RU2088286C1 - Устройство для лечения и профилактики дерматологических заболеваний и ожоговых ран - Google Patents

Устройство для лечения и профилактики дерматологических заболеваний и ожоговых ран Download PDF

Info

Publication number
RU2088286C1
RU2088286C1 RU95114567A RU95114567A RU2088286C1 RU 2088286 C1 RU2088286 C1 RU 2088286C1 RU 95114567 A RU95114567 A RU 95114567A RU 95114567 A RU95114567 A RU 95114567A RU 2088286 C1 RU2088286 C1 RU 2088286C1
Authority
RU
Russia
Prior art keywords
storage capacitor
discharge
voltage
lamp
discharge lamp
Prior art date
Application number
RU95114567A
Other languages
English (en)
Other versions
RU95114567A (ru
Inventor
В.П. Архипов
А.С. Камруков
С.И. Кареев
Е.Д. Короп
Е.В. Кузнецов
С.Г. Шашковский
М.С. Яловик
Original Assignee
Общество с ограниченной ответственностью "МЕЛИТТА-УФ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "МЕЛИТТА-УФ" filed Critical Общество с ограниченной ответственностью "МЕЛИТТА-УФ"
Priority to RU95114567A priority Critical patent/RU2088286C1/ru
Application granted granted Critical
Publication of RU95114567A publication Critical patent/RU95114567A/ru
Publication of RU2088286C1 publication Critical patent/RU2088286C1/ru

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

Устройство предназначено для лечения и профилактики дерматологических заболеваний и ожоговых ран. Устройство содержит импульсную газоразрядную лампу, светофильтр и блок питания и управления, включающий генератор импульсов поджига и накопительный конденсатор, соединенный с импульсной газоразрядной лампой через импульсный трансформатор с образованием разрядного контура. В блок питания и управления введен высоковольтный источник постоянного тока, импульсный трансформатор выполнен на ферритовом сердечнике, при этом параметры разрядного контура определены следующим соотношением:
Figure 00000001

где V - напряжение накопительного конденсатора, В; С - емкость накопительного конденсатора, Ф; L0 - начальная индуктивность разрядного контура, Гн ; d - внутренний диаметр газоразрядной лампы, м; h - расстояние между электродами газоразрядной лампы, м; А = 109 - постоянный коэффициент, Вт/м<M>2<D>. Светофильтр может быть выполнен сменным. 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к медицинской технике, применяемой в дерматологии и хирургии для лечения и профилактики кожных заболеваний, раневых и ожоговых поверхностей с высокой бактериальной обсемененностью.
Известно устройство для лечения кожных заболеваний путем облучения пораженных участков ультрафиолетовым (УФ) излучением, содержащее источник УФ излучения в виде сфероидальной ртутной лампы небольшой мощности, отражатель и блок питания, подключенный к лампе (патент США N 3818914 кл. А 61 N 5/06, 1974). Работа известного устройства основана на использовании низкоинтенсивного непрерывного УФ излучения с преимущественно линейчатым спектром излучения.
Недостатками известного устройства являются значительное время лечебных процедур (десятки минут), а также нежелательные побочные эффекты - фотохимические и фотобиологические реакции (эритема, шелушение и т.д.) в поверхностном слое облучаемого участка.
Известно также устройство для лечения раневых инфекций и кожных заболеваний, являющееся наиболее близким к предлагаемому по технической сущности и содержащее облучатель с источником ультрафиолетового излучения в виде импульсной газоразрядной лампы, отражателем и светофильтром, блок питания и управления с накопительным конденсатором и генератором импульсов поджига, подключенный к облучателю, при этом импульсная газоразрядная лампа и накопительный конденсатор образуют разрядный контур, связанный с генератором импульсов поджига посредством импульсного трансформатора (патент РФ N 2008042 кл. А 61 N 5/06, 1992).
Известное устройство позволяет значительно сократить время лечебной процедуры и устранить отрицательные побочные эффекты при облучении. Эти результаты достигнуты за счет использования высокоинтенсивного импульсного УФ излучения сплошного спектра.
Однако известное устройство обладает низкой эффективностью преобразования исходной электрической энергии в полезный бактерицидный поток УФ излучения, а также недостаточно надежно
Эффективность преобразования энергии определяется отношением удельного (т. е. с единицы излучающей площади) среднего (т.е. усредненного по времени) потока УФ излучения в бактерицидной области к средней потребляемой от электрической сети мощности. Таким образом, повышение эффективности может быть достигнуто за счет увеличения бактерицидного потока УФ излучения или за счет уменьшения потребляемой электрической мощности при сохранении неизменными всех остальных параметров. В предлагаемом устройстве реализован второй путь: снижение потребляемой электрической мощности за счет уменьшения потерь электрической энергии.
Недостаточная надежность известной установки проявляется в сбоях, пропусках импульсов излучения или в нестабильности их параметров.
Можно указать следующие причины потерь электрической энергии в известном устройстве.
Во-первых, при заряде накопительного конденсатора от источника постоянного напряжения имеют место значительные потери энергии за счет чрезмерно больших токов в начальный период заряда. Кроме того, элементы электрической схемы установки, работающие при больших значениях тока, обладают невысокой надежностью.
Во-вторых, в фазе перехода от предварительного маломощного высоковольтного пробоя межэлектродного промежутка лампы к основному разрядному импульсу для надежного формирования основного разрядного импульса необходимо увеличивать индуктивность разрядного контура L (для увеличения длительности поджигающего импульса до 1 мкс), а для реализации высокой температуры излучающей плазмы (и, следовательно, для обеспечения высокой плотности УФ излучения) индуктивность L разрядного контура необходимо уменьшать (для увеличения максимального разрядного тока). В результате компромиссного решения, с одной стороны, температура плазмы не достигает оптимальных величин, что обуславливает недостаточный бактерицидный поток УФ излучения и эффективность установки, с другой стороны, из-за неизбежных разбросов и флюктуаций параметров ламп и плазмы в начальный период формирование разряда становится неустойчивым, что приводит к сбоям и пропускам импульсов излучения, т.е. к ненадежной и нестабильной работе установки.
Таким образом, техническим эффектом от использования настоящего изобретения является повышение эффективности и надежности работы установки.
Предложенное устройство содержит (фиг. 1) облучатель 1, в котором размещены импульсная газоразрядная лампа 2, отражатель 3 и светофильтр 4, и блок питания и управления 5. Лампа 2 подключена к блоку питания и управления 5. Светофильтр 4 выполнен легкосъемным, что позволяет при необходимости изменять спектральный состав излучения, вырабатываемого устройством.
Блок питания и управления 5 содержит (фиг. 2) высоковольтный источник постоянного тока 6, генератор импульсов поджига 7, накопительный конденсатор 8 и схему управления 9, подключенную к источнику постоянного тока 6 и к генератору импульсов поджига 7. В конкретном примере выполнения высоковольтный источник постоянного тока может быть реализован в виде высоковольтного выпрямителя и высоковольтного дросселя.
Лампа 2 подключена к блоку питания и управления 5 с помощью импульсного трансформатора 10. Обмотки импульсного трансформатора намотаны на ферритовом сердечнике (например в виде кольца), первичная обмотка подключена к выходу генератора импульсов поджига 7, вторичная повышающая обмотка включена последовательно с накопительным конденсатором 8 и лампой 2.
Разрядный контур образован накопительным конденсатором 8, вторичной обмоткой импульсного трансформатора 10 и газоразрядной лампой 2.
Параметры контура и разряда выбраны из следующего соотношения:
Figure 00000003
(1)
где U напряжение накопительного конденсатора, В;
C емкость накопительного конденсатора, Ф;
L0 начальная индуктивность разрядного контура, Гн;
d внутренний диаметр газоразрядной лампы, м;
h расстояние между электродами газоразрядной лампы, м;
A 109 постоянный коэффициент, Вт/м2.
Отличительными признаками заявленного устройства от известного являются:
наличие в блоке питания и управления высоковольтного источника постоянного тока;
размещение обмоток импульсного трансформатора на ферритовом сердечнике;
соотношение между параметрами контура.
Перечисленные отличия позволяют сделать вывод о новизне заявленного изобретения.
Из известного уровня техники не следует явным образом достижение вышеперечисленных видов технического результата за счет совокупности признаков, изложенных в формуле изобретения, что обеспечивает заявленному решению необходимый для защиты патентом изобретательский уровень. Промышленная применимость предлагаемого изобретения становится очевидной из описания работы установки.
Облучатель 1 устройства располагается параллельно обрабатываемой поверхности на расстоянии 5 15 см. Органами управления на блоке питания и управления 4 задается необходимый режим работы, который определяется числом импульсов излучения, вырабатываемых устройством.
При нажатии кнопки "Пуск" схема управления 9 включает высоковольтный источник постоянного тока 6 и начинается заряд накопительного конденсатора 8. Напряжение на конденсаторе контролируется схемой управления 9, для чего в ее составе имеется делитель напряжения, компаратор и источник опорного напряжения (на фиг. 2 не показаны). При достижении напряжения на обкладках накопительного конденсатора 8 заданной величины (обычно 1 2 кВ) схема управления 9 отключает высоковольтный источник постоянного тока 6 и подает управляющий импульс на генератор импульсов поджига 7. Генератор 7 вырабатывает импульс поджига амплитудой 1 2 кВ, длительностью 0.1 1 мкс, вызывающий протекание соответствующего тока по первичной обмотке импульсного трансформатора 10. Во вторичной обмотке импульсного трансформатора при этом формируется импульс амплитудой 20 40 кВ. Это напряжение, благодаря электрическому соединению накопительного конденсатора, вторичной обмотки трансформатора и лампы, оказывается приложенным к электродам лампы 2. В лампе 2, заполненной инертным газом, возникает электрический пробой между электродами в виде проводящего канала слабоионизированной плазмы. Накопительный конденсатор разряжается через лампу 2. при этом мощный импульс разрядного тока вызывает интенсивный разогрев и ионизацию газа. Образующаяся плазма газа интенсивно излучает в широкой области спектра, включающей ультрафиолетовое (УФ), видимое и инфракрасное (ИК) излучение. Это излучение отражается от отражателя 3 и через светофильтр 4 попадает на обрабатываемую поверхность, осуществляя лечебный эффект.
По мере окончания разряда накопительного конденсатора 8 плазма инертного газа в лампе остывает, газ переходит в атомарное состояние, излучение прекращается. Схема приходит в исходное состояние.
Затем процесс повторяется: схема управления включает источник постоянного тока, после заряда накопительного конденсатора до заданного напряжения вырабатывается импульс поджига и т.д.
В случае необходимости можно видоизменить лечебный эффект от применения устройства выбором светофильтра с соответствующей областью прозрачности.
Так, УФ излучение в диапазоне длин волн от 200 до 280 нм (область С) обладает выраженным бактерицидным действием, в диапазоне от 280 до 400 нм (области В и А) излучение относят к эритемному, которое при определенных дозах обладает тонизирующим и терапевтическим эффектом. Излучение видимого участка спектра (380 780 нм) производит фотобилогический эффект и при соответствующих дозировках способствует росту и восстановлению тканей. Излучение инфракрасного диапазона с длинами волн более 800 нм характеризуется тепловым воздействием.
Подбором или комбинацией светофильтров с соответствующим диапазоном прозрачности можно варьировать лечебный эффект, получая в том числе и комбинированный эффект, в зависимости от конкретных показаний.
По отношению к известным устройствам того же назначения предложенное устройство имеет значительные преимущества, обусловленные снижением суммарной энергетической дозы: сокращение необходимого времени обработки до нескольких минут, повышение безопасности и удобства в работе.
По отношению к известной установке-прототипу предложенная установка характеризуется более высокой эффективностью при том же потреблении энергии и более высокой надежностью работы. Эти преимущества предложенной установки обусловлены следующим.
Как уже указывалось выше, для уменьшения потерь энергии при формировании основного разряда (разряд накопительного конденсатора через лампу ) необходимо увеличить длительность импульса поджига, поступающего на лампу, с 0,1 0.3 мкс до 1 мкс, что можно было бы обеспечить соответствующим увеличением индуктивности разрядного контура. В то же время для обеспечения высокой температуры и достаточной оптической плотности излучающей плазмы длительность основного разряда необходимо сократить до 100 200 мкс, сохранив при этом величину накопленной в конденсаторе энергии, что диктует необходимость уменьшения индуктивности разрядного контура. Это противоречие удалось преодолеть за счет выполнения импульсного трансформатора на ферритовом сердечнике и выполнения расчетного соотношения [1]
Действительно, собственная индуктивность вторичной обмотки импульсного трансформатора составляет не более 10 мкГн, при отсутствии ферритового сердечника. Во время поджига, когда в разрядном контуре формируется высоковольтный импульс пробивного напряжения, действующее значение индуктивности вторичной обмотки трансформатора за счет влияния ферритового сердечника увеличивается в μ раз (m относительная магнитная проницаемость феррита). На графике зависимости магнитной проницаемости сердечника от величины напряженности магнитного поля Н (фиг. 3) зона работы во время поджига обозначена "А А" и соответствует небольшим токам (порядка 1 А). Для использованного феррита марки М 2000 МН m ≈ 2000, таким образом, эффективная величина индуктивности разрядного контура при первичном (предварительном) пробое лампы составляет приблизительно 20 мГн, что является вполне достаточным для увеличения длительности импульса поджига до 5 10 мкс и, следовательно, для сокращения потерь при формировании основного разрядного импульса.
Во время основного разряда сила тока в разрядном контуре достигает нескольких кА, что соответствует зоне "Б Б" на графике. Магнитная проницаемость феррита при таких значениях намагниченности падает до m ≈ 1, и эффективное значение индуктивности вторичной обмотки трансформатора приближается к ее минимальному статистическому (т.е. без сердечника) значению. Таким образом, во время основного разряда индуктивность разрядного контура минимальна и обеспечиваются оптимальные условия для формирования оптически плотной высокотемпературной плазмы, интенсивно излучающей в УФ области спектра.
Специально выполненные исследования показали, что условиями насыщения ферритового сердечника импульсного трансформатора (смещение рабочей точки в зону "Б Б") и снижения за счет этого потерь при формировании основного разрядного импульса является определенная взаимосвязь параметров разрядного контура, описываемая соотношением [1]
При этом верхняя граница соотношения [1] определяет уверенное попадание рабочей точки сердечника в зону "Б Б", нижняя граница при реальных значениях индуктивностей подводящих проводников, накопительного конденсатора и монтажа может быть достигнута лишь при снижении напряжения или емкости накопительного конденсатора, что соответствует уменьшению подводимой к лампе энергии и, следовательно, приводит к снижению температуры и оптической плотности плазмы.
Таким образом, выполнение импульсного трансформатора на ферритовом сердечнике с учетом соотношения [1] обеспечивает нелинейный характер индуктивности такого трансформатора: во время действия предварительного поджигающего импульса и во время основного разряда величина индуктивности разрядного контура имеет существенно разные значения, что позволяет достичь оптимальных сочетаний параметров на той и на другой стадии работы.
Кроме того, использование высоковольтного источника тока в блоке питания и управления позволило обеспечить неизменность зарядного тока и тем самым уменьшить потери энергии при заряде накопительного конденсатора и увеличить надежность работы электрических элементов установки.
Таким образом, отличительные признаки предложенной установки обуславливают сокращение потерь энергии на всех циклах работы установки: при заряде накопительного конденсатора, при формировании основного разрядного импульса и при формировании высокотемпературной, эффективно излучающей в УФ области спектра, плазмы. При этом каждый из факторов сокращения потерь приводит к увеличению доли энергии, вкладываемой в плазму, однако, раздельное использование каждого из них не обеспечивает решение поставленной задачи, т.к. важно не просто увеличение энерговклада в плазму, а лишь такое, которое обеспечивает возрастание излучаемой доли УФ непрерывного спектра высокой интенсивности. Это обстоятельство, а также нелинейная зависимость оптической плотности в УФ области от параметров плазмы, показывают, что в данном случае имеет место синергетический (сверхсуммарный) эффект при одновременном использовании всей заявленной совокупности признаков.
Экспериментальные исследования, выполненные на лабораторном образце устройства, показывают, что эффективность преобразования исходной электрической энергии в полезное УФ излучение в интервале длин волн от 200 до 400 нм по сравнению с устройством-прототипом увеличена в 1.4 раза и составляет 0,56 Вт/см2 при частоте повторения импульсов 1 Гц и потребляемой электрической мощности 100 Вт. При этом устройство выполнено в переносном варианте и имеет незначительные габариты 80х400х300 мм.
Одновременно с повышением эффективности достигнуто и повышение надежности установки, которое проявляется в исключении пропусков импульсов излучения и в стабильности их параметров.

Claims (2)

1. Устройство для лечения и профилактики дерматологических заболеваний и ожоговых ран, содержащее импульсную газоразрядную лампу, светофильтр и блок питания и управления, включающий генератор импульсов поджига и накопительный конденсатор, соединенный с импульсной газоразрядной лампой через импульсный трансформатор с образованием разрядного контура, отличающееся тем, что в блок питания и управления введен высоковольтный источник постоянного тока, импульсный трансформатор выполнен на ферритовом сердечнике, при этом параметры разрядного контура определены соотношением
Figure 00000004

где U напряжение накопительного конденсатора, В;
С емкость накопительного конденсатора, Ф;
L0 начальная индуктивность разрядного контура, Гн;
d внутренний диаметр газоразрядной лампы, м;
h расстояние между электродами газоразрядной лампы, м;
А 109 постоянный коэффициент, Вт/м2.
2. Устройство по п.1, отличающееся тем, что светофильтр выполнен сменным.
RU95114567A 1995-08-29 1995-08-29 Устройство для лечения и профилактики дерматологических заболеваний и ожоговых ран RU2088286C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95114567A RU2088286C1 (ru) 1995-08-29 1995-08-29 Устройство для лечения и профилактики дерматологических заболеваний и ожоговых ран

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95114567A RU2088286C1 (ru) 1995-08-29 1995-08-29 Устройство для лечения и профилактики дерматологических заболеваний и ожоговых ран

Publications (2)

Publication Number Publication Date
RU95114567A RU95114567A (ru) 1997-08-27
RU2088286C1 true RU2088286C1 (ru) 1997-08-27

Family

ID=20171300

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95114567A RU2088286C1 (ru) 1995-08-29 1995-08-29 Устройство для лечения и профилактики дерматологических заболеваний и ожоговых ран

Country Status (1)

Country Link
RU (1) RU2088286C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054649A2 (fr) * 1999-03-18 2000-09-21 Zakrytoe Aktsionernoe Obschestvo 'ls' Dispositif de photo-traitement therapeutique et cosmetique de tissus biologiques et procede d'utilisation
RU2641068C1 (ru) * 2017-03-21 2018-01-15 Акционерное общество "Государственный Рязанский приборный завод" Устройство для лечения раневой инфекции и дерматологических заболеваний
RU199574U1 (ru) * 2020-03-03 2020-09-08 Екатерина Андреевна Котоврасова Медицинский аппарат для импульсного оптического облучения
RU220270U1 (ru) * 2022-09-30 2023-09-05 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Аппарат импульсного оптического облучения для лечения ран и дерматологических заболеваний

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Патент СССР N 3818914, кл. A 61 N 5/06, 1974. 2. Патент СССР N 2008042, кл. A 61 N 5/06, 1992. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054649A2 (fr) * 1999-03-18 2000-09-21 Zakrytoe Aktsionernoe Obschestvo 'ls' Dispositif de photo-traitement therapeutique et cosmetique de tissus biologiques et procede d'utilisation
WO2000054649A3 (fr) * 1999-03-18 2000-12-28 Zakrytoe Aktsionernoe Obschest Dispositif de photo-traitement therapeutique et cosmetique de tissus biologiques et procede d'utilisation
RU2641068C1 (ru) * 2017-03-21 2018-01-15 Акционерное общество "Государственный Рязанский приборный завод" Устройство для лечения раневой инфекции и дерматологических заболеваний
RU199574U1 (ru) * 2020-03-03 2020-09-08 Екатерина Андреевна Котоврасова Медицинский аппарат для импульсного оптического облучения
RU220270U1 (ru) * 2022-09-30 2023-09-05 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Аппарат импульсного оптического облучения для лечения ран и дерматологических заболеваний

Similar Documents

Publication Publication Date Title
US6902563B2 (en) Irradiation device for therapeutic treatment of skin and other ailments
RU2550728C2 (ru) Блок питания для устройства для лечения светом дерматологических заболеваний
US6888319B2 (en) Flashlamp drive circuit
US6264802B1 (en) Method and device for UV treatment of liquids, air and surfaces
US20030057875A1 (en) Flashlamp drive circuit
KR101069063B1 (ko) 광선 치료기
US7710044B2 (en) Flashlamp drive circuit
RU2088286C1 (ru) Устройство для лечения и профилактики дерматологических заболеваний и ожоговых ран
US7795819B2 (en) Discharge lamp controls
RU2641068C1 (ru) Устройство для лечения раневой инфекции и дерматологических заболеваний
RU2092191C1 (ru) Установка для обеззараживания и дезодорации воздуха
JP2011517026A (ja) フラッシュランプ等のための制御回路
WO1999037239A1 (en) Device for hardening composite materials used in the dental field
RU199574U1 (ru) Медицинский аппарат для импульсного оптического облучения
US20210260395A1 (en) Use of cold atmospheric pressure plasma to treat warts
US6593706B1 (en) High pressure neon arc lamp
JP2010534387A (ja) 放電ランプコントローラ
EP4299027A1 (en) Hair treatment device
RU220270U1 (ru) Аппарат импульсного оптического облучения для лечения ран и дерматологических заболеваний
RU200695U1 (ru) Устройство для обеззараживания воздуха и поверхностей
RU217466U1 (ru) Устройство для ультрафиолетового облучения
RU2708198C1 (ru) Устройство для лечения раневой инфекции и дерматологических заболеваний
RU2070057C1 (ru) Устройство для импульсной стерилизации медицинских инструментов
KR101666818B1 (ko) 아이피엘 구동회로 및 이를 구비하는 아이피엘 기기
RU2082461C1 (ru) Способ определения параметров светотерапии при лечении кожных заболеваний

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090830

NF4A Reinstatement of patent

Effective date: 20120520

MM4A The patent is invalid due to non-payment of fees

Effective date: 20130830