TWI841959B - 微機電裝置及其製造方法 - Google Patents

微機電裝置及其製造方法 Download PDF

Info

Publication number
TWI841959B
TWI841959B TW111116988A TW111116988A TWI841959B TW I841959 B TWI841959 B TW I841959B TW 111116988 A TW111116988 A TW 111116988A TW 111116988 A TW111116988 A TW 111116988A TW I841959 B TWI841959 B TW I841959B
Authority
TW
Taiwan
Prior art keywords
cavity
stop member
layer
filling material
supporting substrate
Prior art date
Application number
TW111116988A
Other languages
English (en)
Other versions
TW202344465A (zh
Inventor
拉奇許 昌德
素軒 蘇
穆尼安迪 順穆甘
拉瑪奇德拉瑪爾斯彼拉迪 葉蕾哈卡
Original Assignee
世界先進積體電路股份有限公司
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW111116988A priority Critical patent/TWI841959B/zh
Publication of TW202344465A publication Critical patent/TW202344465A/zh
Application granted granted Critical
Publication of TWI841959B publication Critical patent/TWI841959B/zh

Links

Images

Abstract

一種微機電(MEMS)裝置,包含支撐基板、設置在支撐基板中的空腔、停止部件以及微機電結構。停止部件設置於支撐基板與空腔之間,且停止部件的內側壁與空腔接觸,停止部件包含圍繞空腔周邊的填充材料和包裹填充材料的襯層。微機電結構設置在空腔上方,並附接在停止部件和支撐基板上。

Description

微機電裝置及其製造方法
本揭露係關於微機電(MEMS)裝置,特別是包含空腔的微機電裝置及其製造方法。
近年來,微機電(micro-electro-mechanical systems,MEMS)裝置已經是能夠實現的技術,並且在各種產業上也越來越受到關注。MEMS裝置包含可移動的部份和至少一其他元件,例如壓力感測器、致動器(actuator)或共振器,其係使用微機械加工製程來選擇性地蝕刻掉晶圓的一些部分而形成,此晶圓可包含附加的結構層,並且可由例如矽的半導體材料製成。
大多數的MEMS裝置係將由彈性材料、電極和壓電材料組成的膜層設置在空腔上方,藉此釋放裝置並提高MEMS裝置的性能。一般而言,可以藉由使用空腔晶圓與絕緣體上覆矽(silicon-on-insulator,SOI)晶圓鍵合、蝕刻晶圓的背面、或者蝕刻掉埋設在晶圓中的犧牲材料,以形成膜層下方的空腔。然而,習知形成空腔的方法難以控制空腔的尺寸,此外,SOI晶圓的成本高,且SOI晶圓與空腔晶圓鍵合的製造過程費時。因此,業界亟需改善MEMS裝置及其製造方法,以克服上述問題。
有鑑於此,本揭露之一實施例提供了改良的微機電(MEMS)裝置及其製造方法,MEMS裝置其目的之一為具有精確控制的空腔尺寸,藉此提昇MEMS裝置的性能、提高生產良率、增加產品調整的靈活度(flexibility)、以及節省製造MEMS裝置的周期時間和成本。
根據本揭露的一實施例,提供一種微機電(MEMS)裝置,包括支撐基板、設置在支撐基板中的空腔、停止部件(stopper)以及MEMS結構。停止部件設置於支撐基板與空腔之間,且停止部件的內側壁與空腔接觸,停止部件包括圍繞空腔周邊的填充材料及包裹填充材料的襯層。MEMS結構設置在空腔上方,並且附接在停止部件和支撐基板上。
根據本揭露的一實施例,提供了一種MEMS裝置的製造方法,包括以下步驟:提供支撐基板,並且蝕刻支撐基板以形成溝槽;在溝槽內形成襯層,並且用填充材料填充溝槽,以形成停止部件,停止部件包括襯層和填充材料;在停止部件和支撐基板上形成MEMS結構,其中MEMS結構包括貫穿孔洞;以及藉由通過貫穿孔洞提供蝕刻劑,蝕刻支撐基板的一部分以形成空腔,其中停止部件與空腔接觸。
為了讓本揭露之特徵明顯易懂,下文特舉出實施例,並配合所附圖式,作詳細說明如下。
100、200、300、400:MEMS裝置
101、201、301、401:支撐基板
102:核心基板
103、207、307、407:溝槽
104、203、208、303、308、408:介電層
105、209、309、409:襯層
106、210、310、410:填充材料層
107、211、311、411:填充材料
109、213、313、413:停止部件
110C、130C:剖面狀態
110T、130T:俯視狀態
111:MEMS結構
112:貫穿孔洞
113、215、315、415:空腔
120、220、322:裝置層
121:突出部
122、228、334:導線
205、305、403:半導體層
222、326:上電極層
224、328:下電極層
226:接觸導孔
230、324:壓電材料層
240:介電層
320:絕緣層
330:保護層
332:開口
402:絕緣層
S110、S120、S130、S140、S210、S220、S230、S240、S250、S260、S310、S320、S330、S340、S350、S360、S410、S420、S430、S440:步驟
為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之 具體實施例,並用以闡述本揭露之具體實施例之作用原理。此外,為了清楚起見,圖式中的各特徵可能未按照實際的比例繪製,因此某些圖式中的部分特徵的尺寸可能被刻意放大或縮小。
第1A至1B圖是根據本揭露的一實施例所繪示的MEMS裝置的製造方法的一些階段之剖面示意圖和俯視示意圖。
第2A至2B圖是根據本揭露的另一實施例所繪示的MEMS裝置的製造方法的一些階段的剖面示意圖。
第3A至3B圖是根據本揭露的另一實施例所繪示的MEMS裝置的製造方法的一些階段的剖面示意圖。
第4圖是根據本揭露的另一實施例所繪示的MEMS裝置的製造方法的一些階段的剖面示意圖。
第5圖是根據本揭露的一實施例所繪示的MEMS裝置的剖面示意圖。
第6圖是根據本揭露的另一實施例所繪示的MEMS裝置的剖面示意圖。
第7圖是根據本揭露的另一實施例所繪示的MEMS裝置的剖面示意圖。
本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與佈置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,下文中針對「第一特徵形成在第二特徵上或上方」的敘述,其可以是指「第一特徵與第二特徵直接接觸」,也可以是指「第一特徵與第二特徵間另存在有其他特徵」,致使第一特徵與第二特徵並不直接接觸。此外,本揭露中的各種實施例可能使用重複的參考符號和/或文字註記。使用這些重複的參考符號與註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。
另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在…之下」,「低」,「下」,「上方」,「之上」,「上」,「頂」,「底」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個元件或特徵與另一個(或多個)元件或特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在使用中以及操作時的可能擺向。隨著半導體裝置的擺向的不同(旋轉90度或其它方位),用以描述其擺向的空間相關敘述亦應透過類似的方式予以解釋。
雖然本揭露使用第一、第二、第三等等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應了解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製造方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。
本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。
雖然下文係藉由具體實施例以描述本揭露的發明,然而本揭露的發明原理亦可應用至其他的實施例。此外,為了不致使本發明之精神晦澀難懂,特定的細節會被予以省略,該些被省略的細節係屬於所屬技術領域中具有通常知識者的知識範圍。
本揭露係關於微機電(MEMS)裝置及其製造方法,此MEMS裝置可精確控制空腔的尺寸,此MEMS裝置的空腔是藉由蝕刻支撐基板的預定部分而形成,此預定部分被停止部件(或稱蝕刻停止部件)圍繞和界定,停止部件包含填充材料以及包裹填充材料的側壁和底表面之襯層。由於停止部件的襯層對支撐基板的蝕刻選擇比小於1(例如0.8、0.5、0.1、0.01或這些數值之間的任何中間值),因此在蝕刻支撐基板以形成空腔的製程過程中,支撐基板被停止部件覆蓋的部分不會被去除,藉此得以精確地控制空腔的尺寸,進而提昇了本揭露的MEMS裝置的裝置性能。此外,與習知的製造方法相比,本揭露之實施例的MEMS裝置的製造方法耗時更少、製造成本更低、製造良率高、空腔的尺寸控制精確、且空腔的深度調整更具有靈活度(flexibility)。
根據本揭露的一些實施例,提供MEMS裝置的製造方法。第1A至1B圖是根據本揭露的一實施例所繪示的MEMS裝置100的製造方法的一些階段之剖面示意圖和俯視示意圖。參閱第1A圖,首先,提供支撐基板101,支撐基板101可以是矽晶圓或其他合適的半導體晶圓。支撐基板101的材料包含單晶半導體材料,例如矽(Si)、藍寶石或其他合適的半導體材料,舉例而言,支撐基板101的材料包含元素半導體,例如Ge:支撐基板101的材料還可包含化合物半導體,例如GaN、SiC、GaAs、GaP、InP、InAs及/或InSb;支撐基板101的材料還包含合金半導體,例如SiGe、GaAsP、AlInAs、AlN、AlGaAs、GaInAs、GaInP、GaInAsP;或者支撐基板101的材料可包含前述之組合。接著,在步驟S110,蝕刻支撐基板101,以在其上表面形成多個溝槽103,如第1A圖中所示的剖面狀態110C和俯視狀態110T。在一些實施例中,溝槽103在俯視狀態中可具有連續或不連續的環形形狀。此外,當從俯視角度觀看時,溝槽103可以是任何形狀,例如圓形、環形、正方形、橢圓形、多邊形等,但不限於這些形狀。溝槽103圍繞支撐基板101的預定部分,此預定部分用於界定在後續製程中所製造的空腔的位置和深度。然後,在 步驟S120,通過熱生長製程(例如熱氧化製程或熱氮化製程)、或者通過使用四乙氧基矽烷(tetraethoxy silane,TEOS)的電漿增強型化學氣相沉積(plasma-enhanced chemical vapor disposition,PECVD)製程,在支撐基板101上和溝槽103內順向性地(conformally)形成介電層104,例如為氧化矽層,溝槽103內的介電層104係作為襯層。在溝槽103內形成襯層時,熱生長製程比PECVD製程具有更好的溝槽填充能力,因此當通過熱生長製程形成襯層時,溝槽103的側壁和底面可以被襯層完全覆蓋。藉此,即使溝槽103的深寬比(aspect ratio)(或者是溝槽深度與溝槽寬度之比值)大於15,且溝槽深度大於150μm,經由熱生長製程形成的襯層仍可完全覆蓋溝槽103的側壁及底面。此外,對於經由熱生長製程形成的襯層,襯層可被視為支撐基板101與氣態反應物之間的反應產物,氣態反應物例如為氧氣、氮氣、前述之組合,或者其他能夠與支撐基板101產生反應的反應物。
如第1A圖所示,可以形成介電層104以包裹支撐基板101。然後,通過沉積製程例如物理氣相沉積(PVD)製程,在介電層104上形成填充材料層106,並且填充溝槽103。如第1A圖所示,填充材料層106可以形成在支撐基板101的上表面之上,或者進一步包裹支撐基板101(未繪示)。填充材料層106包含多晶矽或介電材料,例如氧化矽、氮化矽或前述之組合。由於填充材料層106是通過沉積製程形成,基於沉積製程有限的溝槽填充能力,沉積在溝槽103內的部分填充材料可能包含位於溝槽103的底部及/或中間部份的空隙(void)。
隨後,參閱第1B圖,在步驟S130,將填充材料層106和介電層104平坦化,以形成如第1B圖的剖面狀態130C和俯視狀態130T所示的停止部件109,此停止部件109包含襯層105和填充材料107。可以通過化學機械平坦化(chemical-mechanical planarization,CMP)製程將填充材料層106和介電層104平坦化,直到停止部件109的頂表面與支撐基板101的頂表面齊平。停止部件109在俯視狀態中可具有連續或不連續的環形形狀,且停止部件109圍繞支撐基板101的預 定部分,此預定部分係用於形成空腔。此外,停止部件109的深寬比可以為10到20,並且停止部件109的高度可以在約20微米(μm)到約300μm的範圍內。在一些實施例中,停止部件109的高度、溝槽103的深度和空腔的深度可以在約20μm至約300μm的範圍內,例如約150μm或約250μm,襯層105的厚度可以在約0.1μm至約3.0μm的範圍內,填充材料107的厚度可以在約7μm至約15μm的範圍內,但本揭露不限於上述範圍。
接著,在步驟S140,將另一晶圓(圖中未繪示)貼附在停止部件109和支撐基板101上。然後,將貼附的晶圓圖案化,以形成MEMS結構111,MEMS結構111包含多個貫穿孔洞112。此MEMS結構111可包含MEMS共振器(resonator)和濾波器(filters)、電容式微機械超音波傳感器(capacitive micro-machined ultrasonic transducer,CMUT)、壓電微機械超音波傳感器(piezoelectric micro-machined ultrasonic transducer,PMUT)、MEMS加速儀(accelerometer)、MEMS陀螺儀(gyroscope)、慣性感測器(inertial sensors)、壓力感測器、微流體元件、其他微型元件或前述之組合。然後,藉由通過貫穿孔洞112提供蝕刻劑來蝕刻支撐基板101被停止部件109圍繞的預定部分,以形成空腔113。在蝕刻過程中,停止部件109被用作蝕刻停止部件,以精確地定義空腔113的橫向尺寸(例如直徑)。此外,即使停止部件109的襯層105是厚度小於3μm(例如1.0、1.5、2.0、2.5或介於這些數值之間的任何中間值)的薄層,由於本揭露使用填充材料107來增強停止部件109的機械強度,因此停止部件109整體可具有較高的機械強度,並且在蝕刻過程中不會發生斷裂。
之後,可以藉由蝕刻製程對支撐基板101和MEMS結構111進行圖案化,以形成MEMS裝置100。在蝕刻製程之後,位於支撐基板101的側壁和底面上的介電層104和填充材料層106會被去除。在MEMS裝置100中,MEMS結構111設置在空腔113上方,且停止部件109設置在支撐基板101和空腔103之間。此外,停止部件109沿著支撐基板101的內側壁設置,並且停止部件109的內側壁與空腔113 接觸。停止部件109包含填充材料107和襯層105,其中從俯視角度觀看時,填充材料107圍繞空腔113的周邊,並且襯層105至少包裹填充材料107的側壁和底表面。此外,襯層105設置在空腔103和支撐基板101之間,襯層105從位於填充材料107底部的第一區延伸到位於填充材料107的側壁和支撐基板101之間的第二區,並且延伸到位於填充材料107的另一側壁和空腔113之間的第三區。另外,襯層105為薄層,且被襯層105所圍繞和界定的狹縫內填充有填充材料107。
根據本揭露的實施例,空腔113的深度大致上與停止部件109的高度相同,並且空腔113的尺寸例如寬度、長度和直徑可藉由停止部件109得到精確的控制,這是因為停止部件109的襯層105對支撐基板101的蝕刻選擇比小於1(例如0.8、0.5、0.1、0.01或這些數值之間的任何中間值),因此支撐基板101的蝕刻會停止在停止部件109的襯層105上。在本實施例中,空腔113的底面可具有凹陷部分,其對應於MEMS結構111的貫穿孔洞112的位置。
第2A至2B圖是根據本揭露的另一個實施例所繪示的MEMS裝置200的製造方法的一些階段的剖面示意圖。參閱第2A圖,首先,提供核心基板102。核心基板102例如是矽晶圓或其他合適的半導體晶圓,核心基板102的材料可參考前述第1A圖中的支撐基板101的相關說明。接著,在步驟S210,在核心基板102上形成介電層203。介電層203可以是通過熱氧化製程、使用四乙氧基矽烷(TEOS)的PECVD製程、或物理氣相沉積(PVD)製程而形成的氧化矽層。在一些實施例中,介電層203沉積在核心基板102的上表面上。在其他實施例中,介電層203可以順向性地形成,以包裹核心基板102。根據本揭露的實施例,介電層203可用作底部停止部件,且之後可稱為底部停止部件203。
接著,在步驟S220,沉積半導體層205,以包裹底部停止部件203和核心基板102,藉此形成支撐基板201。半導體層205包含多晶矽或其他合適的半導體材料。在本實施例中,支撐基板201包含核心基板102、底部停止部件203和半 導體層205。
之後,在步驟230,蝕刻半導體層205,以在其中形成多個溝槽207。根據本揭露的實施例,半導體層205的蝕刻會停止在底部停止部件203上。溝槽207和底部停止部件203界定了半導體層205之用於形成空腔的預定部分。
接著,參閱第2B圖,在步驟S240,通過熱氧化製程或使用四乙氧基矽烷(TEOS)的PECVD製程,在支撐基板201的半導體層205上和溝槽207內順向性地形成介電層208,例如為氧化矽層,溝槽207內的介電層208係作為襯層。對於在溝槽207內形成襯層,熱氧化製程比PECVD製程具有更好的溝槽填充能力。然後,通過沉積製程例如CVD或PVD製程,在介電層208上形成填充材料層210,並且填充溝槽207。填充材料層210包含多晶矽或介電材料,並且位於溝槽207的底部及/或中間部份所沉積的填充材料中包含空隙。介電層208和填充材料層210的其他細節可參考前述第1A圖中的介電層104和填充材料層106的相關說明。
接著,在步驟S250,將填充材料層210和介電層208平坦化,以形成停止部件213,停止部件213包含襯層209和填充材料211。可以通過CMP製程將填充材料層210和介電層208平坦化,直到停止部件213的頂面與支撐基板201的半導體層205的頂面齊平。在CMP製程之後,介電層208和填充材料層210可以保留在支撐基板201的半導體層205的側壁和底面上。以俯視角度觀之,停止部件213可具有連續或不連續的環形形狀,且停止部件213圍繞半導體層205用於形成空腔的預定部分。此外,停止部件213的深寬比可為10到20,並且停止部件213的高度可以在約20μm到約300μm的範圍內,例如約150μm或約250μm。襯層209的厚度可以在約0.1μm至約3.0μm的範圍內,填充材料211的厚度可以在約7μm至約15μm的範圍內,但本揭露不限於上述範圍。
之後,在步驟S260,將另一晶圓(未繪示)貼附在停止部件213和支撐基板201上。然後將貼附的晶圓圖案化,以形成MEMS結構111,其中MEMS結構 111包含多個貫穿孔洞112。然後,藉由通過MEMS結構111的貫穿孔洞112提供蝕刻劑,使得蝕刻劑蝕刻半導體層205被停止部件213圍繞的預定部分,以形成空腔215,然後形成MEMS裝置200。之後,可以通過蝕刻製程將支撐基板201和MEMS結構111圖案化,並且去除支撐基板201的側壁和底面上的介電層208和填充材料層210。在MEMS裝置200中,MEMS結構111設置在空腔215上方,停止部件213設置在支撐基板201的半導體層205和空腔215之間。此外,停止部件213沿著半導體層205的內側壁設置,並且停止部件213的內側壁和底部停止部件203的部分表面皆與空腔215接觸。
根據本揭露的實施例,空腔215的深度大致上與停止部件213的高度相同。此外,空腔215的尺寸,例如寬度、長度、直徑和深度可藉由停止部件213和底部停止部件203而被精確地控制,這是因為停止部件213的襯層209和底部停止部件203對半導體層205的蝕刻選擇比小於1(例如0.8、0.5、0.1、0.01或介於這些數值之間的任何值),使得半導體層205的蝕刻會停止在停止部件213和底部停止部件203上。在本實施例中,空腔215的底面是底部停止部件203的上表面。
第3A至3B圖是根據本揭露的另一實施例的MEMS裝置300的製造方法的一些階段的剖面示意圖。參閱第3A圖,首先,提供核心基板102。核心基板102例如是矽晶圓或其他合適的半導體晶圓,核心基板102的材料可參考前述第1A圖中的支撐基板101的相關說明。接著,在步驟S310,順向性地形成介電層303以包裹核心基板102,介電層303可以是藉由熱氧化製程或使用四乙氧基矽烷(TEOS)的PECVD製程所形成的氧化矽層。根據本揭露的實施例,使用介電層303的上部作為底部停止部件,且之後可稱為底部停止部件303。
接著,在步驟S320,在底部停止部件303上沉積半導體層305,以形成支撐基板301。半導體層305包含非晶矽或其他合適的半導體材料,可以通過PVD製程在底部停止部件303的上表面上沉積半導體層305。在本實施例中,支撐基板 301包含核心基板102、底部停止部件303和半導體層305。
之後,在步驟330,蝕刻半導體層305,以在其中形成多個溝槽307。根據本揭露的實施例,半導體層305的蝕刻會停止在底部停止部件303上。溝槽307和底部停止部件303界定了半導體層305用於形成空腔的預定部分。
接著,參閱第3B圖,在步驟S340,在支撐基板301上和溝槽307內順向性地形成介電層308,例如為氧化矽層或氮化矽層。介電層308可以形成在半導體層305的上表面和側壁上,以及介電層303的側壁和底面上,以包裹支撐基板301。可以藉由熱生長製程(例如熱氧化製程或熱氮化製程)形成,或者使用四乙氧基矽烷(TEOS)的PECVD製程形成介電層308,在溝槽307內的介電層308係作為襯層,對於在溝槽307內形成襯層而言,熱生長製程比PECVD製程具有更好的溝槽填充能力。然後,在介電層308上形成填充材料層310,並且填充溝槽307。填充材料層310包含多晶矽或介電材料,例如氧化矽、氮化矽或其他合適的介電材料。可以通過PVD製程在半導體層305的上表面上形成填充材料層310,或者通過CVD製程形成填充材料層310以包裹支撐基板301。此外,沉積在溝槽307的底部和/或中間部份的填充材料中可能會包含空隙。
接著,在步驟S350,將填充材料層310和介電層308平坦化,以形成停止部件313,其中停止部件313包含襯層309和填充材料311。可藉由CMP製程將填充材料層310和介電層308平坦化,直到停止部件313的頂面與支撐基板301的半導體層305的頂面齊平。在CMP製程之後,介電層308和填充材料層310可以保留在支撐基板301的側壁和底面上。在此實施例中,停止部件313的俯視形狀、深寬比、高度、襯層309和填充材料311的厚度等細節可以參考前述第2B圖中的停止部件213的相關描述,並且停止部件313圍繞半導體層305用於形成空腔的預定部分。
之後,在步驟S360,將另一晶圓(未繪示)貼附在停止部件313和支撐基板301上。然後,將貼附的晶圓圖案化,以形成MEMS結構111,其中MEMS結 構111包含多個貫穿孔洞112。然後,藉由通過貫穿孔洞112提供蝕刻劑,蝕刻半導體層305被停止部件313圍繞的預定部分,以形成空腔315,然後形成MEMS裝置300。之後,可以通過蝕刻製程對支撐基板301和MEMS結構111進行圖案化。在蝕刻製程之後,位於支撐基板301的側壁和底表面上的介電層308和填充材料層310可被去除。此外,也可以進一步去除位於核心基板102的底面和側壁上的介電層303的下方部份和側壁部份。在MEMS裝置300中,MEMS結構111設置於空腔315上方,且停止部件313設置於半導體層305與空腔315之間。此外,停止部件313沿著半導體層305的內側壁設置,且停止部件315的內側壁和底部停止部件303的上表面皆與空腔315接觸。
根據本揭露的實施例,空腔315的深度大致上與停止部件313的高度相同。此外,空腔315的尺寸,例如寬度、長度、直徑和深度可藉由停止部件315和底部停止部件303被精準地控制。這是因為停止部件313的襯層309和底部停止部件303對半導體層305的蝕刻選擇比小於1(例如0.8、0.5、0.1、0.01或這些數值之間的任何中間值),使得半導體層305的蝕刻會停止在停止部件313和底部停止部件303上。
第4圖是根據本揭露的另一實施例的MEMS裝置400的製造方法的一些階段的剖面示意圖。參閱第4圖,首先,提供支撐基板401。支撐基板401包含半導體基板104、位於半導體基板104上的絕緣層402、以及位於絕緣層402上的半導體層403。半導體基板104例如是矽晶圓或其他合適的半導體晶圓。半導體基板104的材料可參考前述第1A圖中的支撐基板101的相關說明。絕緣層402可以是埋藏氧化層,並且作為底部停止部件,之後可稱為底部停止部件402。半導體層403包含單晶矽或其他合適的半導體材料。在本實施例中,半導體層403的厚度可介於約20微米至約200微米之間。在本揭露的實施例中,支撐基板401可以是絕緣體上覆半導體(semiconductor-on-insulator,SOI)晶圓,其可用於形成MEMS裝置的淺 空腔。
接著,在步驟S410,蝕刻半導體層403,以在其中形成多個溝槽407。根據本揭露的實施例,半導體層403的蝕刻會停止在底部停止部件402上。溝槽407和底部停止部件402界定了半導體層403用於形成空腔的預定部分。
之後,在步驟S420,在支撐基板401上和溝槽407內順向性地形成介電層408,例如為氧化矽層或氮化矽層。介電層408還可進一步形成在半導體層403的上表面和側壁上、形成在底部停止部件402的側壁上、以及形成在半導體基板104的側壁和底面上。可以通過熱生長製程(例如熱氧化製程或熱氮化製程)形成介電層408,或者使用四乙氧基矽烷(TEOS)的PECVD製程形成介電層408,溝槽407內的介電層408係作為襯層。對於在溝槽407內形成襯層,熱生長製程比PECVD製程具有更好的溝槽填充能力。然後,在介電層408上形成填充材料層410,並且填充溝槽407,填充材料層410包含多晶矽或介電材料。可以通過PVD製程在支撐基板401的上表面上形成填充材料層410,或者通過CVD製程形成填充材料層410以包裹支撐基板401。此外,沉積在溝槽407的底部和/或中間部份的填充材料中可能會包含空隙。
接著,在步驟S430,將填充材料層410和介電層408平坦化,以形成停止部件413,其中停止部件413包含襯層409和填充材料411。可以通過CMP製程將填充材料層410和介電層408平坦化,直到停止部件413的頂面與支撐基板401的半導體層403的頂面齊平。在CMP製程之後,介電層408和填充材料層410可以保留在支撐基板401的側壁和底面上。以俯視角度觀之,停止部件413可以具有連續或不連續的環形形狀,以圍繞半導體層403用於形成空腔的預定部分。此外,停止部件413的深寬比可以為10到20,並且停止部件213的高度可以在約20μm到約300μm的範圍內,例如約50μm或約100μm。襯層409的厚度可以在約0.1μm至約3.0μm的範圍內,填充材料411的厚度可以在約7μm至約15μm的範圍內,但本揭 露不限於上述範圍。
之後,在步驟S440,將另一晶圓(未繪示)貼附在停止部件413和支撐基板401上。然後,將貼附的晶圓圖案化,以形成MEMS結構111,其中MEMS結構111包含多個貫穿孔洞112。然後,藉由通過貫穿孔洞112提供蝕刻劑,蝕刻半導體層403的預定部分,以形成空腔415,然後形成MEMS裝置400。之後,可以通過蝕刻製程對支撐基板401和MEMS結構111進行圖案化。在蝕刻製程之後,位於支撐基板401的側壁和底表面上的介電層408和填充材料層410可以被去除。在MEMS裝置400中,MEMS結構111設置在空腔415上方,且停止部件413設置在半導體層403和空腔415之間。此外,停止部件413沿著半導體層403的內側壁設置,且停止部件413的內側壁和底部停止部件402的上表面皆與空腔415接觸。
根據本揭露的實施例,空腔415的深度大致上與停止部件413的高度相同。在一些實施例中,停止部件413的高度可以由SOI晶圓的半導體層403的厚度決定,藉此讓空腔415的深度可以是淺的。此外,由於停止部件413的襯層409和底部停止部件402對半導體層403的蝕刻選擇比小於1(例如0.8、0.5、0.1、0.01或這些數值之間的任何中間值),使得半導體層403的蝕刻會停止在停止部件413和底部停止部件402上,因此空腔315的尺寸,例如寬度、長度、直徑和深度可以藉由停止部件413和底部停止部件402被精確地控制。
第5圖是根據本揭露的一實施例的MEMS裝置100的剖面示意圖,如第5圖所示,在一實施例中,MEMS裝置100包含支撐基板101、停止部件109、空腔113以及MEMS結構111。支撐基板101、停止部件109和空腔113的細節可參考前述第1B圖的相關說明。在本實施例中,MEMS結構111可以是MEMS加速儀和陀螺儀,其通過對裝置層120進行圖案化,以形成多個突出部121和多個貫穿孔洞112而被形成,其中貫穿孔洞112與支撐基板101的空腔113互相連接,裝置層120包含多晶矽或其他合適的半導體材料。此外,MEMS結構111還包含形成於突出部121 上的多條導線122。在MEMS裝置100為加速儀或陀螺儀的情況下,裝置層120懸置在空腔113上方的部分可以作為可移動的質量塊。在MEMS裝置100的操作過程中,當MEMS裝置100受到外力時,可移動的質量塊可能會從其原始位置發生位移,並且此可移動的質量塊的位移程度會部分地受到可移動的質量塊的質量和空腔113的尺寸影響。在其他實施例中,MEMS裝置100的MEMS結構111下方的支撐基板101可以用第2B圖的支撐基板201、第3B圖的支撐基板301、或第4圖的支撐基板401取代。
第6圖是根據本揭露的另一實施例的MEMS裝置200的剖面示意圖。如第6圖所示,在一實施例中,MEMS裝置200包含支撐基板201、停止部件213、空腔215以及MEMS結構111。支撐基板201、停止部件213與空腔215的細節可參考前述第2B圖的說明。在本實施例中,MEMS結構111為壓電微機械超音波傳感器(PMUT),其包含設置在支撐基板201上和空腔215上方的裝置層220,以及設置在上電極層222和下電極層224之間的壓電材料層230,裝置層220包含多晶矽或其他合適的半導體材料。此外,MEMS結構111還包含介電層240設置於壓電材料層230、上電極層222和下電極層224上方。介電層240具有至少兩個接觸導孔226,以分別電性連接至下電極層224的一部分和上電極層222的一部分。例如,連接到電極的導線228可以通過接觸導孔226而電連接到外部電路(第6圖中未繪示)。在MEMS裝置200的操作過程中,懸置在空腔215上方的膜層可以在預定頻率振動,此預定頻率會部分地受到裝置層220的厚度和彈性以及空腔215的尺寸影響。此外,如第2B圖所示,MEMS結構111的貫穿孔洞112可以在空腔215形成之後用鈍化層填充,或者一些貫穿孔洞112可保留在MEMS結構111中(第6圖中未繪示)。在其他實施例中,MEMS裝置200的MEMS結構111下方的支撐基板201可以用第1B圖的支撐基板101、第3B圖的支撐基板301、或第4圖的支撐基板401取代。
第7圖是根據本揭露的另一實施例的MEMS裝置300的剖面示意圖。如 第7圖所示,在一實施例中,MEMS裝置300包含支撐基板301、停止部件313、空腔315以及MEMS結構111。支撐基板301、停止部件313和空腔315的細節可參考前述第3B圖的說明。此外,第7圖所示的支撐基板301係在蝕刻製程後被圖案化而產生。在本實施例中,MEMS結構111為MEMS共振器和濾波器,MEMS結構111包含依序設置在支撐基板301上和空腔315上方的絕緣層320和裝置層322,以及設置在上電極層326和下電極層328之間的壓電材料層324。壓電材料層324具有開口332,以暴露下電極層328的一部分,導線334順向性地設置在開口332的側壁和底部上,用於將下電極層328電連接至外部電路(第7圖中未繪示)。保護層330設置在上電極層326上,並具有開口以暴露上電極層326的一部分,另一導線334設置在上電極層326的此部分上,以電連接至外部電路(第7圖中未繪示)。此外,MEMS結構111的貫穿孔洞112與支撐基板301的空腔315接觸並連接。在MEMS裝置300的操作過程中,懸置在空腔315上方的膜層可以在預定的共振頻率振動,此共振頻率會部分地受到裝置層322的厚度和彈性以及空腔315的尺寸影響。在其他實施例中,MEMS裝置300的MEMS結構111下方的支撐基板301可以用第1B圖的支撐基板101、第2B圖的支撐基板201、或第4圖的支撐基板401取代。
第5圖、第6圖和第7圖所繪示的MEMS裝置100、200和300的MEMS結構111和支撐基板101、201和301係作為示例,但本揭露不限於此。MEMS裝置100、200和300的MEMS結構111可包含MEMS共振器和濾波器、電容式微機械超音波傳感器(CMUT)、壓電微機械超音波傳感器(PMUT)、MEMS加速儀、MEMS陀螺儀、慣性感測器、壓力感測器、微流體元件、其他微型元件或前述之組合。此外,MEMS裝置100、200和300的支撐基板101、201和301可以取自本揭露之實施例的任何一種支撐基板。
根據本揭露的實施例,停止部件的襯層對支撐基板的半導體材料的蝕刻選擇比小於1,並且停止部件的襯層對深溝槽具有良好的溝槽填充能力。因 此,停止部件可防止支撐基板的橫向底切蝕刻,以達到精確地控制空腔的尺寸。此外,藉由採用停止部件,可以讓支撐基板在深度的蝕刻容易被控制,以提供空腔深度的靈活度。因此,空腔的尺寸,例如寬度、長度、直徑和深度都可藉由停止部件而被精確地控制。此外,在一些實施例中,支撐基板的半導體材料的蝕刻會停止在底部停止部件上,使得空腔的深度進一步被底部停止部件精確地控制。因此,由於空腔具有精確尺寸,本揭露的MEMS裝置的性能可得到改善。
另外,根據本揭露的實施例,形成停止部件的襯層之熱生長製程(例如熱氧化製程或熱氮化製程),對於高深寬比和深度較深的溝槽具有良好的溝槽填充能力,因此,通過使用本揭露之實施例的停止部件,可以很容易地形成較深的空腔,藉由MEMS裝置的深空腔可以防止大尺寸且下沉的MEMS結構接觸到空腔的底部。此外,根據本揭露之實施例,其中形成空腔的製程還有助於防止因為習知的背面蝕刻形成空腔的方法在支撐基板上所造成的刮痕。因此,本揭露的MEMS裝置的生產良率得以提昇。
此外,根據本揭露的一些實施例,MEMS裝置的支撐基板是在不使用SOI晶圓的情況下製造的。因此,相較於使用SOI晶圓製造的習知MEMS裝置,本揭露的MEMS裝置的製造更省時且成本更低。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
100:MEMS裝置
101:支撐基板
105:襯層
107:填充材料
109:停止部件
111:MEMS結構
112:貫穿孔洞
113:空腔
120:裝置層
121:突出部
122:導線

Claims (19)

  1. 一種微機電裝置,包括:一支撐基板;一空腔,設置在該支撐基板中;一停止部件,設置在該支撐基板與該空腔之間,且該停止部件的一內側壁與該空腔接觸,其中該停止部件包括:一填充材料,圍繞該空腔的周邊;以及一襯層,包裹該填充材料;以及一微機電結構,設置在該空腔上方,且附接在該停止部件和該支撐基板上,其中該微機電結構包括與該空腔接觸的一貫穿孔洞。
  2. 如請求項1所述之微機電裝置,其中該支撐基板包括一核心基板、位於該核心基板上的一底部停止部件、以及位於該底部停止部件上的一半導體層,且該停止部件沿著該半導體層的一內側壁設置。
  3. 如請求項2所述之微機電裝置,其中該底部停止部件設置於該停止部件下方,且該底部停止部件接觸該停止部件和該空腔。
  4. 如請求項2所述之微機電裝置,其中該半導體層包括多晶矽層,且包裹該核心基板和該底部停止部件。
  5. 如請求項2所述之微機電裝置,其中該半導體層包括非晶矽層或單晶矽層。
  6. 如請求項1所述之微機電裝置,其中該襯層包括氧化矽層,該填充材料包括多晶矽或介電材料,且部分的該填充材料包含空隙。
  7. 如請求項1所述之微機電裝置,其中該空腔的深度與該停止部件的高度相同。
  8. 如請求項1所述之微機電裝置,其中該停止部件的深寬比在10到20之間,且該空腔的深度在20微米(μm)到300微米(μm)之間。
  9. 如請求項1所述之微機電裝置,其中該襯層從位於該填充材料的底部的一第一區延伸到位於該填充材料的一側壁和該支撐基板之間的一第二區,並且延伸到位於該填充材料的另一側壁和該空腔之間的一第三區。
  10. 一種微機電裝置的製造方法,包括:提供一支撐基板;蝕刻該支撐基板以形成一溝槽,其中該溝槽圍繞該支撐基板的一部分;在該溝槽內形成一襯層;用一填充材料填充該溝槽,以形成一停止部件,其中該停止部件包括該襯層和該填充材料;在該停止部件和該支撐基板上形成一微機電結構,其中該微機電結構包括一貫穿孔洞;以及藉由通過該貫穿孔洞提供一蝕刻劑來蝕刻該支撐基板的該部分,以形成一空腔,其中該停止部件與該空腔接觸。
  11. 如請求項10所述之微機電裝置的製造方法,其中形成該襯層包括熱生長製程、或使用四乙氧基矽烷的電漿增強型化學氣相沉積製程,以在該支撐基板上和該溝槽內順向性地形成一介電層。
  12. 如請求項11所述之微機電裝置的製造方法,其中用該填充材料填充該溝槽以形成該停止部件包括在該介電層上沉積一填充材料層,以及將該填充材料層和該介電層平坦化,直到該停止部件的頂面與該支撐基板的頂面齊平,其中該填充材料層包括多晶矽或介電材料,且該溝槽中的部份的該填充材料包含空隙。
  13. 如請求項10所述之微機電裝置的製造方法,其中在蝕刻該支撐基板的該部分以形成該空腔之前,該支撐基板包括一核心基板和位於該核心基板的一表面上的一半導體層,並且該停止部件被形成在該半導體層中。
  14. 如請求項13所述之微機電裝置的製造方法,其中該支撐基板還包括位於該半導體層和該核心基板之間的一底部停止部件,且蝕刻該支撐基板的該部分以形成該空腔係停止在該底部停止部件上。
  15. 如請求項14所述之微機電裝置的製造方法,其中形成該底部停止部件包括在該核心基板的該表面上沉積一介電層。
  16. 如請求項15所述之微機電裝置的製造方法,其中形成該半導體層包括沉積多晶矽層,以包裹該核心基板和該底部停止部件。
  17. 如請求項14所述之微機電裝置的製造方法,其中形成該底部停止部件包括熱氧化製程,以形成一氧化層包裹該核心基板。
  18. 如請求項17所述之微機電裝置的製造方法,其中形成該半導體層包括在該底部停止部件上沉積一非晶矽層。
  19. 如請求項10所述之微機電裝置的製造方法,其中該支撐基板包括一半導體基板、在該半導體基板上的一絕緣層、以及在該絕緣層上的一半導體層,其中在蝕刻該支撐基板的該部分以形成該空腔之前,在該半導體層中形成該停止部件,並且該絕緣層為位於該停止部件下方的一底部停止部件。
TW111116988A 2022-05-05 微機電裝置及其製造方法 TWI841959B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111116988A TWI841959B (zh) 2022-05-05 微機電裝置及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111116988A TWI841959B (zh) 2022-05-05 微機電裝置及其製造方法

Publications (2)

Publication Number Publication Date
TW202344465A TW202344465A (zh) 2023-11-16
TWI841959B true TWI841959B (zh) 2024-05-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021218219A1 (zh) 2020-04-29 2021-11-04 无锡华润上华科技有限公司 Bcd器件的沟槽的制造方法及bcd器件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021218219A1 (zh) 2020-04-29 2021-11-04 无锡华润上华科技有限公司 Bcd器件的沟槽的制造方法及bcd器件

Similar Documents

Publication Publication Date Title
US7923278B2 (en) Integrated getter area for wafer level encapsulated microelectromechanical systems
JP4908202B2 (ja) マイクロ電気機械的装置及びその封緘方法及び製造方法
JP5748701B2 (ja) Soi基板を持つマイクロ電気機械システム用アンカー及びその製造方法
US7294552B2 (en) Electrical contact for a MEMS device and method of making
JP2012512754A (ja) 分離した微細構造を有する微小電気機械システムデバイス及びその製造方法
JP2010045333A (ja) 犠牲層を含む不均質基板およびその製造方法
US9029178B2 (en) Method for producing a device comprising cavities formed between a suspended element resting on insulating pads semi-buried in a substrate and this substrate
EP3127158B1 (en) Membrane-based sensor and method for robust manufacture of a membrane-based sensor
TWI841959B (zh) 微機電裝置及其製造方法
US20230061430A1 (en) Method for manufacturing an integrated system including a capacitive pressure sensor and an inertial sensor, and integrated system
TW202344465A (zh) 微機電裝置及其製造方法
US20230294980A1 (en) Micro-electro-mechanical system (mems) devices and fabrication methods thereof
CN117069051A (zh) 微机电装置及其制造方法
TWI815537B (zh) 微機電裝置及其製造方法
TWI824393B (zh) 半導體基底的製作方法及微機電(mems)裝置
CN116534792A (zh) 半导体基底的制作方法及微机电装置
US20230172068A1 (en) SEMICONDUCTOR SUBSTRATES, FABRICATION METHODS THEREOF and MICRO-ELECTRO-MECHANICAL SYSTEM (MEMS) DEVICES
CN114105077A (zh) 微机电装置及其形成方法
CN114604817A (zh) 微机电装置及其形成方法
TW202222675A (zh) 微機電裝置及其形成方法
JP2009139341A (ja) 圧力センサの製造方法、圧力センサ、半導体装置、電子機器