号SS2を出力する。これらの乗算器562、差動増幅器532、比較器542、閾値552とで第二の電流異常検出部502を構成する。このように構成することで、第二の小負荷群22のいずれかの負荷、あるいは第三の小負荷群32のいずれかの負荷に故障が生じた場合に異常信号SS2が出力されることになる。
 第一の電流異常検出部501から異常信号SS1が出力された場合、あるいは第二の電流異常検出部502から異常信号SS2が出力された場合、すなわち異常信号SS1とSS2のORを取って、いずれかの信号が出力された場合、負荷に異常が生じたとして交流電源1の出力を低下させたり、停止させたりする。
 本実施の形態6で説明したように、負荷群全体の小負荷群への分割は、2つが必須ではなく、いくつに分割しても、その複数の小負荷群のうちの2つの小負荷群の電流を検出して差を求める構成とすることにより、本発明の効果が得られる。負荷群の数を増やせば、異常が生じている部分をより狭い範囲で特定し易くなる。反対に、負荷群の数が少ない方が装置の構成が単純となる。
実施の形態7.
 図12は、本発明の実施の形態7による容量性負荷装置の概略構成を示す回路図である。図12において、図1と同一符号は同一または相当する部分を示す。実施の形態1~6では、異常電流を検出した場合、例えば交流電源の出力を停止する制御を行うこととしたが、交流電源の出力を停止しても、ある負荷が短絡状態になった場合、他の容量性負荷に蓄積されていた電荷が放電し終わるまで、他の容量性負荷からの電荷流出が停止しない。小負荷群の負荷の数が多いとこの電荷量が問題となる場合がある。このため、本実施の形態7では、小負荷群10と小負荷群20の間にスイッチ41などの電流遮断素子を設けて、異常電流を検出した場合、すなわち異常信号SSが出力された場合、交流電源1を停止するとともに、スイッチ41を開放して電流を遮断し、短絡負荷がない小負荷群(図12の例では小負荷群20)からの電荷流出を防止する。
 図13は、本発明の実施の形態7による別の容量性負荷装置の概略構成を示す回路図である。図13において、図1と同一符号は同一または相当する部分を示す。図13においては、分岐点4からそれぞれの小負荷群側にスイッチ42および43を設けた。電流異常検出部5は異常電流の方向をも検出するようにし、異常電流を検出した場合、小負荷群10および20のどちらで異常が生じたかを判断して、スイッチ42および43のうち、異常が生じた側のスイッチを開放するように制御する。このように制御すれば、短絡負荷がない小負荷群からの電荷流出を防止できるとともに。交流電源1を停止せずに、異常が生じていない小負荷群の運転を継続することができる。また、このように小負荷群毎にスイッチを挿入する構成は、実施の形態6のように小負荷群が3以上の場合にも適用可能である。
 なお、スイッチ41、42、43などは、ヒューズのような自己で電流を遮断する電流遮断素子でも良い。
 1:交流電源
 3、300、3-1、3-2、3-i、3-n:負荷
 4:分岐点
 5、50、501、502:電流異常検出部
10、11、12、20、21、22、30、32:小負荷群
CT1、CT2、CT3、CT11、CT12:電流検出センサ
CT21、CT22、CT32:電流検出センサ
41、42、43:スイッチ(電流遮断素子)

Claims (10)

  1.  複数の容量性の負荷が並列に接続され、これら複数の負荷で構成される負荷群に交流電源から電流が供給される容量性負荷装置において、
     上記負荷群が複数の小負荷群に分割され、この複数の小負荷群に分割された分岐点よりも負荷側で少なくとも一つの小負荷群に流れる電流を検出する電流検出センサと、この電流検出センサにより検出された電流検出信号により負荷の異常を判断する電流異常検出部とを備えたことを特徴とする容量性負荷装置。
  2.  複数の小負荷群のうちの2つの負荷群に流れる電流をそれぞれ検出する電流検出センサを備えたことを特徴とする請求項1に記載の容量性負荷装置。
  3.  それぞれの電流検出センサからの出力の差を求め、この差が所定の閾値以上となった場合に電流異常検出部が負荷に異常が生じたと判断することを特徴とする請求項2に記載の容量性負荷装置。
  4.  それぞれの電流検出センサの出力を、それぞれの小負荷群の負荷の数に対応した乗数で乗算して差を求めることを特徴とする請求項3に記載の容量性負荷装置。
  5.  負荷群を2つの小負荷群に分割したことを特徴とする請求項2乃至4いずれか1項に記載の容量性負荷装置。
  6.  分岐点よりも少なくとも1つの小負荷群側に電流遮断素子を設け、電流異常検出部が負荷に異常が生じたと判断した場合に上記電流遮断素子により電流を遮断するよう制御することを特徴とする請求項1に記載の容量性負荷装置。
  7.  分岐点よりも少なくとも1つの小負荷群側にヒューズを設けたことを特徴とする請求項1に記載の容量性負荷装置。
  8.  複数の容量性の負荷が並列に接続され、これら複数の負荷で構成される負荷群に交流電源から電流が供給される容量性負荷装置の異常を検出する異常検出方法であって、
     上記負荷群を複数の小負荷群に分割するとともに、これら複数の小負荷群の少なくとも一つの負荷群に流れ込む電流を検出して、この電流に異常が生じた場合に、上記負荷群のうちのいずれかの負荷に異常が生じたと判断することを特徴とする容量性負荷装置の異常検出方法。
  9.  複数の小負荷群のうちの二つの小負荷群に流れる電流の差が所定の閾値以上の場合に、上記二つの小負荷群のうちいずれかの小負荷群の負荷に異常が生じたと判断することを特徴とする請求項8に記載の容量性負荷装置の異常検出方法。
  10.  負荷群を2つの小負荷群に分割したことを特徴とする請求項9に記載の容量性負荷装置の異常検出方法。
PCT/JP2010/060284 2010-06-17 2010-06-17 容量性負荷装置および容量性負荷装置の異常検出方法 WO2011158361A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2803049A CA2803049C (en) 2010-06-17 2010-06-17 Device having capacitive loads and abnormality detecting method thereof
JP2012520219A JP5619157B2 (ja) 2010-06-17 2010-06-17 容量性負荷装置および容量性負荷装置の異常検出方法
EP10853242.5A EP2584365A4 (en) 2010-06-17 2010-06-17 CAPACITIVE LOAD DEVICE AND METHOD FOR DETECTING ANOMALIES IN SAID DEVICE
PCT/JP2010/060284 WO2011158361A1 (ja) 2010-06-17 2010-06-17 容量性負荷装置および容量性負荷装置の異常検出方法
US13/582,661 US8896316B2 (en) 2010-06-17 2010-06-17 Device having capacitive loads and abnormality detecting method thereof
CN201080067438.1A CN102933973B (zh) 2010-06-17 2010-06-17 电容性负载装置及电容性负载装置的异常检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060284 WO2011158361A1 (ja) 2010-06-17 2010-06-17 容量性負荷装置および容量性負荷装置の異常検出方法

Publications (2)

Publication Number Publication Date
WO2011158361A1 true WO2011158361A1 (ja) 2011-12-22
WO2011158361A8 WO2011158361A8 (ja) 2012-10-11

Family

ID=45347782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060284 WO2011158361A1 (ja) 2010-06-17 2010-06-17 容量性負荷装置および容量性負荷装置の異常検出方法

Country Status (6)

Country Link
US (1) US8896316B2 (ja)
EP (1) EP2584365A4 (ja)
JP (1) JP5619157B2 (ja)
CN (1) CN102933973B (ja)
CA (1) CA2803049C (ja)
WO (1) WO2011158361A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128479A (ja) * 2016-01-20 2017-07-27 株式会社東芝 オゾン発生装置および電源装置
JP6818958B1 (ja) * 2020-05-20 2021-01-27 三菱電機株式会社 マルチユニット式オゾン発生器
JP2021046331A (ja) * 2019-09-17 2021-03-25 株式会社東芝 オゾン発生器異常検出装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043464A (zh) * 2015-06-30 2015-11-11 柳州弘天科技有限公司 蒸汽涡街流量计的检测方法
CN108132394A (zh) * 2017-11-28 2018-06-08 上海芯导电子科技有限公司 一种微负载自动检测电路
CN108802554B (zh) * 2018-06-13 2021-05-11 中车株洲电力机车有限公司 一种电容漏电异常检测方法及系统、计算机设备
WO2020140250A1 (en) * 2019-01-04 2020-07-09 Abb Schweiz Ag Apparatus and method for monitoring capacitor bank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136468U (ja) * 1988-03-10 1989-09-19
JPH1129306A (ja) * 1997-06-11 1999-02-02 Kobe Steel Ltd オゾン発生装置の制御装置
JP2001037071A (ja) * 1999-07-16 2001-02-09 Auto Network Gijutsu Kenkyusho:Kk 車両の給電回路における断線検知方法及び装置並びに過熱防止方法及び装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916309A (en) * 1974-09-30 1975-10-28 S & C Electric Co Short circuit capacity measuring device
DE2451353C2 (de) * 1974-10-29 1976-08-19 Siemens AG, 1000 Berlin und 8000 München Schutzschaltungsanordnung für einen Hochspannungskondensatorblock
DE3020128A1 (de) * 1980-05-27 1981-12-03 Siemens AG, 1000 Berlin und 8000 München Ueberwachungseinrichtung fuer eine kondensatorbatterie an einem wechselspannungsnetz
US4425541A (en) * 1981-09-14 1984-01-10 Commonwealth Edison Co. Apparatus for identifying defective electric power distribution capacitors
JP3019560B2 (ja) 1991-12-09 2000-03-13 富士電機株式会社 送電線用避雷装置の続流遮断試験方法
JPH0959005A (ja) 1995-08-25 1997-03-04 Meidensha Corp オゾン発生装置の放電管破壊監視装置
JP3704400B2 (ja) * 1996-07-03 2005-10-12 ファナック株式会社 モータのインバータ駆動制御装置における異常診断方法
JP3163994B2 (ja) * 1996-10-07 2001-05-08 トヨタ自動車株式会社 内燃機関関係機器の異常検出装置およびこれを備える動力出力装置
US6181113B1 (en) * 1999-07-29 2001-01-30 Abb Power T&D Company Inc. Harmonic resonance control and protection system for switched power factor control capacitor devices
JP3936169B2 (ja) * 2001-11-06 2007-06-27 パナソニック・イーブイ・エナジー株式会社 組電池システムの異常検出方法及び装置
JP3935117B2 (ja) * 2003-07-08 2007-06-20 本田技研工業株式会社 バッテリの負荷電力検出装置
US7852606B2 (en) 2005-08-24 2010-12-14 Leviton Manufacturing Company, Inc. Self-testing circuit interrupting device
US7477505B2 (en) * 2005-10-18 2009-01-13 General Hydrogen Corporation Capacitor bank for electrical generator
JP4845529B2 (ja) 2006-02-17 2011-12-28 三菱電機株式会社 オゾン発生装置
EP2166635B1 (en) * 2008-09-23 2012-02-29 ABB Oy Current measurement in an inverter unit and a frequency converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136468U (ja) * 1988-03-10 1989-09-19
JPH1129306A (ja) * 1997-06-11 1999-02-02 Kobe Steel Ltd オゾン発生装置の制御装置
JP2001037071A (ja) * 1999-07-16 2001-02-09 Auto Network Gijutsu Kenkyusho:Kk 車両の給電回路における断線検知方法及び装置並びに過熱防止方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2584365A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128479A (ja) * 2016-01-20 2017-07-27 株式会社東芝 オゾン発生装置および電源装置
JP2021046331A (ja) * 2019-09-17 2021-03-25 株式会社東芝 オゾン発生器異常検出装置
JP7346191B2 (ja) 2019-09-17 2023-09-19 株式会社東芝 オゾン発生器異常検出装置、およびオゾン発生装置
JP6818958B1 (ja) * 2020-05-20 2021-01-27 三菱電機株式会社 マルチユニット式オゾン発生器
WO2021234833A1 (ja) * 2020-05-20 2021-11-25 三菱電機株式会社 マルチユニット式オゾン発生器

Also Published As

Publication number Publication date
US8896316B2 (en) 2014-11-25
CA2803049A1 (en) 2011-12-22
EP2584365A4 (en) 2016-11-30
CA2803049C (en) 2016-02-23
JP5619157B2 (ja) 2014-11-05
CN102933973B (zh) 2015-08-05
JPWO2011158361A1 (ja) 2013-08-15
WO2011158361A8 (ja) 2012-10-11
EP2584365A1 (en) 2013-04-24
US20120319696A1 (en) 2012-12-20
CN102933973A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5619157B2 (ja) 容量性負荷装置および容量性負荷装置の異常検出方法
US8575941B2 (en) Apparatus and method for identifying a faulted phase in a shunt capacitor bank
US8878546B2 (en) Apparatus and method for quickly determining fault in electric power system
JP5819602B2 (ja) 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
JP5180783B2 (ja) 超電導コイルクエンチの検出装置及び検出方法
US9625516B2 (en) Device and method for monitoring a photovoltaic system
CN107155353A (zh) 电动机的诊断装置
JP6711462B2 (ja) 地絡検出器およびパワーコンディショナ
KR102128442B1 (ko) 메인 변압기의 oltc 보호장치
US11754613B2 (en) Locating a ground fault in a DC network
KR101402350B1 (ko) 유전정접을 이용한 콘덴서 뱅크의 열화 예측 방법
JP2007192615A (ja) 電圧センサの異常検出方法、異常検出装置および電圧センサ
JP2012059502A (ja) 転流式遮断装置
JP5198491B2 (ja) 負荷の異常検出装置
JP2018100877A (ja) アーク故障検出システム
JP5221238B2 (ja) 無効電力補償装置の地絡検出装置
JP3515147B2 (ja) レーザ発振器の高周波電源の位相検出による異常検出装置
KR100637619B1 (ko) 병렬 커패시터 뱅크의 전압 차동 보호 방법 및 장치
JP2008043173A (ja) 車両用電源装置
KR20190019764A (ko) 고조파 차단 기능을 제공하는 중성점 접지 장치 및 그의 제조 방법
JP7007068B2 (ja) Crサプレッサ用抵抗器不良検出装置
JP2008072799A (ja) ウイスカ溶断除去方法、ウイスカ溶断除去装置
JPH06237522A (ja) 直列コンデンサ保護装置
JP2002101549A (ja) 地絡方向継電装置
JPH0937563A (ja) インバータ装置の保護回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067438.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853242

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520219

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13582661

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010853242

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2803049

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE