WO2011155016A1 - 樹脂溶着方法 - Google Patents

樹脂溶着方法 Download PDF

Info

Publication number
WO2011155016A1
WO2011155016A1 PCT/JP2010/059621 JP2010059621W WO2011155016A1 WO 2011155016 A1 WO2011155016 A1 WO 2011155016A1 JP 2010059621 W JP2010059621 W JP 2010059621W WO 2011155016 A1 WO2011155016 A1 WO 2011155016A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
region
laser beam
resin
planned
Prior art date
Application number
PCT/JP2010/059621
Other languages
English (en)
French (fr)
Inventor
丈典 大宮
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to PCT/JP2010/059621 priority Critical patent/WO2011155016A1/ja
Publication of WO2011155016A1 publication Critical patent/WO2011155016A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1632Laser beams characterised by the way of heating the interface direct heating the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1661Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning repeatedly, e.g. quasi-simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/003Protecting areas of the parts to be joined from overheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • B29C66/1162Single bevel to bevel joints, e.g. mitre joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/349Cooling the welding zone on the welding spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • B29C66/91645Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91933Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93451Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed by controlling or regulating the rotational speed, i.e. the speed of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • B29C66/9392Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges in explicit relation to another variable, e.g. speed diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • B29C66/00141Protective gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/347General aspects dealing with the joint area or with the area to be joined using particular temperature distributions or gradients; using particular heat distributions or gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73775General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline
    • B29C66/73776General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline the to-be-joined areas of both parts to be joined being crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics

Definitions

  • the present invention relates to a resin welding method for manufacturing a resin welded body by welding resin members together.
  • a laser beam is irradiated along a planned welding region for welding one resin member and the other resin member, and the first resin member and the other resin member are irradiated in the planned welding region.
  • a method of welding resin members together by melting the resin members is known.
  • the amount of absorbed light of the laser beam is the largest on the laser beam incident surface of the resin member, and the distance from the laser beam incident surface is As it increases (that is, as it goes into the resin member), the amount of absorbed laser light gradually decreases. For this reason, when resin members having absorbability with respect to the laser beam are welded to each other, damage due to excessive heat input (bubbles) at the center of the laser beam irradiation area in the laser beam incident surface and the inner area in the vicinity thereof , Cloudiness, burnout, etc.) may occur.
  • Patent Document 1 describes a method of irradiating a laser beam while supplying a coolant to a laser beam incident surface of a resin member.
  • an object of the present invention is to provide a resin welding method capable of reliably preventing the occurrence of damage due to excessive heat input in the planned welding region.
  • a resin welding method is a resin welding method in which a first resin member and a second resin member are welded along a planned welding region to produce a resin welded body.
  • the planned welding region is a ring-shaped region having a center line
  • a part of the planned welding region is an irradiation region
  • a cross-sectional shape perpendicular to the optical axis is at least the laser beam incident side of the planned welding region
  • the laser beam is rotated while rotating the welding planned region relatively a plurality of times around the center line. Irradiate the area to be welded.
  • the laser beam is intermittently irradiated to a part of the planned welding region, so that the decomposition temperature (damage (bubbles, white turbidity) of the resin member can be obtained by one irradiation of the laser beam to the part of the planned welding region. , A rapid temperature rise exceeding the temperature at which burning, etc. occurs) can be prevented.
  • the cross-sectional shape of the laser beam perpendicular to the optical axis is a ring shape at the laser beam incident side end of the planned welding region, the laser beam irradiation at the laser beam incident side end of the planned welding region and its vicinity It is possible to prevent damage caused by excessive heat input at the center of the region. Therefore, according to this resin welding method, it is possible to reliably prevent the occurrence of damage due to excessive heat input in the planned welding region.
  • the peak value of the temperature profile in a part of the planned welding region has a higher melting temperature between the melting temperature of the first resin member and the melting temperature of the second resin member, the decomposition temperature of the first resin member, and While rotating the planned welding region relatively several times around the center line with respect to the laser beam so as to appear in a plurality between the lower decomposition temperatures of the decomposition temperatures of the second resin member, It is preferable to irradiate the area to be welded. By such control, the resin member can be sufficiently melted in the planned welding region while preventing the resin member from being damaged in the planned welding region.
  • the peak value of the temperature profile means the maximum value of a graph showing the relationship between time (horizontal axis) and temperature (vertical axis).
  • a part of the planned welding region is a part inside a predetermined distance from the surface of at least one of the first resin member and the second resin member serving as the laser light incident surface. In this case, it is possible to accurately acquire the temperature of the melted portion in the planned welding region. At this time, it is preferable that the surface portion including the laser light incident surface is cooled to a temperature lower than the melting point when the laser light is irradiated. In this case, the portion that melts and expands is confined by the solidified surface portion. Therefore, the occurrence of flash or the like is prevented, and the appearance of the resin welded body can be maintained. In addition, the pressure at the welding interface is maintained, and welding with high welding strength is possible.
  • the planned welding region it is preferable to irradiate the planned welding region with the laser beam so that the laser beam converges in the planned welding region.
  • the light density attenuated by light absorption is compensated, and the resin member can be sufficiently melted in the entire region of the planned welding region from the laser beam incident side to the opposite side of the planned welding region.
  • the laser beam irradiation region straddles the first resin member and the second resin member at least at the laser beam incident side end.
  • steps or gaps on the laser light incident side at the abutting part between the resin members, and these steps or gaps cause damage due to excessive heat input by scattering the laser light.
  • the amount of laser light applied to the step, gap, etc. can be reduced by straddling the ring-shaped laser light between the first resin member and the second resin member at the laser light incident side end of the region to be welded. As a result, it is possible to suppress the occurrence of damage due to excessive heat input caused by steps or gaps.
  • the laser beam incident side is moved to the opposite side. It is preferable to move the irradiation region of the laser light relatively.
  • the resin member is melted, the diffuse transmittance of the laser beam increases due to the decrease in the scattering factor in the melted part. Therefore, the irradiation region of the laser beam is moved relatively from the laser beam incident side to the opposite side.
  • the laser light can reach a deeper part from the laser light incident surface, and the deeper part from the laser light incident surface can be melted.
  • the planned welding area it is preferable to irradiate the planned welding area with laser light while blowing a cooling gas to the planned welding area.
  • a heat conductor that transmits laser light is disposed on the laser light incident side with respect to the region to be welded, and the region to be welded is irradiated with the heat conductor as a heat sink.
  • the heat conductor which is a cooling gas or a heat sink, takes heat away from the laser light incident side end of the resin member, so that the laser light incident side end of the region to be welded and the center of the laser light irradiation region in the vicinity thereof It is possible to more reliably prevent damage due to excessive heat input.
  • a resin welding method is a resin welding method for manufacturing a resin welded body by welding a first resin member and a second resin member along a planned welding region, the planned welding region being a center line.
  • the laser beam is projected to be welded while rotating the welding planned region relatively a plurality of times around the center line with respect to the laser beam in which a portion of the planned welding region is an irradiation region.
  • the first resin member and the second resin member are welded along the planned welding region.
  • the laser beam is rotated while rotating the welding planned region relatively a plurality of times around the center line. Irradiate the area to be welded.
  • the laser beam is intermittently irradiated to a part of the planned welding region, so that the laser beam is rapidly irradiated to the part of the planned welding region so as to exceed the decomposition temperature of the resin member. Temperature rise can be prevented. Therefore, according to this resin welding method, it is possible to reliably prevent the occurrence of damage due to excessive heat input in the planned welding region.
  • FIG. 1 is a configuration diagram of a condensing optical system used in the first embodiment of the resin welding method according to the present invention.
  • the condensing optical system 1 includes a collimating lens 2, a condensing lens 3, and a conical concave axicon lens 4 arranged on the optical axis OA in order from the light source LS side of the laser light L.
  • the condensing optical system 1 has been configured.
  • the cross-sectional shape of the laser light L perpendicular to the optical axis OA becomes an annular shape on the light source LS side with respect to the condensing spot FS, and the condensing spot FS.
  • a solid circular shape is formed on the other side of the light source LS.
  • FIG. 2 is a graph showing a light intensity profile of the laser light that has passed through the condensing optical system of FIG. 1 before reaching the condensing spot.
  • the light intensity profile of the laser light L has a light intensity profile at the center portion that is opposite to the light intensity profile of the laser light with the Gaussian distribution or the top hat distribution before reaching the condensing spot FS. It is lower than the light intensity of the part. 2 is a case where the light intensity of the laser light L is integrated in a direction orthogonal to the optical axis OA and the traveling direction of the laser light L.
  • FIGS. 3 and 4 A resin welding method using the condensing optical system 1 configured as described above will be described.
  • a cylindrical resin member (first resin member) 5 and a resin member (second resin member) 6 size: outer diameter 60 mm, thickness (wall thickness) 4 mm.
  • an annular welding planned region R having a center line CL is set along the abutting portion (here, the bottom surfaces 5a and 6a) between the resin members 5 and 6.
  • the resin members 5 and 6 are semi-absorbable with respect to the laser beam L (absorbance 0 using a dye called eBIND (registered trademark) ACW (registered trademark) -9871 manufactured by Orient Chemical Industries, Ltd.). The resin member colored so as to be 2 was used).
  • the resin members 5 and 6 are rotated around the center line CL while maintaining the abutted state. Then, in the state where the optical axis OA is substantially orthogonal to the center line CL and the optical axis OA passes through the butted portion between the resin members 5 and 6, the inside of the resin member 5 (between the inner peripheral surface 5b and the outer peripheral surface 5c). ) And the inside of the resin member 6 (the portion between the inner peripheral surface 6b and the outer peripheral surface 6c), the focused spot FS is aligned and irradiated with the laser light L, and a welding schedule which is an irradiation region of the laser light L A cooling gas G such as air or nitrogen is sprayed on a part of the region R.
  • a cooling gas G such as air or nitrogen is sprayed on a part of the region R.
  • the laser beam L is irradiated onto the planned welding region R while the planned welding region R is rotated around the center line CL a plurality of times.
  • the resin members 5 and 6 are melted and resolidified in the planned welding region R, and the resin members 5 and 6 are welded along the planned welding region R, whereby the resin welded body 100 is manufactured.
  • the blowing direction of the cooling gas G may be parallel to or perpendicular to the welding planned region R, or may be coaxial with the optical axis OA of the laser light L.
  • the laser beam L when the laser beam L is irradiated, the laser beam L converges in the planned welding region R.
  • the cross-sectional shape of the laser beam L perpendicular to the optical axis OA is an annular shape in the welding planned region R, and the hollow portion (the central non-irradiation region) of the annular laser beam is on the laser beam incident side.
  • the boundary between the resin member 5 and the resin member 6 is straddled at the end R1. That is, the laser beam L straddles the resin member 5 and the resin member 6 in the planned welding region R (in other words, is stretched between the resin member 5 and the resin member 6).
  • the laser beam L has an energy density that can melt the resin members 5 and 6 in the welding planned region R.
  • the rotation speed and the laser beam are as follows. Control the intensity of L. That is, the peak value of the temperature profile in a part of the planned welding region R, which is the irradiation region of the laser light L, of the melting temperature of the resin member 5 and the melting temperature of the resin member 6, A plurality of values appear between the decomposition temperature and the lower decomposition temperature of the resin member 6.
  • FIG. 5 is a graph showing a temperature profile in a part of the planned welding region.
  • the peak value of the temperature profile in a part of the welding planned region R that is the irradiation region of the laser light L is the melting temperature (200 ° C.) of the resin members 5 and 6 and the decomposition of the resin members 5 and 6.
  • a plurality of occurrences between the temperature (300 ° C.) and the temperature of the welding scheduled region R with respect to the laser beam L are 50 rpm and 100 rpm.
  • a part of the planned welding region R is a portion inside a predetermined distance from the surface of the resin members 5 and 6 that becomes the incident surface (laser light incident surface) of the laser light L.
  • the predetermined distance is, for example, about 0.1 mm. It is preferable that a plurality of peak values of the temperature profile in this portion appear between the melting temperature of the resin members 5 and 6 and the decomposition temperature of the resin members 5 and 6.
  • the time per one time that the laser beam L is irradiated to a part of the planned welding region R is relatively long. For this reason, a rapid temperature rise that exceeds the decomposition temperature (300 ° C.) of the resin members 5 and 6 occurs by one-time irradiation of the laser beam to a part of the planned welding region.
  • the number of rotations of the planned welding region R with respect to the laser beam L is 50 rpm and 100 rpm, the time per one time that the laser beam L is irradiated to a part of the planned welding region R is relatively short.
  • the laser beam in which a part of the annular welding planned region R having the center line CL is an irradiation region is an irradiation region.
  • the laser beam L is irradiated to the welding region R while rotating the welding region R relatively a plurality of times around the center line CL.
  • the laser beam L is intermittently applied to a part of the planned welding region R, so that the decomposition temperature of the resin member may be exceeded by a single irradiation of the laser beam to a part of the planned welding region R. A rapid temperature rise can be prevented.
  • the cross-sectional shape of the laser beam L perpendicular to the optical axis OA is an annular shape in the planned welding region R, the irradiation of the laser beam L in the laser beam incident side end R1 of the planned welding region R and in the vicinity thereof. It is possible to prevent damage caused by excessive heat input at the center of the region. According to the resin welding method using the condensing optical system 1, it is possible to reliably prevent the occurrence of damage due to excessive heat input in the planned welding region R.
  • FIG. 6 is a view showing a cross-sectional photograph of the welded portion in the resin welded body manufactured by the first embodiment of the resin welding method according to the present invention.
  • the resin member 5 and the resin member 6 are not damaged by excessive heat input at the laser light incident side end R ⁇ b> 1 and the vicinity thereof in the planned welding region R. It is surely welded at the melting mark 11 part.
  • the higher one of the melting temperature of the resin member 5 and the melting temperature of the resin member 6, the decomposition temperature of the resin member 5, and the decomposition of the resin member 6 are the peak values of the temperature profile in a part of the planned welding region R.
  • the laser beam L is projected to the welding region R while rotating the welding region R relative to the laser beam L a plurality of times around the center line so that a plurality of temperatures appear between the lower decomposition temperature of the temperatures. Irradiate.
  • the resin members 5 and 6 can be sufficiently melted in the planned welding region R while preventing the resin members 5 and 6 from being damaged in the planned welding region R.
  • mixing of the melted resin is promoted, so that when the melted resin is re-solidified, strong welding is realized.
  • FIG. 7 is a cross-sectional view showing a state in which the melted portion proceeds with the rotation of the welding planned region with respect to the laser beam.
  • the resin members 5 and 6 are made of a crystalline resin
  • the laser beam L is difficult to reach inside due to light scattering, but when the resin members 5 and 6 are melted,
  • the diffusion transmittance of the laser light L increases due to the decrease of the scattering factor. Therefore, every time the laser beam L is irradiated to the welding planned region R, the laser beam L reaches the deeper portion from the laser beam incident surface 9a and the melted portion 12 advances. Accordingly, a deeper portion from the laser light incident surface 9a can be melted.
  • the surface portions 9 of the resin members 5 and 6 including the laser beam incident surface 9a are solidified by cooling, a portion (part) 13 inside the surface portion 9 is melted. Thereby, the melted and expanded portion is confined by the solidified surface portion 9. Accordingly, the occurrence of flash or the like is prevented, and the appearance of the resin welded body 100 can be maintained. In addition, the pressure at the welding interface is maintained, and welding with high welding strength is possible.
  • the laser beam L is irradiated onto the planned welding region R so that the laser beam L converges in the planned welding region R, the light density attenuated by light absorption is compensated for, and the laser beam incident side of the planned welding region R
  • the resin members 5 and 6 can be sufficiently melted in the entire region extending from to the opposite side.
  • the energy density of the laser beam L can be suppressed at the laser beam incident side end R1 of the planned welding region R where damage is likely to occur.
  • FIG. 8 is an enlarged cross-sectional view of a butt portion between resin members. As shown in FIG. 8, due to the fact that the molding accuracy of the resin members 5 and 6 is not so high, a step or a gap or the like is generated on the laser light incident side at the butt portion between the resin members 5 and 6.
  • the resin welding method for irradiating the laser beam L so that the laser beam L straddles the resin member 5 and the resin member 6 at the laser beam incident side end R1 of the planned welding region R is the resin members 5 and 6 are bonded together. This is particularly effective when the welding planned region R is set along the butted portion.
  • the laser beam L is irradiated to the welding planned region R while blowing the cooling gas G to the welding planned region R.
  • the cooling gas G removes heat from the laser light incident side end portions of the resin members 5 and 6, so that the laser light incident side end portion R 1 of the planned welding region R and the laser beam L irradiation central portion in the vicinity thereof. Damage due to excessive heat input can be prevented more reliably.
  • FIG. 9 is a configuration diagram of a condensing optical system used in the second embodiment of the resin welding method according to the present invention.
  • the condensing optical system 10 includes a collimating lens 2, a condensing lens 3, and a conical convex axicon lens 7 on the optical axis OA in order from the light source LS side of the laser light L. Arranged and configured.
  • the cross-sectional shape of the laser light L perpendicular to the optical axis OA becomes a solid circular shape on the light source LS side with respect to the condensing spot FS. It has an annular shape on the side opposite to the light source LS with respect to the FS.
  • the light intensity profile of the laser beam L has a light intensity profile at the center lower than that of the surrounding area, contrary to the light intensity profile of the laser beam having a Gaussian distribution or top hat distribution after reaching the condensing spot FS. (See FIG. 2).
  • FIGS. 10 and 11 A resin welding method using the condensing optical system 10 configured as described above will be described.
  • cylindrical resin members 5 and 6 size: cylindrical with an outer diameter of 60 mm and a thickness (wall thickness) of 4 mm, material: 66 nylon Leona manufactured by Asahi Kasei Chemicals Corporation (registered) Trademark) 14G33
  • the center line CL is substantially matched, and the bottom surface 5a of the resin member 5 and the bottom surface 6a of the resin member 6 are abutted.
  • the outer peripheral surface 5c of the resin member 5 and the outer peripheral surface 6c of the resin member 6 are covered with a heat conductor 8 made of a material that is transmissive to the laser light L (for example, glass or the like).
  • a ring-shaped welding scheduled region R having a center line CL is set along the abutting portions (here, the bottom surfaces 5a and 6a) between the six.
  • the resin members 5 and 6 are semi-absorbable with respect to the laser beam L (absorbance 0 using a dye called eBIND (registered trademark) ACW (registered trademark) -9871 manufactured by Orient Chemical Industries, Ltd.). The resin member colored so as to be 2 was used).
  • the resin members 5 and 6 and the heat conductor 8 are rotated around the center line CL while maintaining the abutted state. Then, in a state where the optical axis OA is substantially orthogonal to the center line CL and the optical axis OA passes through the butted portion between the resin members 5 and 6, the outer peripheral surface 5 c of the resin member 5 and the outer peripheral surface 6 c of the resin member 6.
  • the laser beam L is irradiated with the focused spot FS on the outside (the rear side in the traveling direction of the laser beam L).
  • the laser beam L passes through the thermal conductor 8 and is irradiated to the welding region R while the welding region R is rotated around the center line CL a plurality of times with respect to the laser beam L.
  • the resin members 5 and 6 are melted and resolidified in the planned welding region R, and the resin members 5 and 6 are welded along the planned welding region R, whereby the resin welded body 100 is manufactured.
  • the laser beam L when the laser beam L is irradiated, the laser beam L diverges in the planned welding region R.
  • the cross-sectional shape of the laser beam L perpendicular to the optical axis OA is an annular shape in the welding planned region R, and the hollow portion (the central non-irradiation region) of the annular laser beam is on the laser beam incident side.
  • the boundary between the resin member 5 and the resin member 6 is straddled at the end R1. That is, the laser beam L straddles the resin member 5 and the resin member 6 in the planned welding region R (in other words, is stretched between the resin member 5 and the resin member 6).
  • the laser beam L has an energy density that can melt the resin members 5 and 6 in the welding planned region R.
  • the rotation speed and the laser beam are as follows. Control the intensity of L. That is, the peak value of the temperature profile in a part of the planned welding region R, which is the irradiation region of the laser light L, of the melting temperature of the resin member 5 and the melting temperature of the resin member 6, A plurality of values appear between the decomposition temperature and the lower decomposition temperature of the resin member 6.
  • the laser beam in which a part of the annular welding planned region R having the center line CL is an irradiation region.
  • the laser beam L is irradiated to the welding region R while rotating the welding region R relatively a plurality of times around the center line CL.
  • the laser beam L is intermittently applied to a part of the planned welding region R, so that the decomposition temperature of the resin member may be exceeded by a single irradiation of the laser beam to a part of the planned welding region R. A rapid temperature rise can be prevented.
  • the cross-sectional shape of the laser beam L perpendicular to the optical axis OA is an annular shape in the planned welding region R, the irradiation of the laser beam L in the laser beam incident side end R1 of the planned welding region R and in the vicinity thereof. It is possible to prevent damage caused by excessive heat input at the center of the region. According to the resin welding method using the condensing optical system 10, it is possible to reliably prevent the occurrence of damage due to excessive heat input in the planned welding region R.
  • FIG. 12 is a view showing a cross-sectional photograph of a welded portion in the resin welded body manufactured by the second embodiment of the resin welding method according to the present invention.
  • the resin member 5 and the resin member 6 are not damaged by excessive heat input at the laser light incident side end R ⁇ b> 1 and the vicinity thereof in the planned welding region R. It is surely welded at the melting mark 11 part.
  • the laser beam L is applied to the planned welding region R so that the laser beam L diverges in the planned welding region R, it is possible to suppress the resin members 5 and 6 from being overheated and to be welded.
  • the resin members 5 and 6 can be appropriately melted in the entire region R.
  • it is possible to simplify the configuration of the optical system and earn a working distance. Such irradiation of the laser beam L is effective when it is not desired to melt a deep portion from the laser beam incident surface.
  • the thermal conductor 8 that transmits the laser beam L is disposed on the laser beam incident side with respect to the welding region R, and the laser beam L is irradiated to the welding region R using the thermal conductor 8 as a heat sink.
  • the heat conductor 8 takes heat from the laser light incident side end portions of the resin members 5 and 6, the laser light incident side end portion R1 of the planned welding region R and the central portion of the irradiation region of the laser light L in the vicinity thereof. It is possible to more reliably prevent damage due to excessive heat input.
  • the present invention is not limited to the embodiment described above.
  • welding is planned to be performed more than the energy density range (irradiation region of the laser beam L) of the laser beam L that can melt the resin members 5 and 6.
  • the region R is wide (that is, when the region to be welded R is wide in the depth direction from the laser light incident surface)
  • the region to be welded R relative to the laser light L is relatively plural times around the center line CL. What is necessary is just to relatively move the irradiation region of the laser beam L between the laser beam incident side and the opposite side with respect to the welding planned region R while rotating.
  • the irradiation region of the laser light L from the laser light incident side toward the opposite side it is preferable to relatively move the irradiation region of the laser light L from the laser light incident side toward the opposite side for the following reason. That is, when the resin members 5 and 6 are melted, the diffusion transmittance of the laser light L increases due to the decrease of the scattering factor in the melted portion, so that the irradiation region of the laser light L from the laser light incident side to the opposite side is changed. This is because if the laser beam is moved relatively, the laser beam L can reach a deeper portion from the laser beam incident surface, and a deeper portion from the laser beam incident surface can be melted.
  • the butted surfaces 5a and 6a of the resin members 5 and 6 in the planned welding region R are substantially parallel to the optical axis OA and substantially perpendicular to the center line CL.
  • FIG. 6 when the butted surfaces 5a and 6a of the resin members 5 and 6 in the planned welding region R are substantially perpendicular to the optical axis OA and substantially parallel to the center line CL, FIG. As shown in FIG. 6, the butting surfaces 5a and 6a of the resin members 5 and 6 in the planned welding region R may be substantially parallel to the optical axis OA and the center line CL.
  • a part of the planned welding region R is a part inside a predetermined distance from the surface of the resin member 5 (in some cases, the resin member 6) that becomes the laser light incident surface.
  • a specific example of the predetermined distance is about 0.1 mm. It is preferable that a plurality of peak values of the temperature profile in this portion appear between the melting temperature of the resin members 5 and 6 and the decomposition temperature of the resin members 5 and 6.
  • the condensing optical system 1 may be rotated around the center line CL, or the condensing optics. Both the system 1 and the resin members 5 and 6 may be rotated around the center line CL.
  • the cross-sectional shape of the laser beam L perpendicular to the optical axis OA is at least a ring shape at the laser beam incident side end R1 of the planned welding region R, the laser beam incident side end R1 of the planned welding region R and It is possible to prevent damage due to excessive heat input at the center of the irradiation region of the laser light L in the vicinity thereof. Furthermore, if the laser beam L straddles the resin member 5 and the resin member 6 at least at the laser beam incident side end R1 of the welding planned region R, heat input caused by a step or a gap between the resin members 5 and 6 or the like. The occurrence of damage due to excess can be suppressed.
  • the cross-sectional shape of the laser beam L perpendicular to the optical axis OA is not a ring shape in the irradiation region, for example, a solid circular shape, the welding region R around the center line CL around the laser beam L.
  • the occurrence of damage due to excessive heat input in the welding region R is prevented, and the resin members 5 and 6 are bonded to the region. It is possible to reliably weld along R.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

 中心線CLを有する円環形状の溶着予定領域Rの一部分が照射領域であるレーザ光Lに対して、溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射する。これにより、溶着予定領域Rの一部分に対してレーザ光Lが断続的に照射されることになるので、溶着予定領域Rの一部分に対するレーザ光の1回の照射で樹脂部材の分解温度を越えるような急激な温度上昇を防止することができる。しかも、光軸OAに対して垂直なレーザ光Lの断面形状が溶着予定領域Rにおいて円環形状であるため、溶着予定領域Rのレーザ光入射側端部R1及びその近傍におけるレーザ光Lの照射領域中心部に入熱過多による損傷が生じるのを防止することができる。

Description

樹脂溶着方法
 本発明は、樹脂部材同士を溶着して樹脂溶着体を製造する樹脂溶着方法に関する。
 上記技術分野における従来の樹脂溶着方法として、一方の樹脂部材と他方の樹脂部材とを溶着するための溶着予定領域に沿ってレーザ光を照射して、溶着予定領域において一方の樹脂部材及び他方の樹脂部材を溶融させることにより、樹脂部材同士を溶着する方法が知られている。
 ところで、レーザ光に対して吸収性を有する樹脂部材においては、図15に示されるように、樹脂部材のレーザ光入射面でレーザ光の吸収光量が最も多くなり、レーザ光入射面からの距離が大きくなるに従って(すなわち、樹脂部材の内部に行くに従って)レーザ光の吸収光量が徐々に少なくなる。そのため、レーザ光に対して吸収性を有する樹脂部材同士を突き合わせて溶着する場合などには、レーザ光入射面及びその近傍の内部領域におけるレーザ光の照射領域中心部に入熱過多による損傷(気泡、白濁、焼損等)が生じることがある。
 そのような損傷を防止するための樹脂溶着方法として、特許文献1には、樹脂部材のレーザ光入射面に冷媒を供給しつつレーザ光の照射を行う方法が記載されている。
特開2005-88355号公報
 しかしながら、特許文献1記載の樹脂溶着方法にあっては、樹脂部材のレーザ光入射面における損傷の発生は防止し得るものの、レーザ光入射面近傍の内部領域における損傷の発生までを防止することは困難である。
 そこで、本発明は、このような事情に鑑みてなされたものであり、溶着予定領域において入熱過多による損傷の発生を確実に防止することができる樹脂溶着方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る樹脂溶着方法は、第1の樹脂部材と第2の樹脂部材とを溶着予定領域に沿って溶着して樹脂溶着体を製造する樹脂溶着方法であって、溶着予定領域が中心線を有する環形状の領域である場合において、溶着予定領域の一部分が照射領域であり、且つ光軸に対して垂直な断面形状が少なくとも溶着予定領域のレーザ光入射側端部において環形状であるレーザ光に対して、溶着予定領域を中心線回りに相対的に複数回回転させながら、レーザ光を溶着予定領域に照射することにより、第1の樹脂部材と第2の樹脂部材とを溶着予定領域に沿って溶着することを特徴とする。
 この樹脂溶着方法においては、中心線を有する環形状の溶着予定領域の一部分が照射領域であるレーザ光に対して、溶着予定領域を中心線回りに相対的に複数回回転させながら、レーザ光を溶着予定領域に照射する。これにより、溶着予定領域の一部分に対してレーザ光が断続的に照射されることになるので、溶着予定領域の一部分に対するレーザ光の1回の照射で樹脂部材の分解温度(損傷(気泡、白濁、焼損等)が生じる温度)を越えるような急激な温度上昇を防止することができる。しかも、光軸に対して垂直なレーザ光の断面形状が溶着予定領域のレーザ光入射側端部において環形状であるため、溶着予定領域のレーザ光入射側端部及びその近傍におけるレーザ光の照射領域中心部に入熱過多による損傷が生じるのを防止することができる。よって、この樹脂溶着方法によれば、溶着予定領域において入熱過多による損傷の発生を確実に防止することが可能となる。
 また、溶着予定領域の一部分における温度プロファイルのピーク値が、第1の樹脂部材の溶融温度及び第2の樹脂部材の溶融温度のうち高い方の溶融温度と、第1の樹脂部材の分解温度及び第2の樹脂部材の分解温度のうち低い方の分解温度との間に、複数現れるように、レーザ光に対して溶着予定領域を中心線回りに相対的に複数回回転させながら、レーザ光を溶着予定領域に照射することが好ましい。このような制御により、溶着予定領域において樹脂部材に損傷が生じるのを防止しつつ、溶着予定領域において樹脂部材を十分に溶融させることができる。なお、温度プロファイルのピーク値とは、時間(横軸)と温度(縦軸)との関係を示すグラフの極大値を意味する。
 また、溶着予定領域の一部分は、レーザ光の入射面となる第1の樹脂部材及び第2の樹脂部材の少なくとも一方の表面から所定の距離だけ内側の部分であることが好ましい。この場合、溶着予定領域において溶融している部分の温度を正確に取得することができる。このとき、レーザ光の入射面を含む表面部は、レーザ光が照射されているときに融点未満の温度に冷却されることが好ましい。この場合、溶融して膨張する部分が、固化した表面部によって閉じ込められることになる。従って、ばり等の発生が防止され、樹脂溶着体の外観の維持が可能となる。しかも、溶着界面における圧力が維持され、溶着強度の高い溶着が可能となる。
 また、溶着予定領域おいてレーザ光が収束するようにレーザ光を溶着予定領域に照射することが好ましい。この場合、光吸収によって減衰する光密度が補われて、溶着予定領域のレーザ光入射側からその反対側に至る溶着予定領域の全領域で樹脂部材を十分に溶融させることができる。或いは、溶着予定領域おいてレーザ光が発散するようにレーザ光を溶着予定領域に照射することが好ましい。この場合、樹脂部材が入熱過多の状態になるのを抑制して、溶着予定領域の全領域で樹脂部材を適度に溶融させることができる。
 また、少なくともレーザ光入射側端部においてレーザ光の照射領域が第1の樹脂部材と第2の樹脂部材とを跨ぐようにレーザ光を溶着予定領域に照射することが好ましい。樹脂部材同士の突合せ部にはレーザ光入射側に段差や隙間等が生じていることが多く、これらの段差や隙間等がレーザ光を散乱させるなどして入熱過多による損傷を生じさせる原因となり易いものの、溶着予定領域のレーザ光入射側端部において環形状のレーザ光を第1の樹脂部材と第2の樹脂部材とに跨らせることで、段差や隙間等に対するレーザ光の照射量が少なくなり、その結果、段差や隙間等に起因した入熱過多による損傷の発生を抑制することができる。
 また、溶着予定領域に対してレーザ光入射側とその反対側(レーザ光出射側)との間においてレーザ光の照射領域を相対的に移動させる場合には、レーザ光入射側からその反対側に向かってレーザ光の照射領域を相対的に移動させることが好ましい。樹脂部材が溶融すると、溶融部分では、散乱因子の減少によりレーザ光の拡散透過率が上昇するため、レーザ光入射側からその反対側に向かってレーザ光の照射領域を相対的に移動させることで、レーザ光入射面からより深い部分にまでレーザ光を到達させ、レーザ光入射面からより深い部分を溶融させることができる。
 また、溶着予定領域に冷却ガスを吹き付けながらレーザ光を溶着予定領域に照射することが好ましい。或いは、レーザ光を透過する熱伝導体を溶着予定領域に対してレーザ光入射側に配置し、熱伝導体をヒートシンクとしてレーザ光を溶着予定領域に照射することが好ましい。これらの場合、冷却ガス又はヒートシンクである熱伝導体が樹脂部材のレーザ光入射側端部から熱を奪うため、溶着予定領域のレーザ光入射側端部及びその近傍におけるレーザ光の照射領域中心部に入熱過多による損傷が生じるのをより確実に防止することができる。
 本発明に係る樹脂溶着方法は、第1の樹脂部材と第2の樹脂部材とを溶着予定領域に沿って溶着して樹脂溶着体を製造する樹脂溶着方法であって、溶着予定領域が中心線を有する環形状の領域である場合において、溶着予定領域の一部分が照射領域であるレーザ光に対して、溶着予定領域を中心線回りに相対的に複数回回転させながら、レーザ光を溶着予定領域に照射することにより、第1の樹脂部材と第2の樹脂部材とを溶着予定領域に沿って溶着することを特徴とする。
 この樹脂溶着方法においては、中心線を有する環形状の溶着予定領域の一部分が照射領域であるレーザ光に対して、溶着予定領域を中心線回りに相対的に複数回回転させながら、レーザ光を溶着予定領域に照射する。これにより、溶着予定領域の一部分に対してレーザ光が断続的に照射されることになるので、溶着予定領域の一部分に対するレーザ光の1回の照射で樹脂部材の分解温度を越えるような急激な温度上昇を防止することができる。よって、この樹脂溶着方法によれば、溶着予定領域において入熱過多による損傷の発生を確実に防止することが可能となる。
 本発明によれば、溶着予定領域において入熱過多による損傷の発生を確実に防止することができる。
本発明に係る樹脂溶着方法の第1の実施形態に用いられる集光光学系の構成図である。 図1の集光光学系を通過したレーザ光の集光スポット到達前の光強度プロファイルを示すグラフである。 本発明に係る樹脂溶着方法の第1の実施形態を説明するための斜視図である。 本発明に係る樹脂溶着方法の第1の実施形態を説明するための断面図である。 溶着予定領域の一部分における温度プロファイルを示すグラフである。 本発明に係る樹脂溶着方法の第1の実施形態によって製造された樹脂溶着体における溶着部分の断面写真を示す図である。 レーザ光に対する溶着予定領域の回転に伴って溶融部分が進行する様子を示す断面図である。 樹脂部材同士の突合せ部の拡大断面図である。 本発明に係る樹脂溶着方法の第2の実施形態に用いられる集光光学系の構成図である。 本発明に係る樹脂溶着方法の第2の実施形態を説明するための斜視図である。 本発明に係る樹脂溶着方法の第2の実施形態を説明するための断面図である。 本発明に係る樹脂溶着方法の第2の実施形態によって製造された樹脂溶着体における溶着部分の断面写真を示す図である。 本発明に係る樹脂溶着方法の他の実施形態を説明するための断面図である。 本発明に係る樹脂溶着方法の他の実施形態を説明するための断面図である。 樹脂部材のレーザ光入射面からの距離とレーザ光の吸収光量との関係を示すグラフである。
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1の実施形態]
 図1は、本発明に係る樹脂溶着方法の第1の実施形態に用いられる集光光学系の構成図である。図1に示されるように、集光光学系1は、レーザ光Lの光源LS側から順に、コリメート用レンズ2、集光用レンズ3及び円錐凹状のアキシコンレンズ4が光軸OA上に配置されて構成されている。この集光光学系1をレーザ光Lが通過すると、光軸OAに対して垂直なレーザ光Lの断面形状は、集光スポットFSに対して光源LS側で円環形状となり、集光スポットFSに対して光源LSと反対側で中実円形状となる。
 図2は、図1の集光光学系を通過したレーザ光の集光スポット到達前の光強度プロファイルを示すグラフである。図2に示されるように、レーザ光Lの光強度プロファイルは、集光スポットFS到達前において、ガウシアン分布やトップハット分布のレーザ光の光強度プロファイルとは逆に、中央部の光強度が周囲部の光強度よりも低いものとなっている。なお、図2の光強度プロファイルは、光軸OA及びレーザ光Lの進行方向と直交する方向にレーザ光Lの光強度を積分した場合である。
 以上のように構成された集光光学系1を用いた樹脂溶着方法について説明する。まず、図3及び4に示されるように、円筒状の樹脂部材(第1の樹脂部材)5及び樹脂部材(第2の樹脂部材)6(サイズ:外径60mm、厚さ(壁厚)4mmの円筒状、材料:旭化成ケミカルズ株式会社製66ナイロン レオナ(登録商標)14G33)を準備し、中心線CLを略一致させて、樹脂部材5の底面5aと樹脂部材6の底面6aとを突き合わせる。この状態で、樹脂部材5,6同士の突合せ部(ここでは、底面5a,6a)に沿って、中心線CLを有する円環形状の溶着予定領域Rを設定する。なお、樹脂部材5,6は、レーザ光Lに対して半吸収性を有している(オリエント化学工業株式会社製のeBIND(登録商標) ACW(登録商標)-9871という色素を用いて吸光度0.2となるように着色した樹脂部材を使用した)。
 続いて、突き合わされた状態を保持しながら樹脂部材5,6を中心線CL回りに回転させる。そして、光軸OAが中心線CLと略直交し、且つ光軸OAが樹脂部材5,6同士の突合せ部を通る状態で、樹脂部材5の内部(内周面5bと外周面5cとの間の部分)及び樹脂部材6の内部(内周面6bと外周面6cとの間の部分)に集光スポットFSを合わせてレーザ光Lを照射すると共に、レーザ光Lの照射領域である溶着予定領域Rの一部分に、空気や窒素等の冷却ガスGを吹き付ける。これにより、レーザ光Lに対して溶着予定領域Rが中心線CL回りに複数回回転させられながら、レーザ光Lが溶着予定領域Rに照射されることになる。その結果、溶着予定領域Rにおいて樹脂部材5,6が溶融・再固化し、溶着予定領域Rに沿って樹脂部材5,6同士が溶着されて樹脂溶着体100が製造される。なお、冷却ガスGの吹付け方向は、溶着予定領域Rに対して平行でも垂直でもよいし、或いはレーザ光Lの光軸OAと同軸方向でもよい。
 ここで、レーザ光Lの照射に際しては、レーザ光Lは、溶着予定領域Rにおいて収束している。そして、光軸OAに対して垂直なレーザ光Lの断面形状は、溶着予定領域Rにおいて円環形状であり、その環状レーザ光の中抜け部(中心の非照射領域)は、レーザ光入射側端部R1において樹脂部材5と樹脂部材6との境界を跨いでいる。つまり、レーザ光Lは、溶着予定領域Rにおいて樹脂部材5と樹脂部材6とを跨いでいる(換言すれば、樹脂部材5と樹脂部材6とに掛け渡されている)。なお、レーザ光Lは、溶着予定領域Rにおいて樹脂部材5,6を溶融させ得るエネルギ密度を有している。
 また、レーザ光Lに対して溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射するに際しては、次のように回転速度やレーザ光Lの強度を制御する。すなわち、レーザ光Lの照射領域である溶着予定領域Rの一部分における温度プロファイルのピーク値が、樹脂部材5の溶融温度及び樹脂部材6の溶融温度のうち高い方の溶融温度と、樹脂部材5の分解温度及び樹脂部材6の分解温度のうち低い方の分解温度との間に、複数現れるようにする。
 図5は、溶着予定領域の一部分における温度プロファイルを示すグラフである。図5に示されるように、レーザ光Lの照射領域である溶着予定領域Rの一部分における温度プロファイルのピーク値が、樹脂部材5,6の溶融温度(200℃)と樹脂部材5,6の分解温度(300℃)との間に複数現れるのは、レーザ光Lに対する溶着予定領域Rの回転数が50rpmの場合及び100rpmの場合である。
 ここで、溶着予定領域Rの一部分とは、レーザ光Lの入射面(レーザ光入射面)となる樹脂部材5,6の表面から所定の距離だけ内側の部分である。所定の距離は、例えば0.1mm程度である。この部分における温度プロファイルのピーク値が、樹脂部材5,6の溶融温度と樹脂部材5,6の分解温度との間に複数現れることが好ましい。
 レーザ光Lに対する溶着予定領域Rの回転数が5rpmの場合、10rpmの場合及び20rpmの場合には、溶着予定領域Rの一部分にレーザ光Lが照射される1回当たりの時間が相対的に長くなるため、溶着予定領域の一部分に対するレーザ光の1回の照射で樹脂部材5,6の分解温度(300℃)を越えるような急激な温度上昇が生じてしまう。これに対し、レーザ光Lに対する溶着予定領域Rの回転数が50rpmの場合及び100rpmの場合には、溶着予定領域Rの一部分にレーザ光Lが照射される1回当たりの時間が相対的に短くなるため、溶着予定領域の一部分に対するレーザ光の1回の照射で樹脂部材5,6の分解温度(300℃)を越えるような急激な温度上昇が生じない。従って、樹脂部材5,6の溶融温度(200℃)と樹脂部材5,6の分解温度(300℃)との間の温度を長く維持して、溶着予定領域Rにおいて樹脂部材5,6に損傷が生じるのを防止しつつ、溶着予定領域Rにおいて樹脂部材5,6を十分に溶融させることができる。
 以上説明したように、集光光学系1を用いた樹脂溶着方法においては、図4に示されるように、中心線CLを有する円環形状の溶着予定領域Rの一部分が照射領域であるレーザ光Lに対して、溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射する。これにより、溶着予定領域Rの一部分に対してレーザ光Lが断続的に照射されることになるので、溶着予定領域Rの一部分に対するレーザ光の1回の照射で樹脂部材の分解温度を越えるような急激な温度上昇を防止することができる。しかも、光軸OAに対して垂直なレーザ光Lの断面形状が溶着予定領域Rにおいて円環形状であるため、溶着予定領域Rのレーザ光入射側端部R1及びその近傍におけるレーザ光Lの照射領域中心部に入熱過多による損傷が生じるのを防止することができる。集光光学系1を用いた樹脂溶着方法によれば、溶着予定領域Rにおいて入熱過多による損傷の発生を確実に防止することが可能となる。
 図6は、本発明に係る樹脂溶着方法の第1の実施形態によって製造された樹脂溶着体における溶着部分の断面写真を示す図である。図6に示されるように、溶着予定領域Rにおいては、溶着予定領域Rのレーザ光入射側端部R1及びその近傍に入熱過多による損傷が生じることなく、樹脂部材5と樹脂部材6とが溶融痕11部分で確実に溶着されている。
 また、溶着予定領域Rの一部分における温度プロファイルのピーク値が、樹脂部材5の溶融温度及び樹脂部材6の溶融温度のうち高い方の溶融温度と、樹脂部材5の分解温度及び樹脂部材6の分解温度のうち低い方の分解温度との間に、複数現れるように、レーザ光Lに対して溶着予定領域Rを中心線回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射する。このような制御により、溶着予定領域Rにおいて樹脂部材5,6に損傷が生じるのを防止しつつ、溶着予定領域Rにおいて樹脂部材5,6を十分に溶融させることができる。その結果、溶融した樹脂の混ざり合いが促進されるので、溶融した樹脂が再固化した際には、強固な溶着が実現される。
 図7は、レーザ光に対する溶着予定領域の回転に伴って溶融部分が進行する様子を示す断面図である。図7に示されるように、樹脂部材5,6が結晶性樹脂からなる場合には、光散乱によってレーザ光Lが内部に到達し難いものの、樹脂部材5,6が溶融すると、溶融部分12では、散乱因子の減少によりレーザ光Lの拡散透過率が上昇する。そのため、溶着予定領域Rにレーザ光Lが照射される度に、レーザ光入射面9aからより深い部分にまでレーザ光Lが到達して溶融部分12が進行することになる。従って、レーザ光入射面9aからより深い部分を溶融させることができる。
 更に、レーザ光入射面9aを含む樹脂部材5,6の表面部9が冷却によって固化する一方で、その表面部9より内側の部分(一部分)13が溶融することになる。これにより、溶融して膨張する部分が、固化した表面部9によって閉じ込められる。従って、ばり等の発生が防止され、樹脂溶着体100の外観の維持が可能となる。しかも、溶着界面における圧力が維持され、溶着強度の高い溶着が可能となる。
 また、溶着予定領域Rおいてレーザ光Lが収束するようにレーザ光Lを溶着予定領域Rに照射するので、光吸収によって減衰する光密度が補われて、溶着予定領域Rのレーザ光入射側からその反対側に至る全領域で樹脂部材5,6を十分に溶融させることができる。しかも、損傷が生じ易い溶着予定領域Rのレーザ光入射側端部R1において、レーザ光Lのエネルギ密度を抑えることができる。
 また、レーザ光入射側端部R1においてレーザ光Lの照射領域が樹脂部材5と樹脂部材6とを跨ぐようにレーザ光Lを溶着予定領域Rに照射するため、樹脂部材5,6間の段差や隙間等に対するレーザ光Lの照射量が少なくなり、その結果、樹脂部材5,6間の段差や隙間等に起因した入熱過多による損傷の発生を抑制することができる。図8は、樹脂部材同士の突合せ部の拡大断面図である。図8に示されるように、樹脂部材5,6の成形精度がそれ程高くないことに起因して、樹脂部材5,6同士の突合せ部にはレーザ光入射側に段差や隙間等が生じていることが多く、これらの段差や隙間等がレーザ光Lを散乱させるなどして入熱過多による損傷を生じさせる原因となり易い。従って、レーザ光Lが溶着予定領域Rのレーザ光入射側端部R1において樹脂部材5と樹脂部材6とを跨ぐようにレーザ光Lの照射を行う樹脂溶着方法は、樹脂部材5,6同士を突き合わせその突合せ部に沿って溶着予定領域Rを設定した場合に特に有効である。
 また、溶着予定領域Rに冷却ガスGを吹き付けながらレーザ光Lを溶着予定領域Rに照射する。これにより、冷却ガスGが樹脂部材5,6のレーザ光入射側端部から熱を奪うため、溶着予定領域Rのレーザ光入射側端部R1及びその近傍におけるレーザ光Lの照射領域中心部に入熱過多による損傷が生じるのをより確実に防止することができる。
[第2の実施形態]
 図9は、本発明に係る樹脂溶着方法の第2の実施形態に用いられる集光光学系の構成図である。図9に示されるように、集光光学系10は、レーザ光Lの光源LS側から順に、コリメート用レンズ2、集光用レンズ3及び円錐凸状のアキシコンレンズ7が光軸OA上に配置されて構成されている。この集光光学系10をレーザ光Lが通過すると、光軸OAに対して垂直なレーザ光Lの断面形状は、集光スポットFSに対して光源LS側で中実円形状となり、集光スポットFSに対して光源LSと反対側で円環形状となる。レーザ光Lの光強度プロファイルは、集光スポットFS到達後において、ガウシアン分布やトップハット分布のレーザ光の光強度プロファイルとは逆に、中央部の光強度が周囲部の光強度よりも低いものとなっている(図2参照)。
 以上のように構成された集光光学系10を用いた樹脂溶着方法について説明する。まず、図10及び11に示されるように、円筒状の樹脂部材5,6(サイズ:外径60mm、厚さ(壁厚)4mmの円筒状、材料:旭化成ケミカルズ株式会社製66ナイロン レオナ(登録商標)14G33)を準備し、中心線CLを略一致させて、樹脂部材5の底面5aと樹脂部材6の底面6aとを突き合わせる。この状態で、レーザ光Lに対して透過性を有する材料(例えば、ガラス等)からなる熱伝導体8で樹脂部材5の外周面5c及び樹脂部材6の外周面6cを覆い、樹脂部材5,6同士の突合せ部(ここでは、底面5a,6a)に沿って、中心線CLを有する円環形状の溶着予定領域Rを設定する。なお、樹脂部材5,6は、レーザ光Lに対して半吸収性を有している(オリエント化学工業株式会社製のeBIND(登録商標) ACW(登録商標)-9871という色素を用いて吸光度0.2となるように着色した樹脂部材を使用した)。
 続いて、突き合わされた状態を保持しながら樹脂部材5,6及び熱伝導体8を中心線CL回りに回転させる。そして、光軸OAが中心線CLと略直交し、且つ光軸OAが樹脂部材5,6同士の突合せ部を通る状態で、樹脂部材5の外周面5c及び樹脂部材6の外周面6cよりも外側(レーザ光Lの進行方向の後側)に集光スポットFSを合わせてレーザ光Lを照射する。これにより、レーザ光Lに対して溶着予定領域Rが中心線CL回りに複数回回転させられながら、レーザ光Lが熱伝導体8を透過して溶着予定領域Rに照射されることになる。その結果、溶着予定領域Rにおいて樹脂部材5,6が溶融・再固化し、溶着予定領域Rに沿って樹脂部材5,6同士が溶着されて樹脂溶着体100が製造される。
 ここで、レーザ光Lの照射に際しては、レーザ光Lは、溶着予定領域Rにおいて発散している。そして、光軸OAに対して垂直なレーザ光Lの断面形状は、溶着予定領域Rにおいて円環形状であり、その環状レーザ光の中抜け部(中心の非照射領域)は、レーザ光入射側端部R1において樹脂部材5と樹脂部材6との境界を跨いでいる。つまり、レーザ光Lは、溶着予定領域Rにおいて樹脂部材5と樹脂部材6とを跨いでいる(換言すれば、樹脂部材5と樹脂部材6とに掛け渡されている)。なお、レーザ光Lは、溶着予定領域Rにおいて樹脂部材5,6を溶融させ得るエネルギ密度を有している。
 また、レーザ光Lに対して溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射するに際しては、次のように回転速度やレーザ光Lの強度を制御する。すなわち、レーザ光Lの照射領域である溶着予定領域Rの一部分における温度プロファイルのピーク値が、樹脂部材5の溶融温度及び樹脂部材6の溶融温度のうち高い方の溶融温度と、樹脂部材5の分解温度及び樹脂部材6の分解温度のうち低い方の分解温度との間に、複数現れるようにする。
 以上説明したように、集光光学系10を用いた樹脂溶着方法においては、図11に示されるように、中心線CLを有する円環形状の溶着予定領域Rの一部分が照射領域であるレーザ光Lに対して、溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射する。これにより、溶着予定領域Rの一部分に対してレーザ光Lが断続的に照射されることになるので、溶着予定領域Rの一部分に対するレーザ光の1回の照射で樹脂部材の分解温度を越えるような急激な温度上昇を防止することができる。しかも、光軸OAに対して垂直なレーザ光Lの断面形状が溶着予定領域Rにおいて円環形状であるため、溶着予定領域Rのレーザ光入射側端部R1及びその近傍におけるレーザ光Lの照射領域中心部に入熱過多による損傷が生じるのを防止することができる。集光光学系10を用いた樹脂溶着方法によれば、溶着予定領域Rにおいて入熱過多による損傷の発生を確実に防止することが可能となる。
 図12は、本発明に係る樹脂溶着方法の第2の実施形態によって製造された樹脂溶着体における溶着部分の断面写真を示す図である。図12に示されるように、溶着予定領域Rにおいては、溶着予定領域Rのレーザ光入射側端部R1及びその近傍に入熱過多による損傷が生じることなく、樹脂部材5と樹脂部材6とが溶融痕11部分で確実に溶着されている。
 また、溶着予定領域Rおいてレーザ光Lが発散するようにレーザ光Lを溶着予定領域Rに照射するので、樹脂部材5,6が入熱過多の状態になるのを抑制して、溶着予定領域Rの全領域で樹脂部材5,6を適度に溶融させることができる。しかも、光学系の構成を単純化したり、ワーキングディスタンスを稼いだりすることができる。このようなレーザ光Lの照射は、レーザ光入射面から深い部分を溶融させたくない場合に有効である。
 また、レーザ光Lを透過する熱伝導体8を溶着予定領域Rに対してレーザ光入射側に配置し、熱伝導体8をヒートシンクとしてレーザ光Lを溶着予定領域Rに照射する。これにより、熱伝導体8が樹脂部材5,6のレーザ光入射側端部から熱を奪うため、溶着予定領域Rのレーザ光入射側端部R1及びその近傍におけるレーザ光Lの照射領域中心部に入熱過多による損傷が生じるのをより確実に防止することができる。
 本発明は、上述した実施形態に限定されるものではない。
 例えば、図13に示されるように、レーザ光Lの光軸OA方向において、樹脂部材5,6を溶融させ得るレーザ光Lのエネルギ密度の範囲(レーザ光Lの照射領域)よりも、溶着予定領域Rが広い場合(すなわち、溶着予定領域Rがレーザ光入射面から深さ方向に広い場合)などには、レーザ光Lに対して溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、溶着予定領域Rに対してレーザ光入射側とその反対側との間においてレーザ光Lの照射領域を相対的に移動させればよい。この場合、次の理由により、レーザ光入射側からその反対側に向かってレーザ光Lの照射領域を相対的に移動させることが好ましい。つまり、樹脂部材5,6が溶融すると、溶融部分では、散乱因子の減少によりレーザ光Lの拡散透過率が上昇するため、レーザ光入射側からその反対側に向かってレーザ光Lの照射領域を相対的に移動させれば、レーザ光入射面からより深い部分にまでレーザ光Lを到達させ、レーザ光入射面からより深い部分を溶融させることができるからである。
 また、上記実施形態は、溶着予定領域Rにおける樹脂部材5,6の突合せ面5a,6aが光軸OAに略平行であり且つ中心線CLに略垂直である場合であったが、図14(a)に示されるように、溶着予定領域Rにおける樹脂部材5,6の突合せ面5a,6aが光軸OAに略垂直であり且つ中心線CLに略平行である場合や、図14(b)に示されるように、溶着予定領域Rにおける樹脂部材5,6の突合せ面5a,6aが光軸OA及び中心線CLに略平行である場合がある。
 これらの場合にも、溶着予定領域Rの一部分とは、レーザ光入射面となる樹脂部材5(場合によっては樹脂部材6)の表面から所定の距離だけ内側の部分である。所定の距離の具体例は0.1mm程度である。この部分における温度プロファイルのピーク値が、樹脂部材5,6の溶融温度と樹脂部材5,6の分解温度との間に複数現れることが好ましい。
 また、レーザ光Lに対して溶着予定領域Rを中心線CL回りに相対的に複数回回転させることができれば、集光光学系1を中心線CL回りに回転させてもよいし、集光光学系1及び樹脂部材5,6の両方を中心線CL回りに回転させてもよい。
 また、光軸OAに対して垂直なレーザ光Lの断面形状が少なくとも溶着予定領域Rのレーザ光入射側端部R1において環形状であれば、溶着予定領域Rのレーザ光入射側端部R1及びその近傍におけるレーザ光Lの照射領域中心部に入熱過多による損傷が生じるのを防止することができる。更に、レーザ光Lが少なくとも溶着予定領域Rのレーザ光入射側端部R1において樹脂部材5と樹脂部材6とを跨いでいれば、樹脂部材5,6間の段差や隙間等に起因した入熱過多による損傷の発生を抑制することができる。
 また、光軸OAに対して垂直なレーザ光Lの断面形状が照射領域において環形状でなく、例えば中実円形状であっても、レーザ光Lに対して溶着予定領域Rを中心線CL回りに相対的に複数回回転させながら、レーザ光Lを溶着予定領域Rに照射することで、溶着予定領域Rにおいて入熱過多による損傷の発生を防止して、樹脂部材5,6を溶着予定領域Rに沿って確実に溶着することが可能となる。
 本発明によれば、溶着予定領域において入熱過多による損傷の発生を確実に防止することができる。
 5…樹脂部材(第1の樹脂部材)、6…樹脂部材(第2の樹脂部材)、8…熱伝導体、100…樹脂溶着体、L…レーザ光、OA…光軸、CL…中心線、R…溶着予定領域。

Claims (11)

  1.  第1の樹脂部材と第2の樹脂部材とを溶着予定領域に沿って溶着して樹脂溶着体を製造する樹脂溶着方法であって、
     前記溶着予定領域が中心線を有する環形状の領域である場合において、前記溶着予定領域の一部分が照射領域であり、且つ光軸に対して垂直な断面形状が少なくとも前記溶着予定領域のレーザ光入射側端部において環形状であるレーザ光に対して、前記溶着予定領域を前記中心線回りに相対的に複数回回転させながら、前記レーザ光を前記溶着予定領域に照射することにより、前記第1の樹脂部材と前記第2の樹脂部材とを前記溶着予定領域に沿って溶着することを特徴とする樹脂溶着方法。
  2.  前記溶着予定領域の一部分における温度プロファイルのピーク値が、前記第1の樹脂部材の溶融温度及び前記第2の樹脂部材の溶融温度のうち高い方の溶融温度と、前記第1の樹脂部材の分解温度及び前記第2の樹脂部材の分解温度のうち低い方の分解温度との間に、複数現れるように、前記レーザ光に対して前記溶着予定領域を前記中心線回りに相対的に複数回回転させながら、前記レーザ光を前記溶着予定領域に照射することを特徴とする請求項1記載の樹脂溶着方法。
  3.  前記溶着予定領域の前記一部分は、前記レーザ光の入射面となる前記第1の樹脂部材及び前記第2の樹脂部材の少なくとも一方の表面から所定の距離だけ内側の部分であることを特徴とする請求項2記載の樹脂溶着方法。
  4.  前記レーザ光の前記入射面を含む表面部は、前記レーザ光が照射されているときに融点未満の温度に冷却されることを特徴とする請求項3記載の樹脂溶着方法。
  5.  前記溶着予定領域おいて前記レーザ光が収束するように前記レーザ光を前記溶着予定領域に照射することを特徴とする請求項1記載の樹脂溶着方法。
  6.  前記溶着予定領域おいて前記レーザ光が発散するように前記レーザ光を前記溶着予定領域に照射することを特徴とする請求項1記載の樹脂溶着方法。
  7.  少なくとも前記レーザ光入射側端部において前記レーザ光の照射領域が前記第1の樹脂部材と前記第2の樹脂部材とを跨ぐように前記レーザ光を前記溶着予定領域に照射することを特徴とする請求項1記載の樹脂溶着方法。
  8.  前記溶着予定領域に対してレーザ光入射側とその反対側との間において前記レーザ光の照射領域を相対的に移動させる場合には、レーザ光入射側からその反対側に向かって前記レーザ光の照射領域を相対的に移動させることを特徴とする請求項1記載の樹脂溶着方法。
  9.  前記溶着予定領域に冷却ガスを吹き付けながら前記レーザ光を前記溶着予定領域に照射することを特徴とする請求項1記載の樹脂溶着方法。
  10.  前記レーザ光を透過する熱伝導体を前記溶着予定領域に対してレーザ光入射側に配置し、前記熱伝導体をヒートシンクとして前記レーザ光を前記溶着予定領域に照射することを特徴とする請求項1記載の樹脂溶着方法。
  11.  第1の樹脂部材と第2の樹脂部材とを溶着予定領域に沿って溶着して樹脂溶着体を製造する樹脂溶着方法であって、
     前記溶着予定領域が中心線を有する環形状の領域である場合において、前記溶着予定領域の一部分が照射領域であるレーザ光に対して、前記溶着予定領域を前記中心線回りに相対的に複数回回転させながら、前記レーザ光を前記溶着予定領域に照射することにより、前記第1の樹脂部材と前記第2の樹脂部材とを前記溶着予定領域に沿って溶着することを特徴とする樹脂溶着方法。
PCT/JP2010/059621 2010-06-07 2010-06-07 樹脂溶着方法 WO2011155016A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059621 WO2011155016A1 (ja) 2010-06-07 2010-06-07 樹脂溶着方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059621 WO2011155016A1 (ja) 2010-06-07 2010-06-07 樹脂溶着方法

Publications (1)

Publication Number Publication Date
WO2011155016A1 true WO2011155016A1 (ja) 2011-12-15

Family

ID=45097648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059621 WO2011155016A1 (ja) 2010-06-07 2010-06-07 樹脂溶着方法

Country Status (1)

Country Link
WO (1) WO2011155016A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112936878A (zh) * 2019-12-10 2021-06-11 丰田自动车株式会社 熔敷接合方法及熔敷接合体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06510715A (ja) * 1991-11-29 1994-12-01 シュナイダー・(ユーエスエイ)・インコーポレーテッド バルーンカテーテル
JP2005007415A (ja) * 2003-06-17 2005-01-13 Hamamatsu Photonics Kk レーザ溶接における品質管理方法
JP2005028784A (ja) * 2003-07-07 2005-02-03 Hamamatsu Photonics Kk レーザ溶接方法
JP2005088355A (ja) * 2003-09-17 2005-04-07 Toyoda Mach Works Ltd 樹脂材のレーザ溶着装置
JP2006247892A (ja) * 2005-03-08 2006-09-21 Toyota Motor Corp 二部材の接合構造および接合方法、並びにガス容器およびその製造方法
WO2007018077A1 (ja) * 2005-08-05 2007-02-15 Kirin Beer Kabushiki Kaisha 飲料用又は食品用の密封容器の製造方法
JP2007253416A (ja) * 2006-03-22 2007-10-04 Hamamatsu Photonics Kk 樹脂部材の接合方法
JP2008087448A (ja) * 2006-10-05 2008-04-17 Nitto Denko Corp 樹脂接合体
JP2010000617A (ja) * 2008-06-18 2010-01-07 Hamamatsu Photonics Kk 樹脂溶着方法
JP2010000622A (ja) * 2008-06-18 2010-01-07 Hamamatsu Photonics Kk 樹脂溶着方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06510715A (ja) * 1991-11-29 1994-12-01 シュナイダー・(ユーエスエイ)・インコーポレーテッド バルーンカテーテル
JP2005007415A (ja) * 2003-06-17 2005-01-13 Hamamatsu Photonics Kk レーザ溶接における品質管理方法
JP2005028784A (ja) * 2003-07-07 2005-02-03 Hamamatsu Photonics Kk レーザ溶接方法
JP2005088355A (ja) * 2003-09-17 2005-04-07 Toyoda Mach Works Ltd 樹脂材のレーザ溶着装置
JP2006247892A (ja) * 2005-03-08 2006-09-21 Toyota Motor Corp 二部材の接合構造および接合方法、並びにガス容器およびその製造方法
WO2007018077A1 (ja) * 2005-08-05 2007-02-15 Kirin Beer Kabushiki Kaisha 飲料用又は食品用の密封容器の製造方法
JP2007253416A (ja) * 2006-03-22 2007-10-04 Hamamatsu Photonics Kk 樹脂部材の接合方法
JP2008087448A (ja) * 2006-10-05 2008-04-17 Nitto Denko Corp 樹脂接合体
JP2010000617A (ja) * 2008-06-18 2010-01-07 Hamamatsu Photonics Kk 樹脂溶着方法
JP2010000622A (ja) * 2008-06-18 2010-01-07 Hamamatsu Photonics Kk 樹脂溶着方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112936878A (zh) * 2019-12-10 2021-06-11 丰田自动车株式会社 熔敷接合方法及熔敷接合体
CN112936878B (zh) * 2019-12-10 2023-02-28 丰田自动车株式会社 熔敷接合方法及熔敷接合体

Similar Documents

Publication Publication Date Title
JP5030871B2 (ja) 樹脂溶着方法
US20170368634A1 (en) Laser cutting method
TWI740827B (zh) 雷射處理裝置及其用途、以雷射束來處理工件的方法及用於組合及對準雷射束的光學構件
KR101162028B1 (ko) 유리 용착 방법 및 유리층 정착 방법
KR101165566B1 (ko) 유리 용착 방법 및 유리층 정착 방법
JP4780723B2 (ja) 車輌用灯具
KR20180116108A (ko) 레이저 프로세싱 장치 및 방법
KR101162902B1 (ko) 유리 용착 방법 및 유리층 정착 방법
KR20090094113A (ko) 레이저 빔을 환형 레이저 빔으로 변환하기 위한 광학 장치를 구비한 레이저 빔 용접 장치 및 이에 상응하는 레이저 빔 용접 방법
JP5368814B2 (ja) 樹脂溶着方法
KR20120104967A (ko) 유리 용착 방법 및 유리층 정착 방법
KR20120104978A (ko) 유리 용착 방법 및 유리층 정착 방법
JP2011111352A (ja) ガラス溶着方法及びガラス層定着方法
JP5030872B2 (ja) 樹脂溶着方法
CN109070271A (zh) 叠置的铝工件的激光点焊
WO2011155016A1 (ja) 樹脂溶着方法
JP5588253B2 (ja) 樹脂溶着方法
JP6109638B2 (ja) 肉盛溶接装置及び肉盛溶接システム
HU226696B1 (en) Method for shaping components using electromagnetic radiation
WO2011074072A1 (ja) 樹脂溶着方法
WO2018096786A1 (ja) プーリーの接合方法及び接合構造
JP7386118B2 (ja) 溶接方法および溶接装置
JP5646235B2 (ja) 樹脂溶着方法及び樹脂溶着装置
JP5341237B2 (ja) 樹脂溶着方法
JP5264266B2 (ja) ガラス溶着方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP