WO2011151999A1 - 動線検出システム、動線検出方法および動線検出プログラム - Google Patents

動線検出システム、動線検出方法および動線検出プログラム Download PDF

Info

Publication number
WO2011151999A1
WO2011151999A1 PCT/JP2011/002930 JP2011002930W WO2011151999A1 WO 2011151999 A1 WO2011151999 A1 WO 2011151999A1 JP 2011002930 W JP2011002930 W JP 2011002930W WO 2011151999 A1 WO2011151999 A1 WO 2011151999A1
Authority
WO
WIPO (PCT)
Prior art keywords
score
information
correspondence information
time
flow line
Prior art date
Application number
PCT/JP2011/002930
Other languages
English (en)
French (fr)
Inventor
森口有紀江
小西勇介
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012518228A priority Critical patent/JP5807635B2/ja
Priority to US13/695,489 priority patent/US8731829B2/en
Priority to EP11789413.9A priority patent/EP2579191A4/en
Priority to CN201180026941.7A priority patent/CN102939611B/zh
Publication of WO2011151999A1 publication Critical patent/WO2011151999A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • G06Q10/063114Status monitoring or status determination for a person or group

Definitions

  • the present invention relates to a flow line detection system for determining which position in a tracking region corresponds to which identification information is present based on the detection result of the identification information unique to the position of the movable object and the movable object,
  • the present invention relates to a flow line detection method and a flow line detection program.
  • the detection of a flow line of a moving object is realized by associating the position of the moving object with identification information (hereinafter referred to as ID) of the moving object.
  • ID identification information
  • a moving body can be uniquely identified and a flow line can be detected.
  • Various techniques relating to such flow line detection have been proposed (see, for example, Patent Documents 1 and 2).
  • the flow line of a moving body is the information showing the path
  • the trajectory means a connection of position coordinates detected continuously with respect to a certain moving body. Accordingly, when the detection of the position coordinates of the moving object is interrupted, the trajectory is also interrupted.
  • the moving body tracking system described in Patent Document 1 includes a surveillance camera that captures an image of a space and an IC tag reader.
  • the moving body tracking system described in Patent Document 1 obtains the position coordinates of each moving body based on the output of the surveillance camera, and first identification information (camera tracking ID) unique to the moving body and the position coordinates of the moving body. Are managed in the tracking information table.
  • this mobile body tracking system reads unique second identification information (object ID) from each mobile body having an IC tag, and associates the second identification information with the tag position coordinates in the read information table. to manage.
  • the first identification information and the position information are associated with the third identification information (position management ID) and managed by the position management table.
  • the moving body tracking system described in Patent Document 1 further relates to a position estimation table that manages second identification information and third identification information in association with each other with respect to a moving body recognized within a predetermined error range at the same time.
  • the mobile object is tracked by the position management table and the position estimation table. That is, when the position of the moving body at a certain time detected by the monitoring camera and the position at which the object ID is detected by the IC tag reader are within a predetermined error range, the position management table and the position estimation table move the certain time.
  • the body position information and the object ID are associated and managed.
  • the moving body tracking system described in Patent Document 1 integrates detection results obtained by a plurality of sensors and tracks the moving body.
  • the moving body tracking system described in Patent Document 1 is recognized by the moving body recognized by the first identification means (the means using the camera) and the second identification means (the means using the IC tag).
  • a mobile object is recognized as the same mobile object if its recognition time and recognition position are substantially the same, and the information obtained by each identification means is integrated, so it can be obtained by a plurality of sensors with different detection mechanisms.
  • the movement line of the moving body can be detected based on the positional information obtained.
  • the monitoring system using a plurality of cameras described in Patent Document 2 has a feature in which a plurality of cameras are installed in a monitoring target space, and a moving body and its feature amount information are extracted from the video using an image recognition technology.
  • a quantity extraction means is provided.
  • the video imaged by the camera and the feature amount information of the moving body are sent to the collation and tracking means of the moving body via the communication network.
  • the verification tracking means expresses the entire monitoring target space as a three-dimensional model, and further has a monitoring space database that expresses the connection of the space in which the mobile body can move, centered on the network, and accumulates the transmitted feature information. Since a plurality of moving bodies generally exist in one camera image, they are separated as individual moving bodies.
  • a route calculation unit in the verification tracking unit obtains a movement route candidate between the camera photographing ranges in the monitoring target space. Then, the moving object matching degree calculation means in the verification tracking means calculates the matching degree between the feature quantity sets of the two moving objects, and determines whether the two moving objects match using the matching degree.
  • the verification tracking means includes personal identification information matching means such as card authentication and biometric authentication installed on the door. Then, the vicinity of the door with the card authentication means is photographed by the monitoring camera, the feature amount information of the appearance is extracted, and at the same time, the card information is associated with the owner information.
  • the monitoring system using a plurality of cameras described in Patent Document 2 connects the trajectories of the moving bodies detected between the monitoring areas, and the trajectory is detected by personal identification information matching means such as card authentication or biometrics authentication. By associating with the personal identification information, a flow line with the personal identification information can be generated.
  • the luminance values of the lower and upper body of the person are used as the feature amount.
  • Patent Document 3 describes an image processing apparatus that can track a moving object that appears on a video image even when occlusion occurs.
  • each of a plurality of feature points is tracked from the previous frame to the current frame, and the movement of the tracking region is predicted based on the tracking result of each feature point, and the current frame Locate the tracking area at.
  • a reliability indicating the high possibility that the feature point exists on the moving object is calculated, and the movement of the tracking area is calculated using the reliability.
  • the reliability the number of frames that have been successfully tracked (history) or the like is used.
  • JP 2006-146378 A (paragraphs 0007 to 0017, 0024)
  • Japanese Patent Laying-Open No. 2005-250989 paragraphs 0010, 0016, 0017, 0074, 0075
  • a moving body tracking system using a camera can track a moving body, but cannot uniquely identify a moving body.
  • ID detection devices such as card authentication, biometric authentication, and RFID (Radio Frequency IDentification) readers
  • the unique ID of the mobile object can be detected by the ID detection device.
  • the unique ID cannot be detected for a mobile object located away from the ID detection device, and the position of the mobile object cannot be determined.
  • tracking may be interrupted when a plurality of moving objects overlap at the same place or move from one camera field of view to another camera field of view.
  • the system described in Patent Document 1 can detect a flow line when an ID can be detected by a sensor. However, if the tracking is interrupted frequently, the flow line detection process is restarted from the newly acquired sensor information, so that the accuracy of the flow line detection is lowered. For example, it is assumed that the moving object A exists in the tracking area and the locus 1 is detected from the moving object A. When the trajectory 1 passes through the ID detection area and the ID detection apparatus detects an ID (referred to as IDa), the trajectory 1 can be associated with IDa. Here, it is assumed that the detection of the locus 1 is interrupted and the locus 2 is detected from the moving object A at the next time.
  • Patent Document 1 resumes the flow line detection process of the moving object A using only the newly acquired trajectory 2, but the trajectory 2 does not pass through the ID detection area. There is no ID associated with 2. Thus, every time tracking or ID interruption occurs, sensor information acquired in the past (the locus 1 and IDa in the above example) cannot be used, and sensor information newly acquired after the locus is interrupted ( Since the flow line detection is resumed based only on the trajectory 2) in the above example, the obtained trajectory cannot be accurately associated with the ID.
  • the ID is detected in a limited situation such as when a moving object is present in an area where the sensor can detect a wireless tag or the like, and cannot be frequently acquired. For this reason, when tracking is frequently interrupted, there are many trajectories that are not associated with the ID of the moving object. In addition, a trajectory of an object that is not a tracking target may be detected, and such a trajectory becomes noise. The presence of such noise also causes an increase in trajectories that are not associated with IDs.
  • the timing for performing the connection process between the trajectories becomes important. For example, when a moving body appears in a tracking area A, the degree of matching between the trajectory of the moving body and a group of trajectories detected in the past in the adjacent tracking area B or tracking area C is calculated. Based on the above, a set of trajectories is connected.
  • the luminance of the upper and lower bodies of a moving body obtained from a camera is used as a feature amount of a trajectory, and the matching degree of the feature amount between two trajectories to be connected is used as a matching degree. Used.
  • the feature amount of the moving object is accurately detected when the position and size of the moving object satisfy a certain condition within the angle of view of the camera, and may include an error otherwise. Therefore, when the trajectory connection process is performed at an early stage, the degree of matching may be calculated without accurately obtaining the trajectory feature value, and the trajectory may not be correctly connected.
  • the degree of consistency is not calculated all at once, but the degree of consistency between the trajectories is calculated using the latest feature amount at regular time intervals, and the connection results are updated sequentially.
  • the method can be considered.
  • the trajectory that becomes a connection candidate increases when the number of monitoring targets and the number of tracking areas increase.
  • the number of combinations increases, and in reality, it is considered difficult to perform the flow line detection process in real time.
  • the number of frames that have been successfully tracked continuously is used as the reliability of the feature points, and the movement of the tracking area is calculated using the reliability. It is conceivable to use such reliability in a system for calculating a flow line by detecting information such as the position and ID of a moving body. However, since the same amount of sensor information is not always obtained at each time, even if an index value indicating the existence possibility of a moving object is obtained, the accuracy of the index varies depending on the time, and the accuracy There are cases where the flow line cannot be calculated well.
  • the present invention provides a flow line detection system capable of accurately determining the position of a moving body of each identification information and detecting a flow line even when the position and identification information of the moving body cannot be detected frequently. Another object is to provide a flow line detection method and a flow line detection program.
  • the position score correspondence relationship information in which a score indicating the high possibility of the existence of a moving body with unique identification information is determined for each position in the tracking area of the moving body, Position score correspondence information generating means for generating each mobile object identification information, state storage means for storing position score correspondence information for each time, and position stored in the state storage means for each mobile object identification information
  • the position score correspondence information satisfying a predetermined criterion is selected as deterministic position score correspondence information
  • the definite position score correspondence information is associated with the definite position score correspondence information.
  • the position score correspondence information at the most recent time is reflected in the position score correspondence information, and the position score correspondence information is repeatedly defined as deterministic position score correspondence information.
  • From the score at the A correspondence relationship information characterized in that it comprises a flow-line identification means for identifying a flow line of the moving body.
  • the flow line detection method provides position score correspondence information in which a score indicating a high possibility of the existence of a moving object having unique identification information is determined for each position in the tracking area of the moving object. Is generated for each piece of mobile object identification information, the position score correspondence information for each time is stored in the state storage means, and the position score correspondence relation information stored in the state storage means is stored for each piece of mobile body identification information.
  • the position score correspondence information satisfying a predetermined criterion is selected as deterministic position score correspondence information, and the definite position score correspondence information is selected as the latest time corresponding to the deterministic position score correspondence information.
  • the position score correspondence information is repeatedly reflected in the position score correspondence information, and the position score correspondence information is defined as definitive position score correspondence information. , And identifies the flow line of the moving body.
  • the flow line detection program provides a computer with a position score determined for each position in a tracking area of a moving object, which indicates a high possibility that a moving object having specific identification information exists.
  • Position score correspondence information generation processing for generating correspondence relationship information for each mobile body identification information, state storage processing for storing position score correspondence information for each time in the state storage means, and for each mobile body identification information
  • the position score correspondence information satisfying a predetermined criterion is selected as deterministic position score correspondence information from among the position score correspondence information stored in the state storage means, and the definite position score correspondence information is determined
  • the position score correspondence information is reflected in the position score correspondence information at the most recent time corresponding to the specific position score correspondence information, and the position score correspondence information is deterministic. Repeatedly it is defined as information, from the score at the position score correspondence information for each time, characterized in that to execute a flow-line identification process for specifying the flow line of the moving body.
  • the position of the moving body of each identification information can be determined with high accuracy and a flow line can be detected.
  • FIG. FIG. 1 is a block diagram showing an example of a flow line detection system according to the first embodiment of the present invention.
  • the flow line detection system of the present invention includes a position information input unit 1, an ID information input unit 2, a flow line detection unit 3, and a flow line output unit 4.
  • the flow line detection system of the present invention acquires the position and ID (identification information) of the moving object, and obtains a score indicating the high possibility that the moving object exists for each position in the predetermined tracking area 50. To derive. This score is calculated for each mobile object ID.
  • the flow line detection system of the present invention corrects the score at the most recent time based on the score at a time point that satisfies a predetermined criterion, and further, the score at the most recent time at which the score is corrected Will also be revised sequentially. And the flow line of a moving body is pinpointed using the score after correction.
  • Each moving body P freely moves in the tracking area 50. Further, the moving body P may come out of the tracking area 50.
  • the type of the moving body is not particularly limited, and may be a human, an animal, or a thing.
  • the position information input unit 1 is a device that detects the position coordinates of the moving body in the tracking area 50 and inputs the position coordinates and the detection time to the flow line detection unit 3.
  • the position information input unit 1 inputs the two-dimensional position coordinates of the moving object in the tracking region 50 and the detection time of the position coordinates to the flow line detection unit 3 as a set.
  • position information a set of the position coordinates of the moving body detected by the position information input unit 1 and the detection time of the position coordinates.
  • the position information input unit 1 may be any device that can detect the position coordinates of the moving body in the tracking area 50 and specify the detection time. Further, the position information input unit 1 does not need to detect an ID unique to each mobile object.
  • the position information input unit 1 may be realized by, for example, a moving body tracking system using a camera, a floor pressure sensor, a laser range finder, or a radar. In the case where the position information input unit 1 is realized in such a manner, the moving body does not have to hold a device necessary for detecting itself. In addition, the position information input unit 1 may detect the position coordinates of the moving body in such a manner that the moving body holds equipment necessary for coordinate detection.
  • the position information input unit 1 may be realized by a mobile tracking system using a wireless communication device such as GPS (Global Positioning System) or an ultrasonic transceiver. Even in a mode in which the mobile body holds devices for coordinate detection, the position information input unit 1 does not need to acquire an ID unique to the mobile body from these devices.
  • GPS Global Positioning System
  • ultrasonic transceiver Even in a mode in which the mobile body holds devices for coordinate detection, the position information input unit 1 does not need to acquire an ID unique to the mobile body from these devices.
  • the position information input unit 1 is installed so that the entire tracking area 50 can be detected without a blind spot, but a blind spot that is partially undetectable may be generated. This is because the flow line detection unit 3 to be described later can identify a position coordinate of a moving object and an ID associated therewith and generate a series of flow lines even if the input position information is missing. It is.
  • the ID information input unit 2 is a device that acquires the ID of a moving object in the tracking area 50.
  • the ID information input unit 2 is not always able to detect the ID when the moving object exists, and whether or not the ID can be detected depends on the position of the moving object in the tracking region 50. For example, the detection probability of an ID of a mobile object existing in a place close to the ID information input unit 2 is high, and the detection probability of an ID of a mobile object existing in a place away from the ID information input unit 2 is low.
  • FIG. 1 shows one ID information input unit 2, but a plurality of ID information input units 2 may be installed in the tracking area 50.
  • Each ID information input unit 2 is assigned in advance an ID information input unit ID (that is, identification information of the ID information input unit) for uniquely identifying the ID information input unit 2.
  • the ID information input unit ID is used to determine which ID information input unit 2 has detected the ID of the moving object.
  • ID information input unit ID is represented by a number
  • the ID information input unit ID will be referred to as an ID information input unit number.
  • the ID information input unit ID may be represented by a number other than the number.
  • the ID information input unit 2 inputs the ID of the detected mobile object, its detection time, and the ID information input unit number of the ID information input unit 2 itself to the flow line detection unit 3.
  • ID information a set of the ID of the mobile object, its detection time, and the ID information input unit number of the ID information input unit 2 that detected the ID
  • the ID information input unit 2 tries to detect the ID of the moving object and the ID cannot be detected, the ID of the moving object is set to “none”, and the flow line is detected together with the time and the ID information input unit number. You may input into the part 3.
  • the ID information input unit 2 does not input any ID information to the flow line detection unit 3, the flow line detection unit 3 determines that no moving body ID is detected at that time. Also good.
  • the ID information input unit 2 may be any device that can detect an ID unique to a mobile body and specify the detection time and the ID information input unit number of the ID information input unit 2 itself.
  • an RFID reader may be used as the ID information input unit 2.
  • the moving body has an IC card and the identification information of the IC card is used as the ID of the moving body, an IC card reader may be used as the ID information input unit 2.
  • an access point may be used as the ID information input unit 2.
  • a barcode reader may be used as the ID information input unit 2.
  • the moving body is a person
  • the person's face, fingerprint, vein, or the like may be used as the person ID
  • the ID information input unit 2 may be a reading device for these IDs.
  • you may use together ID information input part 2 from which a detection target differs like a face authentication apparatus and an RFID reader.
  • the detection areas of the ID information input devices 2 may be installed so as to overlap each other. Or you may install so that it may not mutually overlap.
  • the detection of the position coordinates of the moving object by the position information input unit 1 and the detection of the ID of the moving object by the ID information input unit 2 are performed at the same time.
  • the position information input unit 1 and the ID information input unit 2 detect position coordinates and ID asynchronously
  • the position information and ID information input by the flow line detection unit 3 are buffered for a certain period of time.
  • the position information and ID information accumulated in the buffer at regular intervals may be used.
  • the time information is not synchronized between the position information input unit 1 and the ID information input unit 2
  • the position information and the ID information are input to the flow line detection unit 3
  • the same detection time may be set for the input position information and ID information.
  • the flow line detection unit 3 uses the position information input from the position information input unit 1 and the ID information input from the ID information input unit 2, and the moving body corresponding to the ID for each position in the tracking area 50 A score representing the high possibility of existence is calculated, and information (hereinafter referred to as position score correspondence information) in which each position in the tracking area 50 is associated with the score is created for each time. Then, the flow line detection unit 3 determines position score correspondence information that can be said that the score of each position in the tracking region 50 is deterministic based on a predetermined criterion. The time when the position score correspondence information is created is called a deterministic time. A reference for determining position score correspondence information that can be said to be deterministic at each position will be described later.
  • the flow line detection unit 3 corrects the score at the most recent time based on the score at the definite time. Then, the time at which the score is corrected is set as a definitive time point, and the correction of the score at the latest time is similarly repeated.
  • a time that is not a definite time point may be referred to as an indeterminate time point.
  • the flow line detection unit 3 determines a deterministic time point, and corrects the score at the uncertain time point while following the most recent uncertain time point. And the flow line detection part 3 detects the flow line of a moving body using the score after correction
  • the flow line output unit 4 is an output device that outputs a flow line detected by the flow line detection unit 3.
  • the output mode of the flow line is not particularly limited.
  • a display device may be used as the flow line output unit 4.
  • a case where the flow line output unit 4 displays a flow line is taken as an example.
  • FIG. 2 is a block diagram illustrating a configuration example of the flow line detection unit 3.
  • the position information input unit 1, the ID information input unit 2, and the flow line output unit 4 are also illustrated.
  • the flow line detection unit 3 includes a state storage unit 31, a state update unit 32, and a flow line identification unit 33.
  • the state storage unit 31 is a storage device that stores the score state of each position in the tracking area 50 at each time for each ID of the moving object. Specifically, the state storage unit 31 stores a set of the time, the ID of the moving object, and the position score correspondence information regarding the moving object at that time. A set of time, ID, and position score correspondence information is hereinafter referred to as state information.
  • the state update unit 32 reads state information generated at the previous time from the state storage unit 31 for each ID of the moving object, and detects the state information, the movement model, the position coordinates of the moving object and the ID at the current time. Based on the result, the position score correspondence information of the previous time is updated.
  • the state update unit 32 leaves the state information of the previous time as it is, and from the position score correspondence information included in the state information, A new position score correspondence information at the current time is created, and new state information (state information at the current time) including the current time, the ID of interest, and the position score correspondence information is stored in the state storage unit 31.
  • the state update unit 32 can also be called a state information generation unit.
  • the previous time is the latest time in the past when the state information was created as viewed from the current time.
  • the state update unit 32 propagates the position score indicated by the position score correspondence information at the previous time to a nearby position, and reflects the position information and ID information at the current time on the result, The position score correspondence information at the current time is generated.
  • the movement model is a rule that defines the manner of propagation of the score. Specific examples of the movement model and details of the process of generating the position score correspondence information at the current time by propagating the score at the previous time will be described later.
  • one piece of position score correspondence information is generated by the state update unit 32 and stored in the state storage unit 31 every time.
  • the state update unit 32 may store all the state information generated for each ID in the state storage unit 31 at each time. In addition, the state update unit 32 may sequentially delete state information generated before a certain time in the past from the state storage unit 31 as viewed from the current time.
  • the flow line specifying unit 33 selects an ID, and determines state information that can be said that the score of each position is definite with respect to the ID.
  • the time indicated by the state information is a definite point.
  • the flow line specifying means 33 corrects the score indicated by the position score correspondence information at the indeterminate time while following the indeterminate time immediately before the deterministic time. Then, the flow line specifying unit 33 refers to the corrected position score correspondence information at each time with respect to the focused (selected) ID, and pays attention by tracing the position of the score peak at each time.
  • the flow line of the moving object indicated by the ID is specified.
  • the flow line specifying means 33 sequentially selects the IDs of the moving objects and repeats the same processing.
  • the flow line specifying means 33 is a moving body that exists in the tracking area 50 (see FIG. 1) by specifying a flow line for all IDs, and for each moving body identified by the ID, Can be specified.
  • the position score correspondence information described above may be information in which each position in the tracking region 50 is associated with a score obtained by quantifying the probability that a moving body identified by an ID exists at the position. That's fine.
  • the tracking area 50 is divided into grids, and the divided area is called a cell.
  • the position score correspondence information is represented as, for example, a set of information in which the coordinates of individual cells are associated with the scores.
  • the tracking area 50 is divided into certain areas, a score is determined for each divided area, each area is a node, and the adjacent relationship between the areas is a link, and the position score is supported by a network composed of nodes and links. Relationship information may be represented.
  • FIG. 3 is a block diagram illustrating a configuration example of the state update unit 32.
  • the state update unit 32 includes a state prediction unit 321 and an observation information reflection unit 322.
  • the state predicting means 321 generates new position score correspondence information by propagating the score of each position indicated by the position score correspondence relation information of the previous time as the score of the neighboring position according to a predetermined movement model. To do.
  • This position score correspondence information can be said to be a prediction of the position score correspondence information at the current time.
  • the observation information reflecting means 322 is the position information at the current time input from the position information input unit 1 for the new position score correspondence information (prediction of the position score correspondence information at the current time) created by the state prediction means 321.
  • the position score correspondence information at the current time is determined.
  • the input position information and ID information can be called observation information.
  • the state prediction unit 321 and the observation information reflection unit 322 will be described in more detail.
  • the state prediction unit 321 reads the position score correspondence information included in the state information of each ID generated at the previous time from the state storage unit 31, and newly creates a copy of the position score correspondence information of each ID. Then, in each copied position score correspondence information, a process of propagating the score to a nearby position is performed according to a predetermined movement model. By the process of propagating the score, the newly created position score correspondence information is updated.
  • the state prediction unit 321 inputs the position score correspondence information that has been subjected to this processing to the observation information reflection unit 322.
  • the movement model is a rule that defines a mode in which the score in the position score correspondence information is propagated to a nearby position.
  • 4 and 5 are explanatory diagrams showing specific examples of the movement model.
  • the position score correspondence information is a set of information in which the coordinates of individual cells are associated with the scores. 4 and 5, the position score correspondence information is illustrated as a map.
  • FIG. 4A schematically shows a movement model in which the score of the cell 71 of interest in the position score correspondence information is propagated to each of the upper, lower, left, and right cells for each time step.
  • the cell from which the score is propagated is indicated by a dotted pattern, and the cell to which the score is propagated is indicated by a thin oblique line.
  • the movement model shown in FIG. 4A is a movement model determined from the viewpoint that a moving body existing in a cell at the previous time can move to a cell adjacent in the vertical and horizontal directions on the map.
  • the state predicting unit 321 sets the cell score to the upper, lower, left, and right cells in the position score correspondence information copied from the previous position score correspondence information. The process to propagate is performed and the position score correspondence information is updated.
  • each cell has a score indicating the high possibility that a moving object exists.
  • the state prediction unit 321 propagates the score while paying attention to each cell. That is, the score is propagated for all individual cells. At this time, the score is propagated to a single cell from a plurality of cells. However, the state predicting unit 321 determines the score of each cell as a propagation source for the cell to which the scores from the plurality of cells are propagated. The maximum value of is defined as a new score. This point is the same even when other operation models other than FIG.
  • FIG. 4B schematically shows a movement model in which the score of the cell 71 of interest is propagated up to n cells ahead in the vertical, horizontal, and diagonal directions for each time step. Yes.
  • a movement model may be defined.
  • a moving model for propagating the score in the moving direction of the moving object may be determined using the moving direction and moving speed of the moving object at the previous time as parameters.
  • the score of the cell 71 of interest is propagated to the cell 72 in the traveling direction, and the cells that are not in the traveling direction among the cells around the cell 71 of interest.
  • FIG. 5A shows an example when the moving speed of the moving body is slow
  • FIG. 5B shows an example when the moving speed of the moving body is high.
  • the range of the cell 72 in the traveling direction may be determined in advance according to the moving direction and moving speed of the moving body. Further, as shown in FIG. 5B, when the speed is high, the range of the cells 72 in the traveling direction may be widened.
  • the state predicting means 321 stores the coordinates where the obstacle is present in advance, and the score is not propagated to the position where the obstacle exists because it cannot move. It may be. Alternatively, an extra time required for the moving object to move beyond the obstacle is set as a cost for the area where the obstacle exists, and the state predicting unit 321 takes this cost into consideration for the movement model. You may make it propagate a score.
  • the observation information reflecting means 322 receives a set of position coordinates of the moving body and detection times of the position coordinates as position information from the position information input unit 1.
  • a set of an ID of the moving object, an ID information input unit number of the ID information input unit 2 and a detection time of the ID is input from the ID information input unit 2 as ID information.
  • the position information corresponding to the position score after the process of propagating the score is input from the state prediction unit 321 to the observation information reflecting unit 322. This positional score correspondence information is input to the observation information reflecting means 322 for each moving body ID.
  • the observation information reflecting means 322 reflects the position information and ID information at the current time in the input position score correspondence information. This process will be described.
  • the observation information reflecting means 322 stores an ID detection area corresponding to the ID information input unit number in advance.
  • the ID detection area is an area that is determined in advance as an area in which the ID information input unit 2 can be regarded as detecting a moving body ID with a detection probability equal to or higher than a predetermined probability.
  • the ID detection area is determined in advance by the administrator of the flow line detection system, for example. Since it is difficult to strictly define an ID detection area as an area for detecting an ID with a detection probability equal to or higher than a predetermined probability, the ID detection area can be regarded as detecting an ID with a detection probability higher than a predetermined probability.
  • the area may be an area determined by an administrator or the like.
  • the ID detection area is predetermined for each ID information input unit 2 (that is, for each ID information input unit number).
  • the observation information reflecting means 322 pays attention to the ID of each mobile object, and the focused ID in the positional score correspondence information (position score correspondence information input from the state predicting means 321) of the focused ID.
  • the score is updated so that the score increase amount of the ID detection region corresponding to the ID information input unit number of the ID information input unit 2 that detects the ID becomes larger than the score increase amount of the other regions.
  • the ID information input unit number of the ID information input unit 2 that has detected the ID may be determined based on the ID information input from the ID information input unit 2. That is, if the ID information input unit number paired with the ID of interest is input from the ID information input unit 2, the score increase amount of the ID detection region corresponding to the ID information input unit number is the other region's score.
  • the observation information reflecting means 322 adds a predetermined value to the score for the ID detection area where the ID is detected, and adds a smaller value to the score for the area where the ID is not detected. Also good.
  • the score may be kept as it is for the region where the ID is not detected (that is, it may not be changed). Moreover, you may subtract a score regarding the area
  • the observation information reflecting means 322 holds the ID detection area where the ID is detected without changing the score, and subtracts the score for the area where the ID is not detected or sets the score to a value of 1 or more. You may divide.
  • the observation information reflecting unit 322 may multiply the score by a value for the ID detection region where the ID is detected, and multiply the score by a value smaller than the value for the region where the ID is not detected.
  • the score may be held as it is, or the score may be divided by one or more values.
  • the score may be calculated using a placed coefficient or a coefficient that is dynamically determined according to the ID detection status. For example, in the vicinity of the boundary of the ID detection area, ID overdetection and detection omission are more likely to occur than in the center of the ID detection area. Therefore, even within the ID detection area, the score increase amount may be differentiated by using different coefficients for the center of the ID detection area and the vicinity of the boundary of the ID detection area.
  • the amount of increase in score in the ID detection area that is likely to cause a false detection is reduced, and a false detection is caused.
  • the increase in score in the difficult ID detection area may be increased to make a difference in the increase in score.
  • the observation information reflecting means 322 increases the score corresponding to the position coordinates input from the position information input unit 1 for each position score corresponding relation information (position score corresponding relation information input from the state prediction means 321) of each ID.
  • the score is updated so that the amount is higher than the increase amount of the score in the other region. If the amount of increase in the score corresponding to the input position coordinates is higher than the amount of increase in the score of the other region, the amount of increase in the score may be negative.
  • the position information input from the position information input unit 1 represents the content of detecting two position coordinates (x1, y1) and (x2, y2) at a certain time.
  • the observation information reflecting unit 322 is configured so that the increase amount of the score in (x1, y1) and (x2, y2) is higher than the increase amount of the score of other regions in the position score correspondence information of ID1.
  • Update the score is updated so that the amount of increase in the score in (x1, y1) and (x2, y2) is higher than the amount of increase in the score in other regions.
  • the observation information reflecting means 322 may add a predetermined value to the score for the detected position coordinate area, and may add a smaller value to the score for the other areas. Further, regarding the area other than the detected position coordinate area, the score may be held as it is without being changed, or the score may be subtracted.
  • the observation information reflecting unit 322 holds the detected position coordinate area without changing the score, and for other areas, subtracts the score or divides the score by one or more values. May be.
  • the observation information reflecting unit 322 may multiply the score by a value larger than 1 for the detected position coordinate region, and may multiply the score by a value smaller than that value for other regions.
  • the score may be held as it is for the area other than the detected position coordinate area, or the score may be divided by one or more values.
  • the score may be calculated using a coefficient that is dynamically determined based on the detected position coordinates. For example, if the detection error of the position coordinates is determined in advance, the score is changed so that the amount of increase in the score is larger than the other areas for the area where the detection error is considered with the detected position coordinates as the center. You may let them.
  • the position coordinates of the mobile object detected at that position are changed in a wide area including its surroundings, and at that time
  • the increase amount of the score may be made smaller than the increase amount of the score in the position coordinates detected at other positions.
  • the observation information reflecting unit 322 performs a process of changing the score on the position score correspondence information for each ID of each moving body input from the state prediction unit 321, and then performs processing for changing the ID, the position score correspondence information,
  • the state storage unit 31 stores the detected time (current time) obtained from the position information or the ID information as the associated state information.
  • the observation information reflecting unit 322 stores state information in the state storage unit 31 for each ID.
  • FIG. 6 is a block diagram showing a configuration example of the flow line specifying means 33.
  • the flow line specifying unit 33 includes a confirmed state selecting unit 331, a confirmed state reflecting unit 332, and a moving body position detecting unit 333.
  • the confirmed state selection means 331 acquires the state information of each ID generated from the state storage unit 31 during the past certain time from the current time.
  • the confirmed state selection means 331 extracts state information including the ID of the moving body from which the flow line is derived from the state information.
  • the state information at each time is extracted as the state information of this ID.
  • the confirmed state selection means 331 selects state information at a definite time from among the state information at each time of the ID.
  • the confirmed state selection means 331 determines state information that can be said that the score of each position in the tracking region 50 is deterministic based on a predetermined criterion.
  • the time indicated by the status information is a definitive time.
  • state information that can be said that the score of each position in the tracking area 50 is deterministic is referred to as definite state information.
  • a standard that “state information generated at the latest time is defined state information” may be adopted.
  • the score of each position in the tracking area is updated based on the observation results of more effective position coordinates and IDs.
  • the confirmed state selecting unit 331 may determine the state information generated at the latest time as the confirmed state information based on the above-described criteria.
  • a criterion for determining the confirmed state information a criterion that “the state information at the time when both the position coordinates and the ID of the moving object are detected is defined state information” may be adopted. At the time when the position coordinates and ID of the mobile object are detected, a more prominent peak appears in each score in the tracking area than when the position coordinates and ID are not detected. Accordingly, the confirmed state selecting unit 331 may determine the time at which both the position coordinates and the ID of the moving object are detected as a definite point of time, and determine the state information at that time as the definite state information.
  • the confirmed state reflecting means 332 corrects the score indicated by the position score correspondence information at the uncertain time while following the uncertain time nearest to the definite time.
  • the determinate state reflecting means 332 sequentially follows the uncertain time points from the definitive time point toward the past.
  • the definite state reflecting means 332 starts from the deterministic time point as a starting point and does not move toward the future and the past. What is necessary is just to follow a fixed time point sequentially.
  • the definite state reflecting unit 332 When correcting the position score correspondence information at the most uncertain time immediately before the deterministic time point, the definite state reflecting unit 332 first calculates the score of each position according to the movement model with respect to the position score correspondence information at the definite time point. To propagate. This process is the same as the process in which the state predicting unit 321 propagates the score, and the confirmed state reflecting unit 332 creates a copy of the position score correspondence information at a definite point in time, and in that copy, the score of each position What is necessary is just to perform the process which propagates to near.
  • the confirmed state reflecting means 332 reflects the position score correspondence information on which the process of propagating the score to the vicinity is reflected in the position score correspondence information at the latest uncertain time.
  • the confirmed state reflecting unit 332 For example, the score of each cell in the position score correspondence information at a deterministic time point is added or multiplied as it is to the score of the corresponding cell in the position score correspondence information at the most recent uncertain time point. That's fine.
  • the confirmed state reflecting unit 332 multiplies the score of each cell in the position score correspondence information at a definite time by a coefficient, and the result corresponds to the position score correspondence information at the most recent uncertain time. You may add to the score of a cell, or you may multiply.
  • the confirmed state reflecting means 332 sequentially repeats the same processing by using the position score correspondence information at the uncertain time at which the above calculation is performed as the position score correspondence information at the definite time.
  • the moving body position detecting means 333 detects the position of the moving body at each time from the position score correspondence information at each time after the processing by the confirmed state reflecting means 332.
  • the moving body position detection unit 333 detects the position where the score is a peak as the position of the moving body from the position score correspondence information at each time.
  • the mode of detecting the position where the score becomes a peak may be, for example, the mode of detecting the position where the score is maximum.
  • the aspect which detects the gravity center position of each position whose score is more than a fixed value may be sufficient.
  • the moving body position detection means 333 determines that the position detected from the position score correspondence information at a certain time is the position at which the moving body of the ID of interest is at that time.
  • the moving body position detecting means 333 detects the position where the score is peaked from the position score correspondence information for each time, and uses the position information in time series order as a flow line. As a result, the flow line of the moving body corresponding to the ID selected by the confirmed state selection unit 331 is obtained.
  • the state update unit 32 and the flow line specifying unit 33 are synchronized, and the flow line is generated each time the state update unit 32 generates the state information of each ID.
  • the specifying unit 33 may specify the flow line.
  • the state update unit 32 and the flow line specifying unit 33 operate asynchronously, the state update unit 32 performs processing every time position information and ID information are input, and the flow line specifying unit 33 sets the position information and ID.
  • the flow line detection process may be performed at a different cycle.
  • the flow line specifying means 33 may perform the flow line detection process non-periodically when it becomes necessary, not periodically. For example, the flow line detection process may be performed when an instruction to detect a flow line is input by the administrator of the flow line detection system.
  • state update means 32 state prediction means 321 and observation information reflection means 322 and flow line identification means 33 (determined state selection means 331, fixed state reflection means 332 and moving body position detection means 333).
  • state update means 32 state prediction means 321 and observation information reflection means 322
  • flow line identification means 33 determined state selection means 331, fixed state reflection means 332 and moving body position detection means 333.
  • a computer program storage device stores the flow line detection program, and the CPU reads the program, and in accordance with the program, state update means 32 (state prediction means 321 and observation information reflection means 322),
  • the flow line specifying means 33 (determined state selecting means 331, confirmed state reflecting means 332, and moving body position detecting means 333) may be operated.
  • the state updating unit 32 and the flow line specifying unit 33 may be realized by different hardware.
  • the state prediction unit 321 and the observation information reflection unit 322 may also be realized by other hardware.
  • the confirmed state selecting unit 331, the confirmed state reflecting unit 332, and the moving body position detecting unit 333 may also be realized by other hardware
  • FIG. 7 and FIG. 8 are flowcharts illustrating an example of processing progress of the flow line detection unit 3 according to the first embodiment.
  • FIGS. 9 to 16 an example of processing progress of the first embodiment will be described with reference to specific examples of FIGS. 9 to 16.
  • FIG. 9 is an explanatory diagram showing an example of cells defined by dividing the tracking area 50 into cells for defining scores.
  • FIG. 9 also shows the positions of the two ID information input units 2a and 2b installed in the tracking area 50.
  • the lower left of the map of the tracking area 50 is the origin (0, 0)
  • arbitrary position coordinates on the map are represented in the format p (x, y).
  • the coordinates of an arbitrary cell on the map are expressed in a format c (m, n).
  • the number of cell divisions may be set arbitrarily, but in this example, the value is assumed to be in the range of 0 to 11 in the x-axis direction and 0 to 7 in the y-axis direction.
  • the ID information input units 2a and 2b are arranged at c (0, 7) and c (11, 0), respectively.
  • Each ID information input unit 2a, 2b defines an ID detection area in advance.
  • a rectangle having c (0, 5) as the lower left and c (2, 7) as the upper right is defined as the ID detection area Ra of the ID information input unit 2a.
  • a rectangle having c (9, 0) at the lower left and c (11, 2) at the upper right is defined as an ID detection region Rb of the ID information input unit 2b.
  • FIG. 10 is a diagram illustrating an example of detection positions at times t 1 to t 10 for two moving bodies a and b that move in the tracking area 50.
  • the true state is that the positions detected from the moving object a are p 1a to p 10a and the positions detected from the moving object b are p 1b to p 10b .
  • the mobile object a is associated with ID1 and the mobile object b is associated with ID2 respectively.
  • the fact that p 5a , p 6a and p 5b , p 6b are not described indicates that position coordinates are not detected at times t 5 and t 6 .
  • the subscript number indicates at which time t 1 to t 10 the subscript number is detected, and the subscript a or b represents the mobile objects a and b. It indicates which one is detected.
  • FIG. 11 shows the presence / absence of ID detection for each ID information input unit between times t 1 and t 10 .
  • it indicates that the ID information input unit 2a detects the "ID1" and "ID2" at time t 1, t 2, ID information input unit 2b detects the "ID1" to time t 10.
  • a blank part indicates that the ID of the moving object has not been detected.
  • the ID is reliably detected when the moving body exists in the ID detection areas Ra and Rb, and the ID is not detected at all when the moving body exists outside the ID detection area. (See FIGS. 10 and 11).
  • the subscript number added to the reference numeral of the detection position of the moving object shown in FIG. 10 represents the detection time of the detection position.
  • the position information input unit 1 (not shown in FIG. 10) is the position coordinate p 1a, to detect the p 1b, ID information input unit 2a is ID1, Assume that ID2 is detected.
  • ID1 Assume that ID2 is detected.
  • the position information input unit 1 detects p 10a and p 10b and the ID information input unit 2b detects ID 1 at time t 10 .
  • FIGS. 12 to 15 are explanatory diagrams showing specific examples of situations in which the score of the position score correspondence information is updated.
  • the position score correspondence information is schematically represented as a cell map, and the score of each cell is distinguished by a pattern in the drawings.
  • FIG. 16 is an explanatory diagram showing the score values of the cells shown in FIGS. As shown in FIG. 16, white cells indicate that the score is 0 or less. However, in the position score correspondence information shown in FIGS. 12 to 15, the white cells have negative scores. It shall be.
  • the state update unit 32 acquires ID information (that is, a set of the ID of the moving object, the ID information input unit number, and the detection time of the ID) from the ID information input unit 2 (step S1).
  • ID information that is, a set of the ID of the moving object, the ID information input unit number, and the detection time of the ID
  • the status update unit 32 receives the ID information ⁇ “ID1”, “ID information input unit 2b”, “t 10 ” ⁇ from the ID information input unit 2.
  • the “ID information input unit 2b” is an ID information input unit number.
  • the state update unit 32 acquires position information (that is, a set of the position coordinates of the moving object and the detection time of the position coordinates) from the position information input unit 1 (step S2). At time t 10, as shown in FIG. 10, ⁇ "p 10a”, “t 10" ⁇ , the position information of ⁇ "p 10b”, “t 10" ⁇ is input.
  • the state predicting means 321 can refer to the position information
  • the observation information reflecting means 322 is the ID. If the information and the position information can be referred to, the ID information and the position information may be input to either the state prediction unit 321 or the observation information reflection unit 322.
  • the state predicting unit 321 of the state updating unit 32 receives the state information of the latest time from the state storage unit 31 in the state information stored in the state storage unit 31 (that is, the time immediately before the current time). (State information generated in step S3) is acquired (step S3).
  • the state information is a set of time, the ID of the moving object, and position score correspondence information regarding the moving object at that time.
  • the state prediction unit 321 may check the time of each piece of state information stored in the state storage unit 31, select the state information group with the latest time, and read from the state storage unit 31.
  • the state predicting means 321 reads the state information group generated before the time t 9.
  • the state update unit 32 has not created state information of the current time (t 10 ) when the state of the score is updated for the state information group of the previous time acquired from the state storage unit 31 (specifically, steps S5 to S5). It is determined whether or not there is one for which the process of S7 has not been performed (step S4).
  • the state prediction means 321 determines whether the state information from the state information at the previous time read at step S3 One piece of processing status information is selected. Here, it is assumed that the state information of ID1 is selected. Note that the determination in step S4 and means for performing this selection may be provided in the state update unit 32 separately from the state prediction unit 321, and the unit may input the selected state information to the state prediction unit 321.
  • the state prediction means 321 calculates the elapsed time from the time of the selected state information to the current time, determines the propagation range of the score based on a predefined movement model of the moving object, and is included in the selected state information
  • the state of the score at the current time is predicted by propagating the score in the positional score correspondence relationship information (step S5).
  • the state predicting unit 321 creates a copy of the position score correspondence information included in the selected state information instead of overwriting the score on the position score correspondence information included in the selected state information.
  • each positional score correspondence information the process of propagating the score to a nearby position is performed according to a predetermined movement model. As a result, the position score correspondence information at the previous time is left as it is, and the position score correspondence information at the current time is newly created.
  • a movement model (see FIG. 4A) is defined in which the score of each cell is propagated to the adjacent upper, lower, left, and right cells for each time step.
  • a period in which the position information input unit 1 and the ID information input unit 2 detect the position coordinates and ID and input them to the state update unit 32 is one time step.
  • the state predictor 321 a score at time t 9 is set in each cell is set as the score of the upper and lower left and right adjacent cells, so the time the result of the propagating scores t 10 is a prediction result of each position score (prediction result of position score correspondence information).
  • the state predicting unit 321 propagates the scores to the upper, lower, left, and right cells for all individual cells. At this time, since the score is propagated to each cell from the top, bottom, left, and right cells, four scores are propagated to one cell. The score with the largest value is set as the score of the cell.
  • the movement model is not limited to the above movement model, and may be appropriately defined according to, for example, the movement characteristics of the moving object to be tracked.
  • FIGS. 12A and 13A both relate to the selected ID1.
  • FIG. 14A and FIG. 15A described later relate to ID1.
  • the state predicting unit 321 inputs the prediction result (see FIG. 13A) of the position score correspondence information at the current time generated in step S5 to the observation information reflecting unit 322. Specifically, a set (that is, state information) of the prediction result of the position score correspondence information, the previous time, and the selected ID (here, ID1) is input to the observation information reflecting unit 322.
  • the observation information reflecting unit 322 includes the position score correspondence information at the current time predicted by the state predicting unit 321, the ID information input from the ID information input unit 2, and the position information input from the position input unit 1.
  • the position score correspondence relationship information at the predicted current time is updated.
  • the observation information reflection unit 322 overwrites and updates the prediction result of the position score correspondence information input from the state prediction unit 321.
  • the observation information reflecting unit 322 updates the position score correspondence information at the current time predicted by the state predicting unit 321 based on the ID information at the current time input from the ID information input unit 2 (step S6).
  • step S1 as ID information observed in t 10 is the current time, ⁇ "ID1", “ID information input unit 2b", "t 10" ⁇ is input.
  • the ID information is a time t 10, the ID information input unit 2b which means that it has detected a "ID1".
  • step S6 the observation information reflecting unit 322 uses the score of the cell corresponding to the ID detection area defined for the ID information input unit 2 that has detected the ID of the mobile body based on the ID information acquired from the ID information input unit 2.
  • the position score correspondence information at the current time predicted by the state prediction unit 321 is updated so that the score increase amount is larger than the score increase amount of other cells.
  • the observation information reflecting unit 322 has a score of 0.3 for the cell corresponding to the ID detection region Rb corresponding to the ID information detection device 2b in the position score correspondence information shown in FIG. Add the other areas and leave the score as it is.
  • the position score correspondence information shown in FIG. 13A is updated as shown in FIG.
  • the score of the cell corresponding to the ID detection region Rb is larger than that shown in FIG. 13A, and the scores of the other cells are shown in FIG. Same as the case.
  • the observation information reflection unit 322 updates the position score correspondence information (see FIG. 14A) after the process of step S6 based on the position information input from the position information input unit 1 (step S7). ).
  • a position information observed in t 10 is the current time, ⁇ "p 10a”, " t 10" ⁇ , are entered ⁇ "p 10b", "t 10" ⁇ .
  • the observation information reflecting means 322 performs the update process in step S7 using all the position information at the current time input in step S2.
  • the observation information reflecting means 322 uses the position coordinates included in the position information acquired from the position information input unit 1 to determine which cell in the tracking area each position coordinate is included in.
  • the observation information reflecting section 322 determines the cell that contains the coordinates p 10a are c (9,1), and the cell containing the position coordinates p10b is c (10,7).
  • the observation information reflecting unit 322 updates the position score correspondence information so that the score increase amount in the score of the cell corresponding to the detected position coordinate is larger than the score increase amount of other cells.
  • the observation information reflecting means 322 leaves the scores of the cells c (9, 1) and c (10, 7) in which the position coordinates are detected as they are, and sets the scores of other cells in which the position coordinates are not detected. Subtract 0.3.
  • the position score correspondence information shown in FIG. 14A is updated as shown in FIG.
  • observation information reflecting means 322 updates the time included in the state information to the current time in addition to updating the position score correspondence information.
  • the case where the observation information reflecting means 322 updates the time included in the state information to the current time is shown, but the process of updating the time included in the state information to the current time is a state prediction.
  • Means 321 may perform.
  • the state prediction unit 321 may update the time in the state information to the current time after performing the process of propagating the score in step S5.
  • the observation information reflecting unit 322 creates the state information at the current time for the selected ID1 by performing the update processing of the position score correspondence information (steps S6 and S7) for the state information input from the state predicting unit 321. Is done.
  • the state update means 32 assumes that the current time state information has been created for ID1 in the state information group acquired in step S3.
  • steps S5 to S7 described above are processes for creating the current time state information for one ID based on the previous time state information.
  • step S7 the state update unit 32 returns to step S4 again, and determines whether or not unprocessed state information exists for steps S5 to S7.
  • the processing of steps S5 to S7 is performed on the status information of ID2 as in the case of ID1.
  • Figure 12 (b) is an example of a positional score correspondence information of ID2 generated before the time t 9.
  • the state prediction means 321 performs the process of propagating the score of each cell indicated by the position score correspondence information, so that the position score correspondence information shown in FIG. 13B is obtained. This is the predicted result of the position score correspondence information at the time t 10.
  • the observation information reflection unit 322 updates the prediction result of the position score correspondence information based on the ID information (step S6).
  • the result is shown in FIG.
  • the observation information reflecting unit 322 updates the position score correspondence information after step S6 based on the position information (step S7). That is, as in the case of ID1, the scores of the cells c (9, 1) and c (10, 7) in which the position coordinates are detected are left as they are, and the scores of other cells in which the position coordinates are not detected are subtracted. .
  • FIG. 1 the scores of the cells c (9, 1) and c (10, 7) in which the position coordinates are detected are left as they are, and the scores of other cells in which the position coordinates are not detected are subtracted. .
  • step S7 the state update unit 32 returns to step S4 again, and when it is determined that there is no unprocessed state information for steps S5 to S7 (No in step S4), the observation information reflection unit 322
  • Each state information of the current time created for each ID by repeating the process of S7 is stored in the state storage unit 31 (step S8).
  • Each status information corresponds to the detection time included in the position information or ID information acquired from the position information input unit 1 or the ID information input unit 2, the ID of the moving object, and the position score created in the processing of steps S5 to S7. Contains relationship information.
  • the confirmed state selecting unit 331 of the flow line specifying unit 33 reads the state information of each ID for a certain past time from the current time from the state storage unit 31 (step S9).
  • it is described as to read all the state information stored in the state storage unit 31 (status information from time t 1 to time t 10).
  • the specification of the time range in which the flow line is to be specified may be received, and the confirmed state selection unit 331 may read the state information corresponding to the specified time range.
  • the confirmed state selecting unit 331 reflects the score at a definite point of time in the state information read from the state storage unit 31 (specifically, steps S11 to S11). It is determined whether or not there is a state information group related to an ID for which S14) has not been performed (step S10).
  • the state information read from the state storage unit 31 includes a state information group related to ID1 and a state information group related to ID2.
  • the deterministic state selection unit 331 uses one ID.
  • the selected state information regarding the selected ID is selected (step S11).
  • ID1 is selected as the ID.
  • a criterion that “state information generated at the latest time is determined state information” is set in advance, and the determined state selection unit 331 is generated from the state information group of ID1 at the latest time according to the criterion.
  • the selected state information is selected as the confirmed state information. Therefore, in this case, the ID1 status information including the position score correspondence information of the time t 10 shown in FIG. 15 (a), selected as determined state information.
  • the time t 10 included in the determined state information, a deterministic time, other times t1 ⁇ t9 corresponds to the uncertain time.
  • the confirmed state reflecting unit 332 determines whether or not state information (hereinafter referred to as uncertain state information) at an uncertain point exists in the selected “ID1” state information group. Is determined (step S12).
  • the definite state reflecting unit 332 When indefinite state information exists (Yes in step S12), the definite state reflecting unit 332 performs deterministic by performing a process of propagating the score of each cell in the position score correspondence information included in the definite state information.
  • the state of the score at the indeterminate time (t 9 ) nearest to the time (t 10 ) is predicted (step S13).
  • the process of propagating the score is the same as in step S5, and the confirmed state reflecting means 332 creates a copy of the position score correspondence information at a definite point in time (t 10 ), and in the copied position score correspondence information
  • a process of propagating the score to a nearby position is performed. This result is the position score correspondence information at the most recent time predicted based on the position score correspondence information at a definite time.
  • the confirmed state reflecting means 332 selects state information at an uncertain time point (t 9 in this example) closest to the definite time point. Then, the position score correspondence information predicted at step S13 is reflected on the position score correspondence information included in the indeterminate state information (step S14).
  • the score of each cell in the position score correspondence information predicted in step S13 may be added to the score of each corresponding cell in the position score correspondence information included in the selected uncertain state information. Or you may multiply the score of a corresponding cell. Alternatively, the above addition or multiplication may be performed after the score of each cell in the position score correspondence information predicted in step S13 is multiplied by a weighting factor. The result of this calculation is used as the score of each cell at the uncertain time nearest to the deterministic time, and the position score correspondence information at the uncertain time is updated.
  • the confirmed state reflecting means 332 sets the state information at the time when the process of step S14 is performed as the confirmed state information. As a result, the time t 9, treated as a definite point in time.
  • the flow line specifying means 33 returns to step S12 again, and determines whether or not indeterminate state information exists in the selected state information group of “ID1”.
  • the state information at times t 1 to t 8 corresponds to the indeterminate state information. Therefore, the confirmed state reflecting means 332 performs a process of propagating the score of each cell in the position score correspondence information at time t 9 , and the state of the score at the uncertain time (t 8 ) nearest to the definite time is displayed. Prediction is made (step S13). Then, the confirmed state reflecting means 332 selects the state information at the uncertain time (t 8 ) nearest to the definite time (t 10 , t 9 ), and the position score correspondence relationship included in the uncertain state information. The position score correspondence information at that time predicted in step S13 is reflected on the information (step S14). Then, the state information at time t 8 a definite state information.
  • the confirmed state reflecting means 332 similarly repeats the processes of steps S13 and S14 until the indeterminate state information no longer exists.
  • step S12 When all the state information related to the selected ID “ID1” is confirmed state information (No in step S12), the process proceeds to step S10 again. Since the processes of steps S11 to S14 are not performed for “ID2”, the process proceeds to step S11, and the confirmed state selecting unit 331 selects ID2 and selects the confirmed state information regarding ID2 (step S11). Then, similarly to the case where ID1 is selected, the processing of steps S12 to S14 is repeated, and the score at the definite time point is reflected on the score at the uncertain time point.
  • step S10 When there is no more indeterminate state information regarding ID2, the process returns to step S10 again. If the determined state selection unit 331 determines that there is no ID for which the processing in steps S11 to S14 has not been performed (No in step S10), the moving body position detection unit 333 uses the state information group of each ID. A flow line is specified (step S15).
  • step S15 the moving body position detecting means 333 specifies a flow line for each ID.
  • a method for determining the order in which the flow line of the ID is specified a method of selecting an ID at random may be used.
  • the flow line may be specified by selecting IDs in the order in which the peak of the score from the current time to the past fixed time appears most strongly.
  • the mobile body position detection means 333 After selecting the ID, the mobile body position detection means 333 refers to the position score correspondence information at each time of the ID, and detects a cell in which a score peak appears at each time.
  • the moving body position detecting unit 333 may simply detect the cell having the highest score. Or you may detect the cell applicable to the gravity center of the cell whose score is more than a fixed value (threshold value) as a cell where a score becomes a peak.
  • the process of detecting the cell in which the peak of the score appears may be performed in order from any time.
  • the moving object position detecting means 333 determines that the moving object corresponding to the selected ID exists in the detected cell at each time, and determines the combination of the time and the position coordinate of the cell coordinates of the moving object. It is determined as information representing a flow line (step S15).
  • the flow line is represented by the position coordinates of the cells obtained by dividing the tracking area into grids. That is, the resolution of the position coordinate of the flow line depends on the resolution of the cell determined by grid division.
  • step S15 when selecting a flow line in order from the ID where the peak of the score from the current time to the past certain time appears most strongly and specifying the flow line, the flow line generated later is generated first. It is preferable to select a cell other than the flow line cell. By selecting a cell in this way, the accuracy of the flow line can be improved.
  • peaks with the same score appear for the mobile objects a and b in any state from time t 1 to time t 10 .
  • the flow line may be identified by tracing a cell other than the cell selected by ID1.
  • the moving body position detecting means 333 causes the flow line output unit 4 to display the flow line connecting the cell position coordinates in order of time (step S16).
  • the moving body position detection unit 333 may display a flow line that connects the cell regions selected at each time in time series. Or you may display the flow line which connected the gravity center position of the cell selected in each time in time series.
  • the moving body position detection unit 333 displays the ID corresponding to the flow line on the flow line output unit 4 together with the flow line.
  • the time t It becomes possible to determine which ID should be assigned to which moving body only after 10 is reached. That is, for the flow line from time t 1 to time t 9, it is impossible to uniquely identify and assign the correct ID.
  • the confirmed state information is selected in step S11, and the score at the definite time point is reflected in the score at the uncertain time point (steps S13 and S14). As a result, even between the time t1 and the time t9, a difference occurs in the score between the position score correspondence information of ID1 and the position score correspondence information of ID2, and the flow line can be specified with high accuracy.
  • a procedure for detecting a flow line of a moving body having no ID will be described.
  • a mobile object having no ID is referred to as unknown
  • the position score correspondence information of the mobile object not having this ID is referred to as unknown position score correspondence information.
  • the position score correspondence information of unknown is collectively stored for each time. That is, even if there are a plurality of unknownuns, only one location score correspondence information of unknownun needs to be prepared at each time.
  • the state prediction unit 321 of the state update unit 32 acquires the state information of unknownun generated at the previous time from the state storage unit 31 (step S3). Then, the state predicting unit 321 propagates the score according to the moving model of the moving body like other moving bodies having an ID, and predicts the position score corresponding information at the current time from the position score corresponding information at the previous time (Ste S5). Then, the observation information reflecting means 322 does not perform the process of step S6 because there is no ID observation information, and updates the state using the position observation information (step S7). Next, after detecting the flow lines of all the moving bodies having IDs (steps S10 to S15), the flow line specifying means 33 performs the unknown line flow detection process.
  • the score of the position score correspondence information at a definite time point is reflected on the score of the state at an uncertain time point (steps S13 and S14).
  • the peak of the score at each time is selected to generate a flow line (step S15).
  • the mobile object position detection means 333 excludes the cell selected at each time for each mobile object having an ID among the cell group in which the peak of the score appears in the position score correspondence information at each time of unknownun. It is determined that the cell group is the location of each unknown bag. By connecting these cells in time series, it is possible to generate a flow line of a moving body having no ID.
  • a cell having a score exceeding a predefined threshold value may be selected as a peak, or cells having a score value within the top n are selected. It may be selected as a peak.
  • the state update unit 32 acquires the state information generated at the previous time from the state storage unit 31, and based on the state information, the moving model of the moving body, and the observation information of the position and ID, Time state information is created and stored in the state storage unit 31. Further, the flow line specifying unit 33 acquires state information for a predetermined past time from the current time from the state storage unit 31, and scores from the time point when the moving object identified by the ID is deterministic to the time when it is uncertain. The flow line is generated by reflecting.
  • the position information and ID information observed by the sensors are converted into a state in which the high possibility of being present at each position in the tracking region is represented as a score.
  • the sensor information (position information and ID information) observed in the past is reflected in the score, so the flow line can be detected robustly. Can do.
  • the flow line of each moving body can be uniquely determined by following the peak of the score at each time for the state information group related to a certain ID, the position information detected during the past certain time from the current time It is not necessary to generate all combinations of ID information as flow line hypotheses and calculate likelihood for each hypothesis to estimate a flow line. Therefore, according to the present embodiment, even if the number of moving objects to be tracked increases, the number of combinations as a flow line hypothesis does not increase. Processing becomes possible.
  • FIG. The second embodiment is an embodiment in which the resolution of a divided region (for example, a cell) in the tracking region 50 in which a score is set is not fixed but variable.
  • FIG. 17 is a block diagram showing an example of a flow line detection system according to the second embodiment of the present invention.
  • the flow line detection system of the second embodiment includes a position information input unit 1, an ID information input unit 2, a flow line detection unit 3 b, and a flow line output unit 4.
  • the position information input unit 1, the ID information input unit 2, and the flow line output unit 4 are the same as those in the first embodiment, and detailed description thereof is omitted.
  • the flow line detection unit 3b includes a state update unit 32b, a state storage unit 31, and a flow line identification unit 33.
  • the state storage unit 31 is the same as that of the first embodiment, and detailed description thereof is omitted.
  • FIG. 18 is a block diagram illustrating a configuration example of the state update unit 32b according to the second embodiment.
  • the state update unit 32b includes a resolution control unit 323, a state prediction unit 321b, and an observation information reflection unit 322b.
  • the state predicting unit 321b and the observation information reflecting unit 322b are the same as the state predicting unit 321 and the observation information reflecting unit 322 in the first embodiment.
  • the resolution control means 323 calculates the distance related to the position coordinates of each moving body input from the position information input unit 1. Then, the resolution control means 323 controls the resolution of the divided area according to the distance. That is, the resolution control means 323 redefines the area where the tracking area 50 is divided so as to change the size of the divided area of the tracking area 50 (see FIG. 1), and scores each redefined area. Set again.
  • the tracking area 50 is grid-divided into cells as illustrated in FIG. 9 as an example.
  • reduce the cell size for example, the length of each side
  • reset the cell for example, the length of each side
  • increase the cell size for example, the length of each side
  • the resolution control means 323 controls the resolution in the position score correspondence information according to the distance between the moving bodies at each time so that the flow line specifying means 33 can detect the moving lines by separating the moving bodies.
  • the position score correspondence information represents the correspondence between a cell and a score represented by two-dimensional coordinates.
  • the resolution control unit 323 selects two of the position information of each moving body input from the position information detection unit 1, and the distance in the x-axis direction between the position coordinates included in the selected position information and the y-axis direction Calculate the distance.
  • the resolution control unit 323 sequentially selects combinations of two position information, and calculates the distance in the x-axis direction and the distance in the y-axis direction between the position coordinates for each combination.
  • the resolution control means 323 calculates the distance in the x-axis direction and the distance in the y-axis direction for all the combinations between the two points, and as a result, the resolution of the cell is set so that the resolution is higher than the shortest of these distances.
  • the resolution higher than the shortest distance means, for example, setting the length of one side of the cell to be shorter than the shortest distance.
  • the distance between moving bodies may temporarily approach 0, such as when passing between moving bodies.
  • the resolution is changed by using the calculation result of the distance between the moving bodies at each time, the position score correspondence relationship with the highest resolution must be generated every time the moving bodies approach each other. . Therefore, instead of changing the resolution using the distance calculated in one time step, when updating the resolution higher (when the divided area is smaller), the shortest distance between the moving bodies is shorter than the resolution at the previous time. If the resolution is updated at a high level and the resolution is updated at a low level (when the divided area is enlarged), the shortest distance between moving bodies is higher than the resolution at the previous time. The resolution may be updated to be low on the condition that the state of “long” continues for a certain time or longer.
  • the resolution control unit 323 determines the resolution used at the current time using the position information acquired from the position information input unit 1, the resolution of the state information group at the previous time acquired from the state storage unit 31 is set to the determined resolution. Update.
  • the resolution control means 323 determines the position score correspondence information of the previous time by determining the score of each cell of the new resolution based on the score in the position score correspondence information included in the state information group at the previous time. Is generated in accordance with the resolution of the current time. This process can be said to be a process for updating the resolution of the position score correspondence information at the previous time.
  • the position score correspondence information is not updated by overwriting the position score correspondence information of the previous time, but the position score correspondence information corresponding to the resolution of the current time is newly updated. create.
  • the resolution control means 323 inputs the position score correspondence information to the state prediction means 321b, and the state prediction means 321b and the observation information reflection means 322b perform processing on the position score correspondence relation information, thereby Time position score correspondence information is completed.
  • the resolution control unit 323 may create a copy of the position score correspondence information at the previous time and input the copy to the state prediction unit 321b.
  • the resolution control unit 323 creates the position score correspondence information obtained by updating the position score correspondence information of the previous time according to the resolution of the current time, the time included in the state information of the previous time (that is, the previous time) and the ID Is input to the state prediction means 321b as state information combined with the above.
  • the position score correspondence information is input to the state prediction unit 321b as the state information together with the time and the ID.
  • the resolution control unit 323 also inputs the position information at the current time input from the position information input unit 1 together with the state information to the state prediction unit 321b.
  • the state prediction unit 321b When the state information and the position information of the moving body are input from the resolution control unit 323, the state prediction unit 321b performs a process of propagating the score of the position score correspondence information included in the state information according to the movement model. This process is the same as the process of the state prediction unit 321 in the first embodiment, and can be said to be a process of predicting the position score correspondence information at the current time.
  • the state prediction unit 321b inputs the state information including the position score correspondence information on which the process of propagating the score and the position information of the moving object are input to the observation information reflection unit 322b.
  • the observation information reflecting means 322b receives ID information at the current time from the ID information input unit 2.
  • the observation information reflecting means 322b uses the current time ID information, the state information input from the state prediction means 321b, and the current time position information to create the current time state information, and stores it in the state storage unit 31.
  • the observation information reflecting means 322b reflects the current time ID information and the current time position information in the position score correspondence information included in the input state information. This process is the same as the process of the observation information reflecting unit 322 in the first embodiment.
  • the observation information reflecting means 322b causes the state storage unit 31 to store state information including ID information at the current time and position score correspondence information reflecting the position information as state information at the current time.
  • FIG. 18 shows a case where position information is input to the resolution control means 323 and ID information is input to the observation information reflection means 322b.
  • the resolution control means 323 and the state prediction means 321b can refer to the position information and
  • the information reflecting means 322b can refer to the position information and the ID information
  • the position information and the ID information may be input to any means of the state update means 32b.
  • the flow line specifying means 33 includes a confirmed state selecting means 331, a confirmed state reflecting means 332, and a moving body position detecting means 333, as in the first embodiment. Each of these means is the same as in the first embodiment. Therefore, the confirmed state reflecting unit 332 propagates the score of each position according to the movement model with respect to the position score correspondence information at a definite time point, and the position score correspondence information after the processing is transmitted to the most recent uncertain time point. Is reflected in the positional score correspondence information. However, in the second embodiment, the resolution may differ between the position score correspondence information. In this case, the confirmed state reflecting means 332 performs processing for reflecting the position score correspondence information after the process of propagating the score in the position score correspondence information at the most recent uncertain time by a method according to the difference in resolution. Do.
  • the other points are the same as those of the first embodiment, and the flow line specifying means 33 stores the state information of each ID generated during a certain past time from the current time in the state storage unit 31. To identify the flow line for each ID.
  • state update means 32b (state prediction means 321b, observation information reflection means 322b, resolution control means 323), flow line identification means 33 (determined state selection means 331, confirmed state reflection means 332, and moving body
  • the position detection means 333 is realized by, for example, a CPU of a computer that operates according to a flow line detection program.
  • a computer program storage device (not shown) stores a flow line detection program, and the CPU reads the program, and in accordance with the program, state update means 32b (state prediction means 321b, observation information reflection means 322b, resolution control) Means 323) and flow line specifying means 33 (determined state selecting means 331, confirmed state reflecting means 332 and moving body position detecting means 333).
  • the state update unit 32b and the flow line specifying unit 33 may be realized by different hardware.
  • the state prediction unit 321b, the observation information reflection unit 322b, and the resolution control unit 323 may also be realized by different hardware.
  • 19 and 20 are flowcharts illustrating an example of processing progress of the flow line detection unit 3b according to the second embodiment.
  • FIGS. 21 and 22 an example of processing progress of the second embodiment will be described with reference to FIGS. 21 and 22.
  • the same processing as that in the first embodiment is denoted by the same reference numerals as those in FIGS. 7 and 8, and detailed description thereof is omitted.
  • the state update unit 32b acquires ID information (that is, a set of the ID of the moving object, the ID information input unit number, and the detection time of the ID) from the ID information input unit 2 (step S1).
  • ID information that is, a set of the ID of the moving object, the ID information input unit number, and the detection time of the ID
  • the state update unit 32b acquires position information (that is, a set of the position coordinates of the moving object and the detection time of the position coordinates) from the position information input unit 1 (step S2).
  • the resolution control unit 323 of the state update unit 32b receives the state information of the latest time from the state storage unit 31 and the state information stored in the state storage unit 31 (that is, the state information immediately before the current time). (Status information generated at time) is acquired (step S3).
  • the resolution control means 323 determines the resolution at the time of generating the position score correspondence information at the current time using the position information of each moving body acquired in step S2 (step S23).
  • the resolution control unit 323 includes identification information (for example, cell coordinates) obtained by dividing the tracking region in accordance with the resolution, and the score associated with the coordinates of each cell is in an undetermined state. The corresponding position score correspondence information is created.
  • step 23 a specific example of the processing of step 23 will be described with reference to FIGS. 21 and 22.
  • the resolution control unit 323 calculates the distance in the x-axis direction and the distance in the y-axis direction between pa and pb, between pb and pc, and between pc and pa, respectively.
  • the distance in the x-axis direction between pa and pb is represented as ab_x
  • the distance in the y-axis direction is represented as ab_y.
  • the distance in the x-axis direction between pb and pc is represented as bc_x
  • the distance in the y-axis direction is represented as bc_y
  • the distance in the x-axis direction between pc and pa is expressed as ac_x
  • the distance in the y-axis direction is expressed as ac_y.
  • the resolution control unit 323 calculates the distance in the x-axis direction and the distance in the y-axis direction between the position coordinates of the two points as described above, and selects the shortest distance. In the example shown in FIG. 21, it is assumed that ab_x is the shortest distance. In step 23, as shown in FIG. 22, the distance of this ab_x is determined as a new resolution.
  • the upper limit and lower limit of the resolution may be defined in advance.
  • the upper limit value of the resolution is a value when the resolution becomes the highest, and is the minimum value as the resolution such as the cell size.
  • the lower limit value of the resolution is a value when the resolution is the lowest, and is the maximum value as the resolution such as the cell size.
  • the upper limit is set as the resolution at the current time, and when the distance between the two position coordinates is longer than the lower limit of the resolution, the resolution is set.
  • the lower limit value may be used as the resolution at the current time.
  • the upper limit value of the resolution may be determined based on the resolution of the position coordinates input from the position information input unit 1. Further, the lower limit value of the resolution may be determined on the basis that each ID detection area in the tracking area belongs to a different cell.
  • step S4 the state information at the current time when the state of the score is updated is not created for the state information group at the previous time acquired from the state storage unit 31 (specifically, steps S24 and S5). , S6, S7) is determined (step S4).
  • the resolution control means 323 reads from the state information group at the previous time read at step S3, One of the unprocessed state information is selected. Then, the resolution control unit 323 generates position score correspondence information that matches the position score correspondence information of the previous time included in the state information with the resolution determined in step S23 (step S24). Specifically, the resolution control unit 323 sets the score corresponding to the identification information of each cell in the position score correspondence information created in step S23 based on the position score correspondence information of the previous time. That is, in the position score correspondence information created in step S23, the resolution is the resolution at the current time, but the score is undetermined, and the score is set in step S24.
  • step S24 The procedure of step S24 will be specifically described with reference to FIG. 21 and FIG. First, a case where the resolution is updated from a fine one to a coarse one will be described.
  • FIG. 21 represents the cell state at the previous time
  • FIG. 22 represents the cell state at the current time.
  • each cell shown in FIG. 22 is defined, but the score corresponding to each cell is undetermined.
  • the resolution control means 323 determines which of the cells indicated by the position score correspondence information at the previous time is included for each cell obtained by dividing the tracking area with the resolution determined in step S23. For example, among the cells shown in FIG. 22 (the cells having the resolution at the current time determined in step S23), the cell c (0, 0) includes each cell (in FIG. 21) indicated by the position score correspondence information at the previous time. It is determined that c (0,0), c (0,1), c (1,0), and c (1,1) are included in each cell shown. Then, the resolution control means 323 includes the cells c (0, 0), c (0, 1), c (1, 0) of the previous time included in the cell c (0, 0) (see FIG.
  • the resolution control means 323 determines the score as a score corresponding to c (0, 0) in the positional score correspondence information created in step S23.
  • the resolution control means 323 calculates the score for each cell having the resolution at the current time as described above, and includes it in the position score correspondence information.
  • the average value of the score of each cell at the previous time included in the cell at the current time is determined as the score at the current time.
  • the resolution control unit 323 has The highest value among the scores of the cells at the previous time included in the cell may be determined as the score of the cell at the current time.
  • a high score may be defined as the score of the cell c (0, 0) at the current time shown in FIG.
  • the resolution control means 323 determines the score for each cell having the resolution at the current time, and includes it in the position score correspondence information created in step S23, thereby adapting the position score correspondence information at the previous time to the resolution at the current time. Position score correspondence information can be obtained.
  • FIG. 22 represents the cell state at the previous time
  • FIG. 21 represents the cell state at the current time.
  • the resolution control means 323 determines which of the cells indicated by the position score correspondence information at the previous time is included in each cell obtained by dividing the tracking area with the resolution determined in step S23.
  • the resolution control means 323 determines the score of the cell at the previous time including the cell as the score of the cell at the current time, and includes it in the position score correspondence information. For example, among the cells shown in FIG. 21 (in this example, the cell having the resolution at the current time determined in step S23), the cell c (0, 0) is each cell (indicated by the position score correspondence information at the previous time ( In this example, each cell shown in FIG. 22 is included in c (0, 0). Therefore, the resolution control means 323 determines the score of the cell c (0, 0) shown in FIG.
  • the resolution control means 323 determines the score as described above for each cell having the resolution at the current time, and includes it in the position score correspondence information. It is possible to obtain position score correspondence information in which the position score correspondence information of the previous time is adapted to the resolution of the current time.
  • a cell defined at the current time may straddle a plurality of cells defined at the previous time.
  • the resolution control unit 323 may use the average value of the scores set in the cell at the previous time that the cell defined at the current time straddles as the score of the cell at the current time. Also, the resolution control means 323 weights the score by the area ratio that the cell at the current time straddles for each cell at the previous time that the cell at the current time straddles, and calculates the average value of the weighted scores at the current time It may be used as the score of the cell.
  • the resolution control unit 323 newly generates, as state information, a set of the time (previous time) and ID included in the state information selected in Step S24 and the position score correspondence information created in Step S24. It inputs into the state prediction means 321b. The resolution control unit 323 also inputs the position information of the moving body acquired in step S2 to the state prediction unit 321b.
  • the state predicting unit 321b calculates the elapsed time from the time (previous time) of the state information input from the resolution control unit 323 to the current time, and scores based on a predefined moving model of the moving object. And the state of the current score is predicted by propagating the score in the position score correspondence information included in the input state information (step S5).
  • the process of propagating the score in the position score correspondence information is the same as step S5 in the first embodiment.
  • the resolution of the position score correspondence information is variable in the second embodiment, it is desirable not to include the state resolution in the parameters of the movement model when defining the movement model of the moving object.
  • step S5 after performing the process of propagating the score, the state prediction unit 321b updates the time (previous time) in the input state information to the current time.
  • the time included in the position information of the moving body may be used as the current time.
  • the process of updating the time in the state information to the current time is performed by the observation information reflection unit 322b. May be.
  • the observation information reflecting unit 322b may update the time included in the state information to the current time in step S7 and the like.
  • the state prediction unit 321b inputs the state information updated in the position score correspondence information in step 5 and the current position information of the moving body input from the resolution control unit 323 to the observation information reflection unit 322b. To do.
  • the observation information reflecting unit 322b is included in the state information by using the state information and the moving body position information input from the state prediction unit 321b and the current time ID information input from the ID information input unit 2.
  • the corresponding position score correspondence information is updated (steps S6 and S7).
  • the processes in steps S6 and S7 may be the same as steps S6 and S7 in the first embodiment.
  • the increase amount of the score of the cell partially overlapping with the ID detection region may be the same as or less than the increase amount of the score of the cell included in the ID detection region.
  • the state information obtained as a result of step S7 is state information at the current time.
  • the process up to step S7 is the process of creating the current time status information based on the previous time status information for one ID.
  • state update means 32b assumes that the current time state information has already been created for the IDs subjected to the processing of steps S24, S5, S6, and S7.
  • the state update unit 32b returns to step S4 again after step S7, and determines whether or not unprocessed state information exists for steps S24, S5, S6, and S7.
  • step S4 When it is determined that there is no unprocessed state information for steps S24, S5, S6, and S7 (No in step S4), the observation information reflecting unit 322 repeats the processes of steps S24, S5, S6, and S7 for each ID. Each state information created at the current time is stored in the state storage unit 31 (step S8).
  • the flow line specifying means 33 acquires the state information of each ID for a certain past time from the current time from the state storage unit 31, and specifies the flow line (steps S9 to S16).
  • the flow line generation procedure may be the same as the method described in steps S9 to S16 of the first embodiment.
  • step S13 the resolution of the position score correspondence information at the most recent time predicted based on the position score correspondence information at the definite time point and the latest of the deterministic time point.
  • the resolution may be different from the position score correspondence information in the time uncertain state information.
  • the confirmed state reflecting unit 332 may perform the process of step S14 as follows.
  • the position score correspondence information in the indeterminate state information is simply referred to as indeterminate state information.
  • the definite state reflecting means 332 determines the uncertain among the cells of the position score correspondence information obtained at step S13. A cell across which one cell of the state information spans is specified, and the average value of the scores of each cell is calculated. Then, the confirmed state reflecting means 332 adds or multiplies the average value to the score of the cell focused on by the uncertain state information, thereby multiplying the cell focused on by the uncertain state information. Update the score. The confirmed state reflecting means 332 may perform this process for each cell of the indeterminate state information.
  • the cell of the uncertain state information When obtaining the average value, among the cells of the position score correspondence information obtained as a result of step S13, for each cell spanned by one cell of the uncertain state information, the cell of the uncertain state information straddles.
  • the score may be weighted by the area ratio, and the average value of the weighted scores may be obtained. Then, the confirmed state reflecting means 332 may add or multiply the average value to the score of the cell focused on by the indeterminate state information.
  • the confirmed state reflecting means 332 identifies a cell that one cell of the uncertain state information spans among the cells of the position score correspondence information obtained in step S13, and sets the maximum score of each cell.
  • the maximum value may be specified and added to the score of the cell focused on by the indeterminate state information, or may be multiplied.
  • the definite state reflecting means 332 determines the uncertain among the cells of the position score correspondence information obtained in step S13.
  • a cell including one cell of the state information is specified, and the score of the cell may be added to or multiplied by the score of the cell focused on by the indeterminate state information. Then, the confirmed state reflecting unit 332 may perform this process for each cell of the indeterminate state information.
  • the position of the moving body can be specified for each ID, and the flow line can be specified robustly.
  • the resolution control unit 323 controls the resolution of the position score correspondence information generated at each time according to the closeness of the distance between the position coordinates of each moving body, so that the necessary minimum It is possible to specify a flow line for each moving body (that is, for each ID) with a limited amount of calculation.
  • Embodiment 3 the score peak position is detected from the position score correspondence information at each time, and the moving object closest to the score peak position based on the position information input from the position information input unit 1
  • the flow line is determined by specifying the position coordinates.
  • FIG. 23 is a block diagram showing an example of a flow line detection system according to the third embodiment of the present invention.
  • the flow line detection system of the third embodiment includes a position information input unit 1, an ID information input unit 2, a flow line detection unit 3 c, and a flow line output unit 4.
  • the position information input unit 1, the ID information input unit 2, and the flow line output unit 4 are the same as those in the first embodiment, and detailed description thereof is omitted.
  • the flow line detection unit 3c includes a state update unit 32c, a state storage unit 31, a flow line identification unit 33c, and a position information storage unit 34.
  • the state storage unit 31 is a storage device that stores state information at each time.
  • the state storage unit 31 is the same as that of the first embodiment, and detailed description thereof is omitted.
  • FIG. 24 is a block diagram illustrating a configuration example of the state update unit 32c according to the third embodiment.
  • the state update unit 32c includes a state prediction unit 321c and an observation information reflection unit 322c.
  • the state prediction means 321c propagates the score indicated by the position score correspondence information included in the state information at the previous time read from the state storage unit 31 according to a predetermined movement model.
  • the observation information reflecting unit 322c updates the position score correspondence information after the process of propagating the score based on the position information input from the position information input unit 1 and the ID information input from the ID information input unit 2.
  • the state predicting unit 321c and the observation information reflecting unit 322c are the same as the state predicting unit 321 and the observation information reflecting unit 322 in the first embodiment, and detailed description thereof is omitted.
  • the observation information reflecting unit 322 c stores the position information input from the position information input unit 1 in the position information storage unit 34.
  • the process of storing the position information in the position information storage unit 34 may be performed by the state prediction unit 321c.
  • the state predicting unit 321c and the observation information reflecting unit 322c can refer to the ID information and the position information
  • either the state predicting unit 321c or the observation information reflecting unit 322c may have the ID information and Position information may be input.
  • FIG. 25 is a block diagram showing a configuration example of the flow line specifying means 33c in the third embodiment.
  • the flow line specifying unit 33c includes a confirmed state selecting unit 331, a confirmed state reflecting unit 332, and a moving body position detecting unit 333c.
  • the confirmed state selection means 331 acquires from the state storage unit 31 the state information of each ID generated between the current time and the past certain time, and moves from which the flow line is derived from the state information. Select state information including body ID. Then, the confirmed state selecting unit 331 selects state information at a definite time from among the state information at each time of the ID. The confirmed state reflecting means 332 corrects the score indicated by the position score correspondence information at the uncertain time while following the uncertain time nearest to the definite time.
  • the confirmed state selecting unit 331 and the confirmed state reflecting unit 332 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the moving body position detecting means 333c detects the position of the moving body at each time from the position score correspondence information at each time after the processing by the confirmed state reflecting means 332.
  • the mobile object position detection unit 333c in the third embodiment not only detects the position where the score is a peak as the position of the mobile object from the position score correspondence information, but also the time corresponding to the position score correspondence information. Among the position coordinates, the position closest to the position where the score is peak is specified.
  • the moving body position detection unit 333c performs this process on the position score correspondence information at each time.
  • the moving body position detection unit 333c uses the position coordinates in time series order as the flow line. For example, a line connecting position coordinates in time series is displayed on the flow line output unit 4 as a flow line.
  • state update means 32c state prediction means 321c, observation information reflection means 322c
  • flow line identification means 33c confirmed state selection means 331, confirmed state reflection means 332 and moving body position detection means 333c.
  • the program storage device not shown
  • the program storage device stores the flow line detection program, and the CPU reads the program, and according to the program, the state update means 32c (state prediction means 321c, observation information reflection means 322c), What is necessary is just to operate
  • state update unit 32b and the flow line specifying unit 33 may be realized by different hardware.
  • state prediction unit 321c and the observation information reflection unit 322c may also be realized by different hardware.
  • the confirmed state selecting means 331, the confirmed state reflecting means 332, and the moving body position detecting means 333c may also be realized by other hardware.
  • FIG. 26 and FIG. 27 are flowcharts illustrating an example of processing progress of the flow line detection unit 3c of the third embodiment.
  • symbol same as FIG. 7 and FIG. 8 is attached
  • subjected and detailed description is abbreviate
  • step S1 The process (steps S1 to S8) until the state update unit 32c generates the state information of the current time using the state information of the previous time and stores it in the state storage unit 31 is step S1 in the first embodiment. Same as S8.
  • the state update unit 32c stores the position information (a set of the position coordinates of the moving body and its detection time) acquired from the position information input unit 1 in Step S2 in the position information storage unit 34 (Step S38).
  • the flow line specifying means 33c reads state information for a certain past time from the current time from the state storage unit 31, selects the confirmed state information, and based on the score indicated by the confirmed state information, the latest uncertain A process of predicting the score at the time point and reflecting it in the indeterminate state information at the time point is performed (steps S9 to S14). If there is no state information for which the processing of steps S11 to S14 has not been performed for each piece of state information read from the state storage unit 31 (No in step S10), the process proceeds to step S314. At this time, the score of the state information at the definite time is sequentially reflected in the state information at the uncertain time.
  • step S314 the moving body position detecting unit 333c reads each position information for a predetermined period of time from the current time from the position information storage unit 34 (step S314).
  • the time width for the past fixed time is the same as the time width when the fixed state selection means 331 reads the state information for the past fixed time from the current time in step S9.
  • the moving body position detecting means 333c specifies a flow line for each ID using the state information at each time and the position information acquired in step S314 (step S15c).
  • the moving object position detection unit 333c sequentially selects the IDs of moving objects. Then, the mobile object position detection unit 333c refers to the position score correspondence information included in the state information at each time of the selected ID, and detects a cell in which a peak of the score appears at each time. The mobile body position detection unit 333c further detects the detected cell (that is, the cell in which the peak of the score appears) among the position coordinates included in the position information of the time corresponding to the position score correspondence information that detected the cell. Specify the closest position coordinate.
  • the moving body position detecting means 333c specifies the position coordinates closest to the cell in which the peak of the score appears in the same manner for each time with respect to the selected ID. Information representing the flow line is obtained by specifying the identified coordinates in chronological order. If the position coordinates at each time are specified for one ID, the mobile object position detection unit 333c selects the next ID and similarly specifies the position coordinates at each time. The moving body position detecting unit 333c selects each ID and repeats the same processing, whereby the flow line of each ID is obtained.
  • the moving body position detecting means 333c When the moving body position detecting means 333c specifies the position coordinates at each time for each ID, the moving body position detecting means 333c displays the flow line connecting the position coordinates in time series for each ID on the flow line output unit 4 (step S16). .
  • the position of the moving body can be specified for each ID, and the flow line can be estimated robustly.
  • the resolution of the generated flow line does not depend on the resolution of the position score correspondence information, even if the state is generated with the minimum necessary resolution that can separate the moving object, it is fine. Can generate simple flow lines.
  • the third embodiment may be combined with the second embodiment, and the state update unit may include a resolution control unit in addition to the state prediction unit and the observation information reflection unit. In this case, both the effects of the second embodiment and the effects of the third embodiment are obtained.
  • FIG. 28 is a block diagram showing an example of the minimum configuration of the flow line detection system of the present invention.
  • the flow line detection system of the present invention includes position score correspondence information generating means 81, state storage means 82, and flow line specifying means 83.
  • the position score correspondence information generating unit 81 calculates a score indicating the possibility of the existence of a moving object with specific identification information for each position in the tracking area of the moving object ( For example, the position score correspondence information defined for each cell) is generated for each mobile object identification information.
  • State storage means 82 (for example, state storage unit 31) stores position score correspondence information for each time.
  • the flow line specifying unit 83 determines position score correspondence information satisfying a predetermined criterion among the position score correspondence information stored in the state storage unit for each moving body identification information. And the deterministic position score correspondence information is reflected in the position score correspondence information at the time closest to the time corresponding to the definite position score correspondence information, and the position The determination of the score correspondence information as definitive position score correspondence information is repeated, and the flow line of the moving object is specified from the score in the position score correspondence information for each time.
  • the position of the moving body of each identification information can be determined with high accuracy and the flow line can be detected.
  • Position score correspondence information in which a score indicating the possibility of the existence of a moving body with unique identification information is determined for each position in the tracking area of the moving body is used as the mobile body identification information.
  • Position score correspondence information generating means to be generated every time, state storage means for storing position score correspondence information for each time, and position score correspondence information stored in the state storage means for each identification information of the moving body Among them, position score correspondence information satisfying a predetermined standard is selected as deterministic position score correspondence information, and deterministic position score correspondence information is selected as the latest of the time corresponding to the definite position score correspondence information.
  • the flow line detection system characterized in that it comprises a flow-line identification means for identifying a flow line of the moving body.
  • the position score correspondence information generating means calculates the score of each position in the position score correspondence information created at a time before the current time according to a predetermined score propagation mode.
  • the score propagation means for propagating as a score, and the position score correspondence information score propagated by the score propagation means to the detection area where the identification information is detected at the current time and the position coordinates of the mobile object detected at the current time.
  • the flow line detection system according to supplementary note 1, including observation information reflecting means for generating position score correspondence information at the current time by updating based on the information.
  • the position score correspondence information generating means determines individual areas in the tracking area to which the score is assigned based on the distance between the position coordinates of the moving object detected at the current time, Based on the score in the position score correspondence information created at the time, resolution control means for generating position score correspondence information defining a score for each individual region, and the position score correspondence relation generated in the resolution control means
  • the score propagation means for propagating each score in the information as a score of a nearby position according to a predetermined score propagation mode, and the score of the position score correspondence information to which the score is propagated by the score propagation means at the current time
  • the position score at the current time is updated by updating the detection area where the identification information is detected and the position coordinates of the moving object detected at the current time.
  • Flow line detection system including the observation information reflecting means for generating a response related information.
  • the observation information reflecting means determines the position score correspondence information satisfying a predetermined criterion among the position score correspondence information stored in the state storage means for each mobile object identification information. After deterministic information selection means to select as information and each score in the deterministic position score correspondence information is propagated as a score of a nearby position according to a predetermined score propagation mode, the score is propagated Each score of the deterministic position score correspondence information is reflected in each score of the position score correspondence information at the latest time corresponding to the definite position score correspondence information, and the position of the most recent time In the score reflection means for repeatedly making the score correspondence information as definitive position score correspondence information, and the definite position score correspondence information at each time Flow line detection system according to Supplementary Note 1 to any one of Appendices 3 including a vehicle location specifying means for specifying the flow line of the moving body by the core, to identify the position of the mobile object at each time.
  • the moving body position specifying means specifies the position of the mobile body at each time based on the position where the peak score appears in the definite position score correspondence information at each time. Detection system.
  • Position score correspondence information in which a score indicating the possibility of the existence of a mobile object with specific identification information is determined for each position in the tracking area of the mobile object is used as mobile object identification information.
  • a position score correspondence information generation step that is generated every time, a state storage step that stores the position score correspondence information for each time in the state storage means, and a position score that is stored in the state storage means for each identification information of the moving body Among the correspondence information, the position score correspondence information satisfying a predetermined criterion is selected as deterministic position score correspondence information, and the definite position score correspondence information is associated with the definite position score correspondence information.
  • the position score correspondence information is repeatedly defined as deterministic position score correspondence information.
  • the flow line detection method characterized by including the flow-line identification step of identifying the flow line of the moving body.
  • the position score correspondence information generation step calculates the score of each position in the position score correspondence information created at a time before the current time according to a predetermined score propagation mode.
  • the score propagation step for propagating as a score, and the score of the position score correspondence information for which the score was propagated in the score propagation step are set to the detection area where the identification information is detected at the current time and the position coordinates of the mobile object detected at the current time.
  • the position score correspondence information generation step determines individual areas in the tracking area to which the score is assigned based on the distance between the position coordinates of the moving object detected at the current time, Based on the score in the position score correspondence information created at the time, a resolution control step for generating position score correspondence information defining a score for each individual region, and the position score correspondence generated in the resolution control step Each score in the information is propagated as a score of a nearby position according to a predetermined score propagation mode, and the score of the position score correspondence information to which the score is propagated in the score propagation step is set at the current time.
  • Flow line detection method according to Appendix 7 with the observation information reflecting step of generating positional score correspondence information.
  • the observation information reflecting step includes, for each mobile object identification information, the position score correspondence information satisfying a predetermined criterion among the position score correspondence information stored in the state storage unit, and the definite position score correspondence relationship.
  • deterministic information selection step to select as information and each score in deterministic position score correspondence information is propagated as a score of a nearby position according to a predetermined score propagation mode, and after the score is propagated
  • Each score of the deterministic position score correspondence information is reflected in each score of the position score correspondence information at the latest time corresponding to the definite position score correspondence information, and the position of the most recent time
  • a score reflection step that repeats making the score correspondence information into deterministic position score correspondence information, and a definite position score correspondence at each time
  • the moving line detection method according to any one of appendix 7 to appendix 9, further comprising: a moving body position specifying step of specifying a moving line of the moving body by specifying the position of the moving body at each time from the score in the information. .
  • a position information storage step for storing the position coordinates of the moving body detected at each time in the position information storage means is provided, and in the moving body position specifying step, in the definite position score correspondence information at each time Supplementary note 10 that specifies a position where a peak score appears, and specifies a position coordinate closest to the position where the peak score appears among the position coordinates of the moving object detected at the same time as the position of the moving object.
  • Position score correspondence information in which a score indicating the likelihood of the presence of a mobile object with specific identification information is determined for each position in the tracking area of the mobile object For each piece of identification information, the position score correspondence information generation processing, the state storage processing for storing the position score correspondence information for each time in the state storage means, and the identification information of the moving body are stored in the state storage means.
  • the position score correspondence information satisfying a predetermined standard is selected as deterministic position score correspondence information
  • the definite position score correspondence information is selected as the deterministic position score correspondence information.
  • the flow line detection program for executing the flow-line identification process for specifying the flow line of the moving body.
  • the position scores in the position score correspondence information created at the time before the current time are stored in the computer according to a predetermined score propagation mode.
  • the score propagation process for propagating as a position score, and the position score correspondence information for which the score was propagated in the score propagation process, the detection area where the identification information is detected at the current time, and the mobile object detected at the current time The flow line detection program according to appendix 13, wherein the observation information reflection process for generating the position score correspondence information at the current time is executed by updating based on the position coordinates.
  • the computer determines individual areas in the tracking area to which the score is assigned based on the distance between the position coordinates of the moving object detected at the current time.
  • Flow line detection program according to Note 13 to execute the observation information reflecting process for generating positional score correspondence information of time.
  • the position score correspondence information satisfying a predetermined criterion among the position score correspondence information stored in the state storage means is determined in a deterministic position for each identification information of the moving object in the observation information reflection process.
  • Deterministic information selection processing to select as score correspondence information each score in the definite position score correspondence information is propagated as a score of a nearby position according to a predetermined score propagation mode, and the score is propagated
  • Each score of the subsequent deterministic position score correspondence information is reflected in each score of the position score correspondence information at the latest time corresponding to the definite position score correspondence information, and the latest time Score reflection processing that repeats making the position score correspondence information of the current position deterministic position score correspondence information, and a deterministic position score at each time
  • the flow line according to any one of supplementary note 13 to supplementary note 15, wherein a moving body position specifying process for specifying a flow line of the moving body is performed by specifying the position of the moving body at each time from the score in the correspondence relationship information.
  • the supplementary note 16 which causes the computer to identify the position of the mobile object at each time based on the position where the peak score appears in the deterministic positional score correspondence information at each time in the mobile object location specifying process. Flow line detection program.
  • a position information storage process for causing the computer to store the position coordinates of the moving body detected at each time in the position information storage means is executed, and in the moving body position specifying process, a definite position score at each time is determined.
  • the position where the peak score appears in the correspondence information is specified, and the position coordinate closest to the position where the peak score appears is specified as the position of the moving object among the position coordinates of the moving object detected at the same time as the time.
  • Position score correspondence information in which a score indicating the likelihood of the presence of a mobile object with unique identification information is determined for each position in the tracking area of the mobile object,
  • position score correspondence information satisfying a predetermined standard is selected as deterministic position score correspondence information
  • deterministic position score correspondence information is selected as the latest of the time corresponding to the definite position score correspondence information.
  • the position score correspondence information is reflected in the time position correspondence information, and the position score correspondence information is repeatedly defined as deterministic position score correspondence information. From flow line detection system, characterized in that it comprises a flow-line identification unit for identifying the flow line of the moving body.
  • the position score correspondence information generation unit calculates a score of each position in the position score correspondence information created at a time before the current time according to a predetermined score propagation mode.
  • the score propagation unit for propagating as a score, and the position score correspondence information score propagated by the score propagation unit to the detection area where the identification information is detected at the current time and the position coordinates of the moving body detected at the current time.
  • the flow line detection system according to supplementary note 19, including an observation information reflection unit that generates position score correspondence information at the current time by updating based on the information.
  • the position score correspondence information generation unit determines individual areas in the tracking area to which the score is assigned based on the distance between the position coordinates of the moving object detected at the current time, Based on the score in the position score correspondence information created at the time, a resolution control unit that generates position score correspondence information that defines a score for each individual region, and a position score correspondence generated in the resolution control unit
  • the score propagation unit that propagates each score in the information as a score of a nearby position according to a predetermined score propagation mode, and the score of the position score correspondence information in which the score is propagated by the score propagation unit at the current time
  • the observation information reflecting unit determines the position score correspondence information satisfying a predetermined criterion among the position score correspondence information stored in the state storage unit for each mobile object identification information.
  • deterministic information selection unit to select as information and each score in deterministic position score correspondence information is propagated as a score of a nearby position according to a predetermined score propagation mode.
  • Each score of the deterministic position score correspondence information is reflected in each score of the position score correspondence information at the latest time corresponding to the definite position score correspondence information, and the position of the most recent time
  • a score reflection unit that repeatedly sets the score correspondence information as definitive position score correspondence information, and the score in the definite position score correspondence information at each time Et al., Flow line detection system according to Supplementary Note 19 to any one of Appendices 21 including a vehicle location specifying unit for specifying a flow line of the moving object by identifying the position of the mobile object at each time.
  • specification part specifies the position of the moving body of each time based on the position where the peak score in the definite position score corresponding
  • a position information storage unit that stores the position coordinates of the moving object detected at each time is provided, and the moving object position specifying unit is a position where the peak score appears in the definite position score correspondence information at each time. And the position coordinate closest to the position where the peak score appears among the position coordinates of the moving body detected at the same time as the time. .
  • the present invention is preferably applied to a flow line detection system that associates an ID with a moving body and identifies a moving line of the moving body.
  • the person when detecting a flow line by associating the position of a person working in an office or factory with an employee number unique to each person, the person enters according to the security authority for each person based on the obtained flow line. It is applicable to security purposes such as determining whether the area is possible and controlling alerts as necessary.
  • detecting a flow line by associating the position of a person shopping in a shopping center with a member number unique to each person, it can also be applied to marketing purposes such as measuring the flow line of a shopper.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 移動体の位置や識別情報を検出できない場合が頻発しても、各識別情報の移動体の位置を精度良く判定して、動線を検出することができる動線検出システムを提供する。動線特定手段83は、移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、その位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定する。

Description

動線検出システム、動線検出方法および動線検出プログラム
 本発明は、移動体の位置および移動体に固有の識別情報の検出結果に基づいて、追跡領域内のどの位置にどの識別情報に対応する移動体が存在するかを判定する動線検出システム、動線検出方法、および動線検出プログラムに関する。
 一般に、人物や物等の移動体の動線検出は、移動体の位置と移動体の識別情報(以下、IDと記す。)とを対応付けることにより実現される。このような対応付けによって、移動体を一意に識別し、動線を検出することができる。このような動線検出に関する技術が種々提案されている(例えば、特許文献1,2参照)。なお、移動体の動線とは、移動体を個別に識別した上で、各移動体の移動した経路を表した情報である。すなわち、動線は、個別に識別された移動体の移動経路を表す情報である。また、軌跡とは、ある移動体について時間的に連続して検出された位置座標の繋がりを意味するものとする。従って、移動体の位置座標の検出が途切れると、軌跡も途切れることになる。
 特許文献1に記載された移動体追跡システムは、空間内を撮影する監視カメラとICタグリーダとを備える。特許文献1に記載された移動体追跡システムは、監視カメラの出力に基づいて各移動体の位置座標を得て、移動体に固有の第1識別情報(カメラ追跡ID)と移動体の位置座標とを対応付けて追跡情報テーブルで管理する。また、この移動体追跡システムは、ICタグを所持した各移動体から固有の第2識別情報(オブジェクトID)を読み取り、その第2識別情報とタグの位置座標とを対応付けて読み取り情報テーブルで管理する。さらに、第1の識別情報および位置情報と第3の識別情報(位置管理ID)とを対応付けて位置管理テーブルで管理する。特許文献1に記載された移動体追跡システムは、さらに、同時期に所定の誤差範囲内で認識された移動体に関して、第2識別情報と第3識別情報とを対応付けて管理する位置推定テーブルを含み、位置管理テーブルおよび位置推定テーブルによって、移動体を追跡する。すなわち、監視カメラで検出したある時刻における移動体の位置と、ICタグリーダでオブジェクトIDを検出した位置とが所定の誤差範囲内である場合に、位置管理テーブルおよび位置推定テーブルによって、ある時刻の移動体の位置情報とオブジェクトIDとを対応付けて管理している。特許文献1に記載された移動体追跡システムは、このような構成により、複数のセンサにより得られる検知結果を統合して移動体を追跡する。
 すなわち、特許文献1に記載された移動体追跡システムは、第1識別手段(カメラを利用する手段)により認識された移動体と、第2識別手段(ICタグを利用する手段)により認識された移動体とを、その認識時刻および認識位置が実質的に一致していれば同一の移動体と認識し、各識別手段により得られた情報を統合するので、検知メカニズムの異なる複数のセンサにより得られる位置情報に基づいて移動体の動線を検出できるようになる。
 また、特許文献2に記載された複数カメラを用いた監視システムは、監視対象空間に複数のカメラを設置し、画像認識技術を用いて、その映像から移動体およびその特徴量情報を抽出する特徴量抽出手段を設ける。カメラで撮影した映像およびその移動体の特徴量情報は、通信ネットワークを経由して移動体の照合追跡手段に送られる。照合追跡手段は、監視対象空間全域を三次元モデルとして表現し、更に移動体が移動可能な空間のつながりをネットワーク表現した監視空間データベースを中心に持ち、送られてきた特徴量情報を蓄積する。一つのカメラ映像内には一般的に複数の移動体が存在するため、それらを個別の移動体として分離する。次に、分離・集約した移動体を追跡するために、照合追跡手段における経路算出手段により、監視対象空間におけるカメラ撮影範囲間での移動経路の候補を求める。そして、照合追跡手段における移動体整合度算出手段において、二つの移動体の特徴量集合同士の整合度を算出し、整合度を用いて、二つの移動体が一致するかどうかを判定する。また、照合追跡手段にはドアに据え付けられたカード認証やバイオメトリクス認証等の個人特定情報整合手段が含まれる。そして、カード認証手段のついたドア近傍を監視カメラで撮影し、外見の特徴量情報を抽出し、同時に、カード情報によりその所有者の情報と関連づける。
 すなわち、特許文献2に記載された複数カメラを用いた監視システムは、監視領域間でそれぞれ検出した移動体の軌跡を接続し、またカード認証やバイオメトリクス認証等の個人特定情報整合手段によって軌跡と個人特定情報とを対応付けることにより、個人特定情報付きの動線を生成することができるようになる。
 また、特許文献2に記載された監視システムでは、特徴量として、人物の下半身と上半身の輝度値等を用いる。
 また、特許文献3には、オクルージョンが発生した場合でも、ビデオ画像上に現れる移動体を追跡できる画像処理装置が記載されている。特許文献3に記載の画像処理装置では、複数の特徴点の各々を前のフレームから現在のフレームに追跡し、各特徴点の追跡結果に基づいて追跡領域の動きを予測して、現在のフレームでの追跡領域の位置を特定する。さらに、特徴点毎に、その特徴点が移動物体上に存在している可能性の高さを示す信頼度を算出し、その信頼度を用いて追跡領域の動きを算出する。信頼度として、連続して追跡に成功したフレームの数(履歴)等を用いる。
特開2005-31955号公報(段落0008,0009) 特開2006-146378号公報(段落0007~0017,0024) 特開2005-250989号公報(段落0010,0016,0017,0074,0075)
 一般に、カメラを用いた移動体追跡システムでは、移動体を追跡できるが、移動体を一意に識別できない。また、カード認証やバイオメトリクス認証やRFID(Radio Frequency IDentification)リーダ等、移動体の固有IDを検出できるID検出装置を追跡領域内の各所に配置することにより、移動体の固有IDがID検出装置付近を通過したか否かを把握できるが、ID検出装置から離れた場所にいる移動体については固有IDを検出できず、移動体の位置を把握できない。
 特許文献1および特許文献2に記載されたシステムでは、カメラと複数のセンサとを組み合わせ、移動体の動線検出を実現している。
 しかし、複数の移動体同士が同じ場所で重なったり、移動体があるカメラ視野から他のカメラ視野へ移動したりするなどして、追跡が途切れることがある。
 特許文献1に記載されたシステムは、センサでIDを検出できた場合に動線を検出できる。しかし、追跡の途切れが頻発すると、新たに取得し直したセンサ情報から動線検出処理を再開するため、動線検出の精度が低くなってしまう。例えば、追跡領域内に移動体Aが存在し、移動体Aから軌跡1が検出されたとする。この軌跡1がID検出領域内を通過し、ID検出装置がID(IDaとする)を検出した場合、軌跡1に対してIDaを対応付けることができる。ここで、軌跡1の検出が途切れ、次の時刻に、移動体Aから軌跡2が検出されたとする。特許文献1に記載されたシステムは、新たに取得し直した軌跡2だけを用いて移動体Aの動線検出処理を再開するが、軌跡2はID検出領域内を通過していないため、軌跡2に対応付けられるIDが存在しない。このように、追跡やIDの途切れが発生するたびに、過去に取得したセンサ情報(上記の例における軌跡1およびIDa)を利用できなくなり、軌跡が途切れた後に新たに取得し直したセンサ情報(上記の例における軌跡2)だけに基づいて動線検出を再開するため、得られた軌跡とIDとを精度良く対応付けられない。
 また、IDは、センサが無線タグ等を検出できる領域内に移動体が存在している場合等の限定的な状況で検出され、頻繁に取得できるわけではない。そのため、追跡の途切れが頻発する場合には、移動体のIDに対応付けられない軌跡が多くなってしまう。また、追跡対象ではないオブジェクトの軌跡を検出することもあり、このような軌跡はノイズとなる。このようなノイズの存在も、IDに対応付けられない軌跡が増加する要因となる。
 すなわち、現時刻まで継続して検出できているセンサ情報のみを利用する動線検出方式では、追跡やID取得の途切れが頻発すると、新たに取得し直したセンサ情報から動線検出処理を再開するため、動線検出の精度が低くなってしまう。
 そこで,特許文献2のように、現時刻に検出した軌跡と過去に検出した軌跡群との整合度を算出して軌跡を連結することにより,一部の軌跡のみに対応付けられているカード認証やバイオメトリクス認証等から得たIDを、連結された他の軌跡に対しても対応付けられるようにするという方法がある。
 しかしこの方法では、軌跡間の連結処理を行うタイミングが重要になる。例えば、ある追跡領域Aで移動体が出現した場合に、この移動体の軌跡と、隣接する追跡領域Bや追跡領域Cで過去に検出された軌跡群との整合度を算出し、その整合度に基づいて軌跡の組を連結することになる。特許文献2に記載された監視システムでは、カメラから得られる移動体の上半身および下半身の輝度等をある軌跡の特徴量とし、連結対象となる2つの軌跡間の特徴量の一致度を整合度として用いている。移動体の特徴量は、カメラの画角内で移動体の位置や大きさが一定の条件を満たす場合に精度良く検出され、それ以外では誤差を含む場合がある。ゆえに、軌跡の連結処理を早期に行う場合、軌跡の特徴量が精度良く得られていないまま整合度を算出してしまい、正しく軌跡を連結できない場合が考えられる。
 そこで、精度良く軌跡を連結するために、整合度の算出を一度きりにするのではなく、一定時間ごとに最新の特徴量を用いて軌跡間の整合度を算出し、連結結果を逐次更新するという方法が考えられる。しかしこの場合、一定時間ごとにある軌跡に対して連結候補となる多数の軌跡群を選出して整合度を算出するため、監視対象となる人数や追跡領域数が増加すると、連結候補となる軌跡の組合せ数が増加し、現実的には動線検出処理をリアルタイムに行うことが困難になると考えられる。
 すなわち、現時刻から過去一定時間前までの間に検出したセンサ情報の組合せを利用した動線検出方式では、現時刻で検出した各軌跡と過去に検出した各軌跡との全通りの組合せについて整合度を算出する必要があるため、追跡対象人数や追跡領域数が増加すると、連結候補となる軌跡の組合せ数が増加してしまい、実時間処理が困難になる。
 また、引用文献3に記載された画像処理装置では、特徴点の信頼度として、連続して追跡に成功したフレームの数等を用い、その信頼度を用いて追跡領域の動きを算出する。移動体の位置やID等の情報を検出して動線を算出するシステムに、このような信頼度を利用することが考えられる。しかし、個々の時刻において、同じ量のセンサ情報が得られるとは限らないため、移動体の存在可能性を示す指標値を求めても、時刻毎にその指標の正確さにむらが生じ、精度よく動線を算出できない場合がある。
 そこで、本発明は、移動体の位置や識別情報を検出できない場合が頻発しても、各識別情報の移動体の位置を精度良く判定して、動線を検出することができる動線検出システム、動線検出方法、および動線検出プログラムを提供することを目的とする。
 本発明による動線検出システムは、固有の識別情報が定められた移動体が存在する可能性の高さを示すスコアを移動体の追跡領域内の位置毎に定めた位置スコア対応関係情報を、移動体の識別情報毎に生成する位置スコア対応関係情報生成手段と、時刻毎の位置スコア対応関係情報を記憶する状態記憶手段と、移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、その位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定する動線特定手段とを備えることを特徴とする。
 また、本発明による動線検出方法は、固有の識別情報が定められた移動体が存在する可能性の高さを示すスコアを移動体の追跡領域内の位置毎に定めた位置スコア対応関係情報を、移動体の識別情報毎に生成し、時刻毎の位置スコア対応関係情報を状態記憶手段に記憶させ、移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、その位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定することを特徴とする。
 また、本発明による動線検出プログラムは、コンピュータに、固有の識別情報が定められた移動体が存在する可能性の高さを示すスコアを移動体の追跡領域内の位置毎に定めた位置スコア対応関係情報を、移動体の識別情報毎に生成する位置スコア対応関係情報生成処理、時刻毎の位置スコア対応関係情報を状態記憶手段に記憶させる状態記憶処理、および、移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、その位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定する動線特定処理を実行させることを特徴とする。
 本発明によれば、移動体の位置や識別情報を検出できない場合が頻発しても、各識別情報の移動体の位置を精度良く判定して、動線を検出することができる。
本発明の第1の実施形態の動線検出システムの例を示すブロック図である。 動線検出部の構成例を示すブロック図である。 状態更新手段の構成例を示すブロック図である。 移動モデルの具体例を示す説明図である。 移動モデルの具体例を示す説明図である。 動線特定手段の構成例を示すブロック図である。 第1の実施形態の動線検出部の処理経過の例を示すフローチャートである。 第1の実施形態の動線検出部の処理経過の例を示すフローチャートである。 追跡領域をグリッド分割して定めたセルの例を示す説明図である。 移動体の検出位置の例を表した説明図である。 ID情報入力部毎のID検出の例を示す説明図である。 位置スコア対応関係情報のスコアを更新していく状況の具体例を示す説明図である。 位置スコア対応関係情報のスコアを更新していく状況の具体例を示す説明図である。 位置スコア対応関係情報のスコアを更新していく状況の具体例を示す説明図である。 位置スコア対応関係情報のスコアを更新していく状況の具体例を示す説明図である。 図12から図15において示したセルのスコアの値を示す説明図である。 本発明の第2の実施形態の動線検出システムの例を示すブロック図である。 第2の実施形態における状態更新手段の構成例を示すブロック図である。 第2の実施形態の動線検出部の処理経過の例を示すフローチャートである。 第2の実施形態の動線検出部の処理経過の例を示すフローチャートである。 分解能制御の例を示す説明図である。 分解能制御の例を示す説明図である。 本発明の第3の実施形態の動線検出システムの例を示すブロック図である。 第3の実施形態における状態更新手段の構成例を示すブロック図である。 第3の実施形態における動線特定手段の構成例を示すブロック図である。 第3の実施形態の動線検出部の処理経過の例を示すフローチャートである。 第3の実施形態の動線検出部の処理経過の例を示すフローチャートである。 本発明の動線検出システムの最小構成の例を示すブロック図である。
 以下、本発明の実施形態を図面を参照して説明する。
実施形態1.
 図1は、本発明の第1の実施形態の動線検出システムの例を示すブロック図である。本発明の動線検出システムは、位置情報入力部1と、ID情報入力部2と、動線検出部3と、動線出力部4とを備える。本発明の動線検出システムは、移動体の位置およびID(識別情報)を取得し、予め定められた追跡領域50内の位置毎に、移動体が存在する可能性の高さを示すスコアを導出する。このスコアは、移動体のID毎に算出する。そして、本発明の動線検出システムは、所定の基準を満たす時点でのスコアに基づいて、その時刻の直近の時刻におけるスコアを修正し、さらに、スコアが修正された時刻の直近の時刻におけるスコアも順次、修正していく。そして、修正後のスコアを用いて、移動体の動線を特定する。
 各移動体Pは、追跡領域50を自由に移動する。また、移動体Pが追跡領域50の外側に出ることがあってもよい。移動体の種類は特に限定されず、人間、動物、または、物であってもよい。
 位置情報入力部1は、追跡領域50内における移動体の位置座標を検出し、その位置座標と検出時刻とを、動線検出部3に入力する装置である。以下の説明では、位置として2次元座標を検出する場合を例にして説明する。位置情報入力部1は、追跡領域50内における移動体の2次元位置座標と、その位置座標の検出時刻とを組にして、動線検出部3に入力する。以下、位置情報入力部1が検出した移動体の位置座標と、その位置座標の検出時刻との組を、位置情報と記す。
 位置情報入力部1は、追跡領域50内での移動体の位置座標を検出し、その検出時刻を特定できる装置であればよい。また、位置情報入力部1は、個々の移動体に固有のIDに関しては検出する必要はない。位置情報入力部1は、例えば、カメラ、床圧力センサ、レーザレンジファインダ、あるいはレーダを用いた移動体追跡システムで実現されていてもよい。位置情報入力部1が、このような態様で実現される場合には、移動体は、自身が検出されるために必要な機器を保持していなくてよい。また、位置情報入力部1は、座標検出に必要な機器を移動体に保持させる態様で、移動体の位置座標を検出してもよい。例えば、位置情報入力部1は、GPS(Global Positioning System )などの無線通信機器や超音波送受信機を用いた移動体追跡システム等によって実現されていてもよい。移動体に座標検出のための機器を保持させる態様であっても、位置情報入力部1は、それらの機器から移動体に固有のIDを取得する必要はない。
 また、位置情報入力部1は、追跡領域50全体を死角なく検出できるように設置されることが望ましいが、部分的に検出不可となる死角が生じてもよい。なぜなら、後述の動線検出部3が、入力される位置情報に欠落が生じても、移動体の位置座標とそれに対応付くIDを識別し、一連の動線を生成することが可能であるからである。
 ID情報入力部2は、追跡領域50内における移動体のIDを取得する装置である。ただし、移動体が存在する場合にID情報入力部2がIDを必ず検出可能とは限らず、IDを検出できるかどうかは、追跡領域50内における移動体の位置により異なる。例えば、ID情報入力部2に近い場所に存在する移動体のIDの検出確率は高く、ID情報入力部2から離れた場所に存在する移動体のIDの検出確率は低い。
 図1では、1台のID情報入力部2を示しているが、追跡領域50内にID情報入力部2を複数台設置してもよい。各ID情報入力部2には、ID情報入力部2を一意に特定するためのID情報入力部ID(すなわち、ID情報入力部の識別情報)が予め割り当てられている。ID情報入力部IDは、どのID情報入力部2が移動体のIDを検出したのかを判別するために用いられる。以下、ID情報入力部IDを番号で表す場合を例にして説明し、ID情報入力部IDをID情報入力部番号と記す。ただし、ID情報入力部IDは、番号以外で表されていてもよい。
 ID情報入力部2は、検出した移動体のIDと、その検出時刻と、そのID情報入力部2自身のID情報入力部番号とを、動線検出部3に入力する。以下、移動体のIDと、その検出時刻と、IDを検出したID情報入力部2のID情報入力部番号との組をID情報と記す。ID情報入力部2は、移動体のIDの検出を試みて、IDを検出できなかった場合には、移動体のIDを「なし」として、その時刻、およびID情報入力部番号とともに動線検出部3に入力してもよい。また、ID情報入力部2が動線検出部3にID情報を何も入力しないことで、動線検出部3が、その時刻に移動体のIDが何も検出されなかったと判定するようにしてもよい。
 ID情報入力部2は、移動体に固有のIDを検出し、その検出時刻およびID情報入力部2自身のID情報入力部番号を特定できる装置であればよい。例えば、移動体がアクティブRFIDタグを所有し、そのタグIDを移動体のIDとして用いる場合、ID情報入力部2としてRFIDリーダを用いればよい。また、移動体がICカードを所有し、そのICカードの識別情報を移動体のIDとして用いる場合、ID情報入力部2としてICカードリーダを用いればよい。また、移動体が無線LAN端末を所有し、その無線LAN端末のMACアドレスを移動体のIDとして用いる場合、ID情報入力部2としてアクセスポイントを用いればよい。また、移動体毎に固有のバーコードが印刷されている場合、ID情報入力部2としてバーコードリーダを用いればよい。また、移動体が人物である場合には、人物の顔、指紋、静脈等を人物のIDとして用いてもよく、これらのIDの読み取り装置をID情報入力部2とすればよい。また、顔認証装置とRFIDリーダのように、検出対象が異なるID情報入力部2を併用してもよい。
 また、ID情報入力部2を追跡領域50内に複数設置する場合、各ID情報入力装置2の検出領域が互いに重なり合うように設置してもよい。あるいは、互いに重なり合わないように設置してもよい。
 なお、位置情報入力部1による移動体の位置座標の検出と、ID情報入力部2による移動体のIDの検出は同一の時刻に実施する。ただし、位置情報入力部1とID情報入力部2がそれぞれ非同期に位置座標とIDを検出する場合には、動線検出部3が入力された位置情報とID情報を一定時間バッファリングしておき、一定時間ごとにバッファに溜まっている位置情報とID情報を使用するようにしてもよい。あるいは、位置情報入力部1とID情報入力部2の間で時刻同期がとれていない場合は、動線検出部3に位置情報およびID情報が入力された際に、動線検出部3が、入力された位置情報およびID情報に対して同一の検出時刻を設定してもよい。
 動線検出部3は、位置情報入力部1から入力される位置情報と、ID情報入力部2から入力されるID情報とを用い、追跡領域50内の各位置についてIDに対応付く移動体が存在する可能性の高さを表したスコアを算出し、追跡領域50内の各位置とスコアとを対応付けた情報(以下、位置スコア対応関係情報と記す。)を時刻毎に作成する。そして、動線検出部3は、追跡領域50内の各位置のスコアが確定的であると言える位置スコア対応関係情報を、所定の基準に基づいて判定する。そして、その位置スコア対応関係情報が作成された時刻を、確定的な時点と呼ぶ。各位置のスコアが確定的であると言える位置スコア対応関係情報を判定するための基準については後述する。動線検出部3は、確定的な時点のスコアに基づいて、その時点の直近の時刻におけるスコアを修正する。そして、スコアが修正された時刻を、確定的な時点として、同様に、その直近の時刻におけるスコアを修正することを繰り返す。確定的な時点でない時刻を、以下、不確定な時点と呼ぶ場合がある。動線検出部3は、上記のように、確定的な時点を判定し、その直近の不確定な時点を辿りながら、不確定な時点におけるスコアを修正する。そして、動線検出部3は、各時刻における修正後のスコアを用いて、移動体の動線を検出する。
 動線出力部4は、動線検出部3に検出された動線を出力する出力装置である。動線の出力態様は特に限定されず、例えば、動線を表示出力する場合には、動線出力部4としてディスプレイ装置を用いればよい。以下、動線出力部4が動線を表示する場合を例にする。
 図2は、動線検出部3の構成例を示すブロック図である。なお、位置情報入力部1、ID情報入力部2、および動線出力部4も合わせて図示している。動線検出部3は、状態記憶部31と、状態更新手段32と、動線特定手段33とを備える。
 状態記憶部31は、各時刻における、追跡領域50での各位置のスコアの状態を、移動体のID毎に記憶する記憶装置である。具体的には、状態記憶部31は、時刻と、移動体のIDと、その時刻におけるその移動体に関する位置スコア対応関係情報との組を記憶する。時刻と、IDと、位置スコア対応関係情報との組を、以下、状態情報と呼ぶ。
 状態更新手段32は、移動体のID毎に、前時刻に生成された状態情報を状態記憶部31から読み込み、その状態情報と、移動モデルと、現時刻における移動体の位置座標およびIDの検出結果とに基づいて、前時刻の位置スコア対応関係情報を更新する。ここでは、便宜的に「更新する」と記載したが、状態更新手段32は、具体的には、前時刻の状態情報はそのまま残しておき、その状態情報に含まれる位置スコア対応関係情報から、現時刻における位置スコア対応関係情報を新規に作成し、現時刻と、着目しているIDと、その位置スコア対応関係情報とを含む新たな状態情報(現時刻の状態情報)を状態記憶部31に記憶させる。よって、状態更新手段32は、状態情報生成手段と呼ぶこともできる。
 なお、前時刻とは、現時刻から見て、状態情報が作成された過去の直近の時刻である。
 また、状態更新手段32は、前時刻における位置スコア対応関係情報が示す各位置のスコアを、近傍の位置に伝播させ、その結果に対し、現時刻の位置情報やID情報を反映させることにより、現時刻における位置スコア対応関係情報を生成する。移動モデルは、スコアの伝播の態様を規定したルールである。移動モデルの具体例や、前時刻のスコアを伝播させて現時刻の位置スコア対応関係情報を生成する処理の詳細については、後述する。
 各IDに対して、毎時刻、1つの位置スコア対応関係情報が状態更新手段32によって生成され、状態記憶部31に蓄積されていく。
 なお、状態更新手段32は、各時刻において、ID毎に生成した状態情報を全て状態記憶部31に記憶させてもよい。また、状態更新手段32は、現時刻から見て、過去一定時間以上前に生成された状態情報を、逐次、状態記憶部31から削除してもよい。
 動線特定手段33は、IDを選択し、そのIDに関して、各位置のスコアが確定的であると言える状態情報を判定する。この状態情報が示す時刻が、確定的な時点である。動線特定手段33は、確定的な時点の直近の不確定な時点を辿りながら、不確定な時点における位置スコア対応関係情報が示すスコアを修正する。そして、動線特定手段33は、着目(選択)しているIDに関して、各時刻における修正後の位置スコア対応関係情報を参照し、各時刻におけるスコアのピークの位置を辿ることで、着目しているIDが示す移動体の動線を特定する。動線特定手段33は、移動体のIDを順次、選択し、同様の処理を繰り返す。動線特定手段33は、全てのIDに関して、動線を特定することによって、追跡領域50(図1参照)内に存在する移動体であって、IDによって識別される各移動体に関して、動線を特定することができる。
 また、上記の位置スコア対応関係情報は、追跡領域50内の各位置と、その位置にIDによって識別される移動体が存在する可能性の高さを数値化したスコアを対応付けた情報であればよい。追跡領域50をグリッドに分割しておき、分割された領域をセルと呼ぶことにする。位置スコア対応関係情報は、例えば、個々のセルの座標とスコアとを対応付けた情報の集合として表される。また、追跡領域50内をある領域に分割し、分割された領域毎にスコアを定め、各領域をノードとし、領域間の隣接関係をリンクとして、ノードとリンクから構成されるネットワークによって位置スコア対応関係情報を表してもよい。
 ここでは、検出される移動体の位置座標や、追跡領域50から分割された個々の領域の座標が、2次元座標で表される場合を例にして説明するが、これらの座標は1次元座標で表されてもよいし、3次元座標で表されてもよい。
 図3は、状態更新手段32の構成例を示すブロック図である。状態更新手段32は、状態予測手段321と、観測情報反映手段322とを含む。状態予測手段321は、予め定められている移動モデルに従って、前時刻の位置スコア対応関係情報が示す各位置のスコアをそれぞれ近傍位置のスコアとして伝播させることにより、新たな位置スコア対応関係情報を生成する。この位置スコア対応関係情報は、現時刻における位置スコア対応関係情報を予測したものであるということができる。観測情報反映手段322は、状態予測手段321が作成した新たな位置スコア対応関係情報(現時刻における位置スコア対応関係情報の予測)に対し、位置情報入力部1から入力された現時刻の位置情報およびID情報入力部2から入力された現時刻のID情報を反映させることにより、現時刻における位置スコア対応関係情報を定める。なお、入力される位置情報およびID情報は、観測情報と呼ぶことができる。
 状態予測手段321、観測情報反映手段322について、より詳細に説明する。
 状態予測手段321は、前時刻に生成された各IDの状態情報に含まれる位置スコア対応関係情報を状態記憶部31から読み込み、それぞれのIDの位置スコア対応関係情報の複製を新たに作成する。そして、複製した各位置スコア対応関係情報において、予め定められた移動モデルに従って、スコアを近傍の位置に伝播させる処理を行う。スコアを伝播させる処理により、新たに作成された位置スコア対応関係情報は、更新されることになる。状態予測手段321は、この処理を行った位置スコア対応関係情報を観測情報反映手段322に入力する。
 ここで、移動モデルの具体例を説明する。移動モデルは、位置スコア対応関係情報におけるスコアを近傍の位置に伝播させる態様を規定したルールである。図4および図5は、移動モデルの具体例を示す説明図である。ここでは、位置スコア対応関係情報は、個々のセルの座標とスコアとを対応付けた情報の集合であるものとする。図4および図5では、位置スコア対応関係情報をマップとして図示している。
 図4(a)は、1つの時間ステップ毎に、位置スコア対応関係情報において着目しているセル71のスコアを、その上下左右の各セルに伝播させるという移動モデルを模式的に表している。なお、図4では、スコアの伝播元となるセルを散点模様で示し、スコアの伝播先のセルを薄い斜線で図示している。図4(a)に示す移動モデルは、前時刻にあるセルに存在した移動体は、マップ上において上下左右方向に隣接するセルに移動し得るという観点で定められた移動モデルである。図4(a)に例示する移動モデルが定められている場合、状態予測手段321は、前時刻の位置スコア対応関係情報から複製した位置スコア対応関係情報において、セルのスコアを上下左右のセルに伝播させる処理を行い、位置スコア対応関係情報を更新する。
 なお、位置スコア対応関係情報において、各セルには、移動体が存在する可能性の高さを示すスコアが定められている。状態予測手段321は、各セルに着目してスコアを伝播させる。すなわち、個々の全てのセルに関してスコアを伝播させる。このとき、一つのセルには、複数のセルからスコアが伝播することになるが、状態予測手段321は、複数のセルからのスコアの伝播先となるセルに関しては、伝播元の各セルのスコアの最大値を新たなスコアとして定める。この点は、図4(a)以外の他の動作モデルが定められている場合でも同様である。
 また、図4(b)は、1つの時間ステップ毎に、着目しているセル71のスコアを、縦、横、斜め方向のn個先のセルまで伝播させるという移動モデルを模式的に表している。このような移動モデルが定められていてもよい。
 あるいは、前時刻における移動体の移動方向や移動速度をパラメータとし、移動体の移動方向に対してスコアを伝播させる移動モデルを定めておいてもよい。図5(a),(b)は、着目しているセル71のスコアを、進行方向のセル72に伝播させ、着目しているセル71の周囲のセルのうち、進行方向に該当しないセルに関しては、スコアを低下させる移動モデルを模式的に表している。図5(a)は、移動体の移動速度が遅い場合の例であり、図5(b)は、移動体の移動速度が速い場合の例を示している。進行方向のセル72の範囲は、移動体の移動方向および移動速度に応じて、予め定めておけばよい。また、図5(b)に示すように、速度が速い場合には、進行方向のセル72の範囲を広げればよい。
 また、追跡領域50内に障害物が存在する場合、予め障害物が存在する座標を状態予測手段321が記憶しておき、障害物が存在する位置には移動不可能として、スコアを伝播させないようにしてもよい。あるいは、障害物が存在する領域に対し、移動体が障害物を越えて移動する際に余分にかかる時間をコストとして設定しておき、状態予測手段321は、このコストを移動モデルに加味してスコアを伝播させるようにしてもよい。
 観測情報反映手段322には、位置情報入力部1から位置情報として、移動体の位置座標およびその位置座標の検出時刻の組が入力される。また、ID情報入力部2からID情報として、移動体のIDと、そのID情報入力部2のID情報入力部番号と、そのIDの検出時刻との組が入力される。さらに、観測情報反映手段322には、状態予測手段321から、スコアを伝播させる処理を行った後の位置スコア対応関係情報が入力される。この位置スコア対応関係情報は、移動体のID毎に観測情報反映手段322に入力される。
 観測情報反映手段322は、入力された位置スコア対応関係情報に、現時刻の位置情報およびID情報を反映させる。この処理について説明する。
 まず、位置スコア対応関係情報にID情報を反映させる処理について説明する。
 観測情報反映手段322は、予めID情報入力部番号に対応するID検知領域を記憶しておく。ID検知領域は、ID情報入力部2が移動体のIDを所定の確率以上の検出確率で検出するとみなすことができる領域として予め定められた領域である。ID検知領域は、例えば、予め動線検出システムの管理者によって定められる。所定の確率以上の検出確率でIDを検出する領域として厳密にID検知領域を定義することは困難であるので、ID検知領域は、所定の確率以上の検出確率でIDを検出するとみなすことができる領域として、管理者等によって判断された領域であってよい。ID検知領域は、ID情報入力部2毎に(すなわち、ID情報入力部番号毎に)それぞれ予め定められる。
 観測情報反映手段322は、個々の移動体のIDに着目し、着目しているIDの位置スコア対応関係情報(状態予測手段321から入力された位置スコア対応関係情報)において、着目しているIDを検出したID情報入力部2のID情報入力部番号に対応するID検知領域のスコア増加量が他の領域のスコア増加量よりも大きくなるように、スコアを更新する。なお、IDを検出したID情報入力部2のID情報入力部番号は、ID情報入力部2から入力されるID情報に基づいて判断すればよい。すなわち、着目しているIDと組になるID情報入力部番号がID情報入力部2から入力されていれば、そのID情報入力部番号に対応するID検知領域のスコア増加量が他の領域のスコア増加量よりも大きくなるように、スコアを更新すればよい。なお、スコアの増加量は、負であってもよく、この場合であっても、着目しているIDを検出したID情報入力部2のID情報入力部番号に対応するID検知領域のスコア増加量が他の領域のスコア増加量よりも大きくなるようにすればよい。
 このスコアの更新の具体例を示す。例えば、追跡領域50内にID検出領域aとID検出領域bという2つのID検出領域が定義されているとする。また、移動体は2つ存在し、そのIDは、それぞれID1,ID2であるとする。また、ID情報入力部2から入力されたID情報が、ある時刻においてID検出領域aでID1のみを検出したという内容を表しているとする。この場合、例えば、ID1に関する位置スコア対応関係情報において、ID検出領域aに含まれるスコアのみ高くなるように更新し、他の領域に関してはスコアを変化させないようにすればよい。また、ID2は検出されていないので、ID2に関する位置スコア対応関係情報では、スコアを変化させない。
 また、観測情報反映手段322は、IDを検出したID検出領域に関しては、スコアに所定の値を加算し、IDを検出しなかった領域に関しては、その値よりも小さな値をスコアに加算してもよい。この場合、上記の例のように、IDを検出しなかった領域に関しては、スコアをそのまま保持させてもよい(すなわち、変化させなくてもよい)。また、IDを検出しなかった領域に関して、スコアを減算してもよい。
 あるいは、観測情報反映手段322は、IDを検出したID検出領域に関してスコアを変化させずにそのまま保持させ、IDを検出しなかった領域に関しては、スコアを減算したり、スコアを1以上の値で除算したりしてもよい。
 あるいは、観測情報反映手段322は、IDを検出したID検出領域に関しては、スコアに値を乗算し、IDを検出しなかった領域に関しては、その値よりも小さな値をスコアに乗算してもよい。この場合、IDを検出しなかった領域に関しては、スコアをそのまま保持させてもよく、また、スコアを1以上の値で除算してもよい。
 また、ID情報に基づいて、IDを検出したID検出領域等のスコアを変化させる上記のような各種の演算において、IDの検出誤差を考慮してスコアの演算を行うために、予め定義しておいた係数や、または、IDの検出状況によって動的に決定される係数を用いてスコアを演算してもよい。例えば、ID検出領域の境界付近では、ID検出領域の中心部に比べ、IDの過検出や検出漏れが起こりやすい。そのため、ID検出領域内であっても、ID検出領域の中心部と、ID検出領域の境界付近とで別々の係数を用いて、スコアの増加量に差をつけてもよい。あるいは、追跡領域50内に複数のID情報入力部2が存在し、複数のID検出領域が定義されている場合、誤検知を起こしやすいID検出領域におけるスコア増加量は少なくし、誤検知を起こしにくいID検出領域におけるスコア増加量は多くなるようにして、スコア増加量に差を付けてもよい。
 次に、位置スコア対応関係情報に位置情報を反映させる処理について説明する。
 観測情報反映手段322は、各IDの位置スコア対応関係情報(状態予測手段321から入力された位置スコア対応関係情報)それぞれについて、位置情報入力部1から入力された位置座標に対応するスコアの増加量が他の領域のスコアの増加量よりも高くなるように、スコアを更新する。入力された位置座標に対応するスコアの増加量が、他の領域のスコアの増加量よりも高くなるようになるのであれば、スコアの増加量は負であってもよい。
 このスコアの更新の具体例を示す。移動体が2つ存在し、そのIDは、それぞれID1,ID2であるとする。また、位置情報入力部1から入力された位置情報が、ある時刻において(x1,y1)と(x2,y2)という2つの位置座標を検出したという内容を表しているとする。この場合、観測情報反映手段322は、ID1の位置スコア対応関係情報において、(x1,y1)と(x2,y2)におけるスコアの増加量が他の領域のスコアの増加量よりも高くなるように、スコアを更新する。ID2の位置スコア対応関係情報に関しても同様に、(x1,y1)と(x2,y2)におけるスコアの増加量が他の領域のスコアの増加量よりも高くなるように、スコアを更新する。
 観測情報反映手段322は、検出された位置座標の領域に関しては、スコアに所定の値を加算し、その他の領域に関しては、その値よりも小さな値をスコアに加算してもよい。また、検出された位置座標の領域以外の領域に関して、スコアを変更せずにそのまま保持させたり、または、スコアを減算してもよい。
 あるいは、観測情報反映手段322は、検出された位置座標の領域に関してスコアを変化させずにそのまま保持させ、他の領域に関しては、スコアを減算したり、スコアを1以上の値で除算したりしてもよい。
 あるいは、観測情報反映手段322は、検出された位置座標の領域に関して、スコアに1より大きな値を乗算し、他の領域に関しては、その値よりも小さな値をスコアに乗算してもよい。この場合、検出された位置座標の領域以外の領域に関して、スコアをそのまま保持させてもよく、また、スコアを1以上の値で除算してもよい。
 また、検出された位置座標に基づいてスコアを変化させる上記のような各種演算において、位置座標の検出誤差を考慮してスコアの演算を行うために、予め定義しておいた係数や、または、検出された位置座標によって動的に決定される係数を用いてスコアを演算してもよい。例えば、位置座標の検出誤差が予め定まっている場合には、検出された位置座標を中心にして検出誤差も考慮した領域に関して、他の領域よりもスコアの増加量が大きくなるようにスコアを変化させてもよい。あるいは、追跡領域50内の特定の位置で誤検出を起こしやすい場合は、その位置で検出した移動体の位置座標に関しては、その周囲も含む広範囲の領域でスコアを変化させるようにし、そのときのスコアの増加量は、他の位置で検出された位置座標におけるスコア増加量より小さくなるようにすればよい。
 観測情報反映手段322は、状態予測手段321から入力された各移動体のID毎の位置スコア対応関係情報に対してスコアを変化させる処理を行った後、IDと、位置スコア対応関係情報と、位置情報またはID情報から得た検出時刻(現時刻)とを対応付けた状態情報として状態記憶部31に記憶させる。観測情報反映手段322は、ID毎に状態情報を状態記憶部31に記憶させる。
 図6は、動線特定手段33の構成例を示すブロック図である。動線特定手段33は、確定状態選択手段331と、確定状態反映手段332と、移動体位置検出手段333とを含む。
 確定状態選択手段331は、状態記憶部31より、現時刻から過去一定時間の間に生成された各IDの状態情報を取得する。確定状態選択手段331は、その状態情報の中から、動線を導出する対象となる移動体のIDを含む状態情報を抽出する。このIDの状態情報として、各時刻の状態情報が抽出されることになる。確定状態選択手段331は、そのIDの各時刻における状態情報のうち、確定的な時点の状態情報を選択する。
 このとき、確定状態選択手段331は、所定の基準に基づいて、追跡領域50内の各位置のスコアが確定的であると言える状態情報を判定する。その状態情報が示す時刻が、確定的な時点である。また、追跡領域50内の各位置のスコアが確定的であると言える状態情報を確定状態情報と呼ぶこととする。確定状態情報を判定するための上記の基準として、例えば、「最新時刻に生成された状態情報を確定状態情報とする」という基準を採用してもよい。最新時刻に生成された状態情報に含まれている位置スコア対応関係情報では、より多くの有効な位置座標およびIDの観測結果に基づいて追跡領域内の各位置のスコアが更新されている。すなわち、最新時刻の位置スコア対応関係情報では、動線導出に有効なより多くの観測情報が各位置のスコアに反映されている。そのため、その状態情報に含まれている位置スコア対応関係情報は、動線導出時点において、スコアが確定的であると考えることができる。よって、確定状態選択手段331は、上記の基準に基づいて、最新時刻に生成された状態情報を確定状態情報と判定してもよい。
 また、確定状態情報を判定するための基準として、「移動体の位置座標およびIDが両方とも検出された時刻における状態情報を確定状態情報とする」という基準を採用してもよい。移動体の位置座標およびIDが検出された時刻では、位置座標およびIDが検出されなかった時刻よりも、追跡領域内の各スコアにより顕著なピークが現れる。従って、確定状態選択手段331は、移動体の位置座標およびIDが両方とも検出された時刻を確定的な時点とし、その時刻における状態情報を確定状態情報として判定してもよい。
 確定状態反映手段332は、確定的な時点の直近の不確定な時点を辿りながら、不確定な時点における位置スコア対応関係情報が示すスコアを修正する。なお、最新時刻を確定的な時点とした場合には、確定状態反映手段332は、確定的な時点から、過去に向かって、不確定な時点を順次辿る。また、移動体の位置座標およびIDが両方とも検出された時刻を確定的な時点とした場合には、確定状態反映手段332は、確定的な時点を始点として、未来および過去それぞれに向かって不確定な時点を順次辿ればよい。
 確定状態反映手段332は、確定的な時点の直近の不確定な時点における位置スコア対応関係情報を修正する場合、まず、確定的な時点の位置スコア対応関係情報に関して、移動モデルに従って各位置のスコアを伝播させる。この処理は、状態予測手段321がスコアを伝播させる処理と同様であり、確定状態反映手段332は、確定的な時点の位置スコア対応関係情報の複製を作成し、その複製において、各位置のスコアを近傍に伝播させる処理を実行すればよい。
 確定状態反映手段332は、スコアを近傍に伝播させる処理を行った位置スコア対応関係情報を、直近の不確定な時点における位置スコア対応関係情報に反映させる。スコアを伝播させる処理後の位置スコア対応関係情報(確定的な時点の位置スコア対応関係情報)を、直近の不確定な時点における位置スコア対応関係情報に反映させるには、確定状態反映手段332は、例えば、確定的な時点の位置スコア対応関係情報における各セルのスコアを、直近の不確定な時点の位置スコア対応関係情報における対応するセルのスコアにそのまま加算したり、あるいは、乗算したりすればよい。また、確定状態反映手段332は、例えば、確定的な時点の位置スコア対応関係情報における各セルのスコアに係数を乗じ、その結果を、直近の不確定な時点の位置スコア対応関係情報における対応するセルのスコアに加算したり、あるいは、乗算したりしてもよい。
 確定状態反映手段332は、上記の演算が行われた不確定な時点の位置スコア対応関係情報を、確定的な時点の位置スコア対応関係情報として、順次、同様の処理を繰り返していく。
 ある不確定な時点の位置スコア対応関係情報のみでは、どの位置に、どのIDに対応する移動体が存在するのかを一意に決定できない場合がある。このような場合であっても、上記のように、確定的な時点の位置スコア対応関係情報を不確定な時点における位置スコア対応関係情報に反映させることで、不確定な時点におけるスコアのピークがより顕著になるようにすることができる。その結果、どの位置に、どのIDに対応する移動体が存在するのかをより正確に、一意に決定できるようになる。
 移動体位置検出手段333は、確定状態反映手段332による処理後の各時刻における位置スコア対応関係情報から、各時刻における移動体の位置を検出する。本実施形態では、移動体位置検出手段333は、各時刻における位置スコア対応関係情報から、移動体の位置として、スコアがピークとなる位置を検出する。スコアがピークとなる位置を検出する態様は、例えば、スコアが最大となる位置を検出する態様であってもよい。また、スコアが一定値以上となっている各位置の重心位置を検出する態様であってもよい。移動体位置検出手段333は、ある時刻の位置スコア対応関係情報から検出した位置が、着目しているIDの移動体のその時刻における存在位置であると定める。移動体位置検出手段333は、時刻毎に、位置スコア対応関係情報からスコアがピークとなる位置を検出し、時系列順のその位置の情報を動線とする。この結果、確定状態選択手段331に選択されたIDに対応する移動体の動線が求められる。
 また、状態更新手段32と動線特定手段33の動作のタイミングについては、状態更新手段32と動線特定手段33が同期し、状態更新手段32が各IDの状態情報を生成するたびに動線特定手段33が動線を特定してもよい。あるいは、状態更新手段32と動線特定手段33とがそれぞれ非同期に動作し、状態更新手段32は位置情報およびID情報が入力されるたびに処理を行い、動線特定手段33は位置情報およびID情報の入力周期とは関係なく、異なる周期で動線検出処理を行ってもよい。あるいは、動線特定手段33は、周期的にではなく、必要となった時点で非周期的に動線検出処理を行ってもよい。例えば、動線検出システムの管理者によって、動線を検出する旨の指示が入力されたときに動線検出処理を行ってもよい。
 第1の実施形態において、状態更新手段32(状態予測手段321および観測情報反映手段322)と、動線特定手段33(確定状態選択手段331、確定状態反映手段332および移動体位置検出手段333)は、例えば、動線検出プログラムに従って動作するコンピュータのCPUによって実現される。この場合、コンピュータのプログラム記憶装置(図示せず)が動線検出プログラムを記憶し、CPUがそのプログラムを読み込み、プログラムに従って、状態更新手段32(状態予測手段321および観測情報反映手段322)と、動線特定手段33(確定状態選択手段331、確定状態反映手段332および移動体位置検出手段333)として動作すればよい。また、状態更新手段32と、動線特定手段33とが、それぞれ別のハードウェアで実現されていてもよい。状態予測手段321、観測情報反映手段322に関しても、別のハードウェアで実現されていてもよい。確定状態選択手段331、確定状態反映手段332および移動体位置検出手段333に関しても、別のハードウェアで実現されていてもよい。
 次に、動作について説明する。
 図7および図8は、第1の実施形態の動線検出部3の処理経過の例を示すフローチャートである。以下、図9から図16までの具体例を示しつつ、第1の実施形態の処理経過の例を説明する。
 図9は、スコアを定義するためのセルとして追跡領域50をグリッド分割して定めたセルの例を示す説明図である。図9では、追跡領域50に設置した2つのID情報入力部2a,2bの位置も示している。便宜上、この追跡領域50のマップの左下を原点(0,0)とし、マップ上の任意の位置座標をp(x,y)という書式で表すこととする。また、マップ上の任意のセルの座標をc(m,n)という書式で表すこととする。セルの分割数は任意に設定してよいが、この例ではx軸方向に0~11,y軸方向に0~7の範囲で値を取るとする。本例では、ID情報入力部2a,2bは、それぞれ、c(0,7),c(11,0)に配置されている。また、各ID情報入力部2a,2bには予めそれぞれID検出領域を定義しておく。本例では、c(0,5)を左下とし、c(2,7)を右上とする矩形を、ID情報入力部2aのID検出領域Raとする。また、c(9,0)を左下とし、c(11,2)を右上とする矩形を、ID情報入力部2bのID検出領域Rbとする。
 図10は、追跡領域50内を移動する2つの移動体a,bについて、時刻t~t10における検出位置の例を表した図である。図10に示す例では、移動体aから検出された位置がp1a~p10aであり、移動体bから検出された位置がp1b~p10bであることを真の状態とする。また、移動体aがID1に、移動体bがID2にそれぞれ対応付けられることを真の状態とする。また、図10において、p5a,p6aおよびp5b,p6bが記載されていないことは、時刻t,tで位置座標が検出されなかったことを表している。なお、p1a~p10aやp1b~p10bにおいて、添え字の番号は時刻t~t10のどの時刻で検出されたかを表し、添え字のaまたはbは、移動体a,bのどちらから検出されるものかを表している。
 図11は、時刻t~t10の間におけるID情報入力部毎のID検出の有無を表している。本例では、ID情報入力部2aが時刻t,tに“ID1”および“ID2”を検出し、ID情報入力部2bが時刻t10に“ID1”を検出したことを表している。また、図11において、空欄となっている部分は、移動体のIDが検出されなかったことを表している。また、本例では、移動体がID検出領域Ra,Rb内に存在する場合は確実にIDが検出され、移動体がID検出領域外に存在する場合は全くIDが検出されていない場合を示している(図10,図11参照)。しかし、移動体のIDを確実に検出できる領域と、全く検出できない領域との境界を厳密に定義してID検知領域を定めることは困難であるため、移動体のIDの検知漏れや過検知が発生してもよい。
 上述のように、図10に示す移動体の検出位置の符号に付与した添え字の番号は、その検出位置の検出時刻を表している。図10、図11に示す例では、例えば、時刻tにおいて、位置情報入力部1(図10において図示せず)が位置座標p1a,p1bを検出し、ID情報入力部2aがID1,ID2を検出したものとする。また、例えば、時刻t10において、位置情報入力部1がp10a,p10bを検出し、ID情報入力部2bがID1を検出したものとする。
 図12から図15は、それぞれ、位置スコア対応関係情報のスコアを更新していく状況の具体例を示す説明図である。図12から図15では、位置スコア対応関係情報をセルのマップとして模式的に表し、各セルのスコアを、図面において模様で区別している。図16は、図12から図15において示したセルのスコアの値を示す説明図である。図16に示すように、白色のセルはスコアが0以下であることを表しているが、図12から図15に示す位置スコア対応関係情報において、白色のセルのスコアは負の値になっているものとする。
 次に、具体的な処理の流れを説明する。
 まず、状態更新手段32は、ID情報入力部2からID情報(すなわち、移動体のIDと、ID情報入力部番号と、そのIDの検出時刻との組)を取得する(ステップS1)。本例では、現時刻が、図11に示した時刻t10であるとする。この場合、状態更新手段32は、ID情報入力部2から{“ID1”,“ID情報入力部2b”,“t10”}というID情報が入力される。なお、“ID情報入力部2b”は、ID情報入力部番号であるものとする。
 次に、状態更新手段32は、位置情報入力部1から位置情報(すなわち、移動体の位置座標と、その位置座標の検出時刻との組)を取得する(ステップS2)。時刻t10では、図10に示したように、{“p10a”,“t10”}、{“p10b”,“t10”}という位置情報が入力される。
 なお、図3では、状態更新手段32の観測情報反映手段322にID情報および位置情報が入力される場合を示したが、状態予測手段321が位置情報を参照でき、観測情報反映手段322がID情報および位置情報を参照することができれば、状態予測手段321と観測情報反映手段322のどちらにID情報および位置情報が入力されてもよい。
 次に、状態更新手段32の状態予測手段321は、状態記憶部31から、状態記憶部31に記憶してある状態情報のうち、最新時刻の状態情報(すなわち、現時刻から1つ前の時刻に生成された状態情報)を取得する(ステップS3)。既に説明したように、状態情報は、時刻と、移動体のIDと、その時刻におけるその移動体に関する位置スコア対応関係情報との組である。
 ステップ3では、状態予測手段321は、状態記憶部31に記憶されている各状態情報の時刻を調べ、時刻が最も遅い状態情報群を選択し、状態記憶部31から読み込めばよい。本例では、状態予測手段321は、前時刻tに生成された状態情報群を読み込む。
 状態更新手段32では、状態記憶部31から取得した前時刻の状態情報群について、スコアの状態を更新した現時刻(t10)の状態情報を作成していないもの(具体的にはステップS5~S7の処理が行われていないもの)があるか否かを判定する(ステップS4)。
 スコアを更新した現時刻の状態情報が作成されていない前時刻の状態情報がある場合(ステップS4のYes)、状態予測手段321は、ステップS3で読み込んだ前時刻の状態情報群から、その未処理の状態情報を1つ選択する。ここでは、ID1の状態情報が選択されたとする。なお、ステップS4の判定と、この選択を行う手段が、状態更新手段32において状態予測手段321とは別に設けられ、その手段が、選択した状態情報を状態予測手段321に入力してもよい。
 状態予測手段321は、選択した状態情報の時刻から現時刻までの経過時間を算出し、予め定義してある移動体の移動モデルに基づいてスコアの伝播範囲を決定し、選択した状態情報に含まれる位置スコア対応関係情報におけるスコアを伝播させることで現時刻のスコアの状態を予測する(ステップS5)。本例では、現時刻がt10であるので、現時刻の1つ前の時刻である時刻tに生成されたID1の位置スコア対応関係情報(図12(a)参照)におけるスコアを伝播させる。ステップS5において、状態予測手段321は、選択した状態情報に含まれる位置スコア対応関係情報にスコアを上書きするのではなく、選択した状態情報に含まれる位置スコア対応関係情報の複製を作成し、複製した各位置スコア対応関係情報において、予め定められた移動モデルに従って、スコアを近傍の位置に伝播させる処理を行う。この結果、前時刻の位置スコア対応関係情報はそのまま残し、新たに現時刻の位置スコア対応関係情報を作成していくことになる。
 スコアを伝播させる処理について説明する。本例では、1つの時間ステップ毎に、各セルのスコアを、隣接する上下左右のセルに伝播させるという移動モデル(図4(a)参照)が定められているとする。なお、位置情報入力部1およびID情報入力部2がそれぞれ位置座標やIDを検出して状態更新手段32に入力する周期を1つの時間ステップとする。従って、本例において、状態予測手段321は、時刻tで各セルに設定されているスコアを、上下左右の隣接するセルのスコアとして設定し、そのようにスコアを伝播させた結果を時刻t10における各位置のスコアの予測結果(位置スコア対応関係情報の予測結果)とする。また、状態予測手段321は、個々の全てのセルに関してスコアを上下左右のセルに伝播させる。このとき、各セルには、隣接する上下左右のセルからそれぞれスコアが伝播されることになるので、1つのセルに対して4つのスコアが伝播することになるが、状態予測手段321は、そのうち最も値が大きいスコアをそのセルのスコアとして設定する。
 なお、移動モデルは、上記の移動モデルに限定されず、例えば、追跡対象とする移動体の移動特性に応じて適宜定義してよい。
 移動モデルに基づいて、時刻tにおける各セルのスコアを伝播させる処理によって作成した時刻t10における位置スコア対応関係情報の予測結果を、図13(a)に示す。なお、図12(a),図13(a)は、ともに、選択したID1に関するものである。後述の図14(a),図15(a)も、同様に、ID1に関するものである。
 状態予測手段321は、ステップS5で生成した現時刻の位置スコア対応関係情報の予測結果(図13(a)参照)を観測情報反映手段322に入力する。具体的には、位置スコア対応関係情報の予測結果と、前時刻と、選択しているID(ここではID1)との組(すなわち、状態情報)を観測情報反映手段322に入力する。
 観測情報反映手段322は、状態予測手段321に予測された現時刻の位置スコア対応関係情報と、ID情報入力部2から入力されたID情報と、位置入力部1から入力された位置情報とを用いて、予測された現時刻の位置スコア対応関係情報を更新する。ここでは、観測情報反映手段322は、状態予測手段321から入力された位置スコア対応関係情報の予測結果に上書きして更新する。
 観測情報反映手段322は、まず、状態予測手段321に予測された現時刻の位置スコア対応関係情報を、ID情報入力部2から入力された現時刻のID情報に基づいて更新する(ステップS6)。ステップS1では、現時刻であるt10に観測されたID情報として、{“ID1”,“ID情報入力部2b”,“t10”}が入力されている。このID情報は、時刻t10に、ID情報入力部2bが“ID1”を検出したことを意味している。
 ステップS6で、観測情報反映手段322は、ID情報入力部2から取得したID情報に基づき、移動体のIDを検出したID情報入力部2について定められたID検出領域に該当するセルのスコアにおけるスコア増加量が他のセルのスコア増加量よりも大きくなるように、状態予測手段321に予測された現時刻の位置スコア対応関係情報を更新する。本例では、観測情報反映手段322は、図13(a)に示す位置スコア対応関係情報において、ID情報検出装置2bに対応するID検出領域Rbに該当するセルに対して、スコアを0.3加算し、それ以外の領域はスコアをそのままにしておく。この演算の結果、図13(a)に示す位置スコア対応関係情報は、図14(a)に示すように更新される。図14(a)に示すように、ID検出領域Rbに該当するセルのスコアは、図13(a)に示す場合よりも大きな値となり、他のセルのスコアは、図13(a)に示す場合と同じである。
 次に、観測情報反映手段322は、ステップS6の処理後の位置スコア対応関係情報(図14(a)参照)を、位置情報入力部1から入力された位置情報に基づいて更新する(ステップS7)。ステップS2では、現時刻であるt10に観測された位置情報として、{“p10a”,“t10”}、{“p10b”,“t10”}が入力されている。観測情報反映手段322は、ステップS2で入力された現時刻の全ての位置情報を用いて、ステップS7の更新処理を行う。
 観測情報反映手段322は、位置情報入力部1から取得した位置情報に含まれる位置座標を用いて、各位置座標が追跡領域内のどのセルに含まれるかを判定する。本例では、観測情報反映手段322は、位置座標p10aを含むセルがc(9,1)であり、位置座標p10bを含むセルがc(10,7)であると判定する。
 観測情報反映手段322は、検出された位置座標に該当するセルのスコアにおけるスコア増加量が他のセルのスコア増加量よりも大きくなるように、位置スコア対応関係情報を更新する。本例では、観測情報反映手段322は、位置座標が検出されたセルc(9,1)およびc(10,7)のスコアをそのままにし、位置座標が検出されなかったその他のセルのスコアを0.3減算する。この演算の結果、図14(a)に示す位置スコア対応関係情報は、図15(a)に示すように更新される。
 また、観測情報反映手段322は、位置スコア対応関係情報を更新するほかに、状態情報に含まれている時刻を現時刻に更新する。なお、ここでは、観測情報反映手段322が状態情報に含まれている時刻を現時刻に更新する場合を示したが、状態情報に含まれている時刻を現時刻に更新する処理は、状態予測手段321が行ってもよい。例えば、状態予測手段321が、ステップS5でスコアを伝播させる処理を行った後、状態情報における時刻を現時刻に更新してもよい。
 観測情報反映手段322が、状態予測手段321から入力された状態情報に関して、位置スコア対応関係情報の更新処理(ステップS6,S7)を行うことで、選択されたID1に関する現時刻の状態情報が作成される。
 そして、状態更新手段32は、ステップS3で取得した状態情報群のうちID1に関して、現時刻の状態情報を作成済みとする。
 以上のステップS5~S7の処理が、1つのIDに関して、前時刻の状態情報に基づき現時刻の状態情報を作成する処理である。
 状態更新手段32は、ステップS7の後、再びステップS4に戻り、ステップS5~S7について未処理の状態情報が存在するか否かを判定する。本例では、ID2の状態情報が未処理であるので、このID2の状態情報について、ID1の場合と同様にステップS5~7の処理を行う。図12(b)は、前時刻tに生成されたID2の位置スコア対応関係情報の例である。ステップS5において、状態予測手段321が、この位置スコア対応関係情報が示す各セルのスコアを伝播させる処理を行うことで、図13(b)に示す位置スコア対応関係情報が得られる。これは、時刻t10における位置スコア対応関係情報の予測結果である。続いて、観測情報反映手段322がID情報に基づいて、位置スコア対応関係情報の予測結果の更新を行う(ステップS6)。この結果を、図14(b)に示す。本例では、現時刻t10でID2は検出されていないので、ID2に関しては、ステップS6による位置スコア対応関係情報の変更はない(図13(b)、図14(b)参照)。続いて、観測情報反映手段322は、ステップS6後の位置スコア対応関係情報を、位置情報に基づいて更新する(ステップS7)。すなわち、ID1の場合と同様に、位置座標が検出されたセルc(9,1)およびc(10,7)のスコアをそのままにし、位置座標が検出されなかったその他のセルのスコアを減算する。この結果を、図15(b)に示す。
 状態更新手段32は、ステップS7の後、再びステップS4に戻り、ステップS5~S7について未処理の状態情報がないと判定した場合(ステップS4のNo)、観測情報反映手段322は、ステップS5~S7の処理を繰り返してID毎に作成した現時刻の各状態情報を状態記憶部31に記憶させる(ステップS8)。各状態情報には、位置情報入力部1またはID情報入力部2から取得した位置情報またはID情報に含まれる検出時刻と、移動体のIDと、ステップS5~7の処理で作成した位置スコア対応関係情報が含まれる。
 次に、動線特定手段33の確定状態選択手段331は、状態記憶部31から、現時刻から過去一定時間分の各IDの状態情報を読み込む(ステップS9)。本例では、状態記憶部31に記憶されている全状態情報(時刻tから時刻t10までの状態情報)を読み込むものとして説明する。ただし、動線を特定しようとする時間範囲の指定を受け付け、確定状態選択手段331は、指定された時間範囲に該当する状態情報を読み込んでもよい。
 ステップS9の次に、確定状態選択手段331は、状態記憶部31から読み込んだ状態情報のうち、確定的な時点のスコアを不確定な時点のスコアに反映する処理(具体的にはステップS11~S14)が行われていないIDに関する状態情報群が存在するか否かを判定する(ステップS10)。本例では、状態記憶部31から読み込んだ状態情報には、ID1に関する状態情報群とID2に関する状態情報群が存在する。
 確定的な時点のスコアを不確定な時点のスコアに反映する処理が行われていないIDに関する状態情報群が存在する場合(ステップS10のYes)、確定状態選択手段331は、そのIDを一つ選択し、選択したIDに関する確定状態情報を選択する(ステップS11)。ここでは、IDとして、“ID1”を選択したものとする。また、「最新時刻に生成された状態情報を確定状態情報とする」という基準が予め定められていて、確定状態選択手段331は、その基準に従い、ID1の状態情報群から、最新時刻に生成された状態情報を確定状態情報として選択するもとする。よって、この場合、図15(a)に示す時刻t10の位置スコア対応関係情報を含むID1の状態情報を、確定状態情報として選択する。この結果、確定状態情報に含まれる時刻t10が、確定的な時点であり、他の時刻t1~t9が不確定な時点に該当する。
 ステップS11の次に、確定状態反映手段332は、選択された“ID1”の状態情報群のうち、不確定な時点における状態情報(以下、不確定状態情報と記す。)が存在するか否かを判定する(ステップS12)。
 不確定状態情報が存在する場合(ステップS12のYes)、確定状態反映手段332は、確定状態情報に含まれる位置スコア対応関係情報における各セルのスコアを伝播させる処理を行うことにより、確定的な時点(t10)に直近の不確定な時点(t)のスコアの状態を予測する(ステップS13)。スコアを伝播させる処理は、ステップS5と同様であり、確定状態反映手段332は、確定的な時点(t10)における位置スコア対応関係情報の複製を作成し、その複製した位置スコア対応関係情報において、予め定められた移動モデルに従って、スコアを近傍の位置に伝播させる処理を行う。この結果は、確定的な時点における位置スコア対応関係情報に基づいて予測された、直近の時刻の位置スコア対応関係情報である。
 次に、確定状態反映手段332は、確定的な時点に直近の不確定な時点(本例ではt)における状態情報を選択する。そして、その不確定状態情報に含まれる位置スコア対応関係情報に対して、ステップS13で予測したその時刻における位置スコア対応関係情報を反映させる(ステップS14)。ステップS14では、ステップS13で予測した位置スコア対応関係情報における各セルのスコアを、選択した不確定状態情報に含まれる位置スコア対応関係情報における対応する各セルのスコアに加算すればよい。あるいは、対応するセルのスコア同士を乗算してもよい。また、ステップS13で予測した位置スコア対応関係情報における各セルのスコアに重み係数を乗じてから、上記の加算または乗算を行ってもよい。この演算の結果を、確定的な時点に直近の不確定な時点における各セルのスコアとして、その不確定な時点における位置スコア対応関係情報を更新する。
 また、確定状態反映手段332は、ステップS14の処理を行った不確定な時点の状態情報を、確定状態情報とする。この結果、時刻tを、確定的な時点として扱う。
 ステップS14の後、動線特定手段33は、再びステップS12に戻り、選択された“ID1”の状態情報群のうち、不確定状態情報が存在するか否かを判定する。このとき、時刻t~tの状態情報が不確定状態情報に該当する。よって、確定状態反映手段332は、時刻tの位置スコア対応関係情報における各セルのスコアを伝播させる処理を行い、確定的な時点に直近の不確定な時点(t)のスコアの状態を予測する(ステップS13)。そして、確定状態反映手段332は、確定的な時点(t10,t)に直近の不確定な時点(t)における状態情報を選択し、その不確定状態情報に含まれる位置スコア対応関係情報に対して、ステップS13で予測したその時刻における位置スコア対応関係情報を反映させる(ステップS14)。そして、時刻tにおける状態情報を確定状態情報とする。
 以降、確定状態反映手段332は、不確定状態情報が存在しなくなるまで、同様に、ステップS13,S14の処理を繰り返す。
 選択しているIDである“ID1”に関する全ての状態情報が確定状態情報になると(ステップS12のNo)、再度ステップS10に移行する。そして、“ID2”に関してステップS11~S14の処理が行われていないので、ステップS11に移行し、確定状態選択手段331は、ID2を選択し、ID2に関する確定状態情報を選択する(ステップS11)。そして、ID1を選択した場合と同様に、ステップS12~S14の処理を繰り返し、確定的な時点のスコアを不確定な時点のスコアに反映していく。
 ID2に関する不確定状態情報がなくなると、再度ステップS10に戻る。そして、確定状態選択手段331が、ステップS11~S14の処理が行われていないIDはないと判定すると(ステップS10のNo)、移動体位置検出手段333は、各IDの状態情報群を用いて動線を特定する(ステップS15)。
 ステップS15において、移動体位置検出手段333は、ID毎に動線を特定する。このとき、どのIDの動線から特定していくかという順番を決定する方法として、ランダムにIDを選択していくという方法を用いてもよい。あるいは、現時刻から過去一定時間までのスコアのピークが最も強く現れている順にIDを選択して、動線を特定していってもよい。
 移動体位置検出手段333は、IDを選択した後、そのIDの各時刻における位置スコア対応関係情報を参照し、各時刻において、スコアのピークが現れているセルを検出する。移動体位置検出手段333は、ある時刻におけるスコアのピークが現れているセルを検出する場合、単純にスコアが最も高いセルを検出してもよい。あるいは、スコアが一定値(閾値)以上となっているセルの重心に該当するセルを、スコアがピークとなるセルとして検出してもよい。スコアのピークが現れているセルを検出する処理は、どの時刻から順番に行ってもよい。そして、移動体位置検出手段333は、選択したIDに対応する移動体が各時刻において、検出されたセルに存在していたと判定し、時刻とセル座標の位置座標との組み合わせをその移動体の動線を表す情報として定める(ステップS15)。
 従って、追跡領域をグリッドに分割したセルの位置座標によって動線を表すことになる。すなわち、動線の位置座標の分解能は、グリッド分割によって定められるセルの分解能に依存する。
 また、ステップS15において、現時刻から過去一定時間までのスコアのピークが最も強く現れているIDから順に選択して、動線を特定していく場合、後に生成される動線は、先に生成された動線のセル以外のセルを選択することが好ましい。このようにセルを選択することによって、動線の精度を向上させることができる。本例では、ID2に関しては、時刻t~t10のいずれの状態でも移動体a,bについて同じスコアのピークが現れている。この場合、先にID1に関して動線を特定し、ID2の動線を特定する際は、ID1で選択されたセル以外のセルを辿って動線を特定すればよい。
 そして、移動体位置検出手段333は、時刻順にセルの位置座標を連ねた動線を、ID毎に動線出力部4に表示させる(ステップS16)。このとき、移動体位置検出手段333は、各時刻において選択したセルの領域を時系列順に連ねた動線を表示させてもよい。あるいは、各時刻において選択したセルの重心位置を時系列順に連ねた動線を表示させてもよい。また、移動体位置検出手段333は、動線とともに、動線に対応するIDも動線出力部4に表示させる。
 仮に、単純に過去から現時刻に向かってスコアのピークを辿り動線を生成する場合、時刻tから時刻tまでの間でID1とID2の状態にはスコアに差が無いため、時刻t10になって初めてどちらの移動体にどのIDが割当てられるべきかを判定できるようになる。つまり、時刻tから時刻tまでの動線について、正しいIDを一意に特定し割当てることができない。しかし、本発明では、ステップS11で確定状態情報を選択し、確定的な時点のスコアを不確定な時点のスコアに反映させていく(ステップS13,S14)。この結果、時刻t1から時刻t9の間においても、ID1の位置スコア対応関係情報とID2の位置スコア対応関係情報とでスコアに差が生じ、精度よく動線を特定することができる。
 以上の説明は、状態更新手段32と動線検出手段33が同期して動作する場合の処理についてのものである。状態更新手段32と動線検出手段33が非同期に動作する場合は、状態更新手段32がステップS1~S8(図7参照)の処理を繰り返し行い、その処理とは非同期に、動線検出手段33がステップS9~S16の処理を繰り返し行えばよい。
 また、上記の実施形態では、追跡領域内に存在する全ての移動体からIDを検出できる場合について説明した。ただし、本実施形態では、IDを持たない移動体についても動線を検出できる。以下、IDを持たない移動体の動線を検出する手順について説明する。なお、以降より、IDを持たない移動体のことをunknown と呼び、このIDを持たない移動体の位置スコア対応関係情報を、unknown の位置スコア対応関係情報と呼ぶことにする。状態記憶部31には、時刻毎に、unknown の位置スコア対応関係情報を1つにまとめて記憶させておく。すなわち、unknown が複数存在していても、各時刻において、unknown の位置スコア対応関係情報は一つのみ用意すればよい。状態更新手段32の状態予測手段321は、状態記憶部31から前時刻に生成されたunknown の状態情報を取得する(ステップS3)。そして、状態予測手段321は、IDを持つ他の移動体と同様に移動体の移動モデルに従ってスコアを伝播させ、前時刻の位置スコア対応関係情報から現時刻の位置スコア対応関係情報を予測する(ステップS5)。そして、観測情報反映手段322は、IDの観測情報が存在しないためステップS6の処理を行わず、位置の観測情報を用いて状態を更新する(ステップS7)。次に、動線特定手段33は、IDを持つ全ての移動体の動線を検出した(ステップS10~S15)後に、unknown の動線検出処理を行う。具体的には、はじめに、IDを持つ移動体の位置スコア対応関係情報について、確定的な時点の位置スコア対応関係情報のスコアを不確定な時点の状態のスコアへ反映し(ステップS13,S14)、各時刻のスコアのピークを選択し、動線を生成する(ステップS15)。その後、移動体位置検出手段333は、unknown の各時刻の位置スコア対応関係情報でスコアのピークが現れているセル群うち、IDを持つ各移動体について各時刻に選択したセルを除外した残りのセル群が、各unknown の存在位置となると判定する。このセルを時系列に繋いでいくと、IDを持たない移動体の動線を生成できる。unknownの位置スコア対応関係情報から何個のピークを検出するかについては、予め定義した閾値を上回るスコアを持つセルをピークとして選択してもよいし、スコアの値が上位n個以内のセルをピークとして選択もよい。
 本実施形態によれば、状態更新手段32が状態記憶部31から前時刻に生成された状態情報を取得し、この状態情報と移動体の移動モデルおよび位置とIDの観測情報に基づいて、現時刻の状態情報を作成し、状態記憶部31に記憶させる。さらに、動線特定手段33が状態記憶部31より現時刻から過去一定時間分の状態情報を取得し、IDで識別される移動体の存在位置が確定的な時点から不確定な時点へスコアを反映させて動線を生成する。
 このように、センサ(位置情報入力部1およびID情報入力部2)に観測された位置情報及びID情報を、追跡領域の各位置に存在する可能性の高さをスコアとして表した状態へと変換して記憶しておくことにより、追跡の途切れが頻発した場合でも、過去に観測されたセンサ情報(位置情報およびID情報)はスコアに反映されているため、ロバストに動線を検出することができる。また、各移動体の動線は、あるIDに関する状態情報群について各時刻のスコアのピークを辿るだけで一意に決定することができるため、現時刻から過去一定時間の間に検出した位置情報とID情報の全通りの組合せを動線仮説として生成し、各仮説について尤もらしさを算出して動線を推定する必要がない。ゆえに、本実施形態によれば、追跡対象となる移動体の数が増加しても、動線仮説となる組合せ数が増加しないため、本発明では、計算量の急峻な増加はなく、実時間処理が可能になる。
実施形態2.
 第2の実施形態は、スコアが設定される追跡領域50内の分割領域(例えば、セル)の分解能を、固定とするのではなく、可変とする実施形態である。
 図17は、本発明の第2の実施形態の動線検出システムの例を示すブロック図である。第2の実施形態の動線検出システムは、位置情報入力部1と、ID情報入力部2と、動線検出部3bと、動線出力部4とを備える。位置情報入力部1、ID情報入力部2および動線出力部4は、第1の実施形態と同様であり、詳細な説明を省略する。
 また、動線検出部3bは、状態更新手段32bと、状態記憶部31と、動線特定手段33とを備える。状態記憶部31は、第1の実施形態と同様であり、詳細な説明を省略する。
 図18は、第2の実施形態における状態更新手段32bの構成例を示すブロック図である。状態更新手段32bは、分解能制御手段323と、状態予測手段321bと、観測情報反映手段322bとを含む。状態予測手段321bおよび観測情報反映手段322bは、第1の実施形態における状態予測手段321および観測情報反映手段322と同様である。
 分解能制御手段323は、位置情報入力部1から入力される各移動体の位置座標に関する距離を計算する。そして、分解能制御手段323は、その距離に応じて分割領域の分解能を制御する。すなわち、分解能制御手段323は、追跡領域50(図1参照)の分割領域の大きさを変化させるように、追跡領域50を分割した領域を定め直し、定め直した各領域に対して、それぞれスコアを設定し直す。
 以下、説明を簡単にするために、追跡領域50を図9に例示するようなセルにグリッド分割する場合を例にして説明する。分解能を高くする場合には、セルの大きさ(例えば、各辺の長さ)を小さくするようにして、セルを設定し直し、分解能を低くする場合には、セルの大きさを大きくするようにして、セルを設定し直す。
 ここで、追跡対象となる移動体間距離が短くなった場合、高い分解能で位置スコア対応関係情報を生成しなければ、移動体を分離してスコアのピークを検出することができない。ゆえに、分解能制御手段323は、動線特定手段33が移動体を分離して動線検出できるように、各時刻の各移動体間の距離に応じて位置スコア対応関係情報における分解能を制御する。
 例えば、位置スコア対応関係情報が、二次元座標で表されたセルとスコアとの対応関係を表しているとする。分解能制御手段323は、位置情報検出手段1から入力される各移動体の位置情報のうち2つを選択し、選択した各位置情報に含まれる位置座標間のx軸方向の距離およびy軸方向の距離を計算する。同様に、分解能制御手段323は、2つの位置情報の組み合わせをそれぞれ順次、選択し、それぞれの組み合わせ毎に、位置座標間のx軸方向の距離およびy軸方向の距離を計算する。分解能制御手段323は、全ての2点間の組合せについてx軸方向の距離およびy軸方向の距離を計算した結果、それらの距離のうち、最も短い距離よりも、分解能を高くするようにセルの大きさを定め直すことで、移動体の位置を確実に分離して、位置スコア対応関係情報を生成することができる。最も短い距離よりも、分解能を高くするということは、例えば、その最も短い距離よりも、セルの一辺の長さを短く設定するということである。
 また、移動体同士のすれ違い時など、一時的に移動体間の距離が0に近づく場合がある。この時、毎時刻の移動体間の距離の計算結果を用いて分解能を変更していると、移動体同士が接近する度に限りなく高い分解能の位置スコア対応関係を生成しなくてはならなくなる。そのため、1つの時間ステップで計算した距離を用いて分解能を変更するのではなく、分解能を高く更新する場合(分割領域を小さく場合)は、前時刻の分解能よりも移動体間の最短距離が短いという状態が、一定時間以上継続したことを条件に、分解能を高く更新するようにし、分解能を低く更新する場合(分割領域を大きくする場合)は、前時刻の分解能よりも移動体間の最短距離が長いという状態が、一定時間以上継続したことを条件に、分解能を低く更新してもよい。
 分解能制御手段323は、位置情報入力部1から取得した位置情報を用いて現時刻に使用する分解能を決定すると、状態記憶部31から取得した前時刻の状態情報群の分解能を、決定した分解能に更新する。分解能制御手段323は、前時刻における状態情報群に含まれている各位置スコア対応関係情報におけるスコアに基づいて、新たな分解能の各セルのスコアを定めることによって、前時刻の位置スコア対応関係情報を現時刻の分解能に合わせて更新した位置スコア対応関係情報を作成する。この処理は、前時刻の位置スコア対応関係情報の分解能を更新する処理であるということができる。なお、分解能の更新処理では、前時刻の位置スコア対応関係情報を上書きして更新するのではなく、前時刻の位置スコア対応関係情報を現時刻の分解能に合わせた位置スコア対応関係情報を新規に作成する。分解能制御手段323は、この位置スコア対応関係情報を、状態予測手段321bに入力し、その位置スコア対応関係情報に対して、状態予測手段321bおよび観測情報反映手段322bが処理を行うことにより、現時刻の位置スコア対応関係情報が完成する。なお、分解能を変化させないと判定した場合には、分解能制御手段323は、前時刻の位置スコア対応関係情報の複製を作成し、その複製を状態予測手段321bに入力すればよい。
 分解能制御手段323は、前時刻の位置スコア対応関係情報を現時刻の分解能に合わせて更新した位置スコア対応関係情報を作成すると、その前時刻の状態情報に含まれる時刻(すなわち前時刻)およびIDと組み合わせた状態情報として、状態予測手段321bに入力する。このように、位置スコア対応関係情報は、時刻およびIDとともに状態情報として状態予測手段321bに入力される。このとき、分解能制御手段323は、位置情報入力部1から入力された現時刻における各位置情報も状態情報とともに、状態予測手段321bに入力する。
 状態予測手段321bは、分解能制御手段323から、状態情報および移動体の位置情報が入力されると、状態情報に含まれる位置スコア対応関係情報のスコアを、移動モデルに従って伝播させる処理を行う。この処理は、第1の実施形態における状態予測手段321の処理と同様であり、現時刻における位置スコア対応関係情報を予測する処理であるということができる。状態予測手段321bは、スコアを伝播させる処理を行った位置スコア対応関係情報を含む状態情報と、移動体の位置情報とを観測情報反映手段322bに入力する。
 観測情報反映手段322bには、ID情報入力部2から現時刻のID情報が入力される。観測情報反映手段322bは、この現時刻のID情報と、様態予測手段321bから入力された状態情報および現時刻の位置情報をと用いて、現時刻の状態情報を作成し、状態記憶部31に記憶させる。すなわち、観測情報反映手段322bは、入力された状態情報に含まれる位置スコア対応関係情報に、現時刻のID情報および現時刻の位置情報を反映させる。この処理は、第1の実施形態における観測情報反映手段322の処理と同様である。観測情報反映手段322bは、現時刻のID情報、位置情報を反映した位置スコア対応関係情報を含む状態情報を、現時刻の状態情報として状態記憶部31に記憶させる。
 図18では、分解能制御手段323に位置情報が入力され、観測情報反映手段322bにID情報が入力される場合を示したが、分解能制御手段323、状態予測手段321bが位置情報を参照でき、観測情報反映手段322bが位置情報およびID情報を参照することができれば、位置情報およびID情報は状態更新手段32bのどの手段に入力されてもよい。
 動線特定手段33は、第1の実施形態と同様に、確定状態選択手段331と、確定状態反映手段332と、移動体位置検出手段333とを含む。これらの各手段は、第1の実施形態と同様である。従って、確定状態反映手段332は、確定的な時点の位置スコア対応関係情報に関して、移動モデルに従って各位置のスコアを伝播させ、その処理後の、位置スコア対応関係情報を、直近の不確定な時点における位置スコア対応関係情報に反映させる。ただし、第2の実施形態では、この位置スコア対応関係情報間で分解能が異なる場合がある。この場合、確定状態反映手段332は、スコアを伝播させる処理後の位置スコア対応関係情報を、直近の不確定な時点における位置スコア対応関係情報に反映させる処理を、分解能の違いに応じた方法で行う。
 動線特定手段33に関して、その他の点は第1の実施形態と同様であり、動線特定手段33は、現時刻から過去一定時間の間に生成された各IDの状態情報を状態記憶部31から取得し、IDごとの動線を特定する。
 第2の実施形態において、状態更新手段32b(状態予測手段321b、観測情報反映手段322b、分解能制御手段323)と、動線特定手段33(確定状態選択手段331、確定状態反映手段332および移動体位置検出手段333)は、例えば、動線検出プログラムに従って動作するコンピュータのCPUによって実現される。この場合、コンピュータのプログラム記憶装置(図示せず)が動線検出プログラムを記憶し、CPUがそのプログラムを読み込み、プログラムに従って、状態更新手段32b(状態予測手段321b、観測情報反映手段322b、分解能制御手段323)と、動線特定手段33(確定状態選択手段331、確定状態反映手段332および移動体位置検出手段333)として動作すればよい。また、状態更新手段32bと、動線特定手段33とが、それぞれ別のハードウェアで実現されていてもよい。状態予測手段321b、観測情報反映手段322b、分解能制御手段323に関しても、別のハードウェアで実現されていてもよい。
 次に、第2の実施形態の動作について説明する。図19および図20は、第2の実施形態の動線検出部3bの処理経過の例を示すフローチャートである。以下、図21、図22で具体例を示しつつ、第2の実施形態の処理経過の例を説明する。また、図19および図20に示すフローチャートにおいて、第1の実施形態と同様の処理については、図7および図8と同一の符号を付し、詳細な説明を省略する。
 まず、状態更新手段32bは、ID情報入力部2からID情報(すなわち、移動体のIDと、ID情報入力部番号と、そのIDの検出時刻との組)を取得する(ステップS1)。
 次に、状態更新手段32bは、位置情報入力部1から位置情報(すなわち、移動体の位置座標と、その位置座標の検出時刻との組)を取得する(ステップS2)。
 次に、状態更新手段32bの分解能制御手段323は、状態記憶部31から、状態記憶部31に記憶してある状態情報のうち、最新時刻の状態情報(すなわち、現時刻から1つ前の前時刻に生成された状態情報)を取得する(ステップS3)。
 次に、分解能制御手段323は、ステップS2で取得した各移動体の位置情報を用いて、現時刻の位置スコア対応関係情報を生成する際の分解能を決定する(ステップS23)。そして、分解能制御手段323は、その分解能に合わせて追跡領域を分割して得られる各セルの識別情報(例えば、セルの座標)を含み、各セルの座標に対応付けられるスコアが未定の状態となっている位置スコア対応関係情報を作成する。
 ここで、ステップ23の処理について、図21と図22を用いて具体例を示す。図21に示すように、pa,pb,pcという3つの移動体の位置座標が検出されていたとする。まず、分解能制御手段323は、paとpb間、pbとpc間、pcとpa間について、それぞれx軸方向の距離およびy軸方向の距離を計算する。図21では、paとpb間のx軸方向の距離をab_xと表し、y軸方向の距離をab_yと表している。同様に、pbとpc間のx軸方向の距離をbc_xと表し、y軸方向の距離をbc_yと表している。さらに、同様に、pcとpa間のx軸方向の距離をac_xと表し、y軸方向の距離をac_yと表している。分解能制御手段323は、このように2点の位置座標間のx軸方向の距離およびy軸方向の距離を全通り算出し、最も短い距離を選択する。図21に示す例では、ab_xが最短距離であるとする。ステップ23では、図22に示すように、このab_xの距離を新しい分解能として決定する。
 また、分解能の上限値および下限値を予め定義しておいてもよい。ここで、分解能の上限値とは、分解能が最も高くなるときの値であり、セルの大きさ等の分解能としては最小値となる。同様に、分解能の下限値とは、分解能が最も低くなるときの値であり、セルの大きさ等の分解能としては最大値となる。そして、2点の位置座標間の距離が分解能の上限値よりも短い場合は分解能として上限値を現時刻の分解能とし、2点の位置座標間の距離が分解能の下限値よりも長い場合は分解能として下限値を現時刻の分解能としてもよい。この時、分解能の上限値は位置情報入力部1から入力される位置座標の分解能を基準に決定してもよい。また、分解能の下限値は追跡領域内の各ID検出領域が異なるセルに属することを基準に決定してもよい。
 次に、状態更新手段32bでは、状態記憶部31から取得した前時刻の状態情報群について、スコアの状態を更新した現時刻の状態情報を作成していないもの(具体的にはステップS24,S5,S6,S7の処理が行われていないもの)があるか否かを判定する(ステップS4)。
 スコアを更新した現時刻の状態情報が作成されていない前時刻の状態情報がある場合(ステップS4のYes)、例えば、分解能制御手段323は、ステップS3で読み込んだ前時刻の状態情報群から、その未処理の状態情報を1つ選択する。そして、分解能制御手段323は、その状態情報に含まれる前時刻の位置スコア対応関係情報をステップS23で決定した分解能に合わせた位置スコア対応関係情報を生成する(ステップS24)。分解能制御手段323は、具体的には、ステップS23で作成した位置スコア対応関係情報において、各セルの識別情報に対応するスコアを、前時刻の位置スコア対応関係情報に基づいて設定する。すなわち、ステップS23で作成した位置スコア対応関係情報では、分解能は現時刻の分解能となっているがスコアは未定であり、ステップS24においてそのスコアを設定する。
 ステップS24の処理の手順について、図21と図22を参照して具体的に示す。まず、分解能を細かいものから粗いものへ更新する場合について説明する。この説明では、図21が前時刻におけるセルの状態を表し、図22が現時刻のセルの状態を表しているものとする。ステップS23で生成された位置スコア対応関係情報では、図22に示す各セルは定められているが、個々のセルに対応するスコアが未定となっている。
 分解能制御手段323は、ステップS23で決定した分解能で追跡領域を分割した各セルについて、前時刻の位置スコア対応関係情報で示される各セルのうち、どのセルを含んでいるかを判別する。例えば、図22に示すセル(ステップS23で決定した現時刻の分解能のセル)のうち、セルc(0,0)には、前時刻の位置スコア対応関係情報で示される各セル(図21に示す各セル)のうち、c(0,0),c(0,1),c(1,0),c(1,1)を含んでいると判別する。そして、分解能制御手段323は、現時刻のセルc(0,0)(図22参照)に含まれる、前時刻のセルc(0,0),c(0,1),c(1,0),c(1,1)(図21参照)に関して、その4つのセルのスコアの平均を算出し、その結果を、現時刻のセルc(0,0)(図22参照)のスコアとして決定する。そして、分解能制御手段323は、ステップS23で作成した位置スコア対応関係情報において、c(0,0)に対応するスコアとして、そのスコアを定める。分解能制御手段323は、現時刻の分解能の各セルに関して、それぞれ上記のようにスコアを計算し、位置スコア対応関係情報に含める。
 また、上記の計算例では、現時刻のセルに含まれる前時刻の各セルのスコアの平均値を、その現時刻のスコアとして決定する場合を示したが、分解能制御手段323は、現時刻のセルに含まれる前時刻の各セルのスコアのうち最も高い値を、その現時刻のセルのスコアとして決定してもよい。例えば、上記の例において、図21に示す前時刻の4つのセルc(0,0),c(0,1),c(1,0),c(1,1)のスコアのうち、最も高いスコアを、図22に示す現時刻のセルc(0,0)のスコアとして定めてもよい。
 分解能制御手段323が現時刻の分解能の各セルに関してそれぞれスコアを定め、ステップS23で作成した位置スコア対応関係情報に含めることで、前時刻の位置スコア対応関係情報を現時刻の分解能に適合させた位置スコア対応関係情報を得ることができる。
 次に、分解能を粗いものから細かいものへ更新する場合について説明する。この説明では、図22が前時刻におけるセルの状態を表し、図21が現時刻のセルの状態を表しているものとする。
 分解能制御手段323は、ステップS23で決定した分解能で追跡領域を分割した各セルについて、前時刻の位置スコア対応関係情報で示される各セルのうち、どのセルに含まれるかを判別する。分解能制御手段323は、現時刻のセルのスコアとして、そのセルが含まれる前時刻のセルのスコアを定め、位置スコア対応関係情報に含める。例えば、図21に示すセル(本例では、ステップS23で決定した現時刻の分解能のセル)のうち、セルc(0,0)は、前時刻の位置スコア対応関係情報で示される各セル(本例では、図22に示す各セル)のうち、c(0,0)に含まれる。従って、分解能制御手段323は、図21に示す現時刻のセルc(0,0)のスコアとして、図22に示すセルc(0,0)のスコアを定め、位置スコア対応関係情報において、現時刻のセルc(0,0)に対応するスコアとして、そのスコアを含める。分解能制御手段323は、現時刻の分解能の各セルに関して、それぞれ上記のようにスコアを定め、位置スコア対応関係情報に含める。前時刻の位置スコア対応関係情報を現時刻の分解能に適合させた位置スコア対応関係情報を得ることができる。
 また、前時刻と現時刻とで分解能を変化させる際に、現時刻に定義したセルが前時刻に定義した複数のセル上に跨るような場合も生じ得る。この場合、分解能制御手段323は、現時刻に定義したセルが跨っている前時刻のセルに設定されているスコアの平均値を、現時刻のセルのスコアとして用いてもよい。また、分解能制御手段323は、現時刻のセルが跨っている前時刻の各セルに関して、現時刻のセルが跨っている面積比でスコアに重み付けを行い、重み付け後のスコアの平均値を現時刻のセルのスコアとして用いてもよい。
 分解能制御手段323は、ステップS24で選択した状態情報に含まれている時刻(前時刻)およびIDと、ステップS24で作成した位置スコア対応関係情報との組を、状態情報として新たに生成し、状態予測手段321bに入力する。また、分解能制御手段323は、ステップS2で取得した移動体の位置情報も状態予測手段321bに入力する。
 次に、状態予測手段321bは、分解能制御手段323から入力された状態情報の時刻(前時刻)から現時刻までの経過時間を算出し、予め定義してある移動体の移動モデルに基づいてスコアの伝播範囲を決定し、入力された状態情報に含まれる位置スコア対応関係情報におけるスコアを伝播させることで現時刻のスコアの状態を予測する(ステップS5)。位置スコア対応関係情報におけるスコアを伝播させる処理は、第1の実施形態におけるステップS5と同様である。ただし、第2の実施形態では位置スコア対応関係情報の分解能が可変であるため、移動体の移動モデルを定義する際は、状態の分解能を移動モデルのパラメータに含めないことが望ましい。
 また、ステップS5において、スコアを伝播させる処理を行った後、状態予測手段321bは、入力された状態情報における時刻(前時刻)を現時刻に更新する。ステップS5において、移動体の位置情報に含まれる時刻を現時刻として用いればよい。なお、ここでは、状態予測手段321bが状態情報における時刻(前時刻)を現時刻に更新する場合を示したが、状態情報における時刻を現時刻に更新する処理は、観測情報反映手段322bが行ってもよい。例えば、観測情報反映手段322bが、ステップS7等において、状態情報に含まれている時刻を現時刻に更新してもよい。
 次に、状態予測手段321bは、ステップ5で位置スコア対応関係情報を更新した状態情報と、分解能制御手段323から入力された移動体の現時刻の位置情報とを、観測情報反映手段322bへ入力する。
 観測情報反映手段322bは、状態予測手段321bから入力された状態情報および移動体の位置情報と、ID情報入力部2から入力された現時刻のID情報とを用いて、状態情報に含まれている位置スコア対応関係情報を更新する(ステップS6,S7)。このステップS6,S7の処理は、第1の実施形態におけるステップS6,S7と同様でよい。なお、ステップS6において、ID検出領域と一部重なるセルのスコアの増加量は、ID検出領域に含まれるセルのスコアの増加量と同じにしても、あるいは、少なくしてもよい。
 ステップS7の結果得られた状態情報が、現時刻の状態情報である。ステップS7までの処理が、1つのIDに関して、前時刻の状態情報に基づき現時刻の状態情報を作成する処理である。
 そして、状態更新手段32bは、ステップS24,S5,S6,S7の処理を行ったIDに関して、現時刻の状態情報を作成済みとする。
 状態更新手段32bは、ステップS7の後、再びステップS4に戻り、ステップS24,S5,S6,S7について未処理の状態情報が存在するか否かを判定する。
 ステップS24,S5,S6,S7について未処理の状態情報がないと判定した場合(ステップS4のNo)、観測情報反映手段322は、ステップS24,S5,S6,S7の処理を繰り返してID毎に作成した現時刻の各状態情報を状態記憶部31に記憶させる(ステップS8)。
 次に、動線特定手段33は、状態記憶部31から、現時刻から過去一定時間分の各IDの状態情報を取得し、動線を特定する(ステップS9~S16)。動線の生成手順は、第1の実施形態のステップS9~S16までで述べた方法と同様でよい。
 ただし、第2の実施形態では、ステップS13において、確定的な時点における位置スコア対応関係情報に基づいて予測された直近の時刻の位置スコア対応関係情報の分解能と、その確定的な時点の直近の時刻の不確定状態情報内の位置スコア対応関係情報とで、分解能が異なる場合がある。この場合、確定状態反映手段332は、以下のようにしてステップS14の処理を行えばよい。以下の説明では、不確定状態情報内の位置スコア対応関係情報を、簡単に、不確定状態情報と記す。
 不確定状態情報の分解能が、ステップS13によって得られた位置スコア対応関係情報よりも粗い場合、確定状態反映手段332は、ステップS13で得られた位置スコア対応関係情報の各セルのうち、不確定状態情報の一つのセルが跨るセルを特定し、その各セルのスコアの平均値を計算する。そして、確定状態反映手段332は、その平均値を、不確定状態情報で着目しているセルのスコアに加算したり、あるいは、乗算したりすることによって、不確定状態情報で着目しているセルのスコアを更新する。確定状態反映手段332は、この処理を、不確定状態情報の各セルについて行えばよい。平均値を求める際に、ステップS13の結果得られた位置スコア対応関係情報のセルのうち、不確定状態情報の一つのセルが跨っている各セルに関して、不確定状態情報のそのセルが跨っている面積比でスコアに重み付けを行って、重み付け後のスコアの平均値を求めてもよい。そして、確定状態反映手段332は、その平均値を、不確定状態情報で着目しているセルのスコアに加算したり、あるいは、乗算したりしてもよい。
 また、確定状態反映手段332は、ステップS13で得られた位置スコア対応関係情報の各セルのうち、不確定状態情報の一つのセルが跨るセルを特定し、その各セルのスコアの最大値を特定し、その最大値を、不確定状態情報で着目しているセルのスコアに加算したり、あるいは、乗算したりしてもよい。
 不確定状態情報の分解能が、ステップS13によって得られた位置スコア対応関係情報よりも細かい場合、確定状態反映手段332は、テップS13で得られた位置スコア対応関係情報の各セルのうち、不確定状態情報の一つのセルが含まれるセルを特定し、そのセルのスコアを、不確定状態情報で着目しているセルのスコアに加算したり、あるいは、乗算したりすればよい。そして、確定状態反映手段332は、この処理を、不確定状態情報の各セルについて行えばよい。
 ステップS9~S16に関して、他の点については、第1の実施形態と同様である。
 第2の実施形態においても、第1の実施形態と同様に、ID毎に移動体の位置を特定し、動線をロバストに特定することができる。
 また、第2の実施形態では、分解能制御手段323が各移動体の位置座標間の距離の近さに応じて、時刻ごとに生成する位置スコア対応関係情報の分解能を制御することにより、必要最小限の計算量で移動体毎(すなわちID毎)の動線を特定することが可能になる。
実施形態3.
 第3の実施形態は、各時刻における位置スコア対応関係情報から、スコアピーク位置を検出し、さらに、位置情報入力部1から入力された位置情報に基づいて、そのスコアピーク位置に最も近い移動体の位置座標を特定していくことにより、動線を決定する実施形態である。
 図23は、本発明の第3の実施形態の動線検出システムの例を示すブロック図である。第3の実施形態の動線検出システムは、位置情報入力部1と、ID情報入力部2と、動線検出部3cと、動線出力部4とを備える。位置情報入力部1、ID情報入力部2および動線出力部4は、第1の実施形態と同様であり、詳細な説明を省略する。
 また、動線検出部3cは、状態更新手段32cと、状態記憶部31と、動線特定手段33cと、位置情報記憶部34とを備える。状態記憶部31は、各時刻における状態情報を記憶する記憶装置である。状態記憶部31は、第1の実施形態と同様であり、詳細な説明を省略する。
 図24は、第3の実施形態における状態更新手段32cの構成例を示すブロック図である。状態更新手段32cは、状態予測手段321cと、観測情報反映手段322cとを含む。状態予測手段321cは、状態記憶部31から読み込んだ前時刻の状態情報に含まれる位置スコア対応関係情報が示すスコアを、予め定められた移動モデルに従って伝播させる。観測情報反映手段322cは、スコアを伝播させる処理後の位置スコア対応関係情報を、位置情報入力部1から入力される位置情報およびID情報入力部2から入力されるID情報に基づいて更新する。状態予測手段321cおよび観測情報反映手段322cは、第1の実施形態における状態予測手段321および観測情報反映手段322と同様であり、詳細な説明を省略する。
 ただし、本実施の形態において、例えば、観測情報反映手段322cは、位置情報入力部1から入力された位置情報を、位置情報記憶部34に記憶させる。なお、位置情報記憶部34に位置情報を記憶させる処理は、状態予測手段321cが行ってもよい。
 また、第1の実施形態と同様に、状態予測手段321cと観測情報反映手段322cがID情報および位置情報を参照することができれば、状態予測手段321cと観測情報反映手段322cのどちらにID情報および位置情報が入力されてもよい。
 また、図25は、第3の実施形態における動線特定手段33cの構成例を示すブロック図である。動線特定手段33cは、確定状態選択手段331と、確定状態反映手段332と、移動体位置検出手段333cとを含む。
 確定状態選択手段331は、状態記憶部31より、現時刻から過去一定時間の間に生成された各IDの状態情報を取得し、その状態情報の中から、動線を導出する対象となる移動体のIDを含む状態情報を選択する。そして、確定状態選択手段331は、そのIDの各時刻における状態情報のうち、確定的な時点の状態情報を選択する。確定状態反映手段332は、確定的な時点の直近の不確定な時点を辿りながら、不確定な時点における位置スコア対応関係情報が示すスコアを修正する。確定状態選択手段331および確定状態反映手段332は、第1の実施形態と同様であり、説明を省略する。
 移動体位置検出手段333cは、確定状態反映手段332による処理後の各時刻における位置スコア対応関係情報から、各時刻における移動体の位置を検出する。第3の実施形態における移動体位置検出手段333cは、位置スコア対応関係情報から、移動体の位置として、スコアがピークとなる位置を検出するだけでなく、その位置スコア対応関係情報に対応する時刻の位置座標のうち、スコアがピークとなる位置に最も近い位置を特定する。移動体位置検出手段333cは、この処理を各時刻の位置スコア対応関係情報に関して行う。そして、移動体位置検出手段333cは、時系列順の位置座標を動線とする。そして、例えば、時系列順に位置座標を繋げた線を動線として動線出力部4に表示させる。
 第3の実施形態において、状態更新手段32c(状態予測手段321c、観測情報反映手段322c)と、動線特定手段33c(確定状態選択手段331、確定状態反映手段332および移動体位置検出手段333c)は、例えば、動線検出プログラムに従って動作するコンピュータのCPUによって実現される。この場合、コンピュータのプログラム記憶装置(図示せず)が動線検出プログラムを記憶し、CPUがそのプログラムを読み込み、プログラムに従って、状態更新手段32c(状態予測手段321c、観測情報反映手段322c)と、動線特定手段33c(確定状態選択手段331、確定状態反映手段332および移動体位置検出手段333c)として動作すればよい。また、状態更新手段32bと、動線特定手段33とが、それぞれ別のハードウェアで実現されていてもよい。状態予測手段321cと観測情報反映手段322cに関しても別のハードウェアで実現されていてもよい。確定状態選択手段331、確定状態反映手段332および移動体位置検出手段333cに関しても別のハードウェアで実現されていてもよい。
 次に、第3の実施形態の動作について説明する。図26および図27は、第3の実施形態の動線検出部3cの処理経過の例を示すフローチャートである。第1の実施形態と同様の処理については、図7および図8と同一の符号を付し、詳細な説明を省略する。
 状態更新手段32cが、前時刻の状態情報を用いて、現時刻の状態情報を生成し、状態記憶部31に記憶させるまでの処理(ステップS1~S8)は、第1の実施形態におけるステップS1~S8と同様である。
 また、状態更新手段32cは、ステップS2で位置情報入力部1から取得した位置情報(移動体の位置座標およびその検出時刻の組)を、位置情報記憶部34に記憶する(ステップS38)。
 続いて、動線特定手段33cが、状態記憶部31から現時刻から過去一定時間分の状態情報を読み込み、確定状態情報を選択し、確定状態情報が示すスコアに基づいて、直近の不確定な時点のスコアを予測し、その時点の不確定状態情報に反映させる処理を(ステップS9~S14)を行う。状態記憶部31から読み込んだ各状態情報に関し、ステップS11~S14の処理が行われていない状態情報がなくなったならば(ステップS10のNo)、ステップS314に移行する。この時点で、確定的な時点の状態情報のスコアが、順次、不確定な時点の状態情報に反映された状態となっている。
 ステップS314において、移動体位置検出手段333cは、位置情報記憶部34から、現時刻から過去一定時間分の各位置情報を読み込む(ステップS314)。この過去一定時間分の時間幅は、ステップS9で確定状態選択手段331が現時刻から過去一定時間分の状態情報を読み込むときの時間幅と同じである。
 さらに、移動体位置検出手段333cは、各時刻における状態情報と、ステップS314で取得した位置情報とを用いて、ID毎に動線を特定する(ステップS15c)。第3の実施形態では、移動体位置検出手段333cは、移動体のIDを順次選択する。そして、移動体位置検出手段333cは、選択したIDの各時刻の状態情報に含まれる位置スコア対応関係情報を参照し、各時刻において、スコアのピークが現れているセルを検出する。移動体位置検出手段333cは、さらに、セルを検出した位置スコア対応関係情報に対応する時刻の位置情報に含まれる位置座標のうち、検出したセル(すなわち、スコアのピークが現れているセル)に最も近い位置座標を特定する。そして、その時刻において、その位置座標に移動体が存在したと判定する。移動体位置検出手段333cは、選択しているIDに関し、各時刻について同様に、スコアのピークが現れているセルに最も近い位置座標を特定する。特定した座標を時系列順にしたものが、動線を表す情報となる。一つのIDに関して、各時刻における位置座標を特定したならば、移動体位置検出手段333cは、次のIDを選択して、同様に各時刻における位置座標を特定する。移動体位置検出手段333cが各IDを選択して、同様の処理を繰り返すことで、各IDの動線が求められる。
 移動体位置検出手段333cは、各IDに関して、各時刻の位置座標を特定したならば、ID毎に、時系列順に位置座標を繋げた動線を動線出力部4に表示させる(ステップS16)。
 第3の実施形態においても、第1の実施形態と同様に、ID毎に移動体の位置を特定し、動線をロバストに推定することができる。
 また、第3の実施形態では、生成される動線の分解能が位置スコア対応関係情報の分解能に依存しないため、移動体を分離可能な必要最小限の分解能で状態を生成していても、きめ細かな動線を生成できる。
 次に、第3の実施形態の変形例について説明する。第3の実施形態と第2の実施形態とを組合せ、状態更新手段が状態予測手段と観測情報反映手段に加え、分解能制御手段を備える構成であってもよい。この場合、第2の実施形態の効果と第3の実施形態の効果の両方が得られる。
 次に、本発明の最小構成について説明する。図28は、本発明の動線検出システムの最小構成の例を示すブロック図である。本発明の動線検出システムは、位置スコア対応関係情報生成手段81と、状態記憶手段82と、動線特定手段83とを備える。
 位置スコア対応関係情報生成手段81(例えば、状態更新手段32)は、固有の識別情報が定められた移動体が存在する可能性の高さを示すスコアを移動体の追跡領域内の位置毎(例えば、セル毎)に定めた位置スコア対応関係情報を、移動体の識別情報毎に生成する。
 状態記憶手段82(例えば、状態記憶部31)は、時刻毎の位置スコア対応関係情報を記憶する。
 動線特定手段83(例えば、動線特定手段33)は、移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、その位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定する。
 そのような構成により、移動体の位置や識別情報を検出できない場合が頻発しても、各識別情報の移動体の位置を精度良く判定して、動線を検出することができる。
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)固有の識別情報が定められた移動体が存在する可能性の高さを示すスコアを移動体の追跡領域内の位置毎に定めた位置スコア対応関係情報を、移動体の識別情報毎に生成する位置スコア対応関係情報生成手段と、時刻毎の位置スコア対応関係情報を記憶する状態記憶手段と、移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、前記位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定する動線特定手段とを備えることを特徴とする動線検出システム。
(付記2)位置スコア対応関係情報生成手段は、現時刻の前の時刻に作成された位置スコア対応関係情報における各位置のスコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させるスコア伝播手段と、スコア伝播手段によってスコアが伝播された位置スコア対応関係情報のスコアを、現時刻に識別情報が検出された検出領域および現時刻に検出された移動体の位置座標に基づいて更新することによって、現時刻の位置スコア対応関係情報を生成する観測情報反映手段とを含む付記1に記載の動線検出システム。
(付記3)位置スコア対応関係情報生成手段は、現時刻に検出された移動体の位置座標間の距離に基づいて、スコアを割り当てる追跡領域内の個々の領域を決定し、現時刻の前の時刻に作成された位置スコア対応関係情報におけるスコアに基づいて、前記個々の領域毎のスコアを定めた位置スコア対応関係情報を生成する分解能制御手段と、分解能制御手段に生成された位置スコア対応関係情報における各スコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させるスコア伝播手段と、スコア伝播手段によってスコアが伝播された位置スコア対応関係情報のスコアを、現時刻に識別情報が検出された検出領域および現時刻に検出された移動体の位置座標に基づいて更新することによって、現時刻の位置スコア対応関係情報を生成する観測情報反映手段とを含む付記1に記載の動線検出システム。
(付記4)観測情報反映手段は、移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択する確定的情報選択手段と、確定的な位置スコア対応関係情報における各スコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させ、スコアを伝播させた後の前記確定的な位置スコア対応関係情報の各スコアを、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報の各スコアに反映させ、前記直近の時刻の位置スコア対応関係情報を確定的な位置スコア対応関係情報とすることを繰り返すスコア反映手段と、各時刻の確定的な位置スコア対応関係情報におけるスコアから、各時刻の移動体の位置を特定することにより移動体の動線を特定する移動体位置特定手段とを含む付記1から付記3のうちのいずれかに記載の動線検出システム。
(付記5)移動体位置特定手段は、個々の時刻の確定的な位置スコア対応関係情報におけるピークスコアが現れる位置に基づいて、各時刻の移動体の位置を特定する付記4に記載の動線検出システム。
(付記6)各時刻に検出された移動体の位置座標を記憶する位置情報記憶手段を備え、移動体位置特定手段は、個々の時刻の確定的な位置スコア対応関係情報におけるピークスコアが現れる位置を特定し、当該時刻と同時刻に検出された移動体の位置座標のうち、前記ピークスコアが現れる位置に最も近い位置座標を、移動体の位置として特定する付記4に記載の動線検出システム。
(付記7)固有の識別情報が定められた移動体が存在する可能性の高さを示すスコアを移動体の追跡領域内の位置毎に定めた位置スコア対応関係情報を、移動体の識別情報毎に生成する位置スコア対応関係情報生成ステップと、時刻毎の位置スコア対応関係情報を状態記憶手段に記憶させる状態記憶ステップと、移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、前記位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定する動線特定ステップとを含むことを特徴とする動線検出方法。
(付記8)位置スコア対応関係情報生成ステップは、現時刻の前の時刻に作成された位置スコア対応関係情報における各位置のスコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させるスコア伝播ステップと、スコア伝播ステップでスコアが伝播された位置スコア対応関係情報のスコアを、現時刻に識別情報が検出された検出領域および現時刻に検出された移動体の位置座標に基づいて更新することによって、現時刻の位置スコア対応関係情報を生成する観測情報反映ステップとを有する付記7に記載の動線検出方法。
(付記9)位置スコア対応関係情報生成ステップは、現時刻に検出された移動体の位置座標間の距離に基づいて、スコアを割り当てる追跡領域内の個々の領域を決定し、現時刻の前の時刻に作成された位置スコア対応関係情報におけるスコアに基づいて、前記個々の領域毎のスコアを定めた位置スコア対応関係情報を生成する分解能制御ステップと、分解能制御ステップで生成された位置スコア対応関係情報における各スコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させるスコア伝播ステップと、スコア伝播ステップでスコアが伝播された位置スコア対応関係情報のスコアを、現時刻に識別情報が検出された検出領域および現時刻に検出された移動体の位置座標に基づいて更新することによって、現時刻の位置スコア対応関係情報を生成する観測情報反映ステップとを有する付記7に記載の動線検出方法。
(付記10)観測情報反映ステップは、移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択する確定的情報選択ステップと、確定的な位置スコア対応関係情報における各スコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させ、スコアを伝播させた後の前記確定的な位置スコア対応関係情報の各スコアを、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報の各スコアに反映させ、前記直近の時刻の位置スコア対応関係情報を確定的な位置スコア対応関係情報とすることを繰り返すスコア反映ステップと、各時刻の確定的な位置スコア対応関係情報におけるスコアから、各時刻の移動体の位置を特定することにより移動体の動線を特定する移動体位置特定ステップとを有する付記7から付記9のうちのいずれかに記載の動線検出方法。
(付記11)移動体位置特定ステップで、個々の時刻の確定的な位置スコア対応関係情報におけるピークスコアが現れる位置に基づいて、各時刻の移動体の位置を特定する付記10に記載の動線検出方法。
(付記12)各時刻に検出された移動体の位置座標を位置情報記憶手段に記憶させる位置情報記憶ステップを備え、移動体位置特定ステップで、個々の時刻の確定的な位置スコア対応関係情報におけるピークスコアが現れる位置を特定し、当該時刻と同時刻に検出された移動体の位置座標のうち、前記ピークスコアが現れる位置に最も近い位置座標を、移動体の位置として特定する付記10に記載の動線検出方法。
(付記13)コンピュータに、固有の識別情報が定められた移動体が存在する可能性の高さを示すスコアを移動体の追跡領域内の位置毎に定めた位置スコア対応関係情報を、移動体の識別情報毎に生成する位置スコア対応関係情報生成処理、時刻毎の位置スコア対応関係情報を状態記憶手段に記憶させる状態記憶処理、および、移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、前記位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定する動線特定処理を実行させるための動線検出プログラム。
(付記14)コンピュータに、位置スコア対応関係情報生成処理で、現時刻の前の時刻に作成された位置スコア対応関係情報における各位置のスコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させるスコア伝播処理、および、スコア伝播処理でスコアが伝播された位置スコア対応関係情報のスコアを、現時刻に識別情報が検出された検出領域および現時刻に検出された移動体の位置座標に基づいて更新することによって、現時刻の位置スコア対応関係情報を生成する観測情報反映処理を実行させる付記13に記載の動線検出プログラム。
(付記15)コンピュータに、位置スコア対応関係情報生成処理で、現時刻に検出された移動体の位置座標間の距離に基づいて、スコアを割り当てる追跡領域内の個々の領域を決定し、現時刻の前の時刻に作成された位置スコア対応関係情報におけるスコアに基づいて、前記個々の領域毎のスコアを定めた位置スコア対応関係情報を生成する分解能制御処理、分解能制御処理で生成された位置スコア対応関係情報における各スコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させるスコア伝播処理、および、スコア伝播処理でスコアが伝播された位置スコア対応関係情報のスコアを、現時刻に識別情報が検出された検出領域および現時刻に検出された移動体の位置座標に基づいて更新することによって、現時刻の位置スコア対応関係情報を生成する観測情報反映処理を実行させる付記13に記載の動線検出プログラム。
(付記16)コンピュータに、観測情報反映処理で、移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択する確定的情報選択処理、確定的な位置スコア対応関係情報における各スコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させ、スコアを伝播させた後の前記確定的な位置スコア対応関係情報の各スコアを、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報の各スコアに反映させ、前記直近の時刻の位置スコア対応関係情報を確定的な位置スコア対応関係情報とすることを繰り返すスコア反映処理、および、各時刻の確定的な位置スコア対応関係情報におけるスコアから、各時刻の移動体の位置を特定することにより移動体の動線を特定する移動体位置特定処理を実行させる付記13から付記15のうちのいずれかに記載の動線検出プログラム。
(付記17)コンピュータに、移動体位置特定処理で、個々の時刻の確定的な位置スコア対応関係情報におけるピークスコアが現れる位置に基づいて、各時刻の移動体の位置を特定させる付記16に記載の動線検出プログラム。
(付記18)コンピュータに、各時刻に検出された移動体の位置座標を位置情報記憶手段に記憶させる位置情報記憶処理を実行させ、移動体位置特定処理で、個々の時刻の確定的な位置スコア対応関係情報におけるピークスコアが現れる位置を特定し、当該時刻と同時刻に検出された移動体の位置座標のうち、前記ピークスコアが現れる位置に最も近い位置座標を、移動体の位置として特定させる付記16に記載の動線検出プログラム。
(付記19)固有の識別情報が定められた移動体が存在する可能性の高さを示すスコアを移動体の追跡領域内の位置毎に定めた位置スコア対応関係情報を、移動体の識別情報毎に生成する位置スコア対応関係情報生成部と、時刻毎の位置スコア対応関係情報を記憶する状態記憶部と、移動体の識別情報毎に、状態記憶部に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、前記位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定する動線特定部とを備えることを特徴とする動線検出システム。
(付記20)位置スコア対応関係情報生成部は、現時刻の前の時刻に作成された位置スコア対応関係情報における各位置のスコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させるスコア伝播部と、スコア伝播部によってスコアが伝播された位置スコア対応関係情報のスコアを、現時刻に識別情報が検出された検出領域および現時刻に検出された移動体の位置座標に基づいて更新することによって、現時刻の位置スコア対応関係情報を生成する観測情報反映部とを含む付記19に記載の動線検出システム。
(付記21)位置スコア対応関係情報生成部は、現時刻に検出された移動体の位置座標間の距離に基づいて、スコアを割り当てる追跡領域内の個々の領域を決定し、現時刻の前の時刻に作成された位置スコア対応関係情報におけるスコアに基づいて、前記個々の領域毎のスコアを定めた位置スコア対応関係情報を生成する分解能制御部と、分解能制御部に生成された位置スコア対応関係情報における各スコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させるスコア伝播部と、スコア伝播部によってスコアが伝播された位置スコア対応関係情報のスコアを、現時刻に識別情報が検出された検出領域および現時刻に検出された移動体の位置座標に基づいて更新することによって、現時刻の位置スコア対応関係情報を生成する観測情報反映部とを含む付記19に記載の動線検出システム。
(付記22)観測情報反映部は、移動体の識別情報毎に、状態記憶部に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択する確定的情報選択部と、確定的な位置スコア対応関係情報における各スコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させ、スコアを伝播させた後の前記確定的な位置スコア対応関係情報の各スコアを、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報の各スコアに反映させ、前記直近の時刻の位置スコア対応関係情報を確定的な位置スコア対応関係情報とすることを繰り返すスコア反映部と、各時刻の確定的な位置スコア対応関係情報におけるスコアから、各時刻の移動体の位置を特定することにより移動体の動線を特定する移動体位置特定部とを含む付記19から付記21のうちのいずれかに記載の動線検出システム。
(付記23)移動体位置特定部は、各時刻の確定的な位置スコア対応関係情報におけるピークスコアが現れる位置に基づいて、各時刻の移動体の位置を特定する付記22に記載の動線検出システム。
(付記24)各時刻に検出された移動体の位置座標を記憶する位置情報記憶部を備え、移動体位置特定部は、個々の時刻の確定的な位置スコア対応関係情報におけるピークスコアが現れる位置を特定し、当該時刻と同時刻に検出された移動体の位置座標のうち、前記ピークスコアが現れる位置に最も近い位置座標を、移動体の位置として特定する付記22に記載の動線検出システム。
 この出願は、2010年5月31日に出願された日本特許出願2010-125079を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
産業上の利用の可能性
 本発明は、移動体に対してIDを対応付けて、移動体の動線を特定する動線検出システムに好適に適用される。
 本発明において、オフィスや工場で勤務する人物の位置と各人物に固有の社員番号とを対応付けて動線検出する場合、得られた動線に基づいて、人物ごとのセキュリティ権限に応じて立ち入り可能なエリアであるかを判別し、必要に応じてアラートを制御するといったセキュリティ用途に適用可能である。
 また、ショッピングセンター内で買い物をする人物の位置と各人物に固有の会員番号とを対応付けて動線検出する場合、買い物客の動線を計測するといったマーケティング用途にも適用可能である。
 1 位置情報入力部
 2 ID情報入力部
 3 動線検出部
 4 動線出力部
 31 状態記憶部
 32 状態更新手段
 33 動線特定手段
 321 状態予測手段
 322 観測情報反映手段
 323 分解能制御手段
 331 確定状態選択手段
 332 確定状態反映手段
 333 移動体位置検出手段

Claims (8)

  1.  固有の識別情報が定められた移動体が存在する可能性の高さを示すスコアを移動体の追跡領域内の位置毎に定めた位置スコア対応関係情報を、移動体の識別情報毎に生成する位置スコア対応関係情報生成手段と、
     時刻毎の位置スコア対応関係情報を記憶する状態記憶手段と、
     移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、前記位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定する動線特定手段とを備える
     ことを特徴とする動線検出システム。
  2.  位置スコア対応関係情報生成手段は、
     現時刻の前の時刻に作成された位置スコア対応関係情報における各位置のスコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させるスコア伝播手段と、
     スコア伝播手段によってスコアが伝播された位置スコア対応関係情報のスコアを、現時刻に識別情報が検出された検出領域および現時刻に検出された移動体の位置座標に基づいて更新することによって、現時刻の位置スコア対応関係情報を生成する観測情報反映手段とを含む
     請求項1に記載の動線検出システム。
  3.  位置スコア対応関係情報生成手段は、
     現時刻に検出された移動体の位置座標間の距離に基づいて、スコアを割り当てる追跡領域内の個々の領域を決定し、現時刻の前の時刻に作成された位置スコア対応関係情報におけるスコアに基づいて、前記個々の領域毎のスコアを定めた位置スコア対応関係情報を生成する分解能制御手段と、
     分解能制御手段に生成された位置スコア対応関係情報における各スコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させるスコア伝播手段と、
     スコア伝播手段によってスコアが伝播された位置スコア対応関係情報のスコアを、現時刻に識別情報が検出された検出領域および現時刻に検出された移動体の位置座標に基づいて更新することによって、現時刻の位置スコア対応関係情報を生成する観測情報反映手段とを含む
     請求項1に記載の動線検出システム。
  4.  観測情報反映手段は、
     移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択する確定的情報選択手段と、
     確定的な位置スコア対応関係情報における各スコアを、予め定められたスコアの伝播態様に従って、近傍の位置のスコアとして伝播させ、スコアを伝播させた後の前記確定的な位置スコア対応関係情報の各スコアを、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報の各スコアに反映させ、前記直近の時刻の位置スコア対応関係情報を確定的な位置スコア対応関係情報とすることを繰り返すスコア反映手段と、
     各時刻の確定的な位置スコア対応関係情報におけるスコアから、各時刻の移動体の位置を特定することにより移動体の動線を特定する移動体位置特定手段とを含む
     請求項1から請求項3のうちのいずれか1項に記載の動線検出システム。
  5.  移動体位置特定手段は、各時刻の確定的な位置スコア対応関係情報におけるピークスコアが現れる位置に基づいて、各時刻の移動体の位置を特定する
     請求項4に記載の動線検出システム。
  6.  各時刻に検出された移動体の位置座標を記憶する位置情報記憶手段を備え、
     移動体位置特定手段は、個々の時刻の確定的な位置スコア対応関係情報におけるピークスコアが現れる位置を特定し、当該時刻と同時刻に検出された移動体の位置座標のうち、前記ピークスコアが現れる位置に最も近い位置座標を、移動体の位置として特定する
     請求項4に記載の動線検出システム。
  7.  固有の識別情報が定められた移動体が存在する可能性の高さを示すスコアを移動体の追跡領域内の位置毎に定めた位置スコア対応関係情報を、移動体の識別情報毎に生成し、
     時刻毎の位置スコア対応関係情報を状態記憶手段に記憶させ、
     移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、前記位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定する
     ことを特徴とする動線検出方法。
  8.  コンピュータに、
     固有の識別情報が定められた移動体が存在する可能性の高さを示すスコアを移動体の追跡領域内の位置毎に定めた位置スコア対応関係情報を、移動体の識別情報毎に生成する位置スコア対応関係情報生成処理、
     時刻毎の位置スコア対応関係情報を状態記憶手段に記憶させる状態記憶処理、および、
     移動体の識別情報毎に、状態記憶手段に記憶された位置スコア対応関係情報のうち所定の基準を満たす位置スコア対応関係情報を確定的な位置スコア対応関係情報として選択し、確定的な位置スコア対応関係情報を、当該確定的な位置スコア対応関係情報に対応する時刻の直近の時刻の位置スコア対応関係情報に反映させ、前記位置スコア対応関係情報を確定的な位置スコア対応関係情報と定めることを繰り返し、時刻毎の位置スコア対応関係情報におけるスコアから、移動体の動線を特定する動線特定処理
     を実行させるための動線検出プログラム。
PCT/JP2011/002930 2010-05-31 2011-05-26 動線検出システム、動線検出方法および動線検出プログラム WO2011151999A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012518228A JP5807635B2 (ja) 2010-05-31 2011-05-26 動線検出システム、動線検出方法および動線検出プログラム
US13/695,489 US8731829B2 (en) 2010-05-31 2011-05-26 Flow line detection system, flow line detection method, and flow line detection program
EP11789413.9A EP2579191A4 (en) 2010-05-31 2011-05-26 RIVER LINE RECOGNITION SYSTEM, RIVER LINE RECOGNITION PROCEDURE AND RUNNER RANGE DETECTION PROGRAM
CN201180026941.7A CN102939611B (zh) 2010-05-31 2011-05-26 流动线检测系统、流动线检测方法和流动线检测程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010125079 2010-05-31
JP2010-125079 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011151999A1 true WO2011151999A1 (ja) 2011-12-08

Family

ID=45066392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002930 WO2011151999A1 (ja) 2010-05-31 2011-05-26 動線検出システム、動線検出方法および動線検出プログラム

Country Status (5)

Country Link
US (1) US8731829B2 (ja)
EP (1) EP2579191A4 (ja)
JP (1) JP5807635B2 (ja)
CN (1) CN102939611B (ja)
WO (1) WO2011151999A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049729A (ja) * 2015-08-31 2017-03-09 綜合警備保障株式会社 警備装置
WO2020261378A1 (ja) * 2019-06-25 2020-12-30 日本電気株式会社 軌跡連結装置、軌跡連結方法、及び、プログラムが格納された非一時的なコンピュータ可読媒体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101802533B1 (ko) * 2009-06-19 2017-11-28 코다 와이어리스 피티와이 리미티드 무선 통신 시스템에서의 환경을 추정하기 위한 방법, 장치, 시스템, 및 컴퓨터 프로그램 제품
US9245268B1 (en) * 2014-07-10 2016-01-26 Bank Of America Corporation Dynamic card validation
US11175142B2 (en) * 2014-07-31 2021-11-16 Honeywell International Inc. Updating intensities in a PHD filter based on a sensor track ID
US10605607B2 (en) 2014-07-31 2020-03-31 Honeywell International Inc. Two step pruning in a PHD filter
JP5720843B1 (ja) * 2014-09-22 2015-05-20 富士ゼロックス株式会社 位置変換プログラム及び情報処理装置
TWI605252B (zh) * 2016-11-16 2017-11-11 中原大學 用以量測目標物運動狀態及其磁性粒子含量之磁泳量測系統
EP3493102B1 (en) 2017-11-30 2020-04-29 Axis AB A method and system for tracking a plurality of objects in a sequence of images
CN109272351B (zh) * 2018-08-31 2022-02-01 京东方科技集团股份有限公司 客流动线以及客流热区确定方法及装置
CN111609865B (zh) * 2020-05-25 2022-04-26 广州市建筑科学研究院有限公司 一种基于无线网络的装配式自动导航盲道系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031955A (ja) 2003-07-11 2005-02-03 Kddi Corp 移動体追跡システム
JP2005250989A (ja) 2004-03-05 2005-09-15 Sony Corp 移動物体追跡方法及び画像処理装置
JP2006146378A (ja) 2004-11-17 2006-06-08 Hitachi Ltd 複数カメラを用いた監視システム
JP2008014742A (ja) * 2006-07-05 2008-01-24 Japan Advanced Institute Of Science & Technology Hokuriku 移動体位置推定システム、及び、移動体位置推定方法
JP2008014743A (ja) * 2006-07-05 2008-01-24 Japan Advanced Institute Of Science & Technology Hokuriku 移動体位置推定システム、及び、移動体位置推定方法
JP2008122093A (ja) * 2006-11-08 2008-05-29 Mitsubishi Electric Corp 多目標追尾装置
JP2008175786A (ja) * 2007-01-22 2008-07-31 Zhencheng Hu 移動体位置検出方法および移動体位置検出装置
JP2009176031A (ja) * 2008-01-24 2009-08-06 Toyota Motor Corp 自律移動体,自律移動体制御システムおよび自律移動体の自己位置推定方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567066B2 (ja) * 1997-10-31 2004-09-15 株式会社日立製作所 移動体組合せ検出装置および方法
US6567116B1 (en) * 1998-11-20 2003-05-20 James A. Aman Multiple object tracking system
US7319479B1 (en) * 2000-09-22 2008-01-15 Brickstream Corporation System and method for multi-camera linking and analysis
JP2003022309A (ja) * 2001-07-06 2003-01-24 Hitachi Ltd 動線情報を基にした施設管理装置
JP3900870B2 (ja) * 2001-08-07 2007-04-04 オムロン株式会社 情報収集装置、情報収集方法、および情報収集システム
JP4493953B2 (ja) * 2003-08-22 2010-06-30 富士通テン株式会社 移動体位置提供装置および移動体位置提供システム
JP2005250692A (ja) * 2004-03-02 2005-09-15 Softopia Japan Foundation 物体の同定方法、移動体同定方法、物体同定プログラム、移動体同定プログラム、物体同定プログラム記録媒体、移動体同定プログラム記録媒体
WO2007033286A2 (en) * 2005-09-13 2007-03-22 Verificon Corporation System and method for object tracking and activity analysis
JP4984728B2 (ja) * 2006-08-07 2012-07-25 パナソニック株式会社 被写体照合装置および被写体照合方法
US7929804B2 (en) * 2007-10-03 2011-04-19 Mitsubishi Electric Research Laboratories, Inc. System and method for tracking objects with a synthetic aperture
JP4510112B2 (ja) * 2008-04-11 2010-07-21 東芝テック株式会社 動線解析装置
JP2010002997A (ja) * 2008-06-18 2010-01-07 Toshiba Tec Corp 人物行動分析装置及び人物行動分析プログラム
US8564534B2 (en) * 2009-10-07 2013-10-22 Microsoft Corporation Human tracking system
US20110181720A1 (en) * 2010-01-25 2011-07-28 Edgeworth Christopher M System, method, and computer program product for tracking mobile objects from an aerial vehicle
JP5488076B2 (ja) * 2010-03-15 2014-05-14 オムロン株式会社 対象物追跡装置、対象物追跡方法、および制御プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031955A (ja) 2003-07-11 2005-02-03 Kddi Corp 移動体追跡システム
JP2005250989A (ja) 2004-03-05 2005-09-15 Sony Corp 移動物体追跡方法及び画像処理装置
JP2006146378A (ja) 2004-11-17 2006-06-08 Hitachi Ltd 複数カメラを用いた監視システム
JP2008014742A (ja) * 2006-07-05 2008-01-24 Japan Advanced Institute Of Science & Technology Hokuriku 移動体位置推定システム、及び、移動体位置推定方法
JP2008014743A (ja) * 2006-07-05 2008-01-24 Japan Advanced Institute Of Science & Technology Hokuriku 移動体位置推定システム、及び、移動体位置推定方法
JP2008122093A (ja) * 2006-11-08 2008-05-29 Mitsubishi Electric Corp 多目標追尾装置
JP2008175786A (ja) * 2007-01-22 2008-07-31 Zhencheng Hu 移動体位置検出方法および移動体位置検出装置
JP2009176031A (ja) * 2008-01-24 2009-08-06 Toyota Motor Corp 自律移動体,自律移動体制御システムおよび自律移動体の自己位置推定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2579191A4 *
YUKIE MORIGUCHI: "Ishu Sensor Togo ni yoru Sensor Data no Ketsuraku ni Ganken na Jinbutsu Dosen Kenshutsu Hoho", DAI 72 KAI (HEISEI 22 NEN) ZENKOKU TAIKAI KOEN RONBUNSHU, 8 March 2010 (2010-03-08), pages 3.89 - 3.90, XP008169472 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049729A (ja) * 2015-08-31 2017-03-09 綜合警備保障株式会社 警備装置
WO2020261378A1 (ja) * 2019-06-25 2020-12-30 日本電気株式会社 軌跡連結装置、軌跡連結方法、及び、プログラムが格納された非一時的なコンピュータ可読媒体
JPWO2020261378A1 (ja) * 2019-06-25 2020-12-30
JP7164040B2 (ja) 2019-06-25 2022-11-01 日本電気株式会社 軌跡連結装置、軌跡連結方法、及び、プログラム

Also Published As

Publication number Publication date
CN102939611B (zh) 2016-08-03
US20130054142A1 (en) 2013-02-28
JPWO2011151999A1 (ja) 2013-07-25
EP2579191A1 (en) 2013-04-10
CN102939611A (zh) 2013-02-20
US8731829B2 (en) 2014-05-20
EP2579191A4 (en) 2014-04-09
JP5807635B2 (ja) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5807635B2 (ja) 動線検出システム、動線検出方法および動線検出プログラム
JP5682563B2 (ja) 移動体軌跡識別システム、移動体軌跡識別方法および移動体軌跡識別プログラム
JP6070689B2 (ja) 動線情報生成システム、動線情報生成方法および動線情報生成プログラム
US20210064871A1 (en) Apparatus and method for recognition of text information
US8995714B2 (en) Information creation device for estimating object position and information creation method and program for estimating object position
WO2018215829A1 (en) Systems and methods for user detection, identification, and localization with in a defined space
JP6405778B2 (ja) 対象追跡方法及び対象追跡装置
CN110751674A (zh) 多目标跟踪方法及相应视频分析系统
CN111512317A (zh) 一种多目标实时跟踪方法、装置及电子设备
WO2012098853A1 (ja) 動線検出処理データ分散システム、動線検出処理データ分散方法およびプログラム
CN101930611A (zh) 多视图面部追踪
JP2017168029A (ja) 行動価値によって調査対象の位置を予測する装置、プログラム及び方法
CN111798487A (zh) 目标跟踪方法、装置和计算机可读存储介质
US20220327676A1 (en) Method and system for detecting change to structure by using drone
KR100994367B1 (ko) 영상 추적 장치의 이동표적 움직임 추적 방법
US11948312B2 (en) Object detection/tracking device, method, and program recording medium
JP7224592B2 (ja) 情報処理装置、情報処理方法、およびプログラム
KR20220065672A (ko) 실내 측위 및 추적을 위한 심층 스마트폰 센서 융합
CN116946610A (zh) 一种智能仓储系统货物拾取方法及装置
KR101595334B1 (ko) 농장에서의 움직임 개체의 이동 궤적 트래킹 방법 및 장치
JP2019144900A (ja) 状態推定装置及びプログラム
CN114964204A (zh) 地图构建方法、地图使用方法、装置、设备和存储介质
US20220292397A1 (en) Recognition system, model processing apparatus, model processing method, and recording medium
JP2018092368A (ja) 移動物状態量推定装置及びプログラム
US20220301292A1 (en) Target object detection device, target object detection method, and non-transitory computer readable storage medium storing target object detection program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026941.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789413

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011789413

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011789413

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012518228

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13695489

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 9936/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE