WO2011155442A1 - Amplification-type solid state imaging device - Google Patents

Amplification-type solid state imaging device Download PDF

Info

Publication number
WO2011155442A1
WO2011155442A1 PCT/JP2011/062937 JP2011062937W WO2011155442A1 WO 2011155442 A1 WO2011155442 A1 WO 2011155442A1 JP 2011062937 W JP2011062937 W JP 2011062937W WO 2011155442 A1 WO2011155442 A1 WO 2011155442A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transistor
reset
voltage
amplification
Prior art date
Application number
PCT/JP2011/062937
Other languages
French (fr)
Japanese (ja)
Inventor
恭志 渡辺
Original Assignee
株式会社ブルックマンテクノロジ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブルックマンテクノロジ filed Critical 株式会社ブルックマンテクノロジ
Priority to JP2011536644A priority Critical patent/JP4846076B1/en
Publication of WO2011155442A1 publication Critical patent/WO2011155442A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/65Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise related to CMOS structures by techniques other than CDS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion

Definitions

  • the present invention relates to an amplification type solid-state imaging device having a capacitance in a pixel.
  • an amplification type solid-state imaging device has a pixel unit provided with an amplification function and a scanning circuit arranged around the pixel unit, and one that reads out pixel data from the pixel unit by the scanning circuit is widespread doing.
  • an APS Active Pixel Sensor
  • CMOS Complementary Metal Oxide Semiconductor
  • FIG. 26 is a circuit diagram showing a configuration of a pixel 100 of an amplification type solid-state imaging device according to the prior art.
  • the pixel 100 is a conventional four-transistor pixel provided with four N-channel MOS (Metal Oxide Semiconductor) field effect transistors.
  • MOS Metal Oxide Semiconductor
  • the light receiving element PD is usually formed of an embedded light receiving element, and the signal charge is transferred from the light receiving element PD to the floating diffusion region FD by the transfer transistor TX.
  • the floating diffusion region FD is reset by the reset transistor RT to the power supply voltage Vdd which is the drain voltage of the reset transistor RT or the source voltage of the corresponding reset transistor RT.
  • the transfer transistor TX is turned on to transfer the signal charge from the light receiving element PD to the floating diffusion region FD.
  • the voltage of the floating diffusion region FD after the reset and the signal charge transfer is amplified by the amplification transistor SF, and read out to the read signal line sig3 through the selection transistor SL.
  • a constant current load transistor CL is connected to one end of the read signal line sig3, and an output voltage Vo is obtained from the drain of the constant current load transistor CL.
  • each pixel 100 is read out row by row.
  • the pixel 100 outputs the charges accumulated in the light receiving element PD as signal charges to the signal processing circuit (not shown) in the subsequent stage until the time when the readout is performed after the previous readout is performed.
  • the signals are sequentially shifted temporally for each row, and when an object with motion is imaged, the image is distorted according to the motion.
  • FIGS. 27 and 28 are circuit diagrams showing an example of this (see, for example, Patent Document 1).
  • FIG. 27 is a circuit diagram showing the configuration of a pixel 110 of an amplification type solid-state imaging device according to the prior art.
  • the pixel 110 further includes a first amplification transistor SF1, a constant current load transistor VB, a current control switch transistor SW, a write switch transistor Wr, and a capacitance Cm, as compared with the pixel 100 shown in FIG. Is configured.
  • the second amplification transistor SF2 may correspond to the amplification transistor SF of FIG. 26, and the current control switch transistor SW may be provided on the power supply side.
  • all the pixels 110 are operated collectively to write the signal from the light receiving element PD in the capacitor Cm. That is, after the current control switch transistor SW is turned on, the write switch transistor Wr is turned on, and the signal from the light receiving element PD amplified by the first amplification transistor SF1 is written to the capacitor Cm. Thereafter, the write switch transistor Wr is turned off, and then the current control switch transistor SW is turned off, whereby the batch write operation is completed.
  • the read operation is performed sequentially for each row. That is, the operation of reading out the signal held in the capacitor Cm to the read signal line sig3 via the second amplification transistor SF2 and the selection transistor SL is sequentially performed for each row.
  • the constant current load transistor CL is connected to one end of the read signal line sig3, and the output voltage Vo is sequentially obtained for each row.
  • FIG. 28 is a circuit diagram showing a configuration of a pixel 120 of an amplification type solid-state imaging device according to the prior art.
  • the pixel 120 is formed by duplicating each of the write switch transistor, the capacitor, the second amplification transistor, and the selection transistor in comparison with the pixel 110 illustrated in FIG. 27, and the write switch transistors Wr1 and Wr2; Capacitors Cm1 and Cm2, second amplification transistors SF21 and SF22, and select transistors SL1 and SL2 are provided.
  • a reset signal the voltage of the floating diffusion region FD after the reset operation
  • the voltage (referred to as an optical signal) of the floating diffusion region FD after the transfer of the voltage V.sub.2 can be held in the two capacitors Cm1 and Cm2, respectively.
  • the read operation is sequentially performed row by row. That is, the operation of reading out the reset signal and the light signal held by the two capacitors Cm1 and Cm2 to the read signal lines sig3 and sig4 via the second amplification transistors SF21 and SF22 and the selection transistors SL1 and SL2 is performed for each row It will be done sequentially.
  • the output voltages Vo1 and Vo2 are sequentially obtained for each row by the constant current load transistors CL1 and CL2 connected to one end of the read signal lines sig3 and sig4, and the signal processing circuit (not shown) in the subsequent stage outputs the output voltage Vo1.
  • CDS processing correlated double sampling processing
  • reset noise in the floating diffusion region FD and the first amplification transistor It is possible to remove fixed pattern noise caused by the variation of the threshold value of SF1.
  • FIG. 29 is a circuit diagram showing a configuration of a pixel 130 of an amplification type solid-state imaging device according to the prior art.
  • the writing operation when the two-dimensional image sensor is configured using the pixels 130 is performed by operating all the pixels 130 at one time. First, the constant current load transistor PC is turned on, then the switch transistors Smp1 and Smp2 are both turned on, the reset signal after the reset operation is held in the capacitor CmR, and then only the switch transistor Smp1 is turned on. Is transferred to the capacitor CmS.
  • the reset signal held in the capacitor CmR is applied to the gate of the second amplification transistor SF2 with both the switch transistors Smp1 and Smp2 turned off, and then only the switch transistor Smp2 is turned on and light held in the capacitor CmS A signal is applied to the gate of the second amplification transistor SF2.
  • the second amplification transistor SF2 outputs the reset signal and the light signal to the readout signal line sig3 via the selection transistor SL, and this operation is sequentially performed for each row. After that, as in the case of the pixel 120 in FIG.
  • the signal processing circuit (not shown) in the subsequent stage performs the CDS processing, thereby resetting noise, the first amplification transistor SF1, and the second amplification transistor SF2.
  • Fixed pattern noise due to the variation of the threshold of the pixel 130 has a simple configuration including two switch transistors, two capacitors, and one second amplification transistor, and eight transistors per pixel.
  • the configuration shown in FIG. 28 has the following problems.
  • A When the write operation is performed on the capacitance in the pixel by operating all the pixels collectively, the current control switch transistor SW is turned on, so that the first amplification transistor SF1 is constant via the constant current load transistor VB. Since the current I1 flows, the current flowing through the entire two-dimensional image sensor is equal to the number of pixels of the current I1 and a large direct current flows.
  • B Eleven transistors are required in one pixel, the area of the light receiving element PD is reduced, the sensitivity is lowered, and the pixel layout is complicated.
  • the constant current load transistor PC is simultaneously turned on in all the pixels, and the same problem as the above (a) occurs, and the following problems occur.
  • C When the switch transistor Smp2 is turned on and the optical signal held in the capacitor CmS is read out to the gate of the second amplification transistor SF2, the voltage of the optical signal is divided into two capacitors CmR and CmS If the capacitance values are the same, the voltage of the optical signal drops to 1 ⁇ 2. That is, the S / N ratio decreases.
  • the object of the present invention is to solve the above problems, and with a simple circuit configuration, the area of the light receiving element can be increased by reducing the number of transistors in the pixel, and the current when writing a signal in the capacitor can be suppressed. It is an object of the present invention to provide an amplification type solid-state imaging device capable of maintaining a high S / N ratio without a voltage drop when reading out a signal from a capacitor and obtaining stable operation and high performance.
  • An amplification type solid-state imaging device includes a pixel array configured by arranging a plurality of pixels having a plurality of capacities in a matrix.
  • An amplification type solid-state imaging device comprising: a control circuit for performing operation control on each pixel constituting the pixel array; Each pixel is A photoelectric conversion unit that generates and outputs a signal according to the received light; A first amplification transistor that amplifies and outputs a signal input from the photoelectric conversion unit to a gate; A reset transistor that resets a gate voltage of the first amplification transistor; A plurality of capacitors for holding a signal output from the first amplification transistor to the first signal line; Respective capacitances provided corresponding to the plurality of capacitances and provided between the first signal line and the plurality of capacitances and performing input / output control between the first signal line and the plurality of capacitances Multiple capacitive switches, one per unit, A second amplification transistor that amplifies a signal input from the first signal line to
  • the control circuit may (1) The plurality of capacitors are initialized to the first voltage by turning on the initialization transistor and turning on the plurality of capacitance switches. (2) By sequentially turning on the plurality of capacitance switches corresponding to the plurality of capacitances, capacitance switches corresponding to the first signal line and the capacitance to be written are the amplified signals from the first amplification transistor.
  • control circuit is configured to configure all the pixel arrays in a period in which the first amplification transistor shifts from a saturation region operation to a subthreshold region operation and becomes a metastable state.
  • the write operation is simultaneously performed on the pixel.
  • the signal includes a reset signal
  • the control circuit applies a second voltage at which the first amplification transistor is turned on to the drain of the reset transistor to turn on the reset transistor, thereby the reset transistor corresponding to the second voltage.
  • a source voltage of the first amplification transistor is applied to the gate of the first amplification transistor to output a reset signal corresponding to the second voltage to the first signal line, and then the first amplification transistor is turned off.
  • Performing the write operation to apply the third voltage to the gate of the first amplification transistor by applying a voltage of 3 to the drain of the reset transistor and turning on the reset transistor. It is characterized by
  • the signal includes a reset signal
  • the pixel further includes an output switch provided between the first amplification transistor and a first signal line.
  • the control circuit applies a second voltage that turns on the first amplification transistor to the gate of the first amplification transistor by turning on the reset transistor, and turns on the output switch.
  • the write operation is performed to turn off the output switch.
  • the signal further includes an optical signal
  • the pixel further includes a transfer transistor provided between the photoelectric conversion unit and the gate of the first amplification transistor.
  • the photoelectric conversion unit is an embedded light receiving element, and outputs an optical signal according to the received light to the gate of the first amplification transistor via the transfer transistor.
  • the plurality of capacitors include a first capacitor for holding the reset signal and a second capacitor for holding the optical signal,
  • the control circuit applies the light signal from the photoelectric conversion unit to the gate of the first amplification transistor by writing the reset signal to the first capacitor and then turning on the transfer transistor.
  • the write operation may be performed to write the optical signal to the second capacitor.
  • the signal further includes an optical signal
  • the pixel further includes a transfer transistor provided between the photoelectric conversion unit and the gate of the first amplification transistor.
  • the photoelectric conversion unit is an embedded light receiving element, and outputs an optical signal according to the received light to the gate of the first amplification transistor via the transfer transistor.
  • the plurality of capacitors include a first capacitor for holding the reset signal and a second capacitor for holding the optical signal,
  • the control circuit turns on the output switch to write the reset signal to the first capacitor, and then turns on the transfer transistor to amplify the optical signal from the photoelectric conversion unit to the first amplification. After the light signal is applied to the gate of the transistor, the write operation is performed to output the light signal to the first signal line and to write the light signal to the second capacitor.
  • the signal further includes an optical signal
  • the photoelectric conversion unit is a PN light receiving element, and outputs a light signal according to the received light to the gate of the first amplification transistor
  • the plurality of capacitors may be a third capacitor for holding the optical signal, a fourth capacitor for holding the reset signal when processing an odd-numbered frame, and the reset when processing an even-numbered frame.
  • a fifth capacitance for holding the signal The control circuit applies the light signal from the photoelectric conversion unit to the gate of the first amplification transistor by turning on the output switch to write the light signal to the third capacitance.
  • the write operation is performed to write the reset signal to the fourth capacitor when processing odd-numbered frames and to write the reset signal to the fifth capacitor when processing even-numbered frames It is characterized by
  • the control circuit when processing an odd-numbered frame, the control circuit reads the light signal from the third capacitance and reads the reset signal from the fifth capacitance.
  • the read operation is performed so as to read the light signal from the third capacitor and read the reset signal from the fourth capacitor.
  • the control circuit executes the reading operation so as to sequentially read a reset signal and an optical signal for each row of the pixel array,
  • the second voltage is applied to the drain of the reset transistor between the read operation of the first row and the read operation of the second row next to the first row,
  • the transfer transistor is turned off, and the reset transistor is turned on. Is applied to the drain of the reset transistor to control the reset transistor to turn off.
  • the control circuit executes the readout operation so as to sequentially read out the reset signal and the light signal for each row of the pixel array,
  • the read operation the photoelectric conversion is performed by turning on the transfer transistor and the reset transistor between the read operation of the first row and the read operation of the second row next to the first row. After the light signal from the conversion unit is discharged to the drain of the reset transistor, control is performed to turn off the transfer transistor and turn off the reset transistor.
  • the control circuit executes the reading operation so as to sequentially read a reset signal and an optical signal for each row of the pixel array,
  • the photoelectric conversion is performed by turning on the output switch and the reset transistor between the read operation of the first row and the read operation of the second row next to the first row.
  • the reset transistor is turned off, and when processing an odd-numbered frame, the reset signal is written to the fourth capacitor, and the even-numbered When processing a frame, the reset signal is written to the fifth capacitor, and the output switch is controlled to be turned off.
  • the control circuit executes the reading operation so as to sequentially read a reset signal and an optical signal for each row of the pixel array,
  • the gate of the second amplification transistor is set to a fourth voltage at which the second amplification transistor is turned off by turning on the initialization transistor in each pixel in a row where readout is not performed. It is characterized in that it controls to initialize.
  • the pixel further includes a selection transistor provided between the second amplification transistor and the second signal line.
  • the control circuit is controlled to output the light signal or the reset signal held in the capacitor to the second signal line by turning on the selection transistor.
  • the signal input to the gate of the first amplification transistor includes a reset signal
  • Each of the pixels further includes a transfer transistor provided between the photoelectric conversion unit and the gate of the first amplification transistor.
  • the photoelectric conversion unit is an embedded light receiving element, and outputs an optical signal according to the received light to the gate of the first amplification transistor via the transfer transistor.
  • the control circuit controls the off time of the transfer transistor such that the accumulation time of the photoelectric conversion unit has two modes of a long time accumulation mode and a short time accumulation mode within one frame period
  • the plurality of capacitors are a sixth capacitor for holding the reset signal, a seventh capacitor for holding the light signal in the long time accumulation mode, and an eighth capacitor for holding the light signal in the short time accumulation mode.
  • an amplification type solid-state imaging device is a sixth capacitor for holding the reset signal, a seventh capacitor for holding the light signal in the long time accumulation mode, and an eighth capacitor for holding the light signal in the short time accumulation mode.
  • the control circuit (1) After setting the gate voltage of the reset transistor to a high level, the reset signal is written to the sixth capacitor, (2) After setting the gate voltage of the reset transistor to a middle level lower than the high level, an optical signal of the long-time accumulation mode is written to the seventh capacitance. (3) The write operation is performed by writing the light signal in the short time accumulation mode to the eighth capacitor after setting the gate voltage of the reset transistor to a low level lower than the middle level.
  • the amplification type solid-state imaging device is Correlated double that performs correlated double sampling based on the reset signal, the light signal of the long time accumulation mode, and the light signal of the short time accumulation mode, which are output from the pixel through the second signal line Equipped with a sampling circuit
  • the correlated double sampling circuit is (A) calculating a first differential voltage obtained by subtracting the reset signal from the light signal in the long-term accumulation mode in the first correlated double sampling operation; (B) calculating a second differential voltage formed by subtracting the light signal of the long time accumulation mode from the light signal of the short time accumulation mode in the second correlated double sampling operation; Calculating a value of the ratio of the period of the long-term accumulation mode to the period of time, and calculating a multiplication value obtained by multiplying the second differential voltage by the value of the ratio; (C) An amplification type solid-state imaging device characterized in that the first differential voltage and the multiplication value are selectively switched according to the amount of light received and output
  • the control circuit (1) After setting the gate voltage of the reset transistor to a high level, the reset signal is written to the sixth capacitor, (2) After setting the gate voltage of the reset transistor to a low level lower than the high level, the optical signal in the long time accumulation mode is written to the seventh capacitor, and then the gate voltage of the reset transistor is Set to the high level, (3) After setting the gate voltage of the reset transistor to the low level, the write operation is performed by writing an optical signal in the short-time accumulation mode to the eighth capacitor. It is a solid-state imaging device.
  • the amplification type solid-state imaging device is A correlated double sampling circuit that performs correlated double sampling based on the reset signal and the light signal output from the pixel through the second signal line, (A) calculating a first differential voltage obtained by subtracting the reset signal from the light signal in the long-term accumulation mode in the first correlated double sampling operation; (B) calculating a third differential voltage obtained by subtracting the reset signal from the light signal in the short-time accumulation mode in the second correlated double sampling operation, and calculating the third difference voltage in the short-time accumulation mode Calculating a value of a ratio of a time accumulation mode period, and calculating a multiplication value obtained by multiplying the third difference voltage by the value of the ratio; (C) An amplification type solid-state imaging device characterized in that the first differential voltage and the multiplication value are selectively switched according to the amount of light received and output as an optical signal.
  • the upper limit value of the first differential voltage is set to be a minimum value of the variation range of the light signals in the long time accumulation mode of all the pixels or a value smaller than the minimum value by a predetermined margin value. It is an amplification type solid-state imaging device.
  • the pixel since the pixel does not have a constant current load and writing and reading are performed by a common switch, the number of transistors in the pixel can be reduced.
  • the plurality of capacitors are first initialized to a predetermined voltage, for example, a ground voltage or a positive voltage close thereto, and then the plurality of capacitors A stable operation can be performed by performing the write operation by the charge current to the capacitor and controlling the selection of the specific capacitor and the write time by the capacitor switch.
  • a voltage at which the transistor is deactivated is applied to the gate of the first amplification transistor to turn it off, and selection and reading time of a particular capacitor are controlled by the capacitor switch.
  • signals from the plurality of capacitors can be given to the gate of the second amplification transistor and read out to the outside of the pixel.
  • the amplification type solid-state imaging device of the present invention two capacitances in each pixel are simultaneously operated on the pixel array configured of the pixels having the reset transistor, the embedded light receiving element, and the transfer transistor. After the write operation of the reset signal and the light signal are performed on one side and the other side, respectively, the respective capacitances of the respective pixels are sequentially read out to the gate of the second amplification transistor. At the same time, an operation of writing to each of the capacitors and an operation of sequentially reading out of each of the capacitors can be performed. At the time of reading, a third voltage is applied to the gate of the first amplification transistor to be deactivated, or an output switch is provided between the first amplification transistor and the first signal line to be turned off.
  • the influence of the first amplification transistor is prevented.
  • the correlated double sampling (CDS) method can be applied by taking a difference between the reset signal and the light signal for each pixel read out sequentially, and in the first and second amplification transistors, Fixed pattern noise due to variations in threshold voltage and reset noise to the gate of the first amplification transistor can be suppressed, and a low noise image signal can be obtained.
  • the output switch is turned on by simultaneously operating the pixel array including the reset transistor and the pixel having the PN light receiving element at the time of writing.
  • the write operation of the light signal in one of the three capacitors in each pixel, the reset signal of the odd frame in the other one, and the reset signal of the even frame in the remaining capacitance is performed,
  • the readout from each capacitor to the gate of the second amplification transistor is sequentially performed with the output switch off, and the operation of writing all the pixels simultaneously to the respective capacitors and the operation of sequentially reading out the respective capacitors are performed simultaneously.
  • the light signal of the frame with noise correlation and the reset signal of the previous frame are read out in pairs, so that the CDS method can be applied by taking the difference between the signals, It is possible to suppress fixed pattern noise due to variations in threshold voltage in each of the second amplification transistors and reset noise to the gate in the first amplification transistor, and obtain an image signal with low noise. it can.
  • the second amplification transistor in the non-selected row is inactivated when reading out signals in row sequence from the pixel array. Since the gate voltage of the amplification transistor is controlled by the initialization transistor, it is not necessary to provide a selection transistor between the second amplification transistor and the signal line, thereby further reducing the components in the pixel. It is possible to improve the performance such as the increase of the area of the light receiving portion.
  • the amount can be increased significantly. That is, the low sensitivity short-term accumulated charge can be used to accumulate even stronger incident light amount, and the signal maintaining linearity is read, and the maximum allowable incident light amount is expanded by combining these two types of signals. It is possible to perform wide dynamic range operation.
  • CDS correlated double sampling
  • the amplification type solid-state imaging device of the present invention since the signal is clipped so as to be smaller than the minimum value of variation for all pixels, a wide dynamic range image signal without fixed pattern noise can be obtained.
  • the handling charge amount can be doubled as compared with those of the other embodiments.
  • the collective exposure (global shutter) operation and the wide dynamic range operation can be simultaneously performed. Furthermore, in the wide dynamic range operation, each frame can be operated continuously and is also applicable to moving pictures. Furthermore, in wide dynamic range operation all signals required for wide dynamic range operation can be obtained simultaneously without frame memory. In addition, both the light signal in the long time accumulation mode and the light signal in the short time accumulation mode can be reset noise free, and a wide dynamic range signal with a high SN ratio can be obtained.
  • FIG. 8 is a first portion of a timing chart illustrating the operation of a two-dimensional image sensor provided with a pixel array having the pixels 30 of FIG. 7.
  • 9 is a second portion of a timing chart illustrating the operation of a two-dimensional image sensor comprising a pixel array having the pixels 30 of FIG. 7;
  • 11 is a first portion of a timing chart showing an operation in one frame period of a two-dimensional image sensor provided with a pixel array having the pixel 40 of FIG.
  • FIG. 11 is a second portion of a timing chart showing an operation in one frame period of a two-dimensional image sensor provided with a pixel array having the pixel 40 of FIG. It is a timing chart which shows the operation
  • FIG. 17 is a timing chart showing a write operation of the amplification type solid-state imaging device of FIG. 16; 17 is a timing chart showing the read operation of the amplification type solid-state imaging device of FIG. 16;
  • FIG. 17 is an electric potential diagram schematically showing signal charges generated in a light receiving element by incident light, gate potentials of transfer transistors and reset transistors, and potentials of floating diffusion regions in the amplification type solid-state imaging device of FIG. 16;
  • FIG. 17 is a graph showing an amount of signal charge with respect to accumulation time indicating wide dynamic range operation in which the maximum allowable incident light amount is expanded in the amplification type solid-state imaging device of FIG. 16;
  • FIG. 17 is a graph showing an amount of signal charge with respect to accumulation time showing a wide dynamic range operation in which fixed pattern noise is eliminated in the amplification type solid-state imaging device of FIG. 16;
  • FIG. 21 is a circuit diagram showing a configuration of a pixel 60 of an amplification type solid state imaging device according to a first modified example of the fifth embodiment of the present invention. It is a circuit diagram showing composition of pixel 70 of an amplification type solid imaging device concerning the 2nd modification of a 5th embodiment of the present invention.
  • the gate voltage V RT of the reset transistor RT is set to three levels of the middle level V RT (M) between the high level V RT (H) and the low level V RT (L) .
  • FIG. 24 is a timing chart showing an operation in the case where the gate voltage V RT of the reset transistor RT is set to two levels of high level V RT (H) and low level V RT (L) in the amplification type solid-state imaging device of FIG.
  • It is a circuit diagram showing composition of pixel 100 of an amplification type solid imaging device concerning a prior art.
  • It is a circuit diagram showing composition of pixel 110 of an amplification type solid imaging device concerning a prior art.
  • It is a circuit diagram showing composition of pixel 120 of an amplification type solid imaging device concerning a prior art.
  • FIG. 1 is a circuit diagram showing a configuration of a pixel 10 of an amplification type solid-state imaging device according to a first embodiment of the present invention.
  • the pixel 10 includes a light receiving element PD formed of an embedded light receiving element, a transfer transistor TX, a reset transistor RT, a first amplification transistor SF1, a first signal line sig1, and a capacitance CmR. , CmS, capacitance switch transistors SwR and SwS, an initialization transistor IT, a second amplification transistor SF2, a selection transistor SL, and a second signal line sig2.
  • each of the above-mentioned transistors is an N-channel MOS field effect transistor will be discussed below, the same applies to the case where each transistor is a P-channel MOS field effect transistor by reversing the polarity.
  • the amplification type solid-state imaging device includes a pixel array A10 configured by arranging a plurality of pixels 10 having capacitances CmR and CmS in a matrix, and each pixel 10 configuring the pixel array A10.
  • a control circuit for performing operation control including a row decoder circuit 14, a row drive circuit 15, a column signal processing circuit 17, and a column decoder circuit 18 as described in detail with reference to FIG. 2) is provided.
  • each pixel 10 generates a signal corresponding to the received light and outputs the signal, and an N channel MOS that amplifies and outputs the signal input from the light receiving element PD to the gate
  • the amplified signal from the first amplification transistor SF1 is transferred to the first signal line sig1 and the capacitive switch transistors SwR and SwS corresponding to the capacitors CmR and CmS to be written.
  • the capacitance switch transistors SwR and SwS corresponding to the capacitances CmR and CmS are sequentially turned on to sequentially turn on the signals written to the respective capacitances CmR and CmS, and the capacitance switch transistors SwR and SwS corresponding to the capacitances CmR and CmS to be read out.
  • the second signal line sig2 is controlled to be read out sequentially through the first signal line sig1 and the second amplification transistor SF2.
  • the anode of the light receiving element PD is connected to the ground voltage, and the cathode of the light receiving element PD is connected to the source of the transfer transistor TX.
  • the gate of the transfer transistor TX is connected to the row drive circuit 15 described in detail with reference to FIG. 2, and the drain of the transfer transistor TX is connected to the gate of the first amplification transistor SF1 and the source of the reset transistor.
  • a region where the drain of the transfer transistor TX, the gate of the first amplification transistor SF1, and the source of the reset transistor are connected is referred to as a floating diffusion region FD.
  • the gate of the reset transistor is connected to the row drive circuit 15, and a drive signal Vrd, which is a reset drain voltage from the row drive circuit 15, is applied to the drain of the reset transistor.
  • the drain of the first amplification transistor SF1 is connected to the power supply voltage Vdd, and the source of the first amplification transistor SF1 is connected to the drain of the capacitive switch transistor SwR via the first signal line sig1. It is connected to the drain, the source of the initialization transistor IT, and the gate of the second amplification transistor SF2.
  • the gate of the capacitive switch transistor SwR is connected to the row drive circuit 15, the source of the capacitive switch transistor SwR is connected to one end of the capacitor CmR, and the other end of the capacitor CmR is connected to the ground voltage.
  • the gate of the capacitive switch transistor SwS is connected to the row drive circuit 15, the source of the capacitive switch transistor SwS is connected to one end of the capacitor CmS, and the other end of the capacitor CmS is connected to the ground voltage.
  • the gate of the initialization transistor IT is connected to the row drive circuit 15, and the drain of the initialization transistor IT is connected to the ground voltage or a voltage Vs which is a positive voltage close to the ground voltage.
  • the drain of the second amplification transistor SF2 is connected to the power supply voltage Vdd, and the source of the second amplification transistor SF2 is connected to the drain of the selection transistor SL.
  • the gate of the selection transistor SL is connected to the row drive circuit 15, and the source of the selection transistor SL is connected to the second signal line sig2.
  • One end of the second signal line sig2 is connected to the drain of the constant current load transistor CL.
  • the drain of the constant current load transistor CL is also connected to a column signal processing circuit 17 which will be described in detail with reference to FIG. 2 and outputs an output voltage Vo to the column signal processing circuit 17.
  • the gate of the constant current load transistor CL is connected to, for example, a DC voltage so that the constant current load transistor CL becomes a constant current load when the output voltage Vo is read.
  • the source of the constant current load transistor CL is connected to the ground voltage.
  • the first voltage signal line sig1 means a voltage of the capacitor CmR voltage V CmR, and the voltage a voltage V CmS capacity CmS
  • the voltage of the second signal line sig2 is referred to as a voltage V sig2 .
  • FIG. 2 is a block diagram showing a configuration of an amplification type solid-state imaging device (also referred to as a two-dimensional image sensor) including a pixel array A10 in which the pixels 10 of FIG. 1 are arranged in a matrix.
  • the pixel array A10 is configured to include a plurality of pixels 10, and the two-dimensional image sensor includes the pixel array A10, a row decoder circuit 14, a row driving circuit 15, a column signal processing circuit 17, and a column decoder circuit 18. It is configured with.
  • the row decoder circuit 14 outputs a selection signal for selecting a specific row of the pixel array A 10 to the row drive circuit 15.
  • the row drive circuit 15 outputs the following seven types of drive signals to the pixels 10 of the row selected by the row decoder circuit 14 through the seven drive lines 16.
  • Drive signal Vrd A drive signal applied to the drain of the reset transistor RT to determine the voltage of the drain of the reset transistor RT, such as voltage VH (for example +3 V) or voltage VL (for example +0.5 V)
  • VH for example +3 V
  • VL for example +0.5 V
  • Drive signal V TX A drive signal applied to the gate of the transfer transistor TX to turn the transfer transistor TX on and off, and when the drive signal V TX is high level V TX (H) , the transfer transistor TX is turned on and driven When the signal V TX is at the low level V RT (L) , the transfer transistor TX is turned off.
  • Drive signal V RT A drive signal applied to the gate of the reset transistor RT to turn the reset transistor RT on and off.
  • the drive signal output to the pixels 10 in the i-th row of the pixel array A10 is It shall be represented by connecting).
  • the drive signal V SwS output to the pixel 10 in the i-th row is expressed as a drive signal V SwS (i).
  • V FD voltage
  • V sig1 voltage
  • V CmR voltage
  • V CmS voltage
  • V sig2 voltage
  • the voltage V CmS (i) represents the voltage of the capacitance CmS of the pixel 10 in the i-th row of the pixel array A10
  • the voltage V sig1 represents the first signal line sig1 of the pixels 10 in all the rows of the pixel array A10.
  • the pixel 10 operates in response to the drive signal from the row drive circuit 15, and outputs a reset signal and an optical signal to be described later to the column signal processing circuit 17 via the second signal line sig2.
  • the column signal processing circuit 17 removes so-called reset noise by sampling both the reset signal and the light signal (data signal) and subtracting the reset signal from the light signal, so-called known correlated double sampling processing (hereinafter referred to as CDS). Processing, and at least one of CDS processing, analog signal processing, and digital signal processing is performed on the reset signal and the light signal from the pixel 10, and the column
  • CDS known correlated double sampling processing
  • the processed signal is output to a circuit (not shown) outside the amplification type solid-state imaging device through the horizontal signal line 19.
  • the power supply line 11 is connected to the power supply line of the entire amplification type solid-state imaging device, and applies the
  • the row decoder circuit 14, the row drive circuit 15, the column signal processing circuit 17, and the column decoder circuit 18 constitute a control circuit, and control signals input to the row decoder circuit 14 and the column decoder circuit 18 and the control The circuitry that generates the signal is not shown.
  • FIG. 3 is a first part of a timing chart showing the operation of the two-dimensional image sensor of FIG. 2
  • FIG. 4 is a second part of the timing chart showing the operation of the two-dimensional image sensor of FIG. The operation of the two-dimensional image sensor of FIG. 2 will be described with reference to FIGS. 3 and 4.
  • the drive signal Vrd, V RT, V TX, V SwR (i), V SwS (i), V IT (i), V SL (i), V SwR (i + 1), V SwS ( i + 1), V IT (i + 1), and V SL (i + 1) are drive signals output from the row drive circuit 15 described above to the pixel 10.
  • the voltages V FD , V sig 1 (i), V Cm R (i), V Cm S (i), V sig 1 (i + 1), V Cm R (i + 1), V Cm S (i + 1), and V sig 2 are the pixels 10 described above.
  • the operation of the two-dimensional image sensor provided with the pixel array A10 includes an initialization operation for initializing all the pixels 10 of the pixel array A10 and a reset operation in which all the pixels 10 of the pixel array A10 operate collectively.
  • the write phase for executing the operation of writing the signal in the capacitor SwR and the light signal in the capacitor SwS, and the pixels 10 of the pixel array A10 operate row by row to read the reset signal from the capacitor SwR and And a read phase for performing a read operation. Further, the write phase and the read phase are collectively referred to as a frame period.
  • one frame includes image data of one screen in the progressive scanning method.
  • the initialization operation will be described.
  • the drive signal V IT (i) is set to high level in a state where the capacitive switch transistors SwR and Sw S are turned on by setting the drive signals V SwR (i) and V SwS (i) to high level.
  • the initialization transistor IT is turned on to initialize the voltages V CmR (i) and V CmS (i) of the capacitors CmR and CmS to the voltage Vs. Note that, as described later, the same initialization operation as the above-described operation is also performed at the end of the read phase row by row.
  • the write phase will be described.
  • all the pixels 10 of the pixel array A10 simultaneously operate at once.
  • the operation of the pixels 10 included in the i-th row of the pixel array A10 will be described, but the pixels 10 included in other rows operate in the same manner.
  • the driving signal V RT Although the reset transistor RT is a high level is turned on, since the time of the drive signal Vrd is a high voltage VH, the voltage V FD voltage of the floating diffusion region FD The voltage is reset to the source voltage of the reset transistor RT corresponding to VH or VH, and the first amplification transistor SF1 is turned on.
  • the voltage V sig1 (i) is an output voltage of the source follower circuit including the first amplification transistor SF1 and having a gain G1 (G1 ⁇ 1), and the variation of the voltage V sig1 (i) is an input of the source follower circuit
  • the voltage V FD changes by G1 times, and the waveform of the voltage V sig1 (i) is similar to the waveform of the voltage V FD .
  • the drive signal V SwR (i) is set to the high level to turn on the capacitance switch transistor SwR, but the voltage V CmR (i) of the capacitance CmR is the voltage Vs by the above-described initialization operation. since it is, when the voltage V FD of the floating diffusion region FD is reset to the voltage VH, the first amplification transistor SF1 is turned on, the charge current towards the source of the first amplification transistor SF1 to capacity CmR The current CmR is charged.
  • the voltage V CmR (i) of the capacitance CmR becomes a substantially stable voltage VsigR. That is, a period T2 in which the capacitance switch transistor SwR is on is a period until the first amplification transistor SF1 shifts from the operation in the saturation region to the operation in the subthreshold region.
  • the drive signal V TX is set to the high level to turn on the transfer transistor TX, and the signal charge generated in the light receiving element PD by the incident light is transferred to the floating diffusion region FD.
  • the voltage V FD of the floating diffusion region FD changes in accordance with the amount of signal charge. If the signal charge is not present, the voltage V FD If next voltage VsigS1, signal charge exists, the voltage V FD becomes a voltage VsigS2.
  • the voltage generated by the signal charge is referred to as a voltage VsigS (VsigS2 ⁇ VsigS ⁇ VsigS1).
  • the drive signal V SwS (i) is set to the high level to turn on the capacitance switch transistor SwS, and a charging current flows from the source of the first amplification transistor SF1 toward the capacitance CmS.
  • the capacitance CmS is charged.
  • the driving signal V RT is a high level reset transistor RT is turned on again, because this time the drive signal Vrd is at a low voltage VL, the voltage of the floating diffusion region FD V The FD is reset to the voltage VL, and the first amplification transistor SF1 is turned off. That is, the first amplification transistor SF1 is in the off state until the next write phase is subsequently entered.
  • the voltage VsigR held by the capacitor CmR represents the voltage (reset signal) of the floating diffusion region FD when the reset transistor RT is turned on by the write operation in the above-described write phase
  • the voltage VsigS held by the capacitor CmS is This represents the voltage (light signal) of the floating diffusion region FD when the transfer transistor TX is turned on to transfer the signal charge from the light receiving element PD to the floating diffusion region FD.
  • noise generated when charging the capacitors CmR and CmS in the above-described write operation is noise generated when charging the capacitor Cm in the pixel 110 of FIG. 17 according to the prior art, and the pixel of FIG.
  • energy is reduced by half. . That is, when the capacitance values of the capacitors Cm, Cm1, Cm2, CmR, and CmS of the pixels 110, 120, and 130 according to the prior art are the capacitance value C, the noise generated when charging these capacitors is It is represented by 1).
  • k represents a Boltzmann constant
  • T represents an absolute temperature
  • the capacitance value of the capacitances CmR and CmS of the pixel 10 according to the first embodiment is the capacitance value C
  • the first amplification transistor SF1 operates in the subthreshold region
  • the generated noise is expressed by the following equation (2).
  • k represents a Boltzmann constant
  • T represents an absolute temperature. That is, the pixel 10 can reduce noise compared to the pixel according to the prior art.
  • the read phase will be described.
  • the respective rows of the pixel array A10 are sequentially driven in units of one horizontal scanning period (1H) described later.
  • the voltage V FD of the floating diffusion region FD is reset to the voltage VL in the period T5 of the writing phase, the first amplification transistor SF1 is in the off state in the reading phase.
  • the voltage V sig2 of the second signal line is the output voltage of the source follower circuit that includes the second amplification transistor SF2 and has the gain G2 (G2 ⁇ 1), and the variation of the voltage V sig2 is the source follower circuit of becomes G2 fold change in voltage V sig1 of the first signal line of each row is the input voltage (i), the waveform of the voltage V sig2, a similar to the waveform of the voltage V sig1 (i).
  • the pixels 10 included in the i-th row of the pixel array A10 will be described.
  • the drive signal V IT (i) is set to the high level, the initialization transistor IT is turned on, and the voltage of the gate of the second amplification transistor SF2, that is, the voltage V sig1 (i) It is reset to the voltage Vs.
  • the drive signal V SL (i) is set to the high level, the selection transistor SL is turned on, and the second amplification transistor SF2 is activated, and the drive signal V SwR (i)
  • the capacitor switch transistor SwR is turned high and the capacitor switch transistor SwR is turned on, and the voltage VsigR representing the reset signal is transferred from the capacitor CmR to the second signal line via the first signal line sig1, the second amplification transistor SF2, and the selection transistor SL. It is output to sig2.
  • the initialization transistor IT is turned on while the capacitance switch transistor SwR is on, and the voltage V CmR (i) of the capacitance CmR is initialized to the voltage Vs.
  • the drive signal V SwS (i) is turned high while the selection transistor SL is in the on state, the capacitance switch transistor SwS is turned on, and the voltage VsigS representing the optical signal is The signal is output to the second signal line sig2 via the first signal line sig1, the second amplification transistor SF2, and the selection transistor SL.
  • the initialization transistor IT is turned on while the capacitance switch transistor SwS is on, and the voltage V CmS (i) of the capacitance CmS is initialized to the voltage Vs. Thereafter, the same operation as the above-described read operation is performed on the pixels 10 included in the (i + 1) th row of the pixel array A10.
  • a period from time t6 when the readout of the i-th row is executed to the end of the period T10 is referred to as a readout period Trd (i) of the i-th row.
  • a period from time t6 when the read operation of the i-th row is started to time t6a when the read operation of the (i + 1) th row is started is referred to as one horizontal scanning period (1H).
  • the capacitance values of the capacitors CmR and CmS be as large as possible in design because of the relationship of the equation (2).
  • the capacitances of the capacitors CmR and CmS are sufficiently large compared to the gate capacitance of the second amplification transistor SF2
  • the voltage values read out in the periods T7 and T9 are written to the respective capacitors CmR and CmS.
  • the voltage value at the time of reading is almost the same as the voltage value at the time of reading.
  • the pixel 10 of FIG. 1 can take a large voltage value of the reset signal and the light signal as compared with the pixel 130 of FIG. 19, so the S / N ratio is improved, and according to equation (2) Noise is reduced.
  • the column signal processing circuit 17 shown in FIG. 2 performs CDS processing for obtaining a difference between the voltage VsigR and the voltage VsigS on the reset signal and the light signal read from the pixel 10 by the reading operation in the reading phase described above.
  • CDS processing for obtaining a difference between the voltage VsigR and the voltage VsigS on the reset signal and the light signal read from the pixel 10 by the reading operation in the reading phase described above.
  • reset noise in the floating diffusion region FD and fixed pattern noise caused by variations in threshold values of the first amplification transistor SF1 and the second amplification transistor SF2
  • there is a correlation between the voltage VsigR and the voltage VsigS are removed by executing the CDS processing, and a high quality image signal can be obtained.
  • the signal charge transferred from the light receiving element PD to the floating diffusion region FD is a period from the end time of the period T3 in the write phase to the end time of the period T3 in the next write phase, ie
  • the signal charge is accumulated in the light receiving element PD during the full frame period
  • a shutter operation capable of shortening the time for accumulating the signal charge (hereinafter referred to as exposure accumulation time (Tint)) to an arbitrary length is also possible. .
  • FIG. 5 is a timing chart showing the shutter operation of the two-dimensional image sensor of FIG.
  • the drive signal Vrd shown in FIG. 5 V RT, V TX, V SwR (i), V SwS (i), V IT (i), V SL (i), V SwR (i + 1), V SwS (I + 1), V IT (i + 1), and V SL (i + 1) are the same as those described in the timing charts of FIGS. 3 and 4. Further, the same reference numerals are given to the times and periods indicating the same times and periods as those in FIGS. 3 and 4.
  • the shutter phase In the shutter phase, all the pixels of the pixel array A10 operate collectively, and an operation for discharging the signal charge accumulated in the light receiving element PD (hereinafter referred to as a shutter operation) is performed.
  • the shutter phase for performing the shutter operation may be set to an arbitrary period which does not overlap with the readout period Trd of each row in the readout phase. In the timing chart of FIG. 5, the shutter phase is from time t11 to time t15, and is set between the readout period Trd (i) of the i-th row pixel and the readout period Trd (i + 1) of the i + 1 th row pixel. ing.
  • the readout phase of the portion other than the shutter phase is the same as the readout phase described above.
  • the driving signal V TX and the drive signal V RT is a high level transfer transistors TX and the reset transistor RT is turned on, the drive signal Vrd at this time a high voltage VH Because of this, the signal charge stored in the light receiving element PD is discharged to the drain of the reset transistor RT via the floating diffusion region FD.
  • the drive signal V TX is set to low level, and the transfer transistor TX is turned off.
  • the voltage of the floating diffusion region FD becomes the voltage VL by changing the drive signal Vrd from the voltage VH to the voltage VL.
  • the drive signal V RT is set to low level, the reset transistor RT is turned off, and the voltage of the floating diffusion region FD is held at the voltage VL at which the first amplification transistor SF1 is turned off. to enable.
  • a period from when the transfer transistor TX is turned off at time t12 in the shutter phase to when the period T3 in the next write phase ends and the transfer transistor TX is turned off is an effective exposure accumulation period Tint.
  • the length of the exposure accumulation period Tint can be changed by changing the time to set the shutter phase in the read phase.
  • one embedded light receiving element PD and eight transistors TX, RT, SF1, SwR, SwS, IT, SF2, SL, and two capacitances in one pixel are used. Only by using CmR and CmS, it is possible to configure a two-dimensional image sensor capable of collective exposure and obtaining high image quality by CDS processing.
  • the reset signal and the light signal are written in the capacitors CmR and CmS, respectively, only a transient charging current flows in the capacitors CmR and CmS, and a large DC current does not flow.
  • the reset signal and the optical signal are read out from the capacitors CmR and CmS, respectively, the voltage representing the signal does not decrease, so the S / N ratio can be improved.
  • FIG. 6 is a circuit diagram showing a configuration of a pixel 20 of the amplification type solid-state imaging device according to the second embodiment of the present invention.
  • the pixel 20 is different from the pixel 10 of FIG. 1 in that the selection transistor SL is not provided and that the voltage Vs is set to a voltage value at which the second amplification transistor SF2 is turned off. Is the same as the pixel 10, and the description thereof is omitted.
  • the configuration of a two-dimensional image sensor including a pixel array in which the pixels 20 are arranged in a matrix is the same as that in which the pixels 10 in FIG.
  • the timing chart showing the operation of the two-dimensional image sensor provided with the pixel array having the pixels 20 is the drive signal VSL (i), VSL (i + 1) for the selection transistor in the timing charts of FIG. 3 and FIG. It is the same as that of deleting.
  • the operation of the two-dimensional image sensor provided with the pixel 20 will be described with reference to FIGS. 3 and 4.
  • the reset signal held by the capacitor CmR and the light signal held by the capacitor CmS are applied to the gate of the second amplification transistor SF2 only when the capacitance switch transistors SwR and SwS are turned on.
  • the second amplification transistor SF2 is activated.
  • the initialization transistor IT is turned on, and the voltage V sig1 (i) of the gate of the second amplification transistor SF2 becomes the voltage Vs, and the second amplification transistor SF2 is turned off.
  • the two-dimensional image sensor according to the second embodiment operates in the same manner as the two-dimensional image sensor according to the first embodiment.
  • the two-dimensional image sensor according to the second embodiment can execute the shutter operation in the same manner as in the first embodiment.
  • one embedded light receiving element PD seven transistors TX, RT, SF1, SwR, SwS, IT, SF2 and two capacitances CmR, Only by using CmS, it is possible to configure a two-dimensional image sensor capable of collective exposure and obtaining high image quality by CDS processing.
  • CmS the reset signal and the light signal are written in the capacitors CmR and CmS, respectively, only a transient charging current flows in the capacitors CmR and CmS, and a large DC current does not flow.
  • the reset signal and the light signal are read out from the capacitors CmR and CmS, the voltage representing the signal does not decrease, so the S / N ratio can be improved.
  • the circuit can be miniaturized to increase the area of the light receiving element PD.
  • FIG. 7 is a circuit diagram showing a configuration of a pixel 30 of an amplification type solid-state imaging device according to a third embodiment of the present invention.
  • the pixel 30 is configured to include the output switch transistor SwO between the first amplification transistor SF1 and the first signal line sig1 as compared to the pixel 10, and the drain of the reset transistor is the first amplification transistor SF1.
  • the drain of the second amplification transistor SF2 are commonly connected to the power supply voltage Vdd, and the other components are the same as those of the pixel 10, and the description thereof will be omitted.
  • the configuration of a two-dimensional image sensor including a pixel array in which the pixels 30 are arranged in a matrix is the same as that in which the pixels 10 in FIG.
  • the drive signal V SwO from the row drive circuit 15 is input to the gate of the output switch transistor SwO, and the output switch transistor SwO is turned on when the drive signal V SwO is at high level, and the output switch when the drive signal V SwO is at low level The transistor SwO is turned off.
  • FIG. 8 is a first portion of a timing chart illustrating the operation of a two-dimensional image sensor comprising a pixel array having the pixels 30 of FIG. 7, and FIG. 9 comprises a pixel array having the pixels 30 of FIG. It is a 2nd part of the timing chart which shows operation
  • the timing charts of FIG. 8 and FIG. 9 delete the drive signal Vrd and add the drive signal V SwO , the waveform of the voltage V FD , and the voltage V
  • the waveforms of sig1 (i) and V sig1 (i + 1) are different.
  • the drive signal V SwO is set to a high level during a period from when the reset transistor RT is first turned on (time t1) to next turned on (time t5) in the write phase, whereby the output switch transistor SwO is turned on.
  • the source of the first amplification transistor SF1 is connected to the first signal line to enable writing of the reset signal and the light signal to the capacitances CmR and CmS via the capacitance switch transistors SwR and SwS.
  • the waveform of the voltage V FD of the floating diffusion region FD is the same from time t1 to time t5 as compared with FIGS. 3 and 4 and is different after time t5.
  • the reset transistor RT is turned on, the voltage V FD of the floating diffusion region FD is higher voltage VH.
  • the output switch transistor SwO is in the OFF state, so the first amplification transistor SF1 does not affect the read operation. Therefore, in the read phase, voltages V sig1 (i) and V sig1 (i + 1), drive signals V SwR (i) and V SwR (i + 1), and drive signals V SwS (i) and V SwS shown in FIGS.
  • the two-dimensional image sensor according to the third embodiment operates in the same manner as the two-dimensional image sensor according to the first embodiment. Further, the shutter operation of the two-dimensional image sensor according to the third embodiment is the same as that of the shutter operation of the first embodiment except the operation related to the drive signal Vrd.
  • one embedded light receiving element PD nine transistors TX, RT, SF1, SwO, SwR, SwS, IT, SF2, SL, and 2 in one pixel. It is possible to configure a two-dimensional image sensor capable of collective exposure and achieving high image quality by CDS processing only by using two capacitors CmR and CmS.
  • the reset signal and the light signal are written in the capacitors CmR and CmS, respectively, only a transient charging current flows in the capacitors CmR and CmS, and a large DC current does not flow.
  • the reset signal and the light signal are read out from the capacitors CmR and CmS, the voltage representing the signal does not decrease, so the S / N ratio can be improved.
  • the selection transistor SL is provided to configure the pixel 30, but the present invention is not limited thereto, and the pixel 30 is configured without including the selection transistor SL as in the second embodiment.
  • the number of transistors in the pixel 30 is eight, and the circuit can be miniaturized to increase the area of the light receiving element PD.
  • FIG. 10 is a circuit diagram showing a configuration of a pixel 40 of an amplification type solid-state imaging device according to a fourth embodiment of the present invention.
  • the pixels 10, 20, and 30 according to the first, second, and third embodiments described above include the embedded light receiving element type light receiving element PD and the transfer transistor TX, but the fourth embodiment relates to the fourth embodiment.
  • the pixel 40 does not include a transfer transistor and includes a PN light receiving element type light receiving element PD.
  • the pixel 40 includes a light receiving element PD formed of a PN light receiving element, a reset transistor RT, a first amplification transistor SF1, a first signal line sig1, an output switch transistor SwO, and a capacitance CmR1. , CmR2, and CmS, capacitance switch transistors SwR1, SwR2, and SwS, an initialization transistor IT, a second amplification transistor SF2, a selection transistor SL, and a second signal line sig2.
  • the configuration of a two-dimensional image sensor including a pixel array in which the pixels 40 are arranged in a matrix is the same as that in which the pixels 10 in FIG.
  • a pixel array in which the pixels 40 are arranged in a matrix is referred to as a pixel array A40.
  • the anode of the light receiving element PD is connected to the ground voltage, and the cathode of the light receiving element PD is connected to the gate of the first amplification transistor SF1 and the source of the reset transistor.
  • the gate of the reset transistor is connected to the row drive circuit 15 described above with reference to FIG. 2, and the drain of the reset transistor is connected to the power supply voltage Vdd.
  • the drain of the first amplification transistor SF1 is connected to the power supply voltage Vdd, and the source of the first amplification transistor SF1 is connected to the source of the output switch transistor SwO.
  • the gate of the output switch transistor SwO is connected to the row drive circuit 15, and the drain of the output switch transistor SwO is the drain of the capacitive switch transistor SwR1 and the drain of the capacitive switch transistor SwR2 via the first signal line sig1. It is connected to the drain of the capacitive switch transistor SwS, the source of the initialization transistor IT, and the gate of the second amplification transistor SF2.
  • the gate of the capacitive switch transistor SwR1 is connected to the row drive circuit 15, the source of the capacitive switch transistor SwR1 is connected to one end of the capacitor CmR1, and the other end of the capacitor CmR1 is connected to the ground voltage.
  • the gate of the capacitive switch transistor SwR2 is connected to the row drive circuit 15, the source of the capacitive switch transistor SwR2 is connected to one end of the capacitor CmR2, and the other end of the capacitor CmR2 is connected to the ground voltage.
  • the gate of the capacitive switch transistor SwS is connected to the row drive circuit 15, the source of the capacitive switch transistor SwS is connected to one end of the capacitor CmS, and the other end of the capacitor CmS is connected to the ground voltage.
  • the gate of the initialization transistor IT is connected to the row drive circuit 15, and the drain of the initialization transistor IT is connected to the ground voltage or a voltage Vs which is a positive voltage close to the ground voltage.
  • the drain of the second amplification transistor SF2 is connected to the power supply voltage Vdd, and the source of the second amplification transistor SF2 is connected to the drain of the selection transistor SL.
  • the gate of the selection transistor SL is connected to the row drive circuit 15, and the source of the selection transistor SL is connected to the second signal line sig2.
  • One end of the second signal line sig2 is connected to the drain of the constant current load transistor CL.
  • the drain of the constant current load transistor CL is also connected to the column signal processing circuit 17 described above with reference to FIG. 2 and outputs an output voltage Vo to the column signal processing circuit 17.
  • the gate of the constant current load transistor CL is connected to, for example, a DC voltage so that the constant current load transistor CL becomes a constant current load when the output voltage Vo is read.
  • the source of the constant current load transistor CL is connected to the ground voltage.
  • a first voltage of the signal line sig1 called voltage V sig1
  • capacitance voltage CMR1 called voltage V CMR1
  • V CMR2 the voltage a voltage of the capacitor CMR2
  • V CmS The voltage of the capacitor CmS
  • V sig2 the voltage of the second signal line sig2
  • Drive signal V RT A drive signal applied to the gate of the reset transistor RT to turn the reset transistor RT on and off. When the drive signal V RT is at high level, the reset transistor RT is turned on and the drive signal V RT is low. When it is at level, the reset transistor RT is turned off.
  • Drive signal V SwO A drive signal applied to the gate of the output switch transistor SwO to turn on / off the output switch transistor SwO. When the drive signal V SwO is at high level, the output switch transistor SwO is turned on, and the drive signal V SwO is turned on. When SwO is at low level, the output switch transistor SwO is turned off.
  • Drive signal V SwR1 A drive signal applied to the gate of the capacitive switch transistor SwR1 to turn on / off the capacitive switch transistor SwR1.
  • the capacitive switch transistor SwR1 When the drive signal V SwR1 is at high level, the capacitive switch transistor SwR1 is turned on.
  • the capacitance switch transistor SwR1 When SwR1 is at low level, the capacitance switch transistor SwR1 is turned off.
  • Drive signal V SwR2 A drive signal applied to the gate of the capacitive switch transistor SwR2 to turn on / off the capacitive switch transistor SwR2, and when the drive signal V SwR2 is at high level, the capacitive switch transistor SwR2 is turned on. When SwR2 is at low level, the capacitance switch transistor SwR2 is turned off.
  • Drive signal V SwS A drive signal applied to the gate of the capacitive switch transistor SwS to turn on / off the capacitive switch transistor SwS. When the drive signal V SwS is at high level, the capacitive switch transistor SwS is turned on. When SwS is at low level, the capacitance switch transistor SwS is turned off.
  • Drive signal V IT A drive signal applied to the gate of the initialization transistor IT to turn on and off the initialization transistor IT. When the drive signal V IT is at high level, the initialization transistor IT is turned on, and the drive signal V IT is turned on. When IT is low, the initialization transistor IT is turned off.
  • Drive signal V SL A drive signal applied to the gate of the selection transistor SL to turn the selection transistor SL on and off.
  • the drive signal V SL is at high level, the selection transistor SL is turned on and the drive signal V SL is low.
  • the selection transistor SL is turned off.
  • the drive signal to be output to the pixels 40 in the i-th row of the pixel array A40 is It shall be represented by connecting).
  • the drive signal V SwS output to the pixel 40 in the i-th row is expressed as a drive signal V SwS (i).
  • the drive signal output to the pixels 40 in all the rows of the pixel array A 40 is represented.
  • the same notation is used for the voltages V PD , V sig1 , V CmR1 , V CmR2 , V CmS , and V sig2 in the pixel 40 described with reference to FIG.
  • the voltage at the pixel 40 in the i-th row of the pixel array A 40 is represented, and when (i) is not connected, the voltage at the pixels 40 in all the rows of the pixel array A 40 is represented.
  • the voltage V CmS (i) represents the voltage of the capacitance CmS of the pixel 40 in the i-th row of the pixel array A 40
  • the voltage V sig1 represents the first signal line sig 1 of the pixels 40 in all the rows of the pixel array A 40.
  • FIG. 11 is a first portion of a timing chart showing the operation in one frame period of a two-dimensional image sensor having a pixel array having the pixels 40 of FIG. 10, and FIG. 12 has the pixels 40 of FIG. It is a 2nd part of the timing chart which shows operation
  • the drive signals V RT , V SwO , V SwR1 (i), V SwR2 (i), V SwS (i), V IT (i), V SL (i), V SwR1 (i + 1) , V SwR2 (i + 1), V SwS (i + 1), V IT (i + 1), and V SL (i + 1) are drive signals output from the row drive circuit 15 to the pixel 40.
  • voltages V PD , V sig 1 (i), V Cm R 1 (i), V C m R 2 (i), V C m S (i), V sig 1 (i + 1), V C m R 1 (i + 1), V C m R 2 (i + 1), V Cm S (I + 1) and V sig2 are voltages at the pixel 40 described above.
  • the operation of the two-dimensional image sensor provided with the pixel array A40 includes an initialization operation for initializing all the pixels 40 of the pixel array A40 and a reset operation in which all the pixels 40 of the pixel array A40 operate collectively.
  • a write phase for writing a signal in the capacitor SwR1 or the capacitor SwR2 and a write phase for writing an optical signal in the capacitor SwS and the pixels 40 of the pixel array A40 operate row by row to read a reset signal from the capacitor SwR1 or the capacitor SwR2 and It comprises the read phase which performs the operation which reads an optical signal from capacity SwS.
  • the write phase and the read phase are collectively referred to as a frame period.
  • one frame includes image data of one screen in the progressive scanning method.
  • the initialization operation will be described.
  • the operation of the pixels 40 included in the i-th row of the pixel array A 40 will be described, but the pixels 40 included in other rows operate similarly.
  • the driving signal V SwR1 (i), V SwR2 (i) while on the volume switch transistor SWR1, SWR2, SwS by the V SwS (i) the high level, the drive signal V IT (
  • the initialization transistor IT is turned on by setting i) high level to initialize the voltages V CmR1 (i), V CmR2 (i) and V CmS (i) of the capacitors CmR1, CmR2 and CmS to the voltage Vs .
  • the same initialization operation as the above-described operation is also performed at the end of the read phase row by row.
  • the write phase will be described.
  • all the pixels 40 of the pixel array A 40 simultaneously operate at once.
  • the operation of the pixels 40 included in the i-th row of the pixel array A 40 will be described, but the pixels 40 included in other rows operate similarly.
  • the operation of the frame to be processed in the writing phase is different between the odd-numbered frame (hereinafter referred to as odd frame) and the even-numbered frame (hereinafter referred to as even frame).
  • odd frame odd-numbered frame
  • even-numbered frame hereinafter referred to as even frame
  • the drive signal V SwO is set to the high level, the output switch transistor SwO is turned on, and the source of the first amplification transistor SF1 is connected to the drains of the three capacitive switch transistors SwR1, SwR2, and SwS.
  • the voltage V PD of the gate of the first amplification transistor SF1 is a voltage generated by the signal charge accumulated by the light receiving element PD by the incident light.
  • the voltage V PD changes in accordance with the amount of signal charge.
  • the voltage V PD is the voltage VsigS 1
  • the voltage V PD is the voltage VsigS 2.
  • the voltage generated by the signal charge is referred to as a voltage VsigS (VsigS2 ⁇ VsigS ⁇ VsigS1).
  • the voltage V sig1 (i) is an output voltage of a source follower circuit including the first amplification transistor SF1 and having a gain G3 (G3 ⁇ 1), and the variation of the voltage V sig1 (i) is a source follower
  • the amount of change of the input voltage V PD of the circuit is G3 times as large as that of the voltage V sig1 (i), and the waveform of the voltage V sig1 (i) is similar to the waveform of the voltage V PD .
  • the drive signal V SwS is set to the high level and the switch transistor SwS is turned on.
  • the voltage V CmS (i) of the capacitor CmS is the voltage Vs by the above-described initializing operation.
  • the voltage V CmS (i) of the capacitor CmS becomes a substantially stable voltage VsigS. That is, a period T2 during which the capacitive switch transistor SwS is on is a period until the first amplification transistor SF1 shifts from the operation in the saturation region to the operation in the subthreshold region. Further, the voltage VsigS corresponds to a voltage (optical signal) generated by the signal charge accumulated by incident light by the light receiving element PD.
  • the drive signal V RT is set to the high level, the reset transistor RT is turned on, and the voltage V PD is reset to the power supply voltage Vdd or the source voltage of the corresponding reset transistor RT.
  • the signal charge accumulated in the light receiving element PD is discharged to the power supply, and the light receiving element PD is reset.
  • the drive signal V SwR1 (i) is set to the high level, the capacitance switch transistor SwR1 is turned on, and a charging current flows from the source of the first amplification transistor SF1 to the capacitance CmR1.
  • the voltage V CmR1 (i) of the capacitor CmR1 becomes a substantially stable voltage VsigR.
  • the voltage VsigR corresponds to the voltage (reset signal) of the cathode of the light receiving element PD when the reset transistor RT is turned on.
  • the drive signal V SwO is set to low level, the output switch transistor SwO is turned off, and the source of the first amplification transistor SF1 is disconnected from the drains of the three capacitance switch transistors SwR1, SwR2, and SwS. .
  • the frame to be processed is an even frame
  • the only difference is that the reset signal is written to the capacitor CmR2 compared to when the frame to be processed is an odd frame. That is, in the period T4 as described above, the driving signal V SWR1 (i) is changed to a drive signal V SWR2 (i), to change the volume switch transistor SWR1 to the capacitor switching transistor SWR2, change the volume CmR1 the capacity CMR2, and When the voltage V CmR1 (i) is changed to the voltage V CmR2 (i), the operation in the even frame is performed.
  • the read phase will be described.
  • the respective rows of the pixel array A40 are sequentially driven in units of one horizontal scanning period (1H) described later.
  • the output switch transistor SwO is turned off at time t5 of the write phase, the first amplification transistor SF1 and the three capacitive switch transistors SwR1, SwR2, and SwS are not connected.
  • the voltage V sig2 of the second signal line is the output voltage of the source follower circuit provided with the second amplification transistor SF2 and having the gain G4 (G4 ⁇ 1), and the variation of the voltage V sig2 is the source follower circuit of becomes G4 times the variation input voltage at which the voltage of the first signal line row V sig1 (i), the waveform of the voltage V sig2, a similar to the waveform of the voltage V sig1 (i).
  • the case of processing the odd frame will be described first, and then the case of processing the even frame will be described.
  • the pixels 40 included in the i-th row of the pixel array A 40 will be described.
  • the drive signal V IT (i) is set to the high level, the initialization transistor IT is turned on, and the voltage of the gate of the second amplification transistor SF2, that is, the voltage V sig1 (i) It is reset to the voltage Vs.
  • the drive signal V SL (i) is set to the high level, the selection transistor SL is turned on, and the second amplification transistor SF2 is activated, and the drive signal V SwR2 (i)
  • the capacitor switch transistor SwR2 is turned high and the capacitor switch transistor SwR2 is turned on, and the voltage VsigR representing the reset signal is transferred from the capacitor CmR2 to the second signal line sig2 through the first signal line sig1, the second amplification transistor SF2, and the selection transistor SL.
  • the initialization transistor IT is turned on while the capacitance switch transistor SwR2 is on, and the voltage V CmR2 (i) of the capacitance CmR2 is initialized to the voltage Vs.
  • the drive signal V SwS (i) is turned high while the selection transistor SL is in the on state, the capacitance switch transistor SwS is turned on, and the voltage VsigS representing the optical signal is The signal is output to the second signal line sig2 via the first signal line sig1, the second amplification transistor SF2, and the selection transistor SL.
  • the initialization transistor IT is turned on while the capacitance switch transistor SwS is on, and the voltage V CmS (i) of the capacitance CmS is initialized to the voltage Vs. Thereafter, the same operation as the above-described read operation is performed on the pixels 40 included in the (i + 1) th row of the pixel array A40.
  • the driving signal V SWR2 (i) is changed to a drive signal V SWR1 (i), to change the volume switch transistor SWR2 the capacitance switching transistor SWR1, the capacity CmR2 the capacity CmR1 and, and by changing the voltage V CMR2 (i) to a voltage V CMR1 (i), the operation when the even-numbered frame.
  • a period from time t6 when the readout of the i-th row is executed to the end of the period T10 is referred to as a readout period Trd (i) of the i-th row.
  • a period from time t6 when the read operation of the i-th row is started to time t6a when the read operation of the (i + 1) th row is started is referred to as one horizontal scanning period (1H).
  • the optical signal written to the capacitor CmS in the above-described write operation discharges the signal charge accumulated in the light receiving element PD to the power supply in the period T3 in the writing phase one frame before to the signal charge accumulated in the light receiving element PD. Equivalent to. Therefore, the light signal of the odd frame has noise correlation with the reset signal of the even frame one frame before, and the light signal of the even frame has noise correlation with the reset signal of the odd frame one frame before.
  • the write phase when processing an odd frame, write the optical signal to the capacitor CmS, write the reset signal to the capacitor CmR1, and process the even frame, the optical signal to the capacitor CmS. , And writes a reset signal to the capacitor CmR2.
  • the optical signal written to the capacitor CmS in the write process of the frame and the reset signal written to the capacitor CmR2 in the write process one frame earlier are read.
  • the optical signal written to the capacitor CmS in the writing process of the frame and the reset signal written to the capacitor CmR1 in the writing process of one frame before are read. This makes it possible to read out the noise-correlated optical signal and the reset signal in pairs.
  • FIG. 13 is a timing chart showing the operation in two frame periods of the two-dimensional image sensor provided with the pixel array having the pixels 40 of FIG.
  • the timing chart of FIG. 13 shows the write operation and the read operation for the capacitances CmS, CmR1, and CmR2 in two frame periods of a frame period for processing an odd frame and a frame period for processing an even frame.
  • the same reference numerals are attached to the times and periods indicating the same times and periods as those in FIG.
  • an optical signal is written to the capacitor CmS, and a reset signal obtained by resetting the light receiving element PD is written to the capacitor CmR1.
  • the reset signal written to the capacitor CmR2 in the write operation one frame before and the optical signal written to the capacitor CmS are read.
  • the optical signal is written to the capacitor CmS, and the reset signal obtained by resetting the light receiving element PD is written to the capacitor CmR2.
  • the reset signal written to the capacitor CmR1 in the write operation one frame before and the optical signal written to the capacitor CmS are read.
  • the exposure accumulation time (Tint) is a period after the reset signal is written to the capacitor CmR1 and after the light signal is written to the capacitor CmS.
  • the reset signal and the light signal read from the pixel 40 become a pair with noise correlation by the write operation and the read operation described above, for example, the difference between the voltage VsigR and the voltage VsigS in the column signal processing circuit 17 of FIG. If the CDS processing is performed, fixed pattern noise caused by variations in the reset noise in the light receiving element PD and the threshold variation of the first amplification transistor SF1 and the second amplification transistor SF2 is removed, and high image quality is achieved. Can be obtained.
  • the light signal is a voltage corresponding to the signal charge accumulated in the light receiving element PD in the period from the write phase to the next write phase, It is also possible to use a shutter operation to shorten the time for accumulating signal charges (hereinafter referred to as exposure accumulation time (Tint)) to an arbitrary length.
  • Tont exposure accumulation time
  • FIG. 14 is a timing chart showing the shutter operation of the two-dimensional image sensor provided with the pixel array having the pixels 40 of FIG.
  • the drive signals V SwO , V RT , V SwR1 (i), V SwR2 (i), V SwS (i), V IT (i), V SL (i), V Sw R1 (i + 1) shown in FIG. , V SwR2 (i + 1), V SwS (i + 1), V IT (i + 1), and V SL (i + 1) are the same as those described in the timing charts of FIGS.
  • the same reference numerals are given to the times and periods indicating the same times and periods as those in FIGS. 11 and 12.
  • the shutter phase all the pixels 40 of the pixel array A 40 operate collectively to discharge the signal charge accumulated in the light receiving element PD, and write a reset signal in which the light receiving element PD is reset to the capacitance CmR1 or CmR2.
  • An operation hereinafter referred to as a shutter operation
  • the reset signal is not written to the capacitor CmR in the shutter operation, but in the present embodiment, the writing of the reset signal is also performed.
  • the shutter phase may be set to an arbitrary period so as not to overlap with the readout period Trd of each row in the readout phase. In the timing chart of FIG.
  • the shutter phase is from time t15 to time t18, and is set between the readout period Trd (i) of the pixel in the i-th row and the readout period Trd (i + 1) of the pixel in the i + 1th row. ing.
  • the readout phase of the portion other than the shutter phase is the same as the readout phase described above.
  • the drive signal V SwO and the drive signal V RT are set to the high level, and the output switch transistor SwO and the reset transistor RT are turned on to reset the charge accumulated in the light receiving element PD. It is drained to the drain of RT.
  • the drive signal V SwR1 (i) is kept high while the drive signal V SwO is high, and the capacitance switch transistor SwR1 is turned on, so that the source of the first amplification transistor SF1 is turned on.
  • the voltage of the capacitor CmR1 becomes a substantially stable voltage VsigR, which causes a reset. It corresponds to a signal.
  • a period from the end of the writing of the reset signal to the capacitor SwR1 at time t18 in the shutter phase to the end of the period T2 in the next writing phase and the turning off of the capacitive switch transistor SwS is an effective exposure accumulation period Tint.
  • the voltage due to the signal charge stored in the light receiving element PD in this period is written to the capacitor SwS in the next write phase.
  • the length of the exposure accumulation period Tint can be changed by changing the time to set the shutter phase in the read phase.
  • the reset signal is written to the capacitor CmR2 compared to when the frame to be processed is an odd frame. That is, during the period from time t17 as described above until time 18, the driving signal V SWR1 (i) is changed to a drive signal V SWR2 (i), to change the volume switch transistor SWR1 to the capacitor switching transistor SWR2, volume capacity CmR1 If it changes to CmR2, it becomes operation at the time of an even frame.
  • the write phase described here is different from the write phase when the above-described shutter operation is not performed, in that the reset signal is not written to the capacitor.
  • an operation is performed in which all the pixels of the pixel array A40 simultaneously write the signal charge accumulated in the light receiving element PD as a light signal in the capacitor CmS.
  • the drive signal V SwO is set to the high level, and the output switch transistor SwO is turned on.
  • the drive signal V SwS is set to the high level, the capacitance switch transistor SwS is turned on, and a charge current flows from the source of the first amplification transistor SF1 to the capacitance CmS, and the capacitance CmS is Be charged.
  • the first amplification transistor SF1 shifts from the operation in the saturation region to the operation in the subthreshold region, the voltage of the capacitor CmS becomes a substantially stable voltage VsigS, and the voltage VsigS corresponds to an optical signal.
  • the optical signal written to the capacitor CmS in the above-described write operation discharges the signal charge accumulated in the light receiving element PD to the power supply in the shutter phase in the reading phase one frame before to the signal charge accumulated in the light receiving element PD. Equivalent to. Therefore, the light signal of the odd frame has noise correlation with the reset signal of the even frame one frame before, and the light signal of the even frame has noise correlation with the reset signal of the odd frame one frame before.
  • FIG. 15 is a timing chart showing the shutter operation in two frame periods of the two-dimensional image sensor provided with the pixel array having the pixel 40 of FIG.
  • the timing chart of FIG. 15 shows the write operation and the read operation for the capacitances CmS, CmR1, and CmR2 in two frame periods of a frame period for processing an odd frame and a frame period for processing an even frame.
  • the same reference numerals are attached to the times and periods indicating the same times and periods as in 14.
  • an optical signal is written to the capacitor CmS in the write phase of the odd frame.
  • the reset signal written to the capacitor CmR2 in the write operation one frame before and the optical signal written to the capacitor CmS are read, and all pixels are collectively operated at a specific time during the read phase.
  • the reset signal that resets the light receiving element PD is written to the capacitor CmR1.
  • the optical signal is written to the capacitor CmS.
  • the reset signal written to the capacitor CmR1 in the write operation one frame before and the optical signal written to the capacitor CmS are read, and the reset signal that resets the light receiving element PD is sent to the capacitor CmR2.
  • the reset signal and the light signal read out from the pixel 40 form a noise correlated pair.
  • the exposure accumulation time (Tint) is a period after the reset signal is written to the capacitor CmR1 and after the light signal is written to the capacitor CmS.
  • one PN light receiving element PD nine transistors RT, SF1, SwO, SwR1, SwR2, SwS, IT, SF2, SL, and 3 in one pixel.
  • a two-dimensional image sensor capable of batch exposure and obtaining high image quality by the CDS process can be configured only by using two capacitors CmR1, CmR2, and CmS. Further, when the reset signal and the optical signal are written in the capacitors CmR1, CmR2 and CmS, respectively, only a transient charging current flows in the capacitors CmR1, CmR2 and CmS, and a large DC current does not flow. Furthermore, when the reset signal and the optical signal are read out from the capacitors CmR1, CmR2 and CmS, respectively, the voltage representing the signal does not decrease, so the S / N ratio can be improved.
  • the selection transistor SL is provided to configure the pixel 40.
  • the present invention is not limited to this, and the pixel 40 is configured without the selection transistor SL as in the second embodiment.
  • the number of transistors in the pixel 40 is eight, and the circuit can be miniaturized to increase the area of the light receiving element PD.
  • FIG. 16 is a circuit diagram showing a configuration of a pixel 50 of an amplification type solid state imaging device according to a fifth embodiment of the present invention.
  • the pixel 10 includes a light receiving element PD formed of an embedded light receiving element, a transfer transistor TX, a reset transistor RT, a first amplification transistor SF1, a first signal line sig1, and a capacitance 16 is configured to include CmR and CmS, capacitance switch transistors SwR and SwS, an initialization transistor IT, a second amplification transistor SF2, a selection transistor SL, and a second signal line sig2.
  • a pixel 50 shown is characterized in that capacitors CmS1 and CmS2 and capacitor switch transistors SwS1 and SwS2 are provided instead of the capacitor CmS and the capacitor switch transistor SwS which constitute the pixel 10 shown in FIG.
  • FIG. 17 is a timing chart showing the write operation of the two-dimensional image sensor of FIG. Note that all the pixels operate at once as in the embodiment described above in the writing operation. Hereinafter, the operation of the circuit of FIG. 16 will be described with reference to FIG.
  • the drive signal V TX is fixed to the high level V TX (H) , and the transfer transistor TX is turned on.
  • the PD is reset by transferring the charge from the light receiving element PD to the floating diffusion region FD, and the charge generated by the incident light thereafter is accumulated in the PD.
  • the drive signal V RT is set to the high level V RT (H) , and the reset transistor RT is turned on.
  • the drive signal Vrd is at the high level, a high level signal is input to the gate voltage of the first amplification transistor SF1 through the floating diffusion region FD, and thus the first amplification transistor SF1 is turned on.
  • the drive signal V TX is fixed at the high level V TX (H) to turn on the transfer transistor TX, and during the period Tint1 (hereinafter referred to as a long exposure period).
  • the charge accumulated in the light receiving element PD is transferred (first charge transfer operation).
  • the gate voltage V RT of the reset transistor RT is a high level V RT (H) and an intermediate middle level V RT of a low level V RT (L) (M) . That is, V RT (H) ⁇ V RT (M) ⁇ V RT (L) .
  • the gate voltage V RT of the reset transistor RT is held at the low level V RT (L) .
  • middle level V RT (M) may be a potential in the range between high level V RT (H) and low level V RT (L) , for example, high level V RT (H)
  • H high level V RT
  • M middle level V RT
  • the drive signal V SwS1 (i) is fixed at the high level to turn on the capacitance switch transistor SwS1, thereby the first transferred charge
  • the potential of the floating diffusion region FD resulting from the above is written to the capacitor CmS1 via the first amplification transistor SF1.
  • drive signal V TX is fixed at high level V TX (H) , and transfer transistor TX is turned on to transfer the charge accumulated in PD during period Tint2 (second time Charge transfer operation).
  • the gate voltage of the reset transistor RT is at the low level V RT (L) .
  • the drive signal V SwS1 (i) is fixed at the high level to turn on the capacitance switch transistor SwS1, thereby the charge transferred for the second time
  • the potential of the floating diffusion region FD resulting from the above is written to the capacitor CmS2 via the first amplification transistor SF1.
  • the reset transistor RT is turned on in a state where the drain voltage Vrd of the reset transistor RT is at a low level, and the potential of the floating diffusion region FD is reset to a low level.
  • the amplification transistor SF1 is turned off.
  • FIG. 18 is a timing chart showing the read operation of the amplification type solid-state imaging device of FIG.
  • drive signal V.sub.IT (i) is fixed at high level to turn on initialization transistor IT (i) to reset the gate of second amplification transistor SF2 to voltage Vs. Do. Then, after the drive signal V SL (i) is turned on a fixed selection transistor SL (i) to the high level, the reset signal recorded by turning on the capacitance switching transistor SWR (i) the capacitance CmR (i) first The signal applied to the gate of the second amplification transistor SF2 as a gate voltage and the signal amplified by the second amplification transistor SF2 is read out to the signal line sig2.
  • the driving signal V IT (i) are fixed to the high level to turn on the initialization transistor IT (i), capacity CmR (i) To make the next frame recordable.
  • the drive signal V SwS1 (i) is fixed at high level, the capacitance switch transistor SwS1 (i) is turned on, and the long exposure signal recorded in the capacitor CmS1 (i) is gate voltage to the gate of the second amplification transistor SF2.
  • the signal amplified by the second amplification transistor SF2 is read out to the signal line sig2.
  • the drive signal V SwS2 (i) is still the driving signal V IT capacity switching transistors SWs2 is fixed to the high level is turned on (I) is fixed at the high level, the initialization transistor IT is turned on, and the voltage V CmR (i) related to the capacitance CmS2 (i) is initialized to the voltage Vs. Then, recording is made possible in the next frame.
  • the select transistor SL (i) is turned off before (or after) the time tr3, and the read operation of the i-th row is finished.
  • FIG. 19 is a potential diagram schematically showing signal charges generated in the light receiving element by incident light, gate potentials of the transfer transistor and the reset transistor, and potential of the floating diffusion region in the amplification type solid-state imaging device of FIG.
  • V TX (L) and V TX (H) indicate that the gate potential V TX of the transfer transistor TX is low level and high level, respectively
  • V RT (L) , V RT (M) and V RT (H) is the gate voltage V RT is low level and reset transistor RT, indicating that middle level is a high level.
  • the gate potential V RT of the reset transistor RT is set to the high level to reset the potential of the floating diffusion region FD to the power supply Vdd, and then the gate potential V RT of the reset transistor RT is set to the middle level V RT (M).
  • the gate potential V TX of the transfer transistor TX and the high level V TX (H) to transfer long accumulated charges to the floating diffusion region FD.
  • plateau state charge amount Q1 constant value excess charge overflows from the reset transistor RT for resetting the gate potential of the transistor RT V RT is middle level V RT (M) It becomes.
  • V RT of the reset transistor RT and the low level V RT (L) when the V TX (H) ⁇ V RT (L), the maximum amount of charge that can be accumulated in the floating diffusion region FD section reset transistor RT
  • the amount of charge (Q1 + Q2) defined by V RT (L) which is a low level of the gate potential V RT , is increased.
  • the gate potential V TX of the second transfer transistor TX to the high level V TX (H) , the stored charge for a short time is transferred to the floating diffusion region FD. Therefore, the accumulated charge for a short time is added to the long-term accumulated charge equal to or less than the charge amount Q1. If the charge amount of the PD section exceeds Q1 + Q2, since V RT ( H) ⁇ V RT (L) causes RT to overflow from a low level, backflow to the PD side is prevented and an afterimage does not occur. .
  • FIG. 20 is a graph showing the signal charge amount with respect to the accumulation time showing the wide dynamic range operation in which the maximum allowable incident light amount is expanded in the amplification type solid-state imaging device of FIG.
  • the horizontal axis represents the accumulation time
  • the vertical axis represents the signal charge amount.
  • the long time accumulation period is T L
  • the short time accumulation period is T S
  • each of the lines 80 to 83 has the gate potential V RT of the reset transistor RT.
  • V RT of the reset transistor RT.
  • M middle level
  • the lines 80, 81, 82, 83 change in order.
  • the differential voltage (V S1 -V R ) between the two is taken at 17a, it is possible to obtain an optical signal in a long-time accumulation mode in which the reset noise common to both is removed.
  • the optical signal of the short-time accumulation mode charges due to the amount of incident light of the short-time accumulation mode, the voltage V S1 of the floating diffusion region FD portion before storage start due to the incidence of the short-time accumulation mode is recorded in the volume CmS1 Since the voltage V S2 generated by the signal charge in the short-time accumulation mode after the second charge transfer is recorded in the capacitor Cm S2 , the differential voltage between both of them in the CDS circuit 17 a is read after each signal voltage is read. By taking V S2 ⁇ V S1 ), it is possible to obtain an optical signal in a short-time accumulation mode in which the reset noise common to both is removed.
  • the above equation (3) selectively outputs the difference voltage S1 and the multiplication value (K ⁇ S2) according to the light amount of the received light by the CDS circuit 17a and outputs it as an optical signal. It shows.
  • the dynamic range expansion ratio M is smaller than that in the normal operation in which the charge amount (Q1 + Q2) is a full range and the time (Tint1 + Tint2) obtained by adding the long exposure period and the short exposure period is a single accumulation time.
  • the amount Q1 the amount of charge Q2
  • the dynamic range expansion ratio M is 100.
  • the charge amount Q1 which is the long-term accumulated signal ceiling level shown in FIG. 19 and FIG. 20, varies somewhat for each pixel, and there is a possibility that fixed pattern noise may occur if Equation (1) is used as S1 common to the entire screen.
  • FIG. 21 is a graph showing an amount of signal charge with respect to an accumulation time showing a wide dynamic range operation in which fixed pattern noise is eliminated in the amplification type solid-state imaging device of FIG.
  • the horizontal axis represents the accumulation time
  • the vertical axis represents the signal charge amount.
  • the long time accumulation period is T L
  • the short time accumulation period is T S
  • lines 85 and 86 indicate the gate potential V RT of the reset transistor RT at the middle level. This represents the amount of charge that can be accumulated in the floating diffusion region FD in the case of V TX (M) .
  • the solid line 85 shows an example at a certain light amount when the variation of the charge amount Q1 is maximum
  • the dashed dotted line 86 shows an example at another light amount when the variation of the charge amount Q1 is minimum.
  • a long broken line 87 represents a level at which the signal charge amount S1 is clipped to a constant value.
  • the upper limit value of the Si signal is set to the potential V CL by clipping the S1 signal to the potential V CL smaller by the margin value ⁇ q than the minimum value of the variation range ⁇ Q for all pixels. .
  • the margin value ⁇ q may be zero, but for example, it is preferable to set a so-called slight difference margin value ⁇ q which is 5% to 10% of V CL .
  • FIG. 22 is a circuit diagram showing a configuration of a pixel 60 of an amplification type solid-state imaging device according to a first modified example of the fifth embodiment of the present invention.
  • the signal is read out from each capacitance and capacitance switch to the second signal line sig2 by the second amplification transistor SF2 via the selection transistor SL, but similarly to FIG. May be read out. This case is shown in FIG. As shown in FIG.
  • the pixel 10 includes a light receiving element PD formed of an embedded light receiving element, a transfer transistor TX, a reset transistor RT, a first amplification transistor SF1, a first signal line sig1, and a capacitance
  • the configuration includes CmR and CmS, capacitance switch transistors SwR and SwS, an initialization transistor IT, a second amplification transistor SF2, a selection transistor SL, and a second signal line sig2.
  • the pixel 60 shown is characterized by including capacitors CmS1 and CmS2 and capacitor switch transistors SwS1 and SwS2 instead of the capacitor CmS and the capacitor switch transistor SwS which constitute the pixel 10 shown in FIG. 1, and not including the selection transistor SL.
  • the voltage Vs is characterized in that it is set to a voltage value at which the second amplification transistor SF2 is turned off.
  • the configuration of a two-dimensional image sensor including a pixel array in which the pixels 60 are arranged in a matrix is the same as that in which the pixels 10 in FIG. Furthermore, the timing chart showing the operation of the two-dimensional image sensor provided with the pixel array having the pixels 60 is the same as that of the timing chart of FIG. 18 except that the drive signal V SL (i) for the selection transistor .
  • FIG. 23 is a circuit diagram showing a configuration of a pixel 70 of an amplification type solid-state imaging device according to a second modified example of the fifth embodiment of the present invention.
  • the floating diffusion region FD potential is reset to a low level as in FIG.
  • the output switch SwO may be used for the first signal line sig1. This case is shown in FIG. As shown in FIG.
  • the pixel 10 includes a light receiving element PD formed of an embedded light receiving element, a transfer transistor TX, a reset transistor RT, a first amplification transistor SF1, a first signal line sig1, and a capacitance
  • the configuration includes CmR and CmS, capacitance switch transistors SwR and SwS, an initialization transistor IT, a second amplification transistor SF2, a selection transistor SL, and a second signal line sig2.
  • the pixel 60 shown includes the capacitors CmS1 and CmS2 and the capacitor switch transistors SwS1 and SwS2 instead of the capacitor CmS and the capacitor switch transistor SwS that constitute the pixel 10 shown in FIG. 1, and further, the source of the first amplification transistor SF1 and the first With the output switch SwO between the signal line sig1 of Characterized in that the common in-voltage power supply voltage Vdd.
  • FIG. 24 shows high level V RT (H) and low level V RT (L) of the gate voltage V RT of the reset transistor RT and middle level V RT (M) between them in the amplification type solid-state imaging device of FIG. Is a timing chart showing the operation in the case of three levels. 17 differs from FIG. 17 in that the output switch SwO is turned on in the write operation period, and the output switch SwO is turned off in the read period. Therefore, in period Tw7 from time tw7 in FIG. 17, the reset transistor RT is turned on in a state where the drain voltage Vrd of the reset transistor RT is at the low level, and the potential of the floating diffusion region FD is reset to the low level. The operation of turning off the first amplification transistor SF1 is omitted. Other than that, the operation in FIG. 17 is similarly applicable.
  • FIG. 25 is a timing chart showing an operation in the case where the gate voltage V RT of the reset transistor RT is set to two levels of high level V RT (H) and low level V RT (L) in the amplification type solid-state imaging device of FIG. It is a chart. The portions corresponding to FIG. 24 are indicated by the same symbols. The difference from FIG. 24 is that the reset transistor RT has two levels, that is, the high level V RT (H) and the low level V RT (L) , and from time tw8 newly added as a period Tw1 from time tw1. The high level V RT (H) is totaled twice only in the period Tw8 of
  • the same operation is performed from time tw0 to tw2. That is, in a period Tw0 from time tw0, the drive signal V TX is fixed to the high level V TX (H) , and the transfer transistor TX is turned on. Thus, the charge is transferred from the light receiving element PD to the floating diffusion region FD to reset the light receiving element PD, and the charge generated by the incident light thereafter is accumulated in the light receiving element PD.
  • the drive signal V RT is set to the high level V RT (H) , and the reset transistor RT is turned on. Therefore, the floating diffusion region FD after the period Tw1 is at the reset level.
  • the drive signal V SwR (i) is fixed at the high level and the capacitance switch transistor SwR is turned on, whereby a voltage corresponding to the reset level of the floating diffusion region FD is written to the capacitance CmR.
  • the gate voltage V RT of the reset transistor RT is at the low level V RT (L) in the first transfer operation period in which the long-time accumulation signal is read in the period Tw3 to the period Tw3, the maximum allowable signal charge amount is expanded to Q1 + Q2.
  • the floating diffusion region FD since the floating diffusion region FD has no room to receive any more charge, the floating diffusion region FD is reset again in a period Tw8 from time tw8. Thereafter, the short-time accumulation signal is read out by the second transfer operation in the period Tw5 from the time tw5.
  • the CDS operation in this case is performed as follows. First, for the optical signal in the long-time accumulation mode, at the time of the first reset operation, that is, after resetting the potential of the floating diffusion region FD to V dd with the gate potential V RT of the reset transistor RT as the high level V RT (H). Voltage V R is recorded in the capacitance C m R , and the voltage V S1 generated by the signal charge in the long-term accumulation mode after the first charge transfer performed immediately after is recorded in the capacitance C m S 1 . After that, if the differential voltage (V S1 -V R ) between the two is taken in the CDS circuit 17a, it is possible to obtain a long time accumulation signal from which the reset noise common to both is removed.
  • the reset level of the floating diffusion area FD before the start of accumulation is not read, so the short-time accumulation mode after the second charge transfer recorded in the capacitor CmS2 in the CDS circuit 17a.
  • the differential voltage (V S2 ⁇ V R ) between the voltage V S2 generated by the signal charge in V and the voltage V R at the time of the first reset operation is taken to perform the CDS operation in a pseudo manner.
  • the offset variation which fluctuates for each pixel is removed, the reset noise remains.
  • a wide dynamic range signal is obtained by the same signal processing as described above. In the case of this method, compared to the methods described in FIG. 16 to FIG. 24, the handling charge amount is doubled.
  • the following features can be newly provided. That is, (1) The simultaneous exposure (global shutter) operation and the wide dynamic range operation can be performed simultaneously. (2) In this wide dynamic range operation, it is possible to operate continuously for each frame, and is also applicable to moving pictures. (3) In the wide dynamic range operation, all the signals necessary for the wide dynamic range operation can be obtained simultaneously without the frame memory. (4) Further, except in the case of FIG. 25, both the long time accumulation signal and the short time accumulation signal can be reset noise free, and a wide dynamic range signal having a high SN ratio can be obtained.
  • each transistor in a pixel is an N-channel MOS field effect transistor.
  • this is an example, and the present invention is not limited to this.
  • a channel MOS field effect transistor it is possible to configure a pixel that operates in the same manner by reversing the polarity of voltage and current.
  • the signal charge of the light receiving element PD is an electron
  • the polarity change due to signal accumulation is only reversed, and a pixel operating in the same manner is configured. Can.
  • the amplification type solid-state imaging device since the pixel does not have a constant current load and writing and reading are performed by a common switch, the number of transistors in the pixel is reduced. can do.
  • the plurality of capacitors are first initialized to a predetermined voltage, for example, a ground voltage or a positive voltage close thereto, and then the plurality of capacitors A stable operation can be performed by performing the write operation by the charge current to the capacitor and controlling the selection of the specific capacitor and the write time by the capacitor switch.
  • a voltage at which the transistor is deactivated is applied to the gate of the first amplification transistor to turn it off, and selection and reading time of a particular capacitor are controlled by the capacitor switch.
  • signals from the plurality of capacitors can be given to the gate of the second amplification transistor and read out to the outside of the pixel.
  • the amplification type solid-state imaging device of the present invention two capacitances in each pixel are simultaneously operated on the pixel array configured of the pixels having the reset transistor, the embedded light receiving element, and the transfer transistor. After the write operation of the reset signal and the light signal are performed on one side and the other side, respectively, the respective capacitances of the respective pixels are sequentially read out to the gate of the second amplification transistor. At the same time, an operation of writing to each of the capacitors and an operation of sequentially reading out of each of the capacitors can be performed. At the time of reading, a third voltage is applied to the gate of the first amplification transistor to be deactivated, or an output switch is provided between the first amplification transistor and the first signal line to be turned off.
  • the influence of the first amplification transistor is prevented.
  • the correlated double sampling (CDS) method can be applied by taking a difference between the reset signal and the light signal for each pixel read out sequentially, and in the first and second amplification transistors, Fixed pattern noise due to variations in threshold voltage and reset noise to the gate of the first amplification transistor can be suppressed, and a low noise image signal can be obtained.
  • the output switch is turned on by simultaneously operating the pixel array including the reset transistor and the pixel having the PN light receiving element at the time of writing.
  • the write operation of the light signal in one of the three capacitors in each pixel, the reset signal of the odd frame in the other one, and the reset signal of the even frame in the remaining capacitance is performed,
  • the readout from each capacitor to the gate of the second amplification transistor is sequentially performed with the output switch off, and the operation of writing all the pixels simultaneously to the respective capacitors and the operation of sequentially reading out the respective capacitors are performed simultaneously.
  • the light signal of the frame with noise correlation and the reset signal of the previous frame are read out in pairs, so that the CDS method can be applied by taking the difference between the signals, It is possible to suppress fixed pattern noise due to variations in threshold voltage in each of the second amplification transistors and reset noise to the gate in the first amplification transistor, and obtain an image signal with low noise. it can.
  • the second amplification transistor in the non-selected row is inactivated when reading out signals in row sequence from the pixel array. Since the gate voltage of the amplification transistor is controlled by the initialization transistor, it is not necessary to provide a selection transistor between the second amplification transistor and the signal line, thereby further reducing the components in the pixel. It is possible to improve the performance such as the increase of the area of the light receiving portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

An amplification-type solid state imaging device is provided with a pixel array formed from a plurality of pixels (10), and a control circuit. Each pixel (10) is provided with: a light receiving element (PD); a first amplification transistor (SF1) which amplifies and outputs a signal from the light receiving element (PD); capacities (CmR, CmS) which maintain the signal from the first amplification transistor (SF1); capacity-switch transistors (SwR, SwS) which control the input and output of the capacities (CmR, CmS); and a second amplification transistor (SF2) which amplifies and outputs the signal from the capacities (CmR, CmS). After sequentially turning on the capacity-switch transistors (SwR, SwS), and sequentially entering a signal from the first amplification transistor (SF1) into the capacities (CmR, CmS), the control circuit sequentially turns on the capacity-switch transistors (SwR, SwS), and sequentially reads out the signals entered in the capacities (CmR, CmS).

Description

増幅型固体撮像装置Amplification type solid-state imaging device
 本発明は、画素内に容量を有する増幅型固体撮像装置に関する。 The present invention relates to an amplification type solid-state imaging device having a capacitance in a pixel.
 一般に、増幅型固体撮像装置としては、増幅機能を持たせた画素部とその画素部の周辺に配置された走査回路とを有し、当該走査回路によって前記画素部から画素データを読み出すものが普及している。 Generally, an amplification type solid-state imaging device has a pixel unit provided with an amplification function and a scanning circuit arranged around the pixel unit, and one that reads out pixel data from the pixel unit by the scanning circuit is widespread doing.
 このような増幅型固体撮像装置の一例としては、画素部が周辺の駆動回路及び信号処理回路と一体化するのに有利なCMOS(Complementary Metal Oxide Semiconductor)によって構成されたAPS(Active Pixel Sensor)型イメージセンサが知られている。このようなAPS型イメージセンサの中でも、近年は高画質が得られる4トランジスタ型が主流になりつつある。 As an example of such an amplification type solid-state imaging device, an APS (Active Pixel Sensor) type constituted by a CMOS (Complementary Metal Oxide Semiconductor) that is advantageous for integrating a pixel portion with peripheral driving circuits and signal processing circuits. Image sensors are known. Among such APS type image sensors, in recent years, a four-transistor type capable of obtaining high image quality is becoming mainstream.
 図26は、従来技術に係る増幅型固体撮像装置の画素100の構成を示す回路図である。画素100は、4つのNチャネルMOS(Metal Oxide Semiconductor)電界効果トランジスタを備えた、従来の4トランジスタ型の画素である。 FIG. 26 is a circuit diagram showing a configuration of a pixel 100 of an amplification type solid-state imaging device according to the prior art. The pixel 100 is a conventional four-transistor pixel provided with four N-channel MOS (Metal Oxide Semiconductor) field effect transistors.
 図26において、受光素子PDは通常埋め込み受光素子で構成され、受光素子PDからフローティングディフュージョン領域FDへは転送トランジスタTXによって信号電荷が転送される。フローティングディフュージョン領域FDは、受光素子PDから信号電荷が転送される前に、リセットトランジスタRTによってリセットトランジスタRTのドレイン電圧である電源電圧Vdd又はそれに対応するリセットトランジスタRTのソース電圧にリセットされる。次に、転送トランジスタTXがオンされて、受光素子PDからの信号電荷がフローティングディフュージョン領域FDに転送される。前記リセット後及び前記信号電荷転送後のフローティングディフュージョン領域FDの電圧は、増幅トランジスタSFによって増幅され、選択トランジスタSLを介して読み出し信号線sig3へ読み出される。読み出し信号線sig3の一端には定電流負荷トランジスタCLが接続され、定電流負荷トランジスタCLのドレインから出力電圧Voが得られる。 In FIG. 26, the light receiving element PD is usually formed of an embedded light receiving element, and the signal charge is transferred from the light receiving element PD to the floating diffusion region FD by the transfer transistor TX. Before the signal charge is transferred from the light receiving element PD, the floating diffusion region FD is reset by the reset transistor RT to the power supply voltage Vdd which is the drain voltage of the reset transistor RT or the source voltage of the corresponding reset transistor RT. Next, the transfer transistor TX is turned on to transfer the signal charge from the light receiving element PD to the floating diffusion region FD. The voltage of the floating diffusion region FD after the reset and the signal charge transfer is amplified by the amplification transistor SF, and read out to the read signal line sig3 through the selection transistor SL. A constant current load transistor CL is connected to one end of the read signal line sig3, and an output voltage Vo is obtained from the drain of the constant current load transistor CL.
 図26の画素100をマトリクス状に配置した画素アレイを含む増幅型固体撮像装置を成す2次元イメージセンサを構成した場合には、各画素100は行毎に順次読み出される。画素100は、前回の読み出しが行われてから当該読み出しが行われるときまで受光素子PDに蓄積された電荷を信号電荷として後段の信号処理回路(図示せず。)に出力するので、各画素の信号は時間的に行毎に順次ずれが生じ、動きのある被写体を撮像する場合には、動きに応じて画像が歪んでいた。 In the case of configuring a two-dimensional image sensor forming an amplification type solid-state imaging device including a pixel array in which the pixels 100 in FIG. 26 are arranged in a matrix, each pixel 100 is read out row by row. The pixel 100 outputs the charges accumulated in the light receiving element PD as signal charges to the signal processing circuit (not shown) in the subsequent stage until the time when the readout is performed after the previous readout is performed. The signals are sequentially shifted temporally for each row, and when an object with motion is imaged, the image is distorted according to the motion.
 このような問題を解決するために、各画素内に容量を備え、すべての画素を同時に読み出して当該各容量に書き込み、その後、当該各容量内の情報を順次読み出すようにした一括露光技術が提案されている。しかし、この場合、受光素子からの信号を前記容量に書き込んでから読み出すまでの間にノイズが増大し、S/N比が低下するという問題があった。このようなことから、受光素子の信号を増幅してから容量に書き込む技術が提案されており、図27及び図28はこの一例を示した回路図である(例えば、特許文献1参照。)。 In order to solve such a problem, there is proposed a collective exposure technology in which each pixel is provided with a capacity, all the pixels are read out at the same time, and written in each capacity, and then the information in each capacity is read out sequentially. It is done. However, in this case, there is a problem that noise increases between writing and reading of the signal from the light receiving element to the capacitor and the S / N ratio decreases. For this reason, a technique for amplifying the signal of the light receiving element and writing it in the capacitor is proposed, and FIGS. 27 and 28 are circuit diagrams showing an example of this (see, for example, Patent Document 1).
 図27は、従来技術に係る増幅型固体撮像装置の画素110の構成を示す回路図である。画素110は、図26で示した画素100と比較して、第1の増幅トランジスタSF1と、定電流負荷トランジスタVBと、電流制御スイッチトランジスタSWと、書き込みスイッチトランジスタWrと、容量Cmとをさらに備えて構成されている。なお、図27の画素110では、第2の増幅トランジスタSF2が図26の増幅トランジスタSFに相当しており、電流制御スイッチトランジスタSWは電源側に設けられてもよい。 FIG. 27 is a circuit diagram showing the configuration of a pixel 110 of an amplification type solid-state imaging device according to the prior art. The pixel 110 further includes a first amplification transistor SF1, a constant current load transistor VB, a current control switch transistor SW, a write switch transistor Wr, and a capacitance Cm, as compared with the pixel 100 shown in FIG. Is configured. In the pixel 110 of FIG. 27, the second amplification transistor SF2 may correspond to the amplification transistor SF of FIG. 26, and the current control switch transistor SW may be provided on the power supply side.
 図27の画素110を使用して構成した2次元イメージセンサの動作は、まず、すべての画素110を一括動作させて、受光素子PDからの信号を容量Cmに書き込む。すなわち、電流制御スイッチトランジスタSWをオンさせた後、書き込みスイッチトランジスタWrをオンさせ、第1の増幅トランジスタSF1によって増幅された受光素子PDからの信号を容量Cmに書き込む。この後、書き込みスイッチトランジスタWrをオフさせ、次に電流制御スイッチトランジスタSWをオフさせて一括書き込み動作が終了する。 In the operation of the two-dimensional image sensor configured using the pixel 110 of FIG. 27, first, all the pixels 110 are operated collectively to write the signal from the light receiving element PD in the capacitor Cm. That is, after the current control switch transistor SW is turned on, the write switch transistor Wr is turned on, and the signal from the light receiving element PD amplified by the first amplification transistor SF1 is written to the capacitor Cm. Thereafter, the write switch transistor Wr is turned off, and then the current control switch transistor SW is turned off, whereby the batch write operation is completed.
 次いで、読み出し動作が、行毎に順次行われる。すなわち、容量Cmに保持された信号を、第2の増幅トランジスタSF2及び選択トランジスタSLを介して読み出し信号線sig3へ読み出す動作が行毎に順次行われる。読み出し信号線sig3の一端には定電流負荷トランジスタCLが接続され、出力電圧Voが行毎に順次得られる。 Then, the read operation is performed sequentially for each row. That is, the operation of reading out the signal held in the capacitor Cm to the read signal line sig3 via the second amplification transistor SF2 and the selection transistor SL is sequentially performed for each row. The constant current load transistor CL is connected to one end of the read signal line sig3, and the output voltage Vo is sequentially obtained for each row.
 図28は、従来技術に係る増幅型固体撮像装置の画素120の構成を示す回路図である。画素120は、図27で示した画素110と比較して、書き込みスイッチトランジスタ、容量、第2の増幅トランジスタ、及び選択トランジスタのそれぞれを二重にしたものであり、書き込みスイッチトランジスタWr1,Wr2と、容量Cm1,Cm2と、第2の増幅トランジスタSF21,SF22と、選択トランジスタSL1,SL2とを備えて構成される。これにより、画素120を使用して2次元イメージセンサを構成したとき、すべての画素を一括動作させて、リセット動作後のフローティングディフュージョン領域FDの電圧(リセット信号という。)、及び受光素子PDから電荷を転送した後のフローティングディフュージョン領域FDの電圧(光信号という。)をそれぞれ2つの容量Cm1,Cm2に保持することができる。また、読み出し動作は行毎に順次行われる。すなわち、2つの容量Cm1,Cm2に保持されたリセット信号及び光信号を、第2の増幅トランジスタSF21,SF22及び選択トランジスタSL1,SL2を介して読み出し信号線sig3,sig4へそれぞれ読み出す動作が行毎に順次行われる。読み出し信号線sig3,sig4の一端に接続された定電流負荷トランジスタCL1,CL2によって出力電圧Vo1,Vo2が行毎に順次得られ、後段の信号処理回路(図示せず。)が、出力電圧Vo1と出力電圧Vo2との差を算出する相関二重サンプリング(CDS:Correlated Double Sampling)処理(以下、CDS処理という。)を実行することにより、フローティングディフュージョン領域FDでのリセットノイズと、第1の増幅トランジスタSF1のしきい値のばらつきに起因する固定パターンノイズとを除去することができる。 FIG. 28 is a circuit diagram showing a configuration of a pixel 120 of an amplification type solid-state imaging device according to the prior art. The pixel 120 is formed by duplicating each of the write switch transistor, the capacitor, the second amplification transistor, and the selection transistor in comparison with the pixel 110 illustrated in FIG. 27, and the write switch transistors Wr1 and Wr2; Capacitors Cm1 and Cm2, second amplification transistors SF21 and SF22, and select transistors SL1 and SL2 are provided. Thus, when the two-dimensional image sensor is configured using the pixels 120, all the pixels are operated collectively, and the voltage of the floating diffusion region FD after the reset operation (referred to as a reset signal) and the charge from the light receiving element PD. The voltage (referred to as an optical signal) of the floating diffusion region FD after the transfer of the voltage V.sub.2 can be held in the two capacitors Cm1 and Cm2, respectively. Further, the read operation is sequentially performed row by row. That is, the operation of reading out the reset signal and the light signal held by the two capacitors Cm1 and Cm2 to the read signal lines sig3 and sig4 via the second amplification transistors SF21 and SF22 and the selection transistors SL1 and SL2 is performed for each row It will be done sequentially. The output voltages Vo1 and Vo2 are sequentially obtained for each row by the constant current load transistors CL1 and CL2 connected to one end of the read signal lines sig3 and sig4, and the signal processing circuit (not shown) in the subsequent stage outputs the output voltage Vo1. By performing correlated double sampling (CDS: Correlated Double Sampling) processing (hereinafter referred to as CDS processing) for calculating the difference from the output voltage Vo2, reset noise in the floating diffusion region FD and the first amplification transistor It is possible to remove fixed pattern noise caused by the variation of the threshold value of SF1.
 受光素子の信号を増幅した後、その信号を容量に書き込む一括露光技術の他の例として、図29に示す技術が開示されている(非特許文献1参照。)。図29は、従来技術に係る増幅型固体撮像装置の画素130の構成を示す回路図である。画素130を使用して2次元イメージセンサを構成したときの書き込み動作は、すべての画素130を一括動作させることにより実行される。まず、定電流負荷トランジスタPCがオンされ、次いでスイッチトランジスタSmp1,Smp2がともにオンされて、リセット動作後のリセット信号が容量CmRに保持され、次いでスイッチトランジスタSmp1のみがオンされて受光素子PDから電荷を転送した後の光信号が容量CmSに保持される。 A technique shown in FIG. 29 is disclosed as another example of a batch exposure technique of amplifying a signal of a light receiving element and writing the signal in a capacitor (see Non-Patent Document 1). FIG. 29 is a circuit diagram showing a configuration of a pixel 130 of an amplification type solid-state imaging device according to the prior art. The writing operation when the two-dimensional image sensor is configured using the pixels 130 is performed by operating all the pixels 130 at one time. First, the constant current load transistor PC is turned on, then the switch transistors Smp1 and Smp2 are both turned on, the reset signal after the reset operation is held in the capacitor CmR, and then only the switch transistor Smp1 is turned on. Is transferred to the capacitor CmS.
 次いで、読み出し動作が行毎に順次行われる。まず、スイッチトランジスタSmp1,Smp2がともにオフ状態のまま容量CmRに保持されたリセット信号を第2の増幅トランジスタSF2のゲートに印加し、次いでスイッチトランジスタSmp2のみがオンされて容量CmSに保持された光信号を第2の増幅トランジスタSF2のゲートに印加される。第2の増幅トランジスタSF2は、選択トランジスタSLを介してリセット信号及び光信号を読み出し信号線sig3に出力し、この動作が行毎に順次行われる。その後、図28の画素120の場合と同様に、後段の信号処理回路(図示せず。)がCDS処理を実行することにより、リセットノイズ、及び第1の増幅トランジスタSF1及び第2の増幅トランジスタSF2のしきい値のばらつきに起因する固定パターンノイズを除去することができる。また、画素130は、2つのスイッチトランジスタと、2つの容量と、1つの第2の増幅トランジスタとを備え、1画素当り8つのトランジスタ数を備える簡単な構成である。 Then, read operations are sequentially performed row by row. First, the reset signal held in the capacitor CmR is applied to the gate of the second amplification transistor SF2 with both the switch transistors Smp1 and Smp2 turned off, and then only the switch transistor Smp2 is turned on and light held in the capacitor CmS A signal is applied to the gate of the second amplification transistor SF2. The second amplification transistor SF2 outputs the reset signal and the light signal to the readout signal line sig3 via the selection transistor SL, and this operation is sequentially performed for each row. After that, as in the case of the pixel 120 in FIG. 28, the signal processing circuit (not shown) in the subsequent stage performs the CDS processing, thereby resetting noise, the first amplification transistor SF1, and the second amplification transistor SF2. Fixed pattern noise due to the variation of the threshold of In addition, the pixel 130 has a simple configuration including two switch transistors, two capacitors, and one second amplification transistor, and eight transistors per pixel.
特開2005-65074号公報JP 2005-65074 A
 しかしながら、図28の構成では下記課題があった。
 (a)すべての画素を一括動作させて画素内の容量に書き込み動作を行う際、電流制御スイッチトランジスタSWをオンさせることにより、定電流負荷トランジスタVBを介して第1の増幅トランジスタSF1に一定の電流I1が流れるため、2次元イメージセンサ全体に流れる電流は、電流I1の画素数倍となり、大きな直流電流が流れる。
 (b)1画素内に11個のトランジスタが必要であり、受光素子PDの面積が減少して感度が低下するとともに、画素レイアウトが複雑化する。
However, the configuration shown in FIG. 28 has the following problems.
(A) When the write operation is performed on the capacitance in the pixel by operating all the pixels collectively, the current control switch transistor SW is turned on, so that the first amplification transistor SF1 is constant via the constant current load transistor VB. Since the current I1 flows, the current flowing through the entire two-dimensional image sensor is equal to the number of pixels of the current I1 and a large direct current flows.
(B) Eleven transistors are required in one pixel, the area of the light receiving element PD is reduced, the sensitivity is lowered, and the pixel layout is complicated.
 また、図29の構成の場合、全画素において同時に定電流負荷トランジスタPCがオンされるために上記(a)と同じ課題があり、かつ下記の課題があった。
 (c)スイッチトランジスタSmp2をオンさせて容量CmSに保持された光信号を第2の増幅トランジスタSF2のゲートに読み出す際、光信号の電圧が2つの容量CmR,CmSに分配されるので、これらの容量値が同じ場合、光信号の電圧が1/2に低下する。すなわち、S/N比が低下する。
Further, in the case of the configuration of FIG. 29, the constant current load transistor PC is simultaneously turned on in all the pixels, and the same problem as the above (a) occurs, and the following problems occur.
(C) When the switch transistor Smp2 is turned on and the optical signal held in the capacitor CmS is read out to the gate of the second amplification transistor SF2, the voltage of the optical signal is divided into two capacitors CmR and CmS If the capacitance values are the same, the voltage of the optical signal drops to 1⁄2. That is, the S / N ratio decreases.
 本発明の目的は以上の問題を解決し、簡単な回路構成で、画素内のトランジスタ数を削減して受光素子の面積を拡大でき、信号を容量に書き込むときの電流を抑圧することができ、信号を容量から読み出すときの電圧低下がなく高いS/N比を維持でき、安定した動作と高い性能とを得ることができる増幅型固体撮像装置を提供することにある。 The object of the present invention is to solve the above problems, and with a simple circuit configuration, the area of the light receiving element can be increased by reducing the number of transistors in the pixel, and the current when writing a signal in the capacitor can be suppressed. It is an object of the present invention to provide an amplification type solid-state imaging device capable of maintaining a high S / N ratio without a voltage drop when reading out a signal from a capacitor and obtaining stable operation and high performance.
 本発明に係る増幅型固体撮像装置は、複数の容量を有する画素が行列状に複数配置されて構成される画素アレイと、
 前記画素アレイを構成する各画素に対する動作制御を行う制御回路とを備えた増幅型固体撮像装置において、
 前記各画素は、
 受光した光に応じた信号を生成して出力する光電変換部と、
 前記光電変換部からゲートに入力される信号を増幅して出力する第1の増幅トランジスタと、
 前記第1の増幅トランジスタのゲート電圧をリセットするリセットトランジスタと、
 前記第1の増幅トランジスタから第1の信号線に出力された信号を保持する複数の容量と、
 前記複数の容量に対応してかつ前記第1の信号線と前記複数の容量との間にそれぞれ設けられ、前記第1の信号線と前記複数の容量との間の入出力制御を行う各容量当り1個からなる複数の容量スイッチと、
 前記第1の信号線からゲートに入力される信号を増幅して第2の信号線に出力する第2の増幅トランジスタと、
 前記第1の信号線に接続され、所定の第1の電圧を前記第1の信号線に出力する初期化トランジスタとを備えたことを特徴とする。
An amplification type solid-state imaging device according to the present invention includes a pixel array configured by arranging a plurality of pixels having a plurality of capacities in a matrix.
An amplification type solid-state imaging device comprising: a control circuit for performing operation control on each pixel constituting the pixel array;
Each pixel is
A photoelectric conversion unit that generates and outputs a signal according to the received light;
A first amplification transistor that amplifies and outputs a signal input from the photoelectric conversion unit to a gate;
A reset transistor that resets a gate voltage of the first amplification transistor;
A plurality of capacitors for holding a signal output from the first amplification transistor to the first signal line;
Respective capacitances provided corresponding to the plurality of capacitances and provided between the first signal line and the plurality of capacitances and performing input / output control between the first signal line and the plurality of capacitances Multiple capacitive switches, one per unit,
A second amplification transistor that amplifies a signal input from the first signal line to the gate and outputs the amplified signal to a second signal line;
An initialization transistor is connected to the first signal line and outputs a predetermined first voltage to the first signal line.
 また、上記増幅型固体撮像装置において、前記制御回路は、
(1)前記初期化トランジスタをオンするとともに前記複数の容量スイッチをオンすることにより、前記複数の容量を前記第1の電圧に初期化し、
(2)前記複数の容量に対応する前記複数の容量スイッチを順次オンすることにより、前記第1の増幅トランジスタからの増幅された信号を前記第1の信号線及び書き込むべき容量に対応する容量スイッチを介して当該容量へ順次書き込む書き込み動作を実行し、
(3)前記複数の容量に対応する前記複数の容量スイッチを順次オンすることにより、前記各容量に書き込まれた信号を、読み出すべき容量に対応する容量スイッチ、前記第1の信号線、及び前記第2の増幅トランジスタを介して前記第2の信号線に順次読み出す読み出し動作を実行するように制御することを特徴とする。
In the amplification type solid-state imaging device, the control circuit may
(1) The plurality of capacitors are initialized to the first voltage by turning on the initialization transistor and turning on the plurality of capacitance switches.
(2) By sequentially turning on the plurality of capacitance switches corresponding to the plurality of capacitances, capacitance switches corresponding to the first signal line and the capacitance to be written are the amplified signals from the first amplification transistor. Perform a write operation to sequentially write to the capacity via
(3) By sequentially turning on the plurality of capacitance switches corresponding to the plurality of capacitances, the capacitance switch corresponding to the capacitance to be read out, the signal written to each of the capacitances, the first signal line, and It is characterized in that control is performed so as to execute a read operation for sequentially reading out the second signal line via a second amplification transistor.
 さらに、上記増幅型固体撮像装置において、前記制御回路は、前記第1の増幅トランジスタが飽和領域動作からサブスレッショルド領域動作に移行して準安定状態になる期間において、前記画素アレイを構成するすべての前記画素に対して同時に、前記書き込み動作を実行することを特徴とする。 Furthermore, in the amplification type solid-state imaging device, the control circuit is configured to configure all the pixel arrays in a period in which the first amplification transistor shifts from a saturation region operation to a subthreshold region operation and becomes a metastable state. The write operation is simultaneously performed on the pixel.
 またさらに、上記増幅型固体撮像装置において、前記信号は、リセット信号を含み、
 前記制御回路は、前記第1の増幅トランジスタがオンとなる第2の電圧を前記リセットトランジスタのドレインに印加して、前記リセットトランジスタをオンすることにより、前記第2の電圧に対応する前記リセットトランジスタのソース電圧を前記第1の増幅トランジスタのゲートに印加して、前記第2の電圧に対応するリセット信号を前記第1の信号線に出力した後、前記第1の増幅トランジスタがオフとなる第3の電圧を前記リセットトランジスタのドレインに印加して、前記リセットトランジスタをオンすることにより、前記第3の電圧を前記第1の増幅トランジスタのゲートに印加するように、前記書き込み動作を実行することを特徴とする。
Still further, in the amplification type solid-state imaging device, the signal includes a reset signal,
The control circuit applies a second voltage at which the first amplification transistor is turned on to the drain of the reset transistor to turn on the reset transistor, thereby the reset transistor corresponding to the second voltage. A source voltage of the first amplification transistor is applied to the gate of the first amplification transistor to output a reset signal corresponding to the second voltage to the first signal line, and then the first amplification transistor is turned off. Performing the write operation to apply the third voltage to the gate of the first amplification transistor by applying a voltage of 3 to the drain of the reset transistor and turning on the reset transistor. It is characterized by
 また、上記増幅型固体撮像装置において、前記信号は、リセット信号を含み、
 前記画素はさらに、前記第1の増幅トランジスタと第1の信号線との間に設けられた出力スイッチを備え、
 前記制御回路は、前記リセットトランジスタをオンにすることにより、前記第1の増幅トランジスタがオンとなる第2の電圧を前記第1の増幅トランジスタのゲートに印加するとともに、前記出力スイッチをオンすることにより、前記第2の電圧に対応する前記リセット信号を前記第1の信号線に出力した後、前記出力スイッチをオフするように、前記書き込み動作を実行することを特徴とする。
In the amplification type solid-state imaging device, the signal includes a reset signal,
The pixel further includes an output switch provided between the first amplification transistor and a first signal line.
The control circuit applies a second voltage that turns on the first amplification transistor to the gate of the first amplification transistor by turning on the reset transistor, and turns on the output switch. Thus, after the reset signal corresponding to the second voltage is output to the first signal line, the write operation is performed to turn off the output switch.
 さらに、上記増幅型固体撮像装置において、前記信号はさらに、光信号を含み、
 前記画素はさらに、前記光電変換部と前記第1の増幅トランジスタのゲートとの間に設けられた転送トランジスタを備え、
 前記光電変換部は埋め込み受光素子であり、受光した光に応じた光信号を前記転送トランジスタを介して前記第1の増幅トランジスタのゲートに出力し、
 前記複数の容量は、前記リセット信号を保持する第1の容量と前記光信号を保持する第2の容量とを備え、
 前記制御回路は、前記リセット信号を前記第1の容量に書き込んだ後、前記転送トランジスタをオンすることにより、前記光電変換部からの前記光信号を前記第1の増幅トランジスタのゲートに印加して、前記光信号を前記第2の容量に書き込むように、前記書き込み動作を実行することを特徴とする。
Furthermore, in the amplification type solid-state imaging device, the signal further includes an optical signal,
The pixel further includes a transfer transistor provided between the photoelectric conversion unit and the gate of the first amplification transistor.
The photoelectric conversion unit is an embedded light receiving element, and outputs an optical signal according to the received light to the gate of the first amplification transistor via the transfer transistor.
The plurality of capacitors include a first capacitor for holding the reset signal and a second capacitor for holding the optical signal,
The control circuit applies the light signal from the photoelectric conversion unit to the gate of the first amplification transistor by writing the reset signal to the first capacitor and then turning on the transfer transistor. The write operation may be performed to write the optical signal to the second capacitor.
 またさらに、上記増幅型固体撮像装置において、前記信号はさらに、光信号を含み、
 前記画素はさらに、前記光電変換部と前記第1の増幅トランジスタのゲートとの間に設けられた転送トランジスタを備え、
 前記光電変換部は埋め込み受光素子であり、受光した光に応じた光信号を前記転送トランジスタを介して前記第1の増幅トランジスタのゲートに出力し、
 前記複数の容量は、前記リセット信号を保持する第1の容量と前記光信号を保持する第2の容量とを備え、
 前記制御回路は、前記出力スイッチをオンして前記リセット信号を前記第1の容量に書き込んだ後、前記転送トランジスタをオンすることにより、前記光電変換部からの前記光信号を前記第1の増幅トランジスタのゲートに印加した後、前記光信号を前記第1の信号線に出力し、前記光信号を前記第2の容量に書き込むように、前記書き込み動作を実行することを特徴とする。
Still further, in the amplification type solid-state imaging device, the signal further includes an optical signal,
The pixel further includes a transfer transistor provided between the photoelectric conversion unit and the gate of the first amplification transistor.
The photoelectric conversion unit is an embedded light receiving element, and outputs an optical signal according to the received light to the gate of the first amplification transistor via the transfer transistor.
The plurality of capacitors include a first capacitor for holding the reset signal and a second capacitor for holding the optical signal,
The control circuit turns on the output switch to write the reset signal to the first capacitor, and then turns on the transfer transistor to amplify the optical signal from the photoelectric conversion unit to the first amplification. After the light signal is applied to the gate of the transistor, the write operation is performed to output the light signal to the first signal line and to write the light signal to the second capacitor.
 また、上記増幅型固体撮像装置において、前記信号はさらに、光信号を含み、
 前記光電変換部はPN受光素子であり、受光した光に応じた光信号を前記第1の増幅トランジスタのゲートに出力し、
 前記複数の容量は、前記光信号を保持する第3の容量と、奇数番目のフレームを処理するときに前記リセット信号を保持する第4の容量と、偶数番目のフレームを処理するときに前記リセット信号を保持する第5の容量とを備え、
 前記制御回路は、前記出力スイッチをオンすることにより、前記光電変換部からの前記光信号を前記第1の増幅トランジスタのゲートに印加して、前記光信号を前記第3の容量に書き込んだ後、奇数番目のフレームを処理するときに前記リセット信号を前記第4の容量に書き込み、偶数番目のフレームを処理するときに前記リセット信号を前記第5の容量に書き込むように、前記書き込み動作を実行することを特徴とする。
In the amplification type solid-state imaging device, the signal further includes an optical signal,
The photoelectric conversion unit is a PN light receiving element, and outputs a light signal according to the received light to the gate of the first amplification transistor,
The plurality of capacitors may be a third capacitor for holding the optical signal, a fourth capacitor for holding the reset signal when processing an odd-numbered frame, and the reset when processing an even-numbered frame. And a fifth capacitance for holding the signal,
The control circuit applies the light signal from the photoelectric conversion unit to the gate of the first amplification transistor by turning on the output switch to write the light signal to the third capacitance. The write operation is performed to write the reset signal to the fourth capacitor when processing odd-numbered frames and to write the reset signal to the fifth capacitor when processing even-numbered frames It is characterized by
 さらに、上記増幅型固体撮像装置において、前記制御回路は、奇数番目のフレームを処理するときに、前記光信号を前記第3の容量から読み出すとともに前記リセット信号を前記第5の容量から読み出し、偶数番目のフレームを処理するときに、前記光信号を前記第3の容量から読み出すとともに前記リセット信号を前記第4の容量から読み出すように、前記読み出し動作を実行することを特徴とする。 Furthermore, in the amplification type solid-state imaging device, when processing an odd-numbered frame, the control circuit reads the light signal from the third capacitance and reads the reset signal from the fifth capacitance. When processing the second frame, the read operation is performed so as to read the light signal from the third capacitor and read the reset signal from the fourth capacitor.
 またさらに、上記増幅型固体撮像装置において、前記制御回路はリセット信号及び光信号を前記画素アレイの行毎に順次読み出すように前記読み出し動作を実行し、
 当該読み出し動作において、第1の行の読み出し動作と、前記第1の行の次の第2の行の読み出し動作との間において、前記第2の電圧を前記リセットトランジスタのドレインに印加し、前記転送トランジスタと前記リセットトランジスタとをオンすることにより、前記光電変換部からの前記光信号を前記リセットトランジスタのドレインに排出した後、前記転送トランジスタをオフし、前記リセットトランジスタがオン状態で前記第3の電圧を前記リセットトランジスタのドレインに印加し、前記リセットトランジスタをオフするように制御することを特徴とする。
Still further, in the amplification type solid-state imaging device, the control circuit executes the reading operation so as to sequentially read a reset signal and an optical signal for each row of the pixel array,
In the read operation, the second voltage is applied to the drain of the reset transistor between the read operation of the first row and the read operation of the second row next to the first row, After the light signal from the photoelectric conversion unit is discharged to the drain of the reset transistor by turning on the transfer transistor and the reset transistor, the transfer transistor is turned off, and the reset transistor is turned on. Is applied to the drain of the reset transistor to control the reset transistor to turn off.
 また、上記増幅型固体撮像装置において、前記制御回路はリセット信号及び光信号を前記画素アレイの行毎に順次読み出すように前記読み出し動作を実行し、
 当該読み出し動作において、第1の行の読み出し動作と、前記第1の行の次の第2の行の読み出し動作との間において、前記転送トランジスタと前記リセットトランジスタとをオンすることにより、前記光電変換部からの前記光信号を前記リセットトランジスタのドレインに排出した後、前記転送トランジスタをオフし、かつ前記リセットトランジスタをオフするように制御することを特徴とする。
In the amplification type solid-state imaging device, the control circuit executes the readout operation so as to sequentially read out the reset signal and the light signal for each row of the pixel array,
In the read operation, the photoelectric conversion is performed by turning on the transfer transistor and the reset transistor between the read operation of the first row and the read operation of the second row next to the first row. After the light signal from the conversion unit is discharged to the drain of the reset transistor, control is performed to turn off the transfer transistor and turn off the reset transistor.
 さらに、上記増幅型固体撮像装置において、前記制御回路はリセット信号及び光信号を前記画素アレイの行毎に順次読み出すように前記読み出し動作を実行し、
 当該読み出し動作において、第1の行の読み出し動作と、前記第1の行の次の第2の行の読み出し動作との間において、前記出力スイッチと前記リセットトランジスタとをオンすることにより、前記光電変換部からの光信号を前記リセットトランジスタのドレインに排出した後、前記リセットトランジスタをオフし、奇数番目のフレームを処理しているときは前記第4の容量に前記リセット信号を書き込み、偶数番目のフレームを処理しているときは前記第5の容量に前記リセット信号を書き込み、前記出力スイッチをオフするように制御することを特徴とする。
Furthermore, in the amplification type solid-state imaging device, the control circuit executes the reading operation so as to sequentially read a reset signal and an optical signal for each row of the pixel array,
In the read operation, the photoelectric conversion is performed by turning on the output switch and the reset transistor between the read operation of the first row and the read operation of the second row next to the first row. After the light signal from the conversion unit is discharged to the drain of the reset transistor, the reset transistor is turned off, and when processing an odd-numbered frame, the reset signal is written to the fourth capacitor, and the even-numbered When processing a frame, the reset signal is written to the fifth capacitor, and the output switch is controlled to be turned off.
 またさらに、上記増幅型固体撮像装置において、前記制御回路はリセット信号及び光信号を前記画素アレイの行毎に順次読み出すように前記読み出し動作を実行し、
 当該読み出し動作において、読み出しを行っていない行の前記各画素における前記初期化トランジスタをオンすることにより、前記第2の増幅トランジスタのゲートを前記第2の増幅トランジスタがオフとなる第4の電圧に初期化するように制御することを特徴とする。
Still further, in the amplification type solid-state imaging device, the control circuit executes the reading operation so as to sequentially read a reset signal and an optical signal for each row of the pixel array,
In the read operation, the gate of the second amplification transistor is set to a fourth voltage at which the second amplification transistor is turned off by turning on the initialization transistor in each pixel in a row where readout is not performed. It is characterized in that it controls to initialize.
 また、上記増幅型固体撮像装置において、前記画素はさらに、前記第2の増幅トランジスタと前記第2の信号線との間に設けられた選択トランジスタを備え、
 前記制御回路は、前記選択トランジスタをオンすることにより、前記容量に保持された光信号又はリセット信号を前記第2の信号線に出力するように制御することを特徴とする。
In the amplification type solid-state imaging device, the pixel further includes a selection transistor provided between the second amplification transistor and the second signal line.
The control circuit is controlled to output the light signal or the reset signal held in the capacitor to the second signal line by turning on the selection transistor.
 またさらに、上記増幅型固体撮像装置において、
 前記第1の増幅トランジスタのゲートに入力される信号は、リセット信号を含み、
 前記各画素はさらに、前記光電変換部と前記第1の増幅トランジスタのゲートとの間に設けられた転送トランジスタを備え、
 前記光電変換部は埋め込み受光素子であり、受光した光に応じた光信号を前記転送トランジスタを介して前記第1の増幅トランジスタのゲートに出力し、
 前記制御回路は、前記光電変換部の蓄積時間が長時間蓄積モードと短時間蓄積モードの2モードを1フレーム期間内に有するように、前記転送トランジスタのオフ時間を制御し、
 前記複数の容量は、前記リセット信号を保持する第6の容量と、前記長時間蓄積モードの光信号を保持する第7の容量と、前記短時間蓄積モードの光信号を保持する第8の容量とを備えることを特徴とする増幅型固体撮像装置である。
Furthermore, in the amplification type solid-state imaging device,
The signal input to the gate of the first amplification transistor includes a reset signal,
Each of the pixels further includes a transfer transistor provided between the photoelectric conversion unit and the gate of the first amplification transistor.
The photoelectric conversion unit is an embedded light receiving element, and outputs an optical signal according to the received light to the gate of the first amplification transistor via the transfer transistor.
The control circuit controls the off time of the transfer transistor such that the accumulation time of the photoelectric conversion unit has two modes of a long time accumulation mode and a short time accumulation mode within one frame period,
The plurality of capacitors are a sixth capacitor for holding the reset signal, a seventh capacitor for holding the light signal in the long time accumulation mode, and an eighth capacitor for holding the light signal in the short time accumulation mode. And an amplification type solid-state imaging device.
 またさらに、上記増幅型固体撮像装置において、
 前記制御回路は、
(1)前記リセットトランジスタのゲート電圧をハイレベルに設定した後、前記リセット信号を前記第6の容量に書き込み、
(2)前記リセットトランジスタのゲート電圧を、前記ハイレベルよりも低いミドルレベルに設定した後、前記長時間蓄積モードの光信号を前記第7の容量に書き込み、
(3)前記リセットトランジスタのゲート電圧を、前記ミドルレベルよりも低いローレベルに設定した後、前記短時間蓄積モードの光信号を前記第8の容量に書き込むことにより、前記書き込み動作を実行することを特徴とする増幅型固体撮像装置である。
Furthermore, in the amplification type solid-state imaging device,
The control circuit
(1) After setting the gate voltage of the reset transistor to a high level, the reset signal is written to the sixth capacitor,
(2) After setting the gate voltage of the reset transistor to a middle level lower than the high level, an optical signal of the long-time accumulation mode is written to the seventh capacitance.
(3) The write operation is performed by writing the light signal in the short time accumulation mode to the eighth capacitor after setting the gate voltage of the reset transistor to a low level lower than the middle level. An amplification type solid-state imaging device characterized by
 またさらに、上記増幅型固体撮像装置において、
 前記増幅型固体撮像装置は、
 前記画素から前記第2の信号線を介して出力される、前記リセット信号、前記長時間蓄積モードの光信号及び前記短時間蓄積モードの光信号に基づいて相関二重サンプリングを実行する相関二重サンプリング回路を備え、
 前記相関二重サンプリング回路は、
(a)1回目の相関二重サンプリング動作において、前記長時間蓄積モードの光信号から前記リセット信号を減算してなる第1の差分電圧を演算し、
(b)2回目の相関二重サンプリング動作において、前記短時間蓄積モードの光信号から前記長時間蓄積モードの光信号を減算してなる第2の差分電圧を演算し、前記前記短時間蓄積モードの期間に対する前記長時間蓄積モードの期間の比の値を演算し、前記第2の差分電圧に対して上記比の値を乗算してなる乗算値を演算し、
(c)前記受光した光量に応じて、上記第1の差分電圧と、上記乗算値とを選択的に切り替えて光信号として出力することを特徴とする増幅型固体撮像装置である。
Furthermore, in the amplification type solid-state imaging device,
The amplification type solid-state imaging device is
Correlated double that performs correlated double sampling based on the reset signal, the light signal of the long time accumulation mode, and the light signal of the short time accumulation mode, which are output from the pixel through the second signal line Equipped with a sampling circuit,
The correlated double sampling circuit is
(A) calculating a first differential voltage obtained by subtracting the reset signal from the light signal in the long-term accumulation mode in the first correlated double sampling operation;
(B) calculating a second differential voltage formed by subtracting the light signal of the long time accumulation mode from the light signal of the short time accumulation mode in the second correlated double sampling operation; Calculating a value of the ratio of the period of the long-term accumulation mode to the period of time, and calculating a multiplication value obtained by multiplying the second differential voltage by the value of the ratio;
(C) An amplification type solid-state imaging device characterized in that the first differential voltage and the multiplication value are selectively switched according to the amount of light received and output as an optical signal.
 またさらに、上記増幅型固体撮像装置において、
 前記制御回路は、
(1)前記リセットトランジスタのゲート電圧をハイレベルに設定した後、前記リセット信号を前記第6の容量に書き込み、
(2)前記リセットトランジスタのゲート電圧を、前記ハイレベルよりも低いローレベルに設定した後、前記長時間蓄積モードの光信号を前記第7の容量に書き込み、その後、前記リセットトランジスタのゲート電圧を前記ハイレベルに設定し、
(3)前記リセットトランジスタのゲート電圧を前記ローレベルに設定した後、前記短時間蓄積モードの光信号を前記第8の容量に書き込むことにより、前記書き込み動作を実行することを特徴とする増幅型固体撮像装置である。
Furthermore, in the amplification type solid-state imaging device,
The control circuit
(1) After setting the gate voltage of the reset transistor to a high level, the reset signal is written to the sixth capacitor,
(2) After setting the gate voltage of the reset transistor to a low level lower than the high level, the optical signal in the long time accumulation mode is written to the seventh capacitor, and then the gate voltage of the reset transistor is Set to the high level,
(3) After setting the gate voltage of the reset transistor to the low level, the write operation is performed by writing an optical signal in the short-time accumulation mode to the eighth capacitor. It is a solid-state imaging device.
 またさらに、上記増幅型固体撮像装置において、
 前記増幅型固体撮像装置は、
 前記画素から前記第2の信号線を介して出力される前記リセット信号及び前記光信号に基づいて相関二重サンプリングを実行する相関二重サンプリング回路を備え、
(a)1回目の相関二重サンプリング動作において、前記長時間蓄積モードの光信号から前記リセット信号を減算してなる第1の差分電圧を演算し、
(b)2回目の相関二重サンプリング動作において、前記短時間蓄積モードの光信号から前記リセット信号を減算してなる第3の差分電圧を演算し、前記前記短時間蓄積モードの期間に対する前記長時間蓄積モードの期間の比の値を演算し、前記第3の差分電圧に対して上記比の値を乗算してなる乗算値を演算し、
(c)前記受光した光量に応じて、上記第1の差分電圧と、上記乗算値とを選択的に切り替えて光信号として出力することを特徴とする増幅型固体撮像装置である。
Furthermore, in the amplification type solid-state imaging device,
The amplification type solid-state imaging device is
A correlated double sampling circuit that performs correlated double sampling based on the reset signal and the light signal output from the pixel through the second signal line,
(A) calculating a first differential voltage obtained by subtracting the reset signal from the light signal in the long-term accumulation mode in the first correlated double sampling operation;
(B) calculating a third differential voltage obtained by subtracting the reset signal from the light signal in the short-time accumulation mode in the second correlated double sampling operation, and calculating the third difference voltage in the short-time accumulation mode Calculating a value of a ratio of a time accumulation mode period, and calculating a multiplication value obtained by multiplying the third difference voltage by the value of the ratio;
(C) An amplification type solid-state imaging device characterized in that the first differential voltage and the multiplication value are selectively switched according to the amount of light received and output as an optical signal.
 またさらに、上記増幅型固体撮像装置において、
 前記第1の差分電圧の上限値を全画素の前記長時間蓄積モードの光信号のばらつき範囲の最小値又は当該最小値より所定のマージン値だけ小さい値となるように設定することを特徴とする増幅型固体撮像装置である。
Furthermore, in the amplification type solid-state imaging device,
The upper limit value of the first differential voltage is set to be a minimum value of the variation range of the light signals in the long time accumulation mode of all the pixels or a value smaller than the minimum value by a predetermined margin value. It is an amplification type solid-state imaging device.
 本発明の増幅型固体撮像装置によれば、画素内に定電流負荷を有さないとともに、書き込みと読み出しを共通のスイッチで行うため、画素内のトランジスタ数を削減することができる。前記第1の増幅トランジスタの負荷となる前記複数の容量への書き込み動作を行うには、まず当該複数の容量を所定の電圧、例えば接地電圧ないしそれに近い正電圧に初期化し、この後、当該複数の容量への充電電流によって書き込み動作を行うようにし、前記容量スイッチによって特定の容量の選択と書き込み時間を制御することにより、安定した動作を行うことができる。また、前記複数の容量からの読み出し時には、前記第1の増幅トランジスタのゲートに当該トランジスタが不活性となる電圧を与えてオフ状態とし、前記容量スイッチによって特定の容量の選択と読み出し時間を制御することにより、前記第2の増幅トランジスタのゲートに前記複数の容量からの信号を与え、画素の外部に読み出すことができる。 According to the amplification type solid-state imaging device of the present invention, since the pixel does not have a constant current load and writing and reading are performed by a common switch, the number of transistors in the pixel can be reduced. In order to perform the write operation to the plurality of capacitors serving as the load of the first amplification transistor, the plurality of capacitors are first initialized to a predetermined voltage, for example, a ground voltage or a positive voltage close thereto, and then the plurality of capacitors A stable operation can be performed by performing the write operation by the charge current to the capacitor and controlling the selection of the specific capacitor and the write time by the capacitor switch. Further, at the time of reading from the plurality of capacitors, a voltage at which the transistor is deactivated is applied to the gate of the first amplification transistor to turn it off, and selection and reading time of a particular capacitor are controlled by the capacitor switch. Thus, signals from the plurality of capacitors can be given to the gate of the second amplification transistor and read out to the outside of the pixel.
 また、本発明の増幅型固体撮像装置によれば、前記リセットトランジスタ、埋め込み受光素子、及び転送トランジスタを有する画素で構成される画素アレイに対して、同時に作動させて当該各画素内の2つの容量の一方にリセット信号、他方に光信号の書き込み動作をそれぞれ行わせた後、前記各画素の前記各容量から第2の増幅トランジスタのゲートへの読み出しを順次行うようにして、全画素を一括して同時に前記各容量に書き込む動作、及び前記各容量から順次読み出す動作を行うことができる。読み出し時には、前記第1の増幅トランジスタのゲートに第3の電圧が与えられて不活性とされ、ないしは前記第1の増幅トランジスタと第1の信号線の間に出力スイッチが設けられてオフとされ、前記第1の増幅トランジスタが影響を与えることは防止される。また、順次読み出された画素毎のリセット信号と光信号の間で差を取ることにより、相関二重サンプリング(CDS)法を適用することができ、前記第1及び第2の各増幅トランジスタにおけるしきい値電圧のばらつきに起因する固定パターンノイズや、前記第1の増幅トランジスタにおけるゲートへのリセットノイズを抑制することができ、低ノイズの画像信号を得ることができる。 Further, according to the amplification type solid-state imaging device of the present invention, two capacitances in each pixel are simultaneously operated on the pixel array configured of the pixels having the reset transistor, the embedded light receiving element, and the transfer transistor. After the write operation of the reset signal and the light signal are performed on one side and the other side, respectively, the respective capacitances of the respective pixels are sequentially read out to the gate of the second amplification transistor. At the same time, an operation of writing to each of the capacitors and an operation of sequentially reading out of each of the capacitors can be performed. At the time of reading, a third voltage is applied to the gate of the first amplification transistor to be deactivated, or an output switch is provided between the first amplification transistor and the first signal line to be turned off. The influence of the first amplification transistor is prevented. In addition, the correlated double sampling (CDS) method can be applied by taking a difference between the reset signal and the light signal for each pixel read out sequentially, and in the first and second amplification transistors, Fixed pattern noise due to variations in threshold voltage and reset noise to the gate of the first amplification transistor can be suppressed, and a low noise image signal can be obtained.
 さらに、本発明の増幅型固体撮像装置によれば、前記リセットトランジスタ、及びPN受光素子を有する画素で構成される画素アレイに対して、書き込み時は同時に作動させて前記出力スイッチをオンとし、当該各画素内の3つの容量の1つに光信号、他の1つの容量に奇数フレームのリセット信号、残余の容量に偶数フレームのリセット信号の書き込み動作をそれぞれ行わせた後、前記各画素の前記各容量から第2の増幅トランジスタのゲートへの読み出しは前記出力スイッチをオフとして順次行うようにし、全画素を一括して同時に前記各容量に書き込む動作、及び前記各容量から順次読み出す動作を行うことができる。また、各フレームにおいて、ノイズ相関のある当該フレームの光信号と1フレーム前のリセット信号をペアで読み出すから、それら信号間で差を取ることにより、CDS法を適用することができ、前記第1及び第2の各増幅トランジスタにおけるしきい値電圧のばらつきに起因する固定パターンノイズや、前記第1の増幅トランジスタにおけるゲートへのリセットノイズを抑制することができ、低ノイズの画像信号を得ることができる。 Furthermore, according to the amplification type solid-state imaging device of the present invention, the output switch is turned on by simultaneously operating the pixel array including the reset transistor and the pixel having the PN light receiving element at the time of writing. The write operation of the light signal in one of the three capacitors in each pixel, the reset signal of the odd frame in the other one, and the reset signal of the even frame in the remaining capacitance is performed, The readout from each capacitor to the gate of the second amplification transistor is sequentially performed with the output switch off, and the operation of writing all the pixels simultaneously to the respective capacitors and the operation of sequentially reading out the respective capacitors are performed simultaneously. Can. Also, in each frame, the light signal of the frame with noise correlation and the reset signal of the previous frame are read out in pairs, so that the CDS method can be applied by taking the difference between the signals, It is possible to suppress fixed pattern noise due to variations in threshold voltage in each of the second amplification transistors and reset noise to the gate in the first amplification transistor, and obtain an image signal with low noise. it can.
 またさらに、本発明の増幅型固体撮像装置によれば、前記画素アレイから行順次で信号を読み出す際に、非選択行の前記第2の増幅トランジスタが不活性になるように、当該第2の増幅トランジスタのゲート電圧を前記初期化トランジスタによって制御するようにしたことから、当該第2の増幅トランジスタと前記信号線との間に選択トランジスタを設ける必要がなくなり、画素内の構成要素を更に削減することができ、受光部の面積の増大等の性能向上を図ることができる。 Still further, according to the amplification type solid-state imaging device of the present invention, the second amplification transistor in the non-selected row is inactivated when reading out signals in row sequence from the pixel array. Since the gate voltage of the amplification transistor is controlled by the initialization transistor, it is not necessary to provide a selection transistor between the second amplification transistor and the signal line, thereby further reducing the components in the pixel. It is possible to improve the performance such as the increase of the area of the light receiving portion.
 さらに、本発明の増幅型固体撮像装置によれば、前記受光素子への入射光量が増大し前記転送トランジスタにより転送された電荷が前記リセットトランジスタをオーバーフローすることなく、フローティングディフュージョン領域に蓄積できる最大電荷量を大幅に増大することが出来る。すなわち、低感度の短時間蓄積電荷分だけ更に強い入射光量までの蓄積が可能となり、線形性の維持された信号が読み取られ、これら2種類の信号を組み合わせることにより、最大許容入射光量が拡大されたワイドダイナミックレンジ動作を行うことが可能となる。 Furthermore, according to the amplification type solid-state imaging device of the present invention, the maximum amount of charge that can be accumulated in the floating diffusion region without the charge transferred by the transfer transistor increasing due to an increase in the amount of incident light to the light receiving element. The amount can be increased significantly. That is, the low sensitivity short-term accumulated charge can be used to accumulate even stronger incident light amount, and the signal maintaining linearity is read, and the maximum allowable incident light amount is expanded by combining these two types of signals. It is possible to perform wide dynamic range operation.
 さらにまた、本発明の増幅型固体撮像装置によれば、長時間蓄積モードの光信号、短時間蓄積モードの光信号共に、相関二重サンプリング(CDS)動作ができ、リセットノイズを抑圧して低ノイズ化が実現できる。すなわち、両者に共通のリセットノイズが除かれた長時間蓄積モードの光信号を得ることができる。同様に、短時間蓄積モードの光信号についても、両者に共通のリセットノイズが除かれた短時間蓄積モードの光信号を得ることができる。 Furthermore, according to the amplification type solid-state imaging device of the present invention, correlated double sampling (CDS) operation can be performed for both the long-time accumulation mode optical signal and the short-time accumulation mode optical signal, thereby suppressing reset noise. Noise can be realized. That is, it is possible to obtain an optical signal in the long time accumulation mode in which the reset noise common to both is removed. Similarly, with regard to the light signal in the short time accumulation mode, it is possible to obtain the light signal in the short time accumulation mode in which the reset noise common to both is removed.
 さらに、本発明の増幅型固体撮像装置によれば、全画素についてばらつきの最小値より小さくなるように信号をクリップするため、固定パターンノイズの無いワイドダイナミックレンジ画像信号を得ることができる。 Furthermore, according to the amplification type solid-state imaging device of the present invention, since the signal is clipped so as to be smaller than the minimum value of variation for all pixels, a wide dynamic range image signal without fixed pattern noise can be obtained.
 また、本発明の増幅型固体撮像装置によれば、擬似的にCDS動作を行うことが可能となるため、画素毎に変動するオフセットばらつきが除くことが可能となる。また、特に、第5の実施形態においては、他の実施形態のものと比較すると、取り扱い電荷量を2倍に増大することができる。 Further, according to the amplification type solid-state imaging device of the present invention, since it is possible to perform the CDS operation in a pseudo manner, it is possible to remove the offset variation which fluctuates for each pixel. In addition, in the fifth embodiment, in particular, the handling charge amount can be doubled as compared with those of the other embodiments.
 また、本発明の増幅型固体撮像装置によれば、一括露光(グローバルシャッタ)動作とワイドダイナミックレンジ動作を同時に行うことができる。さらに、ワイドダイナミックレンジ動作において、毎フレーム連続して動作させることができ、動画にも適用可能である。さらにまた、ワイドダイナミックレンジ動作では、ワイドダイナミックレンジ動作に必要な全ての信号がフレームメモリ無しで同時に得ることができる。また、長時間蓄積モードの光信号、短時間蓄積モードの光信号共にリセットノイズ無しとすることができ、SN比の高いワイドダイナミックレンジ信号を得ることが出来る。 Further, according to the amplification type solid-state imaging device of the present invention, the collective exposure (global shutter) operation and the wide dynamic range operation can be simultaneously performed. Furthermore, in the wide dynamic range operation, each frame can be operated continuously and is also applicable to moving pictures. Furthermore, in wide dynamic range operation all signals required for wide dynamic range operation can be obtained simultaneously without frame memory. In addition, both the light signal in the long time accumulation mode and the light signal in the short time accumulation mode can be reset noise free, and a wide dynamic range signal with a high SN ratio can be obtained.
本発明の第1の実施形態に係る増幅型固体撮像装置の画素10の構成を示す回路図である。It is a circuit diagram showing composition of pixel 10 of an amplification type solid imaging device concerning a 1st embodiment of the present invention. 図1の画素10をマトリクス状に配置した画素アレイA10を備えた2次元イメージセンサの構成を示すブロック図である。It is a block diagram which shows the structure of a two-dimensional image sensor provided with pixel array A10 which arranged the pixel 10 of FIG. 1 in the matrix form. 図2の2次元イメージセンサの動作を示すタイミングチャートの第1の部分である。It is a 1st part of the timing chart which shows operation | movement of the two-dimensional image sensor of FIG. 図2の2次元イメージセンサの動作を示すタイミングチャートの第2の部分である。It is a 2nd part of the timing chart which shows operation | movement of the two-dimensional image sensor of FIG. 図2の2次元イメージセンサのシャッタ動作を示すタイミングチャートである。It is a timing chart which shows shutter operation of the two-dimensional image sensor of FIG. 本発明の第2の実施形態に係る増幅型固体撮像装置の画素20の構成を示す回路図である。It is a circuit diagram showing composition of pixel 20 of an amplification type solid imaging device concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る増幅型固体撮像装置の画素30の構成を示す回路図である。It is a circuit diagram showing composition of pixel 30 of an amplification type solid imaging device concerning a 3rd embodiment of the present invention. 図7の画素30を有する画素アレイを備えた2次元イメージセンサの動作を示すタイミングチャートの第1の部分である。FIG. 8 is a first portion of a timing chart illustrating the operation of a two-dimensional image sensor provided with a pixel array having the pixels 30 of FIG. 7. 図7の画素30を有する画素アレイを備えた2次元イメージセンサの動作を示すタイミングチャートの第2の部分である。9 is a second portion of a timing chart illustrating the operation of a two-dimensional image sensor comprising a pixel array having the pixels 30 of FIG. 7; 本発明の第4の実施形態に係る増幅型固体撮像装置の画素40の構成を示す回路図である。It is a circuit diagram showing composition of pixel 40 of an amplification type solid imaging device concerning a 4th embodiment of the present invention. 図10の画素40を有する画素アレイを備えた2次元イメージセンサの1つのフレーム周期における動作を示すタイミングチャートの第1の部分である。11 is a first portion of a timing chart showing an operation in one frame period of a two-dimensional image sensor provided with a pixel array having the pixel 40 of FIG. 図10の画素40を有する画素アレイを備えた2次元イメージセンサの1つのフレーム周期における動作を示すタイミングチャートの第2の部分である。11 is a second portion of a timing chart showing an operation in one frame period of a two-dimensional image sensor provided with a pixel array having the pixel 40 of FIG. 図10の画素40を有する画素アレイを備えた2次元イメージセンサの2つのフレーム周期における動作を示すタイミングチャートである。It is a timing chart which shows the operation | movement in two frame periods of a two-dimensional image sensor provided with the pixel array which has the pixel 40 of FIG. 図10の画素40を有する画素アレイを備えた2次元イメージセンサのシャッタ動作を示すタイミングチャートである。It is a timing chart which shows shutter operation of a two-dimensional image sensor provided with the pixel array which has pixel 40 of FIG. 図10の画素40を有する画素アレイを備えた2次元イメージセンサの2つのフレーム周期におけるシャッタ動作を示すタイミングチャートである。It is a timing chart which shows the shutter operation | movement in two frame periods of a two-dimensional image sensor provided with the pixel array which has the pixel 40 of FIG. 本発明の第5の実施形態に係る増幅型固体撮像装置の画素50の構成を示す回路図である。It is a circuit diagram showing composition of pixel 50 of an amplification type solid imaging device concerning a 5th embodiment of the present invention. 図16の増幅型固体撮像装置の書き込み動作を示すタイミングチャートである。FIG. 17 is a timing chart showing a write operation of the amplification type solid-state imaging device of FIG. 16; 図16の増幅型固体撮像装置の読み出し動作を示すタイミングチャートである。17 is a timing chart showing the read operation of the amplification type solid-state imaging device of FIG. 16; 図16の増幅型固体撮像装置において、入射光により受光素子で発生した信号電荷、転送トランジスタ及びリセットトランジスタのゲート電位、フローティングディフュージョン領域の電位を模式的に示す電位図である。FIG. 17 is an electric potential diagram schematically showing signal charges generated in a light receiving element by incident light, gate potentials of transfer transistors and reset transistors, and potentials of floating diffusion regions in the amplification type solid-state imaging device of FIG. 16; 図16の増幅型固体撮像装置において、最大許容入射光量が拡大されたワイドダイナミックレンジ動作を示す蓄積時間に対する信号電荷量を示すグラフである。FIG. 17 is a graph showing an amount of signal charge with respect to accumulation time indicating wide dynamic range operation in which the maximum allowable incident light amount is expanded in the amplification type solid-state imaging device of FIG. 16; 図16の増幅型固体撮像装置において、固定パターンノイズを解消したワイドダイナミックレンジ動作を示す蓄積時間に対する信号電荷量を示すグラフである。FIG. 17 is a graph showing an amount of signal charge with respect to accumulation time showing a wide dynamic range operation in which fixed pattern noise is eliminated in the amplification type solid-state imaging device of FIG. 16; 本発明の第5の実施形態の第1の変形例に係る増幅型固体撮像装置の画素60の構成を示す回路図である。FIG. 21 is a circuit diagram showing a configuration of a pixel 60 of an amplification type solid state imaging device according to a first modified example of the fifth embodiment of the present invention. 本発明の第5の実施形態の第2の変形例に係る増幅型固体撮像装置の画素70の構成を示す回路図である。It is a circuit diagram showing composition of pixel 70 of an amplification type solid imaging device concerning the 2nd modification of a 5th embodiment of the present invention. 図23の増幅型固体撮像装置において、リセットトランジスタRTのゲート電圧VRTをハイレベルVRT(H)とローレベルVRT(L)の中間のミドルレベルVRT(M)の3つのレベルとした場合の動作を示すタイミングチャートである。In the amplification type solid-state imaging device of FIG. 23, the gate voltage V RT of the reset transistor RT is set to three levels of the middle level V RT (M) between the high level V RT (H) and the low level V RT (L) . It is a timing chart which shows operation in the case. 図23の増幅型固体撮像装置において、リセットトランジスタRTのゲート電圧VRTをハイレベルVRT(H)とローレベルVRT(L)の2つのレベルとした場合の動作を示すタイミングチャートである。FIG. 24 is a timing chart showing an operation in the case where the gate voltage V RT of the reset transistor RT is set to two levels of high level V RT (H) and low level V RT (L) in the amplification type solid-state imaging device of FIG. 従来技術に係る増幅型固体撮像装置の画素100の構成を示す回路図である。It is a circuit diagram showing composition of pixel 100 of an amplification type solid imaging device concerning a prior art. 従来技術に係る増幅型固体撮像装置の画素110の構成を示す回路図である。It is a circuit diagram showing composition of pixel 110 of an amplification type solid imaging device concerning a prior art. 従来技術に係る増幅型固体撮像装置の画素120の構成を示す回路図である。It is a circuit diagram showing composition of pixel 120 of an amplification type solid imaging device concerning a prior art. 従来技術に係る増幅型固体撮像装置の画素130の構成を示す回路図である。It is a circuit diagram showing composition of pixel 130 of an amplification type solid imaging device concerning a prior art.
 次に、図面に示す実施形態に基づいて、本発明を詳細に説明する。 Next, the present invention will be described in detail based on the embodiments shown in the drawings.
第1の実施形態.
 図1は、本発明の第1の実施形態に係る増幅型固体撮像装置の画素10の構成を示した回路図である。図1に示すように画素10は、埋め込み受光素子で構成された受光素子PDと、転送トランジスタTXと、リセットトランジスタRTと、第1の増幅トランジスタSF1と、第1の信号線sig1と、容量CmR,CmSと、容量スイッチトランジスタSwR,SwSと、初期化トランジスタITと、第2の増幅トランジスタSF2と、選択トランジスタSLと、第2の信号線sig2とを備えて構成される。以下では上記の各トランジスタがNチャネルMOS電界効果トランジスタの場合について議論するが、極性を逆にすることにより各トランジスタがPチャネルMOS電界効果トランジスタである場合にも同様に適用可能である。
First Embodiment
FIG. 1 is a circuit diagram showing a configuration of a pixel 10 of an amplification type solid-state imaging device according to a first embodiment of the present invention. As shown in FIG. 1, the pixel 10 includes a light receiving element PD formed of an embedded light receiving element, a transfer transistor TX, a reset transistor RT, a first amplification transistor SF1, a first signal line sig1, and a capacitance CmR. , CmS, capacitance switch transistors SwR and SwS, an initialization transistor IT, a second amplification transistor SF2, a selection transistor SL, and a second signal line sig2. Although the case where each of the above-mentioned transistors is an N-channel MOS field effect transistor will be discussed below, the same applies to the case where each transistor is a P-channel MOS field effect transistor by reversing the polarity.
 第1の実施形態に係る増幅型固体撮像装置は、内部に容量CmR,CmSを有する画素10が行列状に複数配置されて構成される画素アレイA10と、画素アレイA10を構成する各画素10に対する動作制御を行う制御回路(図2を参照して詳述するように、行デコーダ回路14と、行駆動回路15と、コラム信号処理回路17と、コラムデコーダ回路18とを含む。)とを備えた増幅型固体撮像装置において、各画素10は、受光した光に応じた信号を生成して出力する受光素子PDと、受光素子PDからゲートに入力される信号を増幅して出力するNチャネルMOS電界効果トランジスタからなる第1の増幅トランジスタSF1と、第1の増幅トランジスタSF1のゲート電圧をリセットするリセットトランジスタRTと、第1の増幅トランジスタSF1から第1の信号線sig1に出力された信号を保持する容量CmR,CmSと、容量CmR,CmSに対応してかつ第1の信号線sig1と容量CmR,CmSとの間にそれぞれ設けられ、第1の信号線sig1と容量CmR,CmSとの間の入出力制御を行う容量スイッチトランジスタSwR,SwSと、第1の信号線sig1からゲートに入力される信号を増幅して第2の信号線sig2に出力するNチャネルMOS電界効果トランジスタからなる第2の増幅トランジスタSF2と、第1の信号線sig1に接続され、所定の電圧Vsを第1の信号線sig1に出力する初期化トランジスタITとを備え、前記制御回路は、
(1)初期化トランジスタITをオンするとともに容量スイッチトランジスタSwR,SwSをオンすることにより、容量CmR,CmSを電圧Vsに初期化し、
(2)第1の増幅トランジスタSF1が飽和領域動作からサブスレッショルド領域動作に移行して準安定状態になる期間において、画素アレイA10を構成するすべての画素10に対して同時に、容量CmR,CmSに対応する容量スイッチトランジスタSwR,SwSを順次オンすることにより、第1の増幅トランジスタSF1からの増幅された信号を第1の信号線sig1及び書き込むべき容量CmR,CmSに対応する容量スイッチトランジスタSwR,SwSを介して容量CmR,CmSへ順次書き込む書き込み動作を実行し、
(3)容量CmR,CmSに対応する容量スイッチトランジスタSwR,SwSを順次オンすることにより、各容量CmR,CmSに書き込まれた信号を、読み出すべき容量CmR,CmSに対応する容量スイッチトランジスタSwR,SwS、第1の信号線sig1、及び第2の増幅トランジスタSF2を介して第2の信号線sig2に順次読み出す読み出し動作を実行するように制御することを特徴とする。
The amplification type solid-state imaging device according to the first embodiment includes a pixel array A10 configured by arranging a plurality of pixels 10 having capacitances CmR and CmS in a matrix, and each pixel 10 configuring the pixel array A10. A control circuit for performing operation control (including a row decoder circuit 14, a row drive circuit 15, a column signal processing circuit 17, and a column decoder circuit 18 as described in detail with reference to FIG. 2) is provided. In the amplification type solid-state imaging device, each pixel 10 generates a signal corresponding to the received light and outputs the signal, and an N channel MOS that amplifies and outputs the signal input from the light receiving element PD to the gate A first amplification transistor SF1 formed of a field effect transistor, a reset transistor RT for resetting the gate voltage of the first amplification transistor SF1, and a first amplification Capacitances CmR and CmS for holding signals output from transistor SF1 to first signal line sig1, and corresponding to capacitances CmR and CmS and provided between first signal line sig1 and capacitances CmR and CmS, respectively , Capacitive switch transistors SwR and SwS that perform input / output control between the first signal line sig1 and the capacitors CmR and CmS, and a signal input to the gate from the first signal line sig1 to be amplified and a second signal A second amplification transistor SF2 formed of an N-channel MOS field effect transistor outputting to the line sig2, and an initialization transistor IT connected to the first signal line sig1 and outputting a predetermined voltage Vs to the first signal line sig1; The control circuit comprises
(1) The capacitors CmR and CmS are initialized to the voltage Vs by turning on the initialization transistor IT and turning on the capacitance switch transistors SwR and SwS,
(2) During the period in which the first amplification transistor SF1 shifts from the saturation region operation to the subthreshold region operation and enters the metastable state, capacitances CmR and CmS are simultaneously applied to all the pixels 10 constituting the pixel array A10. By sequentially turning on the corresponding capacitive switch transistors SwR and SwS, the amplified signal from the first amplification transistor SF1 is transferred to the first signal line sig1 and the capacitive switch transistors SwR and SwS corresponding to the capacitors CmR and CmS to be written. Execute a write operation to sequentially write to the capacitors CmR and CmS via
(3) The capacitance switch transistors SwR and SwS corresponding to the capacitances CmR and CmS are sequentially turned on to sequentially turn on the signals written to the respective capacitances CmR and CmS, and the capacitance switch transistors SwR and SwS corresponding to the capacitances CmR and CmS to be read out. The second signal line sig2 is controlled to be read out sequentially through the first signal line sig1 and the second amplification transistor SF2.
 図1において、受光素子PDのアノードは接地電圧に接続され、受光素子PDのカソードは転送トランジスタTXのソースに接続される。転送トランジスタTXのゲートは、図2を参照して詳述される行駆動回路15に接続され、転送トランジスタTXのドレインは、第1の増幅トランジスタSF1のゲート、及びリセットトランジスタのソースに接続される。ここで、転送トランジスタTXのドレインと、第1の増幅トランジスタSF1のゲートと、リセットトランジスタのソースとが接続される領域をフローティングディフュージョン領域FDという。リセットトランジスタのゲートは行駆動回路15に接続され、リセットトランジスタのドレインには行駆動回路15からのリセットドレイン電圧である駆動信号Vrdが印加される。第1の増幅トランジスタSF1のドレインは、電源電圧Vddに接続され、第1の増幅トランジスタSF1のソースは、第1の信号線sig1を介して、容量スイッチトランジスタSwRのドレインと、容量スイッチトランジスタSwSのドレインと、初期化トランジスタITのソースと、第2の増幅トランジスタSF2のゲートとに接続される。容量スイッチトランジスタSwRのゲートは、行駆動回路15に接続され、容量スイッチトランジスタSwRのソースは、容量CmRの一端に接続され、容量CmRの他端は接地電圧に接続される。容量スイッチトランジスタSwSのゲートは、行駆動回路15に接続され、容量スイッチトランジスタSwSのソースは、容量CmSの一端に接続され、容量CmSの他端は接地電圧に接続される。初期化トランジスタITのゲートは、行駆動回路15に接続され、初期化トランジスタITのドレインは、接地電圧又は接地電圧に近い正の電圧である電圧Vsに接続される。第2の増幅トランジスタSF2のドレインは、電源電圧Vddに接続され、第2の増幅トランジスタSF2のソースは、選択トランジスタSLのドレインに接続される。選択トランジスタSLのゲートは、行駆動回路15に接続され、選択トランジスタSLのソースは、第2の信号線sig2に接続される。 In FIG. 1, the anode of the light receiving element PD is connected to the ground voltage, and the cathode of the light receiving element PD is connected to the source of the transfer transistor TX. The gate of the transfer transistor TX is connected to the row drive circuit 15 described in detail with reference to FIG. 2, and the drain of the transfer transistor TX is connected to the gate of the first amplification transistor SF1 and the source of the reset transistor. . Here, a region where the drain of the transfer transistor TX, the gate of the first amplification transistor SF1, and the source of the reset transistor are connected is referred to as a floating diffusion region FD. The gate of the reset transistor is connected to the row drive circuit 15, and a drive signal Vrd, which is a reset drain voltage from the row drive circuit 15, is applied to the drain of the reset transistor. The drain of the first amplification transistor SF1 is connected to the power supply voltage Vdd, and the source of the first amplification transistor SF1 is connected to the drain of the capacitive switch transistor SwR via the first signal line sig1. It is connected to the drain, the source of the initialization transistor IT, and the gate of the second amplification transistor SF2. The gate of the capacitive switch transistor SwR is connected to the row drive circuit 15, the source of the capacitive switch transistor SwR is connected to one end of the capacitor CmR, and the other end of the capacitor CmR is connected to the ground voltage. The gate of the capacitive switch transistor SwS is connected to the row drive circuit 15, the source of the capacitive switch transistor SwS is connected to one end of the capacitor CmS, and the other end of the capacitor CmS is connected to the ground voltage. The gate of the initialization transistor IT is connected to the row drive circuit 15, and the drain of the initialization transistor IT is connected to the ground voltage or a voltage Vs which is a positive voltage close to the ground voltage. The drain of the second amplification transistor SF2 is connected to the power supply voltage Vdd, and the source of the second amplification transistor SF2 is connected to the drain of the selection transistor SL. The gate of the selection transistor SL is connected to the row drive circuit 15, and the source of the selection transistor SL is connected to the second signal line sig2.
 第2の信号線sig2の一端は、定電流負荷トランジスタCLのドレインに接続される。定電流負荷トランジスタCLのドレインはまた、図2を参照して詳述されるコラム信号処理回路17に接続され、出力電圧Voをコラム信号処理回路17に出力する。定電流負荷トランジスタCLのゲートは、出力電圧Voが読み出されているときに、定電流負荷トランジスタCLが定電流負荷となるように例えば直流電圧に接続される。定電流負荷トランジスタCLのソースは、接地電圧に接続される。 One end of the second signal line sig2 is connected to the drain of the constant current load transistor CL. The drain of the constant current load transistor CL is also connected to a column signal processing circuit 17 which will be described in detail with reference to FIG. 2 and outputs an output voltage Vo to the column signal processing circuit 17. The gate of the constant current load transistor CL is connected to, for example, a DC voltage so that the constant current load transistor CL becomes a constant current load when the output voltage Vo is read. The source of the constant current load transistor CL is connected to the ground voltage.
 また、フローティングディフュージョン領域FDの電圧を電圧VFDといい、第1の信号線sig1の電圧を電圧Vsig1といい、容量CmRの電圧を電圧VCmRといい、容量CmSの電圧を電圧VCmSといい、第2の信号線sig2の電圧を電圧Vsig2という。 Also, refer to the voltage of the floating diffusion region FD and the voltage V FD, the first voltage signal line sig1 called voltage V sig1 means a voltage of the capacitor CmR voltage V CmR, and the voltage a voltage V CmS capacity CmS The voltage of the second signal line sig2 is referred to as a voltage V sig2 .
 図2は、図1の画素10をマトリクス状に配置した画素アレイA10を備えた増幅型固体撮像装置(2次元イメージセンサともいう。)の構成を示すブロック図である。画素アレイA10は、複数の画素10を備えて構成され、2次元イメージセンサは、画素アレイA10と、行デコーダ回路14と、行駆動回路15と、コラム信号処理回路17と、コラムデコーダ回路18とを備えて構成される。 FIG. 2 is a block diagram showing a configuration of an amplification type solid-state imaging device (also referred to as a two-dimensional image sensor) including a pixel array A10 in which the pixels 10 of FIG. 1 are arranged in a matrix. The pixel array A10 is configured to include a plurality of pixels 10, and the two-dimensional image sensor includes the pixel array A10, a row decoder circuit 14, a row driving circuit 15, a column signal processing circuit 17, and a column decoder circuit 18. It is configured with.
 図2において、行デコーダ回路14は、画素アレイA10の特定の行を選択する選択信号を行駆動回路15に出力する。行駆動回路15は、7本の駆動線16を介して下記の7種類の駆動信号を行デコーダ回路14によって選択された行の画素10に出力する。
(1)駆動信号Vrd:リセットトランジスタRTのドレインに印加されて、リセットトランジスタRTのドレインの電圧を決定する駆動信号であり、電圧VH(例えば+3Vである。)又は電圧VL(例えば+0.5Vである。)の値をとる。
(2)駆動信号VTX:転送トランジスタTXのゲートに印加されて転送トランジスタTXをオンオフさせる駆動信号であり、駆動信号VTXがハイレベルVTX(H)のとき転送トランジスタTXはオンされ、駆動信号VTXがローレベルVRT(L)のとき転送トランジスタTXはオフされる。
(3)駆動信号VRT:リセットトランジスタRTのゲートに印加されてリセットトランジスタRTをオンオフさせる駆動信号であり、駆動信号VRTがハイレベルのときリセットトランジスタRTはオンされ、駆動信号VRTがローレベルのときリセットトランジスタRTはオフされる。
(4)駆動信号VSwR:容量スイッチトランジスタSwRのゲートに印加されて容量スイッチトランジスタSwRをオンオフさせる駆動信号であり、駆動信号VSwRがハイレベルのとき容量スイッチトランジスタSwRはオンされ、駆動信号VSwRがローレベルのとき容量スイッチトランジスタSwRはオフされる。
(5)駆動信号VSwS:容量スイッチトランジスタSwSのゲートに印加されて容量スイッチトランジスタSwSをオンオフさせる駆動信号であり、駆動信号VSwSがハイレベルのとき容量スイッチトランジスタSwSはオンされ、駆動信号VSwSがローレベルのとき容量スイッチトランジスタSwSはオフされる。
(6)駆動信号VIT:初期化トランジスタITのゲートに印加されて初期化トランジスタITをオンオフさせる駆動信号であり、駆動信号VITがハイレベルのとき初期化トランジスタITはオンされ、駆動信号VITがローレベルのとき初期化トランジスタITはオフされる。
(7)駆動信号VSL:選択トランジスタSLのゲートに印加されて選択トランジスタSLをオンオフさせる駆動信号であり、駆動信号VSLがハイレベルのとき選択トランジスタSLはオンされ、駆動信号VSLがローレベルのとき選択トランジスタSLはオフされる。
In FIG. 2, the row decoder circuit 14 outputs a selection signal for selecting a specific row of the pixel array A 10 to the row drive circuit 15. The row drive circuit 15 outputs the following seven types of drive signals to the pixels 10 of the row selected by the row decoder circuit 14 through the seven drive lines 16.
(1) Drive signal Vrd: A drive signal applied to the drain of the reset transistor RT to determine the voltage of the drain of the reset transistor RT, such as voltage VH (for example +3 V) or voltage VL (for example +0.5 V) There is a value of
(2) Drive signal V TX : A drive signal applied to the gate of the transfer transistor TX to turn the transfer transistor TX on and off, and when the drive signal V TX is high level V TX (H) , the transfer transistor TX is turned on and driven When the signal V TX is at the low level V RT (L) , the transfer transistor TX is turned off.
(3) Drive signal V RT : A drive signal applied to the gate of the reset transistor RT to turn the reset transistor RT on and off. When the drive signal V RT is at high level, the reset transistor RT is turned on and the drive signal V RT is low. When it is at level, the reset transistor RT is turned off.
(4) Drive signal V SwR : A drive signal applied to the gate of the capacitive switch transistor SwR to turn on / off the capacitive switch transistor SwR. When the drive signal V SwR is at high level, the capacitive switch transistor SwR is turned on. When SwR is at low level, the capacitance switch transistor SwR is turned off.
(5) Drive signal V SwS : A drive signal applied to the gate of the capacitive switch transistor SwS to turn on / off the capacitive switch transistor SwS. When the drive signal V SwS is at high level, the capacitive switch transistor SwS is turned on. When SwS is at low level, the capacitance switch transistor SwS is turned off.
(6) Drive signal V IT : A drive signal applied to the gate of the initialization transistor IT to turn on and off the initialization transistor IT. When the drive signal V IT is at high level, the initialization transistor IT is turned on, and the drive signal V IT is turned on. When IT is low, the initialization transistor IT is turned off.
(7) Drive signal V SL : A drive signal applied to the gate of the selection transistor SL to turn the selection transistor SL on and off. When the drive signal V SL is at high level, the selection transistor SL is turned on and the drive signal V SL is low. When it is at level, the selection transistor SL is turned off.
 上述したように、行駆動回路15は、画素アレイA10の行毎に駆動信号を出力するので、画素アレイA10の第i行の画素10に出力される駆動信号を上述した駆動信号の後に(i)を連結することによって表すこととする。例えば、第i行の画素10に出力される駆動信号VSwSは、駆動信号VSwS(i)と表す。また、上述した(i)を連結しない場合は、画素アレイA10のすべての行の画素10に出力される駆動信号を表すこととする。さらに、図1を参照して述べた画素10における電圧VFD,Vsig1,VCmR,VCmS,Vsig2についても同様の記法を使用する。すなわち、(i)を連結した場合は画素アレイA10の第i行の画素10における電圧を表し、(i)を連結しない場合は、画素アレイA10のすべての行の画素10における電圧を表すこととする。例えば、電圧VCmS(i)は、画素アレイA10の第i行の画素10の容量CmSの電圧を表し、電圧Vsig1は、画素アレイA10のすべての行の画素10の第1の信号線sig1の電圧を示す。 As described above, since the row drive circuit 15 outputs the drive signal for each row of the pixel array A10, the drive signal output to the pixels 10 in the i-th row of the pixel array A10 is It shall be represented by connecting). For example, the drive signal V SwS output to the pixel 10 in the i-th row is expressed as a drive signal V SwS (i). Moreover, when not connecting (i) mentioned above, suppose that the drive signal output to the pixel 10 of all the rows of pixel array A10 is represented. Furthermore, using the same notation applies to the voltage V FD, V sig1, V CmR , V CmS, V sig2 in the pixel 10 described with reference to FIG. That is, when (i) is connected, it represents the voltage at the pixel 10 of the i-th row of the pixel array A10, and when (i) is not connected, it represents the voltage at the pixels 10 of all the rows of the pixel array A10. Do. For example, the voltage V CmS (i) represents the voltage of the capacitance CmS of the pixel 10 in the i-th row of the pixel array A10, and the voltage V sig1 represents the first signal line sig1 of the pixels 10 in all the rows of the pixel array A10. Indicates the voltage of
 画素10は、行駆動回路15からの駆動信号に応答して動作し、第2の信号線sig2を介して後述するリセット信号及び光信号をコラム信号処理回路17に出力する。コラム信号処理回路17は、リセット信号と光信号(データ信号)の両方をサンプリングして光信号からリセット信号を減算することによりリセットノイズを除去する、いわゆる公知の相関二重サンプリング処理(以下、CDS処理という。)を実行するCDS回路17aを備えて構成され、画素10からのリセット信号及び光信号に対してCDS処理、アナログ信号処理、及びデジタル信号処理のうちの少なくとも1つを実行し、コラムデコーダ回路18からの制御信号に応答して、水平信号線19を介して処理後の信号を増幅型固体撮像装置の外部の回路(図示せず。)に出力する。また、電源線11は、増幅型固体撮像装置全体の電源線に接続されており、第1の増幅トランジスタSF1のドレイン、及び第2の増幅トランジスタSF2のドレインに電源電圧Vddを印加する。 The pixel 10 operates in response to the drive signal from the row drive circuit 15, and outputs a reset signal and an optical signal to be described later to the column signal processing circuit 17 via the second signal line sig2. The column signal processing circuit 17 removes so-called reset noise by sampling both the reset signal and the light signal (data signal) and subtracting the reset signal from the light signal, so-called known correlated double sampling processing (hereinafter referred to as CDS). Processing, and at least one of CDS processing, analog signal processing, and digital signal processing is performed on the reset signal and the light signal from the pixel 10, and the column In response to a control signal from the decoder circuit 18, the processed signal is output to a circuit (not shown) outside the amplification type solid-state imaging device through the horizontal signal line 19. The power supply line 11 is connected to the power supply line of the entire amplification type solid-state imaging device, and applies the power supply voltage Vdd to the drain of the first amplification transistor SF1 and the drain of the second amplification transistor SF2.
 なお、行デコーダ回路14、行駆動回路15、コラム信号処理回路17、及びコラムデコーダ回路18は制御回路を構成し、行デコーダ回路14、及びコラムデコーダ回路18に入力される制御信号、及び当該制御信号を生成する回路は図示していない。 The row decoder circuit 14, the row drive circuit 15, the column signal processing circuit 17, and the column decoder circuit 18 constitute a control circuit, and control signals input to the row decoder circuit 14 and the column decoder circuit 18 and the control The circuitry that generates the signal is not shown.
 図3は、図2の2次元イメージセンサの動作を示すタイミングチャートの第1の部分であり、図4は、図2の2次元イメージセンサの動作を示すタイミングチャートの第2の部分である。図3及び図4を参照して、図2の2次元イメージセンサの動作を説明する。 3 is a first part of a timing chart showing the operation of the two-dimensional image sensor of FIG. 2, and FIG. 4 is a second part of the timing chart showing the operation of the two-dimensional image sensor of FIG. The operation of the two-dimensional image sensor of FIG. 2 will be described with reference to FIGS. 3 and 4.
 図3及び図4において、駆動信号Vrd,VRT,VTX,VSwR(i),VSwS(i),VIT(i),VSL(i),VSwR(i+1),VSwS(i+1),VIT(i+1),VSL(i+1)は、上述した行駆動回路15から画素10に出力される駆動信号である。また、電圧VFD,Vsig1(i),VCmR(i),VCmS(i),Vsig1(i+1),VCmR(i+1),VCmS(i+1),Vsig2は、上述した画素10における電圧である。 3 and 4, the drive signal Vrd, V RT, V TX, V SwR (i), V SwS (i), V IT (i), V SL (i), V SwR (i + 1), V SwS ( i + 1), V IT (i + 1), and V SL (i + 1) are drive signals output from the row drive circuit 15 described above to the pixel 10. The voltages V FD , V sig 1 (i), V Cm R (i), V Cm S (i), V sig 1 (i + 1), V Cm R (i + 1), V Cm S (i + 1), and V sig 2 are the pixels 10 described above. The voltage at
 画素アレイA10を備えた2次元イメージセンサの動作は、画素アレイA10のすべての画素10を初期化するための初期化動作と、画素アレイA10のすべての画素10が一括して動作して、リセット信号を容量SwRに書き込みかつ光信号を容量SwSに書き込む動作を実行する書き込み位相と、画素アレイA10の画素10が行毎に動作して、リセット信号を容量SwRから読み出しかつ光信号を容量SwSから読み出す動作を実行する読み出し位相とで構成される。また、書き込み位相と読み出し位相とを合わせてフレーム周期という。なお、本実施形態においては、1つのフレームは、順次走査方式における1つの画面の画像データを含む。 The operation of the two-dimensional image sensor provided with the pixel array A10 includes an initialization operation for initializing all the pixels 10 of the pixel array A10 and a reset operation in which all the pixels 10 of the pixel array A10 operate collectively. The write phase for executing the operation of writing the signal in the capacitor SwR and the light signal in the capacitor SwS, and the pixels 10 of the pixel array A10 operate row by row to read the reset signal from the capacitor SwR and And a read phase for performing a read operation. Further, the write phase and the read phase are collectively referred to as a frame period. In the present embodiment, one frame includes image data of one screen in the progressive scanning method.
 まず、初期化動作について説明する。ここでは、画素アレイA10の第i行に含まれる画素10の動作について説明するが、他の行に含まれる画素10も同様に動作する。初期化動作では、駆動信号VSwR(i),VSwS(i)をハイレベルにすることにより容量スイッチトランジスタSwR,SwSをオンした状態で、駆動信号VIT(i)をハイレベルにすることにより初期化トランジスタITをオンして、容量CmR,CmSの電圧VCmR(i),VCmS(i)を電圧Vsに初期化する。なお、後述するように、上述した動作と同様の初期化動作が、行毎に読み出し位相の最後においても実行される。 First, the initialization operation will be described. Here, the operation of the pixels 10 included in the i-th row of the pixel array A10 will be described, but the pixels 10 included in other rows operate in the same manner. In the initialization operation, the drive signal V IT (i) is set to high level in a state where the capacitive switch transistors SwR and Sw S are turned on by setting the drive signals V SwR (i) and V SwS (i) to high level. Thus, the initialization transistor IT is turned on to initialize the voltages V CmR (i) and V CmS (i) of the capacitors CmR and CmS to the voltage Vs. Note that, as described later, the same initialization operation as the above-described operation is also performed at the end of the read phase row by row.
 次に、書き込み位相について説明する。書き込み位相では、画素アレイA10のすべての画素10が一括して同時に動作する。ここでは、画素アレイA10の第i行に含まれる画素10の動作について説明するが、他の行に含まれる画素10も同様に動作する。 Next, the write phase will be described. In the write phase, all the pixels 10 of the pixel array A10 simultaneously operate at once. Here, the operation of the pixels 10 included in the i-th row of the pixel array A10 will be described, but the pixels 10 included in other rows operate in the same manner.
 時刻t1からの期間T1において、駆動信号VRTがハイレベルにされリセットトランジスタRTがオンされるが、この時の駆動信号Vrdは高い電圧VHであるので、フローティングディフュージョン領域FDの電圧VFDが電圧VH又はそれに対応するリセットトランジスタRTのソース電圧にリセットされ、第1の増幅トランジスタSF1がオンされる。電圧Vsig1(i)は、第1の増幅トランジスタSF1を備えゲインG1(G1<1)を有するソースフォロワ回路の出力電圧であり、電圧Vsig1(i)の変化分は、ソースフォロワ回路の入力電圧VFDの変化分のG1倍となり、電圧Vsig1(i)の波形は、電圧VFDの波形と相似となる。 In the period T1 from time t1, the driving signal V RT Although the reset transistor RT is a high level is turned on, since the time of the drive signal Vrd is a high voltage VH, the voltage V FD voltage of the floating diffusion region FD The voltage is reset to the source voltage of the reset transistor RT corresponding to VH or VH, and the first amplification transistor SF1 is turned on. The voltage V sig1 (i) is an output voltage of the source follower circuit including the first amplification transistor SF1 and having a gain G1 (G1 <1), and the variation of the voltage V sig1 (i) is an input of the source follower circuit The voltage V FD changes by G1 times, and the waveform of the voltage V sig1 (i) is similar to the waveform of the voltage V FD .
 次いで、時刻t2からの期間T2において、駆動信号VSwR(i)がハイレベルにされ容量スイッチトランジスタSwRがオンされるが、上述した初期化動作によって容量CmRの電圧VCmR(i)は電圧Vsであるので、フローティングディフュージョン領域FDの電圧VFDが電圧VHにリセットされたときに、第1の増幅トランジスタSF1がオンされて、第1の増幅トランジスタSF1のソースから容量CmRに向けて充電電流が流れ、容量CmRが充電される。容量CmRが充電されて、第1の増幅トランジスタSF1のソースの電圧が上昇すると、第1の増幅トランジスタSF1が飽和領域での動作からサブスレッショルド領域での動作に移行し充電電流がほぼ流れなくなり、容量CmRの電圧VCmR(i)は、ほぼ安定した電圧VsigRとなる。すなわち、容量スイッチトランジスタSwRがオンである期間T2は、第1の増幅トランジスタSF1が飽和領域での動作からサブスレッショルド領域での動作に移行するまでの期間である。 Next, in a period T2 from time t2, the drive signal V SwR (i) is set to the high level to turn on the capacitance switch transistor SwR, but the voltage V CmR (i) of the capacitance CmR is the voltage Vs by the above-described initialization operation. since it is, when the voltage V FD of the floating diffusion region FD is reset to the voltage VH, the first amplification transistor SF1 is turned on, the charge current towards the source of the first amplification transistor SF1 to capacity CmR The current CmR is charged. When the capacitance CmR is charged and the voltage of the source of the first amplification transistor SF1 rises, the operation of the first amplification transistor SF1 shifts from the operation in the saturation region to the operation in the subthreshold region, and the charging current hardly flows. The voltage V CmR (i) of the capacitance CmR becomes a substantially stable voltage VsigR. That is, a period T2 in which the capacitance switch transistor SwR is on is a period until the first amplification transistor SF1 shifts from the operation in the saturation region to the operation in the subthreshold region.
 次いで、時刻t3からの期間T3において、駆動信号VTXがハイレベルにされ転送トランジスタTXがオンされて、入射光により受光素子PDで発生した信号電荷がフローティングディフュージョン領域FDへ転送される。このとき、信号電荷の量に応じて、フローティングディフュージョン領域FDの電圧VFDが変化する。信号電荷が存在しない場合、電圧VFDは電圧VsigS1となり、信号電荷が存在する場合、電圧VFDは電圧VsigS2となる。以下、信号電荷により発生する電圧を電圧VsigS(VsigS2≦VsigS≦VsigS1)という。 Next, in a period T3 from time t3, the drive signal V TX is set to the high level to turn on the transfer transistor TX, and the signal charge generated in the light receiving element PD by the incident light is transferred to the floating diffusion region FD. At this time, the voltage V FD of the floating diffusion region FD changes in accordance with the amount of signal charge. If the signal charge is not present, the voltage V FD If next voltage VsigS1, signal charge exists, the voltage V FD becomes a voltage VsigS2. Hereinafter, the voltage generated by the signal charge is referred to as a voltage VsigS (VsigS2 ≦ VsigS ≦ VsigS1).
 その後、時刻t4からの期間T4において、駆動信号VSwS(i)がハイレベルにされ容量スイッチトランジスタSwSがオンされて、第1の増幅トランジスタSF1のソースから容量CmSに向けて充電電流が流れ、容量CmSが充電される。第1の増幅トランジスタSF1が飽和領域での動作からサブスレッショルド領域での動作に移行した時点で、容量CmSの電圧VCmS(i)はほぼ安定した電圧VsigSとなる。 Thereafter, in a period T4 from time t4, the drive signal V SwS (i) is set to the high level to turn on the capacitance switch transistor SwS, and a charging current flows from the source of the first amplification transistor SF1 toward the capacitance CmS. The capacitance CmS is charged. When the first amplification transistor SF1 shifts from the operation in the saturation region to the operation in the subthreshold region, the voltage V CmS (i) of the capacitor CmS becomes a substantially stable voltage VsigS.
 最後に、時刻t5からの期間T5において、駆動信号VRTがハイレベルにされリセットトランジスタRTが再度オンされるが、この時駆動信号Vrdは低い電圧VLであるので、フローティングディフュージョン領域FDの電圧VFDが電圧VLにリセットされ、第1の増幅トランジスタSF1がオフされる。すなわち、以後次の書き込み位相に入るまで第1の増幅トランジスタSF1はオフ状態である。 Finally, in the period T5 from time t5, the driving signal V RT is a high level reset transistor RT is turned on again, because this time the drive signal Vrd is at a low voltage VL, the voltage of the floating diffusion region FD V The FD is reset to the voltage VL, and the first amplification transistor SF1 is turned off. That is, the first amplification transistor SF1 is in the off state until the next write phase is subsequently entered.
 上述した書き込み位相における書き込み動作によって、容量CmRによって保持される電圧VsigRは、リセットトランジスタRTをオンしたときのフローティングディフュージョン領域FDの電圧(リセット信号)を表し、容量CmSによって保持される電圧VsigSは、転送トランジスタTXをオンして受光素子PDから信号電荷をフローティングディフュージョン領域FDに転送したときのフローティングディフュージョン領域FDの電圧(光信号)を表す。 The voltage VsigR held by the capacitor CmR represents the voltage (reset signal) of the floating diffusion region FD when the reset transistor RT is turned on by the write operation in the above-described write phase, and the voltage VsigS held by the capacitor CmS is This represents the voltage (light signal) of the floating diffusion region FD when the transfer transistor TX is turned on to transfer the signal charge from the light receiving element PD to the floating diffusion region FD.
 また、上述した書き込み動作において容量CmR,CmSを充電するときに発生するノイズは、従来技術に係る図17の画素110において容量Cmを充電するときに発生するノイズ、従来技術に係る図18の画素120において容量Cm1,Cm2を充電するときに発生するノイズ、及び従来技術に係る図19の画素130において容量CmR,CmSを充電するときに発生するノイズと比較して、エネルギーにおいて半分に低減される。すなわち、従来技術に係る画素110,120,130の容量Cm,Cm1,Cm2,CmR,CmSの容量値が容量値Cである場合、これらの容量を充電するときに発生するノイズは以下の式(1)で表される。 Further, noise generated when charging the capacitors CmR and CmS in the above-described write operation is noise generated when charging the capacitor Cm in the pixel 110 of FIG. 17 according to the prior art, and the pixel of FIG. Compared to noise generated when charging the capacitances Cm1 and Cm2 at 120 and noise generated when charging the capacitances CmR and CmS in the pixel 130 of FIG. 19 according to the prior art, energy is reduced by half. . That is, when the capacitance values of the capacitors Cm, Cm1, Cm2, CmR, and CmS of the pixels 110, 120, and 130 according to the prior art are the capacitance value C, the noise generated when charging these capacitors is It is represented by 1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、kはボルツマン定数、Tは絶対温度を表す。 Here, k represents a Boltzmann constant, and T represents an absolute temperature.
 一方、第1の実施形態に係る画素10の容量CmR,CmSの容量値が容量値Cである場合、これらの容量を充電するときには、第1の増幅トランジスタSF1がサブスレッショルド領域で動作するので、発生するノイズは以下の式(2)で表される。 On the other hand, when the capacitance value of the capacitances CmR and CmS of the pixel 10 according to the first embodiment is the capacitance value C, when charging these capacitances, the first amplification transistor SF1 operates in the subthreshold region, The generated noise is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、kはボルツマン定数、Tは絶対温度を表す。すなわち、画素10は、従来技術に係る画素と比較して、ノイズを低減することができる。 Here, k represents a Boltzmann constant, and T represents an absolute temperature. That is, the pixel 10 can reduce noise compared to the pixel according to the prior art.
 次に、読み出し位相について説明する。読み出し位相では、後述する1水平走査期間(1H)を単位として、画素アレイA10のそれぞれの行が順次駆動される。ここで、上述したように、書き込み位相の期間T5においてフローティングディフュージョン領域FDの電圧VFDが電圧VLにリセットされているので、読み出し位相において第1の増幅トランジスタSF1はオフ状態である。第2の信号線の電圧Vsig2は、第2の増幅トランジスタSF2を備えゲインG2(G2<1)を有するソースフォロワ回路の出力電圧となっており、電圧Vsig2の変化分は、ソースフォロワ回路の入力電圧である各行の第1の信号線の電圧Vsig1(i)の変化分のG2倍となり、電圧Vsig2の波形は、電圧Vsig1(i)の波形と相似となる。 Next, the read phase will be described. In the readout phase, the respective rows of the pixel array A10 are sequentially driven in units of one horizontal scanning period (1H) described later. Here, as described above, since the voltage V FD of the floating diffusion region FD is reset to the voltage VL in the period T5 of the writing phase, the first amplification transistor SF1 is in the off state in the reading phase. The voltage V sig2 of the second signal line is the output voltage of the source follower circuit that includes the second amplification transistor SF2 and has the gain G2 (G2 <1), and the variation of the voltage V sig2 is the source follower circuit of becomes G2 fold change in voltage V sig1 of the first signal line of each row is the input voltage (i), the waveform of the voltage V sig2, a similar to the waveform of the voltage V sig1 (i).
 最初に、画素アレイA10の第i行に含まれる画素10について説明する。まず、時刻t6からの期間T6において、駆動信号VIT(i)がハイレベルにされ初期化トランジスタITがオンされて、第2の増幅トランジスタSF2のゲートの電圧、すなわち電圧Vsig1(i)が電圧Vsにリセットされる。 First, the pixels 10 included in the i-th row of the pixel array A10 will be described. First, in period T6 from time t6, the drive signal V IT (i) is set to the high level, the initialization transistor IT is turned on, and the voltage of the gate of the second amplification transistor SF2, that is, the voltage V sig1 (i) It is reset to the voltage Vs.
 次いで、時刻t7からの期間T7において、駆動信号VSL(i)がハイレベルにされ選択トランジスタSLがオンされて、第2の増幅トランジスタSF2が活性化するとともに、駆動信号VSwR(i)がハイレベルにされ容量スイッチトランジスタSwRがオンされて、リセット信号を表す電圧VsigRが、容量CmRから第1の信号線sig1、第2の増幅トランジスタSF2、及び選択トランジスタSLを介して第2の信号線sig2に出力される。 Next, in a period T7 from time t7, the drive signal V SL (i) is set to the high level, the selection transistor SL is turned on, and the second amplification transistor SF2 is activated, and the drive signal V SwR (i) The capacitor switch transistor SwR is turned high and the capacitor switch transistor SwR is turned on, and the voltage VsigR representing the reset signal is transferred from the capacitor CmR to the second signal line via the first signal line sig1, the second amplification transistor SF2, and the selection transistor SL. It is output to sig2.
 次いで、時刻t8からの期間T8において、容量スイッチトランジスタSwRがオン状態のまま初期化トランジスタITがオンされて、容量CmRの電圧VCmR(i)が電圧Vsに初期化される。 Next, in period T8 from time t8, the initialization transistor IT is turned on while the capacitance switch transistor SwR is on, and the voltage V CmR (i) of the capacitance CmR is initialized to the voltage Vs.
 次いで、時刻t9からの期間T9において、選択トランジスタSLがオン状態のまま駆動信号VSwS(i)がハイレベルにされ容量スイッチトランジスタSwSがオンされて、光信号を表す電圧VsigSが、容量CmSから第1の信号線sig1、第2の増幅トランジスタSF2、及び選択トランジスタSLを介して第2の信号線sig2に出力される。 Next, in a period T9 from time t9, the drive signal V SwS (i) is turned high while the selection transistor SL is in the on state, the capacitance switch transistor SwS is turned on, and the voltage VsigS representing the optical signal is The signal is output to the second signal line sig2 via the first signal line sig1, the second amplification transistor SF2, and the selection transistor SL.
 最後に、時刻t10からの期間T10において、容量スイッチトランジスタSwSがオン状態のまま初期化トランジスタITがオンされて、容量CmSの電圧VCmS(i)が電圧Vsに初期化される。この後、画素アレイA10の第i+1行に含まれる画素10について上述した読み出し動作と同様の動作が行われる。 Finally, in a period T10 from time t10, the initialization transistor IT is turned on while the capacitance switch transistor SwS is on, and the voltage V CmS (i) of the capacitance CmS is initialized to the voltage Vs. Thereafter, the same operation as the above-described read operation is performed on the pixels 10 included in the (i + 1) th row of the pixel array A10.
 読み出し動作で説明したように、上述した初期化動作が、行毎に期間T8及び期間T10で実行される。以降、第i行の読み出しを実行している時刻t6から期間T10が終了するまでの期間を、第i行の読み出し期間Trd(i)という。また、第i行の読み出し動作を開始する時刻t6から第i+1行の読み出し動作を開始する時刻t6aまでの期間を1水平走査期間(1H)という。 As described in the read operation, the above-described initialization operation is performed row by row in periods T8 and T10. Hereinafter, a period from time t6 when the readout of the i-th row is executed to the end of the period T10 is referred to as a readout period Trd (i) of the i-th row. A period from time t6 when the read operation of the i-th row is started to time t6a when the read operation of the (i + 1) th row is started is referred to as one horizontal scanning period (1H).
 以上の動作において、容量CmR,CmSの容量値は、式(2)の関係から設計上可能な範囲で大きくすることが望ましい。同時に、容量CmR,CmSの容量値が、第2の増幅トランジスタSF2のゲート容量に比べて十分に大きな値であれば、期間T7及び期間T9で読み出される電圧値は各容量CmR,CmSに書き込まれた時の電圧値とほぼ同じとなり、読み出し時の電圧低下は生じない。これによって、図1の画素10は、図19の画素130と比較して、リセット信号及び光信号の電圧値を大きく取ることができるのでS/N比が向上し、かつ式(2)にしたがってノイズが低減する。 In the above operation, it is desirable that the capacitance values of the capacitors CmR and CmS be as large as possible in design because of the relationship of the equation (2). At the same time, if the capacitances of the capacitors CmR and CmS are sufficiently large compared to the gate capacitance of the second amplification transistor SF2, the voltage values read out in the periods T7 and T9 are written to the respective capacitors CmR and CmS. The voltage value at the time of reading is almost the same as the voltage value at the time of reading. By this, the pixel 10 of FIG. 1 can take a large voltage value of the reset signal and the light signal as compared with the pixel 130 of FIG. 19, so the S / N ratio is improved, and according to equation (2) Noise is reduced.
 上述した読み出し位相における読み出し動作により画素10から読み出されたリセット信号及び光信号に対して、例えば図2のコラム信号処理回路17が、電圧VsigRと電圧VsigSとの差を取るCDS処理を実行する。フローティングディフュージョン領域FDでのリセットノイズ、及び第1の増幅トランジスタSF1、並びに第2の増幅トランジスタSF2それぞれのしきい値のばらつきに起因する固定パターンノイズについては、電圧VsigRと電圧VsigSとの間で相関が存在するので、CDS処理を実行することによりこれらノイズが除去され、高画質の画像信号を得ることができる。 For example, the column signal processing circuit 17 shown in FIG. 2 performs CDS processing for obtaining a difference between the voltage VsigR and the voltage VsigS on the reset signal and the light signal read from the pixel 10 by the reading operation in the reading phase described above. . With respect to reset noise in the floating diffusion region FD, and fixed pattern noise caused by variations in threshold values of the first amplification transistor SF1 and the second amplification transistor SF2, there is a correlation between the voltage VsigR and the voltage VsigS. These noises are removed by executing the CDS processing, and a high quality image signal can be obtained.
 図3及び図4のタイミングチャートでは、受光素子PDからフローティングディフュージョン領域FDに転送される信号電荷は、書き込み位相における期間T3の終了時刻から次の書き込み位相における期間T3の終了時刻までの期間、すなわちフルフレーム期間に受光素子PDで蓄積された信号電荷であったが、信号電荷を蓄積する時間(以下、露光蓄積時間(Tint)という。)を任意の長さに短縮するシャッタ動作も可能である。 In the timing charts of FIGS. 3 and 4, the signal charge transferred from the light receiving element PD to the floating diffusion region FD is a period from the end time of the period T3 in the write phase to the end time of the period T3 in the next write phase, ie Although the signal charge is accumulated in the light receiving element PD during the full frame period, a shutter operation capable of shortening the time for accumulating the signal charge (hereinafter referred to as exposure accumulation time (Tint)) to an arbitrary length is also possible. .
 図5は、図2の2次元イメージセンサのシャッタ動作を示すタイミングチャートである。ここで、図5に示した駆動信号Vrd,VRT,VTX,VSwR(i),VSwS(i),VIT(i),VSL(i),VSwR(i+1),VSwS(i+1),VIT(i+1),VSL(i+1)は、図3及び図4のタイミングチャートで説明したものと同様である。また、図3及び図4と同様の時刻及び期間を示す時刻及び期間には、同一の符号を付している。 FIG. 5 is a timing chart showing the shutter operation of the two-dimensional image sensor of FIG. Here, the drive signal Vrd shown in FIG. 5, V RT, V TX, V SwR (i), V SwS (i), V IT (i), V SL (i), V SwR (i + 1), V SwS (I + 1), V IT (i + 1), and V SL (i + 1) are the same as those described in the timing charts of FIGS. 3 and 4. Further, the same reference numerals are given to the times and periods indicating the same times and periods as those in FIGS. 3 and 4.
 シャッタ位相では、画素アレイA10のすべての画素が一括して動作して、受光素子PDに蓄積された信号電荷を排出する動作(以下、シャッタ動作という。)が実行される。シャッタ動作を行うシャッタ位相は、読み出し位相において、各行の読み出し期間Trdと重ならない任意の期間に設定されてもよい。図5のタイミングチャートでは、時刻t11から時刻t15までがシャッタ位相であり、第i行の画素の読み出し期間Trd(i)と第i+1行の画素の読み出し期間Trd(i+1)との間に設定されている。シャッタ位相以外の部分の読み出し位相は、上述した読み出し位相と同様である。 In the shutter phase, all the pixels of the pixel array A10 operate collectively, and an operation for discharging the signal charge accumulated in the light receiving element PD (hereinafter referred to as a shutter operation) is performed. The shutter phase for performing the shutter operation may be set to an arbitrary period which does not overlap with the readout period Trd of each row in the readout phase. In the timing chart of FIG. 5, the shutter phase is from time t11 to time t15, and is set between the readout period Trd (i) of the i-th row pixel and the readout period Trd (i + 1) of the i + 1 th row pixel. ing. The readout phase of the portion other than the shutter phase is the same as the readout phase described above.
 まず、時刻t11から時刻t12までの期間において、駆動信号VTX及び駆動信号VRTがハイレベルにされ転送トランジスタTX及びリセットトランジスタRTがオンされるが、この時の駆動信号Vrdは高い電圧VHであるので、受光素子PDに蓄積された信号電荷は、フローティングディフュージョン領域FDを経由してリセットトランジスタRTのドレインへ排出される。 First, during the period from time t11 to time t12, the the driving signal V TX and the drive signal V RT is a high level transfer transistors TX and the reset transistor RT is turned on, the drive signal Vrd at this time a high voltage VH Because of this, the signal charge stored in the light receiving element PD is discharged to the drain of the reset transistor RT via the floating diffusion region FD.
 次いで、時刻t12において、駆動信号VTXがローレベルにされ転送トランジスタTXがオフされる。次いで、時刻t13において、駆動信号Vrdを電圧VHから電圧VLに変化させることにより、フローティングディフュージョン領域FDの電圧が電圧VLになる。次いで、時刻t14において駆動信号VRTがローレベルにされリセットトランジスタRTがオフされて、フローティングディフュージョン領域FDの電圧が第1の増幅トランジスタSF1がオフとなる電圧VLに保持され、以後の読み出し動作を可能にする。 Next, at time t12, the drive signal V TX is set to low level, and the transfer transistor TX is turned off. Next, at time t13, the voltage of the floating diffusion region FD becomes the voltage VL by changing the drive signal Vrd from the voltage VH to the voltage VL. Next, at time t14, the drive signal V RT is set to low level, the reset transistor RT is turned off, and the voltage of the floating diffusion region FD is held at the voltage VL at which the first amplification transistor SF1 is turned off. to enable.
 シャッタ位相における時刻t12において転送トランジスタTXがオフされてから、次の書き込み位相における期間T3が終了して転送トランジスタTXがオフされるまでの期間が、有効な露光蓄積期間Tintとなる。読み出し位相においてシャッタ位相を設定する時刻を変化させることにより、露光蓄積期間Tintの長さを変化させることができる。 A period from when the transfer transistor TX is turned off at time t12 in the shutter phase to when the period T3 in the next write phase ends and the transfer transistor TX is turned off is an effective exposure accumulation period Tint. The length of the exposure accumulation period Tint can be changed by changing the time to set the shutter phase in the read phase.
 以上説明したように、第1の実施形態によれば、1画素内に1つの埋め込み受光素子PDと、8つのトランジスタTX,RT,SF1,SwR,SwS,IT,SF2,SLと、2つの容量CmR,CmSとを用いるのみで、一括露光が可能でかつCDS処理により高画質が得られる2次元イメージセンサを構成することができる。また、リセット信号及び光信号をそれぞれ容量CmR,CmSに書き込むときには、容量CmR,CmSに過渡的な充電電流が流れるのみで大きな直流電流は流れない。さらに、リセット信号及び光信号をそれぞれ容量CmR,CmSから読み出すときに信号を表す電圧が低下しないので、S/N比を向上させることができる。 As described above, according to the first embodiment, one embedded light receiving element PD and eight transistors TX, RT, SF1, SwR, SwS, IT, SF2, SL, and two capacitances in one pixel are used. Only by using CmR and CmS, it is possible to configure a two-dimensional image sensor capable of collective exposure and obtaining high image quality by CDS processing. In addition, when the reset signal and the light signal are written in the capacitors CmR and CmS, respectively, only a transient charging current flows in the capacitors CmR and CmS, and a large DC current does not flow. Furthermore, when the reset signal and the optical signal are read out from the capacitors CmR and CmS, respectively, the voltage representing the signal does not decrease, so the S / N ratio can be improved.
第2の実施形態.
 図6は、本発明の第2の実施形態に係る増幅型固体撮像装置の画素20の構成を示す回路図である。画素20は、図1の画素10と比較して、選択トランジスタSLを備えない点、及び電圧Vsが第2の増幅トランジスタSF2がオフになる電圧値に設定される点が異なり、その他の構成要素は、画素10と同様であって、その説明を省略する。また、画素20をマトリクス状に配置した画素アレイを含む2次元イメージセンサの構成は、図2の画素10を画素20と置き換えたものと同様であるのでその説明を省略する。さらに、画素20を有する画素アレイを備えた2次元イメージセンサの動作を示すタイミングチャートは、図3及び図4のタイミングチャートにおいて、選択トランジスタのための駆動信号VSL(i),VSL(i+1)を削除したものと同様である。
Second embodiment.
FIG. 6 is a circuit diagram showing a configuration of a pixel 20 of the amplification type solid-state imaging device according to the second embodiment of the present invention. The pixel 20 is different from the pixel 10 of FIG. 1 in that the selection transistor SL is not provided and that the voltage Vs is set to a voltage value at which the second amplification transistor SF2 is turned off. Is the same as the pixel 10, and the description thereof is omitted. The configuration of a two-dimensional image sensor including a pixel array in which the pixels 20 are arranged in a matrix is the same as that in which the pixels 10 in FIG. Furthermore, the timing chart showing the operation of the two-dimensional image sensor provided with the pixel array having the pixels 20 is the drive signal VSL (i), VSL (i + 1) for the selection transistor in the timing charts of FIG. 3 and FIG. It is the same as that of deleting.
 図3及び図4を参照して、画素20を備えた2次元イメージセンサの動作を説明する。期間T7及びT9において、容量スイッチトランジスタSwR,SwSがオンされる時のみ、容量CmRに保持されたリセット信号及び容量CmSに保持された光信号が第2の増幅トランジスタSF2のゲートに印加されて第2の増幅トランジスタSF2が活性化する。また、期間T6,T8,T10において、初期化トランジスタITがオンされて、第2の増幅トランジスタSF2のゲートの電圧Vsig1(i)が電圧Vsとなり第2の増幅トランジスタSF2がオフされる。さらに、期間T10の後は、第2の増幅トランジスタSF2がオフの状態(非選択モード)が維持される。したがって、第2の実施形態に係る2次元イメージセンサは、第1の実施形態に係る2次元イメージセンサと同様に動作する。また、第2の実施形態に係る2次元イメージセンサは、第1の実施形態と同様の方法で、シャッタ動作を実行することができる。 The operation of the two-dimensional image sensor provided with the pixel 20 will be described with reference to FIGS. 3 and 4. During the periods T7 and T9, the reset signal held by the capacitor CmR and the light signal held by the capacitor CmS are applied to the gate of the second amplification transistor SF2 only when the capacitance switch transistors SwR and SwS are turned on. The second amplification transistor SF2 is activated. Further, in the periods T6, T8 and T10, the initialization transistor IT is turned on, and the voltage V sig1 (i) of the gate of the second amplification transistor SF2 becomes the voltage Vs, and the second amplification transistor SF2 is turned off. Furthermore, after the period T10, the second amplification transistor SF2 is maintained in the off state (non-selection mode). Therefore, the two-dimensional image sensor according to the second embodiment operates in the same manner as the two-dimensional image sensor according to the first embodiment. In addition, the two-dimensional image sensor according to the second embodiment can execute the shutter operation in the same manner as in the first embodiment.
 以上説明したように、第2の実施形態によれば、1画素内に1つの埋め込み受光素子PDと、7つのトランジスタTX,RT,SF1,SwR,SwS,IT,SF2と、2つの容量CmR,CmSとを用いるのみで、一括露光が可能でかつCDS処理により高画質が得られる2次元イメージセンサを構成することができる。また、リセット信号及び光信号をそれぞれ容量CmR,CmSに書き込むときには、容量CmR,CmSに過渡的な充電電流が流れるのみで大きな直流電流は流れない。さらに、リセット信号及び光信号を容量CmR,CmSから読み出すときに信号を表す電圧が低下しないので、S/N比を向上させることができる。またさらに、第1の実施形態と比較してトランジスタ数が少ないため、回路を小型化して受光素子PDの面積を増大させることができる。 As described above, according to the second embodiment, one embedded light receiving element PD, seven transistors TX, RT, SF1, SwR, SwS, IT, SF2 and two capacitances CmR, Only by using CmS, it is possible to configure a two-dimensional image sensor capable of collective exposure and obtaining high image quality by CDS processing. In addition, when the reset signal and the light signal are written in the capacitors CmR and CmS, respectively, only a transient charging current flows in the capacitors CmR and CmS, and a large DC current does not flow. Furthermore, when the reset signal and the light signal are read out from the capacitors CmR and CmS, the voltage representing the signal does not decrease, so the S / N ratio can be improved. Furthermore, since the number of transistors is smaller compared to the first embodiment, the circuit can be miniaturized to increase the area of the light receiving element PD.
第3の実施形態.
 図7は、本発明の第3の実施形態に係る増幅型固体撮像装置の画素30の構成を示す回路図である。画素30は、画素10と比較して、第1の増幅トランジスタSF1と第1の信号線sig1との間に出力スイッチトランジスタSwOを備えて構成され、リセットトランジスタのドレインが、第1の増幅トランジスタSF1のドレイン、及び第2の増幅トランジスタSF2のドレインと共通に電源電圧Vddに接続されている点が異なり、その他の構成要素は、画素10と同様であって、その説明を省略する。また、画素30をマトリクス状に配置した画素アレイを含む2次元イメージセンサの構成は、図2の画素10を画素30と置き換えたものと同様であるのでその説明を省略する。出力スイッチトランジスタSwOのゲートには、行駆動回路15から駆動信号VSwOが入力され、駆動信号VSwOがハイレベルのとき出力スイッチトランジスタSwOはオンされ、駆動信号VSwOがローレベルのとき出力スイッチトランジスタSwOはオフされる。
Third embodiment.
FIG. 7 is a circuit diagram showing a configuration of a pixel 30 of an amplification type solid-state imaging device according to a third embodiment of the present invention. The pixel 30 is configured to include the output switch transistor SwO between the first amplification transistor SF1 and the first signal line sig1 as compared to the pixel 10, and the drain of the reset transistor is the first amplification transistor SF1. And the drain of the second amplification transistor SF2 are commonly connected to the power supply voltage Vdd, and the other components are the same as those of the pixel 10, and the description thereof will be omitted. The configuration of a two-dimensional image sensor including a pixel array in which the pixels 30 are arranged in a matrix is the same as that in which the pixels 10 in FIG. The drive signal V SwO from the row drive circuit 15 is input to the gate of the output switch transistor SwO, and the output switch transistor SwO is turned on when the drive signal V SwO is at high level, and the output switch when the drive signal V SwO is at low level The transistor SwO is turned off.
 図8は、図7の画素30を有する画素アレイを備えた2次元イメージセンサの動作を示すタイミングチャートの第1の部分であり、図9は、図7の画素30を有する画素アレイを備えた2次元イメージセンサの動作を示すタイミングチャートの第2の部分である。図8及び図9のタイミングチャートは、図3及び図4のタイミングチャートと比較して、駆動信号Vrdを削除して、駆動信号VSwOを追加した点、及び電圧VFDの波形、並びに電圧Vsig1(i),Vsig1(i+1)の波形が異なる。 FIG. 8 is a first portion of a timing chart illustrating the operation of a two-dimensional image sensor comprising a pixel array having the pixels 30 of FIG. 7, and FIG. 9 comprises a pixel array having the pixels 30 of FIG. It is a 2nd part of the timing chart which shows operation | movement of a two-dimensional image sensor. Compared with the timing charts of FIG. 3 and FIG. 4, the timing charts of FIG. 8 and FIG. 9 delete the drive signal Vrd and add the drive signal V SwO , the waveform of the voltage V FD , and the voltage V The waveforms of sig1 (i) and V sig1 (i + 1) are different.
 駆動信号VSwOは、書き込み位相においてリセットトランジスタRTが最初にオン(時刻t1)されてから次にオン(時刻t5)されるまでの期間ハイレベルにされ、これにより出力スイッチトランジスタSwOがオンされて、第1の増幅トランジスタSF1のソースを第1の信号線に接続して、リセット信号及び光信号を容量スイッチトランジスタSwR,SwSを介して容量CmR,CmSに書き込むことを可能にする。 The drive signal V SwO is set to a high level during a period from when the reset transistor RT is first turned on (time t1) to next turned on (time t5) in the write phase, whereby the output switch transistor SwO is turned on. The source of the first amplification transistor SF1 is connected to the first signal line to enable writing of the reset signal and the light signal to the capacitances CmR and CmS via the capacitance switch transistors SwR and SwS.
 また、フローティングディフュージョン領域FDの電圧VFDの波形は、図3及び図4と比較して、時刻t1から時刻t5までは同一であり、時刻t5以降が異なる。期間T5において、リセットトランジスタRTがオンされて、フローティングディフュージョン領域FDの電圧VFDが高い電圧VHとなる。電圧VFDが高い電圧VHであっても、読み出し位相では出力スイッチトランジスタSwOがオフ状態であるので、第1の増幅トランジスタSF1は、読み出し動作に影響を与えない。したがって、読み出し位相において、図8及び図9に示す電圧Vsig1(i),Vsig1(i+1)、駆動信号VSwR(i),VSwR(i+1)、駆動信号VSwS(i),VSwS(i+1)、電圧VCmR(i),VCmR(i+1)、電圧VCmS(i),VCmS(i+1)、駆動信号VIT(i),VIT(i+1)、及び駆動信号VSL(i),VSL(i+1)は、図3及び図4の場合と同様である。したがって、実施形態3に係る2次元イメージセンサは、実施形態1に係る2次元イメージセンサと同様に動作する。また、第3の実施形態に係る2次元イメージセンサのシャッタ動作は、第1の実施形態のシャッタ動作から駆動信号Vrdに関する動作を削除したものと同様である。 Further, the waveform of the voltage V FD of the floating diffusion region FD is the same from time t1 to time t5 as compared with FIGS. 3 and 4 and is different after time t5. In the period T5, the reset transistor RT is turned on, the voltage V FD of the floating diffusion region FD is higher voltage VH. Even when the voltage V FD is a high voltage VH, in the read phase, the output switch transistor SwO is in the OFF state, so the first amplification transistor SF1 does not affect the read operation. Therefore, in the read phase, voltages V sig1 (i) and V sig1 (i + 1), drive signals V SwR (i) and V SwR (i + 1), and drive signals V SwS (i) and V SwS shown in FIGS. (I + 1), voltage V CmR (i), V CmR (i + 1), voltage V CmS (i), V CmS (i + 1), drive signal V IT (i), V IT (i + 1), and drive signal V SL ( i) and V SL (i + 1) are the same as those in FIGS. 3 and 4. Therefore, the two-dimensional image sensor according to the third embodiment operates in the same manner as the two-dimensional image sensor according to the first embodiment. Further, the shutter operation of the two-dimensional image sensor according to the third embodiment is the same as that of the shutter operation of the first embodiment except the operation related to the drive signal Vrd.
 以上説明したように、第3の実施形態によれば、1画素内に1つの埋め込み受光素子PDと、9つのトランジスタTX,RT,SF1,SwO,SwR,SwS,IT,SF2,SLと、2つの容量CmR,CmSとを用いるのみで、一括露光が可能でかつCDS処理により高画質が得られる2次元イメージセンサを構成することができる。また、リセット信号及び光信号をそれぞれ容量CmR,CmSに書き込むときには、容量CmR,CmSに過渡的な充電電流が流れるのみで大きな直流電流は流れない。さらに、リセット信号及び光信号を容量CmR,CmSから読み出すときに信号を表す電圧が低下しないので、S/N比を向上させることができる。 As described above, according to the third embodiment, one embedded light receiving element PD, nine transistors TX, RT, SF1, SwO, SwR, SwS, IT, SF2, SL, and 2 in one pixel. It is possible to configure a two-dimensional image sensor capable of collective exposure and achieving high image quality by CDS processing only by using two capacitors CmR and CmS. In addition, when the reset signal and the light signal are written in the capacitors CmR and CmS, respectively, only a transient charging current flows in the capacitors CmR and CmS, and a large DC current does not flow. Furthermore, when the reset signal and the light signal are read out from the capacitors CmR and CmS, the voltage representing the signal does not decrease, so the S / N ratio can be improved.
 なお、第3の実施形態では、選択トランジスタSLを備えて画素30を構成したが、本発明はこれに限らず、第2の実施形態と同様に選択トランジスタSLを備えずに画素30を構成してもよく、この場合、画素30内のトランジスタ数は8つとなり、回路を小型化して受光素子PDの面積を増大させることができる。 In the third embodiment, the selection transistor SL is provided to configure the pixel 30, but the present invention is not limited thereto, and the pixel 30 is configured without including the selection transistor SL as in the second embodiment. In this case, the number of transistors in the pixel 30 is eight, and the circuit can be miniaturized to increase the area of the light receiving element PD.
第4の実施形態.
 図10は、本発明の第4の実施形態に係る増幅型固体撮像装置の画素40の構成を示す回路図である。上述した第1、第2、及び第3の実施形態に係る画素10,20,30は、埋め込み受光素子型の受光素子PDと転送トランジスタTXとを備えていたが、第4の実施形態に係る画素40は、転送トランジスタを備えずかつPN受光素子型の受光素子PDを備える。
Fourth Embodiment
FIG. 10 is a circuit diagram showing a configuration of a pixel 40 of an amplification type solid-state imaging device according to a fourth embodiment of the present invention. The pixels 10, 20, and 30 according to the first, second, and third embodiments described above include the embedded light receiving element type light receiving element PD and the transfer transistor TX, but the fourth embodiment relates to the fourth embodiment. The pixel 40 does not include a transfer transistor and includes a PN light receiving element type light receiving element PD.
 図10示すように画素40は、PN受光素子で構成された受光素子PDと、リセットトランジスタRTと、第1の増幅トランジスタSF1と、第1の信号線sig1と、出力スイッチトランジスタSwOと、容量CmR1,CmR2,CmSと、容量スイッチトランジスタSwR1,SwR2,SwSと、初期化トランジスタITと、第2の増幅トランジスタSF2と、選択トランジスタSLと、第2の信号線sig2とを備えて構成される。なお、画素40をマトリクス状に配置した画素アレイを含む2次元イメージセンサの構成は、図2の画素10を画素40と置き換えたものと同様であるのでその説明を省略する。以下、画素40をマトリクス状に配置した画素アレイを画素アレイA40という。 As shown in FIG. 10, the pixel 40 includes a light receiving element PD formed of a PN light receiving element, a reset transistor RT, a first amplification transistor SF1, a first signal line sig1, an output switch transistor SwO, and a capacitance CmR1. , CmR2, and CmS, capacitance switch transistors SwR1, SwR2, and SwS, an initialization transistor IT, a second amplification transistor SF2, a selection transistor SL, and a second signal line sig2. The configuration of a two-dimensional image sensor including a pixel array in which the pixels 40 are arranged in a matrix is the same as that in which the pixels 10 in FIG. Hereinafter, a pixel array in which the pixels 40 are arranged in a matrix is referred to as a pixel array A40.
 図10において、受光素子PDのアノードは接地電圧に接続され、受光素子PDのカソードは、第1の増幅トランジスタSF1のゲート、及びリセットトランジスタのソースに接続される。リセットトランジスタのゲートは図2を参照して上述された行駆動回路15に接続され、リセットトランジスタのドレインは電源電圧Vddに接続される。第1の増幅トランジスタSF1のドレインは、電源電圧Vddに接続され、第1の増幅トランジスタSF1のソースは、出力スイッチトランジスタSwOのソースに接続される。出力スイッチトランジスタSwOのゲートは、行駆動回路15に接続され、出力スイッチトランジスタSwOのドレインは、第1の信号線sig1を介して、容量スイッチトランジスタSwR1のドレインと、容量スイッチトランジスタSwR2のドレインと、容量スイッチトランジスタSwSのドレインと、初期化トランジスタITのソースと、第2の増幅トランジスタSF2のゲートとに接続される。容量スイッチトランジスタSwR1のゲートは、行駆動回路15に接続され、容量スイッチトランジスタSwR1のソースは、容量CmR1の一端に接続され、容量CmR1の他端は接地電圧に接続される。容量スイッチトランジスタSwR2のゲートは、行駆動回路15に接続され、容量スイッチトランジスタSwR2のソースは、容量CmR2の一端に接続され、容量CmR2の他端は接地電圧に接続される。容量スイッチトランジスタSwSのゲートは、行駆動回路15に接続され、容量スイッチトランジスタSwSのソースは、容量CmSの一端に接続され、容量CmSの他端は接地電圧に接続される。初期化トランジスタITのゲートは、行駆動回路15に接続され、初期化トランジスタITのドレインは、接地電圧又は接地電圧に近い正の電圧である電圧Vsに接続される。第2の増幅トランジスタSF2のドレインは、電源電圧Vddに接続され、第2の増幅トランジスタSF2のソースは、選択トランジスタSLのドレインに接続される。選択トランジスタSLのゲートは、行駆動回路15に接続され、選択トランジスタSLのソースは、第2の信号線sig2に接続される。 In FIG. 10, the anode of the light receiving element PD is connected to the ground voltage, and the cathode of the light receiving element PD is connected to the gate of the first amplification transistor SF1 and the source of the reset transistor. The gate of the reset transistor is connected to the row drive circuit 15 described above with reference to FIG. 2, and the drain of the reset transistor is connected to the power supply voltage Vdd. The drain of the first amplification transistor SF1 is connected to the power supply voltage Vdd, and the source of the first amplification transistor SF1 is connected to the source of the output switch transistor SwO. The gate of the output switch transistor SwO is connected to the row drive circuit 15, and the drain of the output switch transistor SwO is the drain of the capacitive switch transistor SwR1 and the drain of the capacitive switch transistor SwR2 via the first signal line sig1. It is connected to the drain of the capacitive switch transistor SwS, the source of the initialization transistor IT, and the gate of the second amplification transistor SF2. The gate of the capacitive switch transistor SwR1 is connected to the row drive circuit 15, the source of the capacitive switch transistor SwR1 is connected to one end of the capacitor CmR1, and the other end of the capacitor CmR1 is connected to the ground voltage. The gate of the capacitive switch transistor SwR2 is connected to the row drive circuit 15, the source of the capacitive switch transistor SwR2 is connected to one end of the capacitor CmR2, and the other end of the capacitor CmR2 is connected to the ground voltage. The gate of the capacitive switch transistor SwS is connected to the row drive circuit 15, the source of the capacitive switch transistor SwS is connected to one end of the capacitor CmS, and the other end of the capacitor CmS is connected to the ground voltage. The gate of the initialization transistor IT is connected to the row drive circuit 15, and the drain of the initialization transistor IT is connected to the ground voltage or a voltage Vs which is a positive voltage close to the ground voltage. The drain of the second amplification transistor SF2 is connected to the power supply voltage Vdd, and the source of the second amplification transistor SF2 is connected to the drain of the selection transistor SL. The gate of the selection transistor SL is connected to the row drive circuit 15, and the source of the selection transistor SL is connected to the second signal line sig2.
 第2の信号線sig2の一端は、定電流負荷トランジスタCLのドレインに接続される。定電流負荷トランジスタCLのドレインはまた、図2を参照して上述されたコラム信号処理回路17に接続され、出力電圧Voをコラム信号処理回路17に出力する。定電流負荷トランジスタCLのゲートは、出力電圧Voが読み出されているときに、定電流負荷トランジスタCLが定電流負荷となるように例えば直流電圧に接続される。定電流負荷トランジスタCLのソースは、接地電圧に接続される。 One end of the second signal line sig2 is connected to the drain of the constant current load transistor CL. The drain of the constant current load transistor CL is also connected to the column signal processing circuit 17 described above with reference to FIG. 2 and outputs an output voltage Vo to the column signal processing circuit 17. The gate of the constant current load transistor CL is connected to, for example, a DC voltage so that the constant current load transistor CL becomes a constant current load when the output voltage Vo is read. The source of the constant current load transistor CL is connected to the ground voltage.
 また、受光素子PDのカソードの電圧を電圧VPDといい、第1の信号線sig1の電圧を電圧Vsig1といい、容量CmR1の電圧を電圧VCmR1といい、容量CmR2の電圧を電圧VCmR2といい、容量CmSの電圧を電圧VCmSといい、第2の信号線sig2の電圧を電圧Vsig2という。 Also, refer to cathode voltage of the light-receiving element PD and the voltage V PD, a first voltage of the signal line sig1 called voltage V sig1, capacitance voltage CMR1 called voltage V CMR1 the voltage a voltage of the capacitor CMR2 V CMR2 The voltage of the capacitor CmS is called the voltage V CmS, and the voltage of the second signal line sig2 is called the voltage V sig2 .
 また、行駆動回路15から画素40に出力される駆動信号を以下に示す。
(1)駆動信号VRT:リセットトランジスタRTのゲートに印加されてリセットトランジスタRTをオンオフさせる駆動信号であり、駆動信号VRTがハイレベルのときリセットトランジスタRTはオンされ、駆動信号VRTがローレベルのときリセットトランジスタRTはオフされる。
(2)駆動信号VSwO:出力スイッチトランジスタSwOのゲートに印加されて出力スイッチトランジスタSwOをオンオフさせる駆動信号であり、駆動信号VSwOがハイレベルのとき出力スイッチトランジスタSwOはオンされ、駆動信号VSwOがローレベルのとき出力スイッチトランジスタSwOはオフされる。
(3)駆動信号VSwR1:容量スイッチトランジスタSwR1のゲートに印加されて容量スイッチトランジスタSwR1をオンオフさせる駆動信号であり、駆動信号VSwR1がハイレベルのとき容量スイッチトランジスタSwR1はオンされ、駆動信号VSwR1がローレベルのとき容量スイッチトランジスタSwR1はオフされる。
(4)駆動信号VSwR2:容量スイッチトランジスタSwR2のゲートに印加されて容量スイッチトランジスタSwR2をオンオフさせる駆動信号であり、駆動信号VSwR2がハイレベルのとき容量スイッチトランジスタSwR2はオンされ、駆動信号VSwR2がローレベルのとき容量スイッチトランジスタSwR2はオフされる。
(5)駆動信号VSwS:容量スイッチトランジスタSwSのゲートに印加されて容量スイッチトランジスタSwSをオンオフさせる駆動信号であり、駆動信号VSwSがハイレベルのとき容量スイッチトランジスタSwSはオンされ、駆動信号VSwSがローレベルのとき容量スイッチトランジスタSwSはオフされる。
(6)駆動信号VIT:初期化トランジスタITのゲートに印加されて初期化トランジスタITをオンオフさせる駆動信号であり、駆動信号VITがハイレベルのとき初期化トランジスタITはオンされ、駆動信号VITがローレベルのとき初期化トランジスタITはオフされる。
(7)駆動信号VSL:選択トランジスタSLのゲートに印加されて選択トランジスタSLをオンオフさせる駆動信号であり、駆動信号VSLがハイレベルのとき選択トランジスタSLはオンされ、駆動信号VSLがローレベルのとき選択トランジスタSLはオフされる。
Further, drive signals output from the row drive circuit 15 to the pixels 40 are shown below.
(1) Drive signal V RT : A drive signal applied to the gate of the reset transistor RT to turn the reset transistor RT on and off. When the drive signal V RT is at high level, the reset transistor RT is turned on and the drive signal V RT is low. When it is at level, the reset transistor RT is turned off.
(2) Drive signal V SwO : A drive signal applied to the gate of the output switch transistor SwO to turn on / off the output switch transistor SwO. When the drive signal V SwO is at high level, the output switch transistor SwO is turned on, and the drive signal V SwO is turned on. When SwO is at low level, the output switch transistor SwO is turned off.
(3) Drive signal V SwR1 : A drive signal applied to the gate of the capacitive switch transistor SwR1 to turn on / off the capacitive switch transistor SwR1. When the drive signal V SwR1 is at high level, the capacitive switch transistor SwR1 is turned on. When SwR1 is at low level, the capacitance switch transistor SwR1 is turned off.
(4) Drive signal V SwR2 : A drive signal applied to the gate of the capacitive switch transistor SwR2 to turn on / off the capacitive switch transistor SwR2, and when the drive signal V SwR2 is at high level, the capacitive switch transistor SwR2 is turned on. When SwR2 is at low level, the capacitance switch transistor SwR2 is turned off.
(5) Drive signal V SwS : A drive signal applied to the gate of the capacitive switch transistor SwS to turn on / off the capacitive switch transistor SwS. When the drive signal V SwS is at high level, the capacitive switch transistor SwS is turned on. When SwS is at low level, the capacitance switch transistor SwS is turned off.
(6) Drive signal V IT : A drive signal applied to the gate of the initialization transistor IT to turn on and off the initialization transistor IT. When the drive signal V IT is at high level, the initialization transistor IT is turned on, and the drive signal V IT is turned on. When IT is low, the initialization transistor IT is turned off.
(7) Drive signal V SL : A drive signal applied to the gate of the selection transistor SL to turn the selection transistor SL on and off. When the drive signal V SL is at high level, the selection transistor SL is turned on and the drive signal V SL is low. When it is at level, the selection transistor SL is turned off.
 上述したように、行駆動回路15は、画素アレイA40の行毎に駆動信号を出力するので、画素アレイA40の第i行の画素40に出力される駆動信号を上述した駆動信号の後に(i)を連結することによって表すこととする。例えば、第i行の画素40に出力される駆動信号VSwSは、駆動信号VSwS(i)と表す。また、上述した(i)を連結しない場合は、画素アレイA40のすべての行の画素40に出力される駆動信号を表すこととする。さらに、図10を参照して述べた画素40における電圧VPD,Vsig1,VCmR1,VCmR2,VCmS,Vsig2についても同様の記法を使用する。すなわち、(i)を連結した場合は画素アレイA40の第i行の画素40における電圧を表し、(i)を連結しない場合は、画素アレイA40のすべての行の画素40における電圧を表すこととする。例えば、電圧VCmS(i)は、画素アレイA40の第i行の画素40の容量CmSの電圧を表し、電圧Vsig1は、画素アレイA40のすべての行の画素40の第1の信号線sig1の電圧を示す。 As described above, since the row drive circuit 15 outputs a drive signal for each row of the pixel array A40, the drive signal to be output to the pixels 40 in the i-th row of the pixel array A40 is It shall be represented by connecting). For example, the drive signal V SwS output to the pixel 40 in the i-th row is expressed as a drive signal V SwS (i). Further, in the case where (i) described above is not connected, the drive signal output to the pixels 40 in all the rows of the pixel array A 40 is represented. Furthermore, the same notation is used for the voltages V PD , V sig1 , V CmR1 , V CmR2 , V CmS , and V sig2 in the pixel 40 described with reference to FIG. That is, when (i) is connected, the voltage at the pixel 40 in the i-th row of the pixel array A 40 is represented, and when (i) is not connected, the voltage at the pixels 40 in all the rows of the pixel array A 40 is represented. Do. For example, the voltage V CmS (i) represents the voltage of the capacitance CmS of the pixel 40 in the i-th row of the pixel array A 40, and the voltage V sig1 represents the first signal line sig 1 of the pixels 40 in all the rows of the pixel array A 40. Indicates the voltage of
 図10の画素40を有する画素アレイA40を備えた2次元イメージセンサの動作を、図11乃至図15のタイミングチャートを参照して説明する。 The operation of the two-dimensional image sensor provided with the pixel array A 40 having the pixel 40 of FIG. 10 will be described with reference to the timing charts of FIG. 11 to FIG.
 図11は、図10の画素40を有する画素アレイを備えた2次元イメージセンサの1つのフレーム周期における動作を示すタイミングチャートの第1の部分であり、図12は、図10の画素40を有する画素アレイを備えた2次元イメージセンサの1つのフレーム周期における動作を示すタイミングチャートの第2の部分である。 FIG. 11 is a first portion of a timing chart showing the operation in one frame period of a two-dimensional image sensor having a pixel array having the pixels 40 of FIG. 10, and FIG. 12 has the pixels 40 of FIG. It is a 2nd part of the timing chart which shows operation | movement in one frame period of a two-dimensional image sensor provided with a pixel array.
 図11及び図12において、駆動信号VRT,VSwO,VSwR1(i),VSwR2(i),VSwS(i),VIT(i),VSL(i),VSwR1(i+1),VSwR2(i+1),VSwS(i+1),VIT(i+1),VSL(i+1)は、上述した行駆動回路15から画素40に出力される駆動信号である。また、電圧VPD,Vsig1(i),VCmR1(i),VCmR2(i),VCmS(i),Vsig1(i+1),VCmR1(i+1),VCmR2(i+1),VCmS(i+1),Vsig2は、上述した画素40における電圧である。 In FIGS. 11 and 12, the drive signals V RT , V SwO , V SwR1 (i), V SwR2 (i), V SwS (i), V IT (i), V SL (i), V SwR1 (i + 1) , V SwR2 (i + 1), V SwS (i + 1), V IT (i + 1), and V SL (i + 1) are drive signals output from the row drive circuit 15 to the pixel 40. Also, voltages V PD , V sig 1 (i), V Cm R 1 (i), V C m R 2 (i), V C m S (i), V sig 1 (i + 1), V C m R 1 (i + 1), V C m R 2 (i + 1), V Cm S (I + 1) and V sig2 are voltages at the pixel 40 described above.
 画素アレイA40を備えた2次元イメージセンサの動作は、画素アレイA40のすべての画素40を初期化するための初期化動作と、画素アレイA40のすべての画素40が一括して動作して、リセット信号を容量SwR1又は容量SwR2に書き込みかつ光信号を容量SwSに書き込む動作を実行する書き込み位相と、画素アレイA40の画素40が行毎に動作して、リセット信号を容量SwR1又は容量SwR2から読み出しかつ光信号を容量SwSから読み出す動作を実行する読み出し位相とで構成される。また、書き込み位相と読み出し位相とを合わせてフレーム周期という。なお、本実施形態においては、1つのフレームは、順次走査方式における1つの画面の画像データを含む。 The operation of the two-dimensional image sensor provided with the pixel array A40 includes an initialization operation for initializing all the pixels 40 of the pixel array A40 and a reset operation in which all the pixels 40 of the pixel array A40 operate collectively. A write phase for writing a signal in the capacitor SwR1 or the capacitor SwR2 and a write phase for writing an optical signal in the capacitor SwS, and the pixels 40 of the pixel array A40 operate row by row to read a reset signal from the capacitor SwR1 or the capacitor SwR2 and It comprises the read phase which performs the operation which reads an optical signal from capacity SwS. Further, the write phase and the read phase are collectively referred to as a frame period. In the present embodiment, one frame includes image data of one screen in the progressive scanning method.
 まず、初期化動作について説明する。ここでは、画素アレイA40の第i行に含まれる画素40の動作について説明するが、他の行に含まれる画素40も同様に動作する。初期化動作では、駆動信号VSwR1(i),VSwR2(i),VSwS(i)をハイレベルにすることにより容量スイッチトランジスタSwR1、SwR2、SwSをオンした状態で、駆動信号VIT(i)をハイレベルにすることにより初期化トランジスタITをオンして、容量CmR1,CmR2,CmSの電圧VCmR1(i),VCmR2(i),VCmS(i)を電圧Vsに初期化する。なお、後述するように、上述した動作と同様の初期化動作が、行毎に読み出し位相の最後においても実行される。 First, the initialization operation will be described. Here, the operation of the pixels 40 included in the i-th row of the pixel array A 40 will be described, but the pixels 40 included in other rows operate similarly. In the initialization operation, the driving signal V SwR1 (i), V SwR2 (i), while on the volume switch transistor SWR1, SWR2, SwS by the V SwS (i) the high level, the drive signal V IT ( The initialization transistor IT is turned on by setting i) high level to initialize the voltages V CmR1 (i), V CmR2 (i) and V CmS (i) of the capacitors CmR1, CmR2 and CmS to the voltage Vs . Note that, as described later, the same initialization operation as the above-described operation is also performed at the end of the read phase row by row.
 次に、書き込み位相について説明する。書き込み位相では、画素アレイA40のすべての画素40が一括して同時に動作する。ここでは、画素アレイA40の第i行に含まれる画素40の動作について説明するが、他の行に含まれる画素40も同様に動作する。また、書き込み位相において処理されるフレームが、奇数番目のフレーム(以下、奇数フレームという。)のときと偶数番目のフレーム(以下、偶数フレームという。)のときとで動作が異なるので、まず、奇数フレームを処理する場合について説明し、その後偶数フレームを処理する場合について説明する。 Next, the write phase will be described. In the write phase, all the pixels 40 of the pixel array A 40 simultaneously operate at once. Here, the operation of the pixels 40 included in the i-th row of the pixel array A 40 will be described, but the pixels 40 included in other rows operate similarly. Also, since the operation of the frame to be processed in the writing phase is different between the odd-numbered frame (hereinafter referred to as odd frame) and the even-numbered frame (hereinafter referred to as even frame), The case of processing a frame will be described, and then the case of processing an even frame will be described.
 時刻t1において、駆動信号VSwOがハイレベルにされ出力スイッチトランジスタSwOがオンされて、第1の増幅トランジスタSF1のソースが、3つの容量スイッチトランジスタSwR1,SwR2,SwSのドレインに接続される。 At time t1, the drive signal V SwO is set to the high level, the output switch transistor SwO is turned on, and the source of the first amplification transistor SF1 is connected to the drains of the three capacitive switch transistors SwR1, SwR2, and SwS.
 時刻t2からの期間T2において、第1の増幅トランジスタSF1のゲートの電圧VPDは、受光素子PDが入射光により蓄積した信号電荷により発生する電圧である。このとき、信号電荷の量に応じて、電圧VPDが変化する。信号電荷が存在しない場合、電圧VPDは電圧VsigS1となり、信号電荷が存在する場合、電圧VPDは電圧VsigS2となる。以下、信号電荷により発生する電圧を電圧VsigS(VsigS2≦VsigS≦VsigS1)という。ここで、電圧Vsig1(i)は、第1の増幅トランジスタSF1を備えゲインG3(G3<1)を有するソースフォロワ回路の出力電圧であり、電圧Vsig1(i)の変化分は、ソースフォロワ回路の入力電圧VPDの変化分のG3倍となり、電圧Vsig1(i)の波形は、電圧VPDの波形と相似となる。またこの時、駆動信号VSwSがハイレベルにされスイッチトランジスタSwSがオンされるが、上述した初期化動作によって容量CmSの電圧VCmS(i)は電圧Vsであるので、第1の増幅トランジスタSF1がオンされて、第1の増幅トランジスタSF1のソースから容量CmSに向けて充電電流が流れ、容量CmSが充電される。第1の増幅トランジスタSF1が飽和領域での動作からサブスレッショルド領域での動作に移行した時点で、容量CmSの電圧VCmS(i)はほぼ安定した電圧VsigSとなる。すなわち、容量スイッチトランジスタSwSがオンである期間T2は、第1の増幅トランジスタSF1が飽和領域での動作からサブスレッショルド領域での動作に移行するまでの期間である。また、電圧VsigSは、受光素子PDが入射光により蓄積した信号電荷により発生する電圧(光信号)に相当する。 In a period T2 from time t2, the voltage V PD of the gate of the first amplification transistor SF1 is a voltage generated by the signal charge accumulated by the light receiving element PD by the incident light. At this time, the voltage V PD changes in accordance with the amount of signal charge. When there is no signal charge, the voltage V PD is the voltage VsigS 1, and when there is a signal charge, the voltage V PD is the voltage VsigS 2. Hereinafter, the voltage generated by the signal charge is referred to as a voltage VsigS (VsigS2 ≦ VsigS ≦ VsigS1). Here, the voltage V sig1 (i) is an output voltage of a source follower circuit including the first amplification transistor SF1 and having a gain G3 (G3 <1), and the variation of the voltage V sig1 (i) is a source follower The amount of change of the input voltage V PD of the circuit is G3 times as large as that of the voltage V sig1 (i), and the waveform of the voltage V sig1 (i) is similar to the waveform of the voltage V PD . At this time, the drive signal V SwS is set to the high level and the switch transistor SwS is turned on. However, the voltage V CmS (i) of the capacitor CmS is the voltage Vs by the above-described initializing operation. Is turned on, a charging current flows from the source of the first amplification transistor SF1 toward the capacitance CmS, and the capacitance CmS is charged. When the first amplification transistor SF1 shifts from the operation in the saturation region to the operation in the subthreshold region, the voltage V CmS (i) of the capacitor CmS becomes a substantially stable voltage VsigS. That is, a period T2 during which the capacitive switch transistor SwS is on is a period until the first amplification transistor SF1 shifts from the operation in the saturation region to the operation in the subthreshold region. Further, the voltage VsigS corresponds to a voltage (optical signal) generated by the signal charge accumulated by incident light by the light receiving element PD.
 次いで、時刻t3からの期間T3において、駆動信号VRTがハイレベルにされリセットトランジスタRTがオンされて、電圧VPDが電源電圧Vdd又はそれに対応するリセットトランジスタRTのソース電圧にリセットされる。換言すれば、受光素子PDに蓄積された信号電荷が電源へ排出されて、受光素子PDがリセットされる。 Next, in a period T3 from time t3, the drive signal V RT is set to the high level, the reset transistor RT is turned on, and the voltage V PD is reset to the power supply voltage Vdd or the source voltage of the corresponding reset transistor RT. In other words, the signal charge accumulated in the light receiving element PD is discharged to the power supply, and the light receiving element PD is reset.
 その後、時刻t4からの期間T4において、駆動信号VSwR1(i)がハイレベルにされ容量スイッチトランジスタSwR1がオンされて、第1の増幅トランジスタSF1のソースから容量CmR1に向けて充電電流が流れ、第1の増幅トランジスタSF1が飽和領域での動作からサブスレッショルド領域での動作に移行した時点で、容量CmR1の電圧VCmR1(i)はほぼ安定した電圧VsigRとなる。また、電圧VsigRは、リセットトランジスタRTがオンされたときの受光素子PDのカソードの電圧(リセット信号)に相当する。 Thereafter, in a period T4 from time t4, the drive signal V SwR1 (i) is set to the high level, the capacitance switch transistor SwR1 is turned on, and a charging current flows from the source of the first amplification transistor SF1 to the capacitance CmR1. When the first amplification transistor SF1 shifts from the operation in the saturation region to the operation in the subthreshold region, the voltage V CmR1 (i) of the capacitor CmR1 becomes a substantially stable voltage VsigR. The voltage VsigR corresponds to the voltage (reset signal) of the cathode of the light receiving element PD when the reset transistor RT is turned on.
 次いで、時刻t5において、駆動信号VSwOがローレベルにされ出力スイッチトランジスタSwOがオフされて、第1の増幅トランジスタSF1のソースが、3つの容量スイッチトランジスタSwR1,SwR2,SwSのドレインと切断される。 Next, at time t5, the drive signal V SwO is set to low level, the output switch transistor SwO is turned off, and the source of the first amplification transistor SF1 is disconnected from the drains of the three capacitance switch transistors SwR1, SwR2, and SwS. .
 一方、処理されるフレームが偶数フレームのときは、処理されるフレームが奇数フレームのときと比較して、容量CmR2にリセット信号を書き込む点のみが異なる。すなわち、上述した期間T4において、駆動信号VSwR1(i)を駆動信号VSwR2(i)に変更し、容量スイッチトランジスタSwR1を容量スイッチトランジスタSwR2に変更し、容量CmR1を容量CmR2に変更し、かつ電圧VCmR1(i)を電圧VCmR2(i)に変更すると、偶数フレームのときの動作となる。 On the other hand, when the frame to be processed is an even frame, the only difference is that the reset signal is written to the capacitor CmR2 compared to when the frame to be processed is an odd frame. That is, in the period T4 as described above, the driving signal V SWR1 (i) is changed to a drive signal V SWR2 (i), to change the volume switch transistor SWR1 to the capacitor switching transistor SWR2, change the volume CmR1 the capacity CMR2, and When the voltage V CmR1 (i) is changed to the voltage V CmR2 (i), the operation in the even frame is performed.
 次に、読み出し位相について説明する。読み出し位相では、後述する1水平走査期間(1H)を単位として、画素アレイA40のそれぞれの行が順次駆動される。ここで、上述したように、書き込み位相の時刻t5において出力スイッチトランジスタSwOはオフにされるので、第1の増幅トランジスタSF1と3つの容量スイッチトランジスタSwR1,SwR2,SwSとは接続されていない。第2の信号線の電圧Vsig2は、第2の増幅トランジスタSF2を備えゲインG4(G4<1)を有するソースフォロワ回路の出力電圧となっており、電圧Vsig2の変化分は、ソースフォロワ回路の入力電圧である各行の第1の信号線の電圧Vsig1(i)の変化分のG4倍となり、電圧Vsig2の波形は、電圧Vsig1(i)の波形と相似となる。また、読み出し位相において処理されるフレームが、奇数フレームのときと偶数フレームのときとで動作が異なるので、まず、奇数フレームを処理する場合について説明し、その後偶数フレームを処理する場合について説明する。 Next, the read phase will be described. In the reading phase, the respective rows of the pixel array A40 are sequentially driven in units of one horizontal scanning period (1H) described later. Here, as described above, since the output switch transistor SwO is turned off at time t5 of the write phase, the first amplification transistor SF1 and the three capacitive switch transistors SwR1, SwR2, and SwS are not connected. The voltage V sig2 of the second signal line is the output voltage of the source follower circuit provided with the second amplification transistor SF2 and having the gain G4 (G4 <1), and the variation of the voltage V sig2 is the source follower circuit of becomes G4 times the variation input voltage at which the voltage of the first signal line row V sig1 (i), the waveform of the voltage V sig2, a similar to the waveform of the voltage V sig1 (i). In addition, since frames to be processed in the read phase are different between the odd frame and the even frame, the case of processing the odd frame will be described first, and then the case of processing the even frame will be described.
 最初に、画素アレイA40の第i行に含まれる画素40について説明する。まず、時刻t6からの期間T6において、駆動信号VIT(i)がハイレベルにされ初期化トランジスタITがオンされて、第2の増幅トランジスタSF2のゲートの電圧、すなわち電圧Vsig1(i)が電圧Vsにリセットされる。 First, the pixels 40 included in the i-th row of the pixel array A 40 will be described. First, in period T6 from time t6, the drive signal V IT (i) is set to the high level, the initialization transistor IT is turned on, and the voltage of the gate of the second amplification transistor SF2, that is, the voltage V sig1 (i) It is reset to the voltage Vs.
 次いで、時刻t7からの期間T7において、駆動信号VSL(i)がハイレベルにされ選択トランジスタSLがオンされて、第2の増幅トランジスタSF2が活性化するとともに、駆動信号VSwR2(i)がハイレベルにされ容量スイッチトランジスタSwR2がオンされて、リセット信号を表す電圧VsigRが容量CmR2から第1の信号線sig1、第2の増幅トランジスタSF2、及び選択トランジスタSLを介して第2の信号線sig2に出力される。 Next, in a period T7 from time t7, the drive signal V SL (i) is set to the high level, the selection transistor SL is turned on, and the second amplification transistor SF2 is activated, and the drive signal V SwR2 (i) The capacitor switch transistor SwR2 is turned high and the capacitor switch transistor SwR2 is turned on, and the voltage VsigR representing the reset signal is transferred from the capacitor CmR2 to the second signal line sig2 through the first signal line sig1, the second amplification transistor SF2, and the selection transistor SL. Output to
 次いで、時刻t8からの期間T8において、容量スイッチトランジスタSwR2がオン状態のまま初期化トランジスタITがオンされて、容量CmR2の電圧VCmR2(i)が電圧Vsに初期化される。 Next, in period T8 from time t8, the initialization transistor IT is turned on while the capacitance switch transistor SwR2 is on, and the voltage V CmR2 (i) of the capacitance CmR2 is initialized to the voltage Vs.
 次いで、時刻t9からの期間T9において、選択トランジスタSLがオン状態のまま駆動信号VSwS(i)がハイレベルにされ容量スイッチトランジスタSwSがオンされて、光信号を表す電圧VsigSが、容量CmSから第1の信号線sig1、第2の増幅トランジスタSF2、及び選択トランジスタSLを介して第2の信号線sig2に出力される。 Next, in a period T9 from time t9, the drive signal V SwS (i) is turned high while the selection transistor SL is in the on state, the capacitance switch transistor SwS is turned on, and the voltage VsigS representing the optical signal is The signal is output to the second signal line sig2 via the first signal line sig1, the second amplification transistor SF2, and the selection transistor SL.
 最後に、時刻t10からの期間T10において、容量スイッチトランジスタSwSがオン状態のまま初期化トランジスタITがオンされて、容量CmSの電圧VCmS(i)が電圧Vsに初期化される。この後、画素アレイA40の第i+1行に含まれる画素40について上述した読み出し動作と同様の動作が行われる。 Finally, in a period T10 from time t10, the initialization transistor IT is turned on while the capacitance switch transistor SwS is on, and the voltage V CmS (i) of the capacitance CmS is initialized to the voltage Vs. Thereafter, the same operation as the above-described read operation is performed on the pixels 40 included in the (i + 1) th row of the pixel array A40.
 一方、処理されるフレームが偶数フレームのときは、処理されるフレームが奇数フレームのときと比較して、容量CmR1からリセット信号を読み出す点のみが異なる。すなわち、上述した期間T7及び期間T8において、駆動信号VSwR2(i)を駆動信号VSwR1(i)に変更し、容量スイッチトランジスタSwR2を容量スイッチトランジスタSwR1に変更し、容量CmR2を容量CmR1に変更し、かつ電圧VCmR2(i)を電圧VCmR1(i)に変更すると、偶数フレームのときの動作となる。 On the other hand, when the frame to be processed is an even frame, the only difference is that the reset signal is read out from the capacitor CmR1 compared to when the frame to be processed is an odd frame. That is, changes in the period T7 and time T8 described above, the driving signal V SWR2 (i) is changed to a drive signal V SWR1 (i), to change the volume switch transistor SWR2 the capacitance switching transistor SWR1, the capacity CmR2 the capacity CmR1 and, and by changing the voltage V CMR2 (i) to a voltage V CMR1 (i), the operation when the even-numbered frame.
 読み出し動作で説明したように、上述した初期化動作が、行毎に期間T8及び期間T10で実行される。以降、第i行の読み出しを実行している時刻t6から期間T10が終了するまでの期間を、第i行の読み出し期間Trd(i)という。また、第i行の読み出し動作を開始する時刻t6から第i+1行の読み出し動作を開始する時刻t6aまでの期間を1水平走査期間(1H)という。 As described in the read operation, the above-described initialization operation is performed row by row in periods T8 and T10. Hereinafter, a period from time t6 when the readout of the i-th row is executed to the end of the period T10 is referred to as a readout period Trd (i) of the i-th row. A period from time t6 when the read operation of the i-th row is started to time t6a when the read operation of the (i + 1) th row is started is referred to as one horizontal scanning period (1H).
 上述した書き込み動作において容量CmSに書き込まれる光信号は、1フレーム前の書き込み位相における期間T3において受光素子PDに蓄積された信号電荷を電源に排出した後、受光素子PDに蓄積された信号電荷に相当する。したがって、奇数フレームの光信号は1フレーム前の偶数フレームのリセット信号とノイズ相関があり、偶数フレームの光信号は1フレーム前の奇数フレームのリセット信号とノイズ相関がある。上述したように、書き込み位相において、奇数フレームを処理しているときは、光信号を容量CmSに書き込み、リセット信号を容量CmR1に書き込み、偶数フレームを処理しているときは、光信号を容量CmSに書き込み、リセット信号を容量CmR2に書き込む。一方、読み出し位相において、奇数フレームを処理しているときは、当該フレームの書き込み処理で容量CmSに書き込まれた光信号と、1フレーム前の書き込み処理で容量CmR2に書き込まれたリセット信号とを読み出し、偶数フレームを処理しているときは、当該フレームの書き込み処理で容量CmSに書き込まれた光信号と、1フレーム前の書き込み処理で容量CmR1に書き込まれたリセット信号とを読み出す。これにより、ノイズ相関のある光信号とリセット信号とをペアで読み出すことが可能となる。 The optical signal written to the capacitor CmS in the above-described write operation discharges the signal charge accumulated in the light receiving element PD to the power supply in the period T3 in the writing phase one frame before to the signal charge accumulated in the light receiving element PD. Equivalent to. Therefore, the light signal of the odd frame has noise correlation with the reset signal of the even frame one frame before, and the light signal of the even frame has noise correlation with the reset signal of the odd frame one frame before. As described above, in the write phase, when processing an odd frame, write the optical signal to the capacitor CmS, write the reset signal to the capacitor CmR1, and process the even frame, the optical signal to the capacitor CmS. , And writes a reset signal to the capacitor CmR2. On the other hand, when an odd frame is being processed in the read phase, the optical signal written to the capacitor CmS in the write process of the frame and the reset signal written to the capacitor CmR2 in the write process one frame earlier are read When an even frame is being processed, the optical signal written to the capacitor CmS in the writing process of the frame and the reset signal written to the capacitor CmR1 in the writing process of one frame before are read. This makes it possible to read out the noise-correlated optical signal and the reset signal in pairs.
 図13は、図10の画素40を有する画素アレイを備えた2次元イメージセンサの2つのフレーム周期における動作を示すタイミングチャートである。図13のタイミングチャートは、奇数フレームを処理するフレーム周期と偶数フレームを処理するフレーム周期との2つフレーム周期における容量CmS,CmR1,CmR2に対する書き込み動作と読み出し動作とを示したものであり、図11及び図12と同様の時刻及び期間を示す時刻及び期間には、同一の符号を付している。 FIG. 13 is a timing chart showing the operation in two frame periods of the two-dimensional image sensor provided with the pixel array having the pixels 40 of FIG. The timing chart of FIG. 13 shows the write operation and the read operation for the capacitances CmS, CmR1, and CmR2 in two frame periods of a frame period for processing an odd frame and a frame period for processing an even frame. The same reference numerals are attached to the times and periods indicating the same times and periods as those in FIG.
 まず、奇数フレームの書き込み位相において、光信号を容量CmSに書き込み、受光素子PDをリセットしたリセット信号を容量CmR1に書き込む。次いで、奇数フレームの読み出し位相において、1フレーム前の書き込み動作で容量CmR2に書き込まれたリセット信号と、容量CmSに書き込まれた光信号とを読み出す。次いで、偶数フレームの書き込み位相において、光信号を容量CmSに書き込み、受光素子PDをリセットしたリセット信号を容量CmR2に書き込む。次いで、偶数フレームの読み出しにおいて、1フレーム前の書き込み動作で容量CmR1に書き込まれたリセット信号と、容量CmSに書き込まれた光信号とを読み出す。このとき、リセット信号を容量CmR1に書き込んだ後から光信号を容量CmSに書き込んだ後までの期間が露光蓄積時間(Tint)となる。 First, in the write phase of the odd-numbered frame, an optical signal is written to the capacitor CmS, and a reset signal obtained by resetting the light receiving element PD is written to the capacitor CmR1. Next, in the read phase of the odd-numbered frame, the reset signal written to the capacitor CmR2 in the write operation one frame before and the optical signal written to the capacitor CmS are read. Next, in the write phase of the even frame, the optical signal is written to the capacitor CmS, and the reset signal obtained by resetting the light receiving element PD is written to the capacitor CmR2. Next, in the reading of the even frame, the reset signal written to the capacitor CmR1 in the write operation one frame before and the optical signal written to the capacitor CmS are read. At this time, the exposure accumulation time (Tint) is a period after the reset signal is written to the capacitor CmR1 and after the light signal is written to the capacitor CmS.
 上述した書き込み動作及び読み出し動作により、画素40から読み出されるリセット信号と光信号とは、ノイズ相関のあるペアとなるので、例えば図2のコラム信号処理回路17が、電圧VsigRと電圧VsigSとの差を取るCDS処理を行えば、受光素子PDでのリセットノイズ、及び第1の増幅トランジスタSF1、並びに第2の増幅トランジスタSF2それぞれのしきい値のばらつきに起因する固定パターンノイズが除去され、高画質の画像信号を得ることができる。 Since the reset signal and the light signal read from the pixel 40 become a pair with noise correlation by the write operation and the read operation described above, for example, the difference between the voltage VsigR and the voltage VsigS in the column signal processing circuit 17 of FIG. If the CDS processing is performed, fixed pattern noise caused by variations in the reset noise in the light receiving element PD and the threshold variation of the first amplification transistor SF1 and the second amplification transistor SF2 is removed, and high image quality is achieved. Can be obtained.
 図11、図12及び図13のタイミングチャートでは、光信号は、書き込み位相から次の書き込み位相までの期間、すなわちフルフレーム期間に受光素子PDで蓄積された信号電荷に相当する電圧であったが、信号電荷を蓄積する時間(以下、露光蓄積時間(Tint)という。)を任意の長さに短縮するシャッタ動作も可能である。 In the timing charts of FIG. 11, FIG. 12 and FIG. 13, the light signal is a voltage corresponding to the signal charge accumulated in the light receiving element PD in the period from the write phase to the next write phase, It is also possible to use a shutter operation to shorten the time for accumulating signal charges (hereinafter referred to as exposure accumulation time (Tint)) to an arbitrary length.
 図14は、図10の画素40を有する画素アレイを備えた2次元イメージセンサのシャッタ動作を示すタイミングチャートである。ここで、図14に示した駆動信号VSwO,VRT,VSwR1(i),VSwR2(i),VSwS(i),VIT(i),VSL(i),VSwR1(i+1),VSwR2(i+1),VSwS(i+1),VIT(i+1),VSL(i+1)は、図11及び図12のタイミングチャートで説明したものと同様である。また、図11及び図12と同様の時刻及び期間を示す時刻及び期間には、同一の符号を付している。 FIG. 14 is a timing chart showing the shutter operation of the two-dimensional image sensor provided with the pixel array having the pixels 40 of FIG. Here, the drive signals V SwO , V RT , V SwR1 (i), V SwR2 (i), V SwS (i), V IT (i), V SL (i), V Sw R1 (i + 1) shown in FIG. , V SwR2 (i + 1), V SwS (i + 1), V IT (i + 1), and V SL (i + 1) are the same as those described in the timing charts of FIGS. The same reference numerals are given to the times and periods indicating the same times and periods as those in FIGS. 11 and 12.
 シャッタ位相では、画素アレイA40のすべての画素40が一括して動作して、受光素子PDに蓄積された信号電荷を排出し、かつ容量CmR1又は容量CmR2に受光素子PDをリセットしたリセット信号を書き込む動作(以下、シャッタ動作という。)が実行される。なお、第1の実施形態の場合は、シャッタ動作においてリセット信号を容量CmRに書き込まないが、本実施形態では、リセット信号の書き込みも行われる。シャッタ位相は、読み出し位相において、各行の読み出し期間Trdと重ならないように任意の期間に設定されてもよい。図14のタイミングチャートでは、時刻t15から時刻t18までがシャッタ位相であり、第i行の画素の読み出し期間Trd(i)と第i+1行の画素の読み出し期間Trd(i+1)との間に設定されている。シャッタ位相以外の部分の読み出し位相は、上述した読み出し位相と同様である。 In the shutter phase, all the pixels 40 of the pixel array A 40 operate collectively to discharge the signal charge accumulated in the light receiving element PD, and write a reset signal in which the light receiving element PD is reset to the capacitance CmR1 or CmR2. An operation (hereinafter referred to as a shutter operation) is performed. In the first embodiment, the reset signal is not written to the capacitor CmR in the shutter operation, but in the present embodiment, the writing of the reset signal is also performed. The shutter phase may be set to an arbitrary period so as not to overlap with the readout period Trd of each row in the readout phase. In the timing chart of FIG. 14, the shutter phase is from time t15 to time t18, and is set between the readout period Trd (i) of the pixel in the i-th row and the readout period Trd (i + 1) of the pixel in the i + 1th row. ing. The readout phase of the portion other than the shutter phase is the same as the readout phase described above.
 また、シャッタ位相において処理されるフレームが、奇数フレームのときと偶数フレームのときとで動作が異なるので、まず、奇数フレームの場合について説明し、その後偶数フレームの場合について説明する。 Further, since the frames processed in the shutter phase are different between the odd frame and the even frame, the case of the odd frame will be described first, and then the case of the even frame will be described.
 まず、時刻t15から時刻t16までの期間において、駆動信号VSwO及び駆動信号VRTがハイレベルにされ出力スイッチトランジスタSwO及びリセットトランジスタRTがオンされて、受光素子PDに蓄積された電荷がリセットトランジスタRTのドレインへ排出される。 First, in the period from time t15 to time t16, the drive signal V SwO and the drive signal V RT are set to the high level, and the output switch transistor SwO and the reset transistor RT are turned on to reset the charge accumulated in the light receiving element PD. It is drained to the drain of RT.
 次いで、時刻t17から時刻t18までの期間において、駆動信号VSwOがハイレベルのまま駆動信号VSwR1(i)がハイレベルにされ容量スイッチトランジスタSwR1がオンされて、第1の増幅トランジスタSF1のソースから容量CmR1に向けて充電電流が流れ、第1の増幅トランジスタSF1が飽和領域での動作からサブスレッショルド領域での動作に移行した時点で、容量CmR1の電圧はほぼ安定した電圧VsigRとなり、これがリセット信号に相当する。シャッタ位相における時刻t18において容量SwR1へのリセット信号の書き込みが終了してから、次の書き込み位相における期間T2が終了して容量スイッチトランジスタSwSがオフするまでの期間が、有効な露光蓄積期間Tintとなり、この期間に受光素子PDに蓄積された信号電荷による電圧を、次の書き込み位相で容量SwSに書き込む。読み出し位相においてシャッタ位相を設定する時刻を変化させることにより、露光蓄積期間Tintの長さを変化させることができる。 Next, in the period from time t17 to time t18, the drive signal V SwR1 (i) is kept high while the drive signal V SwO is high, and the capacitance switch transistor SwR1 is turned on, so that the source of the first amplification transistor SF1 is turned on. When the first amplification transistor SF1 shifts from the operation in the saturation region to the operation in the subthreshold region, the voltage of the capacitor CmR1 becomes a substantially stable voltage VsigR, which causes a reset. It corresponds to a signal. A period from the end of the writing of the reset signal to the capacitor SwR1 at time t18 in the shutter phase to the end of the period T2 in the next writing phase and the turning off of the capacitive switch transistor SwS is an effective exposure accumulation period Tint. The voltage due to the signal charge stored in the light receiving element PD in this period is written to the capacitor SwS in the next write phase. The length of the exposure accumulation period Tint can be changed by changing the time to set the shutter phase in the read phase.
 一方、処理されるフレームが偶数フレームのときは、処理されるフレームが奇数フレームのときと比較して、容量CmR2にリセット信号を書き込む点のみが異なる。すなわち、上述した時刻t17から時刻18までの期間において、駆動信号VSwR1(i)を駆動信号VSwR2(i)に変更し、容量スイッチトランジスタSwR1を容量スイッチトランジスタSwR2に変更し、容量CmR1を容量CmR2に変更すると、偶数フレームのときの動作となる。 On the other hand, when the frame to be processed is an even frame, the only difference is that the reset signal is written to the capacitor CmR2 compared to when the frame to be processed is an odd frame. That is, during the period from time t17 as described above until time 18, the driving signal V SWR1 (i) is changed to a drive signal V SWR2 (i), to change the volume switch transistor SWR1 to the capacitor switching transistor SWR2, volume capacity CmR1 If it changes to CmR2, it becomes operation at the time of an even frame.
 次に、書き込み位相について説明する。ここで説明する書き込み位相では、上述したシャッタ動作を行わない場合の書き込み位相と比較して、リセット信号を容量に書き込まない点が異なる。書き込み位相では、画素アレイA40のすべての画素が同時に受光素子PDに蓄積された信号電荷を光信号として容量CmSに書き込む動作が行われる。 Next, the write phase will be described. The write phase described here is different from the write phase when the above-described shutter operation is not performed, in that the reset signal is not written to the capacitor. In the write phase, an operation is performed in which all the pixels of the pixel array A40 simultaneously write the signal charge accumulated in the light receiving element PD as a light signal in the capacitor CmS.
 まず、時刻t1において、駆動信号VSwOがハイレベルにされ出力スイッチトランジスタSwOがオンされる。次いで、時刻t2からの期間T2において、駆動信号VSwSがハイレベルにされ容量スイッチトランジスタSwSがオンされて、第1の増幅トランジスタSF1のソースから容量CmSに向けて充電電流が流れ、容量CmSが充電される。第1の増幅トランジスタSF1が飽和領域での動作からサブスレッショルド領域での動作に移行した時点で、容量CmSの電圧はほぼ安定した電圧VsigSとなり、電圧VsigSが光信号に相当する。 First, at time t1, the drive signal V SwO is set to the high level, and the output switch transistor SwO is turned on. Next, in a period T2 from time t2, the drive signal V SwS is set to the high level, the capacitance switch transistor SwS is turned on, and a charge current flows from the source of the first amplification transistor SF1 to the capacitance CmS, and the capacitance CmS is Be charged. When the first amplification transistor SF1 shifts from the operation in the saturation region to the operation in the subthreshold region, the voltage of the capacitor CmS becomes a substantially stable voltage VsigS, and the voltage VsigS corresponds to an optical signal.
 上述した書き込み動作において容量CmSに書き込まれる光信号は、1フレーム前の読み出し位相におけるシャッタ位相において受光素子PDに蓄積された信号電荷を電源に排出した後、受光素子PDに蓄積された信号電荷に相当する。したがって、奇数フレームの光信号は1フレーム前の偶数フレームのリセット信号とノイズ相関があり、偶数フレームの光信号は1フレーム前の奇数フレームのリセット信号とノイズ相関がある。 The optical signal written to the capacitor CmS in the above-described write operation discharges the signal charge accumulated in the light receiving element PD to the power supply in the shutter phase in the reading phase one frame before to the signal charge accumulated in the light receiving element PD. Equivalent to. Therefore, the light signal of the odd frame has noise correlation with the reset signal of the even frame one frame before, and the light signal of the even frame has noise correlation with the reset signal of the odd frame one frame before.
 図15は、図10の画素40を有する画素アレイを備えた2次元イメージセンサの2つのフレーム周期におけるシャッタ動作を示すタイミングチャートである。図15のタイミングチャートは、奇数フレームを処理するフレーム周期と偶数フレームを処理するフレーム周期との2つフレーム周期における容量CmS,CmR1,CmR2に対する書き込み動作と読み出し動作とを示したものであり、図14と同様の時刻及び期間を示す時刻及び期間には、同一の符号を付している。 FIG. 15 is a timing chart showing the shutter operation in two frame periods of the two-dimensional image sensor provided with the pixel array having the pixel 40 of FIG. The timing chart of FIG. 15 shows the write operation and the read operation for the capacitances CmS, CmR1, and CmR2 in two frame periods of a frame period for processing an odd frame and a frame period for processing an even frame. The same reference numerals are attached to the times and periods indicating the same times and periods as in 14.
 まず、奇数フレームの書き込み位相において、光信号を容量CmSに書き込む。次いで、奇数フレームの読み出し位相において、1フレーム前の書き込み動作で容量CmR2に書き込まれたリセット信号と、容量CmSに書き込まれた光信号とを読み出し、読み出し位相中の特定の時刻に全画素一括動作で受光素子PDをリセットしたリセット信号を容量CmR1に書き込む。次いで、偶数フレームの書き込み位相において、光信号を容量CmSに書き込む。次いで、偶数フレームの読み出し位相において、1フレーム前の書き込み動作で容量CmR1に書き込まれたリセット信号と、容量CmSに書き込まれた光信号とを読み出し、受光素子PDをリセットしたリセット信号を容量CmR2に書き込む。したがって、画素40から読み出されるリセット信号と光信号とは、ノイズ相関のあるペアとなる。このとき、リセット信号を容量CmR1に書き込んだ後から光信号を容量CmSに書き込んだ後までの期間が露光蓄積時間(Tint)となる。 First, an optical signal is written to the capacitor CmS in the write phase of the odd frame. Next, in the read phase of the odd frame, the reset signal written to the capacitor CmR2 in the write operation one frame before and the optical signal written to the capacitor CmS are read, and all pixels are collectively operated at a specific time during the read phase. The reset signal that resets the light receiving element PD is written to the capacitor CmR1. Next, in the write phase of the even frame, the optical signal is written to the capacitor CmS. Next, in the read phase of the even frame, the reset signal written to the capacitor CmR1 in the write operation one frame before and the optical signal written to the capacitor CmS are read, and the reset signal that resets the light receiving element PD is sent to the capacitor CmR2. Write. Therefore, the reset signal and the light signal read out from the pixel 40 form a noise correlated pair. At this time, the exposure accumulation time (Tint) is a period after the reset signal is written to the capacitor CmR1 and after the light signal is written to the capacitor CmS.
 以上説明したように、第4の実施形態によれば、1画素内に1つのPN受光素子PDと、9つのトランジスタRT,SF1,SwO,SwR1,SwR2,SwS,IT,SF2,SLと、3つの容量CmR1,CmR2,CmSを用いるのみで、一括露光が可能でかつCDS処理により高画質が得られる2次元イメージセンサを構成することができる。また、リセット信号及び光信号をそれぞれ容量CmR1,CmR2,CmSに書き込むときには、容量CmR1,CmR2,CmSに過渡的な充電電流が流れるのみで大きな直流電流は流れない。さらに、リセット信号及び光信号をそれぞれ容量CmR1,CmR2,CmSから読み出すときに信号を表す電圧が低下しないので、S/N比を向上させることができる。 As described above, according to the fourth embodiment, one PN light receiving element PD, nine transistors RT, SF1, SwO, SwR1, SwR2, SwS, IT, SF2, SL, and 3 in one pixel. A two-dimensional image sensor capable of batch exposure and obtaining high image quality by the CDS process can be configured only by using two capacitors CmR1, CmR2, and CmS. Further, when the reset signal and the optical signal are written in the capacitors CmR1, CmR2 and CmS, respectively, only a transient charging current flows in the capacitors CmR1, CmR2 and CmS, and a large DC current does not flow. Furthermore, when the reset signal and the optical signal are read out from the capacitors CmR1, CmR2 and CmS, respectively, the voltage representing the signal does not decrease, so the S / N ratio can be improved.
 なお、第4の実施形態では、選択トランジスタSLを備えて画素40を構成したが、本発明はこれに限らず、第2の実施形態と同様に選択トランジスタSLを備えずに画素40を構成してもよく、この場合、画素40内のトランジスタ数は8つとなり、回路を小型化して受光素子PDの面積を増大させることができる。 In the fourth embodiment, the selection transistor SL is provided to configure the pixel 40. However, the present invention is not limited to this, and the pixel 40 is configured without the selection transistor SL as in the second embodiment. In this case, the number of transistors in the pixel 40 is eight, and the circuit can be miniaturized to increase the area of the light receiving element PD.
第5の実施形態.
 図16は、本発明の第5の実施形態に係る増幅型固体撮像装置の画素50の構成を示す回路図である。図1に示したように画素10は、埋め込み受光素子で構成された受光素子PDと、転送トランジスタTXと、リセットトランジスタRTと、第1の増幅トランジスタSF1と、第1の信号線sig1と、容量CmR,CmSと、容量スイッチトランジスタSwR,SwSと、初期化トランジスタITと、第2の増幅トランジスタSF2と、選択トランジスタSLと、第2の信号線sig2とを備えて構成されるが、図16に示す画素50は図1に示す画素10を構成する容量CmSと容量スイッチトランジスタSwSの代わりに容量CmS1,CmS2と容量スイッチトランジスタSwS1,SwS2を備えたことを特徴とする。
Fifth Embodiment
FIG. 16 is a circuit diagram showing a configuration of a pixel 50 of an amplification type solid state imaging device according to a fifth embodiment of the present invention. As shown in FIG. 1, the pixel 10 includes a light receiving element PD formed of an embedded light receiving element, a transfer transistor TX, a reset transistor RT, a first amplification transistor SF1, a first signal line sig1, and a capacitance 16 is configured to include CmR and CmS, capacitance switch transistors SwR and SwS, an initialization transistor IT, a second amplification transistor SF2, a selection transistor SL, and a second signal line sig2. A pixel 50 shown is characterized in that capacitors CmS1 and CmS2 and capacitor switch transistors SwS1 and SwS2 are provided instead of the capacitor CmS and the capacitor switch transistor SwS which constitute the pixel 10 shown in FIG.
 図17は、図16の2次元イメージセンサの書き込み動作を示すタイミングチャートである。なお、この書き込み動作を上述した実施態様と同様に全画素が一括して動作する。以下、図16の回路の動作を図17を用いて説明する。 FIG. 17 is a timing chart showing the write operation of the two-dimensional image sensor of FIG. Note that all the pixels operate at once as in the embodiment described above in the writing operation. Hereinafter, the operation of the circuit of FIG. 16 will be described with reference to FIG.
 図17において、時刻tw0からの期間Tw0において、駆動信号VTXがハイレベルVTX(H)に固定され転送トランジスタTXがオンされる。これにより、受光素子PDから電荷をフローティングディフュージョン領域FDに転送することによりPDをリセットし、その後の入射光により発生した電荷がPDに蓄積される。 In FIG. 17, in a period Tw0 from time tw0, the drive signal V TX is fixed to the high level V TX (H) , and the transfer transistor TX is turned on. Thus, the PD is reset by transferring the charge from the light receiving element PD to the floating diffusion region FD, and the charge generated by the incident light thereafter is accumulated in the PD.
 次いで、時刻tw1からの期間Tw1において、駆動信号VRTがハイレベルVRT(H)にされリセットトランジスタRTがオンされる。この時、駆動信号Vrdがハイレベルであるため、フローティングディフュージョン領域FDを介して第1の増幅トランジスタSF1のゲート電圧にはハイレベルの信号が入力されるため、第1の増幅トランジスタSF1はオンされることになる。 Next, in a period Tw1 from time tw1, the drive signal V RT is set to the high level V RT (H) , and the reset transistor RT is turned on. At this time, since the drive signal Vrd is at the high level, a high level signal is input to the gate voltage of the first amplification transistor SF1 through the floating diffusion region FD, and thus the first amplification transistor SF1 is turned on. It will be
 次いで、時刻tw2からの期間Tw2において、駆動信号VSwR(i)がハイレベルに固定され、容量スイッチトランジスタSwRをオンさせることによりフローティングディフュージョン領域FDの電位が第1の増幅トランジスタSF1を介して容量CmRに書き込まれる。 Next, in a period Tw2 from time tw2, the drive signal V SwR (i) is fixed at the high level, and the capacitive switch transistor SwR is turned on to set the potential of the floating diffusion region FD to the capacitance via the first amplification transistor SF1. Written to CmR.
 次に、時刻tw3からの期間Tw3において、駆動信号VTXがハイレベルVTX(H)に固定され転送トランジスタTXをオンさせることにより、期間Tint1(以下、長時間露光期間という。)の間に受光素子PDに蓄積した電荷を転送する(1回目電荷転送動作)。このとき、リセットトランジスタRTのゲート電圧VRTはハイレベルVRT(H)とローレベルVRT(L)の中間のミドルレベルVRT(M)とする。すなわち、VRT(H)<VRT(M)<VRT(L)である。電荷転送後はリセットトランジスタRTのゲート電圧VRTをローレベルVRT(L)に保持する。なお、期間Tw3の終了時が期間Tint2(以下、短時間露光期間という。)の開始時となる。なお、ここにおいてミドルレベルVRT(M)とはハイレベルVRT(H)とローレベルVRT(L)の間の範囲にある電位であればよく、例えば、ハイレベルVRT(H)の90%~10%の値をミドルレベルVRT(M)に設定しても構わない。 Next, in period Tw3 from time tw3, the drive signal V TX is fixed at the high level V TX (H) to turn on the transfer transistor TX, and during the period Tint1 (hereinafter referred to as a long exposure period). The charge accumulated in the light receiving element PD is transferred (first charge transfer operation). At this time, the gate voltage V RT of the reset transistor RT is a high level V RT (H) and an intermediate middle level V RT of a low level V RT (L) (M) . That is, V RT (H) <V RT (M) <V RT (L) . After charge transfer, the gate voltage V RT of the reset transistor RT is held at the low level V RT (L) . The end of the period Tw3 is the start of the period Tint2 (hereinafter, referred to as a short exposure period). Here, middle level V RT (M) may be a potential in the range between high level V RT (H) and low level V RT (L) , for example, high level V RT (H) A value of 90% to 10% may be set as the middle level V RT (M) .
 次に、転送トランジスタTXをオフした後の時刻tw4からの期間Tw4において、駆動信号VSwS1(i)がハイレベルに固定され容量スイッチトランジスタSwS1をオンさせることにより、この1回目に転送された電荷によるフローティングディフュージョン領域FDの電位が第1の増幅トランジスタSF1を介して容量CmS1に書き込まれる。 Next, in a period Tw4 from time tw4 after the transfer transistor TX is turned off, the drive signal V SwS1 (i) is fixed at the high level to turn on the capacitance switch transistor SwS1, thereby the first transferred charge The potential of the floating diffusion region FD resulting from the above is written to the capacitor CmS1 via the first amplification transistor SF1.
 次に、時刻tw5からの期間Tw5において、駆動信号VTXがハイレベルVTX(H)に固定され転送トランジスタTXをオンさせることにより期間Tint2の間にPDに蓄積した電荷を転送する(2回目電荷転送動作)。この間リセットトランジスタRTのゲート電圧はローレベルVRT(L)である。 Next, in period Tw5 from time tw5, drive signal V TX is fixed at high level V TX (H) , and transfer transistor TX is turned on to transfer the charge accumulated in PD during period Tint2 (second time Charge transfer operation). During this time, the gate voltage of the reset transistor RT is at the low level V RT (L) .
 次に、転送トランジスタTXをオフした後の時刻tw6からの期間Tw6において、駆動信号VSwS1(i)がハイレベルに固定され容量スイッチトランジスタSwS1をオンさせることにより、この2回目に転送された電荷によるフローティングディフュージョン領域FDの電位が第1の増幅トランジスタSF1を介して容量CmS2に書き込まれる。 Next, in a period Tw6 from time tw6 after the transfer transistor TX is turned off, the drive signal V SwS1 (i) is fixed at the high level to turn on the capacitance switch transistor SwS1, thereby the charge transferred for the second time The potential of the floating diffusion region FD resulting from the above is written to the capacitor CmS2 via the first amplification transistor SF1.
 最後に、時刻tw7からの期間Tw7において、リセットトランジスタRTのドレイン電圧Vrdをローレベルとした状態でリセットトタンジスタRTをオンさせ、フローティングディフュージョン領域FDの電位をローレベルにリセットすることで第1の増幅トランジスタSF1をオフ状態にする。 Finally, in a period Tw7 from time tw7, the reset transistor RT is turned on in a state where the drain voltage Vrd of the reset transistor RT is at a low level, and the potential of the floating diffusion region FD is reset to a low level. The amplification transistor SF1 is turned off.
 次に、信号の読み出し動作について説明する。 Next, the signal read operation will be described.
 図18は、図16の増幅型固体撮像装置の読み出し動作を示すタイミングチャートである。 FIG. 18 is a timing chart showing the read operation of the amplification type solid-state imaging device of FIG.
 図18において、先ず、時刻tr0からの期間Tr0において、駆動信号VIT(i)がハイレベルに固定され初期化トランジスタIT(i)をオンし第2の増幅トランジスタSF2のゲートを電圧Vsにリセットする。次いで、駆動信号VSL(i)がハイレベルに固定され選択トランジスタSL(i)をオンした後、容量スイッチトランジスタSwR(i)をオンして容量CmR(i)に記録されたリセット信号を第2の増幅トランジスタSF2のゲートにゲート電圧として与え、第2の増幅トランジスタSF2により増幅された信号が信号線sig2へ読み出される。 In FIG. 18, first, in period Tr0 from time tr0, drive signal V.sub.IT (i) is fixed at high level to turn on initialization transistor IT (i) to reset the gate of second amplification transistor SF2 to voltage Vs. Do. Then, after the drive signal V SL (i) is turned on a fixed selection transistor SL (i) to the high level, the reset signal recorded by turning on the capacitance switching transistor SWR (i) the capacitance CmR (i) first The signal applied to the gate of the second amplification transistor SF2 as a gate voltage and the signal amplified by the second amplification transistor SF2 is read out to the signal line sig2.
 容量スイッチトランジスタSwR(i)のオン期間の後半の時刻tr1からの期間Tr1において、駆動信号VIT(i)がハイレベルに固定され初期化トランジスタIT(i)をオンし、容量CmR(i)を初期化し次のフレームを記録可能な状態にする。次いで駆動信号VSwS1(i)がハイレベルに固定され容量スイッチトランジスタSwS1(i)をオンして容量CmS1(i)に記録された長時間露光信号を第2の増幅トランジスタSF2のゲートにゲート電圧として与え、第2の増幅トランジスタSF2により増幅された信号が信号線sig2へ読み出される。 In the period Tr1 in the second half of time tr1 of the ON period of the capacitor switching transistor SWR (i), the driving signal V IT (i) are fixed to the high level to turn on the initialization transistor IT (i), capacity CmR (i) To make the next frame recordable. Next, the drive signal V SwS1 (i) is fixed at high level, the capacitance switch transistor SwS1 (i) is turned on, and the long exposure signal recorded in the capacitor CmS1 (i) is gate voltage to the gate of the second amplification transistor SF2. The signal amplified by the second amplification transistor SF2 is read out to the signal line sig2.
容量スイッチトランジスタSwS1(i)のオン期間の後半の時刻tr2からの期間Tr2において、駆動信号VSwS1(i)がハイレベルに固定され容量スイッチトランジスタSwS1がオン状態のまま、駆動信号VIT(i)がハイレベルに固定され初期化トランジスタIT(i)をオンし、容量CmS1(i)を初期化し次のフレームを記録可能な状態にする。以下同様に、容量スイッチトランジスタSwS2(i)をオンして容量CmS2(i)に記録された短時間露光信号を第2の増幅トランジスタSF2のゲートにゲート電圧として与え、第2の増幅トランジスタSF2により増幅された信号が信号線sig2へ読み出される。 In period Tr2 from time tr2 of the second half of the on period of capacitive switch transistor SwS1 (i), drive signal V SwS1 (i) is fixed at high level, and capacitive switch transistor SwS1 remains in the on state, and drive signal V IT (i ) Is fixed at high level to turn on the initialization transistor IT (i), initialize the capacitance CmS1 (i), and make the next frame ready for recording. Likewise, the capacitive switch transistor SwS2 (i) is turned on to apply the short exposure signal recorded in the capacitor CmS2 (i) to the gate of the second amplification transistor SF2 as a gate voltage, and the second amplification transistor SF2 The amplified signal is read out to the signal line sig2.
 また、同様に容量スイッチトランジスタSwS2(i)オン期間の後半の時刻tr3からの期間Tr3において、駆動信号VSwS2(i)がハイレベルに固定され容量スイッチトランジスタSwS2がオン状態のまま駆動信号VIT(i)がハイレベルに固定され初期化トランジスタITをオンし、容量CmS2(i)に係る電圧VCmR(i)が電圧Vsに初期化される。そして、次のフレームで記録可能な状態にする。時刻tr3の前(後でも可)で選択トランジスタSL(i)をオフし、第i行目の読み出し動作を終了する。 Further, in the period Tr3 in the second half of time tr3 similarly capacity switching transistor SWs2 (i) on-period, the drive signal V SwS2 (i) is still the driving signal V IT capacity switching transistors SWs2 is fixed to the high level is turned on (I) is fixed at the high level, the initialization transistor IT is turned on, and the voltage V CmR (i) related to the capacitance CmS2 (i) is initialized to the voltage Vs. Then, recording is made possible in the next frame. The select transistor SL (i) is turned off before (or after) the time tr3, and the read operation of the i-th row is finished.
 上述のように、リセットトランジスタRTのゲート電圧VRTをローレベル、ミドルレベル、ハイレベルの3つのレベルで制御する理由を以下に述べる。 The reason for controlling the gate voltage V RT of the reset transistor RT at the low level, the middle level, and the high level as described above will be described below.
 図19は、図16の増幅型固体撮像装置において、入射光により受光素子で発生した信号電荷、転送トランジスタ及びリセットトランジスタのゲート電位、フローティングディフュージョン領域の電位を模式的に示す電位図である。図19において、VTX(L),VTX(H)はそれぞれ転送トランジスタTXのゲート電位VTXがローレベル、ハイレベルであることを表し、VRT(L),VRT(M),VRT(H)はそれぞれリセットトランジスタRTのゲート電位VRTがローレベル、ミドルレベル、ハイレベルであることを表す。 FIG. 19 is a potential diagram schematically showing signal charges generated in the light receiving element by incident light, gate potentials of the transfer transistor and the reset transistor, and potential of the floating diffusion region in the amplification type solid-state imaging device of FIG. In FIG. 19, V TX (L) and V TX (H) indicate that the gate potential V TX of the transfer transistor TX is low level and high level, respectively, and V RT (L) , V RT (M) and V RT (H) is the gate voltage V RT is low level and reset transistor RT, indicating that middle level is a high level.
 図19において、最初にリセットトランジスタRTのゲート電位VRTをハイレベルとしてフローティングディフュージョン領域FD部の電位を電源Vddにリセットした後、リセットトランジスタRTのゲート電位VRTをミドルレベルVRT(M)として転送トランジスタTXのゲート電位VTXをハイレベルVTX(H)とし長時間蓄積電荷をフローティングディフュージョン領域FDへ転送する。入射光量が増大し転送された電荷が大きくなると、リセットトランジスタRTのゲート電位VRTがミドルレベルVRT(M)のため過剰な電荷はリセットトランジスタRTからオーバーフローし一定値の電荷量Q1で頭打ち状態となる。 In FIG. 19, first, the gate potential V RT of the reset transistor RT is set to the high level to reset the potential of the floating diffusion region FD to the power supply Vdd, and then the gate potential V RT of the reset transistor RT is set to the middle level V RT (M). the gate potential V TX of the transfer transistor TX and the high level V TX (H) to transfer long accumulated charges to the floating diffusion region FD. When the charge amount of incident light is increased transfer increases, plateau state charge amount Q1 constant value excess charge overflows from the reset transistor RT for resetting the gate potential of the transistor RT V RT is middle level V RT (M) It becomes.
 次に、リセットトランジスタRTのゲート電位VRTをローレベルVRT(L)とし、VTX(H)<VRT(L)とすると、フローティングディフュージョン領域FD部に蓄積できる最大電荷量はリセットトランジスタRTのゲート電位VRTのローレベルであるVRT(L)で規定される電荷量(Q1+Q2)にまで増大する。この状態で2回目の転送トランジスタTXのゲート電位VTXをハイレベルVTX(H)とすることにより短時間蓄積電荷がフローティングディフュージョン領域FDへ転送される。従って、電荷量Q1以下の長時間蓄積電荷の上に短時間蓄積電荷が加算されることになる。なお、PD部の電荷量がQ1+Q2を超える場合には、VTX(H)<VRT(L)よりローレベルのRTからオーバーフローするため、PD側への逆流は防止され残像となることはない。 Then, the gate potential V RT of the reset transistor RT and the low level V RT (L), when the V TX (H) <V RT (L), the maximum amount of charge that can be accumulated in the floating diffusion region FD section reset transistor RT The amount of charge (Q1 + Q2) defined by V RT (L) , which is a low level of the gate potential V RT , is increased. In this state, by setting the gate potential V TX of the second transfer transistor TX to the high level V TX (H) , the stored charge for a short time is transferred to the floating diffusion region FD. Therefore, the accumulated charge for a short time is added to the long-term accumulated charge equal to or less than the charge amount Q1. If the charge amount of the PD section exceeds Q1 + Q2, since V RT ( H) <V RT (L) causes RT to overflow from a low level, backflow to the PD side is prevented and an afterimage does not occur. .
 図20は、図16の増幅型固体撮像装置において、最大許容入射光量が拡大されたワイドダイナミックレンジ動作を示す蓄積時間に対する信号電荷量を示すグラフである。ここにおいて、横軸は蓄積時間、縦軸は信号電荷量を表し、長時間蓄積期間をT、短時間蓄積期間をTとし、線80から83のそれぞれはリセットトランジスタRTのゲート電位VRTをミドルレベルVTX(M)とした場合のフローティングディフュージョン領域FD部に蓄積できる電荷量を示している。ここで、受光素子PDへの入射光量が増大するにつれて線80,81,82,83の順に変化する。 FIG. 20 is a graph showing the signal charge amount with respect to the accumulation time showing the wide dynamic range operation in which the maximum allowable incident light amount is expanded in the amplification type solid-state imaging device of FIG. Here, the horizontal axis represents the accumulation time, and the vertical axis represents the signal charge amount. The long time accumulation period is T L , the short time accumulation period is T S, and each of the lines 80 to 83 has the gate potential V RT of the reset transistor RT. Indicates the amount of charge that can be accumulated in the floating diffusion region FD when the middle level V TX (M) is set. Here, as the amount of light incident on the light receiving element PD increases, the lines 80, 81, 82, 83 change in order.
 図20において、短破線80に示すように入射光量が小さい間は長時間蓄積電荷が電荷量Q1で頭打ちになることは無く、高感度で線形性の維持された信号を読み出すことが出来る。これに対し、線81,82,83各々に示すように入射光量が大きくなると長時間蓄積電荷は電荷量Q1で頭打ちとなるが、低感度の短時間蓄積電荷は電荷量Q2まで更に強い入射光量まで蓄積可能であり、その間線形性の維持された信号が読み出される。これら2種の信号を組み合わせることにより、最大許容入射光量が拡大されたワイドダイナミックレンジ動作を行うことが可能となる。 In FIG. 20, as shown by the short broken line 80, while the incident light quantity is small, the accumulated charge does not reach a peak with the charge quantity Q1 for a long time, and a signal with high sensitivity and maintained linearity can be read out. On the other hand, as shown by the lines 81, 82, and 83, when the incident light amount increases, the accumulated charge for a long time becomes flat with the charge amount Q1, but the low sensitivity stored charge for a short time accumulates up to the charge amount Q2 It is possible to store up to which time the signal with maintained linearity is read out. By combining these two types of signals, it becomes possible to perform a wide dynamic range operation in which the maximum allowable incident light amount is expanded.
 本動作におけるもう1つの利点として、長時間蓄積モードの光信号、短時間蓄積モードの光信号共に、相関二重サンプリング(CDS)動作ができ、リセットノイズを抑圧して低ノイズ化が実現できることである。まず長時間蓄積モードの光信号については、最初にリセットトランジスタRTのゲート電位VRTをハイレベルVRT(H)としてフローティングディフュージョン領域FD部の電位をVddにリセットした後の電圧Vは容量CmRに記録され、直後に行われる1回目の電荷転送後の長時間蓄積モードにおける信号電荷により発生する電圧VS1は容量CmS1に記録されているので、それぞれの信号電圧を読み出した後、CDS回路17aにおいて両者の差分電圧(VS1-V)を取れば、両者に共通のリセットノイズが除かれた長時間蓄積モードの光信号を得ることができる。同様に、短時間蓄積モードの光信号については、短時間蓄積モードの入射光量による電荷は、短時間蓄積モードの入射による蓄積開始前のフローティングディフュージョン領域FD部の電圧VS1は容量CmS1に記録されており、2回目電荷転送後の短時間蓄積モードにおける信号電荷により発生する電圧VS2は容量CmS2に記録されているので、それぞれの信号電圧を読み出した後、CDS回路17aにおいて両者の差分電圧(VS2-VS1)を取れば、両者に共通のリセットノイズが除かれた短時間蓄積モードの光信号を得ることができる。 Another advantage of this operation is that both the long-time accumulation mode optical signal and the short-time accumulation mode optical signal can perform correlated double sampling (CDS) operation and suppress reset noise to realize low noise. is there. First, for the optical signal in the long-time accumulation mode, the voltage V R after resetting the potential of the floating diffusion region FD to V dd by setting the gate potential V RT of the reset transistor RT to the high level V RT (H) first Since the voltage V S1 generated by the signal charge in the long-time accumulation mode after the first charge transfer performed immediately after the first charge transfer recorded in CmR is recorded in the capacitor Cm S1 , the CDS circuit is read after reading each signal voltage. If the differential voltage (V S1 -V R ) between the two is taken at 17a, it is possible to obtain an optical signal in a long-time accumulation mode in which the reset noise common to both is removed. Similarly, for the optical signal of the short-time accumulation mode, charges due to the amount of incident light of the short-time accumulation mode, the voltage V S1 of the floating diffusion region FD portion before storage start due to the incidence of the short-time accumulation mode is recorded in the volume CmS1 Since the voltage V S2 generated by the signal charge in the short-time accumulation mode after the second charge transfer is recorded in the capacitor Cm S2 , the differential voltage between both of them in the CDS circuit 17 a is read after each signal voltage is read. By taking V S2 −V S1 ), it is possible to obtain an optical signal in a short-time accumulation mode in which the reset noise common to both is removed.
 以上の考えを基本にワイドダイナミックレンジ信号SWDを得る手法を以下に述べる。ここで、長時間露光期間Tint1と短時間露光期間Tint2との比、Tint1/Tint2=Kとする。2回のCDS動作により得られる信号をそれぞれ、S1=VS1-V,S2=VS2-VS1とする。電荷量Q1に相当するS1をS1とすると、ワイドダイナミックレンジ信号SWDを以下の式(3)で表す。 The method of obtaining the wide dynamic range signal S WD based on the above idea will be described below. Here, the ratio of the long time exposure period Tint1 to the short time exposure period Tint2 is Tint1 / Tint2 = K. The signals obtained by the two CDS operations are respectively S1 = V S1 −V R and S2 = V S2 −V S1 . When the S1, corresponding to the charge amount Q1 and S1 0, represented by the following equation wide dynamic range signal S WD (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上述した式(3)は、CDS回路17aにより、受光した光の光量に応じて、上記差分電圧S1と、上記乗算値(K×S2)とを選択的に切り替えて光信号として出力することを示している。この選択的切り替えにより、光量が小さい領域から大きい領域まで広い光量範囲において、線形性が維持されたワイドダイナミックレンジ信号とすることができる。 The above equation (3) selectively outputs the difference voltage S1 and the multiplication value (K × S2) according to the light amount of the received light by the CDS circuit 17a and outputs it as an optical signal. It shows. By this selective switching, it is possible to obtain a wide dynamic range signal in which the linearity is maintained in a wide light amount range from a region where the light amount is small to a large region.
 また、電荷量(Q1+Q2)をフルレンジとし、長時間露光期間と短時間露光期間を足し合わせた時間(Tint1+Tint2)を単一の蓄積時間とする通常の動作に比べ、ダイナミックレンジ拡大率Mは、電荷量Q1=電荷量Q2とすると、以下の式(4)で表わされる。 In addition, the dynamic range expansion ratio M is smaller than that in the normal operation in which the charge amount (Q1 + Q2) is a full range and the time (Tint1 + Tint2) obtained by adding the long exposure period and the short exposure period is a single accumulation time. Assuming that the amount Q1 = the amount of charge Q2, it is represented by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 従って、長時間露光期間Tint1と短時間露光期間Tint2との比であるKが199のとき、ダイナミックレンジ拡大率Mは100となる。 Therefore, when the ratio K between the long exposure period Tint1 and the short exposure period Tint2 is 199, the dynamic range expansion ratio M is 100.
 図19,図20に示した長時間蓄積信号頭打ちレベルである電荷量Q1は、画素毎に多少ばらつき、画面全体で共通のS1として式(1)を用いると固定パターンノイズとなるおそれがある。 The charge amount Q1, which is the long-term accumulated signal ceiling level shown in FIG. 19 and FIG. 20, varies somewhat for each pixel, and there is a possibility that fixed pattern noise may occur if Equation (1) is used as S1 common to the entire screen.
 図21は、図16の増幅型固体撮像装置において、固定パターンノイズを解消したワイドダイナミックレンジ動作を示す蓄積時間に対する信号電荷量を示すグラフである。ここにおいて横軸は蓄積時間、縦軸は信号電荷量を表し、長時間蓄積期間をT、短時間蓄積期間をTとし、線85、86はリセットトランジスタRTのゲート電位VRTをミドルレベルVTX(M)とした場合のフローティングディフュージョン領域FD部に蓄積できる電荷量を表す。ここで、実線85は電荷量Q1のばらつが最大となる時のある光量での例を示し、一点鎖線86は電荷量Q1のばらつきが最小となる時の別のある光量での例を示す。長破線87は信号電荷量S1が一定値となるようにクリップするレベルを表している。 FIG. 21 is a graph showing an amount of signal charge with respect to an accumulation time showing a wide dynamic range operation in which fixed pattern noise is eliminated in the amplification type solid-state imaging device of FIG. Here, the horizontal axis represents the accumulation time, and the vertical axis represents the signal charge amount. The long time accumulation period is T L , the short time accumulation period is T S, and lines 85 and 86 indicate the gate potential V RT of the reset transistor RT at the middle level. This represents the amount of charge that can be accumulated in the floating diffusion region FD in the case of V TX (M) . Here, the solid line 85 shows an example at a certain light amount when the variation of the charge amount Q1 is maximum, and the dashed dotted line 86 shows an example at another light amount when the variation of the charge amount Q1 is minimum. A long broken line 87 represents a level at which the signal charge amount S1 is clipped to a constant value.
 図21において、固定パターンノイズを避けるため、全画素についてのばらつき範囲ΔQの最小値よりマージン値Δqだけ小さい電位VCLにS1信号をクリップすることによりSi信号の上限値を電位VCLに設定する。これにより固定パターンノイズの無いワイドダイナミックレンジ画像信号を得ることができる。ここで、マージン値Δqはゼロであってもよいが、例えば、VCLの5%から10%である、いわゆる若干差のマージン値Δqを設定することが好ましい。 In FIG. 21, in order to avoid fixed pattern noise, the upper limit value of the Si signal is set to the potential V CL by clipping the S1 signal to the potential V CL smaller by the margin value Δq than the minimum value of the variation range ΔQ for all pixels. . Thereby, a wide dynamic range image signal without fixed pattern noise can be obtained. Here, the margin value Δq may be zero, but for example, it is preferable to set a so-called slight difference margin value Δq which is 5% to 10% of V CL .
 図22は、本発明の第5の実施形態の第1の変形例に係る増幅型固体撮像装置の画素60の構成を示す回路図である。図16では、各容量及び容量スイッチから第2の増幅トランジスタSF2により第2の信号線sig2へ信号を読み出す際に選択トランジスタSLを介して行ったが、図6と同様に選択トランジスタSLを介さずに読み出してもよい。この場合を図22に示す。図1に示したように画素10は、埋め込み受光素子で構成された受光素子PDと、転送トランジスタTXと、リセットトランジスタRTと、第1の増幅トランジスタSF1と、第1の信号線sig1と、容量CmR,CmSと、容量スイッチトランジスタSwR,SwSと、初期化トランジスタITと、第2の増幅トランジスタSF2と、選択トランジスタSLと、第2の信号線sig2とを備えて構成されるが、図22に示す画素60は図1に示す画素10を構成する容量CmSと容量スイッチトランジスタSwSの代わりに容量CmS1,CmS2と容量スイッチトランジスタSwS1,SwS2を備え、選択トランジスタSLを備えないことを特徴とする。さらに、図22において、電圧Vsは第2の増幅トランジスタSF2がオフとなる電圧値に設定されることに特徴を有している。 FIG. 22 is a circuit diagram showing a configuration of a pixel 60 of an amplification type solid-state imaging device according to a first modified example of the fifth embodiment of the present invention. In FIG. 16, the signal is read out from each capacitance and capacitance switch to the second signal line sig2 by the second amplification transistor SF2 via the selection transistor SL, but similarly to FIG. May be read out. This case is shown in FIG. As shown in FIG. 1, the pixel 10 includes a light receiving element PD formed of an embedded light receiving element, a transfer transistor TX, a reset transistor RT, a first amplification transistor SF1, a first signal line sig1, and a capacitance The configuration includes CmR and CmS, capacitance switch transistors SwR and SwS, an initialization transistor IT, a second amplification transistor SF2, a selection transistor SL, and a second signal line sig2. The pixel 60 shown is characterized by including capacitors CmS1 and CmS2 and capacitor switch transistors SwS1 and SwS2 instead of the capacitor CmS and the capacitor switch transistor SwS which constitute the pixel 10 shown in FIG. 1, and not including the selection transistor SL. Furthermore, in FIG. 22, the voltage Vs is characterized in that it is set to a voltage value at which the second amplification transistor SF2 is turned off.
 また、画素60をマトリクス状に配置した画素アレイを含む2次元イメージセンサの構成は、図2の画素10を画素60と置き換えたものと同様であるのでその説明は省略する。さらに、画素60を有する画素アレイを備えた2次元イメージセンサの動作を示すタイミングチャートは、図18のタイミングチャートにおいて、選択トランジスタのための駆動信号VSL(i)を削除したものと同様である。 The configuration of a two-dimensional image sensor including a pixel array in which the pixels 60 are arranged in a matrix is the same as that in which the pixels 10 in FIG. Furthermore, the timing chart showing the operation of the two-dimensional image sensor provided with the pixel array having the pixels 60 is the same as that of the timing chart of FIG. 18 except that the drive signal V SL (i) for the selection transistor .
 図23は、本発明の第5の実施形態の第2の変形例に係る増幅型固体撮像装置の画素70の構成を示す回路図である。図16では、各容量から信号を読み出す際に第1の増幅トランジスタSF1のゲート信号をオフする方法として、図1と同様にフローティングディフュージョン領域FD電位をローレベルにリセットしたが、図7と同様に第1の信号線sig1に出力スイッチSwOを用いてもよい。この場合を図23に示す。図1に示したように画素10は、埋め込み受光素子で構成された受光素子PDと、転送トランジスタTXと、リセットトランジスタRTと、第1の増幅トランジスタSF1と、第1の信号線sig1と、容量CmR,CmSと、容量スイッチトランジスタSwR,SwSと、初期化トランジスタITと、第2の増幅トランジスタSF2と、選択トランジスタSLと、第2の信号線sig2とを備えて構成されるが、図23に示す画素60は図1に示す画素10を構成する容量CmSと容量スイッチトランジスタSwSの代わりに容量CmS1,CmS2と容量スイッチトランジスタSwS1,SwS2を備え、さらに、第1の増幅トランジスタSF1のソースと第1の信号線sig1との間に出力スイッチSwOを備えると共に、リセットドレイン電圧を電源電圧Vddと共通化したことを特徴とする。 FIG. 23 is a circuit diagram showing a configuration of a pixel 70 of an amplification type solid-state imaging device according to a second modified example of the fifth embodiment of the present invention. In FIG. 16, as a method of turning off the gate signal of the first amplification transistor SF1 when reading out a signal from each capacitor, the floating diffusion region FD potential is reset to a low level as in FIG. The output switch SwO may be used for the first signal line sig1. This case is shown in FIG. As shown in FIG. 1, the pixel 10 includes a light receiving element PD formed of an embedded light receiving element, a transfer transistor TX, a reset transistor RT, a first amplification transistor SF1, a first signal line sig1, and a capacitance The configuration includes CmR and CmS, capacitance switch transistors SwR and SwS, an initialization transistor IT, a second amplification transistor SF2, a selection transistor SL, and a second signal line sig2. The pixel 60 shown includes the capacitors CmS1 and CmS2 and the capacitor switch transistors SwS1 and SwS2 instead of the capacitor CmS and the capacitor switch transistor SwS that constitute the pixel 10 shown in FIG. 1, and further, the source of the first amplification transistor SF1 and the first With the output switch SwO between the signal line sig1 of Characterized in that the common in-voltage power supply voltage Vdd.
 図24は、図23の増幅型固体撮像装置において、リセットトランジスタRTのゲート電圧VRTをハイレベルVRT(H)とローレベルVRT(L)およびそれらの中間のミドルレベルVRT(M)の3つのレベルとした場合の動作を示すタイミングチャートである。図17と比較し、書き込み動作期間において出力スイッチSwOをオンすると共に、読み出し期間においては出力スイッチSwOをオフする点が異なる。従って、図17の時刻tw7からの期間Tw7において、リセットトランジスタRTのドレイン電圧Vrdをローレベルとした状態でリセットトタンジスタRTをオンさせ、フローティングディフュージョン領域FDの電位をローレベルにリセットすることで第1の増幅トランジスタSF1をオフ状態にするという動作が省かれている。それ以外は図17における動作を同様に適用可能である。 FIG. 24 shows high level V RT (H) and low level V RT (L) of the gate voltage V RT of the reset transistor RT and middle level V RT (M) between them in the amplification type solid-state imaging device of FIG. Is a timing chart showing the operation in the case of three levels. 17 differs from FIG. 17 in that the output switch SwO is turned on in the write operation period, and the output switch SwO is turned off in the read period. Therefore, in period Tw7 from time tw7 in FIG. 17, the reset transistor RT is turned on in a state where the drain voltage Vrd of the reset transistor RT is at the low level, and the potential of the floating diffusion region FD is reset to the low level. The operation of turning off the first amplification transistor SF1 is omitted. Other than that, the operation in FIG. 17 is similarly applicable.
 図25は、図23の増幅型固体撮像装置において、リセットトランジスタRTのゲート電圧VRTをハイレベルVRT(H)とローレベルVRT(L)の2つのレベルとした場合の動作を示すタイミングチャートである。図24と対応する箇所は同じ記号で表している。図24との相違は、リセットトランジスタRTが2つのレベル、すなわちハイレベルVRT(H)とローレベルVRT(L)を持ち、且つ、時刻tw1からの期間Tw1と新たに追加した時刻tw8からの期間Tw8で計2回ハイレベルVRT(H)となることのみである。 FIG. 25 is a timing chart showing an operation in the case where the gate voltage V RT of the reset transistor RT is set to two levels of high level V RT (H) and low level V RT (L) in the amplification type solid-state imaging device of FIG. It is a chart. The portions corresponding to FIG. 24 are indicated by the same symbols. The difference from FIG. 24 is that the reset transistor RT has two levels, that is, the high level V RT (H) and the low level V RT (L) , and from time tw8 newly added as a period Tw1 from time tw1. The high level V RT (H) is totaled twice only in the period Tw8 of
 図25において、時刻tw0からtw2までは同様の動作をする。すなわち、時刻tw0からの期間Tw0において、駆動信号VTXがハイレベルVTX(H)に固定され転送トランジスタTXがオンされる。これにより、受光素子PDから電荷をフローティングディフュージョン領域FDに転送されることにより受光素子PDをリセットし、その後の入射光により発生した電荷が受光素子PDに蓄積される。 In FIG. 25, the same operation is performed from time tw0 to tw2. That is, in a period Tw0 from time tw0, the drive signal V TX is fixed to the high level V TX (H) , and the transfer transistor TX is turned on. Thus, the charge is transferred from the light receiving element PD to the floating diffusion region FD to reset the light receiving element PD, and the charge generated by the incident light thereafter is accumulated in the light receiving element PD.
 次いで、時刻tw1からの期間Tw1において、駆動信号VRTがハイレベルVRT(H)にされリセットトランジスタRTがオンされる。従って、期間Tw1後のフローティングディフュージョン領域FDはリセットレベルとなる。 Next, in a period Tw1 from time tw1, the drive signal V RT is set to the high level V RT (H) , and the reset transistor RT is turned on. Therefore, the floating diffusion region FD after the period Tw1 is at the reset level.
 次いで、時刻tw2からの期間Tw2において、駆動信号VSwR(i)がハイレベルに固定され容量スイッチトランジスタSwRをオンさせることによりフローティングディフュージョン領域FDのリセットレベルに対応した電圧が容量CmRに書き込まれる。 Next, in a period Tw2 from time tw2, the drive signal V SwR (i) is fixed at the high level and the capacitance switch transistor SwR is turned on, whereby a voltage corresponding to the reset level of the floating diffusion region FD is written to the capacitance CmR.
 次に、時刻tw3から期間Tw3における長時間蓄積信号を読み出す1回目転送動作期間においては、リセットトランジスタRTのゲート電圧VRTがローレベルVRT(L)なので、最大許容信号電荷量はQ1+Q2まで拡大する。しかしフローティングディフュージョン領域FDにはそれ以上電荷を受け入れる余地は無いので、時刻tw8からの期間Tw8において再度フローティングディフュージョン領域FDをリセットする。その後、時刻tw5からの期間Tw5における2回目転送動作により短時間蓄積信号を読み出す。 Next, since the gate voltage V RT of the reset transistor RT is at the low level V RT (L) in the first transfer operation period in which the long-time accumulation signal is read in the period Tw3 to the period Tw3, the maximum allowable signal charge amount is expanded to Q1 + Q2. Do. However, since the floating diffusion region FD has no room to receive any more charge, the floating diffusion region FD is reset again in a period Tw8 from time tw8. Thereafter, the short-time accumulation signal is read out by the second transfer operation in the period Tw5 from the time tw5.
 この場合のCDS動作は以下のように行う。まず長時間蓄積モードの光信号については、最初のリセット動作時、すなわち、リセットトランジスタRTのゲート電位VRTをハイレベルVRT(H)としてフローティングディフュージョン領域FD部の電位をVddにリセットした後の電圧Vは容量CmRに記録され、直後に行われる1回目電荷転送後の長時間蓄積モードの信号電荷により発生する電圧VS1は容量CmS1に記録されているので、それぞれの信号を読み出した後、CDS回路17aにおいて両者の差分電圧(VS1-V)を取れば、両者に共通のリセットノイズが除かれた長時間蓄積信号を得ることができる。他方、短時間蓄積信号については、当該電荷を蓄積開始前のフローティングディフュージョン領域FD部のリセットレベルは読み出さないので、CDS回路17aにおいて容量CmS2に記録されている2回目電荷転送後の短時間蓄積モードにおける信号電荷により発生するVS2と、最初のリセット動作時における電圧Vとの差分電圧(VS2-V)を取り疑似的にCDS動作を行う。この場合には、画素毎に変動するオフセットばらつきは除かれるが、リセットノイズは残る。これら2信号を用いて、前述と同様の信号処理により、ワイドダイナミックレンジ信号を得る。本手法の場合、図16から図24までで述べた方法に比べ、取り扱い電荷量が2倍に増大する。 The CDS operation in this case is performed as follows. First, for the optical signal in the long-time accumulation mode, at the time of the first reset operation, that is, after resetting the potential of the floating diffusion region FD to V dd with the gate potential V RT of the reset transistor RT as the high level V RT (H). Voltage V R is recorded in the capacitance C m R , and the voltage V S1 generated by the signal charge in the long-term accumulation mode after the first charge transfer performed immediately after is recorded in the capacitance C m S 1 . After that, if the differential voltage (V S1 -V R ) between the two is taken in the CDS circuit 17a, it is possible to obtain a long time accumulation signal from which the reset noise common to both is removed. On the other hand, for the short-time accumulation signal, the reset level of the floating diffusion area FD before the start of accumulation is not read, so the short-time accumulation mode after the second charge transfer recorded in the capacitor CmS2 in the CDS circuit 17a. The differential voltage (V S2 −V R ) between the voltage V S2 generated by the signal charge in V and the voltage V R at the time of the first reset operation is taken to perform the CDS operation in a pseudo manner. In this case, although the offset variation which fluctuates for each pixel is removed, the reset noise remains. Using these two signals, a wide dynamic range signal is obtained by the same signal processing as described above. In the case of this method, compared to the methods described in FIG. 16 to FIG. 24, the handling charge amount is doubled.
 以上述べたように、第5の実施形態によれば、新たに以下の特徴を備えることが可能となる。すなわち、
(1)一括露光(グローバルシャッタ)動作とワイドダイナミックレンジ動作を同時に行うことができる。
(2)本ワイドダイナミックレンジ動作では、フレーム毎に連続して動作させることができ、動画にも適用可能である。
(3)また本ワイドダイナミックレンジ動作では、ワイドダイナミックレンジ動作に必要な全ての信号がフレームメモリ無しで同時に得られる。
(4)また、図25の場合を除き、長時間蓄積信号、短時間蓄積信号共にリセットノイズ無しとすることができ、SN比の高いワイドダイナミックレンジ信号が得られる。
As described above, according to the fifth embodiment, the following features can be newly provided. That is,
(1) The simultaneous exposure (global shutter) operation and the wide dynamic range operation can be performed simultaneously.
(2) In this wide dynamic range operation, it is possible to operate continuously for each frame, and is also applicable to moving pictures.
(3) In the wide dynamic range operation, all the signals necessary for the wide dynamic range operation can be obtained simultaneously without the frame memory.
(4) Further, except in the case of FIG. 25, both the long time accumulation signal and the short time accumulation signal can be reset noise free, and a wide dynamic range signal having a high SN ratio can be obtained.
 なお、第1乃至第5の実施形態では、画素内の各トランジスタがNチャネルMOS電界効果トランジスタである場合について説明したが、これは一例であり、本発明はこれに限定するものではなく、PチャネルMOS電界効果トランジスタである場合についても、電圧及び電流の極性を逆にすることによって同様に動作する画素を構成することができる。また、受光素子PDの信号電荷が電子である場合について説明したが、信号電荷が正孔である場合においても信号蓄積による極性変化が逆になるのみであり、同様に動作する画素を構成することができる。 In the first to fifth embodiments, each transistor in a pixel is an N-channel MOS field effect transistor. However, this is an example, and the present invention is not limited to this. Also in the case of a channel MOS field effect transistor, it is possible to configure a pixel that operates in the same manner by reversing the polarity of voltage and current. Although the case where the signal charge of the light receiving element PD is an electron has been described, even in the case where the signal charge is a hole, the polarity change due to signal accumulation is only reversed, and a pixel operating in the same manner is configured. Can.
 以上詳述したように、本発明に係る増幅型固体撮像装置によれば、画素内に定電流負荷を有さないとともに、書き込みと読み出しを共通のスイッチで行うため、画素内のトランジスタ数を削減することができる。前記第1の増幅トランジスタの負荷となる前記複数の容量への書き込み動作を行うには、まず当該複数の容量を所定の電圧、例えば接地電圧ないしそれに近い正電圧に初期化し、この後、当該複数の容量への充電電流によって書き込み動作を行うようにし、前記容量スイッチによって特定の容量の選択と書き込み時間を制御することにより、安定した動作を行うことができる。また、前記複数の容量からの読み出し時には、前記第1の増幅トランジスタのゲートに当該トランジスタが不活性となる電圧を与えてオフ状態とし、前記容量スイッチによって特定の容量の選択と読み出し時間を制御することにより、前記第2の増幅トランジスタのゲートに前記複数の容量からの信号を与え、画素の外部に読み出すことができる。 As described above in detail, according to the amplification type solid-state imaging device according to the present invention, since the pixel does not have a constant current load and writing and reading are performed by a common switch, the number of transistors in the pixel is reduced. can do. In order to perform the write operation to the plurality of capacitors serving as the load of the first amplification transistor, the plurality of capacitors are first initialized to a predetermined voltage, for example, a ground voltage or a positive voltage close thereto, and then the plurality of capacitors A stable operation can be performed by performing the write operation by the charge current to the capacitor and controlling the selection of the specific capacitor and the write time by the capacitor switch. Further, at the time of reading from the plurality of capacitors, a voltage at which the transistor is deactivated is applied to the gate of the first amplification transistor to turn it off, and selection and reading time of a particular capacitor are controlled by the capacitor switch. Thus, signals from the plurality of capacitors can be given to the gate of the second amplification transistor and read out to the outside of the pixel.
 また、本発明の増幅型固体撮像装置によれば、前記リセットトランジスタ、埋め込み受光素子、及び転送トランジスタを有する画素で構成される画素アレイに対して、同時に作動させて当該各画素内の2つの容量の一方にリセット信号、他方に光信号の書き込み動作をそれぞれ行わせた後、前記各画素の前記各容量から第2の増幅トランジスタのゲートへの読み出しを順次行うようにして、全画素を一括して同時に前記各容量に書き込む動作、及び前記各容量から順次読み出す動作を行うことができる。読み出し時には、前記第1の増幅トランジスタのゲートに第3の電圧が与えられて不活性とされ、ないしは前記第1の増幅トランジスタと第1の信号線の間に出力スイッチが設けられてオフとされ、前記第1の増幅トランジスタが影響を与えることは防止される。また、順次読み出された画素毎のリセット信号と光信号の間で差を取ることにより、相関二重サンプリング(CDS)法を適用することができ、前記第1及び第2の各増幅トランジスタにおけるしきい値電圧のばらつきに起因する固定パターンノイズや、前記第1の増幅トランジスタにおけるゲートへのリセットノイズを抑制することができ、低ノイズの画像信号を得ることができる。 Further, according to the amplification type solid-state imaging device of the present invention, two capacitances in each pixel are simultaneously operated on the pixel array configured of the pixels having the reset transistor, the embedded light receiving element, and the transfer transistor. After the write operation of the reset signal and the light signal are performed on one side and the other side, respectively, the respective capacitances of the respective pixels are sequentially read out to the gate of the second amplification transistor. At the same time, an operation of writing to each of the capacitors and an operation of sequentially reading out of each of the capacitors can be performed. At the time of reading, a third voltage is applied to the gate of the first amplification transistor to be deactivated, or an output switch is provided between the first amplification transistor and the first signal line to be turned off. The influence of the first amplification transistor is prevented. In addition, the correlated double sampling (CDS) method can be applied by taking a difference between the reset signal and the light signal for each pixel read out sequentially, and in the first and second amplification transistors, Fixed pattern noise due to variations in threshold voltage and reset noise to the gate of the first amplification transistor can be suppressed, and a low noise image signal can be obtained.
 さらに、本発明の増幅型固体撮像装置によれば、前記リセットトランジスタ、及びPN受光素子を有する画素で構成される画素アレイに対して、書き込み時は同時に作動させて前記出力スイッチをオンとし、当該各画素内の3つの容量の1つに光信号、他の1つの容量に奇数フレームのリセット信号、残余の容量に偶数フレームのリセット信号の書き込み動作をそれぞれ行わせた後、前記各画素の前記各容量から第2の増幅トランジスタのゲートへの読み出しは前記出力スイッチをオフとして順次行うようにし、全画素を一括して同時に前記各容量に書き込む動作、及び前記各容量から順次読み出す動作を行うことができる。また、各フレームにおいて、ノイズ相関のある当該フレームの光信号と1フレーム前のリセット信号をペアで読み出すから、それら信号間で差を取ることにより、CDS法を適用することができ、前記第1及び第2の各増幅トランジスタにおけるしきい値電圧のばらつきに起因する固定パターンノイズや、前記第1の増幅トランジスタにおけるゲートへのリセットノイズを抑制することができ、低ノイズの画像信号を得ることができる。 Furthermore, according to the amplification type solid-state imaging device of the present invention, the output switch is turned on by simultaneously operating the pixel array including the reset transistor and the pixel having the PN light receiving element at the time of writing. The write operation of the light signal in one of the three capacitors in each pixel, the reset signal of the odd frame in the other one, and the reset signal of the even frame in the remaining capacitance is performed, The readout from each capacitor to the gate of the second amplification transistor is sequentially performed with the output switch off, and the operation of writing all the pixels simultaneously to the respective capacitors and the operation of sequentially reading out the respective capacitors are performed simultaneously. Can. Also, in each frame, the light signal of the frame with noise correlation and the reset signal of the previous frame are read out in pairs, so that the CDS method can be applied by taking the difference between the signals, It is possible to suppress fixed pattern noise due to variations in threshold voltage in each of the second amplification transistors and reset noise to the gate in the first amplification transistor, and obtain an image signal with low noise. it can.
 またさらに、本発明の増幅型固体撮像装置によれば、前記画素アレイから行順次で信号を読み出す際に、非選択行の前記第2の増幅トランジスタが不活性になるように、当該第2の増幅トランジスタのゲート電圧を前記初期化トランジスタによって制御するようにしたことから、当該第2の増幅トランジスタと前記信号線との間に選択トランジスタを設ける必要がなくなり、画素内の構成要素を更に削減することができ、受光部の面積の増大等の性能向上を図ることができる。 Still further, according to the amplification type solid-state imaging device of the present invention, the second amplification transistor in the non-selected row is inactivated when reading out signals in row sequence from the pixel array. Since the gate voltage of the amplification transistor is controlled by the initialization transistor, it is not necessary to provide a selection transistor between the second amplification transistor and the signal line, thereby further reducing the components in the pixel. It is possible to improve the performance such as the increase of the area of the light receiving portion.
 10,20,30,40,50,60,70,100,110,120,130…画素、
 A10…画素アレイ、
 PD…受光素子、
 TX…転送トランジスタ、
 RT…リセットトランジスタ、
 SF1…第1の増幅トランジスタ、
 SF2…第2の増幅トランジスタ、
 IT…初期化トランジスタ、
 SwR,SwS,SwS1,SwS2,SwR1,SwR2…容量スイッチトランジスタ、
 SwO…出力スイッチトランジスタ、
 CmR,CmS,CmS1,CmS2,CmR1,CmR2…容量、
 sig1…第1の信号線、
 sig2…第2の信号線、
 CL…定電流負荷トランジスタ、
 11…電源線、
 14…行デコーダ回路、
 15…行駆動回路、
 16…駆動線、
 17…コラム信号処理回路、
 17a…CDS回路、
 18…コラムデコーダ回路、
 19…水平信号線。
10, 20, 30, 40, 50, 60, 70, 100, 110, 120, 130 ... pixels,
A10 ... pixel array,
PD: light receiving element,
TX: transfer transistor,
RT: reset transistor,
SF1 first amplification transistor,
SF2 second amplification transistor
IT: Initialization transistor,
SwR, SwS, SwS1, SwS2, SwR1, SwR2: Capacitance switch transistors,
SwO ... output switch transistor,
CmR, CmS, CmS1, CmS2, CmR1, CmR2 ... capacity,
sig1 ... first signal line,
sig2 ... second signal line,
CL: Constant current load transistor,
11 ... Power supply line,
14 row decoder circuit,
15 row drive circuit,
16 ... drive line,
17: Column signal processing circuit,
17a ... CDS circuit,
18: Column decoder circuit,
19: Horizontal signal line.

Claims (20)

  1.  複数の容量を有する画素が行列状に複数配置されて構成される画素アレイと、
     前記画素アレイを構成する各画素に対する動作制御を行う制御回路とを備えた増幅型固体撮像装置において、
     前記各画素は、
     受光した光に応じた信号を生成して出力する光電変換部と、
     前記光電変換部からゲートに入力される信号を増幅して出力する第1の増幅トランジスタと、
     前記第1の増幅トランジスタのゲート電圧をリセットするリセットトランジスタと、
     前記第1の増幅トランジスタから第1の信号線に出力された信号を保持する複数の容量と、
     前記複数の容量に対応してかつ前記第1の信号線と前記複数の容量との間にそれぞれ設けられ、前記第1の信号線と前記複数の容量との間の入出力制御を行う各容量当り1個からなる複数の容量スイッチと、
     前記第1の信号線からゲートに入力される信号を増幅して第2の信号線に出力する第2の増幅トランジスタと、
     前記第1の信号線に接続され、所定の第1の電圧を前記第1の信号線に出力する初期化トランジスタとを備えたことを特徴とする増幅型固体撮像装置。
    A pixel array configured by arranging a plurality of pixels having a plurality of capacities in a matrix;
    An amplification type solid-state imaging device comprising: a control circuit for performing operation control on each pixel constituting the pixel array;
    Each pixel is
    A photoelectric conversion unit that generates and outputs a signal according to the received light;
    A first amplification transistor that amplifies and outputs a signal input from the photoelectric conversion unit to a gate;
    A reset transistor that resets a gate voltage of the first amplification transistor;
    A plurality of capacitors for holding a signal output from the first amplification transistor to the first signal line;
    Respective capacitances provided corresponding to the plurality of capacitances and provided between the first signal line and the plurality of capacitances and performing input / output control between the first signal line and the plurality of capacitances Multiple capacitive switches, one per unit,
    A second amplification transistor that amplifies a signal input from the first signal line to the gate and outputs the amplified signal to a second signal line;
    An amplification type solid-state imaging device comprising: an initialization transistor connected to the first signal line and outputting a predetermined first voltage to the first signal line.
  2.  前記制御回路は、
    (1)前記初期化トランジスタをオンするとともに前記複数の容量スイッチをオンすることにより、前記複数の容量を前記第1の電圧に初期化し、
    (2)前記複数の容量に対応する前記複数の容量スイッチを順次オンすることにより、前記第1の増幅トランジスタからの増幅された信号を前記第1の信号線及び書き込むべき容量に対応する容量スイッチを介して当該容量へ順次書き込む書き込み動作を実行し、
    (3)前記複数の容量に対応する前記複数の容量スイッチを順次オンすることにより、前記各容量に書き込まれた信号を、読み出すべき容量に対応する容量スイッチ、前記第1の信号線、及び前記第2の増幅トランジスタを介して前記第2の信号線に順次読み出す読み出し動作を実行するように制御することを特徴とする請求項1記載の増幅型固体撮像装置。
    The control circuit
    (1) The plurality of capacitors are initialized to the first voltage by turning on the initialization transistor and turning on the plurality of capacitance switches.
    (2) By sequentially turning on the plurality of capacitance switches corresponding to the plurality of capacitances, capacitance switches corresponding to the first signal line and the capacitance to be written are the amplified signals from the first amplification transistor. Perform a write operation to sequentially write to the capacity via
    (3) By sequentially turning on the plurality of capacitance switches corresponding to the plurality of capacitances, the capacitance switch corresponding to the capacitance to be read out, the signal written to each of the capacitances, the first signal line, and 2. The amplification type solid-state imaging device according to claim 1, wherein a readout operation for sequentially reading out the second signal line is performed via a second amplification transistor.
  3.  前記制御回路は、前記第1の増幅トランジスタが飽和領域動作からサブスレッショルド領域動作に移行して準安定状態になる期間において、前記画素アレイを構成するすべての前記画素に対して同時に、前記書き込み動作を実行することを特徴とする請求項1又は2記載の増幅型固体撮像装置。 The control circuit performs the write operation simultaneously on all the pixels forming the pixel array in a period in which the first amplification transistor shifts from a saturation region operation to a subthreshold region operation and enters a metastable state. The amplification type solid-state imaging device according to claim 1 or 2, wherein
  4.  前記第1の増幅トランジスタのゲートに入力される信号は、リセット信号を含み、
     前記制御回路は、前記第1の増幅トランジスタがオンとなる第2の電圧を前記リセットトランジスタのドレインに印加して、前記リセットトランジスタをオンすることにより、前記第2の電圧に対応する前記リセットトランジスタのソース電圧を前記第1の増幅トランジスタのゲートに印加して、前記第2の電圧に対応するリセット信号を前記第1の信号線に出力した後、前記第1の増幅トランジスタがオフとなる第3の電圧を前記リセットトランジスタのドレインに印加して、前記リセットトランジスタをオンすることにより、前記第3の電圧を前記第1の増幅トランジスタのゲートに印加するように、前記書き込み動作を実行することを特徴とする請求項1から3のうちのいずれか1つに記載の増幅型固体撮像装置。
    The signal input to the gate of the first amplification transistor includes a reset signal,
    The control circuit applies a second voltage at which the first amplification transistor is turned on to the drain of the reset transistor to turn on the reset transistor, thereby the reset transistor corresponding to the second voltage. A source voltage of the first amplification transistor is applied to the gate of the first amplification transistor to output a reset signal corresponding to the second voltage to the first signal line, and then the first amplification transistor is turned off. Performing the write operation to apply the third voltage to the gate of the first amplification transistor by applying a voltage of 3 to the drain of the reset transistor and turning on the reset transistor. The amplification type solid-state imaging device according to any one of claims 1 to 3, characterized in that
  5.  前記第1の増幅トランジスタのゲートに入力される信号は、リセット信号を含み、
     前記画素はさらに、前記第1の増幅トランジスタと第1の信号線との間に設けられた出力スイッチを備え、
     前記制御回路は、前記リセットトランジスタをオンにすることにより、前記第1の増幅トランジスタがオンとなる第2の電圧を前記第1の増幅トランジスタのゲートに印加するとともに、前記出力スイッチをオンすることにより、前記第2の電圧に対応する前記リセット信号を前記第1の信号線に出力した後、前記出力スイッチをオフするように、前記書き込み動作を実行することを特徴とする請求項1から3のうちのいずれか1つに記載の増幅型固体撮像装置。
    The signal input to the gate of the first amplification transistor includes a reset signal,
    The pixel further includes an output switch provided between the first amplification transistor and a first signal line.
    The control circuit applies a second voltage that turns on the first amplification transistor to the gate of the first amplification transistor by turning on the reset transistor, and turns on the output switch. 4. The method according to claim 1, wherein the write operation is performed so as to turn off the output switch after outputting the reset signal corresponding to the second voltage to the first signal line. The amplification type solid-state imaging device according to any one of the above.
  6.  前記第1の増幅トランジスタのゲートに入力される信号は、光信号を含み、
     前記画素はさらに、前記光電変換部と前記第1の増幅トランジスタのゲートとの間に設けられた転送トランジスタを備え、
     前記光電変換部は埋め込み受光素子であり、受光した光に応じた光信号を前記転送トランジスタを介して前記第1の増幅トランジスタのゲートに出力し、
     前記複数の容量は、前記リセット信号を保持する第1の容量と前記光信号を保持する第2の容量とを備え、
     前記制御回路は、前記リセット信号を前記第1の容量に書き込んだ後、前記転送トランジスタをオンすることにより、前記光電変換部からの前記光信号を前記第1の増幅トランジスタのゲートに印加して、前記光信号を前記第2の容量に書き込むように、前記書き込み動作を実行することを特徴とする請求項4記載の増幅型固体撮像装置。
    The signal input to the gate of the first amplification transistor includes an optical signal,
    The pixel further includes a transfer transistor provided between the photoelectric conversion unit and the gate of the first amplification transistor.
    The photoelectric conversion unit is an embedded light receiving element, and outputs an optical signal according to the received light to the gate of the first amplification transistor via the transfer transistor.
    The plurality of capacitors include a first capacitor for holding the reset signal and a second capacitor for holding the optical signal,
    The control circuit applies the light signal from the photoelectric conversion unit to the gate of the first amplification transistor by writing the reset signal to the first capacitor and then turning on the transfer transistor. 5. The amplification type solid-state imaging device according to claim 4, wherein the writing operation is performed so as to write the light signal to the second capacitor.
  7.  前記第1の増幅トランジスタのゲートに入力される信号は、光信号を含み、
     前記画素はさらに、前記光電変換部と前記第1の増幅トランジスタのゲートとの間に設けられた転送トランジスタを備え、
     前記光電変換部は埋め込み受光素子であり、受光した光に応じた光信号を前記転送トランジスタを介して前記第1の増幅トランジスタのゲートに出力し、
     前記複数の容量は、前記リセット信号を保持する第1の容量と前記光信号を保持する第2の容量とを備え、
     前記制御回路は、前記出力スイッチをオンして前記リセット信号を前記第1の容量に書き込んだ後、前記転送トランジスタをオンすることにより、前記光電変換部からの前記光信号を前記第1の増幅トランジスタのゲートに印加した後、前記光信号を前記第1の信号線に出力し、前記光信号を前記第2の容量に書き込むように、前記書き込み動作を実行することを特徴とする請求項5記載の増幅型固体撮像装置。
    The signal input to the gate of the first amplification transistor includes an optical signal,
    The pixel further includes a transfer transistor provided between the photoelectric conversion unit and the gate of the first amplification transistor.
    The photoelectric conversion unit is an embedded light receiving element, and outputs an optical signal according to the received light to the gate of the first amplification transistor via the transfer transistor.
    The plurality of capacitors include a first capacitor for holding the reset signal and a second capacitor for holding the optical signal,
    The control circuit turns on the output switch to write the reset signal to the first capacitor, and then turns on the transfer transistor to amplify the optical signal from the photoelectric conversion unit to the first amplification. After the light signal is applied to the gate of the transistor, the write operation is performed to output the light signal to the first signal line and to write the light signal to the second capacitor. The amplification type solid-state imaging device of description.
  8.  前記第1の増幅トランジスタのゲートに入力される信号は、光信号を含み、
     前記光電変換部はPN受光素子であり、受光した光に応じた光信号を前記第1の増幅トランジスタのゲートに出力し、
     前記複数の容量は、前記光信号を保持する第3の容量と、奇数番目のフレームを処理するときに前記リセット信号を保持する第4の容量と、偶数番目のフレームを処理するときに前記リセット信号を保持する第5の容量とを備え、
     前記制御回路は、前記出力スイッチをオンすることにより、前記光電変換部からの前記光信号を前記第1の増幅トランジスタのゲートに印加して、前記光信号を前記第3の容量に書き込んだ後、奇数番目のフレームを処理するときに前記リセット信号を前記第4の容量に書き込み、偶数番目のフレームを処理するときに前記リセット信号を前記第5の容量に書き込むように、前記書き込み動作を実行することを特徴とする請求項5記載の増幅型固体撮像装置。
    The signal input to the gate of the first amplification transistor includes an optical signal,
    The photoelectric conversion unit is a PN light receiving element, and outputs a light signal according to the received light to the gate of the first amplification transistor,
    The plurality of capacitors may be a third capacitor for holding the optical signal, a fourth capacitor for holding the reset signal when processing an odd-numbered frame, and the reset when processing an even-numbered frame. And a fifth capacitance for holding the signal,
    The control circuit applies the light signal from the photoelectric conversion unit to the gate of the first amplification transistor by turning on the output switch to write the light signal to the third capacitance. The write operation is performed to write the reset signal to the fourth capacitor when processing odd-numbered frames and to write the reset signal to the fifth capacitor when processing even-numbered frames The amplification type solid-state imaging device according to claim 5, characterized in that:
  9.  前記制御回路は、奇数番目のフレームを処理するときに、前記光信号を前記第3の容量から読み出すとともに前記リセット信号を前記第5の容量から読み出し、偶数番目のフレームを処理するときに、前記光信号を前記第3の容量から読み出すとともに前記リセット信号を前記第4の容量から読み出すように、前記読み出し動作を実行することを特徴とする請求項8記載の増幅型固体撮像装置。 The control circuit reads the light signal from the third capacitor and reads the reset signal from the fifth capacitor when processing an odd-numbered frame, and processes the even-numbered frame. 9. The amplification type solid-state imaging device according to claim 8, wherein the read operation is performed so as to read an optical signal from the third capacitor and read the reset signal from the fourth capacitor.
  10.  前記制御回路はリセット信号及び光信号を前記画素アレイの行毎に順次読み出すように前記読み出し動作を実行し、
     当該読み出し動作において、第1の行の読み出し動作と、前記第1の行の次の第2の行の読み出し動作との間において、前記第2の電圧を前記リセットトランジスタのドレインに印加し、前記転送トランジスタと前記リセットトランジスタとをオンすることにより、前記光電変換部からの前記光信号を前記リセットトランジスタのドレインに排出した後、前記転送トランジスタをオフし、前記リセットトランジスタがオン状態で前記第3の電圧を前記リセットトランジスタのドレインに印加し、前記リセットトランジスタをオフするように制御することを特徴とする請求項6記載の増幅型固体撮像装置。
    The control circuit executes the read operation so as to sequentially read the reset signal and the light signal for each row of the pixel array,
    In the read operation, the second voltage is applied to the drain of the reset transistor between the read operation of the first row and the read operation of the second row next to the first row, After the light signal from the photoelectric conversion unit is discharged to the drain of the reset transistor by turning on the transfer transistor and the reset transistor, the transfer transistor is turned off, and the reset transistor is turned on. 7. The amplification type solid-state imaging device according to claim 6, wherein a voltage of V is applied to a drain of the reset transistor to control the reset transistor to turn off.
  11.  前記制御回路はリセット信号及び光信号を前記画素アレイの行毎に順次読み出すように前記読み出し動作を実行し、
     当該読み出し動作において、第1の行の読み出し動作と、前記第1の行の次の第2の行の読み出し動作との間において、前記転送トランジスタと前記リセットトランジスタとをオンすることにより、前記光電変換部からの前記光信号を前記リセットトランジスタのドレインに排出した後、前記転送トランジスタをオフし、かつ前記リセットトランジスタをオフするように制御することを特徴とする請求項7記載の増幅型固体撮像装置。
    The control circuit executes the read operation so as to sequentially read the reset signal and the light signal for each row of the pixel array,
    In the read operation, the photoelectric conversion is performed by turning on the transfer transistor and the reset transistor between the read operation of the first row and the read operation of the second row next to the first row. 8. The amplification type solid-state imaging according to claim 7, wherein after the light signal from the conversion unit is discharged to the drain of the reset transistor, the transfer transistor is turned off and the reset transistor is turned off. apparatus.
  12.  前記制御回路はリセット信号及び光信号を前記画素アレイの行毎に順次読み出すように前記読み出し動作を実行し、
     当該読み出し動作において、第1の行の読み出し動作と、前記第1の行の次の第2の行の読み出し動作との間において、前記出力スイッチと前記リセットトランジスタとをオンすることにより、前記光電変換部からの光信号を前記リセットトランジスタのドレインに排出した後、前記リセットトランジスタをオフし、奇数番目のフレームを処理しているときは前記第4の容量に前記リセット信号を書き込み、偶数番目のフレームを処理しているときは前記第5の容量に前記リセット信号を書き込み、前記出力スイッチをオフするように制御することを特徴とする請求項8又は9記載の増幅型固体撮像装置。
    The control circuit executes the read operation so as to sequentially read the reset signal and the light signal for each row of the pixel array,
    In the read operation, the photoelectric conversion is performed by turning on the output switch and the reset transistor between the read operation of the first row and the read operation of the second row next to the first row. After the light signal from the conversion unit is discharged to the drain of the reset transistor, the reset transistor is turned off, and when processing an odd-numbered frame, the reset signal is written to the fourth capacitor, and the even-numbered 10. The amplification type solid-state imaging device according to claim 8, wherein the reset signal is written to the fifth capacity when processing a frame, and the output switch is controlled to be turned off.
  13.  前記制御回路はリセット信号及び光信号を前記画素アレイの行毎に順次読み出すように前記読み出し動作を実行し、
     当該読み出し動作において、読み出しを行っていない行の前記各画素における前記初期化トランジスタをオンすることにより、前記第2の増幅トランジスタのゲートを前記第2の増幅トランジスタがオフとなる第4の電圧に初期化するように制御することを特徴とする請求項1から12のうちのいずれか1つに増幅型固体撮像装置。
    The control circuit executes the read operation so as to sequentially read the reset signal and the light signal for each row of the pixel array,
    In the read operation, the gate of the second amplification transistor is set to a fourth voltage at which the second amplification transistor is turned off by turning on the initialization transistor in each pixel in a row where readout is not performed. The amplification type solid-state imaging device according to any one of claims 1 to 12, which is controlled to be initialized.
  14.  前記画素はさらに、前記第2の増幅トランジスタと前記第2の信号線との間に設けられた選択トランジスタを備え、
     前記制御回路は、前記選択トランジスタをオンすることにより、前記容量に保持された光信号又はリセット信号を前記第2の信号線に出力するように制御することを特徴とする請求項1から12のうちのいずれか1つに増幅型固体撮像装置。
    The pixel further includes a selection transistor provided between the second amplification transistor and the second signal line.
    13. The device according to claim 1, wherein the control circuit performs control to output an optical signal or reset signal held in the capacitor to the second signal line by turning on the selection transistor. One of them is an amplification type solid state imaging device.
  15.  前記第1の増幅トランジスタのゲートに入力される信号は、リセット信号を含み、
     前記各画素はさらに、前記光電変換部と前記第1の増幅トランジスタのゲートとの間に設けられた転送トランジスタを備え、
     前記光電変換部は埋め込み受光素子であり、受光した光に応じた光信号を前記転送トランジスタを介して前記第1の増幅トランジスタのゲートに出力し、
     前記制御回路は、前記光電変換部の蓄積時間が長時間蓄積モードと短時間蓄積モードの2モードを1フレーム期間内に有するように、前記転送トランジスタのオフ時間を制御し、
     前記複数の容量は、前記リセット信号を保持する第6の容量と、前記長時間蓄積モードの光信号を保持する第7の容量と、前記短時間蓄積モードの光信号を保持する第8の容量とを備えることを特徴とする請求項1又は2記載の増幅型固体撮像装置。
    The signal input to the gate of the first amplification transistor includes a reset signal,
    Each of the pixels further includes a transfer transistor provided between the photoelectric conversion unit and the gate of the first amplification transistor.
    The photoelectric conversion unit is an embedded light receiving element, and outputs an optical signal according to the received light to the gate of the first amplification transistor via the transfer transistor.
    The control circuit controls the off time of the transfer transistor such that the accumulation time of the photoelectric conversion unit has two modes of a long time accumulation mode and a short time accumulation mode within one frame period,
    The plurality of capacitors are a sixth capacitor for holding the reset signal, a seventh capacitor for holding the light signal in the long time accumulation mode, and an eighth capacitor for holding the light signal in the short time accumulation mode. The amplification type solid-state imaging device according to claim 1 or 2, further comprising:
  16.  前記制御回路は、
    (1)前記リセットトランジスタのゲート電圧をハイレベルに設定した後、前記リセット信号を前記第6の容量に書き込み、
    (2)前記リセットトランジスタのゲート電圧を、前記ハイレベルよりも低いミドルレベルに設定した後、前記長時間蓄積モードの光信号を前記第7の容量に書き込み、
    (3)前記リセットトランジスタのゲート電圧を、前記ミドルレベルよりも低いローレベルに設定した後、前記短時間蓄積モードの光信号を前記第8の容量に書き込むことにより、前記書き込み動作を実行することを特徴とする請求項15記載の増幅型固体撮像装置。
    The control circuit
    (1) After setting the gate voltage of the reset transistor to a high level, the reset signal is written to the sixth capacitor,
    (2) After setting the gate voltage of the reset transistor to a middle level lower than the high level, an optical signal of the long-time accumulation mode is written to the seventh capacitance.
    (3) The write operation is performed by writing the light signal in the short time accumulation mode to the eighth capacitor after setting the gate voltage of the reset transistor to a low level lower than the middle level. The amplification type solid-state imaging device according to claim 15, characterized in that
  17.  前記増幅型固体撮像装置は、
     前記画素から前記第2の信号線を介して出力される、前記リセット信号、前記長時間蓄積モードの光信号及び前記短時間蓄積モードの光信号に基づいて相関二重サンプリングを実行する相関二重サンプリング回路を備え、
     前記相関二重サンプリング回路は、
    (a)1回目の相関二重サンプリング動作において、前記長時間蓄積モードの光信号から前記リセット信号を減算してなる第1の差分電圧を演算し、
    (b)2回目の相関二重サンプリング動作において、前記短時間蓄積モードの光信号から前記長時間蓄積モードの光信号を減算してなる第2の差分電圧を演算し、前記前記短時間蓄積モードの期間に対する前記長時間蓄積モードの期間の比の値を演算し、前記第2の差分電圧に対して上記比の値を乗算してなる乗算値を演算し、
    (c)前記受光した光の光量に応じて、上記第1の差分電圧と、上記乗算値とを選択的に切り替えて光信号として出力することを特徴とする請求項16記載の増幅型固体撮像装置。
    The amplification type solid-state imaging device is
    Correlated double that performs correlated double sampling based on the reset signal, the light signal of the long time accumulation mode, and the light signal of the short time accumulation mode, which are output from the pixel through the second signal line Equipped with a sampling circuit,
    The correlated double sampling circuit is
    (A) calculating a first differential voltage obtained by subtracting the reset signal from the light signal in the long-term accumulation mode in the first correlated double sampling operation;
    (B) calculating a second differential voltage formed by subtracting the light signal of the long time accumulation mode from the light signal of the short time accumulation mode in the second correlated double sampling operation; Calculating a value of the ratio of the period of the long-term accumulation mode to the period of time, and calculating a multiplication value obtained by multiplying the second differential voltage by the value of the ratio;
    (C) The amplification type solid-state imaging according to claim 16, wherein the first differential voltage and the multiplication value are selectively switched according to the light amount of the received light and output as an optical signal. apparatus.
  18.  前記制御回路は、
    (1)前記リセットトランジスタのゲート電圧をハイレベルに設定した後、前記リセット信号を前記第6の容量に書き込み、
    (2)前記リセットトランジスタのゲート電圧を、前記ハイレベルよりも低いローレベルに設定した後、前記長時間蓄積モードの光信号を前記第7の容量に書き込み、その後、前記リセットトランジスタのゲート電圧を前記ハイレベルに設定し、
    (3)前記リセットトランジスタのゲート電圧を前記ローレベルに設定した後、前記短時間蓄積モードの光信号を前記第8の容量に書き込むことにより、前記書き込み動作を実行することを特徴とする請求項15記載の増幅型固体撮像装置。
    The control circuit
    (1) After setting the gate voltage of the reset transistor to a high level, the reset signal is written to the sixth capacitor,
    (2) After setting the gate voltage of the reset transistor to a low level lower than the high level, the optical signal in the long time accumulation mode is written to the seventh capacitor, and then the gate voltage of the reset transistor is Set to the high level,
    (3) After setting the gate voltage of the reset transistor to the low level, the write operation is performed by writing an optical signal in the short time accumulation mode to the eighth capacitor. 15. The amplification type solid-state imaging device according to 15.
  19.  前記増幅型固体撮像装置は、
     前記画素から前記第2の信号線を介して出力される前記リセット信号及び前記光信号に基づいて相関二重サンプリングを実行する相関二重サンプリング回路を備え、
    (a)1回目の相関二重サンプリング動作において、前記長時間蓄積モードの光信号から前記リセット信号を減算してなる第1の差分電圧を演算し、
    (b)2回目の相関二重サンプリング動作において、前記短時間蓄積モードの光信号から前記リセット信号を減算してなる第3の差分電圧を演算し、前記前記短時間蓄積モードの期間に対する前記長時間蓄積モードの期間の比の値を演算し、前記第3の差分電圧に対して上記比の値を乗算してなる乗算値を演算し、
    (c)前記受光した光の光量に応じて、上記第1の差分電圧と、上記乗算値とを選択的に切り替えて光信号として出力することを特徴とする請求項18記載の増幅型固体撮像装置。
    The amplification type solid-state imaging device is
    A correlated double sampling circuit that performs correlated double sampling based on the reset signal and the light signal output from the pixel through the second signal line,
    (A) calculating a first differential voltage obtained by subtracting the reset signal from the light signal in the long-term accumulation mode in the first correlated double sampling operation;
    (B) calculating a third differential voltage obtained by subtracting the reset signal from the light signal in the short-time accumulation mode in the second correlated double sampling operation, and calculating the third difference voltage in the short-time accumulation mode Calculating a value of a ratio of a time accumulation mode period, and calculating a multiplication value obtained by multiplying the third difference voltage by the value of the ratio;
    (C) The amplification type solid-state imaging according to claim 18, wherein the first differential voltage and the multiplication value are selectively switched according to the light amount of the received light and output as an optical signal. apparatus.
  20.  前記第1の差分電圧の上限値を全画素の前記長時間蓄積モードの光信号のばらつき範囲の最小値又は当該最小値より所定のマージン値だけ小さい値となるように設定することを特徴とする請求項17又は19記載の増幅型固体撮像装置。 The upper limit value of the first differential voltage is set to be a minimum value of the variation range of the light signals in the long time accumulation mode of all the pixels or a value smaller than the minimum value by a predetermined margin value. The amplification type solid-state imaging device according to claim 17.
PCT/JP2011/062937 2010-06-11 2011-06-06 Amplification-type solid state imaging device WO2011155442A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011536644A JP4846076B1 (en) 2010-06-11 2011-06-06 Amplification type solid-state imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-133758 2010-06-11
JP2010133758 2010-06-11

Publications (1)

Publication Number Publication Date
WO2011155442A1 true WO2011155442A1 (en) 2011-12-15

Family

ID=45098049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062937 WO2011155442A1 (en) 2010-06-11 2011-06-06 Amplification-type solid state imaging device

Country Status (2)

Country Link
JP (1) JP4846076B1 (en)
WO (1) WO2011155442A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140054A (en) * 2014-08-29 2016-08-04 株式会社半導体エネルギー研究所 Imaging apparatus and electronic device
EP3104594A1 (en) 2015-06-08 2016-12-14 Ricoh Company, Ltd. Solid-state imaging device
GB2553648A (en) * 2016-07-13 2018-03-14 Bosch Gmbh Robert Pixel unit for an image sensor, image sensor, method for sensing a light signal, method for actuating a pixel unit and method for generating an image using a
TWI636668B (en) * 2017-04-28 2018-09-21 友達光電股份有限公司 Automatic voltage amplifying apparatus and automatic voltage amplifying method
JP2020129759A (en) * 2019-02-08 2020-08-27 日本放送協会 Signal processing circuit and solid state imaging device
FR3094598A1 (en) * 2019-03-29 2020-10-02 Stmicroelectronics (Grenoble 2) Sas Pixel and its ordering process
FR3096855A1 (en) * 2019-06-03 2020-12-04 Stmicroelectronics (Grenoble 2) Sas Image sensor and its control method
FR3096856A1 (en) * 2019-06-03 2020-12-04 Stmicroelectronics (Grenoble 2) Sas Image sensor and its control method
CN112399108A (en) * 2019-08-13 2021-02-23 天津大学青岛海洋技术研究院 Power supply structure for eliminating signal attenuation of 8T CMOS image sensor
WO2021048676A1 (en) * 2019-09-11 2021-03-18 株式会社半導体エネルギー研究所 Imaging device and electronic apparatus
WO2023063024A1 (en) * 2021-10-15 2023-04-20 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, imaging device, and control method for solid-state imaging element
EP4142281A4 (en) * 2020-04-21 2023-09-20 Sony Semiconductor Solutions Corporation Solid-state image capturing element
EP4142280A4 (en) * 2020-04-21 2023-09-20 Sony Semiconductor Solutions Corporation Solid-state image capturing element, and image capturing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6334908B2 (en) 2013-12-09 2018-05-30 キヤノン株式会社 IMAGING DEVICE, ITS CONTROL METHOD, AND IMAGING ELEMENT
US11653110B2 (en) 2020-09-18 2023-05-16 Samsung Electronics Co., Ltd. Image sensor
KR20220082566A (en) 2020-12-10 2022-06-17 삼성전자주식회사 Image sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177449A (en) * 1996-10-18 1998-06-30 Toshiba Corp Information input device, information input method, corrected data generating device and solid-state image pickup device
JP2002344809A (en) * 2001-05-18 2002-11-29 Canon Inc Image pick up unit, its drive method, radiographic device and radiographic system
JP2007329722A (en) * 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Solid-state imaging element and digital camera
JP2009021878A (en) * 2007-07-12 2009-01-29 Canon Inc Imaging apparatus and its control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177449A (en) * 1996-10-18 1998-06-30 Toshiba Corp Information input device, information input method, corrected data generating device and solid-state image pickup device
JP2002344809A (en) * 2001-05-18 2002-11-29 Canon Inc Image pick up unit, its drive method, radiographic device and radiographic system
JP2007329722A (en) * 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Solid-state imaging element and digital camera
JP2009021878A (en) * 2007-07-12 2009-01-29 Canon Inc Imaging apparatus and its control method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140054A (en) * 2014-08-29 2016-08-04 株式会社半導体エネルギー研究所 Imaging apparatus and electronic device
US10868057B2 (en) 2015-06-08 2020-12-15 Ricoh Company, Ltd. Solid-state imaging device
EP3104594A1 (en) 2015-06-08 2016-12-14 Ricoh Company, Ltd. Solid-state imaging device
US10446595B2 (en) 2015-06-08 2019-10-15 Ricoh Company, Ltd. Solid-state imaging device
GB2553648A (en) * 2016-07-13 2018-03-14 Bosch Gmbh Robert Pixel unit for an image sensor, image sensor, method for sensing a light signal, method for actuating a pixel unit and method for generating an image using a
US10321085B2 (en) 2016-07-13 2019-06-11 Robert Bosch Gmbh Pixel unit for an image sensor, image sensor, method for sensing a light signal, method of controlling a pixel unit, and method for generating an image using a pixel unit
TWI636668B (en) * 2017-04-28 2018-09-21 友達光電股份有限公司 Automatic voltage amplifying apparatus and automatic voltage amplifying method
JP7254547B2 (en) 2019-02-08 2023-04-10 日本放送協会 Signal processing circuit and solid-state imaging device
JP2020129759A (en) * 2019-02-08 2020-08-27 日本放送協会 Signal processing circuit and solid state imaging device
US11094726B2 (en) 2019-03-29 2021-08-17 Stmicroelectronics (Grenoble 2) Sas Pixel and method of controlling the same
FR3094598A1 (en) * 2019-03-29 2020-10-02 Stmicroelectronics (Grenoble 2) Sas Pixel and its ordering process
US11212475B2 (en) 2019-06-03 2021-12-28 Stmicroelectronics (Grenoble 2) Sas Image sensor and method for controlling same
FR3096856A1 (en) * 2019-06-03 2020-12-04 Stmicroelectronics (Grenoble 2) Sas Image sensor and its control method
FR3096855A1 (en) * 2019-06-03 2020-12-04 Stmicroelectronics (Grenoble 2) Sas Image sensor and its control method
US11451730B2 (en) 2019-06-03 2022-09-20 Stmicroelectronics (Grenoble 2) Sas Image sensor using a global shutter and method for controlling same
CN112399108B (en) * 2019-08-13 2023-02-03 天津大学青岛海洋技术研究院 Power supply structure for eliminating signal attenuation of 8T CMOS image sensor
CN112399108A (en) * 2019-08-13 2021-02-23 天津大学青岛海洋技术研究院 Power supply structure for eliminating signal attenuation of 8T CMOS image sensor
WO2021048676A1 (en) * 2019-09-11 2021-03-18 株式会社半導体エネルギー研究所 Imaging device and electronic apparatus
EP4142281A4 (en) * 2020-04-21 2023-09-20 Sony Semiconductor Solutions Corporation Solid-state image capturing element
EP4142280A4 (en) * 2020-04-21 2023-09-20 Sony Semiconductor Solutions Corporation Solid-state image capturing element, and image capturing device
US11974057B2 (en) 2020-04-21 2024-04-30 Sony Semiconductor Solutions Corporation Solid-state imaging element and imaging device
WO2023063024A1 (en) * 2021-10-15 2023-04-20 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, imaging device, and control method for solid-state imaging element

Also Published As

Publication number Publication date
JPWO2011155442A1 (en) 2013-08-01
JP4846076B1 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4846076B1 (en) Amplification type solid-state imaging device
KR101450904B1 (en) A/d conversion circuit, control method thereof, solid-state imaging device, and imaging apparatus
JP6904257B2 (en) Control method for solid-state image sensor, electronic device, and solid-state image sensor
US10021334B2 (en) Pixel circuit and method of operating the same
JP6482186B2 (en) Imaging apparatus and driving method thereof
JP4442515B2 (en) Solid-state imaging device, analog-digital conversion method in solid-state imaging device, and imaging device
JP5930651B2 (en) Solid-state imaging device
JP4929075B2 (en) Solid-state imaging device, driving method thereof, and imaging device
JP5250474B2 (en) Solid-state imaging device
JP4315133B2 (en) Solid-state imaging device
JP4403387B2 (en) Solid-state imaging device and driving method of solid-state imaging device
JP5066996B2 (en) Solid-state imaging device, signal processing method for solid-state imaging device, and imaging device
JP4957925B2 (en) Amplification type solid-state imaging device
JP4288346B2 (en) Imaging device and pixel circuit
KR20080095175A (en) Solid-state image pickup device, a method of driving the same, a signal processing method for the same, and image pickup apparatus
JP6508929B2 (en) Solid-state imaging device and driving method thereof
JP2014120860A (en) Da converter, solid state imaging element, drive method thereof, and electronic apparatus
JP6385193B2 (en) Solid-state imaging device and imaging system
JP2023156418A (en) Image capturing element
JP2006033815A (en) Solid-state image pickup device
JP5177198B2 (en) Physical information acquisition method and physical information acquisition device
JP5939923B2 (en) Solid-state imaging device
JP2013102312A (en) Solid-state imaging apparatus, imaging apparatus and imaging method
WO2011070745A1 (en) Solid-state imaging device and imaging device
JP2006074173A (en) Method of driving solid-state imaging device, camera, and information processor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011536644

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/03/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11792399

Country of ref document: EP

Kind code of ref document: A1