WO2011153839A1 - 陀螺仪及其制造方法 - Google Patents

陀螺仪及其制造方法 Download PDF

Info

Publication number
WO2011153839A1
WO2011153839A1 PCT/CN2011/070635 CN2011070635W WO2011153839A1 WO 2011153839 A1 WO2011153839 A1 WO 2011153839A1 CN 2011070635 W CN2011070635 W CN 2011070635W WO 2011153839 A1 WO2011153839 A1 WO 2011153839A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
layer
support ring
mass
central axis
Prior art date
Application number
PCT/CN2011/070635
Other languages
English (en)
French (fr)
Inventor
毛剑宏
韩凤芹
唐德明
Original Assignee
上海丽恒光微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海丽恒光微电子科技有限公司 filed Critical 上海丽恒光微电子科技有限公司
Priority to US13/703,506 priority Critical patent/US20130118280A1/en
Publication of WO2011153839A1 publication Critical patent/WO2011153839A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/12Gyroscopes
    • Y10T74/1282Gyroscopes with rotor drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/12Gyroscopes
    • Y10T74/1296Flywheel structure

Definitions

  • the present invention relates to the field of semiconductor manufacturing technologies, and in particular, to a gyroscope and a method of fabricating the same. Background technique
  • a gyroscope is an instrument that accurately determines the orientation of moving objects. It is an inertial navigation instrument widely used in the modern aviation, marine, aerospace and defense industries. The development of gyroscopes is of great strategic importance to the development of a country's industry, national defense and other high technologies.
  • the conventional gyroscope mainly refers to a mechanical inertial gyroscope. Since the mechanical inertia gyroscope has a complicated structure, the process structure is highly demanded, so its accuracy is restricted by many aspects.
  • a micro-vibration biaxial sensing gyroscope as shown in FIG. 1 includes a base 54 with a central shaft 55 at the center of the base 54 and a plurality of centers around the central shaft 55.
  • the shaft 55 is a centrally located cantilever 52 extending radially outwardly from the horizontal plane.
  • the inner end 521 of the cantilever 52 is connected to the central shaft 55.
  • the outer end 522 extends horizontally equidistantly from both sides of the cantilever 52 to form a mass.
  • the ring 523 is plated with a capacitive sensing electrode 51 at both ends of the top of the mass ring 523.
  • the capacitive sensing electrode 51 serves as an inertial mass of the gyroscope, and an electrostatic driving electrode 53 is disposed below the mass ring 523.
  • a driving voltage is applied to the electrostatic driving electrode 53, the cantilever 52 and the mass ring 523 are excited by the electrostatic attraction to vibrate in the Z direction, and the vibrational positions of the adjacent two cantilevers 52 and the mass ring 523 are 180 degrees apart, when the gyroscope is along the X
  • the displacement of the cantilever 52 and the mass ring 523 in the X direction and the Y direction due to the Coriolis force the distance between the adjacent capacitive sensing electrodes 51 between adjacent cantilevers varies, and the difference occurs.
  • the capacitance value can be measured by measuring the change in the capacitance value to determine the change in the angular velocity of the rotation of the gyroscope.
  • a microvibration gyroscope is also disclosed, for example, in U.S. Patent No. US005747690A.
  • the technical problem solved by the present invention is to provide a gyroscope which improves the stability of the gyroscope and the ability to withstand environmental noise.
  • the present invention provides a gyroscope including:
  • a substrate having an underlying driving electrode and an underlying measuring electrode at a periphery of the underlying driving electrode
  • a dielectric layer on the substrate having a closed cavity in the dielectric layer; the cavity includes: a central axis on the substrate;
  • a support ring placed on the substrate and rotatable about a central axis
  • a mass ring located at a periphery of the support ring and co-axial with the support ring; a cantilever arm connecting the support ring and the mass ring and supporting the mass ring suspended in the cavity;
  • An elastic member located in the region between the support ring, the mass ring and the adjacent two cantilevers;
  • a top drive electrode covering the support ring, the mass ring, the cantilever and the elastic member
  • the mass ring includes an insulating layer and a weight layer under the insulating layer.
  • the weight layer is a continuous annular structure.
  • the weight layer is a discrete structure symmetrically distributed on the ring shape.
  • the weight of the weight layer is greater than the weight of the insulating layer.
  • the weight layer is a tungsten metal material.
  • the material of the conductive plug is a tungsten metal material.
  • the support ring comprises a support layer of the same material as the weight layer and an insulation layer on the support layer, the insulation layer and the insulation layer in the mass ring being located in the same layer.
  • the cantilever extends radially outward from the periphery of the support ring with the support ring as a center, and is suspended in the cavity.
  • one end of the elastic member is connected to a cantilever adjacent thereto, and the other end is connected to the conductive plug.
  • the mass ring is centered on the central axis and connected to the free end of the cantilever, and is suspended above the corresponding position of the bottom measuring electrode in the cavity by the support of the cantilever.
  • the top driving electrode covers the mass ring, the cantilever, the support ring and the elastic member, and the top driving electrodes on the mass ring and the support ring are divided into four parts insulated from each other, and the top driving electrode passes
  • the conductive plug is electrically connected to the underlying measuring electrode under the conductive plug.
  • Etching the columnar structure forming a through hole exposing the underlying driving electrode in the columnar structure; filling the first trench to form a weight layer of the mass ring, filling the second trench to form a first portion of the support ring, filling the pass The hole forms a conductive plug;
  • the first sacrificial material and the second sacrificial material are removed using the opening, and a fourth dielectric layer is formed on the third dielectric layer to form a closed cavity.
  • the first trench is annular.
  • the first trench comprises a plurality of trenches symmetrically distributed on the ring shape.
  • the material of the weight layer is metal tungsten.
  • filling the first trench to form a weight layer of the mass ring, filling the second trench to form a support - - The first part of the ring, filling the vias to form the conductive plugs is done in the same process.
  • the present invention mainly has the following advantages:
  • the invention forms the gyroscope enclosed in the closed cavity by the above-mentioned gyroscope manufacturing method, so that the gyroscope is more stable under the protection of the closed cavity, and the weight layer is also formed on the mass ring of the gyroscope, and the quality ring is improved.
  • the mass makes the inertia of the mass ring increase.
  • the central axis is a closed axis, which enhances the stability and environmental noise resistance of the gyroscope, greatly improving the performance of the gyroscope.
  • FIG. 1 is a schematic structural view of a conventional gyroscope
  • FIG. 2 is a schematic plan view of the gyroscope of the present invention.
  • Figure 3a is a cross-sectional view taken along line A-A' of Figure 2;
  • Figure 3b is a cross-sectional view taken along line B-B' of Figure 2;
  • Figure 3c is a cross-sectional view taken along line C-C' of Figure 2;
  • FIG. 4 is a flow chart of a method of manufacturing a gyroscope of the present invention.
  • 5 to 14 are schematic views showing a method of manufacturing a gyroscope of the present invention.
  • the gyroscope has a mass ring, and the mass of the mass ring is larger, the inertia is larger, so that the stability of the gyroscope and the anti-environmental noise resistance can be better, but it is limited by the semiconductor manufacturing process. It is impossible to form a gyroscope with a mass ring of a larger quality in an integrated circuit.
  • the inventors of the present invention have obtained a gyro through a large number of experiments, comprising: a substrate having an underlying driving electrode and a bottom measuring electrode at the periphery of the underlying driving electrode; a dielectric layer on the substrate, in the dielectric layer Having a closed cavity; the cavity includes: a central axis on the substrate; a support ring disposed on the substrate and rotatable about the central axis; a mass located at a periphery of the support ring and co-centered with the support ring a ring connecting the support ring and the mass ring and supporting the mass ring suspended in the cavity; an elastic member located in a region between the support ring, the mass ring and the adjacent two cantilevers; covering the support ring, mass a top drive electrode for the ring, the cantilever and the elastic member; a top drive electrode and a bottom for the elastic member a conductive plug of the layer drive electrode; the mass ring includes an insulating layer and a weight layer under
  • a method of fabricating the above-described gyroscope comprising: providing a substrate having an underlying driving electrode and a bottom layer measuring electrode therein, having a first dielectric layer on the substrate, wherein the first dielectric layer Having an annular groove, and having a first portion of a central axis at a center of the annular groove, the annular groove having a columnar structure therein, the columnar structure being located above the bottom drive electrode; filling the annular groove with a a sacrificial material, the first sacrificial material and the top end of the columnar structure in the annular trench are flush; etching the first sacrificial material, forming a first trench and a second trench in the first sacrificial material, wherein the first The trench corresponds to a ring in which the bottom measuring electrode is located, and the second groove is located between the columnar structure and the first portion of the central axis; the columnar structure is etched, and a through hole exposing the underlying driving
  • the present invention forms a gyroscope enclosed in a closed cavity by the above-described gyroscope manufacturing method, so that the gyroscope is more stable under the protection of the closed cavity, and is also in the mass ring of the gyroscope.
  • the weight layer is made to improve the quality of the mass ring, so that the inertia of the mass ring is increased.
  • the central axis is a closed axis, which enhances the stability and environmental noise resistance of the gyroscope, and greatly improves the performance of the gyroscope.
  • the gyroscope includes a substrate (not shown), a cavity 130 on the substrate, and a central axis 140 located within the cavity 130, a support ring 150, a cantilever 160, a mass ring 170, and an elastic member 180.
  • the support ring 150 is disposed on the substrate centered on the central axis 140, and the support ring 150 is rotatable about the central axis 140.
  • the mass ring 170 is located at the periphery of the support ring 150 and is disposed concentrically with the support ring 150.
  • the cantilever 160 is connected to the The support ring 150 and the mass ring 170 are supported and the mass ring 170 is suspended within the cavity 130.
  • the elastic member 180 is located between the support ring 150 and the mass ring 170 and has a tensile restoring action when the mass ring 170 rotates; the number of the elastic members 180 is determined by the number of cantilevers, one end of each elastic member 180 They are respectively connected to the adjacent cantilever 160, and the other end is a free end.
  • the gyroscope further includes: an underlying driving electrode 110, an underlying measuring electrode 120, and a top driving electrode 190.
  • the bottom driving electrode 110 and the bottom measuring electrode 120 are located in the substrate, the bottom driving electrode 110 is distributed on the first ring 112 centered on the central axis 140, and the bottom measuring electrode 120 is distributed on the central axis 140.
  • the second ring 122 of the center On the second ring 122 of the center, the second ring 122 is located at the periphery of the first ring 112.
  • the top driving electrode 190 covers the mass ring 170, the cantilever 160, the support ring 150, and the elastic member 180; wherein the top driving electrode 190 on the mass ring 170 and the support ring 150 is divided into two sides with the cantilever 160 as a center
  • the top-layer driving electrodes 190 which are equidistantly horizontally extended and located on the mass ring 170 and the support ring 150 according to the number of cantilevers 160, are divided into respective portions, and the portions are insulated; the top-layer driving electrode 190 passes through the elastic member 180.
  • the conductive plug 200 on the free end is electrically connected to the bottom driving electrode 110, since the elastic member 180 is covered with the top driving electrode, so that the conductive plug 200 connects the top driving electrode and the bottom measuring electrode.
  • the central shaft 140 is a closed shaft, which can increase stability and shock resistance.
  • there are four cantilevers 160 and each adjacent two is at an angle of 90 degrees, thereby forming a symmetrical structure, which can make the gyroscope balance well.
  • the adjacent two cantilevers have a mass ring corresponding to the substrate having three discrete underlying measurement electrodes 120.
  • Figure 3a is a cross-sectional view taken along line A-A' of Figure 2
  • Figure 3b is a cross-sectional view taken along line BB' of Figure 2
  • Figure 3c is a cross-sectional view taken along line C-C' of Figure 2, as shown in Figures 3a to 3c
  • the gyro includes: a substrate 100; an underlying driving electrode 110 and an underlying measuring electrode 120, located in the substrate 100, and the bottom driving electrode 110 is distributed on the first ring (refer to FIG. 2), the bottom layer
  • the measuring electrode 120 is distributed in the second ring (see - - Figure 2), where the second ring is located outside the first ring and the two rings are centered.
  • a dielectric layer 105 is disposed on the substrate 100 and has a closed cavity 130 in the dielectric layer 105.
  • the central axis 140 is located on the substrate 100 and is located in the cavity 130.
  • the central axis 140 coincides with the center of the first ring and the second ring; the support ring 150, the substrate 100 disposed in the cavity 130 Up, and centered on the central axis 140, rotatable around the central axis 140; a mass ring 170, distributed around the periphery of the support ring 150, the mass ring 170 being coupled to the support ring 150 by a cantilever 160 (refer to FIG. 3c), The mass ring 170 is suspended within the cavity 130 by the support of the cantilever; the resilient member 180 (see FIG.
  • the top driving electrode 190 covers the mass ring 170, the cantilever 160, the support ring 150, and the elastic member 180, wherein the top driving electrodes 190 on the mass ring 170 and the support ring 150 are respectively centered on the corresponding cantilever arms, and are aligned to both sides.
  • the distance extends horizontally, and the portions of the top ring driving electrodes 190 on the mass ring 170 and the support ring 150 are not connected; the conductive plug 200 is located at the free end of the elastic member and is connected to the bottom layer driving electrode and the top layer driving on the elastic member. Electrode 190.
  • the material of the dielectric layer 105 may be silicon oxide or silicon nitride.
  • the central axis 140 is a laminated structure.
  • the central axis 140 may have a single-layer structure, and the central axis 140 has a cylindrical shape.
  • the structure of the support ring 150 may be a laminated structure or a single layer structure.
  • the metal layer ie, the first portion 1501
  • the insulating layer 1701 located on the metal layer are included.
  • the material of the metal layer may be tungsten, and the insulating layer 1701 may be silicon oxide or silicon nitride.
  • the cantilever includes an insulating layer, and the insulating layer of the cantilever is fixedly connected to the insulating layer of the support ring 150.
  • the mass ring 170 includes a weight layer 1702 and an insulating layer 1701 on the weight layer 1702.
  • the insulating layer 1701 has a ring structure, and the weight layer 1702 may have a ring structure or a discrete structure symmetrically distributed on the ring structure of the insulating layer 1701.
  • the weight layer 1702 may have a thickness of 1 ⁇ m to 3 ⁇ m, and may have a width in the diameter direction of 0.3 ⁇ m to 2 ⁇ m.
  • the width of the weight layer 1702 may be greater than the width of the insulating layer 1701 or may be smaller than the width of the insulating layer 1701.
  • the material of the weight layer 1702 can be the same as the material of the conductive plug 200, which can be completed in a one-step process, and the efficiency is improved; the specific material can be metal tungsten, other metal or non-metal materials, - - or a combination of metal and non-metallic materials.
  • the weight ring increases the weight layer, so that the inertia of the mass ring is larger, and the accuracy of the gyroscope is improved, but if the weight of the mass ring is too large, the support ring and the cantilever may be broken, so
  • the weight layer 1702 has a thickness of 1 ⁇ m to 3 ⁇ m, the diameter in the diameter direction may be 0.3 ⁇ m to 2 ⁇ m.
  • the support ring may be a laminated structure, the lower layer is the same material as the weight layer, the width of the lower layer is: 0.5 ⁇ 10 ⁇ , the thickness is: 0.5 ⁇ 20 ⁇ , the upper layer may be an insulating material, and the width of the upper layer is: 1 ⁇ 10 ⁇ , thickness: 0.1 ⁇ 3 ⁇ , the width of the cantilever is: 1 ⁇ 10 ⁇ , thickness: 0.1 ⁇ 2 ⁇ , the material is: silicon oxide or silicon nitride.
  • the elastic member may be a telescopic spring; when the cantilever is rotated about the central axis 140, the elastic member can stretch the cantilever in the opposite direction of the rotation.
  • the elastic member may be formed in the same step as forming the cantilever insulating layer, or may be separately fabricated and attached to the cantilever.
  • the formed gyroscope has a weight layer on the mass ring, thereby increasing the mass of the mass ring, so that the inertia of the mass ring is increased.
  • the material of the weight layer is a metal tungsten material. Because tungsten has a large molecular weight, the mass is large, so that the weight of the mass ring can be better, and because tungsten is a metal, it can be compatible with the process of forming a metal layer in the conductive plug and the support ring, thereby forming the package. method.
  • the gyroscope of the above structure is enclosed in the closed cavity, so that the stability of the gyroscope and the resistance to environmental noise are enhanced under the protection of the closed cavity, and the performance of the gyroscope is greatly improved.
  • FIG. 4 is a flow chart of a method for manufacturing a gyroscope according to the present invention
  • FIGS. 5 to 11 are schematic views of a method for manufacturing a gyroscope according to the present invention.
  • step S10 providing a substrate having an underlying driving electrode and a bottom layer measuring electrode therein, having a first dielectric layer on the substrate, the first dielectric layer having an annular trench, and The center of the annular groove has a first portion of a central axis, and the annular groove has a columnar structure therein, and the position of the columnar structure corresponds to the underlying driving electrode.
  • step S10 The structure formed by step S10 is as shown in FIG. 5, and the substrate 100 has an underlying driving electrode therein.
  • the bottom layer driving electrode 110 is distributed on the first ring
  • the bottom layer measuring electrode 120 is distributed on the second ring
  • the second ring is located at the periphery of the first ring.
  • There is a first dielectric layer 1051 on the substrate 100, an annular groove 130a in the first dielectric layer 1051, and a first portion 1401 having a central axis at the center of the annular groove 130a, the annular groove 130a having a columnar structure 210, a position of the columnar structure 210 and the bottom - - Layer drive electrodes 120 correspond.
  • the outer radius of the annular groove 130a is larger than the outer radius of the second ring.
  • step S20 filling the annular trench with a first sacrificial material such that the first sacrificial material and the top of the columnar structure in the annular trench are flush.
  • the structure formed by the step S20 is as shown in FIG. 6.
  • the specific formation method may be: filling the annular trench 130a with the first sacrificial material 113 by using a CVD method, so that the first sacrificial material in the annular trench 113 and the top of the columnar structure 210 are flush and the first dielectric layer 1051 is flush, and then the first sacrificial material 113 at the excess position is removed by CMP, which may be carbon, germanium or polyamide.
  • the specific first sacrificial material 113 may be amorphous carbon (Amorphous Carbon), using a plasma enhanced chemical vapor deposition (PECVD) process at a temperature of 350 ° C to 450 ° C, gas pressure: 1 torr ⁇ 20 torr, RF power: 800 W ⁇ 1500 W, the reaction gas includes: C3H6 and HE, the reaction gas flow rate is 1000 sccm ⁇ 3000 sccm, wherein C3H6: HE 2: 1-5: 1.
  • PECVD plasma enhanced chemical vapor deposition
  • step S30 etching the first sacrificial material, forming a first trench and a second trench in the first sacrificial material, wherein the first trench corresponds to a ring of the bottom measuring electrode, and the second trench is located Between the columnar structure and the first portion of the central axis; in the step, the columnar structure may also be etched simultaneously, and a through hole exposing the underlying driving electrode is formed in the columnar structure.
  • the structure formed by the step S30 is as shown in FIG. 7.
  • the specific formation method may be: etching the first sacrificial material, forming the first trench 220 in the first sacrificial material corresponding to the position of the second ring,
  • the first trench 220 may be annular, and the depth of the first trench may be 1/3-2/3 of the first sacrificial material layer, for example, lum ⁇ 3um, and the width may be 0.3um ⁇ 2um.
  • the first trench may also include a plurality of trenches symmetrically distributed over the ring.
  • An annular second groove 230 is formed at a position of the first portion 1401 near the central axis between the central axis 140 and the columnar structure 210 centered on the central axis 140, and the columnar structure 210 is etched in the columnar structure 210.
  • a via hole is formed, the via hole exposing the underlying drive electrode 110 below it.
  • step S40 filling the first trench to form a weight layer of the mass ring, filling the second trench to form a first portion of the support ring, and filling the via hole to form a conductive plug.
  • the structure formed by the step S40 is as shown in FIG. 8.
  • the specific forming method may be: a metal layer may be formed by a CVD method, for example, the material of the metal layer may be tungsten until the first trench, the second trench, and the via hole. All are filled, and then the excess metal layer is removed by CMP, so that the upper surface and the top end of the first portion 1401 of the central axis are flat, so that the first trench position forms the metal layer 1702, - The second trench location forms a first portion 1501 of the support ring, the via location forming a conductive plug 200.
  • different steps may be utilized to fill the first trench and the second trench, the via, with different metal layers.
  • step S50 forming an insulating layer on the first portion of the support ring and the weight layer, the insulating layer and the weight layer forming a mass ring, and the insulating layer and the first portion of the support ring constitute a support ring.
  • the structure formed by the step S50 is as shown in FIG. 9, having an insulating layer 1701 on the first portion 1501 and the weight layer 1702 of the support ring, the insulating layer 1701 and the weight layer 1702 constituting a mass ring 170, the insulation
  • the layer 1701 and the first portion of the support ring 1501 constitute a support ring 150.
  • the specific formation method may be that an insulating material such as silicon oxide or silicon nitride may be formed on the structure after the step S40 by a CVD method, and then an insulating layer forming a mass ring and a support ring may be etched.
  • step S60 a cantilever for connecting the mass ring and the support ring is formed between the mass ring and the support ring, and an elastic member is formed between the mass ring and the support ring.
  • the specific forming method may be: This step may be completed simultaneously with the step S50. Specifically, in the step of etching the insulating layer, the cantilever and the elastic member are simultaneously etched, and the cantilever 160 extends radially outward from the periphery of the support ring 150 with the support ring 150 as a center. The cantilever 160 connects the support ring 150 and the mass ring 170 and can support the mass ring 170 to be suspended within the cavity 130. The mass ring 170 is connected to the free end of the cantilever 160 by a central axis 140.
  • the elastic member 180 has a tensile restoring action when the mass ring 170 rotates. Specifically, the elastic member 180 is distributed on a ring centered on the central axis 140 between the mass ring 170 and the support ring 150, and is connected at one end. The other end of the cantilever 160 has a conductive plug 200 connected to the other end, that is, the free end.
  • step S70 forming a top layer driving electrode on the mass ring, the cantilever, the conductive plug, and the elastic member.
  • the structure formed by the step S70 is as shown in FIG. 10.
  • the specific forming method may be: the top driving electrode 190 covers the mass ring 170, the support ring 150, the cantilever 160 and the elastic member 180, and the support ring may also be covered with a top layer.
  • the driving electrode 190 wherein the top driving electrode 190 on the mass ring 170 and the support ring 150 extends horizontally equidistantly on both sides of the cantilever 160, and is located in the mass ring 170 and the support ring 150 according to the number of the cantilevers 160.
  • the upper top driving electrode 190 is divided into corresponding portions, and the portions are insulated. - as shown in FIG.
  • step S80 forming a second portion of the central axis on the first portion of the central axis, forming a second dielectric layer on the first dielectric layer, the first portion and the second portion of the central axis forming The central axis.
  • step S80 The structure formed by step S80 is as shown in FIG. 11, having a second portion 1402 of a central axis on the first portion 1401 of the central axis, and a second dielectric layer 1052 on the first dielectric layer 1051, the first portion of the central axis
  • the second portion and the second portion constitute a central axis 140.
  • S90 forming a second sacrificial material on the first sacrificial material and the top driving electrode.
  • the structure formed by the step S90 is as shown in Fig. 12, and the second sacrificial material 115 is provided on the first sacrificial material 113 and the top driving electrode 190.
  • the second sacrificial material 115 may be the same as the first sacrificial material 113.
  • step S100 forming a third dielectric layer on the second sacrificial material 115 and the support ring 105, the third dielectric layer having an opening therein.
  • the structure formed by the step S100 is as shown in FIG. 13, and the specific forming method may be as follows:
  • the third dielectric layer 1053 may be first formed on the structure after the step S90, and then etched to form an opening.
  • step S110 removing the first sacrificial material and the second sacrificial material by using the opening, and depositing a fourth dielectric layer on the third dielectric layer to form a closed cavity, the first dielectric layer
  • the second dielectric layer, the third dielectric layer, and the fourth dielectric layer constitute the dielectric layer.
  • the structure formed by step S110 is as shown in FIG. 14, having a fourth dielectric layer 1054 on the third dielectric layer to form a closed cavity, the first dielectric layer 1051, the second dielectric layer 1052, and the third dielectric layer 1053.
  • the dielectric layer 105 is formed with a fourth dielectric layer 1054.
  • the specific formation method may be: removing the first and second sacrificial materials from the opening by means of ashing, and finally depositing a fourth dielectric layer by chemical vapor deposition (CVD), the fourth dielectric layer
  • CVD chemical vapor deposition
  • the opening is closed to form a closed cavity 130, and the first dielectric layer, the second dielectric layer and the third dielectric layer constitute a dielectric layer. This forms a gyroscope as shown in FIGS. 2 and 14.
  • the first sacrificial layer and the second sacrificial layer are made of dense activated carbon formed by PECVD, and the removal material is oxygen, and the heating temperature is 350 o C to 450 o C. At this temperature, the dense activated carbon is not Intense combustion occurs, which can be oxidized to carbon dioxide gas and discharged through the through holes, and the first sacrificial layer and the second sacrificial layer can be completely removed without affecting the rest of the device.
  • the method for forming the fourth dielectric layer is CVD, and the parameters are: the reaction gas includes SiH4, 02 and N2, wherein the flow ratio of 02 and SiH4 is - -
  • the manufacturing method of the gyro of the present invention forms a gyroscope in the first sacrificial material, the second sacrificial material, and the substrate by forming the first sacrificial material and the second sacrificial material, and then forms an opening having the opening on the second sacrificial material a three dielectric layer, wherein the first sacrificial material and the second sacrificial material are removed by the opening, and a fourth dielectric layer is formed on the third dielectric layer to form a closed cavity, so that the gyroscope is closed by the closed cavity, High stability and not susceptible to environmental noise.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Description

一 一 陀螺仪及其制造方法 本申请要求于 2010 年 6 月 11 日提交中国专利局、 申请号为 201010200715.3、 发明名称为"陀螺仪及其制造方法 "的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。
技术领域 本发明涉及半导体制造技术领域, 特别涉及一种陀螺仪及其制造方法。 背景技术
陀螺仪是一种能够精确地确定运动物体的方位的仪器,是现代航空、航海、 航天和国防工业中广泛使用的一种惯性导航仪器。陀螺仪的发展对一个国家的 工业、 国防和其它高科技的发展具有十分重要的战略意义。传统的陀螺仪主要 是指机械式的惯性陀螺仪,机械式的惯性陀螺仪由于结构复杂, 因此对工艺结 构的要求很高, 所以其精度受到了很多方面的制约。
现有的一种微型振动式双轴感测陀螺仪, 如图 1所示, 包括一基座 54, 于基座 54中心设有一中心轴 55 , 于中心轴 55外围设有多个以该中心轴 55为 中心、 等水平高度径向向外成放射状延伸的悬臂 52 , 悬臂 52内侧端 521与中 心轴 55相连,外侧端 522以该悬臂 52为中心分向两侧等距水平延伸形成一质 量环 523 , 于质量环 523顶部两端各电镀有一电容感测电极 51 , 所述电容感测 电极 51作为陀螺仪的惯性质量块, 质量环 523下方设有静电驱动电极 53。 其 中, 工作时, 向静电驱动电极 53施加驱动电压, 悬臂 52及质量环 523受静电 吸引向 Z方向振动, 且相邻的两悬臂 52及质量环 523振动位相差 180度, 当 陀螺仪沿 X方向和 Y方向旋转时,因科氏力使得该悬臂 52及质量环 523产生 X方向和 Y方向的位移, 则相邻悬臂之间的相邻电容感测电极 51之间距离变 化, 而产生不同的电容值, 藉由量测电容值的改变即可测得陀螺仪所受的旋转 角速度改变。 例如在专利号 "US005747690A" 的美国专利中也公开了一种微 震动陀螺仪。
在上述的陀螺仪中所述惯性质量块的质量越大, 则惯性越大, 进而稳定性 与抗环境噪声能力就越好。但是由于受到半导体制造工艺的限制, 无法将具有 较大质量的惯性质量块的陀螺仪集成至集成电路中。 - - 发明内容
本发明解决的技术问题是提供一种陀螺仪,提高陀螺仪的稳定性及抗环境 噪声能力。
为了解决上述技术问题, 本发明提供了一种陀螺仪, 包括:
衬底, 衬底内具有底层驱动电极和位于底层驱动电极外围的底层测量电 极;
位于衬底上的介质层, 在介质层中具有封闭的空腔; 所述空腔内包括: 位 于衬底上的中心轴;
置于衬底上且能围绕中心轴旋转的支撑环;
位于支撑环外围且与支撑环共中心轴的质量环;连接支撑环和质量环且支 撑所述质量环悬置于所述空腔内的悬臂;
位于支撑环、 质量环和相邻两悬壁之间区域内的弹性部件;
覆盖支撑环、 质量环、 悬臂和弹性部件的顶层驱动电极;
连接弹性部件上顶层驱动电极与底层驱动电极的导电插塞;所述质量环包 括绝缘层及位于绝缘层下的重量层。
优选的, 所述重量层为连续的环状结构。
优选的, 所述重量层为对称分布在环形上的分立结构。
优选的, 所述重量层的重量大于绝缘层的重量。
优选的, 所述重量层为钨金属材料。
优选的, 所述导电插塞的材料为钨金属材料。
优选的,所述支撑环包括和重量层相同材料的支撑层及位于支撑层上的绝 缘层, 所述绝缘层和质量环中的绝缘层位于同一层。
优选的, 所述悬臂从支撑环的外围以支撑环为中心, 沿径向向外呈放射状 延伸, 悬置在所述空腔内。
优选的, 所述弹性部件一端连接与其相邻的悬臂, 另一端连接导电插塞。 优选的, 所述质量环以中心轴为圓心, 并连接悬臂自由端, 通过悬臂的支 撑悬置在空腔内所述底层测量电极对应位置的上方。
优选的, 所述顶层驱动电极覆盖所述质量环、 悬臂、 支撑环和弹性部件, 并且位于质量环和支撑环上的所述顶层驱动电极分为互相绝缘的四部分,所述 顶层驱动电极通过导电插塞和导电插塞下方的底层测量电极电连接。 - - 相应的, 本发明还提供了一种上述陀螺仪的制造方法, 包括:
提供衬底, 所述衬底内具有底层驱动电极和底层测量电极,在衬底上具有 第一介质层, 所述第一介质层中具有环形沟槽,且环形沟槽的中心处具有中心 轴的第一部分, 所述环形沟槽内具有柱状结构, 所述柱状结构位于所述底层驱 动电极上方;
向所述环形沟槽内填充第一牺牲材料,使所述环形沟槽内的第一牺牲材料 和柱状结构顶端齐平;
刻蚀第一牺牲材料,在第一牺牲材料中形成第一沟槽和第二沟槽, 其中第 一沟槽与底层测量电极所在环形对应,第二沟槽位于柱状结构和中心轴的第一 部分之间;
刻蚀所述柱状结构, 在所述柱状结构中形成暴露底层驱动电极的通孔; 填充所述第一沟槽形成质量环的重量层、填充第二沟槽形成支撑环的第一 部分, 填充通孔形成导电插塞;
在所述支撑环的第一部分及重量层上形成绝缘层,所述绝缘层和所述重量 层构成质量环, 所述绝缘层和支撑环的第一部分构成支撑环;
在质量环和支撑环之间形成连接质量环和支撑环至少一个悬臂,所述不同 悬臂的延长线会经过中心轴且等分质量环和支撑环, 在质量环和支撑环之间 形成弹性部件;
在质量环、 悬臂、 导电插塞及弹性部件上形成顶层驱动电极;
在中心轴的第一部分上形成中心轴的第二部分,在第一介质层上形成第二 介质层, 所述中心轴的第一部分和第二部分构成中心轴;
在所述第一牺牲材料和顶层驱动电极上形成第二牺牲材料;
在所述第二牺牲材料和支撑环上形成第三介质层,所述第三介质层中具有 开口;
利用所述开口去除第一牺牲材料和第二牺牲材料,并在第三介质层上形成 第四介质层, 形成封闭的腔体。
优选的, 所述第一沟槽为环形。
优选的, 所述第一沟槽包括对称分布在环形上的多个沟槽。
优选的, 所述重量层的材料为金属钨。
优选的, 填充所述第一沟槽形成质量环的重量层、填充第二沟槽形成支撑 - - 环的第一部分, 填充通孔形成导电插塞在同一工艺中完成。
与现有技术相比, 本发明主要具有以下优点:
本发明通过上述的陀螺仪制造方法形成被封闭在封闭腔体内的陀螺仪,使 得在封闭腔体的保护下陀螺仪更加稳定,并且还在陀螺仪的质量环中上制作重 量层, 提高质量环的质量, 使得质量环的惯性增大, 另外, 中心轴为封闭轴, 从而使得陀螺仪的稳定性与抗环境噪声能力增强, 大大的提高了陀螺仪的性 能。 附图说明
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其 它目的、特征和优势将更加清晰。在全部附图中相同的附图标记指示相同的部 分。 并未刻意按实际尺寸等比例缩放绘制附图, 重点在于示出本发明的主旨。
图 1为一种现有的陀螺仪的结构示意图;
图 2为本发明的陀螺仪的俯视示意图;
图 3a为图 2沿 A-A'的剖面图;
图 3b是图 2沿 B-B'的剖面图;
图 3c是图 2沿 C-C'的剖面图;
图 4为本发明的陀螺仪制造方法的流程图;
图 5至图 14为本发明的陀螺仪制造方法的示意图。
具体实施方式
由背景技术可知, 陀螺仪中都具有质量环, 而质量环的质量越大则惯性越 大,从而可以使得陀螺仪稳定性与抗环境振噪能力就越好,但是由于受到半导 体制造工艺的限制, 无法在集成电路中形成具有较大质量的质量环的陀螺仪。
本发明的发明人经过大量的实验, 得到一种陀螺仪, 包括: 衬底, 衬底内 具有底层驱动电极和位于底层驱动电极外围的底层测量电极;位于衬底上的介 质层, 在介质层中具有封闭的空腔; 所述空腔内包括: 位于衬底上的中心轴; 置于衬底上且能围绕中心轴旋转的支撑环;位于支撑环外围且与支撑环共中心 轴的质量环; 连接支撑环和质量环且支撑所述质量环悬置于所述空腔内的悬 臂; 位于支撑环、 质量环和相邻两悬壁之间区域内的弹性部件; 覆盖支撑环、 质量环、 悬臂和弹性部件的顶层驱动电极; 连接弹性部件上顶层驱动电极与底 层驱动电极的导电插塞; 所述质量环包括绝缘层及位于绝缘层下的重量层。 另外还得到了一种上述陀螺仪的制造方法, 包括: 提供衬底, 所述衬底内 具有底层驱动电极和底层测量电极,在衬底上具有第一介质层, 所述第一介质 层中具有环形沟槽,且环形沟槽的中心处具有中心轴的第一部分, 所述环形沟 槽内具有柱状结构, 所述柱状结构位于所述底层驱动电极上方; 向所述环形沟 槽内填充第一牺牲材料,使所述环形沟槽内的第一牺牲材料和柱状结构顶端齐 平; 刻蚀第一牺牲材料, 在第一牺牲材料中形成第一沟槽和第二沟槽, 其中第 一沟槽与底层测量电极所在环形对应,第二沟槽位于柱状结构和中心轴的第一 部分之间; 刻蚀所述柱状结构,在所述柱状结构中形成暴露底层驱动电极的通 孔; 填充所述第一沟槽形成质量环的重量层、填充第二沟槽形成支撑环的第一 部分, 填充通孔形成导电插塞; 在所述支撑环的第一部分及重量层上形成绝缘 层, 所述绝缘层和所述重量层构成质量环, 所述绝缘层和支撑环的第一部分构 成支撑环; 在质量环和支撑环之间形成连接质量环和支撑环至少一个悬臂, 所 述不同悬臂的延长线会经过中心轴且等分质量环和支撑环, 在质量环和支撑 环之间形成弹性部件; 在质量环、 悬臂、 导电插塞及弹性部件上形成顶层驱动 电极; 在中心轴的第一部分上形成中心轴的第二部分,在第一介质层上形成第 二介质层, 所述中心轴的第一部分和第二部分构成中心轴; 在所述第一牺牲材 料和顶层驱动电极上形成第二牺牲材料;在所述第二牺牲材料和支撑环上形成 第三介质层, 所述第三介质层中具有开口; 利用所述开口去除第一牺牲材料和 第二牺牲材料, 并在第三介质层上形成第四介质层, 形成封闭的腔体。
与现有技术相比,本发明通过上述的陀螺仪制造方法形成被封闭在封闭腔 体内的陀螺仪,使得在封闭腔体的保护下陀螺仪更加稳定, 并且还在陀螺仪的 质量环中上制作重量层, 提高质量环的质量, 使得质量环的惯性增大, 另外, 中心轴为封闭轴,从而使得陀螺仪的稳定性与抗环境噪声能力增强, 大大的提 高了陀螺仪的性能。
为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实现方式做详细的说明。在下面的描述中阐述了很多具体细节以 便于充分理解本发明。 其次, 本发明利用示意图进行详细描述, 在详述本发明 实施例时, 为便于说明, 表示器件结构的剖面图会不依一般比例作局部放大, 而且所述示意图只是实例, 其在此不应限制本发明保护的范围。 此外, 在实际 - - 制作中应包含长度、 宽度及深度的三维空间尺寸。
图 2为本发明的陀螺仪一实施例的俯视示意图。如图 2所示, 陀螺仪包括 衬底(未图示)、 位于衬底上的空腔 130及位于空腔 130内的中心轴 140、 支 撑环 150、 悬臂 160、 质量环 170和弹性部件 180。 其中, 支撑环 150以中心 轴 140为中心, 设置于衬底上, 支撑环 150能绕中心轴 140旋转; 质量环 170 位于支撑环 150外围, 且与支撑环 150同心设置; 悬臂 160连接所述支撑环 150和所述质量环 170, 且支撑所述质量环 170悬置于所述空腔 130内。 所述 弹性部件 180位于所述支撑环 150和质量环 170之间,具有当质量环 170转动 时起拉伸复原作用; 所述弹性部件 180的数量由悬臂的数量确定, 各弹性部件 180的一端分别与其相邻的悬臂 160连接, 另一端为自由端。
所述陀螺仪还包括: 底层驱动电极 110、 底层测量电极 120、 顶层驱动电 极 190。 所述底层驱动电极 110和底层测量电极 120位于衬底内, 所述底层驱 动电极 110分布于以中心轴 140为圓心的第一圓环 112上,所述底层测量电极 120分布于以中心轴 140为圓心的第二圓环 122上, 其中第二圓环 122位于第 一圓环 112外围。 所述顶层驱动电极 190, 覆盖质量环 170、 悬臂 160、 支撑 环 150和弹性部件 180; 其中位于质量环 170和支撑环 150上的所述顶层驱动 电极 190, 以悬臂 160为中心分向两侧等距离水平延伸, 且根据悬臂 160的数 量位于质量环 170和支撑环 150上的所述顶层驱动电极 190分成相应的部分, 各部分之间绝缘;所述顶层驱动电极 190通过所述弹性部件 180自由端上的导 电插塞 200与底层驱动电极 110电连接,由于弹性部件 180上覆盖有顶层驱动 电极, 从而导电插塞 200连接顶层驱动电极和底层测量电极。
本实施例中, 所述中心轴 140为封闭轴, 可以增大了稳定性和抗震能力。 本实施例中, 所述悬臂 160共有 4条, 每相邻的两条之间呈 90度角, 从 而形成对称的结构, 可以使陀螺仪平衡性好。在每相邻的两条悬臂和质量环围 成的扇形空间内, 具有一个弹性部件 180、 一个底层驱动电极 110。 所述相邻 的两条悬臂围成的质量环对应的衬底中具有 3个分立的底层测量电极 120。
图 3a为图 2沿 A-A'的剖面图, 图 3b是图 2沿 B-B'的剖面图, 图 3c是图 2沿 C-C'的剖面图, 如图 3a〜图 3c所示, 所述陀螺仪包括: 衬底 100; 底层驱 动电极 110和底层测量电极 120, 位于衬底 100内, 且所述底层驱动电极 110 分布于第一圓环(参考图 2 )上, 所述底层测量电极 120分布于第二圓环(参 - - 考图 2 )上,其中第二圓环位于第一圓环外围,且两个圓环共圓心。介质层 105 , 位于衬底 100上, 且介质层 105中具有封闭的空腔 130。 中心轴 140, 位于衬 底 100上,且位于空腔 130内, 所述中心轴 140与第一圓环和第二圓环的圓心 重合; 支撑环 150, 置于空腔 130内的衬底 100上, 且以中心轴 140为中心, 能环绕中心轴 140旋转; 质量环 170, 分布于所述支撑环 150的外围, 质量环 170通过悬臂 160 (参考图 3c )与支撑环 150连接, 所述质量环 170借助于悬 臂的支撑悬置在空腔 130内; 弹性部件 180 (参考图 3b ), 分布于支撑环 150 和质量环 170之间,且所述弹性部件位于相邻的两根悬臂之间, 其一端与相邻 一侧的悬臂固定连接, 另一端为自由端。 顶层驱动电极 190, 覆盖质量环 170、 悬臂 160、支撑环 150和弹性部件 180,其中位于所述质量环 170和支撑环 150 上的顶层驱动电极 190分别以相应的悬臂为中心, 向两侧等距离水平延伸,位 于所述质量环 170和支撑环 150上的各部分顶层驱动电极 190间不相连;导电 插塞 200, 位于弹性部件的自由端, 并连接底层驱动电极与弹性部件上的顶层 驱动电极 190。
本实施例中, 介质层 105的材料可以为氧化硅或者氮化硅。
本实施例中, 所述中心轴 140为叠层结构, 当然在其它实施例中也可以为 单层结构, 所述中心轴 140为圓柱形状。
本实施例中, 所述支撑环 150的结构可以为叠层结构也可以为单层结构, 例如, 是叠层结构的话, 包括金属层(即第一部分 1501 )和位于金属层上的 绝缘层 1701 ; 所述金属层的材料可以为钨, 所述绝缘层 1701可以为氧化硅或 者氮化硅。
本实施例中, 悬臂包括绝缘层, 所述悬臂的绝缘层和支撑环 150的绝缘层 固定连接。
在本实施例中,所述质量环 170包括重量层 1702和位于重量层 1702上的 绝缘层 1701。 所述绝缘层 1701为环状结构, 所述重量层 1702可以为环状结 构, 也可以为对称分布在绝缘层 1701的环状结构上的分立结构。 所述重量层 1702的厚度可以为 1μηι~3μηι, 沿直径方向的宽度可以为 0.3μηι~2μηι, 重量层 1702的宽度可以大于绝缘层 1701的宽度, 也可以小于绝缘层 1701的宽度。 所述重量层 1702的材料可以和导电插塞 200的材料相同, 这样可以在一步工 艺中完成, 提高了效率; 具体材料可以是金属钨、 其它的金属或非金属材料, - - 或者金属与非金属材料的组合。由于质量环增加了重量层因此质量环的重量增 大, 从而使得质量环的惯性更大, 提高了陀螺仪的精确度, 但是如果质量环的 重量过大, 可能导致支撑环和悬臂断裂, 因此优选的, 当所述重量层 1702的 厚度可以为 1μηι~3μηι, 沿直径方向的宽度可以为 0.3μηι~2μηι。 所述支撑环可 以为叠层结构, 下层为和重量层相同的材料, 下层的宽度为: 0.5μηι~10μηι, 厚度为: 0.5μηι~20μηι, 上层可以为绝缘材料, 上层的宽度为: 1μηι~10μηι, 厚 度为: 0.1μηι~3μηι, 所述悬臂的宽度为: 1μηι~10μηι, 厚度为: 0.1μηι~2μηι, 材料为: 氧化硅或者氮化硅。
本实施例中, 弹性部件可以为伸缩弹簧; 当悬臂绕中心轴 140转动时, 弹 性部件可以沿转动的相反方向拉伸悬臂。所述弹性部件可以在和形成悬臂绝缘 层的相同步骤中形成, 也可以另外制作, 并使其与悬臂连接。
在本实施例中, 形成的陀螺仪因为在质量环上设置了重量层,从而增加了 质量环的质量, 使得质量环的惯性增大, 优选的, 所述重量层的材料为金属钨 材料, 因为钨的分子量大, 因此质量较大,从而可以更好的增加质量环的重量, 另外因为钨是金属, 因此可以和导电插塞以及支撑环中形成金属层的工艺兼 容, 从而筒化了制造方法。 而且上述结构的陀螺仪被封闭在封闭腔体内, 因此 在封闭腔体的保护下使得陀螺仪的稳定性与抗环境噪声能力增强,大大的提高 了陀螺仪的性能。
相应的, 本发明还提供了一种上述陀螺仪的制造方法, 图 4为本发明陀螺 仪的制造方法的流程图, 图 5至图 11为本发明的陀螺仪制造方法的示意图。
如图 4所示, 步骤 S10: 提供衬底, 所述衬底内具有底层驱动电极和底层 测量电极, 在衬底上具有第一介质层, 所述第一介质层中具有环形沟槽, 且环 形沟槽的圓心处具有中心轴的第一部分, 所述环形沟槽内具有柱状结构, 所述 柱状结构的位置与所述底层驱动电极对应。
由步骤 S10形成的结构如图 5所示, 所述衬底 100内具有底层驱动电极
110和底层测量电极 120, 所述底层驱动电极 110分布于第一圓环上, 所述底 层测量电极 120分布于第二圓环上, 所述第二圓环位于所述第一圓环外围, 且 和第一圓环同圓心。在衬底 100上具有第一介质层 1051 ,所述第一介质层 1051 中具有环形沟槽 130a,且环形沟槽 130a的圓心处具有中心轴的第一部分 1401 , 所述环形沟槽 130a内具有柱状结构 210, 所述柱状结构 210的位置与所述底 - - 层驱动电极 120对应。 环形沟槽 130a外围半径大于第二圓环的外围半径。
如图 4所示, 步骤 S20: 向所述环形沟槽内填充第一牺牲材料, 使所述环 形沟槽内的第一牺牲材料和柱状结构顶端齐平。
由步骤 S20形成的结构如图 6所示, 具体的形成方法可以为: 利用 CVD 方法, 向所述环形沟槽内 130a填充第一牺牲材料 113 , 使所述环形沟槽内的 第一牺牲材料 113和柱状结构 210顶端齐平以及第一介质层 1051齐平, 然后 在利用 CMP去除多余位置的第一牺牲材料 113 ,所述第一牺牲材料可以为碳、 锗或者聚酰胺 (polyamide )。 具体的第一牺牲材料 113 可以为非晶碳 ( Amorphous Carbon ), 利用等离子体增强化学气相沉积( PECVD )工艺, 在 温度为 350°C~450°C , 气压: 1 torr ~20torr, RF功率: 800 W ~1500W, 反应气 体包括: C3H6和 HE, 反应气体流量为 1000 sccm ~3000sccm, 其中 C3H6: HE 2: 1-5: 1。
结合图 4, 步骤 S30: 对第一牺牲材料刻蚀, 在第一牺牲材料中形成第一 沟槽和第二沟槽, 其中第一沟槽与底层测量电极所在环形对应, 第二沟槽位于 柱状结构和中心轴的第一部分之间;在该步骤中还可以同时对所述柱状结构刻 蚀, 在所述柱状结构中形成暴露底层驱动电极的通孔。
由步骤 S30形成的结构如图 7所示,具体的形成方法可以为: 对第一牺牲 材料刻蚀, 在所述第二圓环对应位置的第一牺牲材料中的形成第一沟槽 220, 所述第一沟槽 220 可以为环形, 第一沟槽的深度可以为第一牺牲材料层的 1/3-2/3 , 例如可以为 lum~3um, 宽度可以为 0.3um~2um。 所述第一沟槽还可 以包括对称分布在环形上的多个沟槽。 在以中心轴 140为圓心位于中心轴 140 和所述柱状结构 210之间的靠近中心轴的第一部分 1401位置形成环形第二沟 槽 230, 对柱状结构 210刻蚀, 在所述柱状结构 210中形成通孔, 所述通孔暴 露其下面的底层驱动电极 110。
如图 4所示, 步骤 S40: 填充所述第一沟槽形成质量环的重量层、 填充第 二沟槽形成支撑环的第一部分, 填充通孔形成导电插塞。
由步骤 S40形成的结构如图 8所示, 具体的形成方法可以为: 可以利用 CVD 的方法形成金属层, 例如金属层的材料可以为钨, 直到第一沟槽、 第二 沟槽以及通孔都被填满, 然后利用 CMP的方法去除多余的金属层, 使上表面 和中心轴的第一部分 1401顶端持平, 从而第一沟槽位置形成金属层 1702, 第 - - 二沟槽位置形成支撑环的第一部分 1501 , 通孔位置形成导电插塞 200。
在其它实施例中也可以利用不同的步骤在第一沟槽和第二沟槽、通孔中填 入不同的金属层。
如图 4所示,步骤 S50:在所述支撑环的第一部分及重量层上形成绝缘层, 所述绝缘层和所述重量层构成质量环,所述绝缘层和支撑环的第一部分构成支 撑环。
由步骤 S50形成的结构如图 9所示, 在所述支撑环的第一部分 1501及重 量层 1702上具有绝缘层 1701 , 所述绝缘层 1701和所述重量层 1702构成质量 环 170, 所述绝缘层 1701和支撑环 1501的第一部分构成支撑环 150。 具体的 形成方法可以为:可以利用 CVD的方法在步骤 S40后的结构上形成绝缘材料, 例如氧化硅或氮化硅, 然后刻蚀形成质量环和支撑环的绝缘层。
如图 4所示, 步骤 S60: 在质量环和支撑环之间形成用于连接质量环和支 撑环的悬臂, 在质量环和支撑环之间形成弹性部件。
由步骤 S60形成的结构参考图 3b、 3c和图 9所示, 具体的形成方法可以 为: 该步骤可以和步骤 S50同时完成。 具体的, 在刻蚀绝缘层的步骤中, 同时 刻蚀形成悬臂和弹性部件, 所述悬臂 160从支撑环 150的外围以支撑环 150 为中心,径向向外成放射状延伸。所述悬臂 160连接支撑环 150和质量环 170, 并且可以支撑质量环 170使其悬置在空腔 130内。 所述质量环 170以中心轴 140为圓心连接悬臂 160的自由端。 所述弹性部件 180具有当质量环 170转动 时起拉伸复原作用, 具体的, 弹性部件 180分布于以中心轴 140为圓心的位于 质量环 170和支撑环 150之间的圓环上, 一端连接与其相邻的悬臂 160, 另一 端即自由端连接有导电插塞 200。
如图 4所示, 步骤 S70: 在质量环、 悬臂、 导电插塞及弹性部件上形成顶 层驱动电极。
由步骤 S70形成的结构如图 10所示, 具体的形成方法可以为: 顶层驱动 电极 190覆盖质量环 170、 支撑环 150、 悬臂 160和弹性部件 180上, 另外也 可以在支撑环上覆盖有顶层驱动电极 190, 其中位于质量环 170和支撑环 150 上的所述顶层驱动电极 190, 以悬臂 160为中心分向两侧等距离水平延伸, 且 根据悬臂 160的数量位于质量环 170和支撑环 150上的所述顶层驱动电极 190 分成相应的部分, 各部分之间绝缘。 - - 如图 4所示, 步骤 S80: 在中心轴的第一部分上形成中心轴的第二部分, 在第一介质层上形成第二介质层,所述中心轴的第一部分和第二部分构成中心 轴。
由步骤 S80形成的结构如图 11所示,在中心轴的第一部分 1401上具有中 心轴的第二部分 1402,在第一介质层 1051上具有第二介质层 1052, 所述中心 轴的第一部分和第二部分构成中心轴 140。
如图 4所示, S90: 在所述第一牺牲材料和顶层驱动电极上形成第二牺牲 材料。
由步骤 S90形成的结构如图 12所示, 在所述第一牺牲材料 113和顶层驱 动电极 190上有第二牺牲材料 115。 所述第二牺牲材料 115可以和第一牺牲材 料 113相同。
如图 4所示, 步骤 S100: 在所述第二牺牲材料 115和支撑环 105上形成 第三介质层, 所述第三介质层中具有开口。
由步骤 S100形成的结构如图 13所示,具体的形成方法可以为: 可以首先 在步骤 S90后的结构上形成第三介质层 1053 , 然后刻蚀形成开口。
如图 4所示, 步骤 S110: 利用所述开口去除第一牺牲材料和第二牺牲材 料, 并在第三介质层上淀积第四介质层, 形成封闭的腔体, 所述第一介质层、 第二介质层、 第三介质层和第四介质层构成所述介质层。
由步骤 S110形成的结构如图 14所示, 在第三介质层上具有第四介质层 1054, 形成封闭的腔体, 所述第一介质层 1051、 第二介质层 1052、 第三介质 层 1053和第四介质层 1054构成所述介质层 105。 具体的形成方法可以为: 利 用灰化的方法从所述开口内去除第一和第二牺牲材料,最后利用化学气相沉积 ( CVD )的方法淀积第四介质层, 所述第四介质层将所述开口封闭, 形成封闭 的腔体 130, 所述第一介质层、 第二介质层和第三介质层构成介质层。 这样就 形成如图 2和图 14所示的陀螺仪。 在本实施例中所述第一牺牲层和第二牺牲 层材质为 PECVD所形成的致密活性炭, 所述去除材料为氧气, 采用加热温度 为 350 oC ~450oC, 在此温度下, 致密活性炭并不会发生剧烈燃烧, 而可以被 氧化成二氧化碳气体, 并通过通孔排出, 第一牺牲层和第二牺牲层能够彻底地 去除, 而器件的其余部分并不会受到影响。 形成所述第四介质层的方法为 CVD, 参数为: 反应气体包括 SiH4、 02和 N2, 其中 02和 SiH4的流量比为 - -
2: 1-5: 1 , 总的反应气体流量为 5 L/mii!〜 20 L/min, 温度为 250°C~450°C , 常压。
本发明的陀螺仪的制造方法通过形成第一牺牲材料和第二牺牲材料,在第 一牺牲材料、第二牺牲材料和衬底中形成陀螺仪, 然后在第二牺牲材料上形成 具有开口的第三介质层, 利用所述开口去除第一牺牲材料和第二牺牲材料, 并 在第三介质层上形成第四介质层,从而形成封闭的腔体, 这样陀螺仪由于被封 闭腔体封闭, 因此稳定性高, 不容易受到环境噪声的影响。
以上所述,仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的 限制。 任何熟悉本领域的技术人员, 在不脱离本发明技术方案范围情况下, 都 可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和 修饰, 或修改为等同变化的等效实施例。 因此, 凡是未脱离本发明技术方案的 修饰, 均仍属于本发明技术方案保护的范围内。

Claims

权 利 要 求
1、 一种陀螺仪, 其特征在于, 包括:
衬底, 衬底内具有底层驱动电极和位于底层驱动电极外围的底层测量电 极;
位于衬底上的介质层, 在介质层中具有封闭的空腔; 所述空腔内包括: 位 于衬底上的中心轴;
置于衬底上且能围绕中心轴旋转的支撑环;
位于支撑环外围且与支撑环共中心轴的质量环;连接支撑环和质量环且支 撑所述质量环悬置于所述空腔内的悬臂;
位于支撑环、 质量环和相邻两悬壁之间区域内的弹性部件;
覆盖支撑环、 质量环、 悬臂和弹性部件的顶层驱动电极;
连接弹性部件上顶层驱动电极与底层驱动电极的导电插塞;所述质量环包 括绝缘层及位于绝缘层下的重量层。
2、 根据权利要求 1所述的陀螺仪, 其特征在于 所述重量层为连续的环 状结构。
3、 根据权利要求 1所述的陀螺仪, 其特征在于 所述重量层为对称分布 在环形上的分立结构。
4、 根据权利要求 1所述的陀螺仪, 其特征在于 所述重量层的重量大于 绝缘层的重量。
5、 根据权利要求 1所述的陀螺仪, 其特征在于 所述重量层为钨金属材
6、 根据权利要求 1所述的陀螺仪, 其特征在于, 所述导电插塞的材料为 钨金属材料。
7、 根据权利要求 1所述的陀螺仪, 其特征在于, 所述支撑环包括和重量 层相同材料的支撑层及位于支撑层上的绝缘层,所述绝缘层和质量环中的绝缘 层位于同一层。
8、 根据权利要求 1所述的陀螺仪, 其特征在于, 所述悬臂从支撑环的外 围以支撑环为中心, 沿径向向外呈放射状延伸, 悬置在所述空腔内。
9、 根据权利要求 8所述的陀螺仪, 其特征在于, 所述弹性部件一端连接 与其相邻的悬臂, 另一端连接导电插塞。
10、 根据权利要求 9所述的陀螺仪, 其特征在于, 所述质量环以中心轴为 圓心, 并连接悬臂自由端,通过悬臂的支撑悬置在空腔内所述底层测量电极对 应位置的上方。
11、 根据权利要求 10所述的陀螺仪, 其特征在于, 所述顶层驱动电极覆 盖所述质量环、 悬臂、 支撑环和弹性部件, 并且位于质量环和支撑环上的所述 顶层驱动电极分为互相绝缘的四部分,所述顶层驱动电极通过导电插塞和导电 插塞下方的底层测量电极电连接。
12、 一种权利要求 1所述的陀螺仪的制造方法, 其特征在于, 包括: 提供衬底, 所述衬底内具有底层驱动电极和底层测量电极,在衬底上具有 第一介质层, 所述第一介质层中具有环形沟槽,且环形沟槽的中心处具有中心 轴的第一部分, 所述环形沟槽内具有柱状结构, 所述柱状结构位于所述底层驱 动电极上方;
向所述环形沟槽内填充第一牺牲材料,使所述环形沟槽内的第一牺牲材料 和柱状结构顶端齐平;
刻蚀第一牺牲材料,在第一牺牲材料中形成第一沟槽和第二沟槽, 其中第 一沟槽与底层测量电极所在环形对应,第二沟槽位于柱状结构和中心轴的第一 部分之间;
刻蚀所述柱状结构, 在所述柱状结构中形成暴露底层驱动电极的通孔; 填充所述第一沟槽形成质量环的重量层、填充第二沟槽形成支撑环的第一 部分, 填充通孔形成导电插塞;
在所述支撑环的第一部分及重量层上形成绝缘层,所述绝缘层和所述重量 层构成质量环, 所述绝缘层和支撑环的第一部分构成支撑环;
在质量环和支撑环之间形成连接质量环和支撑环至少一个悬臂,所述不同 悬臂的延长线会经过中心轴且等分质量环和支撑环,在质量环和支撑环之间形 成弹性部件;
在质量环、 悬臂、 导电插塞及弹性部件上形成顶层驱动电极;
在中心轴的第一部分上形成中心轴的第二部分,在第一介质层上形成第二 介质层, 所述中心轴的第一部分和第二部分构成中心轴;
在所述第一牺牲材料和顶层驱动电极上形成第二牺牲材料;
在所述第二牺牲材料和支撑环上形成第三介质层,所述第三介质层中具有 开口;
利用所述开口去除第一牺牲材料和第二牺牲材料,并在第三介质层上形成 第四介质层, 形成封闭的腔体。
13、 根据权利要求 12所述的陀螺仪的制造方法, 其特征在于, 所述第一 沟槽为环形。
14、 根据权利要求 12所述的陀螺仪的制造方法, 其特征在于, 所述第一 沟槽包括对称分布在环形上的多个沟槽。
15、 根据权利要求 12所述的陀螺仪的制造方法, 其特征在于, 所述重量 层的材料为金属钨。
16、 根据权利要求 12所述的陀螺仪的制造方法, 其特征在于, 填充所述 第一沟槽形成质量环的重量层、填充第二沟槽形成支撑环的第一部分和填充通 孔形成导电插塞在同一工艺中完成。
PCT/CN2011/070635 2010-06-11 2011-01-26 陀螺仪及其制造方法 WO2011153839A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/703,506 US20130118280A1 (en) 2010-06-11 2011-01-26 Gyroscope and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010200715.3 2010-06-11
CN201010200715.3A CN102278981B (zh) 2010-06-11 2010-06-11 陀螺仪及其制造方法

Publications (1)

Publication Number Publication Date
WO2011153839A1 true WO2011153839A1 (zh) 2011-12-15

Family

ID=45097505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070635 WO2011153839A1 (zh) 2010-06-11 2011-01-26 陀螺仪及其制造方法

Country Status (3)

Country Link
US (1) US20130118280A1 (zh)
CN (1) CN102278981B (zh)
WO (1) WO2011153839A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103373698B (zh) * 2012-04-26 2015-09-16 张家港丽恒光微电子科技有限公司 制作mems惯性传感器的方法及mems惯性传感器
DE102012208030A1 (de) * 2012-05-14 2013-11-14 Robert Bosch Gmbh Mikromechanischer Inertialsensor und Verfahren zu dessen Herstellung
CN103645345B (zh) * 2013-12-06 2016-08-17 杭州士兰微电子股份有限公司 多轴电容式加速度计
CN103645342B (zh) * 2013-12-06 2016-08-17 杭州士兰微电子股份有限公司 多轴电容式加速度计及加速度检测方法
JP6614157B2 (ja) * 2014-12-01 2019-12-04 ソニー株式会社 センサ素子、ジャイロセンサ及び電子機器
GB201514114D0 (en) * 2015-08-11 2015-09-23 Atlantic Inertial Systems Ltd Angular velocity sensors
FI127042B (en) * 2015-09-09 2017-10-13 Murata Manufacturing Co Electrode of a microelectromechanical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897223A (en) * 1997-11-17 1999-04-27 Wescam Inc. Stabilized platform system for camera
US6626039B1 (en) * 1999-09-17 2003-09-30 Millisensor Systems And Actuators, Inc. Electrically decoupled silicon gyroscope
CN1580700A (zh) * 2003-08-05 2005-02-16 财团法人工业技术研究院 微型振动式双轴感测陀螺仪
US20060156812A1 (en) * 2005-01-05 2006-07-20 Industrial Technology Research Institute Rotation sensing apparatus and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450751A (en) * 1993-05-04 1995-09-19 General Motors Corporation Microstructure for vibratory gyroscope
KR100327481B1 (ko) * 1995-12-27 2002-06-24 윤종용 마이크로 자이로스코프
CN1464286A (zh) * 2002-06-13 2003-12-31 祥群科技股份有限公司 钟摆式微型惯性传感器及其制造方法
US7406867B2 (en) * 2005-06-27 2008-08-05 Milli Sensor Systems + Actuators G2-Gyroscope: MEMS gyroscope with output oscillation about the normal to the plane
CN100510628C (zh) * 2005-11-24 2009-07-08 上海交通大学 永磁介磁组合悬浮转子微陀螺
US8375791B2 (en) * 2009-07-13 2013-02-19 Shanghai Lexvu Opto Microelectronics Technology Co., Ltd. Capacitive MEMS gyroscope and method of making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897223A (en) * 1997-11-17 1999-04-27 Wescam Inc. Stabilized platform system for camera
US6626039B1 (en) * 1999-09-17 2003-09-30 Millisensor Systems And Actuators, Inc. Electrically decoupled silicon gyroscope
CN1580700A (zh) * 2003-08-05 2005-02-16 财团法人工业技术研究院 微型振动式双轴感测陀螺仪
US20060156812A1 (en) * 2005-01-05 2006-07-20 Industrial Technology Research Institute Rotation sensing apparatus and method for manufacturing the same

Also Published As

Publication number Publication date
CN102278981B (zh) 2014-01-08
US20130118280A1 (en) 2013-05-16
CN102278981A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
WO2011153839A1 (zh) 陀螺仪及其制造方法
JP6433313B2 (ja) 環境的に堅牢なディスク状共振器ジャイロスコープ
CN103922271B (zh) 梳状mems器件和制作梳状mems器件的方法
US8907434B2 (en) MEMS inertial sensor and method for manufacturing the same
US8109145B2 (en) Micro hemispheric resonator gyro
US11212611B2 (en) MEMS microphone and manufacturing method thereof
US20130104653A1 (en) Mems hemispherical resonator gyroscope
US8375791B2 (en) Capacitive MEMS gyroscope and method of making the same
CN105452153B (zh) 使用有源电路封装的mems器件中用于屏蔽与偏置的装置和方法
JP2007210083A (ja) Mems素子及びその製造方法
JP2014503793A (ja) 底部電極を有するbawジャイロスコープ
JP6893179B2 (ja) 直交同調ための傾斜電極を有するmems慣性測定装置
WO2012088814A1 (zh) 惯性微机电传感器及其制作方法
US20230406693A1 (en) Mems device built using the beol metal layers of a solid state semiconductor process
KR20180048697A (ko) 각속도 센서
CN105675921A (zh) 一种加速度传感器及其制作方法
US11603312B2 (en) MEMS element with increased density
CN102275860B (zh) 惯性微机电传感器的制造方法
WO2012088823A1 (zh) 微机电传感器的形成方法
TWI736428B (zh) Mems結構及其形成方法
US11685644B2 (en) Microelectromechanical device with stopper
JP2019049434A (ja) 加速度センサ
KR20060124267A (ko) 정렬 오차 없는 평면형 3축 관성 측정 시스템
TWI841959B (zh) 微機電裝置及其製造方法
JP2013140838A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13703506

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11791831

Country of ref document: EP

Kind code of ref document: A1