WO2011152628A2 - 싸이리스터를 이용하여 에너지레벨 조절이 가능한 아이피엘 기기 - Google Patents

싸이리스터를 이용하여 에너지레벨 조절이 가능한 아이피엘 기기 Download PDF

Info

Publication number
WO2011152628A2
WO2011152628A2 PCT/KR2011/003812 KR2011003812W WO2011152628A2 WO 2011152628 A2 WO2011152628 A2 WO 2011152628A2 KR 2011003812 W KR2011003812 W KR 2011003812W WO 2011152628 A2 WO2011152628 A2 WO 2011152628A2
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
capacitor
charging capacitor
commercial power
Prior art date
Application number
PCT/KR2011/003812
Other languages
English (en)
French (fr)
Other versions
WO2011152628A3 (ko
Inventor
고영산
Original Assignee
Ko Yongsan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44048687&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011152628(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ko Yongsan filed Critical Ko Yongsan
Priority to EP11789986.4A priority Critical patent/EP2578269B1/en
Priority to US13/696,934 priority patent/US9943368B2/en
Publication of WO2011152628A2 publication Critical patent/WO2011152628A2/ko
Publication of WO2011152628A3 publication Critical patent/WO2011152628A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/30Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/0047Upper parts of the skin, e.g. skin peeling or treatment of wrinkles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00476Hair follicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0654Lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning

Definitions

  • the present invention relates to an IPL device capable of adjusting an energy level using a thyristor, and more particularly, a high power output voltage controlled constant voltage power supply and a noise filter are unnecessary, and a voltage controlled energy level control using a thyristor is possible.
  • An IPL device having a xenon lamp flash drive circuit is provided.
  • the laser device is a device that selects a laser of a wavelength necessary to treat a specific disease and then locally irradiates the skin area to be treated, and is suitable for treating a specific skin disease.
  • laser devices have many side effects and are particularly difficult to irradiate the skin containing various skin diseases. In other words, according to each disease needs a laser suitable for this, there are freckles and blemishes on the face, there are increased blood vessels and wrinkles or enlarged pores were a problem to treat the three or four kinds of lasers had to be treated.
  • IPL Intelligent Pulsed Light
  • IPL device which irradiates light of various wavelengths at once and easily treats skin having various diseases, has been developed and widely used by Dr. Bitter of the United States.
  • IPL device uses a lamp flash that emits light of 350nm ⁇ 1200nm wavelength and controls the wavelength of light emitted by the filter.For irradiation lamps, it is usually used two to three times for 3 seconds using a xenon lamp. The skin will be examined about once.
  • the IPL device illuminates the xenon lamp, in which the amount of energy to be irradiated at one time should be adjusted to the desired level.
  • the IPL unit In order to emit the level of irradiation energy, the IPL unit must supply a constant power supply to the xenon flash circuit.
  • a lamp flash driving circuit of an IPL device a pulse amplitude modulation (PAM) driving circuit system, a pulse width modulation (PWM) driving circuit system, and a mixed method of both are used.
  • PAM pulse amplitude modulation
  • PWM pulse width modulation
  • FIG. 1 is a driving circuit diagram of a conventional IPL device using a PAM driving method.
  • the power supplied from the 100 V to 240 V commercial power supply 10 is input to the output voltage controlled constant voltage supply device 30 (eg, SMPS; Switching Mode Power Supply).
  • the output voltage controlled constant voltage supplier 30 converts the input power into a stable DC power and supplies it to the capacitor 80.
  • the controller 50 properly adjusts the output voltage of the output voltage controlled constant voltage supply device 30. Will be adjusted.
  • the controller 50 drives the xenon lamp flash unit 40 by using the trigger 70 whenever appropriate using the energy supplied from the output voltage controlled constant voltage supply device 30 to the capacitor 80. Energy stored in the is instantaneously supplied to the xenon lamp flash unit 40. Accordingly, by adjusting the voltage applied to the capacitor 80, a desired energy level supplied to the xenon lamp flash unit 40 may be obtained. In the PAM driving method of FIG. 1, the amount of energy delivered to the user's skin may be precisely controlled by adjusting the amount of energy supplied to the xenon lamp flash unit 40 (that is, the voltage value across the capacitor 80).
  • FIG. 2 is a driving circuit diagram of a conventional IPL device using a PWM driving method.
  • the power supplied from the 100 V to 240 V commercial power supply 10 is input to the output voltage controlled constant voltage supply device 30 (eg, SMPS; Switch Mode Power Supply).
  • the output voltage controlled constant voltage supplier 30 converts the input power into a stable DC power and supplies it to the capacitor 80.
  • the control unit 50 When the user adjusts the radiant energy of the xenon lamp through the user interface 60, the corresponding control signal is input to the control unit 50, and the control unit 50 outputs a trigger signal for the appropriate PWM driving to the trigger 70.
  • the amount of energy supplied to the xenon lamp flash unit 40 can be precisely adjusted.
  • the controller 50 may apply a control signal to the output voltage controlled constant voltage supplyer 30 to adjust the charging voltage in parallel.
  • 3 is a graph showing the amount of energy charged and discharged with the passage of time of the xenon lamp flash unit 40 in the conventional IPL device using the PWM driving method of FIG. As shown in FIG. 3, it can be seen that the xenon lamp flash unit 40 is driven only during the hatched period from the moment when the energy is charged from the time 0 to the trigger time Tt and the trigger Tt signal is applied. That is, in the PWM driving method of FIG. 2, the amount of energy supplied to the xenon lamp flash unit 40 may be precisely controlled by adjusting the interval and width of the hatched time.
  • the voltage controlled constant voltage supply 30 is used, but due to the characteristics of IPL, the DC current output from the output voltage controlled constant voltage supply 30 uses a few A at several hundred mA, so a large amount of power must be switched so that the expensive output voltage controlled constant voltage is required. Feeder 30 is required.
  • an expensive noise filter 20 must be used to remove noise of power supplied to the large output voltage controlled constant voltage supply device 30 having a large capacity. This problem is more expensive when the noise filter 20 and the output voltage controlled constant voltage supplier 30 need to be charged more quickly in order to turn on the xenon lamp flash unit 40 more frequently every second. It is a problem that must be used.
  • the output of the IPL device can also be used as a hair removal device to remove hair, such as legs, arms.
  • a hair removal device to remove hair, such as legs, arms.
  • a more expensive output voltage controlled constant voltage supply device 30 and a noise filter 20 are required when using a driving circuit of a conventional IPL device.
  • the present invention is to solve the problems as described above, even if the power supply to the capacitor without an output voltage control type constant voltage supply stable energy level using the thyristor that can provide energy to the xenon lamp flash unit stably
  • the purpose is to present the device.
  • the IPL device for periodically irradiating the user's skin with xenon lamp light to treat skin diseases or use as a depilator, provided with a double voltage capacitor, input to the commercial power source and the double voltage capacitor
  • the front end of the reference voltage generator may further include a constant current supply unit for supplying a constant current to the reference voltage generator.
  • the power output from the noise filter is input, and it is preferable to further include a constant voltage supply for supplying power to the control unit, but the constant voltage supply used in the present invention is intended to stably supply the control unit power. Since a small one having a few W capacity can be used, the xenon lamp flash unit driving circuit can be designed at low cost.
  • the xenon lamp flash unit driving circuit according to the present invention may be operated in a pulse amplitude modulation (PAM) method by controlling a reference voltage or by driving a pulse width modulation (PWM) method by adjusting a distance between trigger signals. to be.
  • PAM pulse amplitude modulation
  • PWM pulse width modulation
  • IPL device without accumulating charge in the capacitor without a large output output voltage controlled constant voltage power supply, accurately senses the voltage applied to the capacitor to reach a certain value and supply the desired voltage to the xenon lamp flash unit Or, by adjusting the discharge time, it is possible to drive stable IPL devices even with an inexpensive circuit configuration capable of emitting desired energy.
  • IPL device has the advantage that can be easily implemented in the PAM and PWM driving scheme with the same circuit configuration.
  • the IPL device according to the present invention is smoothly received by supplying sufficient energy within a relatively short time regardless of the region where the voltage value of the commercial power supplied by using the double voltage unit is unstable or the region using a low commercial power of 100V to 120V. There is an advantage that can drive the lamp flashlight.
  • FIG. 2 is a driving circuit diagram of a conventional IPL device using a PWM driving method.
  • FIG. 3 is a graph showing the amount of energy charged and discharged over time in the xenon lamp flash unit in the conventional IPL device using the PWM driving method of FIG.
  • FIG. 4 is an embodiment of a drive circuit diagram of an IPL device according to the present invention.
  • FIG. 5 is an embodiment of a drive circuit diagram of an IPL device according to the present invention.
  • FIG. 6 is an embodiment of a drive circuit diagram of an IPL device according to the present invention.
  • FIG. 7 is a graph showing the amount of energy charged and discharged in a charging capacitor with time.
  • Fig. 8 is a waveform diagram showing an input wave timing section outputting an input wave timing signal using an input wave input from a noise filter section.
  • FIG. 9 is an embodiment of a drive circuit diagram of an IPL device according to the present invention.
  • FIG. 10 is a circuit diagram of part of the circuit of FIG. 9 for explaining a double voltage
  • 11 is a graph of voltage versus current operating characteristics of a zener diode.
  • FIG. 12 is an embodiment of a drive circuit diagram of an IPL device according to the present invention.
  • FIG. 13 is a circuit diagram of part of the circuit of FIG. 12 for explaining a double voltage
  • control unit 60 user interface unit
  • analog-to-digital converter 110 double voltage unit
  • the IPL device according to the present invention includes a noise filter unit 20, a double voltage unit 110, a switch unit 120, a charging capacitor 80, a reference voltage generator 90, a controller 50, and a user interface unit ( 60), the trigger unit 70 and the xenon lamp flash unit 40 is characterized in that it comprises a. Additionally, the rectifier 91, the smoothing unit 93, the constant voltage supply unit 35, and the constant current supply unit 38 may be further provided.
  • the noise filter unit 20 is a circuit element for removing noise from the input 100V to 240V commercial power supply 10, and the output of the noise filter unit 20 passes through the rectifying unit 91 and the smoothing unit 93 and then doubles. It is supplied to the voltage unit 110.
  • the rectifying part 91 and the smoothing part 93 of the present invention contribute to the formation of a double voltage as described later in FIG. 10.
  • the output of the noise filter 20 is supplied to the double voltage unit 110.
  • the double voltage unit 110 is a circuit for outputting after increasing the peak value of the input commercial power supply twice or more.
  • the switch unit 120 is turned on / off according to the output signal of the reference voltage generator 90 to charge the charging capacitor 80.
  • the reference voltage generator 90 is a circuit for setting one of the reference voltages of various levels, and the user interface 60 is composed of an operation switch and the like, and is used to receive an i-Fiel output power or the like from a user.
  • the controller 50 adjusts the reference voltage of the reference voltage generator 90 according to the control signal output from the user interface 60, and generates a trigger signal at an appropriate timing.
  • the trigger unit 70 outputs a trigger operation signal for triggering the xenon lamp flash unit 40 according to a trigger signal input from the control unit 50 to control the radiation of the xenon lamp to ON / OFF, and the xenon lamp flash unit ( 40) irradiates the xenon light on the user's skin according to the trigger action signal.
  • the output of the noise filter 20 is used to supply stable power to the controller 50 via the constant voltage supply 35. Since the control unit 50 uses a low operating voltage of 5 V, a low-cost constant voltage supply 35 having a few W capacity may be used, and thus the noise filter 20 may remove noise from a power supplied to the constant voltage supply 35. ) Also has the advantage of being able to use a low-cost one having a small capacity.
  • FIG. 4 a circuit including a rectifying unit 91, a smoothing unit 93, a constant current supply unit 38, and a constant voltage supply unit 35 that can be selectively provided will be described.
  • the voltage level of the reference voltage generator 90 is set via the controller 50.
  • the input commercial power supply 10 is supplied to the rectifier 91, the constant current supply unit 38, and the constant voltage supply unit 35 after the noise is removed from the noise filter unit 20.
  • the power input to the rectifying unit 91 is rectified with a DC component and then smoothed by the smoothing unit 93 and then provided to the double voltage unit 110.
  • the noise-free power is input to the constant current supply unit 38 and then outputs a constant current to the reference voltage generator 90. After the noise is removed, the power is supplied to the constant voltage supply unit 35 to supply stable power to the controller 50.
  • the voltage distribution unit 110 receiving the smoothed power outputs the peak value of the commercial power at twice or more peak values
  • the switch unit 120 receives the voltage input from the voltage distribution unit 110 and the reference voltage generator ( 90) and compares the voltage of the output terminal (input terminal of the charging capacitor) and the voltage is switched to the on state when a certain condition is met to charge the charging capacitor (80).
  • the controller 50 calculates a suitable timing to generate a trigger signal.
  • the trigger unit 70 outputs a trigger operation signal for triggering the xenon lamp flash unit 40 according to the trigger signal input from the controller 50, and the xenon lamp flash unit 40 is applied to the user's skin according to the trigger operation signal. Xenon light is irradiated.
  • FIG. 7 is a graph showing an amount of energy charged and discharged to a charging capacitor with time, in which the horizontal axis represents time and the vertical axis represents energy amount. Charging progresses from 0 second to Tt time, and then discharge is started by the trigger operation signal. Preferred discharge is discharged along a smooth curve denoted by n, but when there is no switch in the noise filter unit 20 in the circuit diagram of FIG. Quantity is supplied to the user.
  • the present invention proposed two methods.
  • One method is to cut off the commercial power input during discharging by using the noise filter unit 20 and the controller 50 having the input cutoff switch SW shown in FIG. 4, and the other method is illustrated in FIG. 5.
  • the discharge is started at a time coinciding with a predetermined period of the commercial power input.
  • the control unit 50 generates a control signal for turning off the input cutoff switch SW during the discharge time, and cuts off the noise filter unit 20 during the discharge time according to the control signal. It was not supplied.
  • the lamp may be continuously discharged depending on the structure of the driving circuit. In this case, by turning off the input cutoff switch SW, it is possible to prevent the continuous energy supply to the lamp.
  • an input cutoff switch SW
  • SSR solid state relay
  • the input blocking switch SW is a switch for preventing the charging capacitor 80 from being charged by the commercial power supply 10 input while the charging capacitor 80 is discharged.
  • it can be installed in any position that can block the electrical flow between the 10 and the charging capacitor 80. That is, the input cutoff switch SW can be installed anywhere that can switch the electrical flow between the commercial power supply and the charging capacitor.
  • the input cutoff switch SW may be installed between the voltage distribution unit 110 and the switch unit 120.
  • the reference voltage supplied to the switch 120 may be close to zero, thereby producing the same result as a power cut operation of the noise filter unit.
  • FIG. 5 is an embodiment of a driving circuit diagram of an IPL device according to the present invention. Since the circuit diagram shown in FIG. 5 has a configuration substantially similar to the circuit diagram shown in FIG. 4, only a configuration different from the circuit diagram shown in FIG. 4 will be described. Since the circuit diagram of FIG. 5 uses the noise filter unit 20 with the switch removed, the control signal line input from the control unit 50 shown in FIG. 4 to the noise filter unit 20 is unnecessary. Instead, the circuit diagram of FIG. 5 receives an output signal of the noise filter unit 20 and generates an input wave timing signal at a predetermined time point such as an up point or a down point of the input waveform. 115 is added between the controller 50 and the noise filter unit 20. As illustrated in FIG.
  • the input wave timing unit 115 grasps an input waveform input from the noise filter unit 20 and outputs the input wave timing signal S to the controller 50 at a predetermined time point. It can be implemented using a photocoupler.
  • the photodiode used as an input terminal of the porter coupler connects the output of the noise filter unit 20, and when a predetermined voltage or more is applied, the photodiode turns on the photodiode to generate light, and constitutes an output terminal of the porter coupler.
  • the light receiver receives light generated from the photodiode and turns on the light receiving transistor to generate an input wave timing signal S.
  • FIG. 8A illustrates outputting an input wave timing signal S every time a sine wave rises when a sine wave is input from the noise filter unit 20 to the input wave timing unit 115.
  • the input wave timing unit 115 generates a square wave from the input wave input from the noise filter unit 20, generates an input wave timing signal S at each time the square wave rises, and applies it to the controller 50.
  • An example is shown.
  • the control unit 50 constituting the circuit of FIG. 5 generates a trigger signal for starting discharging at an appropriate time point and transmits it to the trigger unit 70. Do it.
  • the driving circuit of the IPL device does not change the circuit configuration, that is, the control circuit 50 adjusts the trigger signal pulse width or sets the reference voltage with the same circuit configuration. In other words, it can be used in any of the PWM or PAM methods.
  • FIG. 6 is an embodiment of a driving circuit diagram of an IPL device according to the present invention. Since the circuit diagram shown in FIG. 6 has a configuration substantially similar to the circuit diagram shown in FIG. 5, only a configuration different from the circuit diagram shown in FIG. 5 will be described.
  • the controller 50 of the circuit diagrams shown in FIGS. 4 and 5 calculates a suitable charging time and / or discharging time
  • the circuit diagram of FIG. 4 blocks the input signal of the noise filter unit 20 and generates a trigger signal, or
  • the circuit diagram of FIG. 5 generates a trigger signal at a time coinciding with the input wave timing signal S output from the input wave timing unit 115.
  • FIG. 4 blocks the input signal of the noise filter unit 20 and generates a trigger signal
  • the circuit diagram of FIG. 5 generates a trigger signal at a time coinciding with the input wave timing signal S output from the input wave timing unit 115.
  • a voltage divider 95 and an analog-to-digital converter 97 are additionally provided between the charging capacitor 80 and the controller 50 in order to accurately sense the voltage of the charging capacitor 80. It is done.
  • the voltage divider 95 is a circuit element for measuring the charging voltage of the capacitor 80 while minimizing power consumption. In the present invention, the voltage divider 95 divides the voltage Vc of the capacitor 80 into about 1/10 to 1/300 and then analogizes the voltage. Input to control unit 50 via digital converter 97.
  • the controller 50 of the circuit diagram shown in FIG. 6 detects a voltage level input from the analog-to-digital converter 97 and at a point in time coinciding with the input wave timing signal S output from the input wave timing unit 115. Generate a trigger signal.
  • the controller 50 may determine that the charging capacitor 80 has a desired voltage level. When the input signal of the noise filter unit 20 is cut off to generate a trigger signal.
  • FIG. 9 is an embodiment of a driving circuit diagram of an IPL device according to the present invention.
  • the noise filter unit 20, the rectifying unit 91, the smoothing unit 93, the double voltage unit, the constant current supply unit 38, the reference voltage generation unit, the switch unit, and the charging capacitor are the main circuit configurations. , Only the control unit 50 and the xenon pamp flush unit 40 are shown, and the remaining circuit elements are omitted.
  • the commercial power supply 10 corresponds to the commercial power supply 10 of FIG. 4, and the noise filter unit 20, the rectifying unit 91, and the smoothing unit 93 are each the noise filter unit 20 of FIG. 4.
  • the rectifying unit 91 and the smoothing unit 93, and the capacitor C1 and the diode D1 correspond to the double voltage unit 110 of FIG. 4, and the zener diode D3 and the zener temperature compensation circuit unit ( 125 and the voltage divider 195 correspond to the reference voltage generator 90 of FIG. 4, SCR1 corresponds to the switch unit 120 of FIG. 4, and the capacitor C3 is the charging capacitor 80 of FIG. 4. Corresponds to each.
  • the voltage of the circuit of FIG. 9 includes only the commercial power supply 10, the noise filter 20, the rectifying unit 91, the smoothing unit 93, the capacitors C1 and C3, the diode D1, and the SCR1. Only the circuit is shown separately.
  • the capacitor C3 When the thyristor SCR1 is turned on and the polarity of the commercial power supply 10 changes from-to +, in addition to the current flow path 1, the noise filter unit 20, the capacitor C1, the thyristor SCR1, and the charging capacitor Along with (C3) a new current flow, marked 3, is formed. At this time, the energy accumulated in the capacitor C1 is moved to the charging capacitor C3 through the thyristor SCR1, and the energy supplied from the commercial power supply 10 is also accumulated in the charging capacitor C3. Therefore, the capacitor C3 accumulates energy of 3 Vc size (about three times that of a commercial power supply) with a polarity as shown in FIG. 10. As described with reference to FIG. 10, it can be seen that the rectifying unit 91 and the smoothing unit 93 according to the present invention contribute to forming a double voltage.
  • the zener diode D3 and the voltage divider 195 form a reference voltage generator.
  • the zener diode D3 is a circuit element that always maintains a constant voltage
  • the constant voltage applied to the zener diode D3 is the thyristor SCR1 by the voltage divider 195 formed of a plurality of switch elements and a plurality of resistors.
  • the reference voltage is generated according to the energy level input through the user interface to the gate terminal of.
  • zener diodes cause voltage fluctuations when the applied current is not constant. This problem will be described with reference to FIG.
  • FIG. 11 is a graph of voltage vs. current operating characteristics of a zener diode. As shown in FIG.
  • the constant current supply unit 38 is used in FIG. 9, and the simple constant current supply unit 38 may be formed of a resistor and a constant current diode.
  • the zener temperature compensation circuit unit 125 may use a thermistor, and the thermistor functions to compensate for the voltage rise generated in the zener diode D3 as the temperature rises, so that the zener diode D3 may change even when the ambient temperature changes. Irrespective of the stable operating voltage source.
  • the reference voltage generator is composed of the zener diode D3, the zener temperature compensation circuit 125, and the voltage divider 195.
  • the voltage divider can be configured.
  • another configuration includes a digital-to-analog converter between the control unit and the thyristor gate terminal, and converts the voltage level value input from the control unit to the digital-analog converter. Of course, it can be applied to the Lister gate terminal.
  • the thyristor SCR1 is used as a switch, but the thyristor SCR1 may be replaced with a triac device.
  • the anode of the thyristor (SCR1) is connected to one terminal of the capacitor (C1) forming the double voltage portion, and the voltage of the anode is denoted as 'V1', and the cathode of the thyristor (SCR1) is charged capacitor ( It is connected to one terminal of C3) and the cathode voltage is denoted as 'V3', and the voltage of the gate terminal, the remaining terminal of the thyristor SCR1, is denoted as 'V2'.
  • the reference voltage that can be set to the gate voltage 'V2' of the thyristor SCR1 is determined as a value between the minimum value and the maximum value of the voltage 'V1' applied to the anode terminal.
  • the thyristor SCR1 shown in FIG. 9 is turned on when 'V1' has a value greater than 'V3' and 'V2' has a voltage larger than the 'V3' by a threshold voltage. After the thyristor SCR1 becomes 'on', when 'V1' becomes smaller than 'V3', it is 'off', and when the above 'on' condition becomes 'on' again, it remains 'on' and then 'V2' becomes 'V3'.
  • the thyristor SCR1 is turned off to stop charging.
  • the value of V3 is obtained by subtracting the thyristor gate threshold voltage (usually within 1 volt) from the value of V2, and the value of V3 is formed to be similar to the value of V2.
  • the charging capacitor C3 may have up to three times the energy supplied from the commercial power source 10. It becomes chargeable. Therefore, the circuit of FIGS. 9 and 10 is mainly used in the region where the commercial power supply 10 uses 100 to 120V.
  • the charging capacitor C3 may be charged with a double voltage of about twice the energy supplied from the commercial power supply 10.
  • 12 and 13 illustrate a circuit diagram in which the rectifying portion 91 and the smoothing portion 93 suitable for such a region are excluded. 12 corresponds to the circuit of FIG. 9, and FIG. 13 corresponds to the circuit of FIG. 10.
  • the capacitor C1 If the polarity of the commercial power supply 10 is changed from + to-while the thyristor SCR1 is on, 2 along the noise filter unit 20, the capacitor C1, the thyristor SCR1, and the charging capacitor C3. A new current flow, marked by, is formed. At this time, the energy accumulated in the capacitor C1 is moved to the charging capacitor C3 through the thyristor SCR1, and the energy supplied from the commercial power supply 10 is also stored in the capacitor C3. Therefore, the capacitor C3 accumulates energy having a size of 2 Vc (about twice as large as a commercial power source) with a polarity as shown in FIG. 13.
  • a 220V power source of 60Hz is used as a commercial power supply, and a reference voltage of 340V is applied to the gate of the thyristor SCR1 by a combination of voltage dividers according to energy levels set by the user interface. It is assumed that no charge is accumulated in the capacitor, and the threshold voltage of the thyristor SCR1 is 0V. Under these assumptions, the maximum peak value of the commercial power supply is about 310V.
  • a sine wave voltage having a bias voltage of 310 V, an amplitude of 310 V, and a maximum peak voltage of 620 V is provided at the 'V1' terminal. Since the voltage is applied, a voltage varying from 0V to 620V is applied to the 'V1' terminal.
  • the anode voltage of the thyristor SCR1 is higher than the cathode voltage (V1> V3), and the gate voltage V2 is higher than the threshold voltage for turning on the thyristor compared to the cathode voltage V3. Since it is formed high, the thyristor conducts and charges the charging capacitor. When the waveform applied to the V1 terminal goes past the peak and becomes lower than the cathode voltage (charging voltage of the charging capacitor), the thyristor SCR1 stops operating.
  • the above operation is repeated while charging until the voltage charged in the charging capacitor C3 reaches a voltage subtracted by a threshold voltage for turning on the thyristor SCR1 from the reference voltage applied to the gate of the thyristor SCR1. After that, power is supplied to the xenon lamp flash 40 by a trigger operation signal not shown in FIG. 12.

Abstract

본 발명은 사용자 피부에 제논 램프 광을 주기적으로 조사하여 피부 질환을 치료하거나 제모기로 사용하는 아이피엘 기기에 관한 것으로서, 본 발명에서는 배전압용 캐패시터를 구비하고, 입력되는 상용 전원과 상기 배전압용 콘덴서에 충전된 전압을 중첩시켜 고전압을 출력하는 배전압부와, 배전압부에서 공급되는 전하를 축적하여 제논 램프를 켜기 위한 에너지를 충전하는 충전 캐패시터와, 충전 캐패시터에 충전되는 충전 전압 레벨을 설정하는 기준전압발생부 및 배전압부와 상기 충전 캐패시터 사이에 구비되며, 상기 기준전압발생부의 출력을 제어신호로 하여 상기 배전압부에서 상기 충전 캐패시터로 전하 이동을 온/오프하는 스위치하는 스위치부를 포함하는 것을 특징으로 하는 아이피엘 기기가 제공된다.

Description

싸이리스터를 이용하여 에너지레벨 조절이 가능한 아이피엘 기기
본 발명은 싸이리스터를 이용하여 에너지 레벨 조절이 가능한 아이피엘 기기에 관한 것으로서, 보다 구체적으로는 대전력의 출력전압제어형 정전압전원공급기 및 노이즈 필터가 불필요하며 싸이리스터를 이용한 전압조절형 에너지 레벨 조절이 가능한 제논 램프 플래쉬 구동 회로를 갖는 아이피엘 기기에 관한 것이다.
피부질환을 치료하는 기기로는 레이저 기기가 초장기에 많이 도입되었다. 레이저 기기는 특정 질환을 치료하는 데 필요한 파장의 레이저를 선택한 후 치료코자 하는 해당 피부 부위에 국부 조사하는 기기로서 특정 피부 질환을 치료하는데 적합하다. 그런데 레이저 기기는 부작용이 많으며 특히 여러 가지 피부 질환이 포함된 피부에 조사하기에는 어려운 기기이다. 즉, 각각의 질환에 따라 그에 적합한 레이저가 필요하기 때문에 얼굴에 주근깨나 잡티가 있고, 늘어난 혈관이 있으면서 또한 잔주름이나 늘어난 모공이 문제가 되어서 치료를 하고자 하면 서너 가지 레이저를 이용하여 치료를 해야 하였다.
이러한 단점을 해결하고자 여러 파장의 빛을 한꺼번에 조사하여 여러 가지 질환을 가진 피부를 간편하게 치료하는 아이피엘(IPL, Intense Pulsed Light) 기기가 미국의 비터(bitter) 박사에 의해 개발되어 현재 널리 사용되고 있다. 아이피엘 기기는 350nm ~ 1200nm의 파장 빛을 방사시키는 램프 플래쉬를 이용하고 필터를 사용해서 나오는 빛의 파장을 조절하게 되며, 조사 램프로는 통상 제논(zenon) 램프를 사용하여 3초 동안 2회 내지 3회 정도 피부에 조사하게 된다.
전술한 바와 같이 아이피엘 기기는 제논 램프를 조사하는데 이때 한 번에 조사되는 에너지량은 원하는 레벨로 조정되어져야 한다. 레벨이 결정된 조사 에너지를 출사하기 위해서 아이피엘 기기는 제논 플래쉬 회로에 정해진 일정한 전원을 공급하여야 한다. 아이피엘 기기의 램프 플래쉬 구동 회로로는 PAM(Pulse Amplitude Modulation) 구동 회로 방식, PWM(Pulse Width Modulation) 구동 회로 방식 및 양자의 혼합 방식이 사용되고 있다.
도 1은 PAM 구동 방식을 사용하는 종래 아이피엘 기기의 구동 회로도이다. 100V ~ 240V 상용전원(10)에서 공급되는 전원은 노이즈 필터(20)에 의해 노이즈가 제거된 후, 출력전압제어형 정전압공급기(30, 예로서 SMPS; Switching Mode Power Supply)로 입력된다. 출력전압제어형 정전압공급기(30)는 입력받은 전원을 안정적인 직류전원으로 변환한 후 이를 캐패시터(80)에 공급한다. 사용자는 유저 인터페이스(60)를 통해 제논램프의 방사 에너지를 조절하면 해당 조절신호가 제어부(50)에 입력되고, 제어부(50)는 이에 적합하게 출력전압제어형 정전압공급기(30)의 출력 전압을 정밀하게 조절하게 된다. 또한 제어부(50)는 출력전압제어형 정전압공급기(30)로부터 캐패시터(80)에 공급되는 에너지를 이용하여 적절한 때마다 트리거(70)를 이용하여 제논 램프 플래쉬부(40)를 구동시키면 캐패시터(80)에 저장된 에너지가 순간적으로 제논 램프 플래쉬부(40)로 공급되는 것이다. 따라서 캐패시터(80)에 인가되는 전압을 조절하면 제논 램프 플래쉬부(40)에 공급되는 원하는 에너지 레벨을 얻을 수 있다. 도 1의 PAM 구동 방식에서는 제논 램프 플래쉬부(40)에 공급되는 에너지량(즉, 캐패시터(80) 양 단의 전압값)를 조절함으로써 사용자 피부에 전달되는 에너지량을 정밀하게 조절할 수 있다.
도 2는 PWM 구동 방식을 사용하는 종래 아이피엘 기기의 구동 회로도이다. 100V ~ 240V 상용전원(10)에서 공급되는 전원은 노이즈 필터(20)에 의해 노이즈가 제거된 후, 출력전압제어형 정전압공급기(30, 예로서 SMPS; Switch Mode Power Supply)로 입력된다. 출력전압제어형 정전압공급기(30)는 입력받은 전원을 안정적인 직류전원으로 변환한 후 이를 캐패시터(80)에 공급한다. 사용자는 유저 인터페이스(60)를 통해 제논램프의 방사 에너지를 조절하면 해당 조절신호가 제어부(50)에 입력되고, 제어부(50)는 이에 적합한 PWM 구동을 하기 위한 트리거 신호를 트리거(70)에 출력하여 제논 램프 플래쉬부(40)에 공급되는 에너지량을 정밀하게 조절할 수 있게 된다. 이때 제어부(50)는 필요할 경우 출력전압제어형 정전압공급기(30)에도 제어신호를 가해 충전 전압을 조절을 병행할 수도 있다. 도 3은 도 2의 PWM 구동 방식을 사용하는 종래 아이피엘 기기에서 제논 램프 플래쉬부(40)의 시간 흐름에 따라 충전 및 방전되는 에너지량을 도시한 그래프이다. 도 3에 도시된 바와 같이 0 시각부터 트리거 시각(Tt)까지 에너지가 충전되다가 트리거(Tt) 신호가 가해지는 순간부터 제논 램프 플래쉬부(40)는 빗금친 구간동안만 구동됨을 알 수 있다. 즉, 도 2의 PWM 구동 방식에서는 제논 램프 플래쉬부(40)에 공급되는 에너지량은 빗금친 시간의 간격과 폭을 조절함으로써 사용자 피부에 전달되는 에너지량을 정밀하게 조절할 수 있다.
그런데 도 1의 PAM 구동 방식을 사용하는 종래 아이피엘 기기 및 도 2의 PWM 구동 방식을 사용하는 종래 아이피엘 기기 및 양자의 혼합 방식을 사용하는 종래 아이피엘 기기는 캐패시터(80)에 안정적인 전원을 공급하기 위해 출력전압제어형 정전압공급기(30)를 사용하고 있는데 아이피엘의 특성상 출력전압제어형 정전압공급기(30)로부터 출력되는 직류 전류치는 수백 mA 에서 수 A를 사용하기 때문에 대용량의 전원을 스위칭하여야 하므로 고가의 출력전압제어형 정전압공급기(30)가 필요하다. 나아가 용량이 큰 출력전압제어형 정전압공급기(30)에 공급되는 전원의 노이즈를 제거하기 위해 고가의 노이즈 필터(20)를 사용하여야 하는 문제점을 가지고 있다. 이러한 문제점은 매 초에 제논 램프 플래쉬부(40)를 더 빈번히 점등시키기 위해서 캐패시터(80)를 더욱 빨리 충전할 필요가 있을 경우 더욱 고가의 노이즈 필터(20)와 출력전압제어형 정전압공급기(30)를 사용하여야 되는 문제점으로 대두되고 있다.
또한 아이피엘 기기의 출력을 높일 경우 다리, 팔 등의 털을 제거하는 제모기로도 활용할 수 있다. 제모기로 활용할 경우에는 보다 높은 출력을 필요로 하므로 종래 아이피엘 기기의 구동 회로를 이용할 경우 더욱 고가의 출력전압제어형 정전압공급기(30)와 노이즈 필터(20)를 구비하여야 하는 문제점을 가지고 있다.
본 발명은 상기와 같은 문제점을 해결하고자 하는 것으로서, 출력전압제어형 정전압공급기 없이 캐패시터에 전원을 공급하고도 안정적으로 제논 램프 플래쉬부에 에너지를 제공할 수 있는 싸이리스터를 이용하여 에너지레벨 조절이 가능한 아이피엘 기기를 제시하는 것을 목적으로 한다.
본 발명의 또 다른 목적은 입력되는 전원의 전압이 안정적이지 못하여 변동이 수반되거나 전원전압의 범위가 높은 에너지를 얻기에 부족한 100 ~ 120V 지역에서도 비교적 짧은 시간 내에 아이피엘 기기의 출력전압을 안정적으로 높일 수 있는 구동 회로를 갖는 싸이리스터를 이용하여 에너지레벨 조절이 가능한 아이피엘 기기를 제시하는 것을 목적으로 한다.
본 발명의 상기 목적은 사용자 피부에 제논 램프 광을 주기적으로 조사하여 피부 질환을 치료하거나 제모기로 사용하는 아이피엘 기기에 있어서, 배전압용 캐패시터를 구비하고, 입력되는 상용 전원과 상기 배전압용 캐패시터에 충전된 전압을 중첩시켜 고전압을 출력하는 배전압부와, 배전압부에서 공급되는 전하를 축적하여 제논 램프를 켜기 위한 에너지를 충전하는 충전 캐패시터와, 충전 캐패시터에 충전되는 충전 전압 레벨을 설정하는 기준전압발생부 및 배전압부와 상기 충전 캐패시터 사이에 구비되며, 상기 기준전압발생부의 출력을 제어신호로 하여 상기 배전압부에서 상기 충전 캐패시터로 전하 이동을 온/오프하는 스위치하는 스위치부를 포함하는 것을 특징으로 하는 아이피엘 기기에 의해 달성 가능하다.
바람직하게는 기준전압발생부 전단에는 상기 기준전압발생부에 일정한 전류를 공급하는 정전류공급부를 더 구비하는 좋다.
제어부에 보다 안정적인 직류 전원을 공급하기 위해서 노이즈 필터에서 출력되는 전원을 입력으로 하고, 전원을 제어부에 공급하는 정전압공급기를 더 구비하는 것이 좋으나 본 발명에 사용되는 정전압공급기는 제어부 전원을 안정적으로 공급하고자 하는 것이므로 대략 수 W 용량을 가진 작은 것을 사용하면 무방하므로 저렴하게 제논 램프 플래쉬부 구동 회로를 설계할 수 있다.
본 발명에 따른 제논 램프 플래쉬부 구동 회로는 제어부가 기준전압을 조절하여 PAM(Pulse Amplitude Modulation) 방식으로 구동하거나 또는 트리거 신호의 간격을 조정하여 PWM(Pulse Width Modulation) 방식으로 동작시킬 수 있음은 물론이다.
본 발명에 따른 아이피엘 기기는 대출력 출력전압제어형 정전압전원공급기 없이 캐패시터에 전하를 축적하면서도 캐패시터에 인가되는 전압을 정확하게 감지하여 해당 전압이 일정한 값에 도달하도록 하며 제논 램프 플래쉬부에 원하는 전압을 공급하거나 또는 방전시간을 조정함으로써 원하는 에너지를 방사할 수 있는 저렴한 회로 구성으로도 안정적인 아이피엘 기기 구동을 가능하게 하였다. 또한 본 발명에 따른 아이피엘 기기는 동일한 회로 구성으로 PAM 및 PWM 구동 방식으로 용이하게 구현할 수 있는 이점이 있다.
나아가 본 발명에 따른 아이피엘 기기는 배전압부를 이용함으로써 공급되는 상용전원의 전압값이 불안정한 지역 또는 100V~120V의 낮은 상용 전원을 사용하는 지역에 무관하게 비교적 짧은 시간 내에 충분한 에너지를 공급받아 원활하게 제논 램프 플래쉬부를 구동시킬 수 있는 이점이 있다.
도 2는 PWM 구동 방식을 사용하는 종래 아이피엘 기기의 구동 회로도.
도 3은 도 2의 PWM 구동 방식을 사용하는 종래 아이피엘 기기에서 제논 램프 플래쉬부의 시간 흐름에 따라 충전 및 방전되는 에너지량을 도시한 그래프.
도 4는 본 발명에 따른 아이피엘 기기의 구동 회로도의 일 실시예.
도 5는 본 발명에 따른 아이피엘 기기의 구동 회로도의 일 실시예.
도 6은 본 발명에 따른 아이피엘 기기의 구동 회로도의 일 실시예.
도 7은 시간에 따라 충전 캐패시터에 충전 및 방전되는 에너지량을 표시하는 그래프.
도 8은 입력파 타이밍부가 노이즈 필터부로부터 입력되는 입력파를 이용하여 입력파 타이밍 신호를 출력하는 것을 도시한 파형도.
도 9는 본 발명에 따른 아이피엘 기기의 구동 회로도의 일 실시예.
도 10은 도 9의 일부 회로로서, 배전압을 설명하기 위한 회로도.
도 11은 제너다이오드의 전압 대 전류 동작 특성 그래프.
도 12는 본 발명에 따른 아이피엘 기기의 구동 회로도의 일 실시예.
도 13은 도 12의 일부 회로로서, 배전압을 설명하기 위한 회로도.
[부호의 설명]
10: 상용전원 20: 노이즈 필터부
30: 출력전압제어형 정전압공급기 35: 정전압공급부
38: 정전류공급부 40: 제논 램프 플래쉬부
50: 제어부 60: 유저 인터페이스부
70: 트리거부 80: 충전 캐패시터
90: 기준전압발생부 91: 정류부
93: 평활부 95: 전압 디바이더
97: 아날로그 디지털 변환기 110: 배전압부
115: 입력파 타이밍부 125: 제너온도보상회로부
195: 전압 디바이더
이하에서, 본 발명의 장점, 특징 및 바람직한 실시예를 첨부 도면을 참조하여 상세하게 설명하도록 한다.
도 4는 본 발명에 따른 아이피엘 기기의 구동 회로도의 일 실시예이다. 본 발명에 따른 아이피엘 기기는 노이즈 필터부(20), 배전압부(110), 스위치부(120), 충전캐패시터(80), 기준전압발생부(90), 제어부(50), 유저 인터페이스부(60), 트리거부(70) 및 제논 램프 플래쉬부(40)를 포함하는 것을 특징으로 한다. 추가적으로 정류부(91), 평활부(93), 정전압공급부(35), 및 정전류공급부(38)를 더 구비할 수 있다.
노이즈 필터부(20)는 입력되는 100V ~ 240V 상용전원(10)에서 노이즈를 제거하기 위한 회로 소자이며, 노이즈 필터부(20)의 출력은 정류부(91)와 평활부(93)를 거친 후 배전압부(110)로 공급된다. 본 발명의 정류부(91)와 평활부(93)는 도 10에서 후술하는 바와 같이 배전압 형성하는데도 일부 기여하게 된다. 물론 정류부(91)와 평활부(93)가 구비되지 않는 회로에서는 노이즈 필터(20)의 출력이 배전압부(110)에 공급된다. 배전압부(110)는 입력되는 상용전원의 피크치를 두 배 또는 그 이상 상승시킨 후 출력하는 회로이다. 스위치부(120)는 기준전압발생부(90)의 출력신호에 따라 온/오프 되면서 충전캐패시터(80)를 충전한다. 기준전압발생부(90)는 여러 레벨의 기준 전압 중에 하나를 설정하기 위한 회로이며, 유저 인터페이스부(60)는 조작 스위치 등으로 구성되며, 사용자로부터 아이필엘 출력 파워 등을 입력받기 위해 사용된다. 제어부(50)는 유저 인터페이스(60)로부터 출력되는 제어신호에 따라 기준전압발생부(90)의 기준 전압을 조절하고, 적합한 타이밍에 트리거 신호를 생성한다. 트리거부(70)는 제어부(50)로부터 입력되는 트리거 신호에 따라 제논 램프 플래쉬부(40)를 트리거시키는 트리거 동작 신호를 출력하여 제논램프의 방사를 ON/OFF로 제어하고, 제논 램프 플래쉬부(40)는 트리거 동작 신호에 따라 사용자 피부에 제논 광을 조사하게 된다. 또한 노이즈 필터(20)의 출력은 정전압공급기(35)를 거쳐 제어부(50)에 안정적인 전원을 공급하는데 사용된다. 통상 제어부(50)는 5V의 낮은 동작 전압을 사용하기 때문에 수 W 용량의 저가 정전압공급기(35)를 사용할 수 있으며, 이로 인하여 정전압공급기(35)에 공급되는 전원에서 노이즈를 제거하는 노이즈 필터(20)도 용량이 작은 저가의 것을 사용할 수 있는 이점이 있다.
이하, 도 4에 제시된 회로 동작에 대해 설명하기로 한다. 도 4에 대한 설명시에는 선택적으로 구비가능한 정류부(91), 평활부(93), 정전류공급부(38), 정전압공급부(35)가 구비되는 회로에 대해 설명하기로 한다. 사용자가 유저 인터페이스부(60)를 통해 출력 레벨을 입력하면 제어부(50)를 거쳐 기준전압발생부(90)의 전압 레벨이 설정된다.
입력된 상용전원(10)은 노이즈 필터부(20)에서 노이즈가 제거된 후 정류부(91), 정전류공급부(38), 정전압공급부(35)로 공급된다. 정류부(91)에 입력되는 전원은 직류 성분으로 정류된 후 평활부(93)에서 평활된 후 배전압부(110)로 제공된다. 노이즈가 제거된 전원은 정전류공급부(38)로 입력된 후 기준전압발생부(90)에 정전류를 출력한다. 노이즈가 제거된 전원은 정전압공급부(35)로 입력된 후 제어부(50)에 안정적인 전원을 공급한다.
평활된 전원을 입력받은 배전압부(110)는 상용 전원의 피크치를 두 배 또는 그 이상의 피크치로 출력하고, 스위치부(120)는 배전압부(110)로부터 입력되는 전압과 기준전압발생부(90)로 입력되는 전압과 출력단(충전캐패시터의 입력단)의 전압을 비교한 후 일정한 조건이 충족할 경우 온 상태로 전환되어 충전 캐패시터(80)를 충전한다. 제어부(50)는 적합한 타이밍을 연산하여 트리거 신호를 생성한다. 트리거부(70)는 제어부(50)로부터 입력되는 트리거 신호에 따라 제논 램프 플래쉬부(40)를 트리거시키는 트리거 동작 신호를 출력하고, 제논 램프 플래쉬부(40)는 트리거 동작 신호에 따라 사용자 피부에 제논 광을 조사하게 된다.
한편, 도 4의 회로도에서 노이즈필터부(20)에 입력차단 스위치(SW)가 부가되어 있고, 제어부(50)로부터 노이즈필터부(20)의 스위치를 온/오프시키는 제어 신호를 받는 것으로 도시되어 있다. 이에 대해 설명하기로 한다. 스위치가 부가되지 않은 노이즈필터부(20)를 사용할 경우 충전캐패시터(80)에 충전된 에너지를 제논 램프 플래쉬부(40)로 방전할 때도 불규칙적으로 충전되어 사용자 피부에 공급되는 에너지가 일정하지 않게 되는 문제점이 발생된다. 이러한 문제점을 도 7을 이용하여 설명하기로 한다. 도 7은 시간에 따라 충전 캐패시터에 충전 및 방전되는 에너지량을 표시하는 그래프로서, 가로축은 시간을 나타내고 세로축은 에너지량을 나타낸다. 충전은 0초부터 Tt시간까지 진행되고, 이후 트리거 동작 신호에 의해 방전이 시작된다. 바람직한 방전은 ⓝ 으로 표시된 매그러운 곡선을 따라 방전되는 것이나, 도 4의 회로도에서 노이즈필터부(20)에 스위치가 없을 경우에는 입력되는 상용전원에 의한 충전이 진행되어 도 7의 ⓐ 곡선과 같은 에너지량이 사용자에게 공급되는 것이다.
이러한 방전 기간 동안 충전되는 문제점을 해결하기 위해서 본 발명에서는 두 가지 방식을 제안하였다. 그 중 한 가지 방식은 도 4에 도시된 입력차단 스위치(SW)를 갖는 노이즈필터부(20)와 제어부(50)를 이용하여 방전 중에 입력되는 상용전원을 차단하는 것이고, 다른 방식은 도 5에 도시된 바와 같이 입력되는 상용전원의 일정한 주기와 일치되는 시점에 방전을 시작하도록 하는 것이다.
도 4의 회로에서는 제어부(50)에서 방전 시간동안 입력차단 스위치(SW)를 오프시키는 제어 신호를 생성하고, 이러한 제어 신호에 따라 방전 시간 동안 노이즈필터부(20)를 차단함으로써 입력되는 상용 전원이 공급되지 않도록 하였다. 또한, 램프구동 회로에 문제가 생겨 PWM 제어가 안될 때 구동회로의 구조에 따라 램프가 연속 방전되는 경우가 있다. 이때 입력차단 스위치(SW)를 off 시킴으로써 램프에 연속적인 에너지 공급이 되지 않도록 할 수도 있다. 입력차단 스위치(SW)로는 전자석으로 동작되는 릴레이 또는 반도체로 동작되는 SSR(Solid State Relay)을 사용하였다. 도 4에 제시된 회로도는 후술하는 도 5의 회로도에 비하여 타이밍을 일치시키기 위한 별도의 딜레이가 발생하지 않는 이점이 있다. 입력차단 스위치(SW)는 충전 캐패시터(80)가 방전하는 동안 입력되는 상용전원(10)에 의해 충전 캐패시터(80)가 충전되는 것을 방지하기 위한 스위치이므로, 노이즈필터부(20) 외에도 상용전원(10)과 충전 캐패시터(80) 사이의 전기적인 흐름을 차단할 수 있는 어느 위치에도 설치될 수 있음을 물론이다. 즉 입력차단 스위치(SW)는 상용 전원과 충전 캐패시터 사이의 전기적인 흐름을 스위칭할 수 있는 어느 곳이나 설치가능하다. 예로서, 입력차단 스위치(SW)는 배전압부(110)와 스위치부(120) 사이에 설치하여도 무방하다. 또한 또 다른 실시예로 스위치부(120)에 공급되는 기준 전압을 제로에 가깝게 하여 노이즈필터부의 전원차단 동작과 동일한 결과를 만들 수 있다.
도 5는 본 발명에 따른 아이피엘 기기의 구동 회로도의 일 실시예이다. 도 5에 제시된 회로도는 도 4에 제시된 회로도와 거의 유사한 구성을 지니므로 도 4에 제시된 회로도와 차이가 있는 구성에 대해서만 설명하기로 한다. 도 5의 회로도는 스위치가 제거된 노이즈필터부(20)를 사용하기 때문에 도 4에 제시된 제어부(50)에서 노이즈필터부(20)로 입력되는 제어 신호선이 불필요하게 된다. 대신에 도 5의 회로도에서는 노이즈필터부(20)의 출력신호를 입력받아 입력 파형의 업(up) 시점 또는 다운(down) 시점 등의 일정한 시점마다 입력파 타이밍 신호를 생성하는 입력파 타이밍부(115)를 제어부(50)와 노이즈필터부(20) 사이에 부가하였다. 입력파 타이밍부(115)는 도 8에 도시된 바와 같이 노이즈 필터부(20)로부터 입력되는 입력 파형을 파악하고 일정한 시점마다 입력파 타이밍 신호(S)를 제어부(50)로 출력하는 것으로서, 간단하게 포터커플러(photocoupler)를 이용하여 구현할 수 있다. 포터커플러의 입력단으로 이용되는 광다이오드에는 노이즈 필터부(20)의 출력을 연결하고, 일정한 전압 이상이 인가되면 광다이오드를 온(on) 시켜 빛을 발생시키고, 포터커플러의 출력단을 구성하는 수광 트랜지스터는 광다이오드에서 발생되는 빛을 수광하여 수광 트랜지스터를 온 시켜 입력파 타이밍 신호(S)를 생성한다.
도 8(a)는 입력파 타이밍부(115)에 노이즈 필터부(20)로부터 사인파가 입력된 경우 사인파가 상승하는 시점마다 입력파 타이밍 신호(S)를 출력하는 것을 도시한 것이고, 도 8(b)는 입력파 타이밍부(115)가 노이즈 필터부(20)로부터 입력되는 입력파로부터 구형파를 생성하고, 구형파가 상승되는 시점마다 입력파 타이밍 신호(S)를 생성하여 제어부(50)로 인가하는 예를 도시한 것이다.
도 5의 회로를 구성하는 제어부(50)는 입력파 타이밍부(115)로부터 입력파 타이밍 신호(S)가 입력되면 적절한 시점에 방전을 시작하기 위한 트리거 신호를 생성하여 트리거부(70)로 전송하도록 한다.
도 4 및 도 5에 제시된 본 발명의 일 실시예에 따른 아이피엘 기기의 구동 회로는 회로 구성을 변경함이 없이, 즉 동일한 회로 구성으로 제어부(50)에서 트리거 신호 펄스폭을 조절하거나 기준전압 설정을 변경하면 PWM 방식 또는 PAM 방식 중의 어느 방식으로도 사용할 수 있는 이점이 있다.
도 6은 본 발명에 따른 아이피엘 기기의 구동 회로도의 일 실시예이다. 도 6에 제시된 회로도는 도 5에 제시된 회로도와 거의 유사한 구성을 지니므로 도 5에 제시된 회로도와 차이가 있는 구성에 대해서만 설명하기로 한다. 도 4 및 도 5에 제시된 회로도의 제어부(50)는 적합한 충전 시간 및/또는 방전 시간을 연산한 후, 도 4의 회로도는 노이즈 필터부(20)의 입력 신호를 차단하고 트리거 신호를 생성하거나 또는 도 5의 회로도는 입력파 타이밍부(115)로부터 출력되는 입력파 타이밍 신호(S)과 일치되는 시점에 트리거 신호를 생성한다. 도 6의 회로도에서는 충전 캐패시터(80)의 전압을 정확하게 감지하기 위해 전압 디바이드(95)와 아날로그-디지탈 변환기(97)를 부가적으로 충전 캐패시터(80)와 제어부(50) 사이에 구비한 것을 특징으로 한다. 전압 디바이더(95)는 전력 소모를 최소화하면서 캐패시터(80)의 충전 전압을 측정하기 위한 회로 소자로서 본 발명에서는 캐패시터(80)의 전압 Vc를 1/10 ~ 1/300 내외로 디바이더한 후 이를 아날로그-디지탈 변환기(97)를 통해 제어부(50)에 입력한다. 도 6에 제시된 회로도의 제어부(50)는 아날로그-디지탈 변환기(97)로부터 입력되는 전압 레벨을 감지한 후, 입력파 타이밍부(115)로부터 출력되는 입력파 타이밍 신호(S)과 일치되는 시점에 트리거 신호를 생성한다. 물론 이러한 전압 디바이더(95)와 아날로그-디지탈 변환기(97)는 도 4에 제시된 회로도에도 구비되도록 할 수 있음은 물론이고, 이 경우에는 제어부(50)는 충전 캐패시터(80)가 원하는 전압 레벨이 되었을 때 노이즈 필터부(20)의 입력 신호를 차단하고 트리거 신호를 생성하도록 한다.
도 9는 본 발명에 따른 아이피엘 기기의 구동 회로도의 일 실시예이다. 도 9의 회로도에서는 설명의 편의상 주요 회로 구성인 노이즈 필터부(20), 정류부(91), 평활부(93), 배전압부, 정전류공급부(38), 기준전압발생부, 스위치부, 충전캐패시터, 제어부(50) 및 제논 팸프 플러쉬부(40)만을 도시하고, 나머지 회로 소자는 생략하였다. 도 9의 회로도에서 상용전원(10)은 도 4의 상용전원(10)에 대응되고, 노이즈 필터부(20), 정류부(91) 및 평활부(93)는 각각 도 4의 노이즈 필터부(20), 정류부(91) 및 평활부(93)에 대응되며, 캐패시터(C1) 및 다이오드(D1)는 도 4의 배전압부(110)에 대응되며, 제너다이오드(D3), 제너온도보상회로부(125) 및 전압 디바이더(195)는 도 4의 기준전압발생부(90)에 대응되며, SCR1 는 도 4의 스위치부(120)에 대응되며, 캐패시터(C3)는 도 4의 충전 캐패시터(80)에 각각 대응된다.
먼저, 세 배로 승압시키는 배전압 회로에 대해 설명하기로 한다. 도 10에서는 도 9의 회로 중에서 상용전원(10), 노이즈 필터부(20), 정류부(91), 평활부(93), 캐패시터(C1, C3), 다이오드(D1) 및 SCR1 만으로 구성되는 배전압 회로만을 별도 도시한 것이다.
먼저, 상용전원(10)에서 + 전압이 인가되면, 노이즈 필터부(20), 정류부(91), 및 평활부(93)를 따라 ①로 표시된 전류 흐름이 형성되고, 평활부(93)를 구성하는 캐패시터에는 도 10에 도시된 극성을 Vc 전압이 인가된다.
다음으로 상용전원(10)의 극성이 - 전압으로 변경되면, 노이즈 필터부(20), 캐패시터(C1), 다이오드(D1) 및 평활부(93)를 따라 ②로 표시된 전류 흐름이 형성된다. 평활부(93)에 축적된 에너지는 다이오드(D1)을 통해 캐패시터(C1)에 축적되며 이와 동시에 상용전원(10)에서 공급되는 에너지도 캐패시터(C1)에 축적된다. 따라서 캐패시터(C1)에는 도 10에 도시된 바와 같은 극성으로 2Vc 크기(대략 상용전원의 두 배)의 에너지가 축적된다.
싸이리스터(SCR1)가 온상태에서 상용전원(10) 극성이 - 에서 + 로 변경되면, 전류 흐름 경로 ① 외에도, 노이즈 필터부(20), 캐패시터(C1), 싸이리스터(SCR1), 및 충전캐패시터(C3) 를 따라 ③으로 표시된 새로운 전류 흐름이 형성된다. 이때 캐패시터(C1)에 축적된 에너지는 싸이리스터(SCR1)을 통해 충전 캐패시터(C3)로 이동되며, 상용전원(10)에서 공급되는 에너지도 충전 캐패시터(C3)에 축적된다. 따라서, 캐패시터(C3)에는 도 10에 도시된 바와 같은 극성으로 3Vc 크기(대략 상용전원의 세 배)의 에너지가 축적된다. 도 10에 따라 설명한 바와 같이 본 발명에 따른 정류부(91) 및 평활부(93)는 배전압을 형성하는데 기여함을 알 수 있다.
다시 도 9에 대해 설명하면, 제너다이오드(D3) 및 전압 디바이더(195)는 기준전압발생부를 형성한다. 제너다이오드(D3)는 항상 일정한 전압을 유지하는 회로 소자이며, 제너다이오드(D3)에 인가되는 일정한 전압은 복수 개 스위치 소자와 복수 개 저항으로 형성되는 전압 디바이더(195)에 의해 싸이리스터(SCR1)의 게이트 단자에 유저 인터페이스를 통해 입력되는 에너지 레벨에 따른 기준전압을 발생시키게 된다. 그런데 제너다이오드는 인가되는 전류치가 일정하지 않을 경우 전압 변동을 가져온다. 이러한 문제점을 도 11을 이용하여 설명하기로 한다. 도 11은 제너다이오드의 전압 대 전류 동작 특성 그래프인데, 도 11에 도시한 바와 같이 제너다이오드에 흐르는 전류가 I1에서 I2로 변하면, 이에 인가되는 전압값도 V1에서 V2로 변함을 알 수 있다. 이러한 문제점을 해결하기 위해서 도 9에서 정전류공급부(38)를 사용하였으며, 간단한 정전류공급부(38)는 저항 및 정전류 다이오드로 구성할 수 있다.
제너다이오드(D3)의 또 다른 문제점은 주변 온도가 상승함에 따라 전압이 높아지는 드래프트가 발생되는 것이다. 이러한 온도 상승에 따른 전압 드래프트 문제는 도 9 회로도에서 전압 디바이더(195)와 접지 사이에 구비되며, 주변 온도 상승에 따라 저항값이 낮아지는 특성을 갖는 제너온도보상회로부(125)를 이용하여 해결할 수 있다. 제너온도보상회로부(125)로는 써미스터(thermistor)를 사용할 수 있으며, 써미스터는 온도 상승에 따라 제너다이오드(D3)에서 발생되는 전압 상승을 보상하는 기능을 하게 되어 제너다이오드(D3)가 주변 온도 변화에도 무관하게 안정적인 기준 전압원으로 동작하도록 한다.
도 9의 회로도에서 기준전압발생부를 제너다이오드(D3), 제너온도보상회로(125) 및 전압디바이더(195)로 구성하는 것으로 설명하였으나, 기준 전압의 정밀도를 약간 희생할 경우에는 전압디바이더만으로 구성할 수도 있음은 물론이며, 또 다른 구성으로는 제어부와 싸이리스터 게이트 단자 사이에 디지털-아날로그 변환기(Digital to Analog Convertor)를 구비하고, 제어부로부터 입력되는 전압레벨값을 디지털-아날로그 변환기로 변환한 후 싸이리스터 게이트 단자에 인가할 수도 있음은 물론이다.
다음으로 싸이리스터(SCR1, thyristor)의 동작에 대해 설명하기로 한다. 도 9의 회로도에서 스위치로서 싸이리스터(SCR1)를 사용하였으나 이를 트라이액(triac) 소자로 대체할 수 있음은 물론이다. 싸이리스터(SCR1)의 어노드는 배전압부를 형성하는 캐패시터(C1)의 일 단자와 연결되어 있으며 어노드의 전압을 'V1'으로 표기하기로 하며, 싸이리스터(SCR1)의 캐소드는 충전 캐패시터(C3)의 일 단자와 연결되어 있으며 캐소드 전압을 'V3'라고 표기하기로 하며, 싸이리스터(SCR1)의 나머지 단자인 게이트 단자의 전압을 'V2'라고 표기하기로 한다. 싸이리스터(SCR1)의 게이트 전압 'V2'로 설정할 수 있는 기준 전압은 애노드 단자에 인가되는 'V1' 전압의 최소치와 최대치 사이의 값으로 결정된다. 도 9에 제시된 싸이리스터(SCR1)는 'V1' 이 'V3'보다 큰 값을 가지고, 'V2'가 'V3'보다 임계 전압만큼 큰 전압을 가질 때 온이 된다. 싸이리스터(SCR1)가 '온'이 된 이후에는 ‘V1’가 ’V3’ 보다 작아 지면 ‘오프’ 되며 다시 상기의 ‘온’ 조건이 되면 계속 '온' 상태를 유지하다가 'V2'가 'V3' 보다 작은 값을 가질 경우 싸이리스터(SCR1)가 오프되어 충전을 멈추게 된다. 이때 V3 값은 V2 값에서 싸이리스터 게이트 임계전압(통상 1볼트 이내) 뺀 값이 되어, 거의 V3 값은 V2 값과 유사한 값으로 형성된다.
통상적으로 도 9 및 도 10에 제시된 회로에서는 정류부(91) 및 평활부(93)가 배전압 형성에 기여하므로, 충전캐패시터(C3)에는 상용전원(10)에서 공급되는 에너지와 비교할 때 3배까지 충전 가능하게 된다. 따라서 도 9 및 도 10의 회로는 상용전원(10)이 100 ~ 120V를 사용하는 지역에서 주로 사용한다.
한편 상용전원(10)이 220V인 지역에서는 상용전원(10)에서 공급되는 에너지의 약 2배 정도의 배전압을 충전캐패시터(C3)에 충전시키면 된다. 이러한 지역에 적합한 정류부(91) 및 평활부(93)가 제외된 회로도를 도 12 및 도 13에 도시하였다. 도 12는 도 9의 회로에 대응되며, 도 13은 도 10의 회로에 대응된다.
-극성의 상용전원(10)이 인가되면, 노이즈 필터부(20), 캐패시터(C1) 및 다이오드(D1) 를 따라 ①로 표시된 전류 흐름이 형성된다. 따라서 캐패시터(C1)에는 도 13에 도시된 바와 같은 극성으로 Vc 크기(대략 상용전원의 크기)의 에너지가 축적된다.
싸이리스터(SCR1)가 온상태에서 상용전원(10) 극성이 + 에서 - 로 변경되면, 노이즈 필터부(20), 캐패시터(C1), 싸이리스터(SCR1), 및 충전캐패시터(C3) 를 따라 ②으로 표시된 새로운 전류 흐름이 형성된다. 이때 캐패시터(C1)에 축적된 에너지는 싸이리스터(SCR1)을 통해 충전 캐패시터(C3)로 이동되며, 상용전원(10)에서 공급되는 에너지도 캐패시터(C3)에 축적된다. 따라서, 캐패시터(C3)에는 도 13에 도시된 바와 같은 극성으로 2Vc 크기(대략 상용전원의 두 배)의 에너지가 축적된다.
이하, 도 13에 제시된 회로에 충전되는 배전압을 구체적으로 설명하기로 한다. 먼저 상용전원으로 60Hz의 220V 전원을 사용하고, 사용자가 유저 인터페이스를 통해 셋팅한 에너지 레벨에 따른 전압 디바이더의 조합에 의해 싸이리스터(SCR1)의 게이트에는 340V의 기준 전압이 인가되며, 초기 상태의 충전 캐패시터에는 전하가 전혀 축적되어 있지 않은 상태이고, 싸이리스터(SCR1)의 임계전압은 0V인 것으로 가정한다. 이러한 가정하에 해당 상용전원의 최대 피크치는 310V 정도가 된다. 상용전원(10)에 의해 공급되는 전하는 캐패시터(C1)에 축전된 전하와 함께 배전압되므로 'V1'단자에는 바이어스 전압이 310V이고, 진폭이 310V이며, 620V의 최대 피크 전압을 갖는 사인 파형의 전압이 인가되므로, 'V1' 단자에는 0V ~ 620V까지 변화되는 전압이 인가되는 것이다.
이러한 조건에서 상용전원이 인가되면, 싸이리스터(SCR1)의 애노드 전압이 캐소드 전압보다 높고(V1 > V3), 게이트 전압(V2)이 캐소드 전압(V3)에 비해 싸이리스터를 온 시키기 위한 임계전압보다 높게 형성되므로 싸이리스터는 도통되면서 충전 캐패시터를 충전시키게 된다. V1 단자에 인가되는 파형이 정점을 지나 내려가다가 캐소드 전압(충전 캐패시터의 충전 전압)보다 낮게 되면 싸이리스터(SCR1)는 동작을 멈춘다. 이후 입력 파형이 다음 사이클의 상승 사이클을 시작하면서 싸이리스터(SCR1)의 애노드 전압(V1)이 싸이리스터(SCR1)의 캐소드 단자 전압(V3)보다 높아지고 ‘V2 > V3’ 이면 다시 싸이리스터(SCR1)이 도통되어 충전을 진행하게 된다.
상기와 같은 동작을 충전 캐패시터(C3)에 충전된 전압이 싸이리스터(SCR1)의 게이트에 인가되는 기준 전압에서 싸이리스터(SCR1)을 온시키기 위한 임계전압만큼 차감한 전압에 다다를 때까지 반복하면서 충전이 진행되며, 이후 도 12에는 도시되지 않은 트리거 동작 신호에 의해 제논램프 플래쉬(40)에 전원이 공급되는 것이다.
상기에서 본 발명의 특정한 실시예가 설명 및 도시되었지만, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당업자에 의하여 다양하게 변형되어 실시될 가능성이 있는 것은 자명한 일이다. 이와 같이 변형된 실시예들은 본 발명의 사상 및 범위로부터 개별적으로 이해되어져서는 안되며, 본 발명에 첨부된 청구범위 안에 속한다고 해야 할 것이다.

Claims (16)

  1. 사용자 피부에 제논 램프 광을 한 펄스 이상 주기적으로 조사하여 피부 질환을 치료하거나 제모기로 사용하는 아이피엘 기기에 있어서,
    배전압용 캐패시터를 구비하고, 입력되는 상용 전원과 상기 배전압용 캐패시터에 충전된 전압을 중첩시켜 고전압을 출력하는 배전압부;
    상기 배전압부에서 공급되는 전하를 축적하여 제논 램프를 켜기 위한 에너지를 충전하는 충전 캐패시터;
    상기 충전 캐패시터에 충전되는 충전 전압 레벨을 설정하는 기준전압발생부; 및
    상기 배전압부와 상기 충전 캐패시터 사이에 구비되며, 상기 기준전압발생부의 출력을 제어신호로 하여 상기 배전압부에서 상기 충전 캐패시터로 전하 이동을 온/오프 스위치하는 스위치부를 포함하는 것을 특징으로 하는 아이피엘 기기.
  2. 제 1항에 있어서,
    사용자로부터 원하는 제논 램프 광 에너지량에 대한 조절신호를 입력받는 유저 인터페이스부;
    상기 유저 인터페이스부를 통해 입력되는 조절 신호에 따라 폭 또는 간격이 조절된 트리거 신호를 출력하는 제어부;
    상기 제어부에서 출력되는 트리거 신호에 따라 트리거 동작신호를 출력하는 트리거부; 및
    상기 트리거 동작 신호에 따라 상기 충전 캐패시터에 충전된 에너지를 이용하여 제논 램프 플래쉬를 온 오프하는 제논 램프 플래쉬부를 포함하는 것을 특징으로 하는 아이피엘 기기.
  3. 제 1항 또는 제 2항에 있어서,
    상기 기준전압발생부 전단에는 상기 기준전압발생부에 일정한 전류를 공급하는 정전류공급부를 더 구비하는 것을 특징으로 하는 아이피엘 기기.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 상용 전원과 상기 충전 캐패시터 사이에 구비되어 상기 상용전원과 상기 충전 캐패시터 사이의 전기적인 연결을 스위칭하는 입력차단 스위치를 더 구비하고, 상기 제어부는 상기 충전 캐패시터를 방전시키는 동안에 상기 입력차단 스위치를 오프시키는 것을 특징으로 하는 아이피엘 기기.
  5. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 상용전원과 제어부 사이에 상용전원의 파형을 파악하고 상용전원이 일정한 파형을 나타내는 시점에 발생되는 입력파 타이밍 신호를 생성하는 입력파 타이밍부를 더 구비하고, 상기 제어부는 상기 입력파 타이밍 신호와 일치되게 트리거 신호를 출력하는 것을 특징으로 하는 아이피엘 기기.
  6. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 스위치부는 싸이리스터 또는 트라이액으로 구성되는 것을 특징으로 하는 아이피엘 기기.
  7. 제 2항에 있어서,
    상기 제어부는 상기 유저 인터페이스부를 통해 입력되는 사용자의 입력값에 따라 상기 기준전압 발생부의 전압을 가변시키는 것을 특징으로 하는 아이피엘 기기.
  8. 제 2항에 있어서,
    상기 충전 캐패시터의 출력단자와 상기 제논램프 플래쉬부 사이 단자와 상기 제어부 사이에 전압 디바이더 및 아날로그-디지털 변환부를 포함하는 것을 특징으로 하는 아이피엘 기기.
  9. 사용자 피부에 제논 램프 광을 한 펄스 이상 주기적으로 조사하여 피부 질환을 치료하거나 제모기로 사용하는 아이피엘 기기에 있어서,
    상용전원에서 공급되는 전하를 축적하여 제논 램프를 켜기 위한 에너지를 충전하는 충전 캐패시터;
    상기 충전 캐패시터에 충전되는 충전 전압 레벨을 설정하는 기준전압발생부; 및
    상기 상용전원과 상기 충전 캐패시터 사이에 구비되며, 상기 기준전압발생부의 출력을 제어신호로 하여 상기 상용전원에서 상기 충전 캐패시터로 전하 이동을 온/오프 스위치하며, 트라이액 또는 싸이리스터로 형성되는 스위치부를 포함하는 것을 특징으로 하는 아이피엘 기기.
  10. 제 9항에 있어서,
    사용자로부터 원하는 제논 램프 광 에너지량에 대한 조절신호를 입력받는 유저 인터페이스부;
    상기 유저 인터페이스부를 통해 입력되는 조절 신호에 따라 폭과 간격이 조절된 트리거 신호를 출력하는 제어부;
    상기 제어부에서 출력되는 트리거 신호에 따라 트리거 동작신호를 출력하는 트리거부; 및
    상기 트리거 동작 신호에 따라 상기 충전 캐패시터에 충전된 에너지를 이용하여 제논 램프 플래쉬를 온 오프하는 제논 램프 플래쉬부를 포함하는 것을 특징으로 하는 아이피엘 기기.
  11. 제 9항 또는 제 10항에 있어서,
    상기 상용 전원과 상기 충전 캐패시터 사이에 구비되어 상기 상용전원과 상기 충전 캐패시터 사이의 전기적인 연결을 스위칭하는 입력차단 스위치를 더 구비하고, 상기 제어부는 상기 충전 캐패시터를 방전시키는 동안에 상기 입력차단 스위치를 오프시키는 것을 특징으로 하는 아이피엘 기기.
  12. 제 9항 또는 제 10항에 있어서,
    상기 상용전원과 제어부 사이에 상용전원의 파형을 파악하고 상용전원이 일정한 파형을 나타내는 시점에 발생되는 입력파 타이밍 신호를 생성하는 입력파 타이밍부를 더 구비하고, 상기 제어부는 상기 입력파 타이밍 신호와 일치되게 트리거 신호를 출력하는 것을 특징으로 하는 아이피엘 기기.
  13. 제 10항에 있어서,
    상기 제어부는 상기 유저 인터페이스부를 통해 입력되는 사용자의 입력값에 따라 상기 기준전압 발생부의 전압을 가변시키는 것을 특징으로 하는 아이피엘 기기.
  14. 사용자 피부에 제논 램프 광을 조사하여 피부 질환을 치료하거나 제모기로 사용하는 아이피엘 기기에 있어서,
    배전압용 캐패시터(C1)와 상기 배전압용 캐패시터와 연결되는 다이오드(D1)를 구비하고, 입력되는 상용 전원과 상기 배전압용 캐패시터(C1)에 충전된 전압을 중첩시켜 고전압으로 출력하는 배전압부;
    상기 배전압부에서 공급되는 전하를 축적하여 제논 램프를 켜기 위한 에너지를 충전하는 충전 캐패시터; 및
    상기 배전압부와 상기 충전 캐패시터 사이에 구비되어 상기 충전 캐패시터로 전하 이동을 온/오프 스위치하는 스위치부를 포함하며,
    상기 스위치부와 상기 충전 캐패시터(C3)는 직렬로 연결되며, 직렬 연결된 상기 스위치부와 상기 충전 캐패시터(C3)는 상기 다이오드(D1)와 병렬 접속되는 것을 특징으로 하는 아이피엘 기기.
  15. 사용자 피부에 제논 램프 광을 조사하여 피부 질환을 치료하거나 제모기로 사용하는 아이피엘 기기에 있어서,
    배전압용 캐패시터(C1), 다이오드(D1), 다이오드(91) 및 캐패시터(93)를 구비하고, 입력되는 상용 전원과 상기 배전압용 캐패시터(C1)에 충전된 전압을 중첩시켜 고전압을 출력하는 배전압부;
    상기 배전압부에서 공급되는 전하를 축적하여 제논 램프를 켜기 위한 에너지를 충전하는 충전 캐패시터; 및
    상기 배전압부와 상기 충전 캐패시터 사이에 구비되어 상기 충전 캐패시터로 전하 이동을 온/오프 스위치하는 스위치부를 포함하며,
    상기 다이오드(91)의 캐소드 단자는 상기 배전압 캐패시터(C1) 일 단과 연결되고 에노드 단자는 상기 캐패시터(93)의 일 단과 연결되며, 상기 다이오드(D1)의 캐소드 단자는 상기 다이오드(91)의 에노드 단자와 연결되며 에노드 단자는 상기 배전압 캐패시터(C1)의 타 단과 연결되며,
    상기 스위치부와 상기 충전 캐패시터(C3)는 상기 배전압 캐패시터(C1)의 타 단 및 상기 캐패시터(93)의 타 단 사이에서 직렬 연결되는 것을 특징으로 하는 아이피엘 기기.
  16. 제 14항 또는 제 15항 중에서,
    상기 스위치부는 싸이리스터 또는 트라이액으로 구성되는 것을 특징으로 하는 아이피엘 기기.
PCT/KR2011/003812 2010-06-04 2011-05-25 싸이리스터를 이용하여 에너지레벨 조절이 가능한 아이피엘 기기 WO2011152628A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11789986.4A EP2578269B1 (en) 2010-06-04 2011-05-25 Ipl device of which the energy level can be adjusted using a thyristor
US13/696,934 US9943368B2 (en) 2010-06-04 2011-05-25 Intense pulsed light apparatus capable of controlling enegy level with SCR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0052946 2010-06-04
KR1020100052946A KR20110043410A (ko) 2010-06-04 2010-06-04 싸이리스터를 이용하여 에너지레벨 조절이 가능한 아이피엘 기기

Publications (2)

Publication Number Publication Date
WO2011152628A2 true WO2011152628A2 (ko) 2011-12-08
WO2011152628A3 WO2011152628A3 (ko) 2012-04-19

Family

ID=44048687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003812 WO2011152628A2 (ko) 2010-06-04 2011-05-25 싸이리스터를 이용하여 에너지레벨 조절이 가능한 아이피엘 기기

Country Status (5)

Country Link
US (1) US9943368B2 (ko)
EP (1) EP2578269B1 (ko)
KR (2) KR20110043410A (ko)
CN (1) CN102316656B (ko)
WO (1) WO2011152628A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140028086A1 (en) * 2012-07-25 2014-01-30 Infineon Technologies Austria Ag Circuit arrangements and a method for receiving information

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469088B1 (ko) * 2013-05-14 2014-12-04 블루웰 주식회사 트리거 전압 제어가 가능한 ipl 장치 및 그 제어 방법
US9665117B2 (en) * 2014-06-02 2017-05-30 Warner Power Acquisition, Llc Method to improve the resolution of an SCR based power supply
KR101727548B1 (ko) 2014-07-15 2017-04-17 한국원자력연구원 고에너지 레이저 시스템에서 트리거 수신 수단의 전원 공급 장치 및 그 공급 방법
KR101974910B1 (ko) 2014-12-19 2019-05-03 (주)스킨사이언스 사이리스터를 이용한 정전압 회로 및 이를 구비하는 전기기기
KR102460806B1 (ko) 2015-08-25 2022-11-02 (주)스킨사이언스 아이피엘용 트리거 회로 및 이를 구비하는 아이피엘 기기
KR101666818B1 (ko) 2015-09-14 2016-10-17 (주)씨엔에스 아이피엘 구동회로 및 이를 구비하는 아이피엘 기기
KR101683060B1 (ko) 2015-10-22 2016-12-20 (주)씨엔에스 아이피엘 구동회로 및 이를 구비하는 아이피엘 기기
WO2017183813A1 (ko) * 2016-04-19 2017-10-26 (주)스킨사이언스 아이피엘 기기 및 그 구동 회로
KR20190110933A (ko) 2018-03-21 2019-10-01 주식회사 엑소코바이오 피부에 대한 ipl 조사와 줄기세포 유래의 엑소좀 처리를 병용한 피부 미용방법
CN108650757B (zh) * 2018-03-28 2019-08-20 深圳可思美科技有限公司 一种脱毛仪
KR20230049413A (ko) 2021-10-06 2023-04-13 (주)스킨사이언스 아이피엘 구동회로 및 이를 이용한 아이피엘 기기

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771017A (en) * 1969-11-05 1973-11-06 H Switsen Phase controlled firing circuit
US3781632A (en) 1973-02-23 1973-12-25 Sno Start Inc Series type solid state voltage regulator which provides constant voltage to a storage device
US3885573A (en) * 1973-03-20 1975-05-27 Hakuju Inst For Health Science Therapeutical apparatus applying superposed output of DC and AC voltages
US3870924A (en) * 1973-06-19 1975-03-11 Chadwick Elect Inc H Light source with optimized flash energy input to gas tube
US4199710A (en) 1979-02-12 1980-04-22 Gte Sylvania Incorporated Ballast circuit for high intensity discharge (HID) lamps
US4286263A (en) * 1979-08-16 1981-08-25 Lindberg Allan W Illuminated changeable-display sign
US4348615A (en) * 1980-07-01 1982-09-07 Gte Products Corporation Discharge lamp operating circuit
US4618803A (en) 1984-11-19 1986-10-21 Polaroid Corporation Current limited strobe charge circuit
DE3932123A1 (de) 1989-09-27 1991-04-04 Bron Elektronik Ag Leuchten- bzw. blitzeinrichtung
DE4013048B4 (de) * 1990-04-24 2004-07-08 St. Jude Medical Ab Anordnung zur Gewebestimulation
JP3424941B2 (ja) 1992-04-01 2003-07-07 浜松ホトニクス株式会社 パルス光源装置
JP3309331B2 (ja) 1994-04-14 2002-07-29 ローム株式会社 電源供給回路及びそれを用いた機器
JPH09220292A (ja) 1996-02-20 1997-08-26 Minolta Co Ltd 光線治療器
SK154298A3 (en) 1996-05-10 2000-03-13 British Gas Plc Method for the transfer of electrons between an electrode and an enzyme in an electrochemical process
KR19980058057A (ko) 1996-12-30 1998-09-25 배순훈 입력전원차단기능이 구비된 정전압전원공급장치
US8313480B2 (en) * 2004-10-02 2012-11-20 Joseph Neev Device and method for treating skin disorders with thermal energy
US6104147A (en) * 1997-10-28 2000-08-15 Matsushita Electric Works, Ltd. Pulse generator and discharge lamp lighting device using same
CA2411346A1 (en) 2000-06-13 2001-12-20 Children's Medical Center Corporation Biosynthetic oncolytic molecules and uses therefor
JP3932773B2 (ja) * 2000-06-14 2007-06-20 松下電工株式会社 放電灯点灯装置
US6608452B1 (en) * 2001-01-18 2003-08-19 Fred H. Holmes Xenon power supply
US7470270B2 (en) 2001-06-27 2008-12-30 Radiancy Inc. Acne treatment
GB0210302D0 (en) 2002-05-07 2002-06-12 Siden Ltd Improvements in and relating to intense pulsed light devices
KR100638735B1 (ko) 2004-02-25 2006-10-27 이영수 분할 회전 광 필터가 내장된 ipl 조사장치
JP4054004B2 (ja) * 2004-04-28 2008-02-27 株式会社スカンジナビア 美容機器
KR200392330Y1 (ko) * 2005-03-25 2005-08-17 (주) 트레이스 자동 방전기능을 내장한 제논 플래쉬 모듈
KR100525292B1 (ko) 2005-06-17 2005-11-02 주식회사 제이시스메디칼 자동으로 피부 접촉면의 온도를 제어할 수 있는 피부광선조사기
KR100916488B1 (ko) 2007-09-14 2009-09-08 삼성전기주식회사 입력 전원 스위칭과 동기화된 전원장치
KR100912660B1 (ko) * 2007-10-12 2009-08-17 김용성 휴대용 피부미백 노화개선을 위한 아이피엘 광선치료기
KR100979835B1 (ko) 2008-04-07 2010-09-02 엘지전자 주식회사 발광 다이오드 조명을 위한 정전류 공급 장치
US7994729B2 (en) * 2008-07-21 2011-08-09 Simplexgrinnell Lp Optical element driving circuit
US8008866B2 (en) * 2008-09-05 2011-08-30 Lutron Electronics Co., Inc. Hybrid light source
KR20100127927A (ko) 2009-05-27 2010-12-07 고영산 에너지레벨 조절이 가능한 무정전압 아이피엘 기기

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2578269A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140028086A1 (en) * 2012-07-25 2014-01-30 Infineon Technologies Austria Ag Circuit arrangements and a method for receiving information
US9994179B2 (en) * 2012-07-25 2018-06-12 Infineon Technologies Austria Ag Circuit arrangements and a method for receiving information

Also Published As

Publication number Publication date
KR101089106B1 (ko) 2011-12-06
CN102316656B (zh) 2014-11-05
US20130066307A1 (en) 2013-03-14
KR20110043410A (ko) 2011-04-27
EP2578269A4 (en) 2013-12-18
EP2578269A2 (en) 2013-04-10
WO2011152628A3 (ko) 2012-04-19
US9943368B2 (en) 2018-04-17
EP2578269B1 (en) 2019-06-19
CN102316656A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2011152628A2 (ko) 싸이리스터를 이용하여 에너지레벨 조절이 가능한 아이피엘 기기
JP5198671B2 (ja) エネルギーレベル調節が可能なipl機器
JP4731085B2 (ja) Led照明モジュール用電源アセンブリ
WO2011108792A1 (ko) Led 조명 구동 장치
EP0537032B1 (en) Method for supplying power to an ophthalmic gas laser system
US5488553A (en) Power converter apparatus for defibrillating cardiac pacemaker
WO2013102902A1 (en) Pulse forming network (pfn) having multiple capacitor units for forming a pulse having a multi-level voltage and a method of forming such a pulse
WO2018207996A1 (ko) 미세전류 조절 수단을 구비한 스킨 부스터
KR101566780B1 (ko) 사용자 피부에 따라 램프 발광을 제어하는 ipl 장치
WO2017183813A1 (ko) 아이피엘 기기 및 그 구동 회로
US7795819B2 (en) Discharge lamp controls
CN110474606B (zh) 一种太阳模拟器充放电装置、方法及太阳能模拟器
US20110029046A1 (en) Control circuit for flash lamps or the like
KR101469088B1 (ko) 트리거 전압 제어가 가능한 ipl 장치 및 그 제어 방법
US20220182046A1 (en) Pulse forming network (pfn) having multiple capacitor units and a common passive output circuit for forming a pulse having a multi-level voltage and a method of forming such a pulse
KR101683060B1 (ko) 아이피엘 구동회로 및 이를 구비하는 아이피엘 기기
US8810147B2 (en) Method and circuit for driving LEDs with a pulsed current
JP2010534387A (ja) 放電ランプコントローラ
CN105682323A (zh) 一种紫外灯电源
RU2088286C1 (ru) Устройство для лечения и профилактики дерматологических заболеваний и ожоговых ран
WO2015174555A1 (ko) 방전 시동 전압 및 유지 전류 공급 유닛과 이 유닛을 구비한 피부 치료용 다파장 레이저 장치
EP3829044A1 (en) Mixed t_on - t_off modulation for a resonant converter
CN117770942A (zh) 一种便携式皮肤处理设备
JPH04245197A (ja) インバータ式x線装置
JPH0230160B2 (ko)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789986

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13696934

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011789986

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE