WO2011152620A2 - Electrostatic chuck and a substrate-processing device comprising the same - Google Patents

Electrostatic chuck and a substrate-processing device comprising the same Download PDF

Info

Publication number
WO2011152620A2
WO2011152620A2 PCT/KR2011/003625 KR2011003625W WO2011152620A2 WO 2011152620 A2 WO2011152620 A2 WO 2011152620A2 KR 2011003625 W KR2011003625 W KR 2011003625W WO 2011152620 A2 WO2011152620 A2 WO 2011152620A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrostatic
heat
substrate
heat generating
Prior art date
Application number
PCT/KR2011/003625
Other languages
French (fr)
Korean (ko)
Other versions
WO2011152620A3 (en
Inventor
조상범
최명호
최진식
Original Assignee
주식회사 코미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코미코 filed Critical 주식회사 코미코
Priority to JP2012539829A priority Critical patent/JP5276751B2/en
Publication of WO2011152620A2 publication Critical patent/WO2011152620A2/en
Publication of WO2011152620A3 publication Critical patent/WO2011152620A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to an electrostatic chuck and a substrate processing apparatus including the same, including an electrostatic chuck for fixing a substrate, such as a wafer or a glass plate, used for manufacturing an integrated circuit device, using electrostatic power, and the same.
  • An apparatus for processing a substrate including an electrostatic chuck for fixing a substrate, such as a wafer or a glass plate, used for manufacturing an integrated circuit device, using electrostatic power, and the same.
  • integrated circuit devices are manufactured by performing a deposition process, an etching process, a photolithography process, an ion implantation process, and the like on a substrate such as a wafer or a glass plate, and examples thereof include semiconductor devices or display devices. Can be.
  • the etching process may include a process chamber providing a space for performing the gas, a gas providing unit connected to the process chamber from the outside to provide a process gas corresponding to the etching process to the inside of the process chamber, and
  • the process is performed by a substrate processing apparatus including an electrostatic chuck which is disposed inside the process chamber and supports the substrate and is fixed using electrostatic power.
  • the electrostatic chuck includes an electrostatic layer on which the substrate is placed while an electrostatic electrode generating electrostatic power is disposed, and a heat generating layer on which a heating electrode for heating the substrate is disposed below the electrostatic layer.
  • the heat generating electrode is uniformly disposed in the form of spirals or irregularities when viewed in a plan view, and has a high electrical conductivity and a high thermal conductivity for heat generation.
  • the heat generating layer has high electrical resistance because the role of insulating the heat generating electrode between the heat generating electrodes is very important.
  • the heating layer has low thermal conductivity along with high electrical resistance for the insulating role, heat from the heating electrode may not be smoothly transferred to the interface of the substrate, and thus the substrate may not be uniformly heated. have.
  • An object of the present invention is to provide an electrostatic chuck capable of uniformly heating the substrate while supporting and fixing the substrate using electrostatic force.
  • Another object of the present invention is to provide a substrate processing apparatus including the electrostatic chuck described above.
  • an electrostatic chuck includes an electrostatic layer and a heat generating layer.
  • the electrostatic layer has a first heat transfer coefficient while the electrostatic electrode generating the electrostatic force is disposed to fix the substrate placed thereon.
  • the heat generating layer is disposed below the electrostatic layer, and has a second heat transfer coefficient higher than the first heat transfer coefficient while a heat generating electrode for heating the substrate is disposed.
  • the heat generating layer may be made of a ceramic material including magnesia (MgO), yttria (Y 2 O 3 ) alone or a mixture thereof in aluminum nitride (AlN).
  • the second heat transfer coefficient may be 150 to 250 W / (m ⁇ K).
  • the heating layer may have the same thickness as the heating electrode and have a structure surrounding the side surface of the heating electrode.
  • the electrostatic layer may have a thickness of 1 to 5mm.
  • the electrostatic chuck may further include a heat insulation layer disposed below the heat generating layer and having a third heat transfer coefficient lower than the first heat transfer coefficient.
  • the heat insulation layer may have a thickness of 0.05 to 0.5mm.
  • the upper surface of the heating layer may be disposed in contact with the lower surface of the electrostatic layer, the lower surface of the heating layer may be disposed in contact with the upper surface of the heat insulating layer.
  • a substrate processing apparatus includes a process chamber, a gas providing unit and an electrostatic chuck.
  • the process chamber provides space for processing a substrate.
  • the gas providing unit is connected to the process chamber and provides a process gas for processing the substrate into the process chamber.
  • the electrostatic chuck is disposed inside the process chamber and is fixed while supporting a substrate to be processed through the process gas.
  • the electrostatic chuck has an electrostatic layer having a first heat transfer coefficient and an electrostatic layer having a first heat transfer coefficient while the electrostatic chuck is placed on top of the substrate and generates an electrostatic force for fixing the substrate, and heats the substrate.
  • the heat generating electrode may include a heat generating layer having a second heat transfer coefficient higher than the first heat transfer coefficient.
  • the heating layer may have the same thickness as the heating electrode and may have a structure surrounding the side surface of the heating electrode.
  • the upper surface of the heat generating layer may be disposed in contact with the lower surface of the electrostatic layer, and the lower surface of the heat generating layer may be disposed in contact with the upper surface of the heat insulating layer.
  • heat generation for heating the substrate under the electrostatic layer having the first heat transfer coefficient while the electrostatic electrode generating the electrostatic force is disposed to fix the substrate placed thereon By configuring the heat generating layer on which the electrode is disposed to have a second heat transfer coefficient higher than the first heat transfer coefficient, the heat generated from the heat generating electrode is preferentially uniformly spread in the heat generating layer, and then the relatively low first heat transfer coefficient By being provided to the substrate through the electrostatic layer having a, it is possible to uniformly heat the substrate.
  • FIG. 1 is a configuration diagram schematically showing an electrostatic chuck according to an embodiment of the present invention.
  • FIG. 2 is a view illustrating in detail the electrostatic layer, the heating layer and the heat insulating layer in the electrostatic chuck of FIG.
  • FIG. 3 is a configuration diagram schematically illustrating a substrate processing apparatus according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a configuration diagram schematically showing an electrostatic chuck according to an embodiment of the present invention
  • Figure 2 is a view showing in detail the electrostatic layer, the heating layer and the heat insulating layer in the electrostatic chuck of FIG.
  • an electrostatic chuck 100 includes an electrostatic layer 200, a heat generating layer 300, a heat insulating layer 400, and a support body 500.
  • the electrostatic layer 200 supports the substrate 10 placed thereon.
  • the substrate 10 may be a wafer or glass plate for manufacturing a semiconductor device or a display device of an integrated circuit device.
  • an electrostatic electrode 210 for generating electrostatic force is disposed to fix the substrate 10.
  • the electrostatic electrode 210 may be buried in a wide plate form inside the electrostatic layer 200.
  • the electrostatic electrode 210 may be made of tungsten (W) or molybdenum (Mo) having a low coefficient of thermal expansion.
  • the electrostatic layer 200 is made of an insulating ceramic material.
  • the electrostatic layer 200 may be made of alumina (Al 2 O 3 ) or yttria (Y 2 O 3 ) as a base material.
  • the electrostatic layer 200 may have a form in which magnesia (MgO) or silicon oxide (SiO 2 ) is added to alumina (Al 2 O 3 ) in an amount of about 90 to 96%, or about 90% or more. It may have a form in which alumina (Al 2 O 3 ) is added to tria (Y 2 O 3 ).
  • the electrostatic layer 200 has a volume resistance of about 10 14 to 10 16 ⁇ cm, which indicates high insulation, and may have a first heat transfer coefficient of about 10 to 30 W / (m ⁇ K).
  • the heat generating layer 300 is disposed under the electrostatic layer 200.
  • the heating layer 300 is provided with a heating electrode 310 for generating heat in order to heat the substrate 10.
  • the heating electrode 310 has a thickness of about 0.005 to 0.3 mm, a width of about 0.5 to 10 mm, and a length of about 3 to 30 m so as to have a resistance of about 1 to 100 kPa for heating the substrate 10 to about 0 to 100 ° C. It can be configured as. Accordingly, the heating electrode 310 may be uniformly disposed in the form of a spiral or an uneven shape when viewed in plan view.
  • the heating electrode 310 is made of metal paste such as silver (Ag), gold (Au), nickel (Ni), tungsten (W), molybdenum (Mo), or titanium (Ti) to form the substrate 10. It is possible to implement a temperature for heating.
  • the heating electrode 310 may be made of a powder material such as tungsten (W), molybdenum (Mo), or titanium (Ti), and may include gold (Au), nickel (Ni), titanium (Ti), or nitride. It may be manufactured through a thin film material such as titanium (TiN).
  • the heating layer 300 has a structure surrounding the side surface of the heating electrode 310.
  • the heating layer 300 preferably has the same thickness t1 as the heating electrode 310 so as to surround all front sides of the heating electrode 310.
  • the heat generating layer 300 is exposed to the upper and lower surfaces of the top and bottom, the top surface is in contact with the electrostatic layer 200, the bottom surface is in contact with the heat insulating layer 400. That is, the upper surface of the heating layer 300 is in contact with the lower surface of the electrostatic layer 200, and the lower surface of the heating layer 300 is in contact with the upper surface of the heat insulating layer 400.
  • the heat generating layer 300 when the heat generating layer 300 surrounds the side surface of the heat generating electrode 310, the thermal conductivity of the heat generating layer 300 increases, and as a result, the heat generating layer 300 itself also has an advantage of acting as a heat generating electrode. That is, since the heat generating layer 300 has a structure surrounding the side surface of the heat generating electrode 310, a portion serving as the heat generating electrode 310 is enlarged.
  • the thickness t1 of the heating layer 300 may be configured to be thicker than that of the heating electrode 310. At this time, when the thickness t1 of the heat generating layer 300 exceeds about 1.5 times that of the heat generating electrode 310, excessive heat is generated from the heat generating electrode 310 to heat the substrate 10 to about 0 to 100 ° C. In addition, the thickness t1 is too thick to efficiently transfer heat to the electrostatic layer 200 and the substrate 10, and the heating electrode 310 may be damaged due to excessive thermal stress. have. Therefore, the thickness t1 of the heat generating layer 300 is preferably configured to be about 1.5 times thicker than the heat generating electrode 310.
  • the heat generating layer 300 is made of an insulating ceramic material so as to be insulated from each other at portions facing each other of the heating electrode 310 having a spiral shape or an uneven shape.
  • the heat generating layer 300 is less than the first heat transfer coefficient of about 10 to 30 W / (m ⁇ K) of the electrostatic layer 200 in order to spread the heat generated from the heat generating electrode 310 as uniformly as possible in the lateral direction. Has a high second heat transfer coefficient.
  • the rate at which heat generated from the heating electrode 310 is transferred to the substrate 10 via the heating layer 300 and the electrostatic layer 200 is increased. It is not preferable because the process time is slowed down and the process time is long, and when it exceeds about 250 W / (m ⁇ K), the heat generated from the heat generating electrode 310 passes through the heat generating layer 300 and the electrostatic layer 200 and the substrate 10. ) Is very fast, but the difference between the first and second heat transfer coefficients of each of the heating layer 300 and the electrostatic layer 200 is very large, so that the temperature variation of the heating layer 300 and the ceiling layer 200 is very high. It is not preferable because the electrostatic layer 200 accumulates fatigue due to thermal stress or heat shock.
  • the second heat transfer coefficient is about 150 to 250 W / (m ⁇ K) so that the heat from the heat generating electrode 310 is uniformly spread on the substrate 10 in the heat generating layer 300.
  • the heat generating layer 300 is prepared by adding about 90% of aluminum nitride (AlN), which is superior in thermal conductivity to other ceramic materials, to which magnesia (MgO) or yttria (Y 2 O 3 ) are added. can do.
  • AlN aluminum nitride
  • MgO magnesia
  • Y 2 O 3 yttria
  • the heating layer 300 may be manufactured by forming the material in the form of ceramic bulk, ceramic paste, or ceramic thin film, and the like, and may be an adhesive method, a paste printing method, or a deposition method.
  • the heat generating layer 300 manufactured as described above may have a volume resistance of about 10 8 to 10 16 cm 3 , similar to that of the electrostatic layer 200, thereby exhibiting high insulation.
  • the second heat transfer coefficient higher than the first heat transfer coefficient of the heat generating layer 300 having the heat generating electrode 310 disposed below the electrostatic layer 200 having the first heat transfer coefficient is obtained.
  • the heat generated from the heating electrode 310 is preferentially uniformly spread in the heating layer 300 and then provided to the substrate 10 through the electrostatic layer 200 having a relatively low first heat transfer coefficient. By doing so, the substrate 10 can be uniformly heated.
  • the electrostatic layer 200 when the thickness t2 of the electrostatic layer 200 is less than about 1 mm, it is not preferable to uniformly spread the heat spread from the heat generating layer 300. The efficiency delivered to 10 is reduced, which makes it difficult to heat the substrate 10 to a desired temperature, which is undesirable. Therefore, the electrostatic layer 200 preferably has a thickness t2 of about 1 to 5 mm.
  • the heat insulation layer 400 is disposed under the heat generating layer 300.
  • the heat insulation layer 400 blocks the heat generated downward from the heating electrode 310 to guide the heat upward.
  • the heat insulation layer 400 has a third heat transfer coefficient lower than the first heat transfer coefficient of the electrostatic layer 200 as well as the second heat transfer coefficient of the heat generating layer 300.
  • the heat insulating layer 400 may be made of a glass-based ceramic material of a high temperature baking type such as silicon oxide (SiO 2 ), magnesia (MgO), zinc oxide (ZnO), or the like.
  • the heat insulating layer 400 may be made of a polymer material such as silicon, acrylic, epoxy, or the like, or may be made of a material in which two or more are mixed.
  • the third heat transfer coefficient of the heat insulating layer 400 may be about 0.5 to 5 W / (m ⁇ K), and may be about 10 8 to 10 16 ⁇ cm, similar to the electrostatic layer 200 and the heat generating layer 300. It may have a volume resistance.
  • the thickness t3 of the heat insulation layer 400 is less than about 0.05 mm, the temperature of the substrate 10 may not be uniform due to the influence of the cooling fluid flowing in the flow path 510 of the support body 500 disposed below.
  • the thermal efficiency delivered to the substrate 10 is lowered, it is not preferable because a large amount of heat must be generated from the heating electrode 310 unnecessarily.
  • the heat insulation layer 400 has a thickness t3 of about 0.05 to 0.5 mm that can effectively block heat transferred from the heating electrode 310 to the support body 500 without being thick.
  • the support body 500 is disposed below the heat insulation layer 400.
  • the support body 500 supports the insulating layer 400 through the adhesive layer 600 disposed between the insulating layer 400 and serves as a pedestal as a whole.
  • the support body 500 has a flow path 510 uniformly distributed therein. Thus, the support body 500 may cool the heat partially transferred from the heat insulation layer 400 by flowing a cooling fluid into the flow path 510.
  • FIG. 3 is a configuration diagram schematically illustrating a substrate processing apparatus according to an embodiment of the present invention.
  • the substrate processing apparatus 1000 includes a process chamber 700, a gas providing unit 800, and an electrostatic chuck 100.
  • the process chamber 700 provides space for processing the substrate 10 to manufacture integrated circuit devices such as semiconductor devices or display devices. For example, an etching process may be performed on the substrate 10 in the process chamber 700. At this time, the interior of the process chamber 700 may be maintained in a high vacuum state to make the etching process more smoothly.
  • the gas provider 800 is connected to the process chamber 700.
  • the gas provider 800 provides a process gas 20 for processing the substrate 10 from the outside into the process chamber 700.
  • the gas providing unit 800 may be connected to the upper portion of the process chamber 700 for smooth provision.
  • the process gas 20 may be an inert gas for generating plasma required for the etching process, or a source gas for substantial etching. Meanwhile, a high frequency voltage may be applied to the gas providing unit 800 from the outside so that the plasma is generated inside the process chamber 700.
  • the electrostatic chuck 100 is disposed inside the process chamber 700. Specifically, the electrostatic chuck 100 is disposed below the process chamber 700 to fix the substrate 10 while supporting the substrate 10.
  • the electrostatic chuck 100 can uniformly heat the substrate 10 as described with reference to FIGS. 1 and 2, the semiconductor device manufactured by treating the substrate 10 through the process gas 20. Alternatively, the quality of integrated circuit devices such as display devices can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

An electrostatic chuck comprises an electrostatic layer and a heat-emitting layer. The electrostatic layer has disposed therein an electrostatic electrode which generates an electrostatic force for securing a substrate placed thereon, while also having a first heat transfer coefficient. The heat-emitting layer is disposed underneath the electrostatic layer and has disposed therein a heat-emitting electrode for heating the substrate, while also having a second heat transfer coefficient higher than the first heat transfer coefficient.

Description

정전척 및 이를 포함하는 기판 처리 장치Electrostatic chuck and substrate processing apparatus including the same
본 발명은 정전척 및 이를 포함하는 기판 처리 장치에 관한 것으로써, 집적 회로 소자를 제조하는데 사용되는 웨이퍼(wafer) 또는 유리판과 같은 기판을 정전력을 이용하여 고정하기 위한 정전척 및 이를 포함하여 상기 기판을 처리하는 장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck and a substrate processing apparatus including the same, including an electrostatic chuck for fixing a substrate, such as a wafer or a glass plate, used for manufacturing an integrated circuit device, using electrostatic power, and the same. An apparatus for processing a substrate.
일반적으로, 집적 회로 소자는 웨이퍼(wafer) 또는 유리판과 같은 기판을 대상으로 하여 증착 공정, 식각 공정, 포토리소그래피 공정, 이온 주입 공정 등을 수행하여 제조되며, 그 예로는 반도체 소자 또는 디스플레이 소자를 들 수 있다. In general, integrated circuit devices are manufactured by performing a deposition process, an etching process, a photolithography process, an ion implantation process, and the like on a substrate such as a wafer or a glass plate, and examples thereof include semiconductor devices or display devices. Can be.
상기와 같은 공정들 중 식각 공정은 그 수행을 위한 공간을 제공하는 공정 챔버, 외부로부터 상기 공정 챔버 내로 연결되어 상기 식각 공정에 해당하는 공정 가스를 상기 공정 챔버의 내부로 제공하는 가스 제공부 및 상기 공정 챔버의 내부에 배치되어 상기 기판을 지지하면서 정전력을 이용해 고정하는 정전척을 포함하는 기판 처리 장치에 의해 진행된다. Among the processes, the etching process may include a process chamber providing a space for performing the gas, a gas providing unit connected to the process chamber from the outside to provide a process gas corresponding to the etching process to the inside of the process chamber, and The process is performed by a substrate processing apparatus including an electrostatic chuck which is disposed inside the process chamber and supports the substrate and is fixed using electrostatic power.
여기서, 상기 정전척은 정전력을 발생하는 정전 전극이 배치되면서 상기 기판이 놓여지는 정전층 및 상기 정전층의 하부에서 상기 기판을 가열하기 위한 발열 전극이 배치된 발열층을 포함한다. Here, the electrostatic chuck includes an electrostatic layer on which the substrate is placed while an electrostatic electrode generating electrostatic power is disposed, and a heat generating layer on which a heating electrode for heating the substrate is disposed below the electrostatic layer.
여기서, 상기 발열 전극은 평면적으로 보았을 때 나선 형태 또는 요철 형태로 균일하게 배치되며, 발열을 위해 높은 전기 전도성과 높은 열 전도성을 갖는다.Here, the heat generating electrode is uniformly disposed in the form of spirals or irregularities when viewed in a plan view, and has a high electrical conductivity and a high thermal conductivity for heat generation.
이에, 상기 발열층은 상기 발열 전극의 마주하는 사이에서 상기 발열 전극을 절연시키는 역할이 매우 중요하기 때문에 높은 전기 저항성을 가지게 된다.Thus, the heat generating layer has high electrical resistance because the role of insulating the heat generating electrode between the heat generating electrodes is very important.
그러나, 상기 발열층은 상기의 절연 역할을 위한 높은 전기 저항성과 함께 낮은 열 전도성도 가지고 있으므로, 상기 발열 전극으로부터의 열이 상기 기판의 계면으로 원활하게 전달되지 못하여 상기 기판이 균일하게 가열되지 못할 수 있다. However, since the heating layer has low thermal conductivity along with high electrical resistance for the insulating role, heat from the heating electrode may not be smoothly transferred to the interface of the substrate, and thus the substrate may not be uniformly heated. have.
본 발명의 목적은 정전력을 이용하여 기판을 지지 고정하면서 상기 기판을 균일하게 가열할 수 있는 정전척을 제공하는 것이다.An object of the present invention is to provide an electrostatic chuck capable of uniformly heating the substrate while supporting and fixing the substrate using electrostatic force.
또한, 본 발명의 다른 목적은 상기한 정전척을 포함하는 기판 처리 장치를 제공하는 것이다. Another object of the present invention is to provide a substrate processing apparatus including the electrostatic chuck described above.
상술한 본 발명의 목적을 달성하기 위하여, 일 특징에 따른 정전척은 정전층 및 발열층을 포함한다.In order to achieve the above object of the present invention, an electrostatic chuck according to one aspect includes an electrostatic layer and a heat generating layer.
상기 정전층은 상부에 놓여지는 기판을 고정하기 위하여 정전력을 발생하는 정전 전극이 배치되면서 제1 열전달 계수를 갖는다. 상기 발열층은 상기 정전층의 하부에 배치되며, 상기 기판을 가열하기 위한 발열 전극이 배치되면서 상기 제1 열전달 계수보다 높은 제2 열전달 계수를 갖는다.The electrostatic layer has a first heat transfer coefficient while the electrostatic electrode generating the electrostatic force is disposed to fix the substrate placed thereon. The heat generating layer is disposed below the electrostatic layer, and has a second heat transfer coefficient higher than the first heat transfer coefficient while a heat generating electrode for heating the substrate is disposed.
여기서, 상기 발열층은 질화 알루미늄(AlN)에 마그네시아(MgO), 이트리아(Y2O3)가 단독으로 포함되거나 또는 이들의 혼합물로 구성되는 세라믹 물질로 이루어질 수 있다. 또한, 상기 제2 열전달 계수는 150 내지 250W/(m·K) 일 수 있다. Here, the heat generating layer may be made of a ceramic material including magnesia (MgO), yttria (Y 2 O 3 ) alone or a mixture thereof in aluminum nitride (AlN). In addition, the second heat transfer coefficient may be 150 to 250 W / (m · K).
또한, 상기 발열층은 상기 발열 전극과 동일한 두께를 가지면서 상기 발열 전극의 측면을 둘러싼 구조를 가질 수 있다. 또한, 상기 정전층은 1 내지 5㎜의 두께를 가질 수 있다. In addition, the heating layer may have the same thickness as the heating electrode and have a structure surrounding the side surface of the heating electrode. In addition, the electrostatic layer may have a thickness of 1 to 5mm.
한편, 상기 정전척은 상기 발열층의 하부에 배치되며 상기 제1 열전달 계수보다 낮은 제3 열전달 계수를 갖는 단열층을 더 포함할 수 있다. 이에, 상기 단열층은 0.05 내지 0.5㎜의 두께를 가질 수 있다.The electrostatic chuck may further include a heat insulation layer disposed below the heat generating layer and having a third heat transfer coefficient lower than the first heat transfer coefficient. Thus, the heat insulation layer may have a thickness of 0.05 to 0.5mm.
아울러, 상기 발열층의 상부 표면은 상기 정전층의 하부 표면과 접촉하게 배치할 수 있고, 상기 발열층의 하부 표면은 상기 단열층의 상부 표면과 접촉하게 배치할 수 있다.In addition, the upper surface of the heating layer may be disposed in contact with the lower surface of the electrostatic layer, the lower surface of the heating layer may be disposed in contact with the upper surface of the heat insulating layer.
상술한 본 발명의 다른 목적을 달성하기 위하여, 일 특징에 따른 기판 처리 장치는 공정 챔버, 가스 제공부 및 정전척을 포함한다.In order to achieve the above object of the present invention, a substrate processing apparatus according to one aspect includes a process chamber, a gas providing unit and an electrostatic chuck.
상기 공정 챔버는 기판을 처리하기 위한 공간을 제공한다. 상기 가스 제공부는 상기 공정 챔버와 연결되며, 상기 기판을 처리하기 위한 공정 가스를 상기 공정 챔버의 내부로 제공한다. 상기 정전척은 상기 공정 챔버의 내부에 배치되고, 상기 공정 가스를 통해 처리되는 기판을 지지하면서 고정한다. The process chamber provides space for processing a substrate. The gas providing unit is connected to the process chamber and provides a process gas for processing the substrate into the process chamber. The electrostatic chuck is disposed inside the process chamber and is fixed while supporting a substrate to be processed through the process gas.
이에, 상기 정전척은 상부에 상기 기판이 놓여지며 상기 기판을 고정하기 위한 정전력을 발생하는 정전 전극이 배치되면서 제1 열전달 계수를 갖는 정전층 및 상기 정전층의 하부에 배치되며 상기 기판을 가열하기 위한 발열 전극이 배치되면서 상기 제1 열전달 계수보다 높은 제2 열전달 계수를 갖는 발열층을 포함할 수 있다. Accordingly, the electrostatic chuck has an electrostatic layer having a first heat transfer coefficient and an electrostatic layer having a first heat transfer coefficient while the electrostatic chuck is placed on top of the substrate and generates an electrostatic force for fixing the substrate, and heats the substrate. The heat generating electrode may include a heat generating layer having a second heat transfer coefficient higher than the first heat transfer coefficient.
이에, 상기 발열층은 상기 발열 전극과 동일한 두께를 가지면서 상기 발열 전극의 측면을 둘러싼 구조를 가질 수 있다.Thus, the heating layer may have the same thickness as the heating electrode and may have a structure surrounding the side surface of the heating electrode.
그리고 상기 발열층의 상부 표면은 상기 정전층의 하부 표면과 접촉하게 배치할 수 있고, 상기 발열층의 하부 표면은 상기 단열층의 상부 표면과 접촉하게 배치할 수 있다.The upper surface of the heat generating layer may be disposed in contact with the lower surface of the electrostatic layer, and the lower surface of the heat generating layer may be disposed in contact with the upper surface of the heat insulating layer.
이러한 정전척 및 이를 포함하는 기판 처리 장치에 따르면, 상부에 놓여지는 기판을 고정하기 위하여 정전력을 발생하는 정전 전극이 배치되면서 제1 열전달 계수를 갖는 정전층의 하부에 상기 기판을 가열하기 위한 발열 전극이 배치된 발열층을 상기 제1 열전달 계수보다 높은 제2 열전달 계수를 갖도록 구성함으로써, 상기 발열 전극으로부터 발생된 열이 상기 발열층에서 우선적으로 균일하게 퍼지도록 한 다음 상대적으로 낮은 제1 열전달 계수를 갖는 상기 정전층을 통하여 상기 기판에 제공되도록 함으로써, 상기 기판을 균일하게 가열할 수 있다.According to such an electrostatic chuck and a substrate processing apparatus including the same, heat generation for heating the substrate under the electrostatic layer having the first heat transfer coefficient while the electrostatic electrode generating the electrostatic force is disposed to fix the substrate placed thereon. By configuring the heat generating layer on which the electrode is disposed to have a second heat transfer coefficient higher than the first heat transfer coefficient, the heat generated from the heat generating electrode is preferentially uniformly spread in the heat generating layer, and then the relatively low first heat transfer coefficient By being provided to the substrate through the electrostatic layer having a, it is possible to uniformly heat the substrate.
따라서, 상기 기판을 공정 가스를 통해 처리하여 제조되는 반도체 소자 또는 디스플레이 소자와 같은 집적 회로 소자의 품질을 향상시킬 수 있다.Therefore, the quality of integrated circuit devices such as semiconductor devices or display devices manufactured by treating the substrate through a process gas can be improved.
도 1은 본 발명의 일 실시예에 따른 정전척을 개략적으로 나타낸 구성도이다.1 is a configuration diagram schematically showing an electrostatic chuck according to an embodiment of the present invention.
도 2는 도 1의 정전척에서 정전층, 발열층 및 단열층을 구체적으로 나타낸 도면이다.2 is a view illustrating in detail the electrostatic layer, the heating layer and the heat insulating layer in the electrostatic chuck of FIG.
도 3은 본 발명의 일 실시예에 따른 기판 처리 장치를 개략적으로 나타낸 구성도이다. 3 is a configuration diagram schematically illustrating a substrate processing apparatus according to an embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 정전척 및 이를 포함하는 기판 처리 장치에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.Hereinafter, an electrostatic chuck and a substrate processing apparatus including the same according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements. In the accompanying drawings, the dimensions of the structures are shown in an enlarged scale than actual for clarity of the invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.
한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.On the other hand, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 1은 본 발명의 일 실시예에 따른 정전척을 개략적으로 나타낸 구성도이고, 도 2는 도 1의 정전척에서 정전층, 발열층 및 단열층을 구체적으로 나타낸 도면이다.1 is a configuration diagram schematically showing an electrostatic chuck according to an embodiment of the present invention, Figure 2 is a view showing in detail the electrostatic layer, the heating layer and the heat insulating layer in the electrostatic chuck of FIG.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 정전척(100)은 정전층(200), 발열층(300), 단열층(400) 및 지지 몸체(500)를 포함한다.1 and 2, an electrostatic chuck 100 according to an embodiment of the present invention includes an electrostatic layer 200, a heat generating layer 300, a heat insulating layer 400, and a support body 500.
정전층(200)은 상부에 놓여지는 기판(10)을 지지한다. 여기서, 기판(10)은 집적 회로 소자의 반도체 소자 또는 디스플레이 소자를 제조하기 위한 웨이퍼(wafer) 또는 유리판일 수 있다.The electrostatic layer 200 supports the substrate 10 placed thereon. Here, the substrate 10 may be a wafer or glass plate for manufacturing a semiconductor device or a display device of an integrated circuit device.
정전층(200)에는 기판(10)을 고정하기 위하여 정전력을 발생하는 정전 전극(210)이 배치된다. 여기서, 정전 전극(210)은 정전층(200)의 내부에 넓은 플레이트 형태로 매설될 수 있다. 정전 전극(210)은 열팽창률이 낮은 텅스텐(W) 또는 몰리브덴(Mo)으로 이루어질 수 있다.In the electrostatic layer 200, an electrostatic electrode 210 for generating electrostatic force is disposed to fix the substrate 10. Here, the electrostatic electrode 210 may be buried in a wide plate form inside the electrostatic layer 200. The electrostatic electrode 210 may be made of tungsten (W) or molybdenum (Mo) having a low coefficient of thermal expansion.
정전층(200)은 절연성의 세라믹 물질로 이루어진다. 구체적으로, 정전층(200)은 알루미나(Al2O3) 또는 이트리아(Y2O3)가 기본 물질로 이루어질 수 있다. 예를 들어, 정전층(200)은 약 90 내지 96% 함량의 알루미나(Al2O3)에 마그네시아(MgO) 또는 산화 규소(SiO2)가 첨가된 형태를 가지거나, 약 90% 함량 이상의 이트리아(Y2O3)에 알루미나(Al2O3)가 첨가된 형태를 가질 수 있다.The electrostatic layer 200 is made of an insulating ceramic material. Specifically, the electrostatic layer 200 may be made of alumina (Al 2 O 3 ) or yttria (Y 2 O 3 ) as a base material. For example, the electrostatic layer 200 may have a form in which magnesia (MgO) or silicon oxide (SiO 2 ) is added to alumina (Al 2 O 3 ) in an amount of about 90 to 96%, or about 90% or more. It may have a form in which alumina (Al 2 O 3 ) is added to tria (Y 2 O 3 ).
이럴 경우, 정전층(200)은 체적 저항이 약 1014 내지 1016Ω㎝를 가지게 되어 고절연성을 나타내며, 약 10 내지 30W/(m·K)의 제1 열전달 계수를 가질 수 있다. In this case, the electrostatic layer 200 has a volume resistance of about 10 14 to 10 16 Ωcm, which indicates high insulation, and may have a first heat transfer coefficient of about 10 to 30 W / (m · K).
발열층(300)은 정전층(200)의 하부에 배치된다. 발열층(300)에는 기판(10)을 가열하기 위하여 열을 발생하는 발열 전극(310)이 배치된다.The heat generating layer 300 is disposed under the electrostatic layer 200. The heating layer 300 is provided with a heating electrode 310 for generating heat in order to heat the substrate 10.
발열 전극(310)은 기판(10)을 약 0 내지 100℃로 가열하기 위한 약 1 내지 100Ω의 저항을 갖도록 두께는 약 0.005 내지 0.3㎜, 폭은 약 0.5 내지 10㎜, 길이는 약 3 내지 30m로 구성될 수 있다. 이에, 발열 전극(310)은 평면적으로 보았을 때 나선 형태 또는 요철 형태로 하여 균일하게 배치될 수 있다. The heating electrode 310 has a thickness of about 0.005 to 0.3 mm, a width of about 0.5 to 10 mm, and a length of about 3 to 30 m so as to have a resistance of about 1 to 100 kPa for heating the substrate 10 to about 0 to 100 ° C. It can be configured as. Accordingly, the heating electrode 310 may be uniformly disposed in the form of a spiral or an uneven shape when viewed in plan view.
또한, 발열 전극(310)은 은(Ag), 금(Au), 니켈(Ni), 텅스텐(W), 몰리브덴(Mo) 또는 티타늄(Ti) 등의 금속 페이스트를 통해 제조하여 기판(10)을 가열하기 위한 온도를 구현할 수 있다. 이와 달리, 발열 전극(310)은 텅스텐(W), 몰리브덴(Mo) 또는 티타늄(Ti) 등의 분말 소재를 통해 제조될 수도 있고, 금(Au), 니켈(Ni), 티타늄(Ti) 또는 질화 티타늄(TiN) 등의 박막 소재를 통해 제조될 수도 있다.In addition, the heating electrode 310 is made of metal paste such as silver (Ag), gold (Au), nickel (Ni), tungsten (W), molybdenum (Mo), or titanium (Ti) to form the substrate 10. It is possible to implement a temperature for heating. Alternatively, the heating electrode 310 may be made of a powder material such as tungsten (W), molybdenum (Mo), or titanium (Ti), and may include gold (Au), nickel (Ni), titanium (Ti), or nitride. It may be manufactured through a thin film material such as titanium (TiN).
발열층(300)은 발열 전극(310)의 측면을 둘러싼 구조를 갖는다. 이때, 발열층(300)은 발열 전극(310)의 전 측면을 모두 둘러쌀 수 있도록 발열 전극(310)과 동일한 두께(t1)를 가지는 것이 바람직하다. 이에, 발열층(300)은 상단면과 하단면이 상부 및 하부로 노출되어 상단면은 정전층(200)에 접촉하고, 하단면은 단열층(400)에 접촉된다. 즉, 발열층(300)의 상부 표면은 정전층(200)의 하부 표면과 접촉하고, 발열층(300)의 하부 표면은 단열층(400)의 상부 표면과 접촉한다.The heating layer 300 has a structure surrounding the side surface of the heating electrode 310. In this case, the heating layer 300 preferably has the same thickness t1 as the heating electrode 310 so as to surround all front sides of the heating electrode 310. Thus, the heat generating layer 300 is exposed to the upper and lower surfaces of the top and bottom, the top surface is in contact with the electrostatic layer 200, the bottom surface is in contact with the heat insulating layer 400. That is, the upper surface of the heating layer 300 is in contact with the lower surface of the electrostatic layer 200, and the lower surface of the heating layer 300 is in contact with the upper surface of the heat insulating layer 400.
언급한 바와 같이, 발열층(300)이 발열 전극(310)의 측면을 둘러싸면 발열층(300)의 열전도율이 높아지고, 그 결과 발열층(300) 자체도 발열 전극의 역할을 하는 이점이 있다. 즉, 발열층(300)이 발열 전극(310)의 측면을 둘러싸는 구조를 가짐으로써 발열 전극(310)의 역할을 하는 부분이 확대되는 것이다.As mentioned, when the heat generating layer 300 surrounds the side surface of the heat generating electrode 310, the thermal conductivity of the heat generating layer 300 increases, and as a result, the heat generating layer 300 itself also has an advantage of acting as a heat generating electrode. That is, since the heat generating layer 300 has a structure surrounding the side surface of the heat generating electrode 310, a portion serving as the heat generating electrode 310 is enlarged.
또한, 발열층(300)의 두께(t1)는 발열 전극(310)보다 두껍게 구성될 수 있다. 이때, 발열층(300)의 두께(t1)가 발열 전극(310)보다 약 1.5배 초과할 경우에는 기판(10)을 약 0 내지 100℃로 가열시키기 위해 발열 전극(310)으로부터 열을 과다하게 발생시켜야 할 뿐만 아니라 그 두께(t1)가 너무 두꺼워 정전층(200)과 기판(10)으로 열을 효율적으로 전달하지 못하고, 또한 과다한 열응력에 의한 피로로 인해 발열 전극(310)이 파손될 우려도 있다. 따라서, 발열층(300)의 두께(t1)는 발열 전극(310)보다 약 1.5배 내에서 두껍게 구성하는 것이 바람직하다.In addition, the thickness t1 of the heating layer 300 may be configured to be thicker than that of the heating electrode 310. At this time, when the thickness t1 of the heat generating layer 300 exceeds about 1.5 times that of the heat generating electrode 310, excessive heat is generated from the heat generating electrode 310 to heat the substrate 10 to about 0 to 100 ° C. In addition, the thickness t1 is too thick to efficiently transfer heat to the electrostatic layer 200 and the substrate 10, and the heating electrode 310 may be damaged due to excessive thermal stress. have. Therefore, the thickness t1 of the heat generating layer 300 is preferably configured to be about 1.5 times thicker than the heat generating electrode 310.
발열층(300)은 나선 형태 또는 요철 형태를 갖는 발열 전극(310)의 서로 마주하는 부분에서 서로 절연되도록 절연성 세라믹 물질로 이루어진다. 또한, 발열층(300)은 발열 전극(310)으로부터 발생된 열이 측면 방향으로 최대한 균일하게 퍼지도록 하기 위하여 정전층(200)의 약 10 내지 30W/(m·K)인 제1 열전달 계수보다 높은 제2 열전달 계수를 갖는다.The heat generating layer 300 is made of an insulating ceramic material so as to be insulated from each other at portions facing each other of the heating electrode 310 having a spiral shape or an uneven shape. In addition, the heat generating layer 300 is less than the first heat transfer coefficient of about 10 to 30 W / (m · K) of the electrostatic layer 200 in order to spread the heat generated from the heat generating electrode 310 as uniformly as possible in the lateral direction. Has a high second heat transfer coefficient.
이에, 제2 열전달 계수가 약 150W/(m·K) 미만일 경우에는 발열 전극(310)으로부터 발생된 열이 발열층(300)과 정전층(200)을 거처 기판(10)으로 전달되는 속도가 느려 공정 시간이 길어지기 때문에 바람직하지 않고, 약 250W/(m·K)를 초과할 경우에는 발열 전극(310)으로부터 발생된 열이 발열층(300)과 정전층(200)을 거처 기판(10)으로 전달되는 속도는 매우 빨라지지만 발열층(300)과 정전층(200) 각각의 제1 및 제2 열전달 계수들의 차이가 매우 커 발열층(300)과 정천층(200)의 온도 편차가 매우 빠르게 벌어지게 되므로 이로 인한 열응력 또는 열쇼크에 의해 정전층(200)이 피로가 누적되어 파손될 우려가 있기 때문에 바람직하지 않다. Accordingly, when the second heat transfer coefficient is less than about 150 W / (m · K), the rate at which heat generated from the heating electrode 310 is transferred to the substrate 10 via the heating layer 300 and the electrostatic layer 200 is increased. It is not preferable because the process time is slowed down and the process time is long, and when it exceeds about 250 W / (m · K), the heat generated from the heat generating electrode 310 passes through the heat generating layer 300 and the electrostatic layer 200 and the substrate 10. ) Is very fast, but the difference between the first and second heat transfer coefficients of each of the heating layer 300 and the electrostatic layer 200 is very large, so that the temperature variation of the heating layer 300 and the ceiling layer 200 is very high. It is not preferable because the electrostatic layer 200 accumulates fatigue due to thermal stress or heat shock.
따라서, 제2 열전달 계수는 발열층(300)에서 발열 전극(310)으로부터의 열이 기판(10)에 균일하게 퍼지도록 하기 위하여 약 150 내지 250W/(m·K)를 갖는 것이 바람직하다.Therefore, it is preferable that the second heat transfer coefficient is about 150 to 250 W / (m · K) so that the heat from the heat generating electrode 310 is uniformly spread on the substrate 10 in the heat generating layer 300.
이를 위하여, 발열층(300)은 다른 세라믹 물질에 비하여 열전도성이 우수한 질화 알루미늄(AlN)를 약 90%함량으로 마련하여 이에 마그네시아(MgO) 또는 이트리아(Y2O3) 등을 첨가하여 제조할 수 있다. To this end, the heat generating layer 300 is prepared by adding about 90% of aluminum nitride (AlN), which is superior in thermal conductivity to other ceramic materials, to which magnesia (MgO) or yttria (Y 2 O 3 ) are added. can do.
구체적으로, 발열층(300)은 상기의 물질을 세라믹 벌크, 세라믹 페이스트 또는 세라믹 박막 등의 형태로 구성하여 제조할 수 있으며, 그 방법으로는 접착 방식, 페이스트 프린팅 방식 또는 증착 방식을 이용할 수 있다. 이렇게 제조된 발열층(300)은 정전층(200)과 유사한 약 108 내지 1016Ω㎝의 체적 저항을 가지게 되어 고절연성을 나타낼 수 있다. In detail, the heating layer 300 may be manufactured by forming the material in the form of ceramic bulk, ceramic paste, or ceramic thin film, and the like, and may be an adhesive method, a paste printing method, or a deposition method. The heat generating layer 300 manufactured as described above may have a volume resistance of about 10 8 to 10 16 cm 3 , similar to that of the electrostatic layer 200, thereby exhibiting high insulation.
이와 같이, 정전 전극(210)이 배치되면서 제1 열전달 계수를 갖는 정전층(200)의 하부에 발열 전극(310)이 배치된 발열층(300)을 제1 열전달 계수보다 높은 제2 열전달 계수를 갖도록 구성함으로써, 발열 전극(310)으로부터 발생된 열이 발열층(300)에서 우선적으로 균일하게 퍼지도록 한 다음 상대적으로 낮은 제1 열전달 계수를 갖는 정전층(200)을 통해 기판(10)에 제공되도록 함으로써, 기판(10)이 균일하게 가열되도록 할 수 있다.As such, when the electrostatic electrode 210 is disposed, the second heat transfer coefficient higher than the first heat transfer coefficient of the heat generating layer 300 having the heat generating electrode 310 disposed below the electrostatic layer 200 having the first heat transfer coefficient is obtained. In this configuration, the heat generated from the heating electrode 310 is preferentially uniformly spread in the heating layer 300 and then provided to the substrate 10 through the electrostatic layer 200 having a relatively low first heat transfer coefficient. By doing so, the substrate 10 can be uniformly heated.
이때, 정전층(200)의 두께(t2)가 약 1㎜ 미만일 경우에는 발열층(300)에서 퍼진 열을 균일하게 확산시키기 어려우므로 바람직하지 않고, 약 5㎜를 초과할 경우에는 열이 기판(10)으로 전달되는 효율이 감소하여 기판(10)을 원하는 온도로 가열하기 어려우므로 바람직하지 않다. 따라서, 정전층(200)은 약 1 내지 5㎜의 두께(t2)를 갖는 것이 바람직하다.In this case, when the thickness t2 of the electrostatic layer 200 is less than about 1 mm, it is not preferable to uniformly spread the heat spread from the heat generating layer 300. The efficiency delivered to 10 is reduced, which makes it difficult to heat the substrate 10 to a desired temperature, which is undesirable. Therefore, the electrostatic layer 200 preferably has a thickness t2 of about 1 to 5 mm.
단열층(400)은 발열층(300)의 하부에 배치된다. 단열층(400)은 발열 전극(310)으로부터 하부로 발생된 열을 차단하여 상부로 유도한다. 이를 위하여, 단열층(400)은 발열층(300)의 제2 열전달 계수 뿐만 아니라 정전층(200)의 제1 열전달 계수보다도 더 낮은 제3 열전달 계수를 갖는다.The heat insulation layer 400 is disposed under the heat generating layer 300. The heat insulation layer 400 blocks the heat generated downward from the heating electrode 310 to guide the heat upward. To this end, the heat insulation layer 400 has a third heat transfer coefficient lower than the first heat transfer coefficient of the electrostatic layer 200 as well as the second heat transfer coefficient of the heat generating layer 300.
이에, 단열층(400)은 산화 규소(SiO2), 마그네시아(MgO), 산화 아연(ZnO) 등과 같은 고온 소성 타입의 글라스계 세라믹 물질로 이루어질 수 있다. 이와 달리, 단열층(400)은 실리콘, 아크릴, 에폭시 등의 폴리머 물질이 단독으로 이루어질 수도 있고 또는 둘 이상을 혼합한 물질로 이루어질 수도 있다.Thus, the heat insulating layer 400 may be made of a glass-based ceramic material of a high temperature baking type such as silicon oxide (SiO 2 ), magnesia (MgO), zinc oxide (ZnO), or the like. Alternatively, the heat insulating layer 400 may be made of a polymer material such as silicon, acrylic, epoxy, or the like, or may be made of a material in which two or more are mixed.
이에, 단열층(400)의 제3 열전달 계수는 약 0.5 내지 5W/(m·K)로 나타날 수 있으며, 또한 정전층(200) 및 발열층(300)과 유사한 약 108 내지 1016Ω㎝의 체적 저항을 가질 수 있다.Accordingly, the third heat transfer coefficient of the heat insulating layer 400 may be about 0.5 to 5 W / (m · K), and may be about 10 8 to 10 16 Ωcm, similar to the electrostatic layer 200 and the heat generating layer 300. It may have a volume resistance.
한편, 단열층(400)의 두께(t3)가 약 0.05㎜ 미만일 경우에는 하부에 배치되는 지지 몸체(500)의 유로(510)에 흐르는 냉각 유체의 영향으로 기판(10)의 온도가 균일하지 못하게 될 뿐만 아니라 기판(10)으로 전달되는 열효율이 떨어지게 되어 발열 전극(310)으로부터 불필요하게 많은 량의 열을 발생시켜야 하기 때문에 바람직하지 않다.On the other hand, when the thickness t3 of the heat insulation layer 400 is less than about 0.05 mm, the temperature of the substrate 10 may not be uniform due to the influence of the cooling fluid flowing in the flow path 510 of the support body 500 disposed below. In addition, since the thermal efficiency delivered to the substrate 10 is lowered, it is not preferable because a large amount of heat must be generated from the heating electrode 310 unnecessarily.
또한, 상기와 같은 경우에는 단열층(400)의 하부에 배치된 지지 몸체(500)로 비교적 많은 량의 열이 전달됨에 따라 이를 냉각시키기 위하여 유로(510)에 다량의 냉각 유체를 흘려주거나 냉각에 걸리는 시간이 많이 소요되므로 바람직하지 않다.In addition, in the above case, as a relatively large amount of heat is transferred to the support body 500 disposed under the heat insulation layer 400, a large amount of cooling fluid flows into the flow path 510 or is cooled. It is not preferable because it is time consuming.
반면, 단열층(400)의 두께(t3)가 약 0.5㎜를 초과할 경우에는 발열 전극(310)으로부터 열을 차단하는 효과에 변화가 없으므로 구조 상 바람직하지 않다. 따라서, 단열층(400)은 두껍지 않으면서 발열 전극(310)으로부터 지지 몸체(500)로 전달되는 열을 효과적으로 차단할 수 있는 약 0.05 내지 0.5㎜의 두께(t3)를 갖는 것이 바람직하다. On the other hand, when the thickness t3 of the heat insulating layer 400 exceeds about 0.5 mm, there is no change in the effect of blocking heat from the heating electrode 310, which is not preferable in terms of structure. Therefore, it is preferable that the heat insulation layer 400 has a thickness t3 of about 0.05 to 0.5 mm that can effectively block heat transferred from the heating electrode 310 to the support body 500 without being thick.
지지 몸체(500)는 단열층(400)의 하부에 배치된다. 지지 몸체(500)는 단열층(400)과 사이에 배치된 접착층(600)을 통해 단열층(400)을 지지하여 전체적으로 받침대 역할을 수행한다.The support body 500 is disposed below the heat insulation layer 400. The support body 500 supports the insulating layer 400 through the adhesive layer 600 disposed between the insulating layer 400 and serves as a pedestal as a whole.
지지 몸체(500)는 내부에 균일하게 분포된 유로(510)를 갖는다. 이에, 지지 몸체(500)는 유로(510)에 냉각 유체를 흘려줌으로써, 단열층(400)으로부터 일부 전달된 열을 냉각시킬 수 있다. The support body 500 has a flow path 510 uniformly distributed therein. Thus, the support body 500 may cool the heat partially transferred from the heat insulation layer 400 by flowing a cooling fluid into the flow path 510.
도 3은 본 발명의 일 실시예에 따른 기판 처리 장치를 개략적으로 나타낸 구성도이다. 3 is a configuration diagram schematically illustrating a substrate processing apparatus according to an embodiment of the present invention.
본 실시예에서 정전척은 도 1 및 도 2에 도시된 구성과 동일한 구성을 가지므로, 동일한 참조 번호를 사용하며 그 중복되는 상세한 설명은 생략하기로 한다.In this embodiment, since the electrostatic chuck has the same configuration as that shown in FIGS. 1 and 2, the same reference numerals will be used, and detailed description thereof will be omitted.
도 3을 참조하면, 본 발명의 일 실시예에 따른 기판 처리 장치(1000)는 공정 챔버(700), 가스 제공부(800) 및 정전척(100)을 포함한다.Referring to FIG. 3, the substrate processing apparatus 1000 according to the exemplary embodiment includes a process chamber 700, a gas providing unit 800, and an electrostatic chuck 100.
공정 챔버(700)는 반도체 소자 또는 디스플레이 소자와 같은 집적 회로 소자를 제조하기 위하여 기판(10)을 처리하는 공간을 제공한다. 예를 들어, 공정 챔버(700)에서는 기판(10)을 대상으로 식각 공정이 수행될 수 있다. 이때, 공정 챔버(700)의 내부는 식각 공정이 보다 원활하게 이루어지도록 고진공 상태가 유지될 수 있다.The process chamber 700 provides space for processing the substrate 10 to manufacture integrated circuit devices such as semiconductor devices or display devices. For example, an etching process may be performed on the substrate 10 in the process chamber 700. At this time, the interior of the process chamber 700 may be maintained in a high vacuum state to make the etching process more smoothly.
가스 제공부(800)는 공정 챔버(700)와 연결된다. 가스 제공부(800)는 기판(10)을 처리하기 위한 공정 가스(20)를 외부로부터 공정 챔버(700)의 내부로 제공한다. 이때, 가스 제공부(800)는 원활한 제공을 위하여 공정 챔버(700)의 상부에 연결될 수 있다. The gas provider 800 is connected to the process chamber 700. The gas provider 800 provides a process gas 20 for processing the substrate 10 from the outside into the process chamber 700. In this case, the gas providing unit 800 may be connected to the upper portion of the process chamber 700 for smooth provision.
여기서, 공정 가스(20)는 식각 공정 시 필요한 플라즈마의 생성을 위한 불활성 가스, 또는 실질적인 식각을 위한 소오스 가스일 수 있다. 한편, 가스 제공부(800)에는 공정 챔버(700)의 내부에서 플라즈마가 생성되도록 외부로부터 고주파 전압이 인가될 수 있다. Here, the process gas 20 may be an inert gas for generating plasma required for the etching process, or a source gas for substantial etching. Meanwhile, a high frequency voltage may be applied to the gas providing unit 800 from the outside so that the plasma is generated inside the process chamber 700.
정전척(100)은 공정 챔버(700)의 내부에 배치된다. 구체적으로, 정전척(100)은 공정 챔버(700)의 하부에 배치되어 기판(10)을 지지하면서 고정한다. The electrostatic chuck 100 is disposed inside the process chamber 700. Specifically, the electrostatic chuck 100 is disposed below the process chamber 700 to fix the substrate 10 while supporting the substrate 10.
이러한 정전척(100)은 도 1 및 도 2를 참조한 설명에서와 같이 기판(10)을 균일하게 가열할 수 있음에 따라, 기판(10)을 공정 가스(20)를 통해 처리하여 제조되는 반도체 소자 또는 디스플레이 소자와 같은 집적 회로 소자의 품질을 향상시킬 수 있다.Since the electrostatic chuck 100 can uniformly heat the substrate 10 as described with reference to FIGS. 1 and 2, the semiconductor device manufactured by treating the substrate 10 through the process gas 20. Alternatively, the quality of integrated circuit devices such as display devices can be improved.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although the detailed description of the present invention has been described with reference to the preferred embodiments of the present invention, those skilled in the art or those skilled in the art will have the idea of the present invention described in the claims to be described later. It will be understood that various modifications and variations can be made in the present invention without departing from the scope of the present invention.

Claims (12)

  1. 상부에 놓여지는 기판을 고정하기 위하여 정전력을 발생하는 정전 전극이 배치되면서 제1 열전달 계수를 갖는 정전층; 및An electrostatic layer having a first heat transfer coefficient while an electrostatic electrode generating electrostatic force is disposed to fix the substrate placed thereon; And
    상기 정전층의 하부에 배치되며, 상기 기판을 가열하기 위한 발열 전극이 배치되면서 상기 제1 열전달 계수보다 높은 제2 열전달 계수를 갖는 발열층을 포함하는 정전척.An electrostatic chuck disposed under the electrostatic layer, the heat generating layer having a second heat transfer coefficient higher than the first heat transfer coefficient while a heat generating electrode for heating the substrate is disposed.
  2. 제1 항에 있어서, 상기 발열층은 질화 알루미늄(AlN)에 마그네시아(MgO), 이트리아(Y2O3) 또는 이들의 혼합물이 포함된 세라믹 물질로 이루어진 것을 특징으로 하는 정전척.The electrostatic chuck of claim 1, wherein the heating layer is made of a ceramic material including aluminum nitride (AlN), magnesia (MgO), yttria (Y 2 O 3 ), or a mixture thereof.
  3. 제1항에 있어서, 상기 제2 열전달 계수는 150 내지 250 W/(m·K) 인 것을 특징으로 하는 정전척.The electrostatic chuck of claim 1, wherein the second heat transfer coefficient is 150 to 250 W / (m · K).
  4. 제1항에 있어서, 상기 발열층은 상기 발열 전극과 동일한 두께를 가지면서 상기 발열 전극의 측면을 둘러싼 구조를 갖는 것을 특징으로 하는 정전척.The electrostatic chuck of claim 1, wherein the heat generating layer has the same thickness as the heat generating electrode and has a structure surrounding a side surface of the heat generating electrode.
  5. 제1항에 있어서, 상기 정전층은 1 내지 5㎜의 두께를 갖는 것을 특징으로 하는 정전척.The electrostatic chuck of claim 1, wherein the electrostatic layer has a thickness of 1 to 5 mm.
  6. 제1항에 있어서, 상기 발열층의 상부 표면은 상기 정전층의 하부 표면과 접촉하는 구조를 갖게 배치하는 것을 특징으로 하는 정전척.The electrostatic chuck of claim 1, wherein an upper surface of the heat generating layer has a structure in contact with a lower surface of the electrostatic layer.
  7. 제1항에 있어서, 상기 발열층의 하부에 배치되며, 상기 제1 열전달 계수보다 낮은 제3 열전달 계수를 갖는 단열층을 더 포함하는 것을 특징으로 하는 정전척.The electrostatic chuck of claim 1, further comprising a heat insulation layer disposed under the heat generating layer and having a third heat transfer coefficient lower than the first heat transfer coefficient.
  8. 제7항에 있어서, 상기 단열층은 0.05 내지 0.5㎜의 두께를 갖는 것을 특징으로 하는 정전척.The electrostatic chuck of claim 7, wherein the heat insulation layer has a thickness of 0.05 to 0.5 mm.
  9. 제7 항에 있어서, 상기 단열층은 그 상부 표면이 상기 발열층의 하부 표면과 접촉하는 구조를 갖게 배치하는 것을 특징으로 하는 정전척.The electrostatic chuck of claim 7, wherein the heat insulation layer has a structure in which an upper surface thereof is in contact with a lower surface of the heat generating layer.
  10. 기판을 처리하기 위한 공간을 제공하는 공정 챔버;A process chamber providing space for processing a substrate;
    상기 공정 챔버와 연결되며, 상기 기판을 처리하기 위한 공정 가스를 상기 공정 챔버의 내부로 제공하는 가스 제공부; 및A gas provider connected to the process chamber and providing a process gas to process the substrate into the process chamber; And
    상기 공정 챔버의 내부에 배치되고, 상기 공정 가스를 통해 처리되는 기판을 지지하면서 고정하는 정전척을 포함하며, An electrostatic chuck disposed in the process chamber and supporting and fixing the substrate processed through the process gas,
    상기 정전척은The electrostatic chuck is
    상부에 상기 기판이 놓여지며, 상기 기판을 고정하기 위한 정전력을 발생하는 정전 전극이 배치되면서 제1 열전달 계수를 갖는 정전층; 및An electrostatic layer having a first heat transfer coefficient on which the substrate is placed, wherein an electrostatic electrode for generating electrostatic force for fixing the substrate is disposed; And
    상기 정전층의 하부에 배치되며, 상기 기판을 가열하기 위한 발열 전극이 배치되면서 상기 제1 열전달 계수보다 높은 제2 열전달 계수를 갖는 발열층을 포함하는 것을 특징으로 하는 기판 처리 장치.And a heat generating layer disposed under the electrostatic layer, the heat generating layer having a second heat transfer coefficient higher than the first heat transfer coefficient while the heat generating electrode for heating the substrate is disposed.
  11. 제10항에 있어서, 상기 발열층은 상기 발열 전극과 동일한 두께를 가지면서 상기 발열 전극의 측면을 둘러싼 구조를 갖는 것을 특징으로 하는 기판 처리 장치.The substrate treating apparatus of claim 10, wherein the heat generating layer has a same thickness as the heat generating electrode and has a structure surrounding a side surface of the heat generating electrode.
  12. 제10항에 있어서, 상기 발열층의 상부 표면은 상기 정전층의 하부 표면과 접촉하게 배치하고, 상기 발열층의 하부 표면은 상기 단열층의 상부 표면과 접촉하게 배치하는 것을 특징으로 하는 기판 처리 장치.The substrate processing apparatus of claim 10, wherein an upper surface of the heat generating layer is disposed in contact with a lower surface of the electrostatic layer, and a lower surface of the heat generating layer is disposed in contact with an upper surface of the heat insulating layer.
PCT/KR2011/003625 2010-05-31 2011-05-17 Electrostatic chuck and a substrate-processing device comprising the same WO2011152620A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012539829A JP5276751B2 (en) 2010-05-31 2011-05-17 Electrostatic chuck and substrate processing apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100050780A KR101636764B1 (en) 2010-05-31 2010-05-31 Electrostatic chuck and apparatus for processing a substrate including the same
KR10-2010-0050780 2010-05-31

Publications (2)

Publication Number Publication Date
WO2011152620A2 true WO2011152620A2 (en) 2011-12-08
WO2011152620A3 WO2011152620A3 (en) 2012-04-19

Family

ID=45067167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003625 WO2011152620A2 (en) 2010-05-31 2011-05-17 Electrostatic chuck and a substrate-processing device comprising the same

Country Status (4)

Country Link
JP (1) JP5276751B2 (en)
KR (1) KR101636764B1 (en)
TW (1) TWI437617B (en)
WO (1) WO2011152620A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120835A (en) * 2011-12-07 2013-06-17 Shinko Electric Ind Co Ltd Substrate temperature control fixing apparatus and method of manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976538B1 (en) * 2012-02-16 2019-05-10 주식회사 미코 Electrostatic chuck and apparatus for processing a substrate including the same
JP6392612B2 (en) * 2014-09-30 2018-09-19 日本特殊陶業株式会社 Electrostatic chuck
JP6342769B2 (en) * 2014-09-30 2018-06-13 日本特殊陶業株式会社 Electrostatic chuck
CN110911332B (en) * 2018-09-14 2022-11-25 北京北方华创微电子装备有限公司 Electrostatic chuck
JP7108586B2 (en) * 2019-08-16 2022-07-28 日本特殊陶業株式会社 holding device
JP7184726B2 (en) * 2019-10-02 2022-12-06 日本特殊陶業株式会社 Electrostatic chuck manufacturing method and composite member manufacturing method
CN112863983B (en) * 2019-11-28 2023-09-29 中微半导体设备(上海)股份有限公司 Lower electrode assembly for plasma processing apparatus and plasma processing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524885A (en) * 1999-09-29 2003-08-19 東京エレクトロン株式会社 Multi-area resistance heater
KR20060044706A (en) * 2004-03-24 2006-05-16 쿄세라 코포레이션 Support member for wafer and the like
KR20060052119A (en) * 2004-10-07 2006-05-19 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for controlling temperature of a substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260474A (en) * 1996-03-22 1997-10-03 Sony Corp Electrostatic chuck and wafer stage
US5886864A (en) * 1996-12-02 1999-03-23 Applied Materials, Inc. Substrate support member for uniform heating of a substrate
JP4398306B2 (en) * 2004-06-03 2010-01-13 日本特殊陶業株式会社 Electrostatic chuck and method for manufacturing ceramic electrostatic chuck
JP2007043042A (en) * 2005-07-07 2007-02-15 Sumitomo Electric Ind Ltd Wafer holder and manufacturing method thereof, wafer prober mounting same, and semiconductor heating device
JP2007317772A (en) * 2006-05-24 2007-12-06 Shinko Electric Ind Co Ltd Electrostatic chuck device
JP5018244B2 (en) * 2007-05-30 2012-09-05 住友大阪セメント株式会社 Electrostatic chuck
JP2009054932A (en) * 2007-08-29 2009-03-12 Shinko Electric Ind Co Ltd Electrostatic chuck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524885A (en) * 1999-09-29 2003-08-19 東京エレクトロン株式会社 Multi-area resistance heater
KR20060044706A (en) * 2004-03-24 2006-05-16 쿄세라 코포레이션 Support member for wafer and the like
KR20060052119A (en) * 2004-10-07 2006-05-19 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for controlling temperature of a substrate
KR20060121773A (en) * 2004-10-07 2006-11-29 어플라이드 머티어리얼스, 인코포레이티드 Apparatus for controlling temperature of a substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120835A (en) * 2011-12-07 2013-06-17 Shinko Electric Ind Co Ltd Substrate temperature control fixing apparatus and method of manufacturing the same

Also Published As

Publication number Publication date
TW201218243A (en) 2012-05-01
JP2013511162A (en) 2013-03-28
KR20110131376A (en) 2011-12-07
TWI437617B (en) 2014-05-11
KR101636764B1 (en) 2016-07-06
JP5276751B2 (en) 2013-08-28
WO2011152620A3 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
WO2011152620A2 (en) Electrostatic chuck and a substrate-processing device comprising the same
US9706605B2 (en) Substrate support with feedthrough structure
KR101933560B1 (en) Substrate support with heater and rapid temperature change
TW508716B (en) Electrostatic chuck and treatment device
US6878907B2 (en) Ceramic substrate and process for producing the same
US20090159590A1 (en) Substrate temperature adjusting-fixing devices
TW552664B (en) Electrostatic chuck with dielectric coating
JPH05109876A (en) Temperature-cycle operation type ceramic electrostatic chuck
WO2013032260A9 (en) Electrostatic chuck
JP2000174106A (en) Device for retaining workpiece
EP1463381A1 (en) Hot plate unit
JP7306915B2 (en) Ceramic substrate, electrostatic chuck, manufacturing method of electrostatic chuck
WO2019168271A1 (en) Electrostatic chuck heater and manufacturing method therefor
JP2002064133A (en) Support container and semiconductor manufacturing- inspection device
WO2022080522A1 (en) Ceramic heater
KR20100137679A (en) Glass electrostatic chuck and fabrication method thereof
JP2001077185A (en) Electrostatic chuck and its manufacture
WO2021080088A1 (en) Ceramic heater and manufacturing method thereof
WO2022145668A1 (en) Ceramic susceptor
WO2021080087A1 (en) Ceramic heater and manufacturing method therefor
KR101976538B1 (en) Electrostatic chuck and apparatus for processing a substrate including the same
WO2023106445A1 (en) Cryogenic susceptor and electric connector assembly used therein
WO2024214985A1 (en) Support unit and substrate processing apparatus
WO2024019219A1 (en) Monitoring device capable of measuring characteristics of edge region, and method for manufacturing same
JP2002372351A (en) Supporting container and semiconductor manufacturing/ inspecting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789978

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012539829

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789978

Country of ref document: EP

Kind code of ref document: A2