WO2011152176A1 - 弾性波分波器 - Google Patents

弾性波分波器 Download PDF

Info

Publication number
WO2011152176A1
WO2011152176A1 PCT/JP2011/060752 JP2011060752W WO2011152176A1 WO 2011152176 A1 WO2011152176 A1 WO 2011152176A1 JP 2011060752 W JP2011060752 W JP 2011060752W WO 2011152176 A1 WO2011152176 A1 WO 2011152176A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
longitudinally coupled
coupled resonator
surface acoustic
idts
Prior art date
Application number
PCT/JP2011/060752
Other languages
English (en)
French (fr)
Inventor
高峰 裕一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201190000442.6U priority Critical patent/CN203119851U/zh
Publication of WO2011152176A1 publication Critical patent/WO2011152176A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0085Balance-unbalance or balance-balance networks using surface acoustic wave devices having four acoustic tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0033Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only
    • H03H9/0038Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only the balanced terminals being on the same side of the track
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0047Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
    • H03H9/0052Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically cascaded
    • H03H9/0057Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically cascaded the balanced terminals being on the same side of the tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0047Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
    • H03H9/0066Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel
    • H03H9/0071Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel the balanced terminals being on the same side of the tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14588Horizontally-split transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • H03H9/6496Reducing ripple in transfer characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to an elastic wave demultiplexer using an elastic wave such as a surface acoustic wave, and more particularly to an elastic wave demultiplexer in which a reception filter is a longitudinally coupled resonator type elastic wave filter.
  • an RF (Radio Frequency) circuit is equipped with an RF (Radio Frequency) circuit to simultaneously transmit and receive signals.
  • the duplexer is a duplexer including a transmission filter, a reception filter, and a matching circuit.
  • the transmission filter and the reception filter surface acoustic wave filters are widely used.
  • Patent Document 1 discloses an example of such a duplexer.
  • FIG. 13 is a schematic configuration diagram for explaining the duplexer described in Patent Document 1.
  • FIG. 13 is a schematic configuration diagram for explaining the duplexer described in Patent Document 1.
  • the duplexer 1001 has an antenna terminal 1003 connected to the antenna 1002.
  • a transmission filter 1005 is connected between the antenna terminal 1003 and the transmission terminal 1004.
  • a reception filter 1008 is connected between the antenna terminal 1003 and the first and second reception terminals 1006 and 1007. Further, a matching circuit 1009 is connected between the antenna terminal 1003 and the reception filter 1008.
  • the transmission filter 1005 and the reception filter 1008 are surface acoustic wave filters.
  • the reception filter 1008 has a balanced-unbalanced conversion function. That is, in the reception filter 1008, an unbalanced signal is input from the input terminal 1010, and a balanced signal is output from the first and second reception terminals 1006 and 1007.
  • a balanced longitudinally coupled resonator type surface acoustic wave filter having a balanced-unbalanced conversion function is used as the receiving filter 1008. Thereby, it is possible to omit baluns and interstage filters in the RF circuit of the mobile phone.
  • An object of the present invention is to provide an elastic wave demultiplexer that eliminates the above-described drawbacks of the prior art and is unlikely to cause ripples in the passband of the transmission filter.
  • An acoustic wave duplexer is an acoustic wave duplexer including an antenna terminal, a reception terminal, and a transmission terminal, and is connected between the antenna terminal and the reception terminal, and is longitudinally coupled resonance
  • the longitudinally coupled resonator type elastic wave filter has at least three IDTs arranged along the elastic wave propagation direction, and at least one IDT is connected to the antenna terminal among the at least three IDTs. The remaining IDTs are not connected to the antenna terminals.
  • the ratio ⁇ 1 / ⁇ 2 of ⁇ 1 and ⁇ 2 is preferably 0.998 or less. In that case, ripples are less likely to occur in the pass band of the transmission filter.
  • the reception terminal has first and second reception terminals, and the longitudinally coupled resonator type acoustic wave filter is connected in parallel to the antenna terminal.
  • a longitudinally coupled resonator type acoustic wave filter section Third and fourth 3IDT type longitudinally coupled resonator type acoustic wave filter sections are connected to the first and second receiving terminals, respectively.
  • the first and second IDTs are used.
  • Each of the second IDTs of the 3IDT type longitudinally coupled resonator type acoustic wave filter section is connected to the antenna terminal, and each of the first and third IDTs is not connected to the antenna terminal.
  • the reception terminal has first and second reception terminals, and the longitudinally coupled resonator type acoustic wave filter is connected in parallel to the antenna terminal.
  • the first and second 3IDT type longitudinally coupled resonator type acoustic wave filter sections are provided.
  • First and second 3IDT type longitudinally coupled resonator type acoustic wave filter sections are connected to the first and second receiving terminals, respectively.
  • the first and second 3IDT type longitudinally coupled resonator type elastic wave filter units When the three IDTs of the first and second 3IDT type longitudinally coupled resonator type elastic wave filter units are first to third IDTs along the elastic wave propagation direction, the first and second 3IDT type The first and third IDTs of the longitudinally coupled resonator type acoustic wave filter section are connected to the antenna terminals, and the second IDTs are not connected to the antenna terminals. Is connected to the receiving terminal.
  • the reception terminal has first and second reception terminals, and the longitudinally coupled resonator type elastic wave filter is along the elastic wave propagation direction.
  • the five IDTs in the 5IDT type longitudinally coupled resonator type elastic wave filter are first to fifth IDTs along the elastic wave propagation direction.
  • the first, third and fifth IDTs are connected to the antenna terminal
  • the second and fourth IDTs are not connected to the antenna terminal
  • the second IDT is connected to the first receiving terminal.
  • the fourth IDT is connected to the second receiving terminal.
  • the elastic wave duplexer according to the present invention is used in various frequency bands, but is particularly preferably used in a frequency band of the UMTS-BAND2, 3 or 8 standard.
  • the transmission-side passband and the reception-side passband are close to each other. In such a case, the present invention is particularly effective.
  • the longitudinally coupled resonator type surface acoustic wave filter may be a longitudinally coupled resonator type surface acoustic wave filter using surface acoustic waves, or a longitudinally coupled resonator type elastic boundary using acoustic boundary waves.
  • a wave filter may be used.
  • the wavelength of the elastic wave in the IDT connected to the antenna terminal is ⁇ 1, and the IDT not connected to the antenna terminal
  • the wavelength of the elastic wave is ⁇ 2
  • ⁇ 1 ⁇ 2 it is difficult for ripples to occur in the pass band of the transmission filter. Therefore, it is possible to improve the pass characteristic of the transmission filter.
  • FIG. 1 is a schematic circuit diagram of a duplexer which is an elastic wave duplexer according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating filter characteristics of the transmission filter in the duplexer according to the first embodiment of the present invention and filter characteristics of the transmission filter in the duplexer according to the first comparative example.
  • FIG. 3 is a diagram illustrating the filter characteristics of the transmission filter in the duplexer according to the first embodiment of the present invention and the filter characteristics of the transmission filter in the duplexer according to the second comparative example.
  • FIG. 4 is an enlarged view showing a main part of the filter characteristics of FIG. FIG.
  • FIG. 5 is a diagram illustrating filter characteristics of the transmission filter in the duplexer according to the first embodiment of the present invention and filter characteristics of the transmission filter in the duplexer according to the first modification.
  • FIG. 6 is a diagram illustrating filter characteristics of the transmission filter in the duplexer according to the first embodiment of the present invention and filter characteristics of the transmission filter in the duplexer according to the second modification.
  • FIG. 7 is a diagram illustrating filter characteristics of the transmission filter in the duplexer according to the first embodiment of the present invention and filter characteristics of the transmission filter in the duplexer according to the third modification.
  • FIG. 8 is a diagram illustrating the relationship between ⁇ 1 / ⁇ 2 and steepness in the filter characteristics of the transmission filter in the reception filter of the duplexer according to the first embodiment of this invention.
  • FIG. 9 is a schematic circuit diagram of a duplexer which is an elastic wave duplexer according to the second embodiment of the present invention.
  • FIG. 10 is a schematic circuit diagram of a duplexer which is an acoustic wave duplexer according to the third embodiment of the present invention.
  • FIG. 11 is a schematic circuit diagram of a duplexer which is an elastic wave duplexer according to the fourth embodiment of the present invention.
  • FIG. 12 is a schematic circuit diagram of a duplexer which is an acoustic wave duplexer according to the fifth embodiment of the present invention.
  • FIG. 13 is a schematic configuration diagram for explaining a conventional duplexer.
  • FIG. 1 is a schematic circuit diagram of a duplexer 1 which is an elastic wave duplexer according to a first embodiment of the present invention.
  • the duplexer 1 corresponds to UMTS-BAND2.
  • the transmission side passband is 1850 to 1910 MHz
  • the reception side passband is 1930 to 1990 MHz.
  • the duplexer 1 has an antenna terminal 2, first and second reception terminals 3 and 4, and a transmission terminal 5.
  • the antenna terminal 2 is connected to a matching circuit composed of an inductor 6. One end of the inductor 6 is connected to the antenna terminal 2 and the other end is connected to the ground potential.
  • a transmission filter 20 is connected between the antenna terminal 2 and the transmission terminal 5.
  • the transmission filter 20 is a surface acoustic wave filter having a ladder circuit configuration. That is, the transmission filter 20 includes the first, second, and third series arm resonators 201, 202, and 203 disposed on the series arm 211 that connects the antenna terminal 2 and the transmission terminal 5, the series arm 211, and the ground. First, second and third parallel arm resonators 204, 205, and 206, inductors 207 to 209, and a capacitor 210 are disposed on parallel arms 212, 213, and 214 that connect the potential.
  • the first series arm resonator 201 includes surface acoustic wave resonators 201a, 201b, and 201c.
  • the second series arm resonator 202 includes surface acoustic wave resonators 202a, 202b, and 202c.
  • the third series arm resonator 203 includes surface acoustic wave resonators 203a, 203b, and 203c.
  • the first parallel arm resonator 204 includes surface acoustic wave resonators 204a and 204b.
  • the second parallel arm resonator 205 includes surface acoustic wave resonators 205a and 205b.
  • the third parallel arm resonator 206 includes surface acoustic wave resonators 206a and 206b.
  • the surface acoustic wave resonators 201a, 201b, 201c, 202a, 202b, 202c, 203a, 203b, 203c, 204a, 204b, 205a, 205b, 206a, and 206b each have one IDT and the surface acoustic wave propagation direction of the IDT.
  • One end of the inductor 207 is connected to the ground potential, and the other end is connected to a common connection point between the first parallel arm resonator 204 and the second parallel arm resonator 205.
  • One end of the inductor 208 is connected to the ground potential, and the other end is connected to the third parallel arm resonator 206.
  • the inductor 209 and the capacitor 210 are connected between the third series arm resonator 203 and the transmission terminal 5.
  • a reception filter 10 is connected between the antenna terminal 2 and the first and second reception terminals 3 and 4.
  • the reception filter 10 includes a balanced longitudinally coupled resonator type surface acoustic wave filter having a balance-unbalance conversion function. That is, in the reception filter 10, an unbalanced signal is input from the antenna terminal 2 side, and a balanced signal is output from the first and second reception terminals 3 and 4.
  • the reception filter 10 is configured to have an input impedance of 50 ⁇ and an output impedance of 100 ⁇ . That is, the reception filter 10 also has an impedance conversion function.
  • the reception filter 10 is configured as follows so as to have the above-described balanced-unbalanced conversion function and impedance conversion function.
  • the reception filter 10 includes a first longitudinally coupled resonator type surface acoustic wave filter unit 101, a second longitudinally coupled resonator type surface acoustic wave filter unit 102, and a third longitudinally coupled resonator type surface acoustic wave filter unit. 103, a fourth longitudinally coupled resonator type surface acoustic wave filter unit 104, and a surface acoustic wave resonator 105.
  • the first to fourth longitudinally coupled resonator type surface acoustic wave filter units 101 to 104 and the surface acoustic wave resonator 105 are configured by forming electrodes made of Al on a piezoelectric substrate.
  • the piezoelectric substrate is a 40 ° ⁇ 5 ° Y-cut X-propagating LiTaO 3 substrate.
  • the surface acoustic wave resonator 105 includes an IDT 151 and reflectors 152 and 153 disposed on both sides of the IDT 151 in the surface acoustic wave propagation direction.
  • First and second longitudinally coupled resonator type surface acoustic wave filter portions 101 and 102 are connected to the end of the surface acoustic wave resonator 105 opposite to the side connected to the antenna terminal 2. .
  • the first longitudinally coupled resonator-type surface acoustic wave filter unit 101 includes first, second, and third IDTs 111, 112, and 113 arranged along the surface acoustic wave propagation direction, and the first, second, and second IDTs. And reflectors 114 and 115 arranged on both sides of the surface acoustic wave propagation direction of the portion where the three IDTs 111, 112 and 113 are provided. That is, the first longitudinally coupled resonator type surface acoustic wave filter unit 101 is a 3IDT type longitudinally coupled resonator type surface acoustic wave filter.
  • the second longitudinally coupled resonator-type surface acoustic wave filter unit 102 includes first, second, and third IDTs 121, 122, and 123 disposed along the surface acoustic wave propagation direction, and the first, second, and second IDTs. And reflectors 124 and 125 arranged on both sides of the surface acoustic wave propagation direction of the portion where the three IDTs 121, 122 and 123 are provided. That is, the second longitudinally coupled resonator type surface acoustic wave filter unit 102 is also a 3IDT type longitudinally coupled resonator type surface acoustic wave filter.
  • the third longitudinally coupled resonator type surface acoustic wave filter unit 103 is cascade-connected to the first longitudinally coupled resonator type surface acoustic wave filter unit 101.
  • the third longitudinally coupled resonator type surface acoustic wave filter unit 103 is also a 3IDT type longitudinally coupled resonator type surface acoustic wave filter.
  • the third longitudinally coupled resonator type surface acoustic wave filter unit 103 includes the first, second, and third IDTs 131, 132, and 133 disposed along the surface acoustic wave propagation direction, and the first and second IDTs. And reflectors 134 and 135 disposed on both sides of the surface acoustic wave propagation direction of the portion where the third IDTs 131, 132 and 133 are provided.
  • a fourth longitudinally coupled resonator type surface acoustic wave filter unit 104 is cascade-connected to the second longitudinally coupled resonator type surface acoustic wave filter unit 102.
  • the fourth longitudinally coupled resonator type surface acoustic wave filter unit 104 is also a 3IDT type longitudinally coupled resonator type surface acoustic wave filter.
  • the fourth longitudinally coupled resonator type surface acoustic wave filter unit 104 includes the first, second, and third IDTs 141, 142, and 143 disposed along the surface acoustic wave propagation direction, and the first and second IDTs. And reflectors 144 and 145 disposed on both sides of the surface acoustic wave propagation direction of the portion where the third IDTs 141, 142 and 143 are provided.
  • One end of the second IDT 112 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 is connected to the surface acoustic wave resonator 105, and the other end is connected to the ground potential. That is, the second IDT 112 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 is an IDT connected to the antenna terminal 2 via the surface acoustic wave resonator 105.
  • One end of the first IDT 111 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 is connected to the ground potential, and the other end is the first of the third longitudinally coupled resonator type surface acoustic wave filter unit 103. Connected to the IDT 131.
  • One end of the third IDT 113 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 is connected to the ground potential, and the other end is the third of the third longitudinally coupled resonator type surface acoustic wave filter unit 103. Connected to the IDT 133. Accordingly, the first IDT 111 and the third IDT 113 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 are IDTs on the side not connected to the antenna terminal 2.
  • the first IDT 131 of the third longitudinally coupled resonator type surface acoustic wave filter unit 103 is opposite to the side connected to the first IDT 111 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101. The end is connected to the ground potential.
  • the third IDT 133 of the third longitudinally coupled resonator type surface acoustic wave filter unit 103 is connected to the third IDT 113 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101. The opposite end is connected to ground potential.
  • One end of the second IDT 132 of the third longitudinally coupled resonator type surface acoustic wave filter unit 103 is connected to the first receiving terminal 3, and the other end is connected to the second receiving terminal 4.
  • One end of the second IDT 122 of the second longitudinally coupled resonator-type surface acoustic wave filter unit 102 is connected to the surface acoustic wave resonator 105, and the other end is connected to the ground potential. That is, the second IDT 122 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102 is an IDT connected to the antenna terminal 2 through the surface acoustic wave resonator 105.
  • One end of the first IDT 121 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102 is connected to the ground potential, and the other end is the first of the fourth longitudinally coupled resonator type surface acoustic wave filter unit 104.
  • the IDT 141 is connected. One end of the third IDT 123 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102 is connected to the ground potential, and the other end is the third length of the fourth longitudinally coupled resonator type surface acoustic wave filter unit 104. Connected to the IDT 143. Accordingly, the first IDT 121 and the third IDT 123 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102 are IDTs on the side not connected to the antenna terminal 2.
  • the first IDT 141 of the fourth longitudinally coupled resonator type surface acoustic wave filter unit 104 is opposite to the side connected to the first IDT 121 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102. The end is connected to the ground potential.
  • the opposite end is connected to ground potential.
  • One end of the second IDT 142 of the fourth longitudinally coupled resonator type surface acoustic wave filter unit 104 is connected to the first receiving terminal 3, and the other end is connected to the second receiving terminal 4. More specifically, one end of the second IDT 142 of the fourth longitudinally coupled resonator type surface acoustic wave filter unit 104 is one end of the second IDT 132 of the third longitudinally coupled resonator type surface acoustic wave filter unit 103. And is connected to the first receiving terminal 3.
  • the other end of the second IDT 142 of the fourth longitudinally coupled resonator type surface acoustic wave filter unit 104 is connected to the other end of the second IDT 132 of the third longitudinally coupled resonator type surface acoustic wave filter unit 103. Commonly connected and connected to the second receiving terminal 4.
  • one end of the second IDTs 132 and 142 of the third and fourth longitudinally coupled resonator-type surface acoustic wave filter units 103 and 104 is the first receiving terminal 3 and the other end is the second receiving terminal. 4, it is possible to output a balanced signal from the first and second receiving terminals 3 and 4.
  • the IDTs of the first to fourth longitudinally coupled resonator type surface acoustic wave filter units 101 to 104 are schematically shown.
  • narrow pitch electrode finger portions are provided at the end portions of the IDTs in portions where the IDTs are adjacent to each other.
  • a narrow pitch electrode finger part is a part where the period of the electrode finger which comprises IDT is smaller than the period of the electrode finger of the other part of the said IDT in which the narrow pitch electrode finger part is formed.
  • the IDTs connected to the antenna terminals 2 of the first and second longitudinally coupled resonator type surface acoustic wave filter units 101 and 102 are the second IDTs 112 and 122, as described above.
  • the wavelength of the acoustic wave determined by the period of the electrode fingers of the second IDTs 112 and 122 of the first and second longitudinally coupled resonator type surface acoustic wave filter units 101 and 102 is ⁇ 1.
  • the IDTs that are not connected to the antenna terminals 2 of the first and second longitudinally coupled resonator type surface acoustic wave filter units 101 and 102 are the first IDTs 111 and 121 and the third IDTs 113 and 123, as described above. is there.
  • the wavelength of the acoustic wave determined by the period of the electrode fingers of the first IDTs 111 and 121 and the third IDTs 113 and 123 of the first and second longitudinally coupled resonator type surface acoustic wave filter units 101 and 102 is ⁇ 2.
  • a feature of the present embodiment is that ⁇ 1 ⁇ 2, so that ripples can be hardly generated in the passband of the transmission filter 20. This will be specifically described by the following experimental example.
  • the reception filter 10 was designed according to the following design parameters. Note that the wavelength of the elastic wave determined by the period of the electrode fingers is ⁇ I.
  • First longitudinally coupled resonator type surface acoustic wave filter unit 101 Cross width of the first, second and third IDTs 111, 112 and 113: 19.1 ⁇ I Number of electrode fingers of the first IDT 111 and the third IDT 113: 33. However, three of the 33 narrow pitch electrode fingers are provided adjacent to the second IDT 112. Number of electrode fingers of second IDT 112: 36. However, eight narrow pitch electrode fingers are provided in portions adjacent to the first and third IDTs 111 and 113 among the 36.
  • the wavelength ⁇ I of the elastic wave in the second IDT 112 corresponds to ⁇ 1 described above, and its value was 1.999 ⁇ m.
  • the wavelength ⁇ I of the elastic wave in the first and third IDTs 111 and 113 corresponds to the above-described ⁇ 2, and its value is 2.001 ⁇ m. Therefore, ⁇ 1 ⁇ 2.
  • Second longitudinally coupled resonator type surface acoustic wave filter unit 102 has the same design as the first longitudinally coupled resonator type surface acoustic wave filter unit 101. Therefore, the wavelength ⁇ I of the elastic wave in the second IDT 122 corresponds to the above-described ⁇ 1, and its value is 1.999 ⁇ m. In addition, the wavelength ⁇ I of the elastic wave in the first and third IDTs 121 and 123 corresponds to the above-described ⁇ 2, and its value is 2.001 ⁇ m. Therefore, ⁇ 1 ⁇ 2.
  • Third longitudinally coupled resonator type surface acoustic wave filter unit 103 Cross width of the first, second and third IDTs 131, 132 and 133: 16.0 ⁇ I Number of electrode fingers of the first IDT 131 and the third IDT 133: 33. However, three of the 33 narrow pitch electrode fingers are provided adjacent to the second IDT 132. Number of electrode fingers of second IDT 132: 38. However, six narrow-pitch electrode fingers are provided in portions adjacent to the first and third IDTs 131 and 133 among the 38.
  • Fourth longitudinally coupled resonator type surface acoustic wave filter unit 104 The fourth longitudinally coupled resonator type surface acoustic wave filter unit 104 was designed in the same manner as the third longitudinally coupled resonator type surface acoustic wave filter unit 103.
  • a surface acoustic wave filter having the circuit configuration shown in FIG.
  • the design parameters are as follows. Note that the wavelength of the elastic wave determined by the period of the electrode fingers is ⁇ II.
  • First series arm resonator 201 IDT electrode finger pairs in surface acoustic wave resonators 201a, 201b, and 201c: 177 pairs IDT crossover width in surface acoustic wave resonators 201a, 201b, and 201c: 13.15 ⁇ II Number of electrode fingers of reflectors in the surface acoustic wave resonators 201a, 201b, and 201c: 21
  • the surface acoustic wave resonators 201a, 201b, and 201c have the same design parameters.
  • Second series arm resonator 202 IDT electrode finger pairs in surface acoustic wave resonators 202a, 202b, 202c: 190 pairs IDT crossover width in surface acoustic wave resonators 202a, 202b, 202c: 25.21 ⁇ II Number of electrode fingers of reflectors in the surface acoustic wave resonators 202a, 202b, 202c: 21
  • the surface acoustic wave resonators 202a, 202b, 202c have the same design parameters.
  • Third series arm resonator 203 IDT electrode finger pairs in the surface acoustic wave resonators 203a, 203b, and 203c: 161 pairs IDT crossover width in the surface acoustic wave resonators 203a, 203b, and 203c: 20.48 ⁇ II Number of electrode fingers of reflectors in the surface acoustic wave resonators 203a, 203b, 203c: 21
  • the surface acoustic wave resonators 203a, 203b, 203c have the same design parameters.
  • First parallel arm resonator 204 IDT electrode finger pairs in surface acoustic wave resonators 204a and 204b: 167 pairs IDT crossover width in surface acoustic wave resonators 204a and 204b: 26.77 ⁇ II Number of electrode fingers of reflectors in surface acoustic wave resonators 204a and 204b: 21
  • the surface acoustic wave resonators 204a and 204b have the same design parameters.
  • Second parallel arm resonator 205 Number of electrode fingers of IDT in surface acoustic wave resonators 205a and 205b: 166 pairs Cross width of IDT in surface acoustic wave resonators 205a and 205b: 25.12 ⁇ II Number of electrode fingers of reflectors in surface acoustic wave resonators 205a and 205b: 21
  • the surface acoustic wave resonators 205a and 205b have the same design parameters.
  • Third parallel arm resonator 206 IDT electrode finger pairs in surface acoustic wave resonators 206a and 206b: 127 pairs IDT crossover width in surface acoustic wave resonators 206a and 206b: 20.47 ⁇ II Number of electrode fingers of reflectors in surface acoustic wave resonators 206a and 206b: 21
  • the surface acoustic wave resonators 206a and 206b have the same design parameters.
  • a duplexer of the first comparative example was prepared.
  • the wavelength ⁇ 2 of the acoustic wave in the first and third IDTs 111 and 113 is 2.001 ⁇ m
  • the wavelength ⁇ 1 of the elastic wave was set to 2.013 ⁇ m.
  • the wavelength ⁇ 2 of the elastic wave in the first and third IDTs 121 and 123 is 2.001 ⁇ m
  • the wavelength ⁇ 1 of the elastic wave in the second IDT 122 is 2 013 ⁇ m.
  • the wavelength ⁇ 1 of the elastic wave in the second IDTs 112 and 122 connected to the antenna terminal 2 is the IDT that is not connected to the antenna terminal.
  • the third IDT 111, 121, 113, 123 is made larger than the wavelength ⁇ 2 of the elastic wave. That is, ⁇ 1> ⁇ 2.
  • FIG. 2 shows the filter characteristics of the transmission filter 20 in the duplexer 1 of the first embodiment and the filter characteristics of the transmission filter in the duplexer of the first comparative example.
  • a solid line shows the filter characteristic of the transmission filter 20 in the duplexer 1 of the first embodiment
  • a broken line shows the filter characteristic of the transmission filter in the duplexer of the first comparative example.
  • ripple A is generated on the high pass band side of the transmission filter, and the steepness on the high pass band side is reduced.
  • the duplexer 1 of the first embodiment no ripple is observed on the high pass band side of the transmission filter 20, and the steepness on the high pass band side is excellent.
  • a duplexer of the second comparative example was prepared.
  • the wavelength ⁇ 2 of the elastic wave in the first and third IDTs 111 and 113 and the wavelength ⁇ 1 of the elastic wave in the second IDT 112 are used.
  • FIG. 3 shows the filter characteristics of the transmission filter 20 in the duplexer 1 of the first embodiment and the filter characteristics of the transmission filter in the duplexer of the second comparative example.
  • the solid line indicates the filter characteristic of the transmission filter 20 in the duplexer 1 of the first embodiment
  • the broken line indicates the filter characteristic of the transmission filter in the duplexer of the second comparative example.
  • FIG. 4 is an enlarged view of a portion surrounded by X in FIG.
  • a ripple B is generated on the high pass band side of the transmission filter, and the steepness on the high pass band side is reduced.
  • the duplexer 1 of the first embodiment no ripple is recognized on the high pass band side of the transmission filter 20, and the steepness on the high pass band side is excellent.
  • the second IDT 112 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 and the second IDT 122 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102 are the surface acoustic wave.
  • the antenna terminal 2 is connected via a wave resonator 105. Therefore, the second IDT 112 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 and the second IDT 122 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102 are also included in the transmission filter 20. It will be electrically connected.
  • the characteristics of the second IDT 112 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 and the characteristics of the second IDT 122 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102 are transmitted.
  • the filter characteristics of the filter 20 will be affected.
  • the response by the second IDT 112 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 and the response by the second IDT 122 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102 are the reception filter 10. It occurs on the lower frequency side than the passband.
  • the second IDT 112 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 and the second IDT 122 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102 are connected to the transmission filter 20. Are also electrically connected, and if the response is located at a frequency within the pass band of the transmission filter 20, a ripple occurs within the pass band.
  • the transmission side passband of UMTS-BAND2 is 1850 to 1910 MHz, and the reception side passband is 1930 to 1990 MHz. Therefore, the frequency interval between the transmission side passband and the reception side passband is 20 MHz.
  • UMTS-BAND3 has a transmission-side passband of 1710 to 1795 MHz and a reception-side passband of 1805 to 1880 MHz. Therefore, the frequency interval between the transmission side passband and the reception side passband is 20 MHz.
  • UMTS-BAND8 has a transmission-side passband of 880 to 915 MHz and a reception-side passband of 925 to 960 MHz. Therefore, the frequency interval between the transmission side passband and the reception side passband is 10 MHz.
  • the wavelength ⁇ 1 of the elastic wave in the second IDT 112 is the same as that in the first and third IDTs 111 and 113.
  • the wavelength is smaller than the wavelength ⁇ 2 of the elastic wave.
  • the wavelength ⁇ 1 of the acoustic wave in the second IDT 122 is made smaller than the wavelength ⁇ 2 of the acoustic wave in the first and third IDTs 121 and 123. ing.
  • the wavelength ⁇ 1 of the elastic wave in the second IDTs 112 and 122 that are IDTs connected to the antenna terminal 2 is the IDT that is not connected to the antenna terminal 2.
  • the first and third IDTs 111, 113, 121, and 123 are set to be smaller than the wavelength ⁇ 2 of the elastic wave.
  • the response by the second IDT 112 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 and the response by the second IDT 122 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102 are: It is located higher than the pass band of the transmission filter 20. Thereby, no ripple is generated in the pass band of the transmission filter 20.
  • the wavelength ⁇ 1 is made smaller than ⁇ 2 so that the response of the second IDTs 112 and 122, which are IDTs connected to the antenna terminal 2, appears on the higher side of the pass band of the transmission filter 20. ing.
  • first and third IDTs 111 and 113 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 are acoustically coupled to the second IDT 112.
  • first and third IDTs 121 and 123 of the second longitudinally coupled resonator-type surface acoustic wave filter unit 102 are acoustically coupled to the second IDT 122.
  • the first and third IDTs 111 and 113 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 and the first and third IDTs 121 and 113 of the second longitudinally coupled resonator type surface acoustic wave filter unit 102, 123 is only connected to the transmission filter 20 via acoustic coupling. Therefore, the wavelengths of the first and third IDTs 111 and 113 of the first longitudinally coupled resonator type surface acoustic wave filter unit 101 and the first and third of the second longitudinally coupled resonator type surface acoustic wave filter unit 102 are used. Even if the wavelengths of the IDTs 121 and 123 are increased, the influence on the transmission filter 20 is very small.
  • the elastic wave wavelength ⁇ ⁇ b> 1 in the second IDTs 112 and 122 that are IDTs connected to the antenna terminal 2 is not connected to the antenna terminal 2. Since the wavelength ⁇ 2 of the elastic wave in the first and third IDTs 111, 113, 121, and 123 which are IDTs is ⁇ 1 ⁇ 2, ripples are generated on the high pass band side of the transmission filter 20. It can be surely prevented.
  • the wavelength of the elastic wave in the narrow pitch electrode finger portion is much smaller than the wavelength of the elastic wave in the other electrode finger portions of the IDT. Therefore, the response due to the narrow pitch electrode finger is located on the higher frequency side than the pass band of the transmission filter 20. Therefore, even if the narrow pitch electrode fingers are provided, the pass band of the transmission filter 20 is not affected.
  • duplexers according to the following first to third modifications were produced, and the filter characteristics of the transmission filter 20 were measured.
  • the wavelength ⁇ 2 of the acoustic wave in the first and third IDTs 111 and 113 is set to 2.
  • the wavelength ⁇ 1 of the elastic wave in the second IDT 112 was 1.999 ⁇ m.
  • the wavelength ⁇ 2 of the elastic wave in the first and third IDTs 121 and 123 is set to 2.015 ⁇ m, and the wavelength ⁇ 1 of the elastic wave in the second IDT 122 is set to 1. It was set to 999 micrometers. Except for these, the duplexer 1 was the same as that of the first embodiment.
  • FIG. 5 shows the filter characteristics of the transmission filter 20 in the duplexer 1 of the first embodiment and the filter characteristics of the transmission filter 20 in the duplexer of the first modification.
  • a solid line indicates the filter characteristic of the transmission filter 20 in the duplexer 1 of the first embodiment
  • a broken line indicates the filter characteristic of the transmission filter 20 in the duplexer of the first modification.
  • the transmission filter 20 in the duplexer of the first modification example has a slightly worse steepness in filter characteristics than the transmission filter 20 in the duplexer 1 of the first embodiment. Ripple does not appear on the high pass band side of the transmission filter 20.
  • the wavelength ⁇ 1 of the elastic wave in the second IDTs 112 and 122 that are IDTs connected to the antenna terminal 2 is not connected to the antenna terminal 2.
  • ⁇ 1 ⁇ 2 as the wavelength ⁇ 2 of the elastic wave in the first and third IDTs 111, 113, 121, and 123 that are IDTs, it is ensured that ripples are generated on the high pass band side of the transmission filter 20. It can be seen that it can be prevented.
  • the wavelength of the elastic wave in the second IDT 132 is set to the first and third IDTs 131, It was made smaller than the wavelength of the elastic wave at 133.
  • the wavelength of the elastic wave in the second IDT 142 is made smaller than the wavelength of the elastic wave in the first and third IDTs 141 and 143. Except for these, the duplexer 1 was the same as that of the first embodiment.
  • the second and second IDTs connected to the antenna terminal 2 in the first and second longitudinally coupled resonator-type surface acoustic wave filter portions 101 and 102 of the reception filter 10 are also used.
  • the wavelength ⁇ 1 of the elastic wave in the IDTs 112 and 122 and the wavelength ⁇ 2 of the elastic wave in the first and third IDTs 111, 113, 121, and 123 that are not connected to the antenna terminal 2 are ⁇ 1 ⁇ 2. ing.
  • FIG. 6 shows the filter characteristics of the transmission filter 20 in the duplexer 1 of the first embodiment and the filter characteristics of the transmission filter 20 in the duplexer of the second modification.
  • a solid line indicates the filter characteristic of the transmission filter 20 in the duplexer 1 of the first embodiment
  • a broken line indicates the filter characteristic of the transmission filter 20 in the duplexer of the second modification.
  • no ripple appears on the high pass band side of the transmission filter 20 in the duplexer of the second modified example.
  • the wavelength of the elastic wave in the second IDT 132 is set to the first and third IDTs 131, It was larger than the wavelength of the elastic wave at 133.
  • the wavelength of the elastic wave in the second IDT 142 is made larger than the wavelength of the elastic wave in the first and third IDTs 141 and 143. Except for these, the duplexer 1 was the same as that of the first embodiment.
  • the second and second IDTs connected to the antenna terminal 2 in the first and second longitudinally coupled resonator type surface acoustic wave filter units 101 and 102 of the reception filter 10 are also used.
  • the wavelength ⁇ 1 of the elastic wave in the IDTs 112 and 122 and the wavelength ⁇ 2 of the elastic wave in the first and third IDTs 111, 113, 121, and 123 that are not connected to the antenna terminal 2 are ⁇ 1 ⁇ 2. ing.
  • FIG. 7 shows the filter characteristics of the transmission filter 20 in the duplexer 1 of the first embodiment and the filter characteristics of the transmission filter 20 in the duplexer of the third modification.
  • the solid line indicates the filter characteristic of the transmission filter 20 in the duplexer 1 of the first embodiment
  • the broken line indicates the filter characteristic of the transmission filter 20 in the duplexer of the third modification.
  • no ripple appears on the high pass band side of the transmission filter 20 even in the duplexer of the third modification.
  • the first to third IDTs 131 to 133 of the third longitudinally coupled resonator type surface acoustic wave filter unit 103 and the first to third IDTs 141 of the fourth longitudinally coupled resonator type surface acoustic wave filter unit 104 are shown. ⁇ 143 are connected to the transmission filter 20 through acoustic coupling. Therefore, the influence of the first and third IDTs 131 to 133 and 141 to 143 on the transmission filter 20 of the third and fourth longitudinally coupled resonator type surface acoustic wave filter sections 103 and 104 is very small.
  • the second IDT 112 that is the IDT connected to the antenna terminal 2 in the reception filter 10.
  • the wavelength ⁇ 2 of the elastic wave in the first and third IDTs 111, 113, 121, 123, which are IDTs not connected to the antenna terminal 2 are set as ⁇ 1 ⁇ 2. It can be seen that ripples can be reliably prevented from occurring on the high side of the pass band of the transmission filter 20.
  • the wavelength ⁇ 1 of the elastic wave in the second IDTs 112 and 122 that are IDTs connected to the antenna terminal 2 is connected to the antenna terminal 2. It was examined how much smaller than the wavelength ⁇ 2 of the elastic wave in the first and third IDTs 111, 113, 121, and 123 that are not IDTs. The results are shown in FIG.
  • FIG. 8 shows the wavelength of the acoustic wave in the first and third IDTs 111 and 113 in the first longitudinally coupled resonator type surface acoustic wave filter 101 of the reception filter 10 of the duplexer 1 of the first embodiment.
  • 4 shows the result of measuring the steepness of the transmission filter 20 on the high pass band side by changing the wavelength ⁇ 1 of the elastic wave in the second IDT 112.
  • FIG. The horizontal axis of FIG. 8 is the ratio ⁇ 1 / ⁇ 2, and the vertical axis is the frequency position where the attenuation is 3.4 dB and the frequency position where the attenuation is 40 dB on the high side of the pass band of the transmission filter 20. The frequency difference is shown.
  • the ratio ⁇ 1 / ⁇ 2 is changed in the same manner as the first longitudinally coupled resonator type surface acoustic wave filter unit 101.
  • the frequency interval between the transmission-side passband and the reception-side passband of UMTS-BAND2 is 20 MHz.
  • the steepness is preferably 11 MHz or less.
  • ⁇ 1 / ⁇ 2 when ⁇ 1 / ⁇ 2 is smaller than 1.0, the steepness is almost saturated, and when ⁇ 1 / ⁇ 2 is 0.998 or less, a steepness of 11 MHz or less is obtained. . Therefore, it is preferable that ⁇ 1 / ⁇ 2 is 0.998 or less.
  • the reception filter 10 includes the first to fourth longitudinally coupled resonator type surface acoustic wave filter units 101 to 104 and the surface acoustic wave resonator 105.
  • the reception filter is not limited to such a configuration.
  • the transmission filter 20 is not shown in FIGS. 9 to 12 to be described later showing the second to fifth embodiments.
  • the transmission filter 20 can be configured similarly to the first embodiment.
  • FIG. 9 is a schematic circuit diagram of the duplexer 21 according to the second embodiment of the present invention.
  • the reception filter 22 includes first to fourth longitudinally coupled resonator type surface acoustic wave filter units 101 to 104, and an elastic surface. And a wave resonator 105.
  • the duplexer 21 of the second embodiment is different from the duplexer 1 of the first embodiment in that the third and fourth longitudinally coupled resonator type surface acoustic wave filter units 103 and 104 and the first and second receiving terminals. 3 and 4 are connected. That is, in the present embodiment, one end of the second IDT 132 of the third longitudinally coupled resonator type surface acoustic wave filter unit 103 is connected to the first receiving terminal 3, and the other end is connected to the ground potential.
  • connection structure for outputting a balanced signal can be modified as appropriate.
  • the IDT connected to the antenna terminal 2 is also used.
  • the wavelength ⁇ 1 of the elastic wave in the second IDTs 112 and 122, and the wavelength ⁇ 2 of the elastic wave in the first and third IDTs 111, 113, 121, and 123 that are not connected to the antenna terminal 2 are expressed as ⁇ 1.
  • ripples can be reliably prevented from occurring on the high pass band side of the transmission filter 20.
  • FIG. 10 is a schematic circuit diagram of the duplexer 31 according to the third embodiment of the present invention.
  • the reception filter 32 includes a surface acoustic wave resonator 105 and first and second longitudinally coupled resonator type surface acoustic wave filter units 33 and 34.
  • the first longitudinally coupled resonator type surface acoustic wave filter unit 33 includes first, second, and third IDTs 331, 332, and 333 disposed along the surface acoustic wave propagation direction, and the first, second, and second IDTs.
  • reflectors 334 and 335 disposed on both sides of the surface acoustic wave propagation direction of the portion where the three IDTs 331, 332 and 333 are provided.
  • the first longitudinally coupled resonator type surface acoustic wave filter unit 33 is a 3IDT type longitudinally coupled resonator type surface acoustic wave filter.
  • the second longitudinally coupled resonator type surface acoustic wave filter unit 34 is also a 3IDT type longitudinally coupled resonator type surface acoustic wave filter.
  • the second longitudinally coupled resonator type surface acoustic wave filter unit 34 includes the first, second and third IDTs 341, 342, 343 arranged along the surface acoustic wave propagation direction, and the first, second.
  • a second longitudinally coupled resonator type surface acoustic wave filter unit 34 is cascade-connected to the first longitudinally coupled resonator type surface acoustic wave filter unit 33.
  • one end of the second IDT 332 of the first longitudinally coupled resonator type surface acoustic wave filter unit 33 is connected to the antenna terminal 2 via the surface acoustic wave resonator 105, and the other end is ground potential. It is connected to the.
  • One end of each of the first and third IDTs 331 and 333 is connected to the ground potential.
  • the other end of the first IDT 331 is connected to one end of the first IDT 341 of the second longitudinally coupled resonator type surface acoustic wave filter unit 34.
  • the other end of the first IDT 341 is connected to the ground potential.
  • the other end of the third IDT 333 is connected to one end of the third IDT 343 of the second longitudinally coupled resonator type surface acoustic wave filter unit 34.
  • the other end of the third IDT 343 is connected to the ground potential.
  • the second IDT 342 of the second longitudinally coupled resonator type surface acoustic wave filter unit 34 is divided in the surface acoustic wave propagation direction, and has first and second divided IDT units 342a and 342b.
  • the first divided IDT unit 342 a is connected to the first receiving terminal 3.
  • the second divided IDT unit 342 b is connected to the second reception terminal 4.
  • the wavelength ⁇ 1 of the acoustic wave in the second IDT 332 of the first longitudinally coupled resonator type surface acoustic wave filter unit 33 which is the IDT connected to the antenna terminal 2, and the antenna terminal 2
  • ⁇ 1 ⁇ 2 as the wavelength ⁇ 2 of the elastic wave in the first and third IDTs 331 and 333, which are not connected IDTs
  • the generation of ripples on the high pass band side of the transmission filter 20 is ensured. Can be prevented.
  • FIG. 11 is a schematic circuit diagram of the duplexer 41 according to the fourth embodiment of the present invention.
  • the reception filter 42 includes a surface acoustic wave resonator 105 and first and second longitudinally coupled resonator type surface acoustic wave filter units 43 and 44.
  • the first longitudinally coupled resonator-type surface acoustic wave filter unit 43 includes first, second, and third IDTs 431, 432, and 433 disposed along a surface acoustic wave propagation direction, and first, second, and second IDTs. And reflectors 434 and 435 disposed on both sides of the surface acoustic wave propagation direction of the portion where the three IDTs 431, 432 and 433 are provided. That is, the first longitudinally coupled resonator type surface acoustic wave filter unit 43 is a 3IDT type longitudinally coupled resonator type surface acoustic wave filter.
  • the second longitudinally coupled resonator type surface acoustic wave filter unit 44 is also a 3IDT type longitudinally coupled resonator type surface acoustic wave filter.
  • the second longitudinally coupled resonator type surface acoustic wave filter unit 44 includes the first, second, and third IDTs 441, 442, 443, and the first, second, arranged along the surface acoustic wave propagation direction. And reflectors 444 and 445 disposed on both sides of the surface acoustic wave propagation direction of the portion where the third IDTs 441, 442 and 443 are provided.
  • the first longitudinally coupled resonator type surface acoustic wave filter unit 43 and the second longitudinally coupled resonator type surface acoustic wave filter unit 44 are connected in parallel.
  • the first and third IDTs 431 and 433 of the first longitudinally coupled resonator type surface acoustic wave filter unit 43 are connected in common to the antenna terminal 2 via the surface acoustic wave resonator 105. Each other end is connected to a ground potential. One end of the second IDT 432 is connected to the ground potential, and the other end is connected to the first receiving terminal 3.
  • each of the first and third IDTs 441 and 443 of the second longitudinally coupled resonator type surface acoustic wave filter unit 44 is connected in common and connected to the antenna terminal 2 via the surface acoustic wave resonator 105. Each other end is connected to a ground potential.
  • One end of the second IDT 442 is connected to the ground potential, and the other end is connected to the second receiving terminal 4.
  • the first and third IDTs 431 and 433 and the second longitudinally coupled resonance of the first longitudinally coupled resonator type surface acoustic wave filter unit 43 which are IDTs connected to the antenna terminal 2
  • the first longitudinally coupled resonator type surface acoustic wave filter which is the wavelength ⁇ 1 of the elastic wave in the first and third IDTs 441 and 443 of the child type surface acoustic wave filter unit 44 and the IDT not connected to the antenna terminal 2
  • the wavelength ⁇ 2 of the acoustic wave in the second IDT 432 of the unit 43 and the second IDT 442 of the second longitudinally coupled resonator type surface acoustic wave filter unit 44 By setting the wavelength ⁇ 2 of the acoustic wave in the second IDT 432 of the unit 43 and the second IDT 442 of the second longitudinally coupled resonator type surface acoustic wave filter unit 44 to ⁇ 1 ⁇ 2, the pass band of the transmission filter 20 is obtained. The occurrence of ripples on the
  • FIG. 12 is a schematic circuit diagram of the duplexer 51 according to the fifth embodiment of the present invention.
  • the reception filter 52 includes a surface acoustic wave resonator 105 and a longitudinally coupled resonator type surface acoustic wave filter unit 53.
  • the longitudinally coupled resonator-type surface acoustic wave filter 53 is provided with first to fifth IDTs 531 to 535 and first to fifth IDTs 531 to 535 arranged along the surface acoustic wave propagation direction. Reflectors 536 and 537 arranged on both sides of the surface acoustic wave propagation direction. That is, the longitudinally coupled resonator type surface acoustic wave filter unit 53 is a 5IDT type longitudinally coupled resonator type surface acoustic wave filter.
  • the first, third, and fifth IDTs 531, 533, and 535 of the longitudinally coupled resonator-type surface acoustic wave filter unit 53 are connected in common, and the antenna terminal is connected via the surface acoustic wave resonator 105. 2 and each other end is connected to a ground potential.
  • one end of the second IDT 532 is connected to the ground potential, and the other end is connected to the first receiving terminal 3.
  • one end of the fourth IDT 534 is connected to the ground potential, and the other end is connected to the second reception terminal 4.
  • the wavelengths of the acoustic waves in the first, third, and fifth IDTs 531, 533, and 535 of the longitudinally coupled resonator-type surface acoustic wave filter unit 53 that is the IDT connected to the antenna terminal 2 By setting ⁇ 1 and the wavelength ⁇ 2 of the acoustic wave in the second and fourth IDTs 532 and 534, which are IDTs not connected to the antenna terminal 2, ⁇ 1 ⁇ 2, the transmission filter 20 has a high passband side. It is possible to reliably prevent the occurrence of ripples.
  • the configuration of the transmission filter 20 is omitted, but the transmission filter 20 can be configured in the same manner as in the first embodiment. Further, as described above, the present invention is characterized in the relationship between the wavelength ⁇ 1 of the elastic wave in the IDT connected to the antenna terminal and the wavelength ⁇ 2 of the elastic wave in the IDT not connected to the antenna terminal, as described above.
  • the transmission filter structure itself is not particularly limited.
  • the reception filter is configured by the longitudinally coupled resonator surface acoustic wave filter using the surface acoustic wave.
  • the longitudinal filter using the boundary acoustic wave is used.
  • the reception filter may be configured by a coupled resonator type boundary acoustic wave filter.
  • receiving filter 53 longitudinally coupled resonator type surface acoustic wave filter unit 101 ... 1st longitudinally coupled resonator type surface acoustic wave filter unit 102 2nd longitudinally coupled resonator type surface acoustic wave filter unit 103 3rd longitudinally coupled resonator type surface acoustic wave filter unit 104 4th longitudinal direction
  • resonator type surface acoustic wave filter unit 105 ... surface acoustic wave resonators 111-113 ... first to third IDT 114, 115 ... reflectors 121-123 ... first to third IDTs 124, 125 ... reflectors 131 to 133 ... first to third IDTs 134, 135 ...
  • third series arm resonators Elements 203a to 203c Surface acoustic wave resonator 204 First parallel arm resonator 204a, 204b Surface acoustic wave resonator 205 Second parallel arm resonator 205a, 205b Surface acoustic wave resonator 206 Third Parallel arm resonators 206a, 206b ... Surface acoustic wave resonators 207 to 209 ...
  • Inductors 210 ... Capacitors 211 ... Series arms 212-214 ... Parallel arms 331-333 ... First to third IDTs 334, 335 ... reflectors 341-343 ... first to third IDTs 342a, 342b ...

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 送信フィルタの通過帯域においてリップルの発生を防止することができ、フィルタ特性の急峻性を高め得る、弾性波分波器を提供する。 アンテナ端子2と第1,第2の受信端子3,4との間に接続されており、縦結合共振子型弾性波フィルタからなる受信フィルタ10と、アンテナ端子2と送信端子5との間に接続された送信フィルタ20とを備え、受信フィルタ10が第1,第2の縦結合共振子型弾性表面波フィルタ部101,102を有し、第1,第2の縦結合共振子型弾性表面波フィルタ部101,102において、アンテナ端子2に接続されているIDTである第2のIDT112,122の電極指の周期で定まる弾性波の波長をλ1、アンテナ端子2に接続されていないIDTである第1,第3のIDT111,113,121,123の電極指の周期で定まる弾性波の波長をλ2としたときに、λ1<λ2とされている、弾性波分波器。

Description

弾性波分波器
 本発明は、弾性表面波などの弾性波を利用した弾性波分波器に関し、より詳細には、受信フィルタが、縦結合共振子型弾性波フィルタからなる弾性波分波器に関する。
 例えば、UMTS(Universal Mobile Telecommunications System)のようなCDMA(Code Division Multiple Access)方式に対応する携帯電話機では、信号の送信及び受信を同時に行うために、RF(Radio Frequency)回路にデュプレクサが搭載されている。デュプレクサは、送信フィルタと、受信フィルタと、整合回路とを備える分波器である。上記送信フィルタ及び受信フィルタとしては、弾性表面波フィルタが広く用いられている。
 下記の特許文献1には、このようなデュプレクサの一例が開示されている。
 図13は、特許文献1に記載のデュプレクサを説明するための概略構成図である。
 デュプレクサ1001は、アンテナ1002に接続されるアンテナ端子1003を有する。アンテナ端子1003と送信端子1004との間に、送信フィルタ1005が接続されている。また、アンテナ端子1003と第1,第2の受信端子1006,1007との間に、受信フィルタ1008が接続されている。さらに、アンテナ端子1003と受信フィルタ1008との間に、整合回路1009が接続されている。
 上記送信フィルタ1005及び受信フィルタ1008は、弾性表面波フィルタからなる。また、小型化を図るために、受信フィルタ1008は、平衡-不平衡変換機能を有する。すなわち、受信フィルタ1008では、入力端子1010から不平衡信号が入力され、第1,第2の受信端子1006,1007から平衡信号が出力される。特許文献1では、上記受信フィルタ1008として、平衡-不平衡変換機能を有するバランス型縦結合共振子型弾性表面波フィルタが用いられている。それによって、携帯電話機のRF回路において、バランや段間フィルタを省略することが可能とされている。
特開2003-347964号公報
 しかしながら、縦結合共振子型弾性表面波フィルタを受信フィルタ1008として用いたデュプレクサ1001では、送信フィルタ1005の通過帯域にリップルが生じることがあることがわかった。このリップルは、受信フィルタ1008である縦結合共振子型弾性表面波フィルタの影響により現れているものと考えられる。UMTS-BAND2,3,8のように、送信フィルタの通過帯域と受信フィルタの通過帯域との周波数間隔が狭い通信システムに用いられるデュプレクサでは、特に上記リップルが現れやすいという問題があった。
 本発明の目的は、上述した従来技術の欠点を解消し、送信フィルタの通過帯域にリップルが生じ難い、弾性波分波器を提供することにある。
 本発明に係る弾性波分波器は、アンテナ端子と、受信端子と、送信端子とを備える弾性波分波器であって、アンテナ端子と受信端子との間に接続されており、縦結合共振子型弾性波フィルタからなる受信フィルタと、アンテナ端子と送信端子との間に接続された送信フィルタとを備える。本発明においては、縦結合共振子型弾性波フィルタが、弾性波伝搬方向に沿って配置された少なくとも3つのIDTを有し、少なくとも3つのIDTの内、少なくとも1つのIDTがアンテナ端子に接続されており、残りのIDTがアンテナ端子に接続されていない。そして、アンテナ端子に接続されているIDTにおける弾性波の波長をλ1、アンテナ端子に接続されていないIDTにおける弾性波の波長をλ2としたときに、λ1<λ2とされている。
 本発明に係る弾性波分波器では、好ましくは、上記λ1とλ2との比λ1/λ2は、0.998以下とされる。その場合には、送信フィルタの通過帯域においてリップルがより一層生じ難い。
 本発明に係る弾性波分波器の他の特定の局面では、受信端子が、第1,第2の受信端子を有し、縦結合共振子型弾性波フィルタが、アンテナ端子に並列に接続された第1,第2の3IDT型縦結合共振子型弾性波フィルタ部と、第1,第2の3IDT型縦結合共振子型弾性波フィルタ部にそれぞれ縦続接続された第3,第4の3IDT型縦結合共振子型弾性波フィルタ部とを有する。第3,第4の3IDT型縦結合共振子型弾性波フィルタ部が第1,第2の受信端子にそれぞれ接続されている。そして、第1,第2の3IDT型縦結合共振子型弾性波フィルタ部の3つのIDTを弾性波伝搬方向に沿って、それぞれ第1~第3のIDTとしたときに、第1,第2の3IDT型縦結合共振子型弾性波フィルタ部の各第2のIDTがアンテナ端子に接続されており、各第1,第3のIDTが、アンテナ端子に接続されていない。
 本発明に係る弾性波分波器のさらに別の特定の局面では、受信端子が、第1,第2の受信端子を有し、縦結合共振子型弾性波フィルタが、アンテナ端子に並列に接続された第1,第2の3IDT型縦結合共振子型弾性波フィルタ部を有する。第1,第2の3IDT型縦結合共振子型弾性波フィルタ部が、それぞれ、第1,第2の受信端子に接続されている。第1,第2の3IDT型縦結合共振子型弾性波フィルタ部の3つのIDTを、弾性波伝搬方向に沿って第1~第3のIDTとしたときに、第1,第2の3IDT型縦結合共振子型弾性波フィルタ部の各第1,第3のIDTが、アンテナ端子に接続されており、各第2のIDTがアンテナ端子に接続されておらず、それぞれ、第1,第2の受信端子に接続されている。
 本発明に係る弾性波分波器のさらに他の特定の局面では、受信端子が、第1,第2の受信端子を有し、縦結合共振子型弾性波フィルタが、弾性波伝搬方向に沿って5つのIDTが配置されている5IDT型縦結合共振子型弾性波フィルタである。
 本発明に係る弾性波分波器のさらに別の特定の局面では、5IDT型縦結合共振子型弾性波フィルタにおける5つのIDTを弾性波伝搬方向に沿って第1~第5のIDTとしたときに、第1,第3及び第5のIDTがアンテナ端子に接続されており、第2,第4のIDTがアンテナ端子に接続されておらず、第2のIDTが第1の受信端子に、第4のIDTが第2の受信端子に接続されている。
 本発明に係る弾性波分波器では、様々な周波数帯で用いられるが、特に、UMTS-BAND2,3または8の規格の周波数帯で好適に用いられる。UMTS-BAND2,3または8の規格の周波数帯では、送信側通過帯域と受信側通過帯域とが近接しているが、このような場合において、本発明は特に有効である。
 本発明において、上記縦結合共振子型弾性波フィルタは、弾性表面波を利用した縦結合共振子型弾性表面波フィルタであってもよく、あるいは弾性境界波を利用した縦結合共振子型弾性境界波フィルタであってもよい。
 本発明に係る弾性波分波器では、受信フィルタである縦結合共振子型弾性波フィルタにおいて、アンテナ端子に接続されているIDTにおける弾性波の波長をλ1、アンテナ端子に接続されていないIDTにおける弾性波の波長をλ2としたときに、λ1<λ2とされているため、送信フィルタの通過帯域においてリップルが生じ難い。従って、送信フィルタの通過特性を高めることが可能となる。
図1は、本発明の第1の実施形態に係る弾性波分波器であるデュプレクサの略図的回路図である。 図2は、本発明の第1の実施形態のデュプレクサにおける送信フィルタのフィルタ特性及び第1の比較例のデュプレクサにおける送信フィルタのフィルタ特性を示す図である。 図3は、本発明の第1の実施形態のデュプレクサにおける送信フィルタのフィルタ特性及び第2の比較例のデュプレクサにおける送信フィルタのフィルタ特性を示す図である。 図4は、図3のフィルタ特性の要部を拡大して示す図である。 図5は、本発明の第1の実施形態のデュプレクサにおける送信フィルタのフィルタ特性及び第1の変形例のデュプレクサにおける送信フィルタのフィルタ特性を示す図である。 図6は、本発明の第1の実施形態のデュプレクサにおける送信フィルタのフィルタ特性及び第2の変形例のデュプレクサにおける送信フィルタのフィルタ特性を示す図である。 図7は、本発明の第1の実施形態のデュプレクサにおける送信フィルタのフィルタ特性及び第3の変形例のデュプレクサにおける送信フィルタのフィルタ特性を示す図である。 図8は、本発明の第1の実施形態のデュプレクサの受信フィルタにおいて、λ1/λ2と、送信フィルタのフィルタ特性における急峻性との関係を示す図である。 図9は、本発明の第2の実施形態に係る弾性波分波器であるデュプレクサの略図的回路図である。 図10は、本発明の第3の実施形態に係る弾性波分波器であるデュプレクサの略図的回路図である。 図11は、本発明の第4の実施形態に係る弾性波分波器であるデュプレクサの略図的回路図である。 図12は、本発明の第5の実施形態に係る弾性波分波器であるデュプレクサの略図的回路図である。 図13は、従来のデュプレクサを説明するための概略構成図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1は、本発明の第1の実施形態に係る弾性波分波器であるデュプレクサ1の略図的回路図である。デュプレクサ1は、UMTS-BAND2に対応する。UMTS-BAND2においては、送信側通過帯域は1850~1910MHzであり、受信側通過帯域は1930~1990MHzである。
 デュプレクサ1は、アンテナ端子2と、第1及び第2の受信端子3,4と、送信端子5とを有する。
 アンテナ端子2には、インダクタ6からなる整合回路が接続されている。インダクタ6の一端がアンテナ端子2に接続されており、他端がグラウンド電位に接続されている。
 アンテナ端子2と送信端子5との間に、送信フィルタ20が接続されている。送信フィルタ20は、ラダー型回路構成の弾性表面波フィルタからなる。すなわち、送信フィルタ20は、アンテナ端子2と送信端子5とを接続する直列腕211に配置された第1,第2及び第3の直列腕共振子201,202,203と、直列腕211とグラウンド電位とを接続する並列腕212,213,214にそれぞれ配置された第1,第2及び第3の並列腕共振子204,205,206と、インダクタ207~209と、キャパシタ210とを有する。第1の直列腕共振子201は、弾性表面波共振子201a,201b,201cからなる。第2の直列腕共振子202は、弾性表面波共振子202a,202b,202cからなる。第3の直列腕共振子203は、弾性表面波共振子203a,203b,203cからなる。第1の並列腕共振子204は、弾性表面波共振子204a,204bからなる。第2の並列腕共振子205は、弾性表面波共振子205a,205bからなる。第3の並列腕共振子206は、弾性表面波共振子206a,206bからなる。弾性表面波共振子201a,201b,201c,202a,202b,202c,203a,203b,203c,204a,204b,205a,205b,206a,206bは、それぞれ1つのIDTと、当該IDTの弾性表面波伝搬方向両側に配置された1組の反射器とを有する。インダクタ207の一端がグラウンド電位に接続されており、他端が第1の並列腕共振子204と第2の並列腕共振子205との共通接続点に接続されている。インダクタ208の一端がグラウンド電位に接続されており、他端が第3の並列腕共振子206に接続されている。インダクタ209とキャパシタ210とは、第3の直列腕共振子203と送信端子5との間に接続されている。
 他方、アンテナ端子2と、第1及び第2の受信端子3,4との間に、受信フィルタ10が接続されている。受信フィルタ10は、平衡-不平衡変換機能を有するバランス型縦結合共振子型弾性表面波フィルタからなる。すなわち、受信フィルタ10では、アンテナ端子2側から不平衡信号が入力され、第1,第2の受信端子3,4から平衡信号が出力される。
 また、受信フィルタ10は、入力インピーダンスが50Ω、出力インピーダンスが100Ωとなるように構成されている。すなわち、受信フィルタ10は、インピーダンス変換機能をも有する。
 上記平衡-不平衡変換機能及びインピーダンス変換機能を有するように、受信フィルタ10は以下のように構成されている。
 受信フィルタ10は、第1の縦結合共振子型弾性表面波フィルタ部101と、第2の縦結合共振子型弾性表面波フィルタ部102と、第3の縦結合共振子型弾性表面波フィルタ部103と、第4の縦結合共振子型弾性表面波フィルタ部104と、弾性表面波共振子105とを有する。上記第1~第4の縦結合共振子型弾性表面波フィルタ部101~104及び弾性表面波共振子105は、圧電基板上にAlからなる電極を形成することにより、構成されている。特に限定されないが、本実施形態では、圧電基板は、40°±5°YカットX伝搬LiTaO基板からなる。
 アンテナ端子2に、弾性表面波共振子105の一端が接続されている。弾性表面波共振子105は、IDT151と、IDT151の弾性表面波伝搬方向両側に配置された反射器152,153とを有する。
 上記弾性表面波共振子105のアンテナ端子2に接続されている側とは反対側の端部に、第1,第2の縦結合共振子型弾性表面波フィルタ部101,102が接続されている。
 第1の縦結合共振子型弾性表面波フィルタ部101は、弾性表面波伝搬方向に沿って配置された第1,第2及び第3のIDT111,112,113と、第1,第2及び第3のIDT111,112,113が設けられている部分の弾性表面波伝搬方向両側に配置された反射器114,115とを有する。すなわち、第1の縦結合共振子型弾性表面波フィルタ部101は、3IDT型の縦結合共振子型弾性表面波フィルタである。
 第2の縦結合共振子型弾性表面波フィルタ部102は、弾性表面波伝搬方向に沿って配置された第1,第2及び第3のIDT121,122,123と、第1,第2及び第3のIDT121,122,123が設けられている部分の弾性表面波伝搬方向両側に配置された反射器124,125とを有する。すなわち、第2の縦結合共振子型弾性表面波フィルタ部102も、3IDT型の縦結合共振子型弾性表面波フィルタである。
 また、本実施形態では、第1の縦結合共振子型弾性表面波フィルタ部101に、第3の縦結合共振子型弾性表面波フィルタ部103が縦続接続されている。第3の縦結合共振子型弾性表面波フィルタ部103も、同様に、3IDT型の縦結合共振子型弾性表面波フィルタである。従って、第3の縦結合共振子型弾性表面波フィルタ部103は、弾性表面波伝搬方向に沿って配置された第1,第2及び第3のIDT131,132,133と、第1,第2及び第3のIDT131,132,133が設けられている部分の弾性表面波伝搬方向両側に配置された反射器134,135とを有する。
 他方、第2の縦結合共振子型弾性表面波フィルタ部102に、第4の縦結合共振子型弾性表面波フィルタ部104が縦続接続されている。第4の縦結合共振子型弾性表面波フィルタ部104も、同様に、3IDT型の縦結合共振子型弾性表面波フィルタである。従って、第4の縦結合共振子型弾性表面波フィルタ部104は、弾性表面波伝搬方向に沿って配置された第1,第2及び第3のIDT141,142,143と、第1,第2及び第3のIDT141,142,143が設けられている部分の弾性表面波伝搬方向両側に配置された反射器144,145とを有する。
 第1の縦結合共振子型弾性表面波フィルタ部101の第2のIDT112の一端が弾性表面波共振子105に接続されており、他端がグラウンド電位に接続されている。すなわち、第1の縦結合共振子型弾性表面波フィルタ部101の第2のIDT112は、弾性表面波共振子105を介して、アンテナ端子2に接続されているIDTである。第1の縦結合共振子型弾性表面波フィルタ部101の第1のIDT111の一端がグラウンド電位に接続されており、他端が第3の縦結合共振子型弾性表面波フィルタ部103の第1のIDT131に接続されている。第1の縦結合共振子型弾性表面波フィルタ部101の第3のIDT113の一端がグラウンド電位に接続されており、他端が第3の縦結合共振子型弾性表面波フィルタ部103の第3のIDT133に接続されている。従って、第1の縦結合共振子型弾性表面波フィルタ部101の第1のIDT111及び第3のIDT113は、アンテナ端子2に接続されていない側のIDTである。
 第3の縦結合共振子型弾性表面波フィルタ部103の第1のIDT131が第1の縦結合共振子型弾性表面波フィルタ部101の第1のIDT111に接続されている側とは反対側の端部は、グラウンド電位に接続されている。同様に、第3の縦結合共振子型弾性表面波フィルタ部103の第3のIDT133が第1の縦結合共振子型弾性表面波フィルタ部101の第3のIDT113に接続されている側とは反対側の端部は、グラウンド電位に接続されている。第3の縦結合共振子型弾性表面波フィルタ部103の第2のIDT132の一端が第1の受信端子3に接続されており、他端が第2の受信端子4に接続されている。
 第2の縦結合共振子型弾性表面波フィルタ部102の第2のIDT122の一端が弾性表面波共振子105に接続されており、他端がグラウンド電位に接続されている。すなわち、第2の縦結合共振子型弾性表面波フィルタ部102の第2のIDT122は、弾性表面波共振子105を介して、アンテナ端子2に接続されているIDTである。第2の縦結合共振子型弾性表面波フィルタ部102の第1のIDT121の一端がグラウンド電位に接続されており、他端が第4の縦結合共振子型弾性表面波フィルタ部104の第1のIDT141に接続されている。第2の縦結合共振子型弾性表面波フィルタ部102の第3のIDT123の一端がグラウンド電位に接続されており、他端が第4の縦結合共振子型弾性表面波フィルタ部104の第3のIDT143に接続されている。従って、第2の縦結合共振子型弾性表面波フィルタ部102の第1のIDT121及び第3のIDT123は、アンテナ端子2に接続されていない側のIDTである。
 第4の縦結合共振子型弾性表面波フィルタ部104の第1のIDT141が第2の縦結合共振子型弾性表面波フィルタ部102の第1のIDT121に接続されている側とは反対側の端部は、グラウンド電位に接続されている。同様に、第4の縦結合共振子型弾性表面波フィルタ部104の第3のIDT143が第2の縦結合共振子型弾性表面波フィルタ部102の第3のIDT123に接続されている側とは反対側の端部は、グラウンド電位に接続されている。第4の縦結合共振子型弾性表面波フィルタ部104の第2のIDT142の一端が第1の受信端子3に接続されており、他端が第2の受信端子4に接続されている。より具体的には、第4の縦結合共振子型弾性表面波フィルタ部104の第2のIDT142の一端が、第3の縦結合共振子型弾性表面波フィルタ部103の第2のIDT132の一端と共通接続され、第1の受信端子3に接続されている。同様に、第4の縦結合共振子型弾性表面波フィルタ部104の第2のIDT142の他端が、第3の縦結合共振子型弾性表面波フィルタ部103の第2のIDT132の他端と共通接続され、第2の受信端子4に接続されている。
 本実施形態では、第3,第4の縦結合共振子型弾性表面波フィルタ部103,104の第2のIDT132,142の一端を第1の受信端子3に、他端を第2の受信端子4に接続することにより、第1,第2の受信端子3,4から平衡信号を出力することが可能とされている。
 なお、図1では、第1~第4の縦結合共振子型弾性表面波フィルタ部101~104のIDTは略図的に図示していることを指摘しておく。本実施形態では、第1~第4の縦結合共振子型弾性表面波フィルタ部101~104において、IDT同士が隣り合う部分には、IDTの端部に狭ピッチ電極指部が設けられている。狭ピッチ電極指部とは、IDTを構成する電極指の周期が、狭ピッチ電極指部が形成されている当該IDTの他の部分の電極指の周期よりも小さい部分である。
 受信フィルタ10において、第1及び第2の縦結合共振子型弾性表面波フィルタ部101,102のアンテナ端子2に接続されているIDTは、前述したように、第2のIDT112,122である。第1及び第2の縦結合共振子型弾性表面波フィルタ部101,102の第2のIDT112,122の電極指の周期で定まる弾性波の波長をλ1とする。第1及び第2の縦結合共振子型弾性表面波フィルタ部101,102のアンテナ端子2に接続されていないIDTは、前述したように、第1のIDT111,121及び第3のIDT113,123である。第1及び第2の縦結合共振子型弾性表面波フィルタ部101,102の第1のIDT111,121及び第3のIDT113,123の電極指の周期で定まる弾性波の波長をλ2とする。本実施形態の特徴は、λ1<λ2とされていることにあり、それによって、送信フィルタ20の通過帯域において、リップルが生じ難くすることができる。これを、以下の実験例により具体的に説明する。
 受信フィルタ10を以下の設計パラメータに従って設計した。なお、電極指の周期で定まる弾性波の波長をλIとする。
 1)第1の縦結合共振子型弾性表面波フィルタ部101
  第1,第2及び第3のIDT111,112,113の交叉幅:19.1λI
  第1のIDT111及び第3のIDT113の電極指の本数:33本。但し、33本の内、第2のIDT112に隣り合う部分に狭ピッチ電極指が3本設けられている。
  第2のIDT112の電極指の本数:36本。但し、36本の内、第1及び第3のIDT111,113に隣り合う部分に、それぞれ、狭ピッチ電極指が8本設けられている。
  反射器114,115の電極指の本数:75本
  第1,第2及び第3のIDT111,112,113及び反射器114,115のメタライゼーションレシオ:0.70
  第1,第2及び第3のIDT111,112,113及び反射器114,115の電極膜厚:0.087λI
 第2のIDT112における弾性波の波長λIは、前述したλ1に相当し、その値は1.999μmとした。また、第1及び第3のIDT111,113における弾性波の波長λIは、前述したλ2に相当し、その値は2.001μmとした。従って、λ1<λ2である。
 2)第2の縦結合共振子型弾性表面波フィルタ部102
 第2の縦結合共振子型弾性表面波フィルタ部102は、第1の縦結合共振子型弾性表面波フィルタ部101と同様の設計とした。よって、第2のIDT122における弾性波の波長λIは、前述したλ1に相当し、その値は1.999μmとした。また、第1及び第3のIDT121,123における弾性波の波長λIは、前述したλ2に相当し、その値は2.001μmとした。従って、λ1<λ2である。
 3)第3の縦結合共振子型弾性表面波フィルタ部103
  第1,第2及び第3のIDT131,132,133の交叉幅:16.0λI
  第1のIDT131及び第3のIDT133の電極指の本数:33本。但し、33本の内、第2のIDT132に隣り合う部分に狭ピッチ電極指が3本設けられている。
  第2のIDT132の電極指の本数:38本。但し、38本の内、第1及び第3のIDT131,133に隣り合う部分に、それぞれ、狭ピッチ電極指が6本設けられている。
  反射器134,135の電極指の本数:75本
  第1,第2及び第3のIDT131,132,133及び反射器134,135のメタライゼーションレシオ:0.70
  第1,第2及び第3のIDT131,132,133及び反射器134,135の電極膜厚:0.087λI
 4)第4の縦結合共振子型弾性表面波フィルタ部104
  第4の縦結合共振子型弾性表面波フィルタ部104は、第3の縦結合共振子型弾性表面波フィルタ部103と同様に設計した。
 5)弾性表面波共振子105
  弾性表面波共振子105においても、IDT151の電極指の周期で定まる弾性波の波長をλIとする。
  IDT151の交叉幅:14.4λI
  IDT151の電極指の本数:201本
  反射器152,153の電極指の本数:18本
  IDT151及び反射器152,153のメタライゼーションレシオ:0.60
  IDT151及び反射器152,153の電極膜厚:0.089λI
 6)送信フィルタの設計
 送信フィルタ20としては、図1に示した回路構成の弾性表面波フィルタを用いた。その設計パラメータは以下の通りである。なお、電極指の周期で定まる弾性波の波長をλIIとする。
 ・第1の直列腕共振子201
  弾性表面波共振子201a,201b,201cにおけるIDTの電極指の対数:177対
  弾性表面波共振子201a,201b,201cにおけるIDTの交叉幅:13.15λII
  弾性表面波共振子201a,201b,201cにおける反射器の電極指の本数:21本
  なお、弾性表面波共振子201a,201b,201cは同じ設計パラメータとされている。
 ・第2の直列腕共振子202
  弾性表面波共振子202a,202b,202cにおけるIDTの電極指の対数:190対
  弾性表面波共振子202a,202b,202cにおけるIDTの交叉幅:25.21λII
  弾性表面波共振子202a,202b,202cにおける反射器の電極指の本数:21本
  なお、弾性表面波共振子202a,202b,202cは同じ設計パラメータとされている。
 ・第3の直列腕共振子203
  弾性表面波共振子203a,203b,203cにおけるIDTの電極指の対数:161対
  弾性表面波共振子203a,203b,203cにおけるIDTの交叉幅:20.48λII
  弾性表面波共振子203a,203b,203cにおける反射器の電極指の本数:21本
  なお、弾性表面波共振子203a,203b,203cは同じ設計パラメータとされている。
 ・第1の並列腕共振子204
  弾性表面波共振子204a,204bにおけるIDTの電極指の対数:167対
  弾性表面波共振子204a,204bにおけるIDTの交叉幅:26.77λII
  弾性表面波共振子204a,204bにおける反射器の電極指の本数:21本
  なお、弾性表面波共振子204a,204bは同じ設計パラメータとされている。
 ・第2の並列腕共振子205
  弾性表面波共振子205a,205bにおけるIDTの電極指の対数:166対
  弾性表面波共振子205a,205bにおけるIDTの交叉幅:25.12λII
  弾性表面波共振子205a,205bにおける反射器の電極指の本数:21本
  なお、弾性表面波共振子205a,205bは同じ設計パラメータとされている。
 ・第3の並列腕共振子206
  弾性表面波共振子206a,206bにおけるIDTの電極指の対数:127対
  弾性表面波共振子206a,206bにおけるIDTの交叉幅:20.47λII
  弾性表面波共振子206a,206bにおける反射器の電極指の本数:21本
  なお、弾性表面波共振子206a,206bは同じ設計パラメータとされている。
 比較のために、第1の比較例のデュプレクサを用意した。第1の比較例のデュプレクサでは、第1の縦結合共振子型弾性表面波フィルタ部101において、第1及び第3のIDT111,113における弾性波の波長λ2を2.001μm、第2のIDT112における弾性波の波長λ1を2.013μmとした。さらに、第2の縦結合共振子型弾性表面波フィルタ部102において、第1及び第3のIDT121,123における弾性波の波長λ2を2.001μm、第2のIDT122における弾性波の波長λ1を2.013μmとした。その他の点については、第1の実施形態のデュプレクサ1と同様にして第1の比較例のデュプレクサを形成した。
 従って、第1の比較例のデュプレクサでは、受信フィルタ10において、アンテナ端子2に接続されている第2のIDT112,122における弾性波の波長λ1が、アンテナ端子に接続されていないIDTである第1及び第3のIDT111,121,113,123における弾性波の波長λ2よりも大きくされている。すなわち、λ1>λ2とされている。
 図2は、第1の実施形態のデュプレクサ1における送信フィルタ20のフィルタ特性及び第1の比較例のデュプレクサにおける送信フィルタのフィルタ特性を示す。図2において、実線が第1の実施形態のデュプレクサ1における送信フィルタ20のフィルタ特性を示し、破線が第1の比較例のデュプレクサにおける送信フィルタのフィルタ特性を示す。
 図2から明らかなように、第1の比較例のデュプレクサでは、送信フィルタの通過帯域高域側にリップルAが生じ、通過帯域高域側における急峻性が低下している。これに対して、第1の実施形態のデュプレクサ1では、送信フィルタ20の通過帯域高域側にリップルが認められず、通過帯域高域側における急峻性が優れている。
 次に、第2の比較例のデュプレクサを用意した。第2の比較例では、第1の縦結合共振子型弾性表面波フィルタ部101において、第1及び第3のIDT111,113における弾性波の波長λ2と、第2のIDT112における弾性波の波長λ1とを2.001μmとし、第2の縦結合共振子型弾性表面波フィルタ部102において、第1及び第3のIDT121,123における弾性波の波長λ2と、第2のIDT122における弾性波の波長λ1とを2.001μmとした。すなわち、λ1=λ2とした。その他の点については、第1の実施形態のデュプレクサ1と同様にして、第2の比較例のデュプレクサを構成した。
 図3は、第1の実施形態のデュプレクサ1における送信フィルタ20のフィルタ特性及び第2の比較例のデュプレクサにおける送信フィルタのフィルタ特性を示す。図3において、実線が第1の実施形態のデュプレクサ1における送信フィルタ20のフィルタ特性を示し、破線が第2の比較例のデュプレクサにおける送信フィルタのフィルタ特性を示す。また、図4は、図3のXで囲まれた部分を拡大して示す。図3及び図4から明らかなように、第2の比較例のデュプレクサでは、送信フィルタの通過帯域高域側にリップルBが生じ、通過帯域高域側における急峻性が低下している。これに対して、第1の実施形態のデュプレクサ1では、送信フィルタ20の通過帯域高域側にリップルが認められず、通過帯域高域側における急峻性に優れている。
 上記のように、第1の実施形態のデュプレクサ1では、送信フィルタ20の通過帯域高域側にリップルが生じない。この理由を以下において説明する。
 受信フィルタ10では、第1の縦結合共振子型弾性表面波フィルタ部101の第2のIDT112と、第2の縦結合共振子型弾性表面波フィルタ部102の第2のIDT122とは、弾性表面波共振子105を介してアンテナ端子2に接続されている。従って、第1の縦結合共振子型弾性表面波フィルタ部101の第2のIDT112と、第2の縦結合共振子型弾性表面波フィルタ部102の第2のIDT122とは、送信フィルタ20にも電気的に接続されていることになる。そのため、第1の縦結合共振子型弾性表面波フィルタ部101の第2のIDT112の特性と、第2の縦結合共振子型弾性表面波フィルタ部102の第2のIDT122の特性とが、送信フィルタ20のフィルタ特性に影響することとなる。
 第1の縦結合共振子型弾性表面波フィルタ部101の第2のIDT112による応答と、第2の縦結合共振子型弾性表面波フィルタ部102の第2のIDT122による応答とは、受信フィルタ10の通過帯域よりも低域側に生じる。前述したように、第1の縦結合共振子型弾性表面波フィルタ部101の第2のIDT112及び第2の縦結合共振子型弾性表面波フィルタ部102の第2のIDT122は、送信フィルタ20にも電気的に接続されているので、上記応答が、送信フィルタ20の通過帯域内の周波数に位置すると、該通過帯域内にリップルが生じる。
 UMTS-BAND2の送信側通過帯域は1850~1910MHzであり、受信側通過帯域は1930~1990MHzである。従って、送信側通過帯域と受信側通過帯域との周波数間隔は、20MHzである。
 UMTS-BAND3の送信側通過帯域は1710~1795MHzであり、受信側通過帯域は1805~1880MHzである。従って、送信側通過帯域と受信側通過帯域との周波数間隔は、20MHzである。
 UMTS-BAND8の送信側通過帯域は880~915MHzであり、受信側通過帯域は925~960MHzである。従って、送信側通過帯域と受信側通過帯域との周波数間隔は、10MHzである。
 UMTS-BAND2,3,8のように、送信側通過帯域と受信側通過帯域との周波数間隔が10~20MHzと狭い場合には、送信フィルタ20の通過帯域内において、上記のようなリップルが生じやすくなる。
 本実施形態のデュプレクサ1では、受信フィルタ10の第1の縦結合共振子型弾性表面波フィルタ部101において、第2のIDT112における弾性波の波長λ1が、第1及び第3のIDT111,113における弾性波の波長λ2よりも小さくされている。また、第2の縦結合共振子型弾性表面波フィルタ部102においても、第2のIDT122における弾性波の波長λ1が、第1及び第3のIDT121,123における弾性波の波長λ2よりも小さくされている。すなわち、本実施形態のデュプレクサ1では、受信フィルタ10において、アンテナ端子2に接続されているIDTである第2のIDT112,122における弾性波の波長λ1が、アンテナ端子2に接続されていないIDTである第1及び第3のIDT111,113,121,123における弾性波の波長λ2よりも小さくされている。
 その結果、第1の縦結合共振子型弾性表面波フィルタ部101の第2のIDT112による応答と、第2の縦結合共振子型弾性表面波フィルタ部102の第2のIDT122による応答とが、送信フィルタ20の通過帯域よりも高域側に位置する。それによって、送信フィルタ20の通過帯域内にリップルが生じない。
 言い換えれば、送信フィルタ20の通過帯域よりも高域側に、アンテナ端子2に接続されているIDTである第2のIDT112,122の応答が現れるように、上記波長λ1が、λ2よりも小さくされている。
 なお、第1の縦結合共振子型弾性表面波フィルタ部101の第1及び第3のIDT111,113は、第2のIDT112と音響結合している。同様に、第2の縦結合共振子型弾性表面波フィルタ部102の第1及び第3のIDT121,123は、第2のIDT122と音響結合している。
 すなわち、第1の縦結合共振子型弾性表面波フィルタ部101の第1及び第3のIDT111,113並びに第2の縦結合共振子型弾性表面波フィルタ部102の第1及び第3のIDT121,123は、音響結合を介して送信フィルタ20に接続されているにすぎない。そのため、第1の縦結合共振子型弾性表面波フィルタ部101の第1及び第3のIDT111,113の波長と、第2の縦結合共振子型弾性表面波フィルタ部102の第1及び第3のIDT121,123の波長とを大きくしたとしても、送信フィルタ20に対する影響は、非常に小さい。よって、本実施形態のデュプレクサ1によれば、受信フィルタ10において、アンテナ端子2に接続されているIDTである第2のIDT112,122における弾性波の波長λ1と、アンテナ端子2に接続されていないIDTである第1及び第3のIDT111,113,121,123における弾性波の波長λ2とが、λ1<λ2とされていることにより、送信フィルタ20の通過帯域高域側にリップルが生じることを確実に防止することができる。
 なお、本実施形態のように、IDTが狭ピッチ電極指部を有する場合、狭ピッチ電極指部における弾性波の波長は、IDTの他の電極指部分における弾性波の波長よりも非常に小さい。従って、狭ピッチ電極指部による応答は、送信フィルタ20の通過帯域よりも高域側に位置していることとなる。そのため、狭ピッチ電極指部を設けたとしても、送信フィルタ20の通過帯域に影響は生じない。
 次に、上記第1の実施形態の変形例として、下記の第1~第3の変形例のデュプレクサを作製し、送信フィルタ20のフィルタ特性を測定した。
 第1の変形例のデュプレクサとして、上記第1の実施形態における第1の縦結合共振子型弾性表面波フィルタ部101において、第1及び第3のIDT111,113における弾性波の波長λ2を2.015μmとし、第2のIDT112における弾性波の波長λ1を1.999μmとした。第2の縦結合共振子型弾性表面波フィルタ部102において、第1及び第3のIDT121,123における弾性波の波長λ2を2.015μmとし、第2のIDT122における弾性波の波長λ1を1.999μmとした。これら以外は、上記第1の実施形態のデュプレクサ1と同様とした。
 図5は、上記第1の実施形態のデュプレクサ1における送信フィルタ20のフィルタ特性及び第1の変形例のデュプレクサにおける送信フィルタ20のフィルタ特性を示す。図5において、実線が第1の実施形態のデュプレクサ1における送信フィルタ20のフィルタ特性を示し、破線が第1の変形例のデュプレクサにおける送信フィルタ20のフィルタ特性を示す。図5から明らかなように、第1の変形例のデュプレクサにおける送信フィルタ20では、第1の実施形態のデュプレクサ1における送信フィルタ20よりもフィルタ特性の急峻性がごく僅かに悪化しているものの、送信フィルタ20の通過帯域高域側にリップルは現れていない。従って、第1の変形例の結果からも、受信フィルタ10において、アンテナ端子2に接続されているIDTである第2のIDT112,122における弾性波の波長λ1と、アンテナ端子2に接続されていないIDTである第1及び第3のIDT111,113,121,123における弾性波の波長λ2とを、λ1<λ2とすることにより、送信フィルタ20の通過帯域高域側にリップルが生じることを確実に防止し得ることがわかる。
 第2の変形例のデュプレクサとして、第1の実施形態における第3の縦結合共振子型弾性表面波フィルタ部103において、第2のIDT132における弾性波の波長を、第1及び第3のIDT131,133における弾性波の波長よりも小さくした。また、第4の縦結合共振子型弾性表面波フィルタ部104において、第2のIDT142における弾性波の波長を、第1及び第3のIDT141,143における弾性波の波長よりも小さくした。これら以外は、上記第1の実施形態のデュプレクサ1と同様とした。従って、第2の変形例のデュプレクサにおいても、受信フィルタ10の第1及び第2の縦結合共振子型弾性表面波フィルタ部101,102において、アンテナ端子2に接続されているIDTである第2のIDT112,122における弾性波の波長λ1と、アンテナ端子2に接続されていないIDTである第1及び第3のIDT111,113,121,123における弾性波の波長λ2とが、λ1<λ2とされている。
 図6は、第1の実施形態のデュプレクサ1における送信フィルタ20のフィルタ特性及び第2の変形例のデュプレクサにおける送信フィルタ20のフィルタ特性を示す。図6において、実線が第1の実施形態のデュプレクサ1における送信フィルタ20のフィルタ特性を示し、破線が第2の変形例のデュプレクサにおける送信フィルタ20のフィルタ特性を示す。図6から明らかなように、第2の変形例のデュプレクサにおいても、送信フィルタ20の通過帯域高域側にリップルは現れていない。
 第3の変形例のデュプレクサとして、第1の実施形態における第3の縦結合共振子型弾性表面波フィルタ部103において、第2のIDT132における弾性波の波長を、第1及び第3のIDT131,133における弾性波の波長よりも大きくした。また、第4の縦結合共振子型弾性表面波フィルタ部104において、第2のIDT142における弾性波の波長を、第1及び第3のIDT141,143における弾性波の波長よりも大きくした。これら以外は、上記第1の実施形態のデュプレクサ1と同様とした。従って、第3の変形例のデュプレクサにおいても、受信フィルタ10の第1及び第2の縦結合共振子型弾性表面波フィルタ部101,102において、アンテナ端子2に接続されているIDTである第2のIDT112,122における弾性波の波長λ1と、アンテナ端子2に接続されていないIDTである第1及び第3のIDT111,113,121,123における弾性波の波長λ2とが、λ1<λ2とされている。
 図7は、第1の実施形態のデュプレクサ1における送信フィルタ20のフィルタ特性及び第3の変形例のデュプレクサにおける送信フィルタ20のフィルタ特性を示す。図7において、実線が第1の実施形態のデュプレクサ1における送信フィルタ20のフィルタ特性を示し、破線が第3の変形例のデュプレクサにおける送信フィルタ20のフィルタ特性を示す。図7から明らかなように、第3の変形例のデュプレクサにおいても、送信フィルタ20の通過帯域高域側にリップルは現れていない。
 なお、第3の縦結合共振子型弾性表面波フィルタ部103の第1~第3のIDT131~133と、第4の縦結合共振子型弾性表面波フィルタ部104の第1~第3のIDT141~143とは、音響結合を介して送信フィルタ20に接続されているものである。従って、第3及び第4の縦結合共振子型弾性表面波フィルタ部103,104の第1~第3のIDT131~133,141~143による送信フィルタ20への影響は非常に小さい。従って、第2の変形例及び第3の変形例のデュプレクサにおいても、第1の実施形態のデュプレクサ1と同様に、受信フィルタ10において、アンテナ端子2に接続されているIDTである第2のIDT112,122における弾性波の波長λ1と、アンテナ端子2に接続されていないIDTである第1及び第3のIDT111,113,121,123における弾性波の波長λ2とを、λ1<λ2とすることにより、送信フィルタ20の通過帯域高域側にリップルが生じることを確実に防止し得ることがわかる。
 次に、上記第1の実施形態のデュプレクサ1の受信フィルタ10において、アンテナ端子2に接続されているIDTである第2のIDT112,122における弾性波の波長λ1を、アンテナ端子2に接続されていないIDTである第1及び第3のIDT111,113,121,123における弾性波の波長λ2よりもどれほど小さくすればよいかを検討した。結果を図8に示す。
 図8は、第1の実施形態のデュプレクサ1の受信フィルタ10の第1の縦結合共振子型弾性表面波フィルタ部101において、第1及び第3のIDT111,113における弾性波の波長λ2に対し、第2のIDT112における弾性波の波長λ1を変化させ、送信フィルタ20の通過帯域高域側の急峻性を測定した結果を示す。図8の横軸は、比λ1/λ2であり、縦軸は、送信フィルタ20の通過帯域高域側において、減衰量が3.4dBである周波数位置と、減衰量が40dBである周波数位置との周波数差を示す。なお、第2の縦結合共振子型弾性表面波フィルタ部102においても、比λ1/λ2を第1の縦結合共振子型弾性表面波フィルタ部101と同様に変化させた。
 UMTS-BAND2の送信側通過帯域と受信側通過帯域との周波数間隔は、20MHzである。周波数温度特性や加工ばらつきによる周波数ばらつきを考慮すると、上記急峻性は11MHz以下であることが好ましい。
 図8から明らかなように、λ1/λ2が1.0よりも小さければ、急峻性はほぼ飽和し、λ1/λ2が0.998以下であれば、11MHz以下の急峻性が得られることがわかる。従って、好ましくは、λ1/λ2は、0.998以下であることが望ましい。
 第1の実施形態のデュプレクサ1では、受信フィルタ10が、第1~第4の縦結合共振子型弾性表面波フィルタ部101~104と、弾性表面波共振子105とにより構成されていたが、本発明におけるデュプレクサでは、受信フィルタはこのような構成に限定されるものではない。
 以下、受信フィルタの形態が異なる第2~第5の実施形態を説明する。なお、第2~第5の実施形態を示す後述の図9~図12では、送信フィルタ20の図示は省略してある。第2~第5の実施形態において、送信フィルタ20については、第1の実施形態と同様に構成することができる。
 図9は、本発明の第2の実施形態のデュプレクサ21の略図的回路図である。
 第2の実施形態のデュプレクサ21では、第1の実施形態のデュプレクサ1と同様に、受信フィルタ22は、第1~第4の縦結合共振子型弾性表面波フィルタ部101~104と、弾性表面波共振子105とを有する。第2の実施形態のデュプレクサ21が第1の実施形態のデュプレクサ1と異なるところは、第3及び第4の縦結合共振子型弾性表面波フィルタ部103,104と第1,第2の受信端子3,4との接続構造にある。すなわち、本実施形態では、第3の縦結合共振子型弾性表面波フィルタ部103の第2のIDT132の一端が第1の受信端子3に接続されており、他端がグラウンド電位に接続されている。同様に、第4の縦結合共振子型弾性表面波フィルタ部104の第2のIDT142の一端が第2の受信端子4に接続されており、他端がグラウンド電位に接続されている。このように平衡信号を出力するための接続構造は、適宜変形することができる。
 本実施形態においても、第1,第2の縦結合共振子型弾性表面波フィルタ部101,102が、第1の実施形態と同様に構成されているため、アンテナ端子2に接続されているIDTである第2のIDT112,122における弾性波の波長λ1と、アンテナ端子2に接続されていないIDTである第1及び第3のIDT111,113,121,123における弾性波の波長λ2とを、λ1<λ2とすることにより、送信フィルタ20の通過帯域高域側におけるリップルの発生を確実に防止することができる。
 図10は、本発明の第3の実施形態のデュプレクサ31の略図的回路図である。
 第3の実施形態のデュプレクサ31では、受信フィルタ32は、弾性表面波共振子105と、第1,第2の縦結合共振子型弾性表面波フィルタ部33,34とを有する。第1の縦結合共振子型弾性表面波フィルタ部33は、弾性表面波伝搬方向に沿って配置された第1,第2及び第3のIDT331,332,333と、第1,第2及び第3のIDT331,332,333が設けられている部分の弾性表面波伝搬方向両側に配置された反射器334,335とを有する。すなわち、第1の縦結合共振子型弾性表面波フィルタ部33は、3IDT型の縦結合共振子型弾性表面波フィルタである。第2の縦結合共振子型弾性表面波フィルタ部34も、同様に、3IDT型の縦結合共振子型弾性表面波フィルタである。従って、第2の縦結合共振子型弾性表面波フィルタ部34は、弾性表面波伝搬方向に沿って配置された第1,第2及び第3のIDT341,342,343と、第1,第2及び第3のIDT341,342,343が設けられている部分の弾性表面波伝搬方向両側に配置された反射器344,345とを有する。第1の縦結合共振子型弾性表面波フィルタ部33に、第2の縦結合共振子型弾性表面波フィルタ部34が縦続接続されている。
 本実施形態では、第1の縦結合共振子型弾性表面波フィルタ部33の第2のIDT332の一端が弾性表面波共振子105を介してアンテナ端子2に接続されており、他端がグラウンド電位に接続されている。第1,第3のIDT331,333の各一端がグラウンド電位に接続されている。第1のIDT331の他端は、第2の縦結合共振子型弾性表面波フィルタ部34の第1のIDT341の一端に接続されている。第1のIDT341の他端は、グラウンド電位に接続されている。同様に、第3のIDT333の他端は、第2の縦結合共振子型弾性表面波フィルタ部34の第3のIDT343の一端に接続されている。第3のIDT343の他端は、グラウンド電位に接続されている。
 第2の縦結合共振子型弾性表面波フィルタ部34の第2のIDT342は、弾性表面波伝搬方向において分割されており、第1,第2の分割IDT部342a,342bを有する。第1の分割IDT部342aが、第1の受信端子3に接続されている。第2の分割IDT部342bが、第2の受信端子4に接続されている。
 このような構成においても、アンテナ端子2に接続されているIDTである、第1の縦結合共振子型弾性表面波フィルタ部33の第2のIDT332における弾性波の波長λ1と、アンテナ端子2に接続されていないIDTである、第1,第3のIDT331,333における弾性波の波長λ2とを、λ1<λ2とすることにより、送信フィルタ20の通過帯域高域側におけるリップルの発生を確実に防止することができる。
 図11は、本発明の第4の実施形態のデュプレクサ41の略図的回路図である。
 第4の実施形態のデュプレクサ41では、受信フィルタ42は、弾性表面波共振子105と、第1,第2の縦結合共振子型弾性表面波フィルタ部43,44とを有する。
 第1の縦結合共振子型弾性表面波フィルタ部43は、弾性表面波伝搬方向に沿って配置された第1,第2及び第3のIDT431,432,433と、第1,第2及び第3のIDT431,432,433が設けられている部分の弾性表面波伝搬方向両側に配置された反射器434,435とを有する。すなわち、第1の縦結合共振子型弾性表面波フィルタ部43は、3IDT型の縦結合共振子型弾性表面波フィルタである。第2の縦結合共振子型弾性表面波フィルタ部44も、同様に、3IDT型の縦結合共振子型弾性表面波フィルタである。従って、第2の縦結合共振子型弾性表面波フィルタ部44は、弾性表面波伝搬方向に沿って配置された第1,第2及び第3のIDT441,442,443と、第1,第2及び第3のIDT441,442,443が設けられている部分の弾性表面波伝搬方向両側に配置された反射器444,445とを有する。第1の縦結合共振子型弾性表面波フィルタ部43と、第2の縦結合共振子型弾性表面波フィルタ部44とは、並列に接続されている。
 本実施形態では、第1の縦結合共振子型弾性表面波フィルタ部43の第1,第3のIDT431,433の各一端が共通接続され、弾性表面波共振子105を介してアンテナ端子2に接続されており、各他端がグラウンド電位に接続されている。第2のIDT432の一端がグラウンド電位に接続されており、他端が第1の受信端子3に接続されている。
 同様に、第2の縦結合共振子型弾性表面波フィルタ部44の第1,第3のIDT441,443の各一端が共通接続され、弾性表面波共振子105を介してアンテナ端子2に接続されており、各他端がグラウンド電位に接続されている。第2のIDT442の一端がグラウンド電位に接続されており、他端が第2の受信端子4に接続されている。
 このような構成においても、アンテナ端子2に接続されているIDTである、第1の縦結合共振子型弾性表面波フィルタ部43の第1,第3のIDT431,433及び第2の縦結合共振子型弾性表面波フィルタ部44の第1,第3のIDT441,443における弾性波の波長λ1と、アンテナ端子2に接続されていないIDTである、第1の縦結合共振子型弾性表面波フィルタ部43の第2のIDT432及び第2の縦結合共振子型弾性表面波フィルタ部44の第2のIDT442における弾性波の波長λ2とを、λ1<λ2とすることにより、送信フィルタ20の通過帯域高域側におけるリップルの発生を確実に防止することができる。
 図12は、本発明の第5の実施形態のデュプレクサ51の略図的回路図である。
 第5の実施形態のデュプレクサ51では、受信フィルタ52は、弾性表面波共振子105と、縦結合共振子型弾性表面波フィルタ部53とを有する。
 縦結合共振子型弾性表面波フィルタ部53は、弾性表面波伝搬方向に沿って配置された第1~第5のIDT531~535と、第1~第5のIDT531~535が設けられている部分の弾性表面波伝搬方向両側に配置された反射器536,537とを有する。すなわち、縦結合共振子型弾性表面波フィルタ部53は、5IDT型の縦結合共振子型弾性表面波フィルタである。
 本実施形態では、縦結合共振子型弾性表面波フィルタ部53の第1,第3及び第5のIDT531,533,535の各一端が共通接続され、弾性表面波共振子105を介してアンテナ端子2に接続されており、各他端がグラウンド電位に接続されている。他方、第2のIDT532の一端がグラウンド電位に接続されており、他端が第1の受信端子3に接続されている。また、第4のIDT534の一端がグラウンド電位に接続されており、他端が第2の受信端子4に接続されている。
 このような構成においても、アンテナ端子2に接続されているIDTである、縦結合共振子型弾性表面波フィルタ部53の第1,第3及び第5のIDT531,533,535における弾性波の波長λ1と、アンテナ端子2に接続されていないIDTである、第2及び第4のIDT532,534における弾性波の波長λ2とを、λ1<λ2とすることにより、送信フィルタ20の通過帯域高域側におけるリップルの発生を確実に防止することができる。
 なお、第2~第5の実施形態では、送信フィルタ20の構成については、省略しているが、送信フィルタ20は、第1の実施形態と同様に構成することができる。また、本発明は、上記のように、受信フィルタにおいて、アンテナ端子に接続されているIDTにおける弾性波の波長λ1と、アンテナ端子に接続されていないIDTにおける弾性波の波長λ2との関係に特徴を有するものであり、送信フィルタの構造自体は特に限定されるものではない。
 上記第1~第5の実施形態及び第1~第3の比較例では、弾性表面波を利用した縦結合共振子型弾性表面波フィルタにより受信フィルタを構成したが、弾性境界波を利用した縦結合共振子型弾性境界波フィルタにより受信フィルタを構成してもよい。
 1…デュプレクサ
 2…アンテナ端子
 3,4…第1,第2の受信端子
 5…送信端子
 6…インダクタ
 10…受信フィルタ
 20…送信フィルタ
 21…デュプレクサ
 22…受信フィルタ
 31…デュプレクサ
 32…受信フィルタ
 33…第1の縦結合共振子型弾性表面波フィルタ部
 34…第2の縦結合共振子型弾性表面波フィルタ部
 41…デュプレクサ
 42…受信フィルタ
 43…第1の縦結合共振子型弾性表面波フィルタ部
 44…第2の縦結合共振子型弾性表面波フィルタ部
 51…デュプレクサ
 52…受信フィルタ
 53…縦結合共振子型弾性表面波フィルタ部
 101…第1の縦結合共振子型弾性表面波フィルタ部
 102…第2の縦結合共振子型弾性表面波フィルタ部
 103…第3の縦結合共振子型弾性表面波フィルタ部
 104…第4の縦結合共振子型弾性表面波フィルタ部
 105…弾性表面波共振子
 111~113…第1~第3のIDT
 114,115…反射器
 121~123…第1~第3のIDT
 124,125…反射器
 131~133…第1~第3のIDT
 134,135…反射器
 141~143…第1~第3のIDT
 144,145…反射器
 151…IDT
 152,153…反射器
 201…第1の直列腕共振子
 201a~201c…弾性表面波共振子
 202…第2の直列腕共振子
 202a~202c…弾性表面波共振子
 203…第3の直列腕共振子
 203a~203c…弾性表面波共振子
 204…第1の並列腕共振子
 204a,204b…弾性表面波共振子
 205…第2の並列腕共振子
 205a,205b…弾性表面波共振子
 206…第3の並列腕共振子
 206a,206b…弾性表面波共振子
 207~209…インダクタ
 210…キャパシタ
 211…直列腕
 212~214…並列腕
 331~333…第1~第3のIDT
 334,335…反射器
 341~343…第1~第3のIDT
 342a,342b…第1,第2の分割IDT部
 344,345…反射器
 431~433…第1~第3のIDT
 434,435…反射器
 441~443…第1~第3のIDT
 444,445…反射器
 531~535…第1~第5のIDT
 536,537…反射器

Claims (8)

  1.  アンテナ端子と、受信端子と、送信端子とを備える弾性波分波器であって、
     前記アンテナ端子と前記受信端子との間に接続されており、縦結合共振子型弾性波フィルタからなる受信フィルタと、
     前記アンテナ端子と前記送信端子との間に接続された送信フィルタとを備え、
     前記縦結合共振子型弾性波フィルタが、弾性波伝搬方向に沿って配置された少なくとも3つのIDTを有し、前記少なくとも3つのIDTの内、少なくとも1つのIDTが前記アンテナ端子に接続されており、残りのIDTが前記アンテナ端子に接続されておらず、
     前記アンテナ端子に接続されているIDTにおける弾性波の波長をλ1、前記アンテナ端子に接続されていないIDTにおける弾性波の波長をλ2としたときに、λ1<λ2とされている、弾性波分波器。
  2.  前記λ1と前記λ2との比λ1/λ2が0.998以下である、請求項1に記載の弾性波分波器。
  3.  前記受信端子が、第1,第2の受信端子を有し、
     前記縦結合共振子型弾性波フィルタが、前記アンテナ端子に並列に接続された第1,第2の3IDT型縦結合共振子型弾性波フィルタ部と、前記第1,第2の3IDT型縦結合共振子型弾性波フィルタ部にそれぞれ縦続接続された第3,第4の3IDT型縦結合共振子型弾性波フィルタ部とを有し、前記第3,第4の3IDT型縦結合共振子型弾性波フィルタ部が前記第1,第2の受信端子にそれぞれ接続されており、前記第1,第2の3IDT型縦結合共振子型弾性波フィルタ部の3つのIDTを弾性波伝搬方向に沿って、それぞれ第1~第3のIDTとしたときに、前記第1,第2の3IDT型縦結合共振子型弾性波フィルタ部の各第2のIDTが前記アンテナ端子に接続されており、各第1,第3のIDTが、前記アンテナ端子に接続されていない、請求項1または2に記載の弾性波分波器。
  4.  前記受信端子が、第1,第2の受信端子を有し、
     前記縦結合共振子型弾性波フィルタが、前記アンテナ端子に並列に接続された第1,第2の3IDT型縦結合共振子型弾性波フィルタ部を有し、前記第1,第2の3IDT型縦結合共振子型弾性波フィルタ部が、それぞれ、前記第1,第2の受信端子に接続されており、前記第1,第2の3IDT型縦結合共振子型弾性波フィルタ部の3つのIDTを、弾性波伝搬方向に沿って第1~第3のIDTとしたときに、前記第1,第2の3IDT型縦結合共振子型弾性波フィルタ部の各第1,第3のIDTが、前記アンテナ端子に接続されており、各第2のIDTが前記アンテナ端子に接続されておらず、それぞれ、前記第1,第2の受信端子に接続されている、請求項1または2に記載の弾性波分波器。
  5.  前記受信端子が、第1,第2の受信端子を有し、
     前記縦結合共振子型弾性波フィルタが、弾性波伝搬方向に沿って5つのIDTが配置されている5IDT型縦結合共振子型弾性波フィルタである、請求項1または2に記載の弾性波分波器。
  6.  前記5IDT型縦結合共振子型弾性波フィルタにおける前記5つのIDTを弾性波伝搬方向に沿って第1~第5のIDTとしたときに、第1,第3及び第5のIDTが前記アンテナ端子に接続されており、第2,第4のIDTが前記アンテナ端子に接続されておらず、前記第2のIDTが前記第1の受信端子に、前記第4のIDTが前記第2の受信端子に接続されている、請求項5に記載の弾性波分波器。
  7.  UMTS-BAND2,3または8の規格に対応する分波器である、請求項1~6のいずれか1項に記載の弾性波分波器。
  8.  前記縦結合共振子型弾性波フィルタが、縦結合共振子型弾性表面波フィルタである、請求項1~7のいずれか1項に記載の弾性波分波器。
PCT/JP2011/060752 2010-06-04 2011-05-10 弾性波分波器 WO2011152176A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201190000442.6U CN203119851U (zh) 2010-06-04 2011-05-10 弹性波分波器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-129300 2010-06-04
JP2010129300A JP2013168692A (ja) 2010-06-04 2010-06-04 弾性波分波器

Publications (1)

Publication Number Publication Date
WO2011152176A1 true WO2011152176A1 (ja) 2011-12-08

Family

ID=45066558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060752 WO2011152176A1 (ja) 2010-06-04 2011-05-10 弾性波分波器

Country Status (3)

Country Link
JP (1) JP2013168692A (ja)
CN (1) CN203119851U (ja)
WO (1) WO2011152176A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021042A1 (ja) * 2012-08-02 2014-02-06 株式会社村田製作所 弾性波装置及び分波装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208629A1 (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 弾性表面波フィルタ
US10148246B2 (en) * 2016-06-08 2018-12-04 Murata Manufacturing Co., Ltd. Multiplexer and radio-frequency (RF) front-end module
JP6627816B2 (ja) * 2016-06-08 2020-01-08 株式会社村田製作所 マルチプレクサおよび高周波フロントエンドモジュール
WO2019009271A1 (ja) * 2017-07-05 2019-01-10 株式会社村田製作所 マルチプレクサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321567A (ja) * 1996-05-28 1997-12-12 Showa Electric Wire & Cable Co Ltd 共振器型sawフィルタ
WO2007116760A1 (ja) * 2006-04-06 2007-10-18 Murata Manufacturing Co., Ltd. デュプレクサ
WO2010035372A1 (ja) * 2008-09-24 2010-04-01 株式会社村田製作所 弾性波フィルタ装置
WO2010061496A1 (ja) * 2008-11-25 2010-06-03 株式会社村田製作所 弾性波フィルタ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321567A (ja) * 1996-05-28 1997-12-12 Showa Electric Wire & Cable Co Ltd 共振器型sawフィルタ
WO2007116760A1 (ja) * 2006-04-06 2007-10-18 Murata Manufacturing Co., Ltd. デュプレクサ
WO2010035372A1 (ja) * 2008-09-24 2010-04-01 株式会社村田製作所 弾性波フィルタ装置
WO2010061496A1 (ja) * 2008-11-25 2010-06-03 株式会社村田製作所 弾性波フィルタ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021042A1 (ja) * 2012-08-02 2014-02-06 株式会社村田製作所 弾性波装置及び分波装置
JP5673897B2 (ja) * 2012-08-02 2015-02-18 株式会社村田製作所 弾性波装置及び分波装置
US9118297B2 (en) 2012-08-02 2015-08-25 Murata Manufacturing Co., Ltd. Elastic wave device and duplexing device

Also Published As

Publication number Publication date
JP2013168692A (ja) 2013-08-29
CN203119851U (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
US9112478B2 (en) Duplexer
JP3186604B2 (ja) 弾性表面波フィルタ装置
US7902940B2 (en) Duplexer
US9019040B2 (en) Elastic wave branching filter
US7876176B2 (en) Acoustic wave filter device and duplexer
US7459997B2 (en) Elastic wave filter device and duplexer
US7378923B2 (en) Balanced SAW filter
US7532090B2 (en) Acoustic wave filter device and duplexer
US9013247B2 (en) Elastic wave demultiplexer
JP2012147175A (ja) 弾性波分波器
US9184728B2 (en) Elastic-wave filter device
KR20080028427A (ko) 탄성파 필터장치
JP5135763B2 (ja) 弾性表面波フィルタ装置及びデュプレクサ
US8106725B2 (en) Acoustic wave filter device
WO2011152176A1 (ja) 弾性波分波器
US8525621B2 (en) Boundary acoustic wave filter
KR100598434B1 (ko) 탄성표면파 장치 및 그것을 이용한 통신장치
US7746199B2 (en) Acoustic wave device
US7800460B2 (en) Elastic wave filter device and duplexer
WO2011092876A1 (ja) 分波器
JP2004048675A (ja) 弾性表面波装置及びそれを有する通信装置
JP4853520B2 (ja) 弾性表面波フィルタ装置及びデュプレクサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000442.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP