WO2011155753A2 - 클레이 담지 니켈 디이민 촉매 및 이를 이용한 폴리올레핀/클레이 나노 복합체의 제조방법 - Google Patents

클레이 담지 니켈 디이민 촉매 및 이를 이용한 폴리올레핀/클레이 나노 복합체의 제조방법 Download PDF

Info

Publication number
WO2011155753A2
WO2011155753A2 PCT/KR2011/004149 KR2011004149W WO2011155753A2 WO 2011155753 A2 WO2011155753 A2 WO 2011155753A2 KR 2011004149 W KR2011004149 W KR 2011004149W WO 2011155753 A2 WO2011155753 A2 WO 2011155753A2
Authority
WO
WIPO (PCT)
Prior art keywords
clay
polyolefin
nickel diimine
catalyst
carbon atoms
Prior art date
Application number
PCT/KR2011/004149
Other languages
English (en)
French (fr)
Other versions
WO2011155753A3 (ko
Inventor
홍대식
최이영
이기수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN2011800286747A priority Critical patent/CN102933614A/zh
Priority to JP2013509006A priority patent/JP2013525589A/ja
Publication of WO2011155753A2 publication Critical patent/WO2011155753A2/ko
Publication of WO2011155753A3 publication Critical patent/WO2011155753A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene

Definitions

  • the present invention relates to a clay-supported nickel diimine catalyst and a method for preparing a polyolefin / clay nanocomposite using the same, and more particularly, to a clay-supported nickel diimine catalyst having excellent catalytic activity and clay dispersibility and physical properties using the same.
  • the present invention relates to a method for preparing an excellent polyolefin / clay nanocomposite in-situ.
  • the polymer / clay nanocomposite is to disperse the clay having a silicate filling structure and to disperse in the polymer matrix in nanoscale units, and has superior physical properties than the conventional polymer / clay composite in which relatively large clay particles are dispersed.
  • the polymer having a silicate layer structure in the polymer resin is peeled off and dispersed as a basic unit in the city phase, the tensile strength and heat deformation temperature are not only increased significantly but also the layer resistance, heat resistance, gas and Liquid barrier properties, flame resistance and UV permeability are higher compared to polymer / clay composites having the same clay content.
  • the polymer / clay nanocomposite as described above was conventionally manufactured by a compounding method in which a polymer in a molten state is inserted between silicate layers of clay and mechanically mixed to disperse clay particles.
  • a polymer in a molten state is inserted between silicate layers of clay and mechanically mixed to disperse clay particles.
  • the matrix polymer is nonpolar, there is a problem that the polymer does not penetrate well between the layers because the clay has a positive charge.
  • a method has been disclosed in which a polyolefin oligomer grafted with a polar group such as maleic anhydride is penetrated into a layered silicate layer of clay to make a clay master batch into which clay is inserted, and to mix it with a polyolefin polymer.
  • the clay-supported nickel diimine catalyst and the use of the same, so that the peeling of the clay during the production of polyolefin / clay nanocomposite to facilitate the insertion of the olefin monomer is not easily degraded catalyst activity It is an object to provide a method for producing a polyolefin / clay nanocomposite.
  • the present invention is a clay metal composite by modifying the organometallic compound by a clay containing an organic modifier represented by the formula (1), and
  • Ri to 3 ⁇ 4 are each independently an alkyl group having 1 to 30 carbon atoms, at least one terminal of the 3 ⁇ 4 to 3 ⁇ 4 is substituted with a hydroxyl group (0H),
  • T is a tallow having 14 to 18 carbon atoms.
  • the present invention is carried out under the clay-supported nickel diimine catalyst, It provides a method for producing a polyolefin / clay nanocomposite comprising the step of polymerizing a pin monomer.
  • the method for producing the polyolefin / clay nanocomposite may further include adding a promoter of ethylaluminum sesquichloride or triisobutylaluminum in the polymerization step.
  • the present invention provides a polyolefin / clay nanocomposite prepared according to the method for producing the polyolefin / clay nanocomposite in which about 2 to 30% by weight of clay is dispersed in the polyolefin.
  • the present invention also provides a polyolefin resin prepared by mixing polyolefin using the polyolefin / clay nanocomposite as a master batch.
  • the clay-supported nickel diimine catalyst according to the present invention can significantly improve the polymerization catalyst activity by including a metal component of an organometallic compound, preferably an aluminum component, and furthermore, the metal component is bonded to clay, By promoting in-situ polymerization and effectively peeling off the layered structure of clay, polyolefin / clay nanocomposite having excellent dispersibility of clay in polyolefin can be obtained.
  • the polyolefin / clay nanocomposite is produced by a gas phase or slurry polymerization process using a clay-supported nickel diimine-based catalyst according to the present invention, it is possible to manufacture injection molded products, films, container pipes, fibers, etc. have.
  • the activity of the catalyst is significantly improved compared to the conventional one, and thus, the polyolefin / clay nanocomposite can be manufactured that has excellent physical properties such as tensile strength, heat deformation temperature, and gas barrier properties, as well as reducing the catalyst manufacturing cost. .
  • Example 1 is a graph showing a comparison of the X-ray diffraction pattern of the catalyst prepared in Example 1 and Comparative Examples 1 and 2 of the present invention.
  • Example 4 is a transmission electron micrograph of the polyolefin / clay nanocomposite prepared in Example 8 of the present invention.
  • Example 5 is a transmission electron micrograph of the polyolefin / clay nanocomposite prepared in Example 5 of the present invention. [Specific contents to carry out invention]
  • a clay-supported nickel diimine catalyst having excellent catalytic activity can be prepared by using a clay and an organometallic compound containing an organic modifier of Formula 1 and a nickel diimine catalyst.
  • a catalyst when such a catalyst is used for the polymerization of olefinic monomers, polyolefin nanocomposites in which clays are highly dispersed in polyolefins on a nano scale can be obtained.
  • a clay metal composite that has been organometallic compound-ol-modified by a clay containing an organic modifier represented by the following formula (1), and a nickel diimine catalyst supported on the clay metal composite
  • a clay supported nickel diimine based catalyst is provided:
  • Ri to 3 ⁇ 4 are each independently an alkyl group having 1 to 30 carbon atoms, at least one terminal of ⁇ to is substituted with a hydroxyl group (0H),
  • T is tallow having 14 to 18 carbon atoms. Since the clay-supported nickel diimine-based catalyst is manufactured using clay and an organic metal compound including the organic modifier of Formula 1, it is possible to prevent a decrease in catalyst activity and an increase in cost by using an organically treated clay. .
  • the clay including the organic modifier of the formula (1) in the present invention refers to a material in which the organic-modified clay is modified with the organic modifier of the formula (1).
  • the organic modifier of Formula 1 may include a compound represented by the following Formula 2.
  • T is a tallow having 14 to 18 carbon atoms.
  • the organic modifier represented by Chemical Formula 1 is preferably included in about 0.1 to 10 kPa per unit weight ( g ) of clay.
  • the content of the organic modifier is less than about 0.1 kPa, the effect of the modifier may be almost insignificant, and when the content of the organic modifier exceeds about 10 kPa, it may be a cause of deactivation.
  • the unorganized clay to be modified with the organic modifier of Chemical Formula 1 may use a clay _Na + system.
  • These clays have a layered structure and can be nanodispersed in polyolefins such as montmorillonite, hectorite, saponite, sauconite, kenyaite and margarite (magadiite), vermiculite may be any one selected from the group consisting of.
  • the clay is also preferably vacuum dried at a temperature of at least about 150 ° C. for at least 24 hours to remove moisture before use.
  • Such clays comprising the organic modifier of Formula 1 of the present invention can be used commercially available products comprising the structure of Formula 2, for example Cloisite 30B (manufacturer: Southern Clay Products) which is montmorillonite modified with the quaternary ammonium salt of Chemical Formula 2 may be used.
  • Cloisite 30B manufactured by Southern Clay Products
  • montmorillonite modified with the quaternary ammonium salt of Chemical Formula 2 may be used.
  • the organometallic compound is preferably a transition metal compound including a Group 13 transition metal in the periodic table.
  • the organometallic compound may include at least one selected from the group consisting of compounds represented by the following Chemical Formulas 3, 4, and 5.
  • R4 is a halogen radical, a hydrocarbyl radical having 1 to 20 carbon atoms, or a hydrocarbyl radical having 1 to 20 carbon atoms substituted with halogen,
  • (eta) is an integer of 2-20, where "hydrocarbyl” is a monovalent group in the form which removed the hydrogen atom from the hydrocarbon.
  • G is aluminum or boron
  • 3 ⁇ 4 is the same as or different from each other and is a halogen radical, a hydrocarbyl radical having 1 to 20 carbon atoms, or a hydrocarbyl radical having 1 to 20 carbon atoms substituted with halogen.
  • Each L is independently a neutral or cationic Lewis acid
  • Each H independently represents a hydrogen atom
  • Z are each independently a Group 13 element, preferably selected from Al, Ga, In and Ti,
  • A is the same as or different from each other, and each independently one or more hydrogen atoms have 6 to 6 carbon atoms substituted with one or more selected from halogen, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, a phenoxy group, nitrogen, phosphorus, sulfur or an oxygen atom 20 Ah Aryl or alkyl radicals.
  • the organometallic compound may further improve the catalytic activity of the compound containing an aluminum component.
  • the organometallic compound is more preferably a compound of Formula 3, a compound of which G is aluminum, or a compound of Z of Formula 5, which is aluminum, more preferably a compound of Formula 4, wherein G is aluminum. desirable.
  • the compound of Formula 3 and the compound of Formula 4 may be represented by an alkylating agent
  • the compound of Formula 5 may be represented by an activator
  • the compound represented by Chemical Formula 3 is not particularly limited as long as it is alkyl aluminoxane, and preferred examples thereof include methyl aluminoxane (MA0), ethyl aluminoxane, isobutyl aluminoxane, and butyl aluminoxane, and particularly preferred compound is methylaluminoxane. to be.
  • the compound represented by the formula (4) is not particularly limited, but preferred examples are trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri-S- Butyl Aluminum, Tricyclopentyl Aluminum, Tripentyl Aluminum, Triisopentyl Aluminum, Trinuclear Aluminum, Trioctyl Aluminum, Ethyl Dimethyl Aluminum, Methyl Diethyl Aluminum, Triphenyl Aluminum, Tri-P-allyl Aluminium, Dimethyl Aluminum Methoxy Seed, dimethyl aluminum ethoxide, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron, and the like, and particularly preferred compounds are selected from trimethylaluminum, triethylaluminum and triisobutylalumin
  • Examples of the compound represented by the formula (5) include triethylammonium tetra (phenyl) boron, tributyl ammonium tetra (phenyl) boron, trimethyl ammonium tetra (phenyl) boron, tripropyl ammonium tetra (phenyl) boron, trimethyl Ammonium Tetra (P-lryl) boron, Trimethylammonium Tetra ( ⁇ , ⁇ -dimethylphenyl) boron, Tributylammonium Tetra ( ⁇ -trifluoromethylphenyl) boron, Trimethylammonium Tetra ( ⁇ -trifluoromethylphenyl ) Boron, tributylammonium tetra (pentafluorophenyl) boron, ⁇ , ⁇ -diethylamidium tetra (phenyl) boron, ⁇ , ⁇ -diethylanilidedium tetra (phenyl)
  • the content of the organometallic compound in the clay metal composite is important to add the correct amount for the physical and chemical bonding of the nickel diimine catalyst and the organometallic compound added later in the clay.
  • the organometallic compound is appropriately 0.2 to 5 kPa per unit weight (g) of clay, preferably 0.4 to 3 kPa.
  • the content of the organometallic compound is less than 0.2 ⁇ ol, it may be difficult to form the nanocomposite, and when the content of the organometallic compound exceeds 5 mm, the extra organometallic compound may accumulate on the outside of the clay by reacting with other chemicals. , Thereby reducing the physical properties of the catalyst produced.
  • the nickel diimine catalyst may be a compound represented by the following formula (6).
  • Re to Ri 3 is hydrogen or C1-10 alkyl group at the same time or each independently, R 14 and R 15 are hydrogen or alkyl group of 1 to 10 carbon atoms at the same time or each independently, R 14 and R 15 are connected to each other Can form a naphthyl group,
  • Xi and X 2 are each independently a halogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the compound represented by the following formula (7) may include a structure inserted between the silicate layer of clay.
  • T is a tallow having 14 to 18 carbon atoms.
  • the structure may be variously changed according to the chemical definition of the organic modifier, organometallic compound and nickel diimine catalyst of Chemical Formula 1 described above. Can be.
  • the content of the nickel diimine catalyst in the clay metal composite is preferably about 0.01 to 1 kPa per unit weight (g) of clay.
  • the content of the nickel diimine catalyst is less than about 0.01 mmol, the polymerization may not be performed, and thus, the nanocomposite may be difficult to form.
  • the nickel diimine catalyst is more than about 1 mm, the excess catalyst may be physically added in addition to the catalyst chemically bonded between the clays. It can stick to the clay surface and interfere with nanocomposite formation.
  • the present invention is added to the clay containing the organic modifier of the formula (1), by adding an organic metal compound of about 2 to 5 times compared to the organic modifier to prepare a modified clay metal composite by stirring the mixture at room temperature I can help.
  • the clay-supported nickel diimine-based catalyst of the present invention after diluting the clay metal complex in a polar or nonpolar solvent, the stirring speed is about 10 rpm to The nickel diimine catalyst in the distilled state is maintained while maintaining the temperature of the reaction vessel operating at 500 rpm, preferably about 50 to 400 rpm, at about -20 to 120 ° C., preferably at about 20 to 80 ° C. After slowly dropping and stirring for a long time, it may be sufficiently washed to remove reaction by-products and unreacted nickel diimine catalyst.
  • the clay-supported nickel diimine catalyst may be prepared by diluting the nickel diimine catalyst in a polar or nonpolar solvent, and then adding the clay metal complex to a reaction vessel containing the clay metal complex to conduct reaction for a predetermined time. All. At this time, the temperature of the half-unggi may be the same as the method described above.
  • the solvent used in all the above catalyst preparation process may be a polar or non-polar solvent, it is more preferred to use a non-polar solvent.
  • the solvent is polar, it can also be used unless it is accompanied by chemical reactions with the compounds and reactants used in the catalyst synthesis.
  • nonpolar solvent isobutane, pentane, nucleic acid, n-heptane, octane, nonane, decane and isomers thereof, and cycloalkyl compounds such as cyclonucleic acid, aromatic compounds such as benzene, toluene and ethylbenzene can also be used.
  • cycloalkyl compounds such as cyclonucleic acid, aromatic compounds such as benzene, toluene and ethylbenzene can also be used.
  • the most commonly used nonpolar solvent is nucleic acid.
  • the nonpolar solvent is preferably purified by a suitable method to remove substances that affect the catalytic activity, such as water, oxygen, and polar compounds.
  • a method for producing a polyolefin / clay nanocomposite comprising the step of polymerizing the olefin monomer under the clay-supported nickel diimine-based catalyst.
  • the clay-supported nickel diimine catalyst according to the present invention may be used as it is, or a solvent is removed to prepare a solid catalyst, and then slurried in a non-polar solvent. Accordingly, the present invention can produce a polyolefin / clay nanocomposite in which clay is evenly dispersed in a polyolefin polymer on a nano scale by carrying out an in-stream polymerization of an olefin monomer under such a clad-supported nickel diimine-based catalyst.
  • the method for producing the polyolefin / clay nanocomposite in the polymerization step may further include adding a promoter.
  • the promoter may be ethyl aluminum sesqui chloride (EASC) or triisobutyl aluminum (Tri is Dutylaluminum: TIBAL) and the like, but is not limited thereto.
  • EASC ethyl aluminum sesqui chloride
  • Tri Tri is Dutylaluminum: TIBAL
  • the promoter may be added to the polymerization reactor after mixing with the nickel diimine catalyst and then added to the polymerization reactor separately from the nickel diimine catalyst.
  • the polymerization process may include both a solution process and a slurry or gas phase process, and a mixture process of a slurry and a gas phase, and preferably includes a slurry or gas phase process.
  • the clay-supported nickel diimine catalyst of the present invention may be used by diluting and injecting a slurry in a solvent suitable for an olefin polymerization process.
  • a solvent suitable for an olefin polymerization process aliphatic hydrocarbons having 5 to 12 carbon atoms, aromatic hydrocarbons or aliphatic or aromatic hydrocarbons substituted with chlorine atoms can be used.
  • the aliphatic hydrocarbon having 5 to 12 carbon atoms may use any one or more selected from pentane, nucleic acid, heptane, nonane, decane, and isomerism thereof.
  • the aromatic hydrocarbon solvent includes toluene, benzene and the like. Aliphatic or aromatic hydrocarbons substituted with the chlorine atom include dichloromethane, chlorobenzene and the like.
  • the olefin monomers include ethylene, propylene, alpha olefins, cyclic olefins, and the like, and can also polymerize diene olefin monomers or triene olefin monomers having two or more double bonds.
  • Such monomers include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-decene, 1-undecene, 1-dodecene, 1- Tetradecene, 1-nuxadecene, 1-aikosen, norbornene, norbornadiene, ethylidene norbornene, vinyl norbornene, dicyclopentadiene 1,4-butadiene, 1,5-pentadiene, 1,6- Nucleodiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, and the like, and these monomers may be mixed and copolymerized.
  • the polymerization temperature is preferably about 25 to 500 ° C., preferably about 25 to 200 ° C., and more preferably about 50 to 200 ° C. C.
  • polymerization pressure The force is preferably performed at about 1 to 100 Kgf / cm 2 , preferably about 1 to 70 Kgf / cm 2 , and more preferably about 5 to 50 Kgf / cm 2 .
  • the weight average molecular weight of the polyolefin polymer can be controlled by using the most commonly used hydrogen method.
  • the weight average molecular weight can be confirmed by measuring the melt index of the polyolefin polymer.
  • the polymerization is carried out by chaining hydrogen and a polymerization solvent composed of aliphatic hydrocarbons having 5 to 12 carbon atoms at a temperature of about 50 to 200 ° C and a pressure of about 5 to 50 Kgf / cm 2 . It can be used as a transfer agent.
  • the present invention adds an organometallic compound to the clay containing the organic modifier of Chemical Formula 1 to form a clay metal composite through reforming treatment, and supports a nickel diimine catalyst to support a clay-supported nickel diimine-based catalyst. After the preparation, it is possible to prepare a polyolefin / clay nanocomposite having excellent physical properties compared to the existing by administering an olefin monomer such as ethylene and further adding a cocatalyst as necessary.
  • an polyolefin / clay nanocomposite (exfoliated PE / clay nanocomposite) prepared according to the method for producing the polyolefin / clay nanocomposite.
  • the polyolefin / clay nanocomposite of the present invention utilizes the specific clad-supported nickel diimine-based catalyst described above, clay is uniformly dispersed in the polyolefin polymer.
  • the clay may be included in the polyolefin in about 2 to 30% by weight based on the total weight of the polyolefin / clay nanocomposite to be evenly dispersed.
  • the polyolefin / clay nanocomposite prepared according to the present invention is excellent in physical properties such as impact resistance, heat resistance, gas and liquid barrier properties, flame resistance and penetration prevention ability, while maintaining a permeability.
  • the present invention also provides a polyolefin resin prepared by mixing polyolefin using the polyolefin / clay nanocomposite as a master batch.
  • the polyolefin resin thus prepared is a conventional injection product, film, container pie It can be used for the production of fibers, fibers, etc., and may contribute to their physical properties.
  • the present invention will be described in more detail with reference to the following examples. The following examples are intended to illustrate the invention but are not intended to limit the scope thereof.
  • Cloisite 30B Southern Clay Products
  • Trimethylaluminum 7.4 mm of trimethylaluminum
  • MMT clay metal composite
  • Cloisite 30B represents a clay containing an organic modifier of the formula (2).
  • a clay-supported nickel diimine catalyst was synthesized in the same manner as in Example 1, except that unorganized clay (Clisite Na + from Southern Clay Products) was used. Comparative Example 2 (C93A)
  • a clay-supported nickel diimine catalyst was synthesized in the same manner as in Example 1, except that clays containing Closite 93 A of Southern Clay Products, which were not the organic modifier of Formula 2, were used. I did it.
  • a polyol refin / clay nanocomposite was prepared in the same manner as in Example 2, except that polymerization of the olepin monomer (ethylene monomer) was performed under the polymerization conditions described in Table 1 below.
  • N1 bis (4-amino-1,3,5,6-tetramethylimino) acenaphthene nickel (II) dibromide (unsupported nickel diimine catalyst)
  • EASC ethyl aluminum sesqui chloride
  • the physical property measurement method used a conventional method well known in the art.
  • a suitable ratio of clay must be evenly dispersed and coexist in the form of nanophase in the polyethylene polymer matrix, and also the X of the catalyst used in the polymerization Physical properties such as -ray diffraction characteristics and transmission electron microscope (TEM) observation characteristics should be excellent.
  • Example 1 is a graph showing X-ray diffraction patterns of clays (CNa, C93A, Cloisite 30B) and supported catalysts (Comparative Example l ( a ), Comparative Example 2 (b) and Example 1 (c)) prepared using the same to be.
  • the clay-supported nickel diimine catalyst according to the present invention since the clay including the organic modifier of Chemical Formula 1 is used, the intercalation effect between the clays is wider than that of Comparative Examples 1 and 2. You can check it.
  • Comparative Example 1 did not have a pattern change by using unorganized clay.
  • Comparative Example 2 even if organic clay was used, the result of the clay being slightly aggregated because the clay did not include the organic modifier of Formula 1 of the present application.
  • Figure 2 is a graph showing the differential weight curve of the polyolefin / clay nanocomposites prepared in Comparative Examples 8 to 11, Example 8 and Example 10. 2, in the case of the composite of Examples 8 and 10 (FIG. 2C) using the clay-supported nickel diimine catalyst according to the present invention, Comparative Example 8-1K (a),
  • Figure 3 is a graph showing the X-ray diffraction pattern of the polyolefin / clay nanocomposites prepared in Comparative Examples 4 to 7, and Example 2, Examples 4 to 6. As shown in Figure 3, embodiments according to the present invention (of Figure 3
  • Example 5 is a result of observing the polyolefin / clay nanocomposite prepared in Example 6 with a transmission electron microscope (TEM) (based on 100nm scale). 5, the polyolefin / clay nanocomposite of Example 6 of the present invention can also be seen that the silica silicate layer is peeled off and the clay is well dispersed in the polyethylene.
  • TEM transmission electron microscope

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 유기성 개질제를 포함하는 클레이를 사용하여 유기 금속 화합물을 개질처리하여 얻은 클레이 금속 복합체, 및 상기 클레이 금속 복합체에 담지된 니켈 디이민 촉매를 포함하는 클레이 담지 니켈 디이민계 촉매, 이의 제조방법, 상기 클레이 담지 니켈 디이민계 촉매를 사용한 폴리올레핀/클레이 나노 복합체 및 그 제조방법을 제공한다. 본 발명에 따른 클레이 담지 니켈 디이민계 촉매는 유기 금속 화합물의 금속 성분을 포함하여 중합 촉매 활성을 크게 향상 시킬 수 있으며, 아울러 금속 성분이 클레이에 결합되어 있어서 올레핀 단량체의 인시츄(in-situ) 중합을 촉진하여 클레이의 층상 구조를 효과적으로 박리시킴으로써 폴리올레핀 내에 클레이의 분산성이 우수한 폴리올레핀/클레이 나노 복합체를 얻을 수 있는 장점을 지니고 있다.

Description

【명세서】
【발명의 명칭】
클레이 담지 니켈 디이민 촉매 및 이를 이용한 폴리을레핀 /클레이 나노 복합체의 제조방법
【기술분야】
본 발명은 클레이 담지 니켈 디이민 촉매 및 이를 이용한 폴리을레핀 /클레이 나노 복합체의 제조방법에 관한 것으로, ,보다 상세하게는 촉매 활성이 뛰어난 클레이 담지 니켈 디이민 촉매 및 이를 사용하여 클레이 분산성 및 물성이 뛰어난 폴리올레핀 /클레이 나노 복합체를 인시튜 (In-situ) 제조하는 방법에 관한 것이다.
【배경기술】
일반적으로 고분자 /클레이 나노 복합체는 실리케이트 충상 구조를 갖는 클레이를 박리시켜 고분자 매트릭스 내에 나노 스케일 단위로 분산시킨 것인데, 비교적 큰 클레이 입자를 분산시킨 기존의 고분자 /클레이 복합체보다 우수한 물성을 갖는다. 즉, 고분자 수지에 실리케이트 층상 구조를 가지는 클레이를 시티상의 기본 단위로 박리하여 분산시키면, 수지의 투명성을 크게 손상시키지 않으면서도 인장강도와 열변형 온도가 월등히 높아질 뿐만 아니라, 내층격성, 내열성, 기체 및 액체 차단성, 내연성 및 UV 투과 방지능 등이, 클레이 함량이 동일한 고분자 /클레이 복합체에 비해 높아진다.
상기와 같은 고분자 /클레이 나노 복합체는 종래에는 주로 용융 상태의 고분자를 클레이의 실리케이트 층 사이에 삽입시키고, 기계적으로 흔합하여 클레이 입자를 분산시키는 컴파운딩법에 의하여 제조되었다. 그러나, 매트릭스 고분자가 비극성인 경우, 클레이가 양전하를 띠고 있기 때문에 고분자가 층간에 잘 침투되지 않는 문제점이 있다. 이러한 문제점을 해결하기 위해, 무수 말레산 등 극성기가 그래프트된 폴리올레핀 올리고머를 클레이의 층상 실리케이트 층에 침투시켜 클레이가 삽입된된 클레이 마스터 배치를 만들고, 이를 폴리올레핀 고분자와 흔합하는 방법이 개시되었다. 그러나 이 방법에 의하면 극성 고분자를 실리케이트 층에 침투시켜 삽입 (intercalation)할 수 있지만 실리케이트 층을 완전하게 박리시키기 위해서는 압출기내에서 높은 전단율로 장시간 동안 흔합해야 한다. 그러나, 이러한 과정 중에서 고분자가 분해되는 등 물성이 악화될 우려가 있고, 클레이를 인터컬레이션 하기 위해 첨가되는 올리고머가 최종 생성되는 나노 복합체의 열변형 온도 및 기계적 강도를 저하시키는 단점이 있다.
【발명의 내용】
【해결하려는 과제】
본 발명은 상기와 같은 문제점을 해결하기 위하여, 촉매 활성이 저하되지 않고 올레핀 단량체의 클레이 층간 삽입이 용이하여 폴리을레핀 /클레이 나노 복합체 제조시 클레이의 박리가 충분히 일어나는 클레이 담지 니켈 디이민 촉매 및 이를 이용한 폴리올레핀 /클레이 나노 복합체의 제조방법을 제공하는 것을 목적으로 한다.
【과제의 해결 수단】
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 유기성 개질제를 포함하는 클레이에 의해 유기 금속 화합물을 개질처리시킨 클레이 금속 복합체, 및
상기 클레이 금속 복합체에 담지된 니켈 디이민 촉매
를 포함하는 클레이 담지 니켈 디이민계 촉매를 제공한다:
[화학식 1]
Figure imgf000004_0001
상기 화학식 1에서,
Ri 내지 ¾은 각각 독립적으로 탄소수 1 내지 30의 알킬기이고, 상기 ¾ 내지 ¾ 중 적어도 하나 이상의 말단은 히드록시기 (0H)로 치 환되며,
T는 탄소수 14 내지 18을 가지는 탈로우 (tallow)이다.
또한, 본 발명은 상술한 클레이 담지 니켈 디이민계 촉매하에, 올레 핀 단량체를 중합시키는 단계를 포함하는 폴리올레핀 /클레이 나노 복합체의 제조방법을 제공한다.
또한 상기 폴리올레핀 /클레이 나노 복합체의 제조방법은 중합단계에 서 에틸알루미늄 세스퀴클로라이드 또는 트리이소부틸알루미늄의 조촉매를 추가하는 단계를 더 포함할 수 있다.
또한, 본 발명은 상기 폴리올레핀 /클레이 나노 복합체의 제조방법에 따라 제조되며 약 2 내지 30 중량 %의 클레이가 폴리올레핀 내에 분산된 폴 리올레핀 /클레이 나노 복합체를 제공한다.
또한, 본 발명은 상기 폴리올레핀 /클레이 나노 복합체를 마스터 배치 로 하여 폴리올레핀을 흔합하여 제조되는 폴리올레핀 수지를 제공한다.
【발명의 효과】
본 발명에 따른 클레이 담지 니켈 디이민계 촉매는 유기 금속 화합물 의 금속 성분, 바람직하게는 알루미늄 성분을 포함함으로써 중합 촉매 활성 올 크게 향상 시킬 수 있으며, 아울러 금속 성분이 클레이에 결합되어 있어 서 올레핀 단량체의 인시츄 (in-situ) 중합을 촉진하여 클레이의 층상 구조 를 효과적으로 박리시킴으로써 폴리올레핀 내 클레이의 분산성이 우수한 폴 리올레핀 /클레이 나노 복합체를 얻을 수 있는 장점을 지니고 있다.
또한 본 발명에 따른 클레이 담지 니켈 디이민계 촉매를 사용하여 기 상 또는 슬러리 중합 공정으로 폴리올레핀 /클레이 나노 복합체를 생성하면, 이로부터 물성이 뛰어난 사출제품, 필름, 용기 파이프, 섬유 등을 제조할 수 있다. 특히 촉매의 활성이 기존 대비 크게 향상되어 촉매 제조 비용 절 감뿐만 아니라 종래 컴파운딩법으로 제조된 것보다 인장강도와 열변형 온도 및 가스베리어성 등 물성이 우수한 폴리올레핀 /클레이 나노 복합체를 제조 할 수 있다.
【도면의 간단한 설명】
도 1은 본원 발명의 실시예 1 및 비교예 1, 2에서 제조된 촉매의 X- 선 회절 패턴을 비교하여 나타낸 그래프이다.
도 2는 본원 발명의 실시예 8내지 10 및 비교예 8내지 11에서 제조 된 폴리을레핀 /클레이 나노 복합체의 미분중량곡선을 나타낸 그래프이다. 도 3은 본원 발명의 실시예 2, 4 내지 6 및 비교예 4 내지 7에서 제 조된 폴리올레핀 /클레이 나노 복합체의 X-선 회절 패턴을 나타낸 그래프이 다.
도 4는 본원 발명의 실시예 8에서 제조된 폴리올레핀 /클레이 나노 복 합체의 투과 전자 현미경 사진이다.
도 5는 본원 발명의 실시예 5에서 제조된 폴리을레핀 /클레이 나노 복 합체의 투과 전자 현미경 사진이다. 【발명을 실시하기 위한 구체적인 내용】
이하본 발명을 보다 구체적으로 설명한다.
본 발명에 따르면 화학식 1의 유기성 개질제를 포함하는 클레이 및 유기 금속 화합물과 니켈 디이민 촉매를 사용하여 촉매활성이 뛰어난 클레 이 담지 니켈 디이민계 촉매를 제조할 수 있다. 또한, 이러한 촉매를 을레 핀 단량체의 중합에 이용할 경우 클레이가 나노 스케일로 폴리올레핀 내에 고분산된 폴리올레핀 나노복합체를 얻을 수 있다.
이러한 본 발명의 바람직한 구현예에 따르면, 하기 화학식 1로 표시 되는 유기성 개질제를 포함하는 클레이에 의해 유기 금속 화합물올 개질처 리시킨 클레이 금속 복합체, 및 상기 클레이 금속 복합체에 담지된 니켈 디 이민 촉매를 포함하는 클레이 담지 니켈 디이민계 촉매가 제공된다:
[화학식 1]
Figure imgf000006_0001
상기 화학식 1에 있어서 ,
Ri내지 ¾은 각각 독립적으로 탄소수 1내지 30의 알킬기이고, 상기 ^ 내지 중 적어도 하나 이상의 말단은 히드록시기 (0H)로 치 환되며,
T는 탄소수 14내지 18올 가지는 탈로우 (tallow)이다. 상기 클레이 담지 니켈 디이민계 촉매는 화학식 1의 유기성 개질제를 포함한 클레이와 유기 금속 화합물을 사용하여 제조되므로, 종래 일반적으 로 유기화 처리된 클레이를 사용함에 따른 촉매 활성 저하 및 비용 증가를 방지할 수 있다.
이때, 본 발명에서 화학식 1의 유기성 개질제를 포함한 클레이는 유 기화 처리 되지 않은 클레이를 화학식 1의 유기성 개질제로 개질한 물질을 의미한다.
또한 하나의 바람직한 예에서 상기 화학식 1의 유기성 개질제는 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
Figure imgf000007_0001
상기 화학식 2에서,
T는 탄소수 14 내지 18을 가지는 탈로우 (tallow)이다.
상기 화학식 1로 표시되는 유기성 개질제는 클레이 단위 중량 (g)당 약 0.1 내지 10睡 로 포함되는 것이 바람직하다. 상기 유기성 개질제의 함 량이 약 0.1 隱 미만인 경우에는 개질제의 효과가 거의 없을 수 있고, 약 10隱 을 초과할 경우에는 활성 저하의 요인이 될 수 있다.
상기 화학식 1의 유기성 개질제로 개질하기 위한 유기화 처리되지 않 은 클레이는 클레이 _Na+계를 사용할 수 있다. 이러한 클레이로는 층상 구조 를 가지며 폴리올레핀 내에서 나노 분산이 가능한 몬모릴로나이트 (montmorillonite), 핵토라이트 (hector ite), 사포나이트 (saponite), 사우코 나이트 (sauconite), 케냐아이트 (kenyaite), 마가디이트 (magadiite), 버미쿠 라이트 (vermiculite)로 이루어진 군에서 선택된 어느 하나일 수 있다. 또 한 클레이는 사용 전에 약 150°C 이상의 온도에서 약 24시간 이상 진공 건 조를 수행하여 수분을 제거하는 것이 바람직하다.
이러한 본 발명의 화학식 1의 유기성 개질제를 포함하는 클레이는 상 기 화학식 2의 구조를 포함하는 상용화된 제품을 사용 가능하고, 예를 들면 상기 화학식 2의 4차 암모늄염으로 개질된 몬모릴로나이트인 Cloisite 30B (제조사: Southern Clay Products)를 사용할 수 있다.
상기 유기 금속 화합물은 주기율표에서 13족 전이금속을 포함하는 전 이금속 화합물인 것이 바람직하다. 구체적으로, 상기 유기 금속 화합물은 하기 화학식 3, 화학식 4 및 화학식 5로 표시되는 화합물로 이루어진 군으 로부터 선택된 1종 이상을 포함할 수 있다.
[화학식 3]
-[Α1(¾Η)]η - 상기 화학식 3에서,
R4는 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌 라디칼이고,
η은 2 내지 20의 정수이며, 여기서, "하이드로카빌"은 하이드로카본 으로부터 수소원자를 제거한 형태의 1가기이다.
[화학식 4]
G(¾)3
상기 화학식 4에서,
G가 알루미늄 또는 보론이고,
¾는 서로 같거나 상이하고, 할로겐 라디칼, 탄소수 1 내지 20의 하 이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로 카빌 라디칼이다.
[화학식 5]
[L_H] + [ZA4]_또는 [L] + [ZA4]—
상기 화학식 5에서,
L은 각각 독립적으로 중성 또는 양이온성 루이스 산이고,
H는 각각 독립적으로 수소 원자이며,
Z는 각각 독립적으로 13족 원소이고, 바람직하게는 Al, Ga, In및 Ti 중에서 선택되며,
A는 서로 같거나 상이하고 각각 독립적으로 1 이상의 수소 원자가 할 로겐, 탄소수 1 내지 20의 하이드로카빌, 알콕시기, 페녹시기, 질소, 인, 황 또는 산소원자 중에서 선택된 1종 이상이 치환된 탄소수 6 내지 20의 아 릴 또는 알킬 라디칼이다.
또한, 상기 유기 금속 화합물은 알루미늄 성분을 포함하는 화합물이 촉매활성을 더욱 향상시킬 수 있다. 따라서, 상기 유기 금속 화합물은 화 학식 3의 화합물, 화학식 4의 화합물 중 G가 알루미늄인 화합물 또는 화학 식 5의 Z가 알루미늄인 화합물이 보다 바람직하고, 화학식 4의 화합물 중 G 가 알루미늄인 화합물이 더욱 바람직하다.
상기 유기 금속 화합물들 중에서, 상기 화학식 3의 화합물 및 상기 화학식 4의 화합물은 알킬화제로 표시될 수 있으며, 상기 화학식 5의 화합 물은 활성화제로 표시될 수 있다.
상기 화학식 3으로 표시되는 화합물은 알킬알루미녹산이라면 특별히 한정되지 않으나, 바람직한 예로는 메틸알루미녹산 (MA0), 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 특히 바람직한 화합물은 메틸알루미녹산이다.
또한 상기 화학식 4로 표시되는 화합물은 특별히 한정되지 않으나, 바람직한 예는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프 로필알루미늄, 트리 -S-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸 알루미늄, 트리이소펜틸알루미늄, 트리핵실알루미늄, 트리옥틸알루미늄, 에 틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P-를릴알 루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함 되며, 특히 바람직한 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리 이소부틸알루미늄 중에서 선택된다.
상기 화학식 5로 표시되는 화합물의 예로는 트리에틸암모니움테트라 (페닐)보론, 트리부틸암모니움테트라 (페닐)보론, 트리메틸암모니움테트라 (페닐)보론, 트리프로필암모니움테트라 (페닐)보론, 트리메틸암모니움테트라 (P-를릴)보론, 트리메틸암모니움테트라 (ο,ρ-디메틸페닐)보론, 트리부틸암모 니움테트라 (Ρ-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라 (Ρ-트리 플루오로메틸페닐)보론, 트리부틸암모니움테트라 (펜타플루오로페닐)보론, Ν,Ν-디에틸아밀리디움테트라 (페닐)보론, Ν,Ν-디에틸아닐리디움테트라 (페닐) 보론, Ν,Ν-디에틸아닐리니움테트라 (펜타플루오로페닐)보론, 디에틸암모니움 테트라 (펜타플루오로페닐)보론, 트리페닐포스포늄테트라 (페닐)보론, 트리메 틸포스포늄테트라 (페닐)보론, 트리에틸암모니움테트라 (페닐)알루미늄, 트리 부틸암모니움테트라 (페닐)알루미늄, 트리메틸암모니움테트라 (페닐)알루미늄, 트리프로필암모니움테트라 (페닐)알루미늄, 트리메틸암모니움테트라 (Ρ-를릴) 알루미늄, 트리프로필암모니움테트라 (Ρ-를릴)알루미늄, 트리에틸암모니움테 트라 (ο,ρ-디메틸페닐)알루미늄, 트리부틸암모니움테트라 (Ρ-트리플루오로메 틸페닐)알루미늄, 트리메틸암모니움테트라 (Ρ-트리플루오로메틸페닐)알루미 늄, 트리부틸암모니움테트라 (펜타플루오로페닐)알루미늄, Ν,Ν-디에틸아닐리 니움테트라 (페닐)알루미늄, Ν,Ν-디에틸아닐리니움테트라 (페닐)알루미늄, Ν, Ν-디에틸아닐리니움테트라(펜타플루오로페닐 )알루미늄, 디에틸암모니움테 트라 (펜타플루오로페닐)알루미늄, 트리페닐포스포늄테트라 (페닐)알루미늄, 트리메틸포스포늄테트라 (페닐 )알루미늄, 트리에틸암모니움테트라 (페닐 )알루 미늄, 트리부틸암모니움테트라 (페닐)알루미늄, 트리메틸암모니움테트라 (페 닐)보론, 트리프로필암모니움테트라 (페닐)보론, 트리메틸암모니움테트라 (Ρ- 를릴)보론,트리프로필암모니움테트라 (Ρ-를릴)보론, 트리에틸암모니움테트라 (ο,ρ-디메틸페닐)보론, 트리메틸암모니움테트라 (ο,ρ-디메틸페닐)보론, 트리 부틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라
(Ρ-트리플루오로메틸페닐)보론, 트리부틸암모니움테트라 (펜타플루오로페닐) 보론, Ν,Ν-디에틸아닐리니움테트라 (페닐)보론, Ν,Ν-디에틸아닐리니움테트라 (페닐)보론, Ν,Ν-디에틸아닐리니움테트라 (펜타플루오로페닐)보론, 디에틸암 모니움테트라 (펜타플루오로페닐)보론, 트리페닐포스포늄테트라 (페닐)보론, 트리페닐카보니움테트라 (Ρ-트리풀로로메틸페닐)보론, 트리페닐카보니움테트 라 (펜타플루오로페닐)보론, 트리틸테트라 (펜타플루오로페닐)보론 등이 있으 나, 이에 한정되는 것은 아니다.
상기 클레이 금속 복합체 중 유기 금속 화합물의 함량은 클레이 내에 서 추후 첨가되는 니켈 디이민 촉매와 유기 금속 화합물의 물리적 및 화학 적 결합을 위하여 정확한 양을 첨가하는 것이 중요하다. 구체적으로, 상기 유기 금속 화합물은 클레이 단위 중량 (g)당 0.2 내지 5画 인 것이 적당하 며, 바람직하게는 0.4 내지 3画 이다. 상기 유기 금속 화합물의 함량이 0.2 隱 ol 미만일 경우에는 나노 복 합체의 형성이 어 려울 수 있고, 5 mm이을 초과할 경우에는 여분의 유기 금속 화합물이 다른 화학물질과 반응하여 클레이의 외부에 쌓일 수 있고, 이에 따라 제조되는 촉매의 물성을 저하시킬 수 있다 .
상기 니켈 디이민 촉매는 하기 화학식 6으로 표시되는 화합물일 수 있다 .
Figure imgf000011_0001
상기 화학식 6에 있어서,
Re 내지 Ri3은 동시에 또는 각각 독립적으로 수소, 탄소수 1 내지 10 의 알킬기 이고, R14 및 R15는 동시에 또는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기이거나, R14 및 R15는 서로 연결되어 나프틸기를 형성할 수 있고 ,
Xi 및 X2는 각각 독립적으로 할로겐 원자 또는 탄소수 1 내지 10의 알킬기이다 .
따라서, 이 러 한 본 발명의 클레이 담지 니켈 디 이 민계 촉매의 일례를 들면, 하기 화학식 7로 표시되는 화합물이 클레이의 실리 케이트 층간에 삽 입된 구조를 포함할 수 있다 .
Figure imgf000012_0001
(상기 식에서, T는 탄소수 14 내지 18을 가지는 탈로우 (tallow)이다) 또한 상기 구조는 상술한 본 발명의 화학식 1의 유기성 개질제, 유기 금속 화합물 및 니켈 디이민 촉매의 화학식 정의에 따라 다양하게 변경될 수 있다.
상기 클레이 금속 복합체 중 니켈 디이민 촉매의 함량은 클레이 단위 중량 (g) 당 약 0.01 내지 1隱 인 것이 바람직하다. 상기 니켈 디이민 촉매 의 함량이 약 0.01 mmol 미만일 경우에는 중합이 진행되지 않아 나노복합체 가 형성이 어려울 수 있고, 약 1 mm이을 초과할 경우에는 클레이 사이에서 화학적으로 결합되는 촉매 이외에 여분의 촉매가 물리적으로 클레이 표면에 붙어서 나노복합체 형성을 방해할 수 있다.
한편, 본 발명은 상기 화학식 1의 유기성 개질제를 포함하는 클레이 에, 상기 유기성 개질제 대비 2 ~ 5 배수 정도의 유기 금속 화합물을 첨가하 여 흔합물을 상온에서 교반하는 방법으로 개질된 클레이 금속 복합체를 제 조할 수 있다.
또한 본 발명의 클레이 담지 니켈 디이민계 촉매는 상기 클레이 금속 복합체를 극성 또는 비극성 용매에 희석시킨 후 교반속도 약 10 rpm 내지 500 rpm, 바람직하게는 약 50 내지 400 rpm으로 운전되는 반웅기의 온도를 약 -20 내지 120 °C, 바람직하게는 약 20 내지 80 °C로 유지하면서, 회석시 킨 상태의 니켈 디이민 촉매를 천천히 적가하고 층분한 시간 동안 교반한 후, 충분히 세척하여 반웅 부산물 및 미반응된 니켈 디이민 촉매를 제거하 여 제조할 수 있다.
또 다른 방법으로, 상기 클레이 담지 니켈 디이민계 촉매는 니켈 디 이민 촉매를 극성 또는 비극성 용매에 희석 후, 상기 클레이 금속 복합체가 포함된 반웅기에 투입하여 일정시간 동안 반웅을 진행하여 제조할 수도 있 다. 이때, 상기 반웅기의 온도는 상술한 방법과 동일할 수 있다.
이때, 상기한 모든 촉매 제조 과정에서 사용하는 용매는 극성 또는 비극성 용매를 사용할 수 있으나, 비극성 용매를 사용하는 것이 더 바람직 하다. 다만, 용매가 극성이 있는 경우라도 촉매 합성과정에서 사용된 화합 물 및 반응물과 화학적인 반웅올 수반하지 않는다면 이 또한 사용이 가능하 다.
상기 비극성 용매의 바람직한 예는 이소부탄, 펜탄, 핵산, n-헵탄, 옥탄, 노난, 데칸 및 이들의 이성질체이며, 시클로핵산과 같은 시클로알킬 화합물, 벤젠, 를루엔, 에틸벤젠과 같은 방향족 화합물 또한 사용할 수 있 다. 가장 흔히 사용되는 비극성 용매는 핵산이다. 비극성 용매는 물, 산소, 및 극성 화합물 등 촉매 활성에 영향을 미치는 물질을 제거하기 위하여 적 합한 방법으로 정제 되는 것이 바람직하다.
한편, 본 발명의 다른 구현예에 따르면, 상술한 클레이 담지 니켈 디 이민계 촉매하에 올레핀 단량체를 중합시키는 단계를 포함하는 폴리올레핀 / 클레이 나노 복합체의 제조방법이 제공된다.
본 발명에 따른 클레이 담지 니켈 디이민계 촉매는 용매를 포함한 상 태 그대로 사용하거나 또는 용매를 제거하고 고형의 촉매를 제조한 후, 비 극성 용매에 슬러리화하여 사용할 수 있다. 따라서, 본 발명은 이러한 클 레이 담지 니켈 디이민계 촉매 하에 올레핀 단량체를 인시류 중합함으로써 클레이가 나노 스케일로 폴리올레핀 고분자 내에 고르게 분산된 폴리올레핀 /클레이 나노 복합체를 제조할 수 있다.
또한 상기 폴리을레핀 /클레이 나노 복합체의 제조방법은 중합단계에 서 조촉매를 추가하는 단계를 더 포함할 수 있다.
상기 조촉매로는 에틸알루미늄 세스퀴클로라이드 (ethylaluminum sesqui chloride: EASC) 또는 트리이소부틸알루미늄 (tri is이 Dutylaluminum: TIBAL) 등을 사용할 수 있으나, 반드시 이에만 한정되는 것은 아니다.
상기 조촉매는 중합반웅기에 넣기 전에 니켈 디이민 촉매와 흔합한 후 중합반웅기에 첨가하거나, 니켈 디이민 촉매와 별개로 각각 중합 반웅기 에 첨가할 수 있다. 상기 중합공정은 용액 공정을 비롯하여 슬러리 또는 기 상 공정, 및 슬러리와 기상의 흔합 공정 등을 모두 사용할 수 있으며, 바람 직하게는 슬러리 또는 기상 공정을 포함한다.
또한 본 발명의 클레이 담지 니켈 디이민계 촉매는 올레핀 중합공정 에 적합한 용매에 슬러리 형태로 희석하여 주입하여 사용할 수 있다. 이러 한 중합 용매로는 탄소수 5 내지 12의 지방족 탄화수소, 방향족 탄화수소 또는 염소원자로 치환된 지방족 또는 방향족 탄화수소를 사용할 수 있다. 상기 탄소수 5 내지 12의 지방족 탄화수소는 펜탄, 핵산, 헵탄, 노난, 데칸 및 이들의 이성질체 증에서 선택된 어느 하나 이상을 사용할 수 있다. 또 한, 상기 방향족 탄화수소 용매는 를루엔, 벤젠 등이 있다. 상기 염소원자 로 치환된 지방족 또는 방향족 탄화수소는 디클로로메탄, 클로로벤젠 등이 있다.
상기 올레핀 단량체는 에틸렌, 프로필렌, 알파 을레핀, 사이클릭 을 레핀 등이 있으며, 이중 결합을 2 개 이상 가지고 있는 디엔 올레핀계 단량 체 또는 트리엔 올쩨핀계 단량체 등도 중합이 가능하다. 이러한 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-아이코 센, 노보넨, 노보나디엔, 에틸리덴노보넨, 비닐노보넨, 디사이클로펜타디엔 1,4-부타디엔, 1,5-펜타디엔, 1,6-핵사디엔, 스티렌, 알파-메틸스티렌, 디비 닐벤젠, 3-클로로메틸스티렌 등이 있으며, 이들 단량체를 2종 이상흔합하여 공중합할 수도 있다.
이러한 단량체들을 본 발명의 클레이 담지 니켈 디이민계 촉매하에서 중합할 때의 중합온도는 약 25 내지 500 °C가 좋으며, 바람직하게는 약 25 내지 200 °C이고, 더욱 바람직하게는 약 50 내지 200 °C이다. 또한 중합 압 력은 약 1 내지 100 Kgf/cm2 에서 수행하는 것이 좋으며, 바람직하게는 약 1 내지 70 Kgf/cm2이고, 더욱 바람직하게는 약 5 내지 50 Kgf/cm2이다.
또한 폴리올레핀 중합체의 중량평균분자량은 가장 흔히 사용하는 방 법인 수소를 사용하여 조절할 수 있다. 또한 중량평균분자량은 폴리을레핀 중합체의 용융지수를 측정하여 확인할 수 있다.
이러한 조건을 갖는 본 발명의 방법에 있어서, 상기 중합은 약 50 내 지 200 °C의 온도 및 약 5 내지 50 Kgf/cm2의 압력에서 탄소수 5 내지 12의 지방족 탄화수소로 구성된 중합 용매 및 수소를 사슬이동제로 사용하여 수 행할 수 있다.
이와 같이 , 본 발명은 상기 화학식 1의 유기성 개질제를 포함하는 클 레이에 유기 금속 화합물을 첨가하여 개질처리를 통해 클레이 금속 복합체 를 형성하고, 여기에 니켈 디이민 촉매를 담지시켜 클레이 담지 니켈 디이 민계 촉매를 제조한 다음, 에틸렌과 같은 올레핀 단량체를 투여하고 필요에 따라서는 조촉매를 더욱 첨가하여 중합함으로써 기존에 비해 물성이 우수한 폴리올레핀 /클레이 나노 복합체를 제조할 수 있다.
따라서, 본 발명의 또 다른 구현예에 따르면 상기 폴리올레핀 /클레이 나노 복합체를 제조하는 방법에 따라 제조된 폴리올레핀 /클레이 나노 복합 체 (exfoliated PE/clay nanocomposite)가 제공된다.
이러한 본 발명의 폴리올레핀 /클레이 나노 복합체는 상술한 특정 클 레이 담지 니켈 디이민계 촉매를 이용하므로 폴리올레핀 고분자 내에 클레 이가 고르게 나노 분산되어 있다.
바람직하게, 상기 클레이는 폴리을레핀 /클레이 나노 복합체의 전체 중량을 기준으로 약 2 내지 30 중량 %로 폴리올레핀 내에 포함되어 고르게 분산될 수 있다.
따라서 본 발명에 따라 제조된 폴리을레핀 /클레이 나노 복합체는 투 명성을 유지하면서도 기존에 비해 내충격성, 내열성, 기체 및 액체 차단성, 내연성 및 내 투과방지능 등의 물성이 뛰어나다.
또한, 본 발명은 상기 폴리올레핀 /클레이 나노 복합체를 마스터 배치 로 하여 폴리올레핀을 흔합하여 제조되는 폴리올레핀 수지를 제공한다.
이렇게 제조된 폴리올레핀 수지는 통상의 사출제품, 필름, 용기 파이 프, 섬유 등의 제조에 사용될 수 있고, 이들의 물성 향상에 기여할 수 있 다. 이하 실시예를 통하여 본 발명을 더욱 상세히 설명할 것이다. 하기 실시예는 본 발명을 예시하기 위한 것이지 본 발명의 범위가 이들만으로 한 정되는 것이 아니다.
실시예 1
(클레이 담지 니켈 디이민 촉매 합성)
250 의 글래스 반웅기 (glass reactor)에 100 의 를루엔, 2.5 g의 Cloisite 30B (제조사: Southern Clay Products) 및 7.4 mm 의 트리메틸알루 미늄을 첨가한 후, 40°C에서 15시간 동안 200 rpm에서 교반하면서 반응시켰 다. 이후, 캐뉼라 (cannula)를 이용하여 상단의 액상 부분을 제거하고, 50 의 를루엔으로 2회 세척 및 50 의 디클로로메탄으로 추가 세척하여 클레 이 금속 복합체 (MMT)를 제조하였다. 이때, Cloisite 30B는 하기 화학식 2의 유기성 개질제를 포함하는 클레이를 나타낸다.
[화학식 2]
CH2CH2OH
CH3-N+-T
CH2CH2OH
(상기 식에서, T는 탈로우 (~65% Ci8; ~30% C16; ~5% C14)이다) 그런 다음, 80mg의 비스 (4-아미노 -1,3, 5, 6-테트라메틸이미노)아세나 프텐 니켈 (Π) 디브로마이드를 20 ^의 디클로로메탄에 녹인 후, 상기에서 제조된 클레이 금속 복합체가 포함된 250 의 글래스 반웅기에 투입하고 40 °C에서 15시간 동안 200 rpm에서 교반하면서 반웅시켰다. 이후, 반웅 생 성물을 포함하는 용액을 필터링하고, 얻어진 고체를 20 의 디클로로메탄 으로 세척하고, 진공 건조하여 상기 화학식 2의 유기성 개질제로 유기화된 클레이를 이용한 클레이 담지 니켈 디이민 촉매 (C30B)를 제조하였다.
최종 담지 촉매의 경우, 니켈 디이민 촉매 담지 후 맑은 용매의 색을 확인함으로써 추가적인 니켈 디이민 촉매의 리칭 현상은 없음을 확인하였 비교예 KCNa)
유기화되지 않은 클레이 (Southern Clay Products사의 Cloisite Na+) 를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 클레이 담지 니켈 디이민 촉매를 합성하였다. 비교예 2(C93A)
상기 화학식 2의 유기성 개질제가 아닌 하기 화학식 8의 화합물을 포 함하는 클레이 (Southern Clay Products사의 Closite 93 A)를 사용한 것을 제 외하고는, 실시예 1과 동일한 방법으로 클레이 담지 니켈 디이민 촉매를 합 성하였다.
[화학식 8]
Figure imgf000017_0001
(상기 식에서 , T는 탈로우 (~65% C18; ~30 C16; ~5% C14)이다) 실시예 2
(폴리올레핀 /클레이 나노 복합체의 제조)
300 의 준회분식 스테인레스 스틸 오토클레이브 (semi-batch stainless steel autoclave) 반웅기에 150 m의 핵산, 2 隱 의 에틸알루미 늄 세스퀴클로라이드 (ethylaluminum sesquichlor ide: EASC)를 투입하고, 상 기 실시예 1에서 제조된 클레이 담지 니켈 디이민 촉매 200 mg을 투입하였다. 이 후, 5분간 안정화하고, 반웅기의 온도를 60 °C로, 압력을 20 psig로 유지 하며 에틸렌을 연속적으로 가하여 약 8 분간 중합하였다. 상기 정해진 시간 의 중합이 완료된 후, 남은 에틸렌을 빠르게 제거하고 에탄올을 투입하여 반웅을 종결시켰다.
이로부터 얻어진 중합체를 필터링 후, 진공 건조하여 폴리올레핀 /클 레이 나노 복합체를 제조하였다. 상기 제조된 폴리올레핀 /클레이 나노 복합 체의 물성을 하기 표 2에 나타내었다. 실시예 3 내지 10 및 비교예 3 내지 13
하기 표 1에 기재된 중합 조건으로 을레핀 단량체 (에틸렌 단량체)의 중합을 수행한 것을 제외하고는, 상기 실시예 2와 동일한 방법으로 폴리올 레핀 /클레이 나노 복합체를 제조하였다.
【표 1]
중합조건
촉매 조촉매 중합시간 (min) 중합압력 (psig)
C30B
실시예 2 EASC 8 20
(실시예 1)
C30B
실시예 3 EASC 30 20
(실시예 1)
C30B
실시예 4 EASC 45 20
(실시예 1)
C30B
실시예 5 사용안함 30 20
(실시예 1)
C30B
실시예 6 사용안함 100 20
(실시예 1)
C30B
실시예 7 사용안함 225 20
(실시예 1)
C30B
실시예 8 사용안함 6 50
(실시예 1)
C30B
실시예 9 사용안함 15 50
(실시예 1)
C30B
실시예 10 사용안함 21 50
(실시예 1)
비교예 3 N1 EASC 55 20
CNa
비교예 4 EASC 40 20
(비교예 1)
CNa
비교예 5 EASC 60 20
(비교예 1)
C93A
비교예 6 EASC 15 20
(비교예 2)
C93A
비교예 7 EASC 60 20
(비교예 2)
CNa
비교예 8 EASC 3 50
(비교예 1)
비교예 9 CNa EASC 6 50 (비교예 1)
C93A
비교예 10 EASC 2 50
(비교예 2)
C93A
비교예 11 EASC 4 50
(비교예 2)
CNa
비교예 12 사용안함 60 20
(비교예 1)
C93A
비교예 13 사용안함 60 20
(비교예 2
표 1에서,
* C30B: Cloisite 30B( Southern Clay Products사 제조)를 이용해 만든 담지촉매
* N1: 비스 (4-아미노 -1,3,5,6-테트라메틸이미노)아세나프텐 니켈 (II) 디브로마이드 (담지되지 않은 니켈 디이민 촉매임)
* CNa: Cloisite Na+(Southern Clay Products사 제조)를 이용해 만든 담지촉매
* C93A: Closite 93 A( Southern Clay Products사 제조)를 이용해 만든 담지촉매
* EASC: 에틸알루미늄 세스퀴클로라이드 (ethyl aluminum sesqui chloride)
그런데, 비교예 1 및 2의 촉매를 사용한 비교예 12 및 13의 경우 조 촉매의 투입 없이는 고분자 중합 반응이 진행되지 않아 결과물을 얻을 수 없었다. 따라서, 비교예 12 및 13은 중간에 반웅을 중단하였다. 실험예
상기에서 제조된 실시예 2 내지 10 및 비교예 3 내지 11의 폴리올레 핀 /클레이 나노 복합체의 물성은 하기 표 2에 나타내었다.
이때, 물성 측정 방법은 이 분야에 잘 알려진 통상적인 방법을 사용 하였다.
【표 2】
Figure imgf000019_0001
실시예 3 1.7 12.7 122.7 450.2 6.1 실시예 4 2.7 6.8 123.1 445.7 10.3 실시예 5 1.1 14.3 125 476 31.7 실시예 6 2.4 8.3 125.6 475.2 33.2 실시예 7 4.1 3.8 126.8 476.7 37.1 실시예 8 0.6 16.7 125.3 473.6 34.6 실시예 9 1 10 125.9 467.1 34.9 실시예 10 1.6 6.5 126.3 477.3 35.1 비교예 3 1.2 0 119.9 473.4 1 비교예 4 1.2 13.0 115.3 414 2.2 비교예 5 2.4 6.4 118 425.5 4.6 비교예 6 1.5 13.3 119.5 420.1 4.2 비교예 7 2.5 6.0 118.6 427 2.6 비교예 8 1.2 13.0 122.7 404 28 비교예 9 2.4 5.4 122.8 427.5 32.1 비교예 10 1.5 12 122.3 390.1 12 비교예 11 2.5 5.1 122.1 418.7 17.5 비교예 12 0 - - - - 비교예 13 0 - - - ᅳ
표 2의 실시예와 비교예들을 비교하여 보면, 실시예의 경우 조촉매 역할을 하는 EASC를 투입하지 않은 실시예 5 내지 10의 경우에도 상당량의 고분자를 얻을 수 있었다. 그러나, 비교예 1 및 2의 촉매만을 사용한 경우 상기 언급된 바와 같이 조촉매의 투입 없이는 고분자 중합 반웅이 진행되지 않아, 비교예 12와 비교예 13의 결과물에 대한 물성을 측정할 수 없었다. 또한, 중합시 조촉매 (EASC)를 사용하더라도 실시예 2 내지 4의 경우가 비교예 3 내지 11에 비해 전체적인 및 Td 등의 열역학적 특성이 훨씬 우수하다는 것을 확인할 수 있었다. 또한 벌크적인 중합 특성 이외에도, 일반적으로 우수한 물성을 가지는 폴리올레핀 /클레이 나노 복합체를 제조하기 위해서는 적당한 비율의 클레이가 폴리에틸렌 고분자 매트릭스에 나노페이즈 형태로 고르게 분산, 공존해야 하며, 또한 중합에 사용된 촉매의 X-선 회절 특성 및 투과 전자 현미경 (TEM) 관찰 특성 등의 물성이 우수해야 한다.
도 1은 각각 클레이 (CNa, C93A, Cloisite 30B)와 이를 이용해 만든 담지 촉매 (비교예 l(a), 비교예 2(b) 및 실시예 1(c))의 X-선 회절 패턴을 나타낸 그래프이다. 도 1에서 보면, 본 발명에 따른 클레이 담지 니켈 디이민 촉매의 경우 화학식 1의 유기성 개질제를 포함하는 클레이를 사용하므로, 비교예 1, 2보다 클레이간의 층간 거리가 넓어지는 우수한 삽입 (intercalation) 효과를 확인할 수 있다. 반면, 비교예 1은 유기화되지 않은 클레이를 사용하여 패턴 변화가 없었다. 또한 비교예 2는 유기화된 클레이를 사용하였더라도 클레이가 본원의 화학식 1을 유기성 개질제를 포함하지 않아 촉매가 약간 뭉쳐져 있는 결과가 나타났다.
도 2는 상기 비교예 8 내지 11, 실시예 8 및 실시예 10에서 제조된 폴리올레핀 /클레이 나노 복합체의 미분중량곡선을 나타낸 그래프이다. 도 2에서 보면, 본 발명에 따른 클레이 담지 니켈 디이민 촉매를 활용한 실시예 8, 10의 복합체 (도 2의 (c))의 경우 비교예 8-1K도 2의 (a),
(b) )보다 폴리에틸렌의 함량이 증가하여도 열적 안정성은 같은 수준을 유지함을 확인할 수 있다. 반면, 비교예 8-11의 경우 클레이 추가시 열안정성이 떨어졌다. 이때 상기 표 2에서 비교예 9 내지 11의 경우 본원과 유사한 Tm 및 Td를 나타내었으나, 비교예 9-11은 클레이 증에 본원 화학식 1의 유기성 개질제를 포함하지 않은 촉매를 사용하여 중합시의 열적 안정성이 효율적이지 못함을 알수 있다.
도 3은 상기 비교예 4 내지 7, 및 실시예 2, 실시예 4 내지 6에서 제조된 폴리올레핀 /클레이 나노 복합체의 X-선 회절 패턴을 나타낸 그래프이다. 도 3에 나타난 바와 같이, 본 발명에 따른 실시예들 (도 3의
(c) , (d))은 폴리에틸렌의 함량 증가에 따라 XRD 상의 클레이 피크 (peak)가 완전히 사라져 비교예 4-7(도 3의 (a), (b))에 비해서 폴리에틸렌 내에 클레이가 완전하게 분산되어 있음을 확인할 수 있다. 도 4는 상기 실시예 9에서 제조된 폴리올레핀 /클레이 나노 복합체를 투과 전자 현미경으로 관찰한 결과이고 (도 4의 (a)), 도 4의 ①, ② 및 ③은 상기 (a)의 각 지점을 50nm 스케일로 확대하여 관찰한 결과이다. 도 4를 통해, 본 발명의 실시예 9의 폴리올레핀 /클레이 나노복합체는 중합이 진행되면서 클레이의 실리케이트층이 박리 (exfoliation)되어 폴리에틸렌 내에 클레이의 분산이 잘 되어있음을 확인할 수 있다.
도 5는 상기 실시예 6에서 제조된 폴리올레핀 /클레이 나노 복합체를 투과 전자 현미경 (TEM)으로 관찰한 결과이다 (lOOnm 스케일 기준). 도 5에서 보면, 본 발명의 실시예 6의 폴리올레핀 /클레이 나노복합체 또한 클레이의 실리케이트층이 박리되어 폴리에틸렌 내에 클레이의 분산이 잘 되어있음을 확인할 수 있다.

Claims

【특허청구범위】
【청구항 11
하기 화학식 1로 표시되는 유기성 개질제를 포함하는 클레이에 의해 유기 금속 화합물을 개질처리시킨 클레이 금속 복합체, 및
상기 클레이 금속 복합체에 담지된 니켈 디이민 촉매
를 포함하는 클레이 담지 니켈 디이민계 촉매 :
Figure imgf000023_0001
상기 화학식 1에 있어서,
Ri 내지 ¾은 각각 독립적으로 탄소수 1 내지 30의 알킬기이고, 상기 ¾ 내지 ¾ 중 적어도 하나 이상의 말단은 히드록시기 (0H)로 치환되며,
T는 탄소수 14 내지 18을 가지는 탈로우 (tallow)이다.
【청구항 2】
제 1항에 있어서, 상기 화학식 1의 유기성 개질제는 하기 화학식 2로 표시되는 화합물을 포함하는 클레이 담지 니켈 디이민계 촉매:
[화학식 2]
Figure imgf000023_0002
상기 화학식 2에서,
T는 탄소수 14 내지 18을 가지는 탈로우 (tallow)이다.
【청구항 3]
제 1항에 있어서, 상기 화학식 1의 유기성 개질제는 클레이 단위 중량 (g)당 0.1 내지 10醜 로 포함하는 클레이 담지 니켈 디이민계 촉매. 【청구항 4】
제 1항에 있어서, 상기 유기 금속 화합물은 하기 화학식 3, 화학식 4, 화학식 5로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 클레이 담지 니켈 디이민계 촉매:
[화학식 3]
-[ΑΚ¾Κ>]η- 상기 화학식 3에서,
R4는 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1내지 20의 하이드로카빌 라디칼이고,
η은 2내지 20의 정수이며,
[화학식 4]
G(¾)3
상기 화학식 4에서,
G는 알루미늄 또는 보론이고,
¾는 서로 같거나 상이하고, 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌 라디칼이이며,
[화학식 5]
[L_H]+[ZA4]_ 또는 [L]+[ZA4]
상기 화학식 5에서,
L은 각각독립적으로 중성 또는 양이온성 루이스 산이고,
H는 각각 독립적으로 수소 원자이며,
Z는 각각 독립적으로 13족 원소이고,
A는 서로 같거나 상이하고 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 하이드로카빌, 알콕시기, 페녹시기, 질소, 인, 황 또는 산소원자 중에서 선택된 1종 이상으로 치환된 탄소수 6 내지 20의 아릴 또는 알킬 라디칼이다.
【청구항 5】
제 1항에 있어서, 상기 유기 금속 화합물은 클레이 단위 중량 (g)당 0.2내지 5瞧 로 포함하는 클레이 담지 니켈 디이민계 촉매.
【청구항 6]
제 1항에 있어서, 상기 니켈 디이민 촉매는 하기 화학식 표시되는 화합물인 클레이 담지 니켈 디이민계 촉매.
Figure imgf000025_0001
상기 화학식 6에 있어서,
¾ 내지 R13은 동시에 또는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기이고, R14 및 R15는 동시에 또는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기이거나, R14 및 R15는 서로 연결되어 나프틸기를 형성활 수 있고, ¾ 및 ¾는 각각 독립적으로 할로겐 원자 또는 탄소수 1 내지 10의 알킬기이다.
【청구항 7】
제 1항에 있어서, 상기 니켈 디이민 촉매는 클레이 단위 중량 (g)당 0.01내지 1 mm이로 포함하는 클레이 담지 니켈 디이민계 촉매.
【청구항 8】
저 U항에 있어서, 상기 클레이 금속 복합체는 상기 화학식 1의 유기성 개질제를 포함하는 클레이의 유기성 개질제 대비 2 내지 5배수의 유기 금속 화합물이 개질처리된 것인 클레이 담지 니켈 디이민계 촉매.
【청구항 9]
제 1항에 있어서, 상기 클레이는 몬모릴로나이트, 핵토라이트, 사포나이트, 사우코나이트, 버미쿠라이트, 마가디이트 및 케냐아이트로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 클레이 담지 니켈 디이민계 촉매.
【청구항 10】
제 1항 내지 제 9항 중 어느 한 항에 따른 클레이 담지 니켈 디이민계 촉매 하에, 올레핀 단량체를 중합시키는 단계 를 포함하는 폴리올레핀 /클레이 나노 복합체의 제조방법 .
【청구항 111
제 10항에 있어서, 상기 폴리을레핀 /클레이 나노 복합체의 제조방법은 중합단계에서 에틸알루미늄 세스퀴클로라이드 또는 트리이소부틸알루미늄의 조촉매를 추가하는 단계를 더 포함하는 폴리올레핀 /클레이 나노 복합체의 제조방법.
【청구항 12]
제 10항에 있어서, 상기 을레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-아이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 비닐노보넨, 디시클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌로 이루어지는 군으로부터 선택된 1종 이상인 폴리올레핀 /클레이 나노 복합체의 제조방법.
【청구항 13】
제 10항에 있어서, 상기 중합은 50 내지 200 °C의 온도 및 5 내지 50 Kgf/cm2의 압력에서 탄소수 5 내지 12의 지방족 탄화수소로 구성된 중합 용매및 수소를 사슬이동제로 사용하여 수행하는 폴리올레핀 /클레이 나노 복합체의 제조방법 .
【청구항 14】
제 10항에 있어서, 상기 중합은 슬러리 공정 또는 기상 공정을 포함하는 폴리올레핀 /클레이 나노 복합체의 제조방법 .
【청구항 151
제 10항 내지 제 14항 중 어느 한 항에 따른 폴리올레핀 /클레이 나노 복합체의 제조방법에 따라 제조되며 2 내지 30 중량 %의 클레이가 폴리올레핀 내에 분산된 폴리을레핀 /클레이 나노 복합체.
【청구항 16]
제 15항의 폴리올레핀 /클레이 나노 복합체를 마스터 배치로 하여 폴리올레핀을 흔합하여 제조되는 폴리올레핀 수지.
PCT/KR2011/004149 2010-06-08 2011-06-07 클레이 담지 니켈 디이민 촉매 및 이를 이용한 폴리올레핀/클레이 나노 복합체의 제조방법 WO2011155753A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800286747A CN102933614A (zh) 2010-06-08 2011-06-07 粘土负载二亚胺镍催化剂及使用该催化剂的聚烯烃/粘土纳米复合物的制备方法
JP2013509006A JP2013525589A (ja) 2010-06-08 2011-06-07 クレイ担持ニッケルジイミン触媒およびこれを利用したポリオレフィン/クレイナノ複合体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0053988 2010-06-08
KR20100053988 2010-06-08

Publications (2)

Publication Number Publication Date
WO2011155753A2 true WO2011155753A2 (ko) 2011-12-15
WO2011155753A3 WO2011155753A3 (ko) 2012-05-03

Family

ID=45098520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004149 WO2011155753A2 (ko) 2010-06-08 2011-06-07 클레이 담지 니켈 디이민 촉매 및 이를 이용한 폴리올레핀/클레이 나노 복합체의 제조방법

Country Status (4)

Country Link
JP (1) JP2013525589A (ko)
KR (1) KR101442202B1 (ko)
CN (1) CN102933614A (ko)
WO (1) WO2011155753A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848587A4 (en) * 2012-05-11 2016-02-10 Fundación Cidaut METHOD FOR POLYMERIZING ON NANOPARTICLES AND POLYMER THUS OBTAINED
CN104829643B (zh) * 2015-04-30 2017-06-06 河北工业大学 一种带有烷氧基硅的α‑二亚胺化合物及其负载型金属配合物的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160834B2 (en) * 2003-03-18 2007-01-09 Exxonmobil Chemical Patents Inc. Soluble group-10 α-diimine catalyst precursors, catalysts and methods for dimerizing and oligomerizing olefins

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086717A (ja) * 1998-09-14 2000-03-28 Idemitsu Petrochem Co Ltd オレフィン又はスチレン類の重合用触媒及び重合体の製造方法
DE19944993A1 (de) * 1999-09-20 2001-03-22 Basf Ag Metallorganische Katalysatoren für die Polymerisation ungesättigter Verbindungen
KR100445237B1 (ko) * 2001-08-23 2004-08-18 한국과학기술연구원 클레이가 분산된 올레핀계 고분자 나노 복합체 제조방법
JP2005154629A (ja) * 2003-11-27 2005-06-16 Tosoh Corp オレフィン重合用触媒及びポリオレフィンの製造方法
US7501460B1 (en) * 2005-07-18 2009-03-10 Exxonmobile Chemical Patents Inc. Split-stream process for making nanocomposites

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160834B2 (en) * 2003-03-18 2007-01-09 Exxonmobil Chemical Patents Inc. Soluble group-10 α-diimine catalyst precursors, catalysts and methods for dimerizing and oligomerizing olefins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOI, Y. ET AL.: 'You have full text access to this contentPreparation of Polyethylene/Montmorillonite Nanocomposites Through in situ Polymerization Using a Montmorillonite-Supported Nickel Diimine Catalyst (pages' MACROMOL. CHEM. PHYS. vol. 211, no. 9, 03 May 2010, pages 1026 - 1034 *
YE, Z. ET AL.: 'Catalyst impregnation and ethylene polymerization with mesoporous particle supported nickel-diimine catalyst' POLYMER vol. 44, no. 4, 10 January 2003, pages 969 - 980 *

Also Published As

Publication number Publication date
WO2011155753A3 (ko) 2012-05-03
KR20110134320A (ko) 2011-12-14
JP2013525589A (ja) 2013-06-20
KR101442202B1 (ko) 2014-09-19
CN102933614A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
US6646072B2 (en) Process for making polyolefin compositions containing exfoliated clay
EP2975069B1 (en) Method for producing olefin polymer and catalyst for olefin polymerization
WO2001055231A1 (fr) Polymeres olefiniques et leurs procedes de production
JP2002053615A (ja) エチレン(共)重合体およびその用途
EP2029668B1 (en) Method for forming exfoliated clay-polyolefin nanocomposites
CN106715487B (zh) 包含来源于1-丁烯的构成单元的烯烃(共)聚合物的制造方法
EP3124506A1 (en) Olefin resin and method for producing same
KR20100101049A (ko) 담지된 비-메탈로센 촉매 및 이의 제조방법
WO2012022127A1 (zh) 用于烯烃聚合的催化剂组分及其制备方法
JP2007262335A (ja) 極性基含有プロピレン共重合体よりなるフィラー分散親和剤及びそれを用いた複合材
EP2038343B1 (en) Method for forming flame-retardant clay-polyolefin composites
KR100506696B1 (ko) 폴리올레핀 나노복합체
WO2011155753A2 (ko) 클레이 담지 니켈 디이민 촉매 및 이를 이용한 폴리올레핀/클레이 나노 복합체의 제조방법
WO2018105852A1 (ko) 혼성 담지 촉매
KR100216665B1 (ko) 알파-올레핀의 입체 특이적 중합에 유용한 촉매고체, 이의 제조방법과 이의 존재하에서의 알파-올레핀의 중합법
JP4787278B2 (ja) 前重合されたオレフィン重合用触媒、これを用いたオレフィンの重合方法、およびこれによって製造されたポリオレフィン
KR20200115742A (ko) 폴리올레핀 중합용 촉매 조성물, 그의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
US7432319B2 (en) Process for making exfoliated polyolefin/clay nanocomposites
JPH10273507A (ja) プロピレン重合体
KR20220018942A (ko) 열가소성 수지 조성물
WO2021025141A1 (ja) プロピレン系重合体組成物および成形体
KR102202546B1 (ko) 폴리올레핀 중합용 촉매 조성물, 그의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
EP2924054A1 (en) Method for preparing polyolefin polymerization catalyst and method for preparing polyolefin using same
JP2007131749A (ja) プロピレン−α−オレフィンブロック共重合体の製造方法
CN117624415A (zh) 烯烃聚合反应体系、方法及使用的防黏剂

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028674.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792664

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013509006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792664

Country of ref document: EP

Kind code of ref document: A2