WO2011152445A1 - Electroluminescence inspection device for solar panel and electroluminescence inspection method - Google Patents

Electroluminescence inspection device for solar panel and electroluminescence inspection method Download PDF

Info

Publication number
WO2011152445A1
WO2011152445A1 PCT/JP2011/062572 JP2011062572W WO2011152445A1 WO 2011152445 A1 WO2011152445 A1 WO 2011152445A1 JP 2011062572 W JP2011062572 W JP 2011062572W WO 2011152445 A1 WO2011152445 A1 WO 2011152445A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell panel
image
panel
inspection
Prior art date
Application number
PCT/JP2011/062572
Other languages
French (fr)
Japanese (ja)
Inventor
杉原薫
Original Assignee
株式会社アイテス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイテス filed Critical 株式会社アイテス
Priority to JP2012518422A priority Critical patent/JPWO2011152445A1/en
Publication of WO2011152445A1 publication Critical patent/WO2011152445A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an EL inspection apparatus and an EL inspection method for a solar battery panel including a plurality of photovoltaic power generation cells.
  • the inspection apparatus of Patent Document 1 includes a transparent plate on which a solar cell panel to be inspected is placed, and a reflection plate that is inclined with respect to the transparent plate. Taking a picture with a camera. Thus, the photographing distance is extended by photographing the solar cell panel through the reflector.
  • Patent Document 2 performs an enhancement process on a region where a defect exists in an EL image of a captured solar battery cell when determining the quality of a solar battery panel. As a result, the operator can easily recognize the portion of the EL image determined to have a problem.
  • an EL inspection apparatus and an EL inspection method that are easy to handle and can efficiently and reliably inspect for the presence or absence of defects when performing an EL inspection of a solar cell panel are still being developed. Absent.
  • the present invention has been made in view of the above problems, and in particular, an object of the present invention is to provide a solar cell panel EL inspection apparatus and an EL inspection method applicable to a large-sized solar cell panel. .
  • the characteristic configuration of the EL inspection apparatus for a solar cell panel is as follows. It is an EL inspection device for a solar battery panel including a plurality of photovoltaic power generation cells, A DC power source for applying EL to a solar cell panel to be inspected by applying a forward bias current; A photographing unit for photographing the solar cell panel in an EL emission state; A correction unit for correcting the captured image of the solar cell panel; A comparison unit that compares the corrected image with a reference template; A determination unit that determines the quality of the solar cell panel based on the comparison result; It is in having.
  • the solar cell panel EL inspection apparatus of the present configuration includes a correction unit that corrects an image (that is, an EL image) of the solar cell panel in the EL emission state, which is captured by the imaging unit.
  • the correction unit By correcting the distortion of the part and the dark part, it is possible to obtain an image equivalent to that obtained by photographing with a normal lens. As a result, the comparison by the subsequent comparison unit and the determination by the determination unit can be performed well. Moreover, since the comparison part which compares the image after correction
  • the similarity between the solar cell panel to be inspected and the good solar cell panel (that is, how well they match) can be confirmed.
  • the EL inspection of the solar cell panel can be performed quickly and reliably.
  • the correction unit preferably performs distortion correction and luminance correction of the image at the same time.
  • the correction unit simultaneously performs distortion correction and luminance correction of the captured image, so that the image processing time is shortened and the image processing accuracy is improved. As a result, the EL inspection of the solar cell panel can be performed more quickly and reliably.
  • the comparison unit preferably creates a specific template corresponding to the photovoltaic power generation cell to be inspected as the template, and masks the photovoltaic power generation cell having a similarity equal to or higher than a predetermined value compared to the specific template.
  • a specific template corresponding to the solar power generation cell to be inspected is created, and a predetermined template is compared with the specific template among the solar power generation cells constituting the solar battery panel.
  • the masked photovoltaic power generation cell is a reliable cell. Therefore, according to this structure, the test
  • the comparison unit preferably creates a specific template corresponding to the photovoltaic cell to be inspected as the template, and emphasizes a photovoltaic cell having a similarity less than a predetermined value compared to the specific template.
  • a specific template corresponding to the solar power generation cell to be inspected is created, and a predetermined template is compared with the specific template among the solar power generation cells constituting the solar battery panel.
  • the emphasized photovoltaic power generation cell is a reliable cell that is a defective product. Therefore, also by this structure, the test
  • the comparison unit changes the specific template to another specific template.
  • the comparison unit can change the specific template to another specific template, so that one EL inspection device can cope with various solar cell panel inspections. It becomes possible. Further, when it is determined that the inspection accuracy is not so good during the inspection, the specific template currently in use can be changed to another more preferable specific template. In this case, the inspection accuracy can be improved even during the inspection.
  • the determination unit preferably color-codes the captured image according to a determination result.
  • the determination unit can display the inspection result in an easy-to-understand manner for the operator by color-coding the captured image according to the determination result.
  • the characteristic configuration of the method for inspecting a solar cell panel according to the present invention for solving the above problems is as follows. It is an EL inspection method for a solar battery panel including a plurality of photovoltaic power generation cells, A light emitting step of applying a forward bias current to the solar cell panel to be inspected to emit EL; A photographing step of photographing the solar cell panel in an EL emission state; A correction step for correcting the captured image of the solar cell panel; A comparison step for comparing the corrected image with a reference template; A determination step of determining pass / fail of the solar cell panel based on the comparison result; It is to include.
  • the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved. That is, it is possible to correct the image (that is, the EL image) of the EL panel in the EL emission state that is captured in the capturing step by the correcting step. For this reason, when shortening the shooting distance between the solar panel and the camera, even if the entire solar panel is shot using a short-focus wide-angle lens without using a reflector, the distortion in the periphery of the shot image By correcting the dark area, it is possible to obtain an image equivalent to that obtained by shooting with a normal lens.
  • the comparison in the subsequent comparison step and the determination in the determination step can be favorably performed.
  • a comparison step for comparing the corrected image with a reference template and a determination step for determining the quality of the solar cell panel based on the comparison result the presence or absence of defects in the solar cell panel is determined. Inspection can be performed efficiently and reliably. For example, by adopting a sample corresponding to a part of a good solar cell panel as a template, the similarity between the solar cell panel to be inspected and the good solar cell panel (that is, how well they match) Can be confirmed. As a result, the EL inspection of the solar cell panel can be performed quickly and reliably.
  • the correction step it is preferable to simultaneously perform distortion correction and luminance correction of the image.
  • the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved. That is, in the correction step, distortion correction and luminance correction of the captured image are executed simultaneously, so that the image processing time is shortened and the image processing accuracy is improved. As a result, the EL inspection of the solar cell panel can be performed more quickly and reliably.
  • the comparison step it is preferable that a specific template corresponding to the photovoltaic cell to be inspected is created as the template, and the photovoltaic cell having a similarity equal to or higher than a predetermined value compared to the specific template is masked. .
  • the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved. That is, a specific template corresponding to the photovoltaic cell to be inspected is created, and among the photovoltaic cells constituting the photovoltaic panel, a photovoltaic cell having a similarity equal to or higher than a predetermined value compared to the specific template Mask it.
  • the masked photovoltaic power generation cell is a reliable cell. Therefore, according to this structure, the test
  • the comparison step it is preferable that a specific template corresponding to the photovoltaic power generation cell to be inspected is created as the template, and the photovoltaic power generation cell having a similarity less than a predetermined value compared with the specific template is emphasized. .
  • the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved. That is, a specific template corresponding to the photovoltaic cell to be inspected is created, and among the photovoltaic cells constituting the photovoltaic panel, a photovoltaic cell having a similarity less than a predetermined value compared to the specific template Emphasize.
  • the emphasized photovoltaic power generation cell is a reliable cell that is a defective product. Therefore, also by this structure, the test
  • the specific template is preferably changed to another specific template.
  • the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved. That is, in the comparison step, by changing the specific template to another specific template, it is possible to cope with EL inspections of a wide variety of solar cell panels. Further, when it is determined that the inspection accuracy is not so good during the inspection, the specific template currently in use can be changed to another more preferable specific template. In this case, the inspection accuracy can be improved even during the inspection.
  • the photographed image is color-coded according to the determination result.
  • the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved. That is, in the determination step, the inspection result can be displayed in an easy-to-understand manner for the operator by color-coding the captured image according to the determination result.
  • FIG. 1 is a block diagram showing a schematic configuration of an EL inspection apparatus for a solar cell panel according to the present invention.
  • FIG. 2 is an explanatory diagram showing a correction result executed by the correction unit and a comparison result executed by the comparison unit according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing a correction result executed by the correction unit and a comparison result executed by the comparison unit according to the second embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a procedure of a solar cell panel EL inspection method according to the third embodiment of the present invention.
  • FIG. 5 is a flowchart showing a procedure of an EL inspection method for a solar cell panel according to the fourth embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a solar cell panel EL inspection apparatus 100 according to the present invention.
  • an EL inspection apparatus that continuously inspects the solar cell panel 50 in an in-line manner is illustrated.
  • the solar cell panel EL inspection apparatus 100 of the present invention can naturally be configured as a so-called batch-type EL inspection apparatus that individually inspects the solar cell panels 50 to be inspected one by one.
  • the EL inspection apparatus 100 mainly includes a DC power source 1 that applies a forward bias current to the solar cell panel 50 to be inspected to cause EL emission, and a camera (imaging unit) 10 that images the solar cell panel 50 in the EL emission state. And a computer 20 that processes and analyzes the photographed image of the solar cell panel 50.
  • the solar cell panel 50 to be inspected is provided with a plurality of solar power generation cells, and the EL inspection device 100 determines the quality of the solar power generation cells.
  • the DC power source 1 is in contact with the electrode contact 52 provided on the back side of the inspection surface 51 (the surface on which the photovoltaic cells are arranged) of the solar cell panel 50 and applies a forward bias current to the solar cell panel 50. .
  • the solar cell panel 50 emits EL.
  • the camera 10 is installed inside a dark room 30 in an environment where external light can be shielded. On the side wall of the dark room 30 facing the camera 10, a light-transmissive shooting window 31 for shooting the solar cell panel 50 is provided. An inspection surface 51 of the solar cell panel 50 to be inspected is brought into contact with the photographing window 31.
  • the imaging window 31 is completely covered by the solar cell panel 50, so that the inspection surface 51 of the solar cell panel 50 is in a state where external light is blocked.
  • the plurality of photovoltaic cells in the EL emission state on the inspection surface 51 of the solar battery panel 50 are photographed by the camera 10.
  • the short-focus wide-angle lens 11 is mounted on the camera 10 so as to be able to cope with a case where the solar battery panel 50 is large (for example, a size of 2 m ⁇ 1 m). Thereby, the whole test
  • the photographed solar cell panel 50 is transported to the next process (moves to the right side of the dark room 30 in FIG. 1), and the next solar cell panel to be inspected (dark room in FIG. 1).
  • the solar cell panel 50) waiting on the left side of 30 is brought into contact with the photographing window 31 of the dark room 30.
  • the electrode contact 52 of the solar cell panel 50 comes into contact with the DC power source 1 and a forward bias current is applied to emit EL. In this way, continuous photographing (in-line inspection) of the solar cell panel 50 is executed.
  • the computer 20 includes a correction unit 21 that corrects the image of the solar battery panel 50 taken by the camera 10, a comparison unit 22 that compares the corrected image with the template 24 serving as a reference, and based on the comparison result,
  • the determination part 23 which determines the quality of the battery panel 50 is provided.
  • the template 24 is sample data of a solar power generation cell in a good state, and this is stored in the comparison unit 22.
  • the comparison part 22 can respond
  • the correction unit 21, the comparison unit 22, and the determination unit 23 may be realized as hardware implemented in the computer 20, but may also be realized as software functions executed in the computer 20.
  • two typical arithmetic processes executed by the correction unit 21, the comparison unit 22, and the determination unit 23 will be described as a first embodiment and a second embodiment.
  • FIG. 2 is an explanatory diagram showing a correction result executed by the correction unit 21 and a comparison result executed by the comparison unit 22 according to the first embodiment of the present invention.
  • the correction unit 21 simultaneously performs distortion correction and luminance correction on the captured image.
  • the distortion correction includes trapezoidal correction in which an image deformed into a trapezoidal shape for photographing from the side is corrected to a square image.
  • (a) is an original image taken by the camera 10 with the short focus wide angle lens 11.
  • (B) is an image after correcting the distortion of the original image.
  • (C) is an image after further luminance correction.
  • a mask process is executed by the comparison unit 22 on the image for which the distortion correction and the luminance correction are completed.
  • (D) is an image after mask processing, and a region surrounded by a dotted line is a photovoltaic cell on which mask processing has been performed.
  • a defective part such as “chip” or “crack” is included in a part surrounded by a dotted circle. That is, a portion darker than the surroundings is recognized as a defective part.
  • the mask processing is performed using a “pattern matching method” shown in the following procedures ⁇ 1> to ⁇ 10>.
  • the average luminance of the reference image is obtained from the luminance value of each pixel of the reference image that is a template (a specific template corresponding to the photovoltaic cell to be inspected).
  • the reference image is an image for one good cell serving as a predetermined reference.
  • An image a obtained by subtracting the average luminance of the reference image from the reference image is acquired. This calculation is repeated for each of the pixels constituting the reference image.
  • the average luminance of the selected image is obtained from each pixel luminance value of the selected image at an arbitrary position of the captured image (this is an image having the same size as the reference image).
  • An image b obtained by subtracting the average luminance of the selected image from the selected image is acquired.
  • p1 and p2 correspond to the similarity when the template is 100% (that is, an index indicating how much the selected image matches the reference image).
  • p1 is a threshold value on the similar side
  • p2 is a threshold value on the dissimilar side. Based on the luminance of each pixel, the photovoltaic cells are ranked, and the similarity is determined for the photovoltaic cells after the ranking. Specifically, an image satisfying v ⁇ p2 is first obtained.
  • the obtained image is determined to be dissimilar, and it is determined that the image is not a photovoltaic cell.
  • an image (selected image) satisfying v ⁇ p1 is obtained. It is determined that the obtained selected image is similar to the reference image, and mask processing is performed on the selected image. At this time, the masked photovoltaic power generation cell is a reliable cell.
  • a non-defective cell may be excluded by first performing a comparison between v and p1, and then a non-cell may be excluded by performing a comparison between v and p2. Since the original image before the mask process is stored in the computer 20, in the present invention, it is also possible to compare the images before and after the mask process. For this reason, the operator can easily recognize the defective part.
  • ⁇ 10> The arbitrary position in the above ⁇ 3> is changed, and ⁇ 3> to ⁇ 9> are repeated.
  • the number of repetitions is preferably the number of pixels constituting the captured image.
  • the template in ⁇ 1> above can be set freely.
  • a 1 / n-fold image (n> 1) of one photovoltaic power generation cell that is a structural unit of a solar battery panel is used as a reference image.
  • the number of operations in the computer 20 can be reduced to 1 / n.
  • the image of a photovoltaic cell upper half is set as a template, the selection image in said ⁇ 3> will also become an image of a photovoltaic cell upper half.
  • the position of a photovoltaic cell is specified in advance, and the whole is compared at the stage where the cell position is specified.
  • a selected image determined to be similar to the reference image that is, a photovoltaic power generation cell that is surely a non-defective product
  • it can be color-coded in a dark color. Thereby, the operator can easily recognize only defective solar power generation cells in the solar battery panel.
  • FIG. 3 is an explanatory diagram showing a correction result executed by the correction unit 21 and a comparison result executed by the comparison unit 22 according to the second embodiment of the present invention.
  • the correction unit 21 simultaneously performs distortion correction and luminance correction on the captured image.
  • the process from (a) to (b) is distortion correction
  • the process from (b) to (c) is luminance correction.
  • the enhancement unit shown in (c) to (d) is executed by the comparison unit 22 on the image for which distortion correction and luminance correction have been completed.
  • the result of the emphasis process shown in (d) is an enlarged display of the process result of the area surrounded by the dotted line in (c).
  • the process up to the enhancement process is basically the same as the above-described “pattern matching method”, but a selected image that is determined not to be similar to the reference image is extracted. That is, in ⁇ 9> of the pattern matching method, a preset threshold value p2 is compared with v, and when v ⁇ p2, it is determined that the selected image is not similar to the reference image.
  • FIG. Perform emphasis processing by clarification as shown.
  • the pattern of the structure such as the surface electrode originally formed on the surface of the photovoltaic cell is excluded, and only the defective portion as seen in the area surrounded by the circle is particularly noticeable. Is to be emphasized. Thereby, the operator can easily recognize only defective solar power generation cells in the solar battery panel.
  • a template used in the second embodiment for example, it is also effective to set a pattern including a structure such as a surface electrode on the surface of the photovoltaic cell as a template.
  • a pattern including a structure such as a surface electrode on the surface of the photovoltaic cell as a template.
  • the structure since the pattern of the structure is subtracted when the cell image is binarized, the structure does not appear in the image even when it is highlighted after that. As a result, the structure is not mistaken as a defect such as “chip” or “crack”, and the inspection accuracy can be improved.
  • FIG. 4 is a flowchart illustrating a procedure of a solar cell panel EL inspection method according to the third embodiment of the present invention.
  • the solar cell panel EL inspection method of the third embodiment corresponds to the solar cell panel EL inspection device of the first embodiment described above, and is executed by steps 1 to 7 described below.
  • each step is indicated by a symbol “S”.
  • a forward bias current is applied to the solar cell panel 50 to be inspected. This causes the solar cell panel 50 to emit EL (S0).
  • an imaging step an image (that is, an EL image) of the solar cell panel 50 in the EL emission state is captured (S1). In this photographing, the short focus wide angle lens 11 is used. Thereby, even when the solar cell panel 50 is large (for example, a size of 2 m ⁇ 1 m), the entire panel can be photographed.
  • the image photographed using the short-focus wide-angle lens 11 is resized as necessary so as to fit the display size (S2).
  • the original image before resizing can be used for enlarged display.
  • distortion and luminance reduction at the periphery of the image due to the influence of the short focus wide-angle lens 11 are corrected (S3).
  • S3 distortion correction and luminance correction are executed simultaneously, the image processing time is shortened and the image processing accuracy is improved.
  • Image resizing (S2) and distortion / brightness correction (S3) are correction steps.
  • the pattern of the corrected image is executed on the corrected image to recognize the state of the photovoltaic cell and mask the non-defective cell in the solar battery panel 50 (S4 to S6).
  • Pattern matching creates a specific template according to the photovoltaic power generation cell to be inspected, compares the specific template with the photovoltaic power generation cell to be inspected, and the similarity to the specific template is greater than or equal to a predetermined value or less than a predetermined value. This is an operation for extracting a photovoltaic cell.
  • the “pattern matching method” according to the procedures ⁇ 1> to ⁇ 10> described in the above “solar cell panel inspection apparatus” is executed.
  • a threshold similarity criterion
  • the threshold value can be, for example, the threshold value p1 on the similar side described above and the threshold value p2 on the dissimilar side.
  • the threshold is preferably in the range of 60 to 90% when the template is 100%. If the threshold value is less than 60%, there is a problem in identifying the photovoltaic power generation cell, and the inspection accuracy is lowered. On the other hand, if the threshold value exceeds 90%, the number of photovoltaic power generation cells that are determined to be non-defective products due to excessive standards is extremely reduced, and the inspection efficiency deteriorates. Based on the pattern matching results, the photovoltaic power generation cells are ranked as necessary (rank value setting), and the photovoltaic power generation cells are recognized (S5).
  • a mask of non-defective cells in the solar battery panel 50 is performed (S6). This is an operation of clearly excluding non-defective cells from the cells recognized in S5.
  • the pattern matching (S4), cell recognition (S5), and non-defective cell mask (S6) are comparison steps.
  • the quality of the solar cell panel 50 is determined (S7).
  • This pass / fail judgment can be automatically made by the computer 20 from the rank value of each cell.
  • the pass / fail judgment (S7) is a judgment step.
  • FIG. 5 is a flowchart showing a procedure of an EL inspection method for a solar cell panel according to the fourth embodiment of the present invention.
  • the solar cell panel EL inspection method of the fourth embodiment corresponds to the solar cell panel EL inspection device of the second embodiment described above, and is executed by steps 10 to 20 described below.
  • each step is indicated by a symbol “S”.
  • a forward bias current is applied to the solar cell panel 50 to be inspected.
  • the solar cell panel 50 emits EL (S10).
  • an imaging step an image (that is, an EL image) of the solar cell panel 50 in the EL emission state is captured (S11).
  • the short focus wide angle lens 11 is used. Thereby, even when the solar cell panel 50 is large (for example, a size of 2 m ⁇ 1 m), the entire panel can be photographed.
  • the image photographed using the short-focus wide-angle lens 11 is resized as necessary to fit the display size (S12).
  • the original image before resizing can be used for enlarged display.
  • distortion and luminance reduction at the periphery of the image due to the influence of the short focus wide-angle lens 11 are corrected (S13).
  • Image resizing (S12) and distortion / brightness correction (S13) are correction steps.
  • the pattern of the corrected image is executed on the corrected image to recognize the state of the photovoltaic power generation cell, and the defective part in the solar battery panel 50 is extracted (S14 to S18).
  • Pattern matching creates a specific template according to the photovoltaic power generation cell to be inspected, compares the specific template with the photovoltaic power generation cell to be inspected, and the similarity to the specific template is greater than or equal to a predetermined value or less than a predetermined value. This is an operation for extracting a photovoltaic cell.
  • the “pattern matching method” according to the procedures ⁇ 1> to ⁇ 10> described in the above “solar cell panel inspection apparatus” is executed.
  • a threshold similarity criterion
  • the threshold value can be, for example, the threshold value p1 on the similar side described above and the threshold value p2 on the dissimilar side.
  • the threshold is preferably in the range of 60 to 90% when the template is 100%. If the threshold value is less than 60%, there is a problem in identifying the photovoltaic power generation cell, and the inspection accuracy is lowered. On the other hand, if the threshold value exceeds 90%, the number of photovoltaic power generation cells that are determined to be non-defective products due to excessive standards is extremely reduced, and the inspection efficiency deteriorates. Based on the pattern matching result, the photovoltaic power generation cells are ranked as necessary (rank value setting), and the photovoltaic power generation cells are recognized (S15).
  • cell brightness correction S16
  • cell image binarization S17
  • the defective part of the cell in the solar cell panel 50 is extracted (S18). This is an operation for extracting defective cells from the cells recognized in S15 (or from the cells corrected by the sub correction step).
  • the pattern matching (S14), cell recognition (S15), and extraction of defective parts (S18) are comparison steps. This comparison step may include cell brightness correction (S16) and cell image binarization (S17).
  • Highlighting is performed on the defective portion of the extracted cell (S19). This highlighting includes coloring. For example, the image is binarized by blackening defective portions and whitening other portions. Finally, the quality determination with respect to the solar cell panel 50 is performed (S20). This quality determination can be automatically performed by the computer 20 based on the area of blackening.
  • the highlighting display (S19) and pass / fail judgment (S20) of the cell defect portion are the judgment steps.
  • the presence or absence of defects in the solar cell panel can be inspected quickly, efficiently and reliably.
  • the solar cell panel EL inspection apparatus and solar cell panel EL inspection method of the present invention can be used for inspection of various types of solar cell panels, and in particular can be applied to inspection of large-sized solar cell panels. .

Abstract

Provided is an electroluminescence detection device for a solar panel that can be applied to large-scale solar panels in particular. Specifically, an electroluminescence detection device (100) for a solar panel (50) with multiple photoelectric cells is provided with a DC power source (1) that impresses a forward biased current on the solar panel (50) to be inspected and causes the emission of electroluminescence, an imaging unit (10) that images the solar panel (50) as it is electroluminescing, a correction unit (21) that corrects the picture of the imaged solar cell panel (50), a comparison unit (22) that compares the corrected picture and a standard template, and a determination unit (23) that determines whether or not the solar panel is acceptable on the basis of the comparison results. The comparison unit (22) generates a specific template depending on the solar cells to be inspected and masks solar cells that have a degree of similarity to the template that is greater than or equal to a designated value.

Description

太陽電池パネルのEL検査装置、及びEL検査方法EL inspection device and EL inspection method for solar cell panel
 本発明は、複数の太陽光発電セルを備えた太陽電池パネルのEL検査装置、及びEL検査方法に関する。 The present invention relates to an EL inspection apparatus and an EL inspection method for a solar battery panel including a plurality of photovoltaic power generation cells.
 近年、太陽電池パネルの大型化が進み、それに伴って、太陽電池パネルの検査に対する要求も厳しくなってきている。太陽電池パネルの検査を効率よく行うためには、太陽電池パネルの検査面を一括で撮影することが求められる。ところが、最近の大型化した太陽電池パネルにおいて、その検査面全体を一括撮影するためには、検査対象(撮影対象)である太陽電池パネルとカメラとの撮影距離をある程度確保する必要がある。例えば、2m×1mのサイズを有する大型太陽電池パネルが知られているが、この大型太陽電池パネルの全領域を撮影するためには、35mmレンズを用いた場合に約3mの撮影距離が必要となる。しかしながら、一般に使用されている検査装置の設置環境では、撮影距離を充分に稼げない場合が多い。そこで、このような問題を回避するため、従来、反射鏡を利用して検査対象とカメラとの実質的な撮影距離を稼ぐような工夫をした検査装置があった(例えば、特許文献1を参照)。 In recent years, the size of solar cell panels has increased, and along with this, the demand for inspection of solar cell panels has become stricter. In order to efficiently inspect the solar cell panel, it is required to collectively photograph the inspection surface of the solar cell panel. However, in the recent large-sized solar cell panel, in order to collectively photograph the entire inspection surface, it is necessary to secure a certain photographing distance between the solar cell panel to be inspected (photographing target) and the camera. For example, a large solar cell panel having a size of 2 m × 1 m is known, but in order to photograph the entire area of this large solar cell panel, an imaging distance of about 3 m is required when a 35 mm lens is used. Become. However, there are many cases where the shooting distance cannot be sufficiently obtained in the installation environment of the inspection apparatus that is generally used. In order to avoid such problems, there has heretofore been an inspection apparatus that has been devised to increase a substantial shooting distance between an inspection object and a camera using a reflector (see, for example, Patent Document 1). ).
 特許文献1の検査装置は、検査対象である太陽電池パネルを載せる透明板を設けるとともに、当該透明板に対して傾斜している反射板を備えており、この反射板に写った太陽電池パネルの像をカメラで撮影している。このように、反射板を介して太陽電池パネルを撮影することにより、撮影距離の延長を図っている。 The inspection apparatus of Patent Document 1 includes a transparent plate on which a solar cell panel to be inspected is placed, and a reflection plate that is inclined with respect to the transparent plate. Taking a picture with a camera. Thus, the photographing distance is extended by photographing the solar cell panel through the reflector.
 また、太陽電池パネルの検査においては、「欠け」や「クラック」等の欠陥の有無を確認する必要がある。このような欠陥を発見する一つの手法として、撮影した画像の成分に対して所定の閾値を与え、当該閾値を境として画像に明暗を付与し、その明暗の比率と前記閾値とから太陽電池パネルの良否を判定する方法があった(例えば、特許文献2を参照)。 Also, in the inspection of solar cell panels, it is necessary to check for defects such as “chips” and “cracks”. As one method for finding such a defect, a predetermined threshold is given to the components of the photographed image, brightness is given to the image with the threshold as a boundary, and the solar cell panel is obtained from the brightness ratio and the threshold. There has been a method for determining the quality of the image (for example, see Patent Document 2).
 特許文献2の検査装置は、太陽電池パネルの良否判定を行うに際し、撮影した太陽電池セルのEL画像のうちの欠陥が存在する領域に対して強調処理を行うものである。これにより、オペレータは問題ありと判定されたEL画像の箇所を容易に認識できるようになっている。 The inspection apparatus of Patent Document 2 performs an enhancement process on a region where a defect exists in an EL image of a captured solar battery cell when determining the quality of a solar battery panel. As a result, the operator can easily recognize the portion of the EL image determined to have a problem.
特開2009-198411号公報JP 2009-198411 A 国際公開第2009/084702号International Publication No. 2009/084702
 ところで、太陽電池パネルの撮影を行う際、特許文献1のような反射鏡を用いる検査装置には、種々の問題が介在している。例えば、太陽電池パネルの鮮明な画像を得るためには、反射鏡の曇りや汚れ等を防止しておく必要がある。また、反射鏡は、重力によって撓むことや、温度変化によって光軸のズレが発生することがあるため、取り扱いが容易ではない。さらに、反射鏡は、検査前に正確な角度調整を行う必要があり、取り扱いに大変な手間が掛かる。 By the way, when photographing a solar cell panel, various problems are present in an inspection apparatus using a reflecting mirror as in Patent Document 1. For example, in order to obtain a clear image of the solar battery panel, it is necessary to prevent the reflecting mirror from being clouded or soiled. In addition, the reflector is not easy to handle because it may be bent by gravity or the optical axis may be displaced due to temperature changes. Furthermore, it is necessary to adjust the angle accurately before the inspection of the reflector, and it takes a lot of work to handle.
 なお、太陽電池パネルとカメラとの撮影距離を短縮するため、反射鏡に代えて短焦点広角レンズを利用することも考えられるが、短焦点広角レンズを用いて太陽電池パネルの検査面を撮影すると、撮影画像の周辺部に歪みが発生したり、周辺部が暗くなったりする。従って、短焦点広角レンズによる撮影画像を、そのまま検査に適用することはできない。 In order to shorten the shooting distance between the solar cell panel and the camera, it is conceivable to use a short-focus wide-angle lens instead of the reflecting mirror, but when the short-focal wide-angle lens is used to photograph the inspection surface of the solar cell panel Then, distortion occurs in the peripheral part of the captured image, or the peripheral part becomes dark. Therefore, the image captured by the short focus wide angle lens cannot be applied to the inspection as it is.
 一方、太陽電池パネルの検査における重要項目として、「クラック(マイクロクラックを含む)」や「断線」等の欠陥の有無を確認する必要があり、この目的のためにEL(エレクトロルミネッセンス)画像が利用されている。特許文献2の検査装置は、EL画像を強調処理することにより欠陥が存在する領域の表示を行っている。しかし、太陽電池パネルの最終的な良否判定は目視に頼っているのが現実である。従って、特許文献2の検査装置では、効率よく且つ確実なEL検査を行うことは困難である。さらに、特許文献2の検査装置では、原画像をそのまま直接強調処理しているので、後から原画像を確認することも出来ない。 On the other hand, as an important item in the inspection of solar cell panels, it is necessary to check for defects such as “cracks (including microcracks)” and “disconnections”, and EL (electroluminescence) images are used for this purpose. Has been. The inspection apparatus of Patent Document 2 displays an area where a defect exists by performing an enhancement process on an EL image. However, in reality, the final pass / fail judgment of the solar cell panel relies on visual observation. Therefore, it is difficult for the inspection apparatus of Patent Document 2 to perform an efficient and reliable EL inspection. Furthermore, in the inspection apparatus of Patent Document 2, since the original image is directly enhanced as it is, the original image cannot be confirmed later.
 このように、現状においては、太陽電池パネルのEL検査を行うに際し、取り扱いが容易であるとともに、欠陥有無の検査を効率よく且つ確実に実施し得るEL検査装置やEL検査方法は未だ開発されていない。本発明は、上記問題点に鑑みてなされたものであり、特に、大型の太陽電池パネルに対して適用可能な、太陽電池パネルのEL検査装置、及びEL検査方法を提供することを目的とする。 As described above, in the present situation, an EL inspection apparatus and an EL inspection method that are easy to handle and can efficiently and reliably inspect for the presence or absence of defects when performing an EL inspection of a solar cell panel are still being developed. Absent. The present invention has been made in view of the above problems, and in particular, an object of the present invention is to provide a solar cell panel EL inspection apparatus and an EL inspection method applicable to a large-sized solar cell panel. .
 上記課題を解決するための本発明に係る太陽電池パネルのEL検査装置の特徴構成は、
 複数の太陽光発電セルを備えた太陽電池パネルのEL検査装置であって、
 検査対象の太陽電池パネルに順バイアス電流を印加してEL発光させるDC電源と、
 EL発光状態の前記太陽電池パネルを撮影する撮影部と、
 撮影した前記太陽電池パネルの画像を補正する補正部と、
 補正後の画像と基準となるテンプレートとを比較する比較部と、
 比較結果に基づいて、前記太陽電池パネルの良否を判定する判定部と、
を備えたことにある。
In order to solve the above-described problems, the characteristic configuration of the EL inspection apparatus for a solar cell panel according to the present invention is as follows.
It is an EL inspection device for a solar battery panel including a plurality of photovoltaic power generation cells,
A DC power source for applying EL to a solar cell panel to be inspected by applying a forward bias current;
A photographing unit for photographing the solar cell panel in an EL emission state;
A correction unit for correcting the captured image of the solar cell panel;
A comparison unit that compares the corrected image with a reference template;
A determination unit that determines the quality of the solar cell panel based on the comparison result;
It is in having.
 背景技術の項目で説明したように、特に、大型の太陽電池パネルを検査するためには、従来は反射鏡等の補助が必要であり、そのため、検査装置全体の取り扱いが困難なものとなっていた。また、太陽電池パネルの良否判定を効率よく且つ確実に行い得る手法も確立されていなかった。
 この点、本構成の太陽電池パネルのEL検査装置では、撮影部によって撮影したEL発光状態の太陽電池パネルの画像(すなわち、EL画像)を補正する補正部を備えている。このため、太陽電池パネルとカメラとの撮影距離を短縮するにあたって、反射鏡を使用せずに短焦点広角レンズを利用して太陽電池パネルの全体を撮影した場合でも、補正部が撮影画像の周辺部の歪みや暗部を補正することにより、通常のレンズで撮影した場合と同等の画像を得ることができる。その結果、後の比較部による比較、及び判定部による判定を良好に行うことができる。
 また、補正後の画像と基準となるテンプレートとを比較する比較部と、比較結果に基づいて、太陽電池パネルの良否を判定する判定部とを備えているので、太陽電池パネルにおける欠陥の有無を効率よく且つ確実に検査することができる。例えば、良好な太陽電池パネルの一部に相当するサンプルをテンプレートとして採用することにより、検査対象の太陽電池パネルと良好な太陽電池パネルとの類似度(すなわち、両者がどの程度一致しているか)を確認することができる。その結果、太陽電池パネルのEL検査を迅速且つ確実に実施することができる。
As explained in the section of the background art, in particular, in order to inspect a large-sized solar cell panel, conventionally, assistance of a reflecting mirror or the like is necessary, so that it is difficult to handle the entire inspection apparatus. It was. Moreover, the technique which can perform the quality determination of a solar cell panel efficiently and reliably has not been established.
In this regard, the solar cell panel EL inspection apparatus of the present configuration includes a correction unit that corrects an image (that is, an EL image) of the solar cell panel in the EL emission state, which is captured by the imaging unit. For this reason, when shortening the shooting distance between the solar panel and the camera, even if the entire solar cell panel is shot using a short focus wide-angle lens without using a reflector, the correction unit By correcting the distortion of the part and the dark part, it is possible to obtain an image equivalent to that obtained by photographing with a normal lens. As a result, the comparison by the subsequent comparison unit and the determination by the determination unit can be performed well.
Moreover, since the comparison part which compares the image after correction | amendment with the reference | standard template and the determination part which determines the quality of a solar cell panel based on a comparison result are provided, the presence or absence of the defect in a solar cell panel is provided. Inspection can be performed efficiently and reliably. For example, by adopting a sample corresponding to a part of a good solar cell panel as a template, the similarity between the solar cell panel to be inspected and the good solar cell panel (that is, how well they match) Can be confirmed. As a result, the EL inspection of the solar cell panel can be performed quickly and reliably.
 本発明に係る太陽電池パネルのEL検査装置において、
 前記補正部は、前記画像の歪曲補正と輝度補正とを同時に実行することが好ましい。
In the solar cell panel EL inspection apparatus according to the present invention,
The correction unit preferably performs distortion correction and luminance correction of the image at the same time.
 本構成の太陽電池パネルのEL検査装置であれば、補正部が、撮影した画像の歪曲補正と輝度補正とを同時に実行するので、画像処理時間が短縮されるとともに、画像処理精度が向上する。その結果、太陽電池パネルのEL検査をより迅速且つ確実に実施することができる。 In the solar cell panel EL inspection apparatus of this configuration, the correction unit simultaneously performs distortion correction and luminance correction of the captured image, so that the image processing time is shortened and the image processing accuracy is improved. As a result, the EL inspection of the solar cell panel can be performed more quickly and reliably.
 本発明に係る太陽電池パネルのEL検査装置において、
 前記比較部は、前記テンプレートとして、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、当該特定テンプレートと比較して所定値以上の類似度を有する太陽光発電セルをマスクすることが好ましい。
In the solar cell panel EL inspection apparatus according to the present invention,
The comparison unit preferably creates a specific template corresponding to the photovoltaic power generation cell to be inspected as the template, and masks the photovoltaic power generation cell having a similarity equal to or higher than a predetermined value compared to the specific template. .
 本構成の太陽電池パネルのEL検査装置であれば、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、太陽電池パネルを構成する太陽光発電セルのうち、特定テンプレートと比較して所定値以上の類似度を有する太陽光発電セルをマスクする。ここで、マスクされた太陽光発電セルは、良品であることが確実なセルである。従って、本構成によれば、太陽光発電セルの検査数を低減することができ、その結果、太陽電池パネルの検査速度及び検査精度が向上する。 If it is an EL inspection device for a solar battery panel of this configuration, a specific template corresponding to the solar power generation cell to be inspected is created, and a predetermined template is compared with the specific template among the solar power generation cells constituting the solar battery panel. Mask photovoltaic cells with a similarity greater than or equal to the value. Here, the masked photovoltaic power generation cell is a reliable cell. Therefore, according to this structure, the test | inspection number of a photovoltaic cell can be reduced, As a result, the test | inspection speed and test | inspection precision of a solar cell panel improve.
 本発明に係る太陽電池パネルのEL検査装置において、
 前記比較部は、前記テンプレートとして、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、当該特定テンプレートと比較して所定値未満の類似度を有する太陽光発電セルを強調することが好ましい。
In the solar cell panel EL inspection apparatus according to the present invention,
The comparison unit preferably creates a specific template corresponding to the photovoltaic cell to be inspected as the template, and emphasizes a photovoltaic cell having a similarity less than a predetermined value compared to the specific template. .
 本構成の太陽電池パネルのEL検査装置であれば、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、太陽電池パネルを構成する太陽光発電セルのうち、特定テンプレートと比較して所定値未満の類似度を有する太陽光発電セルを強調する。ここで、強調された太陽光発電セルは、不良品であることが確実なセルである。従って、本構成によっても、太陽光発電セルの検査数を低減することができ、その結果、太陽電池パネルの検査速度及び検査精度が向上する。 If it is an EL inspection device for a solar battery panel of this configuration, a specific template corresponding to the solar power generation cell to be inspected is created, and a predetermined template is compared with the specific template among the solar power generation cells constituting the solar battery panel. Emphasize photovoltaic cells with similarity less than the value. Here, the emphasized photovoltaic power generation cell is a reliable cell that is a defective product. Therefore, also by this structure, the test | inspection number of a photovoltaic cell can be reduced, As a result, the test | inspection speed and test | inspection precision of a solar cell panel improve.
 本発明に係る太陽電池パネルのEL検査装置において、
 前記比較部は、前記特定テンプレートを別の特定テンプレートに変更することが好ましい。
In the solar cell panel EL inspection apparatus according to the present invention,
It is preferable that the comparison unit changes the specific template to another specific template.
 本構成の太陽電池パネルのEL検査装置であれば、比較部が特定テンプレートを別の特定テンプレートに変更することにより、一つのEL検査装置で、多種多様な太陽電池パネルの検査に対応することが可能となる。また、検査途中において、検査精度があまり芳しくないと判断される場合には、現在使用中の特定テンプレートを、より好ましい別の特定テンプレートに変更することも可能である。この場合、検査途中からでも検査精度を向上させることができる。 If it is an EL inspection device for a solar cell panel of this configuration, the comparison unit can change the specific template to another specific template, so that one EL inspection device can cope with various solar cell panel inspections. It becomes possible. Further, when it is determined that the inspection accuracy is not so good during the inspection, the specific template currently in use can be changed to another more preferable specific template. In this case, the inspection accuracy can be improved even during the inspection.
 本発明に係る太陽電池パネルのEL検査装置において、
 前記判定部は、判定結果に応じて、前記撮影した画像を色分けすることが好ましい。
In the solar cell panel EL inspection apparatus according to the present invention,
The determination unit preferably color-codes the captured image according to a determination result.
 本構成の太陽電池パネルのEL検査装置であれば、判定部が、判定結果に応じて、撮影した画像を色分けすることにより、検査結果をオペレータに対して分かり易く表示することができる。 If it is an EL inspection device for a solar cell panel of this configuration, the determination unit can display the inspection result in an easy-to-understand manner for the operator by color-coding the captured image according to the determination result.
 上記課題を解決するための本発明に係る太陽電池パネルの検査方法の特徴構成は、
 複数の太陽光発電セルを備えた太陽電池パネルのEL検査方法であって、
 検査対象の太陽電池パネルに順バイアス電流を印加してEL発光させる発光ステップと、
 EL発光状態の前記太陽電池パネルを撮影する撮影ステップと、
 撮影した前記太陽電池パネルの画像を補正する補正ステップと、
 補正後の画像と基準となるテンプレートとを比較する比較ステップと、
 比較結果に基づいて、前記太陽電池パネルの良否を判定する判定ステップと、
を包含することにある。
The characteristic configuration of the method for inspecting a solar cell panel according to the present invention for solving the above problems is as follows.
It is an EL inspection method for a solar battery panel including a plurality of photovoltaic power generation cells,
A light emitting step of applying a forward bias current to the solar cell panel to be inspected to emit EL;
A photographing step of photographing the solar cell panel in an EL emission state;
A correction step for correcting the captured image of the solar cell panel;
A comparison step for comparing the corrected image with a reference template;
A determination step of determining pass / fail of the solar cell panel based on the comparison result;
It is to include.
 本構成の太陽電池パネルのEL検査方法によれば、上述した本構成の太陽電池パネルのEL検査装置と同様の作用効果を奏する。
 すなわち、撮影ステップにおいて撮影したEL発光状態の太陽電池パネルの画像(すなわち、EL画像)を補正ステップにより補正することができる。このため、太陽電池パネルとカメラとの撮影距離を短縮するにあたって、反射鏡を使用せずに短焦点広角レンズを利用して太陽電池パネルの全体を撮影した場合でも、撮影画像の周辺部の歪みや暗部を補正することにより、通常のレンズで撮影した場合と同等の画像を得ることができる。その結果、後の比較ステップによる比較、及び判定ステップによる判定を良好に行うことができる。
 また、補正後の画像と基準となるテンプレートとを比較する比較ステップと、比較結果に基づいて、太陽電池パネルの良否を判定する判定ステップとを実行することにより、太陽電池パネルにおける欠陥の有無を効率よく且つ確実に検査することができる。例えば、良好な太陽電池パネルの一部に相当するサンプルをテンプレートとして採用することにより、検査対象の太陽電池パネルと良好な太陽電池パネルとの類似度(すなわち、両者がどの程度一致しているか)を確認することができる。その結果、太陽電池パネルのEL検査を迅速且つ確実に実施することができる。
According to the EL inspection method for the solar cell panel of the present configuration, the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved.
That is, it is possible to correct the image (that is, the EL image) of the EL panel in the EL emission state that is captured in the capturing step by the correcting step. For this reason, when shortening the shooting distance between the solar panel and the camera, even if the entire solar panel is shot using a short-focus wide-angle lens without using a reflector, the distortion in the periphery of the shot image By correcting the dark area, it is possible to obtain an image equivalent to that obtained by shooting with a normal lens. As a result, the comparison in the subsequent comparison step and the determination in the determination step can be favorably performed.
In addition, by executing a comparison step for comparing the corrected image with a reference template and a determination step for determining the quality of the solar cell panel based on the comparison result, the presence or absence of defects in the solar cell panel is determined. Inspection can be performed efficiently and reliably. For example, by adopting a sample corresponding to a part of a good solar cell panel as a template, the similarity between the solar cell panel to be inspected and the good solar cell panel (that is, how well they match) Can be confirmed. As a result, the EL inspection of the solar cell panel can be performed quickly and reliably.
 本発明に係る太陽電池パネルのEL検査方法において、
 前記補正ステップにおいて、前記画像の歪曲補正と輝度補正とを同時に実行することが好ましい。
In the EL inspection method for solar cell panels according to the present invention,
In the correction step, it is preferable to simultaneously perform distortion correction and luminance correction of the image.
 本構成の太陽電池パネルのEL検査方法によれば、上述した本構成の太陽電池パネルのEL検査装置と同様の作用効果を奏する。
 すなわち、補正ステップにおいてが、撮影した画像の歪曲補正と輝度補正とを同時に実行するので、画像処理時間が短縮されるとともに、画像処理精度が向上する。その結果、太陽電池パネルのEL検査をより迅速且つ確実に実施することができる。
According to the EL inspection method for the solar cell panel of the present configuration, the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved.
That is, in the correction step, distortion correction and luminance correction of the captured image are executed simultaneously, so that the image processing time is shortened and the image processing accuracy is improved. As a result, the EL inspection of the solar cell panel can be performed more quickly and reliably.
 本発明に係る太陽電池パネルのEL検査方法において、
 前記比較ステップにおいて、前記テンプレートとして、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、当該特定テンプレートと比較して所定値以上の類似度を有する太陽光発電セルをマスクすることが好ましい。
In the EL inspection method for solar cell panels according to the present invention,
In the comparison step, it is preferable that a specific template corresponding to the photovoltaic cell to be inspected is created as the template, and the photovoltaic cell having a similarity equal to or higher than a predetermined value compared to the specific template is masked. .
 本構成の太陽電池パネルのEL検査方法によれば、上述した本構成の太陽電池パネルのEL検査装置と同様の作用効果を奏する。
 すなわち、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、太陽電池パネルを構成する太陽光発電セルのうち、特定テンプレートと比較して所定値以上の類似度を有する太陽光発電セルをマスクする。ここで、マスクされた太陽光発電セルは、良品であることが確実なセルである。従って、本構成によれば、太陽光発電セルの検査数を低減することができ、その結果、太陽電池パネルの検査速度及び検査精度が向上する。
According to the EL inspection method for the solar cell panel of the present configuration, the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved.
That is, a specific template corresponding to the photovoltaic cell to be inspected is created, and among the photovoltaic cells constituting the photovoltaic panel, a photovoltaic cell having a similarity equal to or higher than a predetermined value compared to the specific template Mask it. Here, the masked photovoltaic power generation cell is a reliable cell. Therefore, according to this structure, the test | inspection number of a photovoltaic cell can be reduced, As a result, the test | inspection speed and test | inspection precision of a solar cell panel improve.
 本発明に係る太陽電池パネルのEL検査方法において、
 前記比較ステップにおいて、前記テンプレートとして、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、当該特定テンプレートと比較して所定値未満の類似度を有する太陽光発電セルを強調することが好ましい。
In the EL inspection method for solar cell panels according to the present invention,
In the comparison step, it is preferable that a specific template corresponding to the photovoltaic power generation cell to be inspected is created as the template, and the photovoltaic power generation cell having a similarity less than a predetermined value compared with the specific template is emphasized. .
 本構成の太陽電池パネルのEL検査方法によれば、上述した本構成の太陽電池パネルのEL検査装置と同様の作用効果を奏する。
 すなわち、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、太陽電池パネルを構成する太陽光発電セルのうち、特定テンプレートと比較して所定値未満の類似度を有する太陽光発電セルを強調する。ここで、強調された太陽光発電セルは、不良品であることが確実なセルである。従って、本構成によっても、太陽光発電セルの検査数を低減することができ、その結果、太陽電池パネルの検査速度及び検査精度が向上する。
According to the EL inspection method for the solar cell panel of the present configuration, the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved.
That is, a specific template corresponding to the photovoltaic cell to be inspected is created, and among the photovoltaic cells constituting the photovoltaic panel, a photovoltaic cell having a similarity less than a predetermined value compared to the specific template Emphasize. Here, the emphasized photovoltaic power generation cell is a reliable cell that is a defective product. Therefore, also by this structure, the test | inspection number of a photovoltaic cell can be reduced, As a result, the test | inspection speed and test | inspection precision of a solar cell panel improve.
 本発明に係る太陽電池パネルのEL検査方法において、
 前記比較ステップにおいて、前記特定テンプレートを別の特定テンプレートに変更することが好ましい。
In the EL inspection method for solar cell panels according to the present invention,
In the comparison step, the specific template is preferably changed to another specific template.
 本構成の太陽電池パネルのEL検査方法によれば、上述した本構成の太陽電池パネルのEL検査装置と同様の作用効果を奏する。
 すなわち、比較ステップにおいて、特定テンプレートを別の特定テンプレートに変更することにより、多種多様な太陽電池パネルのEL検査に対応することが可能となる。また、検査途中において、検査精度があまり芳しくないと判断される場合には、現在使用中の特定テンプレートを、より好ましい別の特定テンプレートに変更することも可能である。この場合、検査途中からでも検査精度を向上させることができる。
According to the EL inspection method for the solar cell panel of the present configuration, the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved.
That is, in the comparison step, by changing the specific template to another specific template, it is possible to cope with EL inspections of a wide variety of solar cell panels. Further, when it is determined that the inspection accuracy is not so good during the inspection, the specific template currently in use can be changed to another more preferable specific template. In this case, the inspection accuracy can be improved even during the inspection.
 本発明に係る太陽電池パネルのEL検査方法において、
 前記判定ステップにおいて、判定結果に応じて、前記撮影した画像を色分けすることが好ましい。
In the EL inspection method for solar cell panels according to the present invention,
In the determination step, it is preferable that the photographed image is color-coded according to the determination result.
 本構成の太陽電池パネルのEL検査方法によれば、上述した本構成の太陽電池パネルのEL検査装置と同様の作用効果を奏する。
 すなわち、判定ステップにおいて、判定結果に応じて、撮影した画像を色分けすることにより、検査結果をオペレータに対して分かり易く表示することができる。
According to the EL inspection method for the solar cell panel of the present configuration, the same operational effects as the above-described EL inspection device for the solar cell panel of the present configuration are achieved.
That is, in the determination step, the inspection result can be displayed in an easy-to-understand manner for the operator by color-coding the captured image according to the determination result.
図1は、本発明による太陽電池パネルのEL検査装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an EL inspection apparatus for a solar cell panel according to the present invention. 図2は、本発明の第1実施形態による、補正部が実行する補正結果、及び比較部が実行する比較結果を示した説明図である。FIG. 2 is an explanatory diagram showing a correction result executed by the correction unit and a comparison result executed by the comparison unit according to the first embodiment of the present invention. 図3は、本発明の第2実施形態による、補正部が実行する補正結果、及び比較部が実行する比較結果を示した説明図である。FIG. 3 is an explanatory diagram showing a correction result executed by the correction unit and a comparison result executed by the comparison unit according to the second embodiment of the present invention. 図4は、本発明の第3実施形態による、太陽電池パネルのEL検査方法の手順を示すフローチャートである。FIG. 4 is a flowchart illustrating a procedure of a solar cell panel EL inspection method according to the third embodiment of the present invention. 図5は、本発明の第4実施形態による、太陽電池パネルのEL検査方法の手順を示すフローチャートである。FIG. 5 is a flowchart showing a procedure of an EL inspection method for a solar cell panel according to the fourth embodiment of the present invention.
 以下、本発明の太陽電池パネルのEL検査装置、及びEL検査方法に関する実施形態を図1~図5に基づいて説明する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図せず、それらと均等な構成も含む。 Hereinafter, embodiments of an EL inspection apparatus and an EL inspection method for a solar cell panel according to the present invention will be described with reference to FIGS. However, the present invention is not intended to be limited to the configurations described in the embodiments and drawings described below, and includes configurations equivalent thereto.
〔太陽電池パネルのEL検査装置〕
 図1は、本発明による太陽電池パネルのEL検査装置100の概略構成を示すブロック図である。ここでは、太陽電池パネル50をインライン方式で連続的に検査するEL検査装置を例示してある。ただし、本発明の太陽電池パネルのEL検査装置100は、検査対象の太陽電池パネル50を一つずつ個別に検査する、いわゆるバッチ方式のEL検査装置として構成することも当然に可能である。EL検査装置100は、主に、検査対象の太陽電池パネル50に順バイアス電流を印加してEL発光させるDC電源1と、EL発光状態の太陽電池パネル50を撮影するカメラ(撮影部)10と、撮影した太陽電池パネル50の画像を処理及び解析するコンピュータ20とを備えている。検査対象の太陽電池パネル50には、複数の太陽光発電セルが備えられており、この太陽光発電セルの良否をEL検査装置100により判定する。
[EL inspection device for solar panel]
FIG. 1 is a block diagram showing a schematic configuration of a solar cell panel EL inspection apparatus 100 according to the present invention. Here, an EL inspection apparatus that continuously inspects the solar cell panel 50 in an in-line manner is illustrated. However, the solar cell panel EL inspection apparatus 100 of the present invention can naturally be configured as a so-called batch-type EL inspection apparatus that individually inspects the solar cell panels 50 to be inspected one by one. The EL inspection apparatus 100 mainly includes a DC power source 1 that applies a forward bias current to the solar cell panel 50 to be inspected to cause EL emission, and a camera (imaging unit) 10 that images the solar cell panel 50 in the EL emission state. And a computer 20 that processes and analyzes the photographed image of the solar cell panel 50. The solar cell panel 50 to be inspected is provided with a plurality of solar power generation cells, and the EL inspection device 100 determines the quality of the solar power generation cells.
 DC電源1は、太陽電池パネル50の検査面51(太陽光発電セルが配列されている面)の裏側に設けられている電極コンタクト52と接触し、太陽電池パネル50に順バイアス電流を印加する。その結果、太陽電池パネル50はEL発光する。カメラ10は、外部光を遮蔽可能な環境にある暗室30の内部に設置される。カメラ10と対峙する暗室30の側壁には、太陽電池パネル50を撮影するための光透過性の撮影窓31が設けられる。この撮影窓31に対して、検査対象の太陽電池パネル50の検査面51が当接させられる。この当接状態では、撮影窓31が太陽電池パネル50によって完全に覆われるため、太陽電池パネル50の検査面51は外部光が遮断された状態となっている。この状態で、太陽電池パネル50の検査面51にあるEL発光状態の複数の太陽光発電セルは、カメラ10により撮影される。ここで、カメラ10には、太陽電池パネル50が大型(例えば、2m×1mのサイズ)の場合にも対応できるように、短焦点広角レンズ11が搭載されている。これにより、太陽電池パネル50の検査面51の全体を撮影画像に収めることができる。太陽電池パネル50の撮影が完了したら、当該撮影済みの太陽電池パネル50は次工程に搬送され(図1では暗室30の右側に移動する)、次の検査対象の太陽電池パネル(図1では暗室30の左側に待機している太陽電池パネル50)が暗室30の撮影窓31に当接させられる。同時に、太陽電池パネル50の電極コンタクト52がDC電源1に接触し、順バイアス電流が印加されてEL発光する。このようにして、太陽電池パネル50の連続撮影(インライン検査)が実行される。 The DC power source 1 is in contact with the electrode contact 52 provided on the back side of the inspection surface 51 (the surface on which the photovoltaic cells are arranged) of the solar cell panel 50 and applies a forward bias current to the solar cell panel 50. . As a result, the solar cell panel 50 emits EL. The camera 10 is installed inside a dark room 30 in an environment where external light can be shielded. On the side wall of the dark room 30 facing the camera 10, a light-transmissive shooting window 31 for shooting the solar cell panel 50 is provided. An inspection surface 51 of the solar cell panel 50 to be inspected is brought into contact with the photographing window 31. In this contact state, the imaging window 31 is completely covered by the solar cell panel 50, so that the inspection surface 51 of the solar cell panel 50 is in a state where external light is blocked. In this state, the plurality of photovoltaic cells in the EL emission state on the inspection surface 51 of the solar battery panel 50 are photographed by the camera 10. Here, the short-focus wide-angle lens 11 is mounted on the camera 10 so as to be able to cope with a case where the solar battery panel 50 is large (for example, a size of 2 m × 1 m). Thereby, the whole test | inspection surface 51 of the solar cell panel 50 can be accommodated in a picked-up image. When the photographing of the solar cell panel 50 is completed, the photographed solar cell panel 50 is transported to the next process (moves to the right side of the dark room 30 in FIG. 1), and the next solar cell panel to be inspected (dark room in FIG. 1). The solar cell panel 50) waiting on the left side of 30 is brought into contact with the photographing window 31 of the dark room 30. At the same time, the electrode contact 52 of the solar cell panel 50 comes into contact with the DC power source 1 and a forward bias current is applied to emit EL. In this way, continuous photographing (in-line inspection) of the solar cell panel 50 is executed.
 コンピュータ20には、カメラ10によって撮影した太陽電池パネル50の画像を補正する補正部21と、補正後の画像と基準となるテンプレート24とを比較する比較部22と、比較結果に基づいて、太陽電池パネル50の良否を判定する判定部23とが備えられている。ここで、テンプレート24は、良好な状態の太陽光発電セルのサンプルデータであり、これは比較部22に格納されている。また、テンプレート24は、検査対象の太陽電池パネルの種類に応じて複数存在し、夫々の太陽電池パネルに対して特定のテンプレートが利用される。従って、比較部22は、特定テンプレートを別の特定テンプレートに変更することにより、一つのEL検査装置100で、多種多様な太陽電池パネルの検査に対応することが可能となる。また、検査途中において、検査精度があまり芳しくないと判断される場合には、現在使用中の特定テンプレートを、より好ましい別の特定テンプレートに変更することも可能である。この場合、検査途中からでも検査精度を向上させることができる。 The computer 20 includes a correction unit 21 that corrects the image of the solar battery panel 50 taken by the camera 10, a comparison unit 22 that compares the corrected image with the template 24 serving as a reference, and based on the comparison result, The determination part 23 which determines the quality of the battery panel 50 is provided. Here, the template 24 is sample data of a solar power generation cell in a good state, and this is stored in the comparison unit 22. There are a plurality of templates 24 depending on the type of solar cell panel to be inspected, and a specific template is used for each solar cell panel. Therefore, the comparison part 22 can respond | correspond to the test | inspection of a various solar cell panel with one EL test | inspection apparatus 100 by changing a specific template into another specific template. Further, when it is determined that the inspection accuracy is not so good during the inspection, the specific template currently in use can be changed to another more preferable specific template. In this case, the inspection accuracy can be improved even during the inspection.
 補正部21、比較部22、及び判定部23は、コンピュータ20の内部に実装されるハードウェアとして実現してもよいが、コンピュータ20において実行されるソフトウェアの機能として実現することもできる。以下、補正部21、比較部22、及び判定部23により実行される代表的な2つの演算処理を、第1実施形態及び第2実施形態として説明する。 The correction unit 21, the comparison unit 22, and the determination unit 23 may be realized as hardware implemented in the computer 20, but may also be realized as software functions executed in the computer 20. Hereinafter, two typical arithmetic processes executed by the correction unit 21, the comparison unit 22, and the determination unit 23 will be described as a first embodiment and a second embodiment.
<第1実施形態>
 図2は、本発明の第1実施形態による、補正部21が実行する補正結果、及び比較部22が実行する比較結果を示した説明図である。検査対象の太陽電池パネル50を、短焦点広角レンズ11を備えたカメラ10を介して撮影した場合、撮影した画像の周辺部が歪曲し、さらに輝度も低下する。従って、短焦点広角レンズ11付きのカメラ10で撮影した元画像は、そのままの状態で検査に使用することはできない。そこで、補正部21により、撮影画像に対して、歪曲補正と輝度補正とを同時に実行する。なお、歪曲補正には、側方からの撮影のため台形状に変形した画像を方形状画像に補正する台形補正も含まれる。図2において、(a)は短焦点広角レンズ11付きのカメラ10で撮影した元画像である。(b)は元画像を歪曲補正した後の画像である。(c)はさらに輝度補正をした後の画像である。歪曲補正及び輝度補正が完了した画像に対しては、比較部22によりマスク処理を実行する。(d)はマスク処理後の画像であり、点線で囲まれた領域が、マスク処理が行われた太陽光発電セルである。(d)において、点線の丸で囲まれた箇所に「欠け」や「クラック」等の不良個所が含まれている。すなわち、周囲より暗くなっている部分が不良個所として認識される。マスク処理は、以下の<1>~<10>の手順で示す「パターンマッチング法」を利用して行われる。
<First Embodiment>
FIG. 2 is an explanatory diagram showing a correction result executed by the correction unit 21 and a comparison result executed by the comparison unit 22 according to the first embodiment of the present invention. When the solar cell panel 50 to be inspected is photographed through the camera 10 provided with the short focus wide-angle lens 11, the peripheral portion of the photographed image is distorted and the luminance is also lowered. Therefore, the original image taken by the camera 10 with the short focus wide angle lens 11 cannot be used for the inspection as it is. Therefore, the correction unit 21 simultaneously performs distortion correction and luminance correction on the captured image. Note that the distortion correction includes trapezoidal correction in which an image deformed into a trapezoidal shape for photographing from the side is corrected to a square image. In FIG. 2, (a) is an original image taken by the camera 10 with the short focus wide angle lens 11. (B) is an image after correcting the distortion of the original image. (C) is an image after further luminance correction. A mask process is executed by the comparison unit 22 on the image for which the distortion correction and the luminance correction are completed. (D) is an image after mask processing, and a region surrounded by a dotted line is a photovoltaic cell on which mask processing has been performed. In (d), a defective part such as “chip” or “crack” is included in a part surrounded by a dotted circle. That is, a portion darker than the surroundings is recognized as a defective part. The mask processing is performed using a “pattern matching method” shown in the following procedures <1> to <10>.
 <1>初めに、テンプレート(検査対象の太陽光発電セルに応じた特定テンプレート)となる基準画像の各ピクセルの輝度値から、当該基準画像の平均輝度を求める。基準画像は、予め定めた基準となる良品セル一つ分の画像とする。
 <2>基準画像から当該基準画像の平均輝度を差し引いた画像aを取得する。この演算は、基準画像を構成するピクセルの夫々に対して繰り返す。
 <3>撮影画像の任意位置における選択画像(これは、基準画像と同サイズの画像とする)の各ピクセル輝度値から、当該選択画像の平均輝度を求める。
 <4>選択画像から当該選択画像の平均輝度を差し引いた画像bを取得する。この演算は、選択画像を構成するピクセルの夫々に対して繰り返す。
 <5>基準画像のノルムを求める。式(1)に示すように、画像aの各ピクセルを2乗した値の合計c1を求める。
   c1=Σa ・・・ (1)
 <6>選択画像のノルムを求める。式(2)に示すように、画像bの各ピクセルを2乗した値の合計c2を求める。
   c2=Σb ・・・ (2)
 <7>式(3)に示すように、画像aと画像bとの積の合計c3を求める。
   c3=Σ(a・b) ・・・ (3)
 <8>式(4)により、百分率vを求める。
   v=c3/{(c1)1/2・(c2)1/2}×100 ・・・ (4)
 <9>予め設定した二つの閾値p1及びp2とvとを比較する。ここで、p1及びp2は、テンプレートを100%とした場合の類似度(すなわち、基準画像に対して選択画像がどの程度一致しているかを示す指標)に相当する。本実施形態では、p1は類似サイドにおける閾値であり、p2は非類似サイドにおける閾値である。各ピクセルの輝度に基づいて、太陽光発電セルのランク分けを行い、ランク分けされた後の太陽光発電セルについて類似度を判定する。具体的には、初めにv<p2となる画像を求める。求めた画像は非類似であると判定され、当該画像は太陽光発電セルではないと判定する。次に、v≧p1となる画像(選択画像)を求める。求めた選択画像は基準画像に類似していると判定し、選択画像に対してマスク処理を行う。このとき、マスクされた太陽光発電セルは、良品であることが確実なセルである。このランク分けでは、初めにvとp1との比較を実行することにより良品セルを除外し、次いで、vとp2との比較を実行することによりセルでないものを除外しても構わない。マスク処理をする前の原画像はコンピュータ20に格納されているため、本発明においては、マスク処理前後の画像を比較することも可能である。このため、オペレータにとっては不良個所の認識が容易となる。
 <10>上記<3>における任意位置を変更し、<3>~<9>を繰り返す。ここで、繰り返し回数は、撮影画像を構成するピクセルの数とすることが好ましい。ただし、演算が不要な箇所を省略したり、次の演算を行う太陽光発電セルの位置を予測したり、すでに行った演算結果を再利用したりすることで、演算精度を落とすことなく、演算回数を減少させることができる。その結果、太陽電池パネルの検査を迅速且つ確実に実施することができる。
<1> First, the average luminance of the reference image is obtained from the luminance value of each pixel of the reference image that is a template (a specific template corresponding to the photovoltaic cell to be inspected). The reference image is an image for one good cell serving as a predetermined reference.
<2> An image a obtained by subtracting the average luminance of the reference image from the reference image is acquired. This calculation is repeated for each of the pixels constituting the reference image.
<3> The average luminance of the selected image is obtained from each pixel luminance value of the selected image at an arbitrary position of the captured image (this is an image having the same size as the reference image).
<4> An image b obtained by subtracting the average luminance of the selected image from the selected image is acquired. This calculation is repeated for each of the pixels constituting the selected image.
<5> The norm of the reference image is obtained. As shown in Expression (1), a total c1 of values obtained by squaring each pixel of the image a is obtained.
c1 = Σa 2 (1)
<6> The norm of the selected image is obtained. As shown in Expression (2), a total c2 of values obtained by squaring each pixel of the image b is obtained.
c2 = Σb 2 (2)
<7> As shown in Expression (3), the sum total c3 of the products of the images a and b is obtained.
c3 = Σ (a · b) (3)
<8> Percentage v is obtained from equation (4).
v = c3 / {(c1) 1/2 · (c2) 1/2 } × 100 (4)
<9> Two threshold values p1 and p2 set in advance are compared with v. Here, p1 and p2 correspond to the similarity when the template is 100% (that is, an index indicating how much the selected image matches the reference image). In the present embodiment, p1 is a threshold value on the similar side, and p2 is a threshold value on the dissimilar side. Based on the luminance of each pixel, the photovoltaic cells are ranked, and the similarity is determined for the photovoltaic cells after the ranking. Specifically, an image satisfying v <p2 is first obtained. The obtained image is determined to be dissimilar, and it is determined that the image is not a photovoltaic cell. Next, an image (selected image) satisfying v ≧ p1 is obtained. It is determined that the obtained selected image is similar to the reference image, and mask processing is performed on the selected image. At this time, the masked photovoltaic power generation cell is a reliable cell. In this ranking, a non-defective cell may be excluded by first performing a comparison between v and p1, and then a non-cell may be excluded by performing a comparison between v and p2. Since the original image before the mask process is stored in the computer 20, in the present invention, it is also possible to compare the images before and after the mask process. For this reason, the operator can easily recognize the defective part.
<10> The arbitrary position in the above <3> is changed, and <3> to <9> are repeated. Here, the number of repetitions is preferably the number of pixels constituting the captured image. However, it is possible to omit the calculation accuracy without reducing the calculation accuracy by omitting the places where the calculation is unnecessary, predicting the position of the photovoltaic cell for the next calculation, and reusing the calculation result already performed. The number of times can be reduced. As a result, the solar cell panel can be inspected quickly and reliably.
 上記<1>におけるテンプレートは、自由に設定することができる。例えば、テンプレートとして、太陽電池パネルの構成単位である一つの太陽光発電セルの1/n倍サイズの画像(n>1)を基準画像とする。このようなテンプレートを使用することにより、コンピュータ20における演算回数を1/nに減少させることが可能となる。具体例を説明すると、テンプレートとして、太陽光発電セル上半分の画像を設定すれば、上記<3>における選択画像も太陽光発電セル上半分の画像となる。これにより、事前に太陽光発電セルの位置を特定し、セル位置が特定された段階で全体を比較する。 The template in <1> above can be set freely. For example, as a template, a 1 / n-fold image (n> 1) of one photovoltaic power generation cell that is a structural unit of a solar battery panel is used as a reference image. By using such a template, the number of operations in the computer 20 can be reduced to 1 / n. If a specific example is demonstrated, if the image of a photovoltaic cell upper half is set as a template, the selection image in said <3> will also become an image of a photovoltaic cell upper half. Thereby, the position of a photovoltaic cell is specified in advance, and the whole is compared at the stage where the cell position is specified.
 基準画像と類似していると判定された選択画像(すなわち、良品であることが確実な太陽光発電セル)に対しては、例えば、濃色で色分けすることができる。これにより、オペレータは、太陽電池パネルにおける不良な太陽光発電セルのみを容易に認識することができる。 For a selected image determined to be similar to the reference image (that is, a photovoltaic power generation cell that is surely a non-defective product), for example, it can be color-coded in a dark color. Thereby, the operator can easily recognize only defective solar power generation cells in the solar battery panel.
 <第2実施形態>
 図3は、本発明の第2実施形態による、補正部21が実行する補正結果、及び比較部22が実行する比較結果を示した説明図である。この第2実施形態においても、上記第1実施形態と同様に、補正部21により、撮影画像に対して、歪曲補正と輝度補正とを同時に実行する。図3において、(a)から(b)への処理が歪曲補正であり、(b)から(c)への処理が輝度補正である。歪曲補正及び輝度補正が完了した画像に対しては、比較部22により(c)から(d)に示す強調処理を実行する。なお、(d)に示す強調処理の結果は、(c)において点線で囲まれた領域の処理結果を拡大表示したものである。
Second Embodiment
FIG. 3 is an explanatory diagram showing a correction result executed by the correction unit 21 and a comparison result executed by the comparison unit 22 according to the second embodiment of the present invention. Also in the second embodiment, similarly to the first embodiment, the correction unit 21 simultaneously performs distortion correction and luminance correction on the captured image. In FIG. 3, the process from (a) to (b) is distortion correction, and the process from (b) to (c) is luminance correction. The enhancement unit shown in (c) to (d) is executed by the comparison unit 22 on the image for which distortion correction and luminance correction have been completed. The result of the emphasis process shown in (d) is an enlarged display of the process result of the area surrounded by the dotted line in (c).
 強調処理に至るまでのプロセスは、基本的には上述の「パターンマッチング法」と同様であるが、基準画像と類似していないと判定した選択画像を抽出する。すなわち、上記パターンマッチング法の<9>において、予め設定した閾値p2とvとを比較し、v<p2の場合、選択画像は基準画像に類似していないと判定する。 The process up to the enhancement process is basically the same as the above-described “pattern matching method”, but a selected image that is determined not to be similar to the reference image is extracted. That is, in <9> of the pattern matching method, a preset threshold value p2 is compared with v, and when v <p2, it is determined that the selected image is not similar to the reference image.
 基準画像と類似していないと判定された選択画像(すなわち、セルではないと判定された領域を除く、不良品であることが確実なセル)に対しては、例えば、図3(d)に示すような明示化による強調処理を行う。ここで、注目すべきは、太陽光発電セルの表面に元々形成されている表面電極等の構造物のパターンは排除され、丸印で囲んだ領域内に見られるような欠陥部のみが特に目立つように強調されることである。これにより、オペレータは、太陽電池パネルにおける不良な太陽光発電セルのみを容易に認識することができる。 For a selected image that is determined not to be similar to the reference image (that is, a cell that is surely a defective product excluding an area determined not to be a cell), for example, FIG. Perform emphasis processing by clarification as shown. Here, it should be noted that the pattern of the structure such as the surface electrode originally formed on the surface of the photovoltaic cell is excluded, and only the defective portion as seen in the area surrounded by the circle is particularly noticeable. Is to be emphasized. Thereby, the operator can easily recognize only defective solar power generation cells in the solar battery panel.
 なお、第2実施形態で用いるテンプレートとして、例えば、太陽光発電セルの表面にある表面電極等の構造物を含めたパターンをテンプレートとして設定することも有効である。この場合、テンプレートと太陽光発電セルとの比較において、セル画像の二値化の際に構造物のパターンが差し引かれるので、その後に強調表示した場合でも構造物が画像中に現れない。その結果、構造物を「欠け」や「クラック」等の欠陥として誤認することがなくなり、検査精度を向上させることができる。 As a template used in the second embodiment, for example, it is also effective to set a pattern including a structure such as a surface electrode on the surface of the photovoltaic cell as a template. In this case, in the comparison between the template and the photovoltaic power generation cell, since the pattern of the structure is subtracted when the cell image is binarized, the structure does not appear in the image even when it is highlighted after that. As a result, the structure is not mistaken as a defect such as “chip” or “crack”, and the inspection accuracy can be improved.
 上記第1実施形態の「マスク処理」と、上記第2実施形態の「強調処理」とを組み合わせて太陽電池パネルの良否判定を実行することも有効である。この場合、より確実な検査を行い得る。 It is also effective to execute the solar cell panel pass / fail judgment by combining the “mask process” of the first embodiment and the “enhancement process” of the second embodiment. In this case, a more reliable inspection can be performed.
〔太陽電池パネルのEL検査方法〕
 次に、上記の太陽電池パネルのEL検査装置100を用いて実行する太陽電池パネルのEL検査方法を説明する。
[EL inspection method for solar panel]
Next, a description will be given of a solar cell panel EL inspection method executed using the solar cell panel EL inspection device 100 described above.
<第3実施形態>
 図4は、本発明の第3実施形態による、太陽電池パネルのEL検査方法の手順を示すフローチャートである。第3実施形態の太陽電池パネルのEL検査方法は、上述した第1実施形態の太陽電池パネルのEL検査装置に対応し、以下に説明するステップ1からステップ7により実行される。なお、図4では、各ステップを記号「S」として示している。
<Third Embodiment>
FIG. 4 is a flowchart illustrating a procedure of a solar cell panel EL inspection method according to the third embodiment of the present invention. The solar cell panel EL inspection method of the third embodiment corresponds to the solar cell panel EL inspection device of the first embodiment described above, and is executed by steps 1 to 7 described below. In FIG. 4, each step is indicated by a symbol “S”.
 初めに、発光ステップとして、検査対象の太陽電池パネル50に順バイアス電流を印加する。これにより、太陽電池パネル50をEL発光させる(S0)。次に、撮影ステップとして、EL発光状態の太陽電池パネル50の画像(すなわち、EL画像)を撮影する(S1)。この撮影では、短焦点広角レンズ11を使用する。これにより、太陽電池パネル50が大型(例えば、2m×1mのサイズ)の場合にも、パネル全体を撮影することができる。 First, as a light emission step, a forward bias current is applied to the solar cell panel 50 to be inspected. This causes the solar cell panel 50 to emit EL (S0). Next, as an imaging step, an image (that is, an EL image) of the solar cell panel 50 in the EL emission state is captured (S1). In this photographing, the short focus wide angle lens 11 is used. Thereby, even when the solar cell panel 50 is large (for example, a size of 2 m × 1 m), the entire panel can be photographed.
 短焦点広角レンズ11を用いて撮影した画像は、ディスプレイサイズに適合するように、必要に応じてリサイズする(S2)。リサイズ前の元の画像は、拡大表示の際に利用することができる。次に、短焦点広角レンズ11の影響による画像周辺部の歪曲および輝度低下を補正する(S3)。このとき、歪曲補正と輝度補正とを同時に実行すれば、画像処理時間が短縮されるとともに画像処理精度が向上する。画像リサイズ(S2)及び歪曲・輝度補正(S3)が補正ステップとなる。 The image photographed using the short-focus wide-angle lens 11 is resized as necessary so as to fit the display size (S2). The original image before resizing can be used for enlarged display. Next, distortion and luminance reduction at the periphery of the image due to the influence of the short focus wide-angle lens 11 are corrected (S3). At this time, if distortion correction and luminance correction are executed simultaneously, the image processing time is shortened and the image processing accuracy is improved. Image resizing (S2) and distortion / brightness correction (S3) are correction steps.
 補正後の画像に対して、パターンマッチングを実行することにより太陽光発電セルの状態を認識し、太陽電池パネル50における良品セルのマスクを行う(S4~S6)。パターンマッチングは、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、当該特定テンプレートと検査対象の太陽光発電セルとを比較し、特定テンプレートに対する類似度が所定値以上又は所定値未満の太陽光発電セルを抽出する作業である。具体的には、上記の「太陽電池パネルの検査装置」で説明した<1>~<10>の手順による「パターンマッチング法」を実行する。ここで、所定値として、太陽電池パネルの種類に応じた閾値(類似度の判定基準)が設定される。閾値は、例えば、先に説明した類似サイドにおける閾値p1、及び非類似サイドにおける閾値p2とすることができる。閾値は、テンプレートを100%とすると、60~90%の範囲とすることが好ましい。閾値が60%未満では、太陽光発電セルの特定に支障が発生し、検査精度が低下する。一方、閾値が90%を超えると、過剰な基準のため良品と判定される太陽光発電セルの数が極端に減少し、検査効率が悪くなる。パターンマッチングの結果に基づいて、必要に応じて太陽光発電セルのランク分け(ランク値の設定)が行われ、太陽光発電セルの認識が行われる(S5)。 The pattern of the corrected image is executed on the corrected image to recognize the state of the photovoltaic cell and mask the non-defective cell in the solar battery panel 50 (S4 to S6). Pattern matching creates a specific template according to the photovoltaic power generation cell to be inspected, compares the specific template with the photovoltaic power generation cell to be inspected, and the similarity to the specific template is greater than or equal to a predetermined value or less than a predetermined value. This is an operation for extracting a photovoltaic cell. Specifically, the “pattern matching method” according to the procedures <1> to <10> described in the above “solar cell panel inspection apparatus” is executed. Here, as the predetermined value, a threshold (similarity criterion) according to the type of the solar battery panel is set. The threshold value can be, for example, the threshold value p1 on the similar side described above and the threshold value p2 on the dissimilar side. The threshold is preferably in the range of 60 to 90% when the template is 100%. If the threshold value is less than 60%, there is a problem in identifying the photovoltaic power generation cell, and the inspection accuracy is lowered. On the other hand, if the threshold value exceeds 90%, the number of photovoltaic power generation cells that are determined to be non-defective products due to excessive standards is extremely reduced, and the inspection efficiency deteriorates. Based on the pattern matching results, the photovoltaic power generation cells are ranked as necessary (rank value setting), and the photovoltaic power generation cells are recognized (S5).
 次に、太陽電池パネル50における良品セルのマスクを行う(S6)。これは、S5で認識したセルの中から明らかに良品のセルを除外する作業である。上記のパターンマッチング(S4)、セル認識(S5)、及び良品セルのマスク(S6)が比較ステップとなる。 Next, a mask of non-defective cells in the solar battery panel 50 is performed (S6). This is an operation of clearly excluding non-defective cells from the cells recognized in S5. The pattern matching (S4), cell recognition (S5), and non-defective cell mask (S6) are comparison steps.
 最後に、太陽電池パネル50に対する良否判定を行う(S7)。この良否判定は、各セルのランク値などからコンピュータ20が自動的に行うことができる。良否判定(S7)が判定ステップとなる。 Finally, the quality of the solar cell panel 50 is determined (S7). This pass / fail judgment can be automatically made by the computer 20 from the rank value of each cell. The pass / fail judgment (S7) is a judgment step.
<第4実施形態>
 図5は、本発明の第4実施形態による、太陽電池パネルのEL検査方法の手順を示すフローチャートである。第4実施形態の太陽電池パネルのEL検査方法は、上述した第2実施形態の太陽電池パネルのEL検査装置に対応し、以下に説明するステップ10からステップ20により実行される。なお、図5では、各ステップを記号「S」として示している。
<Fourth embodiment>
FIG. 5 is a flowchart showing a procedure of an EL inspection method for a solar cell panel according to the fourth embodiment of the present invention. The solar cell panel EL inspection method of the fourth embodiment corresponds to the solar cell panel EL inspection device of the second embodiment described above, and is executed by steps 10 to 20 described below. In FIG. 5, each step is indicated by a symbol “S”.
 初めに、発光ステップとして、検査対象の太陽電池パネル50に順バイアス電流を印加する。これにより、太陽電池パネル50をEL発光させる(S10)。次に、撮影ステップとして、EL発光状態の太陽電池パネル50の画像(すなわち、EL画像)を撮影する(S11)。この撮影では、短焦点広角レンズ11を使用する。これにより、太陽電池パネル50が大型(例えば、2m×1mのサイズ)の場合にも、パネル全体を撮影することができる。 First, as a light emission step, a forward bias current is applied to the solar cell panel 50 to be inspected. Thereby, the solar cell panel 50 emits EL (S10). Next, as an imaging step, an image (that is, an EL image) of the solar cell panel 50 in the EL emission state is captured (S11). In this photographing, the short focus wide angle lens 11 is used. Thereby, even when the solar cell panel 50 is large (for example, a size of 2 m × 1 m), the entire panel can be photographed.
 短焦点広角レンズ11を用いて撮影した画像は、ディスプレイサイズに適合するように、必要に応じてリサイズする(S12)。リサイズ前の元の画像は、拡大表示の際に利用することができる。次に、短焦点広角レンズ11の影響による画像周辺部の歪曲および輝度低下を補正する(S13)。このとき、歪曲補正と輝度補正とを同時に実行すれば、画像処理時間が短縮されるとともに画像処理精度が向上する。画像リサイズ(S12)及び歪曲・輝度補正(S13)が補正ステップとなる。 The image photographed using the short-focus wide-angle lens 11 is resized as necessary to fit the display size (S12). The original image before resizing can be used for enlarged display. Next, distortion and luminance reduction at the periphery of the image due to the influence of the short focus wide-angle lens 11 are corrected (S13). At this time, if distortion correction and luminance correction are executed simultaneously, the image processing time is shortened and the image processing accuracy is improved. Image resizing (S12) and distortion / brightness correction (S13) are correction steps.
 補正後の画像に対して、パターンマッチングを実行することにより太陽光発電セルの状態を認識し、太陽電池パネル50における不良個所を抽出する(S14~S18)。パターンマッチングは、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、当該特定テンプレートと検査対象の太陽光発電セルとを比較し、特定テンプレートに対する類似度が所定値以上又は所定値未満の太陽光発電セルを抽出する作業である。具体的には、上記の「太陽電池パネルの検査装置」で説明した<1>~<10>の手順による「パターンマッチング法」を実行する。ここで、所定値として、太陽電池パネルの種類に応じた閾値(類似度の判定基準)が設定される。閾値は、例えば、先に説明した類似サイドにおける閾値p1、及び非類似サイドにおける閾値p2とすることができる。閾値は、テンプレートを100%とすると、60~90%の範囲とすることが好ましい。閾値が60%未満では、太陽光発電セルの特定に支障が発生し、検査精度が低下する。一方、閾値が90%を超えると、過剰な基準のため良品と判定される太陽光発電セルの数が極端に減少し、検査効率が悪くなる。パターンマッチングの結果に基づいて、必要に応じて太陽光発電セルのランク分け(ランク値の設定)が行われ、太陽光発電セルの認識が行われる(S15)。 The pattern of the corrected image is executed on the corrected image to recognize the state of the photovoltaic power generation cell, and the defective part in the solar battery panel 50 is extracted (S14 to S18). Pattern matching creates a specific template according to the photovoltaic power generation cell to be inspected, compares the specific template with the photovoltaic power generation cell to be inspected, and the similarity to the specific template is greater than or equal to a predetermined value or less than a predetermined value. This is an operation for extracting a photovoltaic cell. Specifically, the “pattern matching method” according to the procedures <1> to <10> described in the above “solar cell panel inspection apparatus” is executed. Here, as the predetermined value, a threshold (similarity criterion) according to the type of the solar battery panel is set. The threshold value can be, for example, the threshold value p1 on the similar side described above and the threshold value p2 on the dissimilar side. The threshold is preferably in the range of 60 to 90% when the template is 100%. If the threshold value is less than 60%, there is a problem in identifying the photovoltaic power generation cell, and the inspection accuracy is lowered. On the other hand, if the threshold value exceeds 90%, the number of photovoltaic power generation cells that are determined to be non-defective products due to excessive standards is extremely reduced, and the inspection efficiency deteriorates. Based on the pattern matching result, the photovoltaic power generation cells are ranked as necessary (rank value setting), and the photovoltaic power generation cells are recognized (S15).
 その後、必要に応じて、サブ補正ステップとして、セルの輝度補正(S16)及びセル画像の二値化(S17)を実行する。これらのサブ補正ステップの実行は任意であるが、セルの輝度補正やセル画像の二値化を行うと、後の判定ステップにおける精度向上が期待できる。 Then, if necessary, as a sub correction step, cell brightness correction (S16) and cell image binarization (S17) are executed. Execution of these sub correction steps is arbitrary, but if cell luminance correction or cell image binarization is performed, an improvement in accuracy in the subsequent determination step can be expected.
 次に、太陽電池パネル50におけるセルの不良個所を抽出する(S18)。これは、S15で認識したセルの中から(あるいは、サブ補正ステップにより補正されたセルの中から)不良のセルを抽出する作業である。上記のパターンマッチング(S14)、セル認識(S15)、及び不良個所の抽出(S18)が比較ステップとなる。この比較ステップには、セルの輝度補正(S16)及びセル画像の二値化(S17)を含めても構わない。 Next, the defective part of the cell in the solar cell panel 50 is extracted (S18). This is an operation for extracting defective cells from the cells recognized in S15 (or from the cells corrected by the sub correction step). The pattern matching (S14), cell recognition (S15), and extraction of defective parts (S18) are comparison steps. This comparison step may include cell brightness correction (S16) and cell image binarization (S17).
 抽出したセルの不良個所に対して、強調表示を行う(S19)。この強調表示には着色表示も含まれる。例えば、不良個所を黒色化し、その他の箇所を白色化することにより、画像を二値化する。最後に、太陽電池パネル50に対する良否判定を行う(S20)。この良否判定は、黒色化の面積などからコンピュータ20が自動的に行うことができる。セル不良個所の強調表示(S19)及び良否判定(S20)が判定ステップとなる。 (1) Highlighting is performed on the defective portion of the extracted cell (S19). This highlighting includes coloring. For example, the image is binarized by blackening defective portions and whitening other portions. Finally, the quality determination with respect to the solar cell panel 50 is performed (S20). This quality determination can be automatically performed by the computer 20 based on the area of blackening. The highlighting display (S19) and pass / fail judgment (S20) of the cell defect portion are the judgment steps.
 以上の太陽電池パネルのEL検査方法によれば、太陽電池パネルにおける欠陥の有無を迅速に、効率よく且つ確実に検査することができる。 According to the above-described solar cell panel EL inspection method, the presence or absence of defects in the solar cell panel can be inspected quickly, efficiently and reliably.
 本発明の太陽電池パネルのEL検査装置、及び太陽電池パネルのEL検査方法は、種々のタイプの太陽電池パネルの検査に利用可能であり、特に、大型の太陽電池パネルの検査に対して適用できる。 The solar cell panel EL inspection apparatus and solar cell panel EL inspection method of the present invention can be used for inspection of various types of solar cell panels, and in particular can be applied to inspection of large-sized solar cell panels. .
 1   DC電源
 10  カメラ(撮影部)
 11  短焦点広角レンズ
 20  コンピュータ
 21  補正部
 22  比較部
 23  判定部
 30  暗室
 31  撮影窓
 50  太陽電池パネル
 51  検査面
 100 EL検査装置
1 DC power supply 10 Camera (shooting unit)
DESCRIPTION OF SYMBOLS 11 Short focus wide angle lens 20 Computer 21 Correction | amendment part 22 Comparison part 23 Judgment part 30 Dark room 31 Shooting window 50 Solar cell panel 51 Inspection surface 100 EL inspection apparatus

Claims (12)

  1.  複数の太陽光発電セルを備えた太陽電池パネルのEL検査装置であって、
     検査対象の太陽電池パネルに順バイアス電流を印加してEL発光させるDC電源と、
     EL発光状態の前記太陽電池パネルを撮影する撮影部と、
     撮影した前記太陽電池パネルの画像を補正する補正部と、
     補正後の画像と基準となるテンプレートとを比較する比較部と、
     比較結果に基づいて、前記太陽電池パネルの良否を判定する判定部と、
    を備えた太陽電池パネルのEL検査装置。
    It is an EL inspection device for a solar battery panel including a plurality of photovoltaic power generation cells,
    A DC power source for applying EL to a solar cell panel to be inspected by applying a forward bias current;
    A photographing unit for photographing the solar cell panel in an EL emission state;
    A correction unit for correcting the captured image of the solar cell panel;
    A comparison unit that compares the corrected image with a reference template;
    A determination unit that determines the quality of the solar cell panel based on the comparison result;
    EL panel inspection apparatus for solar cell panels.
  2.  前記補正部は、前記画像の歪曲補正と輝度補正とを同時に実行する請求項1に記載の太陽電池パネルのEL検査装置。 2. The solar cell panel EL inspection apparatus according to claim 1, wherein the correction unit simultaneously performs distortion correction and luminance correction of the image.
  3.  前記比較部は、前記テンプレートとして、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、当該特定テンプレートと比較して所定値以上の類似度を有する太陽光発電セルをマスクする請求項1又は2に記載の太陽電池パネルのEL検査装置。 The said comparison part creates the specific template according to the photovoltaic cell of test object as said template, and masks the photovoltaic cell which has a similarity more than predetermined value compared with the said specific template. Or EL inspection apparatus of the solar cell panel of 2.
  4.  前記比較部は、前記テンプレートとして、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、当該特定テンプレートと比較して所定値未満の類似度を有する太陽光発電セルを強調する請求項1~3の何れか一項に記載の太陽電池パネルのEL検査装置。 The comparison unit creates, as the template, a specific template corresponding to a photovoltaic cell to be inspected, and emphasizes a photovoltaic cell having a similarity less than a predetermined value compared to the specific template. 4. The solar cell panel EL inspection apparatus according to any one of items 1 to 3.
  5.  前記比較部は、前記特定テンプレートを別の特定テンプレートに変更する請求項3又は4に記載の太陽電池パネルのEL検査装置。 The solar cell panel EL inspection apparatus according to claim 3 or 4, wherein the comparison unit changes the specific template to another specific template.
  6.  前記判定部は、判定結果に応じて、前記撮影した画像を色分けする請求項1~5の何れか一項に記載の太陽電池パネルのEL検査装置。 The solar cell panel EL inspection apparatus according to any one of claims 1 to 5, wherein the determination unit color-codes the captured image according to a determination result.
  7.  複数の太陽光発電セルを備えた太陽電池パネルのEL検査方法であって、
     検査対象の太陽電池パネルに順バイアス電流を印加してEL発光させる発光ステップと、
     EL発光状態の前記太陽電池パネルを撮影する撮影ステップと、
     撮影した前記太陽電池パネルの画像を補正する補正ステップと、
     補正後の画像と基準となるテンプレートとを比較する比較ステップと、
     比較結果に基づいて、前記太陽電池パネルの良否を判定する判定ステップと、
    を包含する太陽電池パネルのEL検査方法。
    It is an EL inspection method for a solar battery panel including a plurality of photovoltaic power generation cells,
    A light emitting step of applying a forward bias current to the solar cell panel to be inspected to emit EL;
    A photographing step of photographing the solar cell panel in an EL emission state;
    A correction step for correcting the captured image of the solar cell panel;
    A comparison step for comparing the corrected image with a reference template;
    A determination step of determining pass / fail of the solar cell panel based on the comparison result;
    EL panel inspection method for solar cell panel.
  8.  前記補正ステップにおいて、前記画像の歪曲補正と輝度補正とを同時に実行する請求項7に記載の太陽電池パネルのEL検査方法。 The solar cell panel EL inspection method according to claim 7, wherein in the correction step, distortion correction and luminance correction of the image are simultaneously performed.
  9.  前記比較ステップにおいて、前記テンプレートとして、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、当該特定テンプレートと比較して所定値以上の類似度を有する太陽光発電セルをマスクする請求項7又は8に記載の太陽電池パネルのEL検査方法。 In the comparison step, as the template, a specific template corresponding to the photovoltaic cell to be inspected is created, and a photovoltaic cell having a similarity greater than or equal to a predetermined value compared to the specific template is masked. Or EL test method for solar cell panel according to 8.
  10.  前記比較ステップにおいて、前記テンプレートとして、検査対象の太陽光発電セルに応じた特定テンプレートを作成し、当該特定テンプレートと比較して所定値未満の類似度を有する太陽光発電セルを強調する請求項7~9の何れか一項に記載の太陽電池パネルのEL検査方法。 In the comparison step, as the template, a specific template corresponding to a photovoltaic cell to be inspected is created, and a photovoltaic cell having a similarity less than a predetermined value compared with the specific template is emphasized. 10. The EL inspection method for a solar cell panel according to any one of 1 to 9.
  11.  前記比較ステップにおいて、前記特定テンプレートを別の特定テンプレートに変更する請求項9又は10に記載の太陽電池パネルのEL検査方法。 The solar cell panel EL inspection method according to claim 9 or 10, wherein, in the comparison step, the specific template is changed to another specific template.
  12.  前記判定ステップにおいて、判定結果に応じて、前記撮影した画像を色分けする請求項7~11の何れか一項に記載の太陽電池パネルのEL検査方法。 The solar cell panel EL inspection method according to any one of claims 7 to 11, wherein in the determination step, the photographed image is color-coded according to a determination result.
PCT/JP2011/062572 2010-06-04 2011-06-01 Electroluminescence inspection device for solar panel and electroluminescence inspection method WO2011152445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012518422A JPWO2011152445A1 (en) 2010-06-04 2011-06-01 EL inspection device and EL inspection method for solar cell panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-128561 2010-06-04
JP2010128561 2010-06-04

Publications (1)

Publication Number Publication Date
WO2011152445A1 true WO2011152445A1 (en) 2011-12-08

Family

ID=45066803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062572 WO2011152445A1 (en) 2010-06-04 2011-06-01 Electroluminescence inspection device for solar panel and electroluminescence inspection method

Country Status (3)

Country Link
JP (1) JPWO2011152445A1 (en)
TW (1) TW201144831A (en)
WO (1) WO2011152445A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232040A (en) * 2013-05-29 2014-12-11 株式会社島津製作所 Solar battery cell inspection apparatus
EP2796860A4 (en) * 2011-12-21 2015-07-01 Abengoa Solar New Tech Sa Method for the automated inspection of photovoltaic solar collectors installed in plants
JP2015162970A (en) * 2014-02-27 2015-09-07 東北電力株式会社 Abnormality notification device of solar cell array
CN105490643A (en) * 2015-12-23 2016-04-13 普德光伏技术(苏州)有限公司 Darkroom device for photovoltaic module EL detection
CN108831851A (en) * 2018-06-26 2018-11-16 通威太阳能(成都)有限公司 A kind of method for separating improving the bad classification effectiveness of solar battery EL
CN109668895A (en) * 2017-10-16 2019-04-23 日商登肯股份有限公司 Inspecting apparatus for photovoltaic devices and solar simulator with camera
WO2019115843A1 (en) * 2017-12-14 2019-06-20 Acciona Energía, S. A. Automated photovoltaic plant inspection system and method
CN110071691A (en) * 2019-05-21 2019-07-30 尚德太阳能电力有限公司 For analyzing the method and related device of the solar components of reliability failures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084702A1 (en) * 2007-12-28 2009-07-09 Nisshinbo Industries, Inc. Solar battery inspecting apparatus and method for judging solar battery defect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084702A1 (en) * 2007-12-28 2009-07-09 Nisshinbo Industries, Inc. Solar battery inspecting apparatus and method for judging solar battery defect

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796860A4 (en) * 2011-12-21 2015-07-01 Abengoa Solar New Tech Sa Method for the automated inspection of photovoltaic solar collectors installed in plants
JP2014232040A (en) * 2013-05-29 2014-12-11 株式会社島津製作所 Solar battery cell inspection apparatus
JP2015162970A (en) * 2014-02-27 2015-09-07 東北電力株式会社 Abnormality notification device of solar cell array
CN105490643A (en) * 2015-12-23 2016-04-13 普德光伏技术(苏州)有限公司 Darkroom device for photovoltaic module EL detection
CN109668895A (en) * 2017-10-16 2019-04-23 日商登肯股份有限公司 Inspecting apparatus for photovoltaic devices and solar simulator with camera
WO2019115843A1 (en) * 2017-12-14 2019-06-20 Acciona Energía, S. A. Automated photovoltaic plant inspection system and method
US11451192B2 (en) 2017-12-14 2022-09-20 Acciona Energia S.A. Automated photovoltaic plant inspection system and method
CN108831851A (en) * 2018-06-26 2018-11-16 通威太阳能(成都)有限公司 A kind of method for separating improving the bad classification effectiveness of solar battery EL
CN108831851B (en) * 2018-06-26 2021-03-09 通威太阳能(成都)有限公司 Sorting method for improving poor sorting efficiency of solar cell EL
CN110071691A (en) * 2019-05-21 2019-07-30 尚德太阳能电力有限公司 For analyzing the method and related device of the solar components of reliability failures
CN110071691B (en) * 2019-05-21 2020-05-08 尚德太阳能电力有限公司 Method for evaluating a solar module with failed reliability and corresponding device

Also Published As

Publication number Publication date
TW201144831A (en) 2011-12-16
JPWO2011152445A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
WO2011152445A1 (en) Electroluminescence inspection device for solar panel and electroluminescence inspection method
TWI787296B (en) Optical inspection method, optical inspection device and optical inspection system
US10805552B2 (en) Visual inspection device and illumination condition setting method of visual inspection device
JP2010016019A (en) Photovoltaic device inspection apparatus and method of determining defect in photovoltaic device
JP2006139237A (en) Display panel inspection device and its inspection method
KR20190073247A (en) System and method for white spot mura detection with improved preprocessing
CN108090890B (en) Inspection device and inspection method
TWI758609B (en) Image generation device and image generation method
US20140198202A1 (en) Inspection method for display panel
JP2007093330A (en) Defect extraction device and defect extraction method
KR20140122938A (en) Method and apparatus of panel inspection
JP4842034B2 (en) Liquid crystal panel inspection method and image processing apparatus
JP2008068284A (en) Apparatus and method for correcting defect, and method for manufacturing pattern substrate
JP6184746B2 (en) Defect detection apparatus, defect correction apparatus, and defect detection method
JP3695120B2 (en) Defect inspection method
JP2009281759A (en) Color filter defect inspection method, inspection apparatus, and color filter manufacturing method using it
JP6168834B2 (en) Optical film defect determination method
CN112987356B (en) Liquid crystal display panel bottom foreign matter filtering device
JP2014077685A (en) Device and method for detecting pattern defects
JP2006234554A (en) Method and device for inspecting pattern
JP2005140655A (en) Method of detecting stain flaw, and stain flaw detector
JP2006145228A (en) Unevenness defect detecting method and unevenness defect detector
KR20160101436A (en) Method for inspectiong the outside of panels
KR101053779B1 (en) Metal mask inspection method of display means
TWI728708B (en) Automated optical inspection system and metod for inspecting defect in contact lens edge the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789847

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012518422

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12.02.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11789847

Country of ref document: EP

Kind code of ref document: A1