WO2011151985A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2011151985A1
WO2011151985A1 PCT/JP2011/002781 JP2011002781W WO2011151985A1 WO 2011151985 A1 WO2011151985 A1 WO 2011151985A1 JP 2011002781 W JP2011002781 W JP 2011002781W WO 2011151985 A1 WO2011151985 A1 WO 2011151985A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
compressor
refrigerant
pressure
temperature
Prior art date
Application number
PCT/JP2011/002781
Other languages
English (en)
French (fr)
Inventor
竹上雅章
阪江覚
武内隆司
白▲崎▼鉄也
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP11789400.6A priority Critical patent/EP2578965A4/en
Publication of WO2011151985A1 publication Critical patent/WO2011151985A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02731Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one three-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus in which a plurality of compressors are connected to a refrigerant circuit.
  • a refrigeration apparatus having a refrigerant circuit for performing a refrigeration cycle is known.
  • This type of refrigeration apparatus is widely used in, for example, a refrigerator for cooling the interior of a refrigerator storing food or the like, an air conditioner for performing indoor air conditioning, and the like.
  • Patent Document 1 discloses a refrigeration apparatus provided with an indoor unit and a refrigeration unit. This refrigeration apparatus can perform an operation for cooling the refrigeration / freezing unit while performing air-conditioning freezing, or can perform an operation for cooling the refrigeration / freezing unit while performing heating operation.
  • the outside air temperature is lowered to, for example, about minus 10 ° C. in a cold district, and several compressors are in operation, and the remaining several compressors Let's consider the operating state when the is stopped.
  • the pressure (low pressure) of the evaporator connected to the operating compressor is generally about 5 ° C to 10 ° C, so the outside air temperature (or the compressor main body or If the ambient temperature is minus 10 ° C., the temperature equivalent saturation pressure is lower than the low pressure.
  • the pressure inside the stopped compressor becomes lower than that of the operating compressor, it is conceivable that the refrigerant flows into the stopped compressor, not to the operating compressor.
  • the refrigerant gas dissolves and condenses in the low-temperature refrigeration oil accumulated in the stopped compressor (hereinafter, the refrigerant gas dissolves and condenses in the refrigeration oil is referred to as refrigerant stagnation) and oil. This will reduce the viscosity. As a result, when the stopped compressor is restarted, low-viscosity oil is supplied to the mechanical sliding portion in the compressor, which may cause poor lubrication and burning.
  • the present invention was devised in view of such problems, and its purpose is to prevent stagnation of refrigerant in a stopped compressor in a refrigeration apparatus having a plurality of compressors, and at the time of restart. It is to suppress malfunction and burning.
  • the first invention includes a plurality of compressors (21, 114), a heat source side heat exchanger (25, 115), an expansion mechanism (52, 153, 163), and a use side heat exchanger (53, 154, 164) and a refrigerating apparatus having a refrigerant circuit (20, 200) connected in order.
  • a compressor corresponding to the temperature of the stopped compressor main body or the compressor or a temperature around the compressor is maintained in a state where the compressor being operated and the compressor being stopped are mixed in a plurality of compressors (21, 114).
  • the control unit lowers the low pressure below the saturation equivalent to the temperature of the stopped compressor body or its surroundings. (9,200).
  • the discharge pipe temperature of the compressor can be used as the temperature of the compressor body, and the outside air temperature or the like can be used as the temperature around the compressor.
  • the temperature of the stopped compressor body or its surroundings is lowered during winter in a cold region or the like, and the temperature equivalent saturation pressure is lower than the low pressure pressure (evaporation pressure) of the operating compressor.
  • control is performed such that the low pressure (evaporation pressure) of the compressor in operation is lower than the temperature equivalent saturation pressure. If it does in this way, since the low-pressure pressure of the compressor under operation becomes lower than the pressure of the compressor under stop, the refrigerant flows into the compressor under operation and does not flow into the compressor under stop.
  • the plurality of compressors (21, 114) and the heat source side heat exchanger (25, 115) are accommodated in the heat source side unit (2, 110), and the controller (9 , 200) is characterized in that, in an operating state where the heat source side heat exchanger (25, 115) is a condenser, the control is performed based on a saturation pressure corresponding to the temperature around the condenser that is higher than the outside air temperature.
  • the ambient temperature of the condenser includes the temperature of the compressor body and the ambient temperature.
  • the heat source side heat exchanger (25, 115) is a condenser
  • the inside of the heat source side unit (2, 110) is generally higher than the outside air temperature.
  • control is performed based on the temperature equivalent saturation pressure around the condenser higher than the outside air temperature.
  • the plurality of compressors (21, 114) and the heat source side heat exchanger (25, 115) are accommodated in the heat source side unit (2, 110), and the controller (9 , 200) is characterized in that, in an operating state where the heat source side heat exchanger (25, 115) is an evaporator, the control is performed based on the saturation pressure corresponding to the temperature around the evaporator lower than the outside air temperature.
  • the ambient temperature of the evaporator includes the temperature of the compressor body and the ambient temperature.
  • the inside of the heat source side unit (2, 110) is generally cooler than the outside air temperature. And control is performed based on the temperature equivalent saturation pressure around the evaporator lower than the outside air temperature.
  • the refrigerant circuit (20) is configured such that the heat source side heat exchanger (25) is configured as a condenser and the use side heat exchanger (53) is configured as an evaporator.
  • the use side heat exchanger (53) is configured to perform only cooling.
  • the inside of the heat source side unit (2) is generally hotter than the outside air temperature. And control is performed based on the temperature equivalent saturation pressure around the condenser higher than the outside air temperature.
  • the refrigerant circuit (200) is switchable between the heat source side heat exchanger (115) switchable between a condenser and an evaporator, and a condenser and an evaporator.
  • the second operation using the second usage side heat exchanger (164) as a condenser is configured to be switchable.
  • the condenser in the heat source side unit (110) Control is performed based on the saturation pressure corresponding to the temperature around the evaporator.
  • the temperature of the compressor main body that is stopped and its surroundings are lowered during winter in a cold region, and the temperature equivalent saturation pressure is lower than the low pressure (evaporation pressure) of the operating compressor. Then, control is performed so that the low-pressure pressure (evaporation pressure) of the compressor in operation is lower than the temperature-saturated equivalent pressure. If it does in this way, since the low-pressure pressure of the compressor under operation becomes lower than the pressure of the compressor under stop, the refrigerant flows into the compressor under operation and does not flow into the compressor under stop. Therefore, in a refrigeration apparatus having a plurality of compressors (21, 114), it is possible to prevent stagnation of refrigerant in the stopped compressor, and to suppress malfunctions and burnout during restart.
  • the heat source side heat exchanger (25, 115) becomes a condenser
  • the inside of the heat source side unit (2, 110) is generally higher than the outside air temperature. And it controls based on the temperature equivalent saturation pressure around the condenser higher than outside temperature. Even in this case, it is possible to prevent the in-machine pressure of the stopped compressor from lowering than the low-pressure pressure (evaporation pressure) of the operating compressor. Can be prevented.
  • the low pressure may be set to the outside air temperature equivalent saturation pressure.
  • the inside of the heat source side unit (2, 110) is generally cooler than the outside air temperature.
  • the compressor is controlled based on a saturation pressure corresponding to the temperature around the evaporator, which is lower than the outside air temperature. Even in this case, it is possible to prevent the in-machine pressure of the stopped compressor from stopping more than the low pressure (evaporation pressure) of the operating compressor. Can be prevented.
  • the refrigerant stagnates in the stopped compressor by performing the control based on the temperature equivalent saturation pressure around the condenser that is higher than the outside air temperature. Can prevent problems.
  • the control is performed based on the equivalent saturation pressure of the ambient temperature of the condenser and the evaporator different from the outside air temperature. It is possible to prevent problems caused by the refrigerant sleeping in the compressor.
  • the compressor (21, 114) is generally heated by a crankcase heater to prevent the refrigerant from stagnation, and the refrigerant dissolved in the refrigeration oil is evaporated. Since the crankcase heater does not have to be used, the apparatus configuration can be simplified.
  • FIG. 1 is a refrigerant circuit diagram of the refrigeration apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a main part of the compression mechanism in the compressor of the first embodiment.
  • FIG. 3 is a flowchart illustrating control of the compressor according to the first embodiment.
  • FIG. 4 is a refrigerant circuit diagram of the refrigeration apparatus according to the second embodiment.
  • FIG. 5 is a refrigerant circuit diagram showing a refrigerant flow during the cooling operation in the second embodiment.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow during heating operation in the second embodiment.
  • FIG. 7 is a refrigerant circuit diagram showing a refrigerant flow during the refrigeration operation in the second embodiment.
  • FIG. 1 is a refrigerant circuit diagram of the refrigeration apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a main part of the compression mechanism in the compressor of the first embodiment.
  • FIG. 3 is
  • FIG. 8 is a refrigerant circuit diagram illustrating the flow of the refrigerant during the cooling and cooling operation in the second embodiment.
  • FIG. 9 is a refrigerant circuit diagram illustrating another refrigerant flow during the cooling / cooling operation in the second embodiment.
  • FIG. 10 is a refrigerant circuit diagram illustrating a refrigerant flow during the first cooling / air-heating operation in the second embodiment.
  • FIG. 11 is a refrigerant circuit diagram illustrating a refrigerant flow during the second cooling / air-heating operation in the second embodiment.
  • FIG. 12 is a refrigerant circuit diagram illustrating a refrigerant flow during the third cooling / air-heating operation in the second embodiment.
  • Embodiment 1 of the Invention A first embodiment of the present invention will be described.
  • the refrigeration apparatus (1) of the present embodiment cools a plurality of refrigerated warehouses.
  • the refrigeration apparatus (1) includes an external unit (heat source side unit) (2), a plurality of internal units (use side units) (3), and a controller (9 ).
  • the outside-compartment unit (2) is installed outdoors, each of the internal units (3) is installed in each cold storage.
  • the outside unit (2) is provided with an outside circuit (20), and each inside unit (3) is provided with an inside circuit (50).
  • the refrigerant circuit (10) of the refrigeration apparatus (1) is configured by connecting a plurality of internal circuits (50) in parallel to the external circuit (20) so as to perform a vapor compression refrigeration cycle. Has been.
  • first connection pipe (14) is connected to a first closing valve (11) provided at one end of the external circuit (20), and the other end of the first connection pipe (14) is branched. And it is connected to one end of each internal circuit (50), respectively.
  • One end of the second connection pipe (15) is connected to a second closing valve (12) provided at the other end of the external circuit (20), and the other of the second connection pipe (15). The end branches and is connected to the other end of each internal circuit (50).
  • the external circuit (20) of the external unit (2) includes three compressors (21a, 21b, 21c) from 1 to 3, and an external heat exchanger (heat source side heat exchanger). (25), a receiver (27), a supercooling heat exchanger (28), and a supercooling pressure reducing valve (pressure reducing means) (29) are provided.
  • All the compressors (21a, 21b, 21c) are all hermetic high-pressure dome type scroll compressors, and each compressor (21a, 21b, 21c) has an intermediate port that opens to an intermediate pressure position.
  • a compression mechanism having a compression chamber (4a, 4b, 4c) (see FIG. 2) having (5, 6, 7) and an electric motor for driving the compression mechanism are provided.
  • the inverter of the first compressor (variable capacity compressor) (21a) is connected to an inverter that can freely change the rotation speed of the motor within a predetermined range. It is possible to increase or decrease the operating capacity of the first compressor (21a) by adjusting the rotational speed of the electric motor by this inverter. Further, the inverter is not connected to the electric motors of the second and third compressors (fixed capacity compressors) (21b, 21c), and the rotational speed of the electric motor is constant. Therefore, the operating capacity of the second and third compressors (21b, 21c) is constant.
  • FIG. 2 is a cross-sectional view showing the main part of the compression mechanism (47) in the first compressor (21a). Note that the compression mechanism of the second and third compressors (21b, 21c) has the same configuration as the compression mechanism (47) of the first compressor (21a), and thus description thereof is omitted.
  • the compression mechanism (47) includes a fixed scroll (41) and a movable scroll (42) meshing with the fixed scroll (41). And the 1st, 2nd compression which the fixed side wrap (41a) provided in the said fixed scroll (41) and the movable side wrap (42b) provided in the said movable scroll (42) meshed, and was divided and formed. It has chambers (43,44).
  • the space formed between the inner peripheral surface of the fixed wrap (41a) and the outer peripheral surface of the movable wrap (42b) is the first compression chamber (43), and the outer peripheral surface of the fixed wrap (41a). And the space formed between the inner peripheral surface of the movable wrap (42b) is the second compression chamber (44).
  • These compression chambers (43, 44) are configured such that the volume of the compression chambers (43, 44) increases or decreases with the revolving motion of the movable scroll (42).
  • a suction port (45) is formed on the outer peripheral side of the fixed scroll (41).
  • the suction port (45) is configured to intermittently communicate with both compression chambers (43, 44) as the movable scroll (42) revolves.
  • a discharge port (46) is formed at the center of the fixed scroll (41). The discharge port (46) is configured to intermittently communicate with both compression chambers (43, 44) as the movable scroll (42) revolves.
  • an intermediate port (5) is formed in the fixed scroll (41).
  • the intermediate port (5) is configured to intermittently communicate with the first compression chamber (43) as the movable scroll (42) revolves.
  • the intermediate compression port (5) and the first compression chamber (43) are blocked.
  • Discharge pipes (22a, 22b, 22c) are connected to the discharge sides of the compressors (21a, 21b, 21c), respectively.
  • Each discharge pipe (22a, 22b, 22c) is provided with a check valve (CV).
  • These discharge pipes (22a, 22b, 22c) are connected via a discharge junction pipe (22).
  • the check valve (CV) is provided in such a direction as to allow only the refrigerant flow from each compressor (21a, 21b, 21c) toward the discharge junction pipe (22).
  • each discharge pipe (22a, 22b, 22c) is provided with an oil separator (38a, 38b, 38c) on the upstream side of the check valve (CV).
  • Each said oil separator (38a, 38b, 38c) is for isolate
  • Each oil separator (38a, 38b, 38c) is connected to an oil return pipe (39a, 39b, 39c).
  • These three oil return pipes (39a, 39b, 39c) are joined at one end of the oil return joining pipe (39).
  • the other end of the oil return junction pipe (39) is connected to a second injection pipe (38) described later.
  • Each oil return pipe (39a, 39b, 39c) is provided with a check valve (CV) and a capillary tube (CP) in order from the oil separator (38a, 38b, 38c) side. .
  • each said oil return pipe (39a, 39b, 39c) is provided in the direction which accept
  • a suction pipe (23a, 23b, 23c) is connected to the suction side of each compressor (21a, 21b, 21c). These suction pipes (23a, 23b, 23c) are connected to the suction junction pipe (23). The suction junction pipe (23) is connected to the second closing valve (12).
  • the other end of the external heat exchanger (25) is connected to the top of the receiver (27) via the first refrigerant pipe (32).
  • the external heat exchanger (25) is a cross-fin type fin-and-tube heat exchanger.
  • An external fan (26) is provided in the vicinity of the external heat exchanger (25).
  • the external heat exchanger (25) exchanges heat between the external air sent by the external fan (26) and the refrigerant flowing in the external heat exchanger (25). It is configured.
  • the supercooling heat exchanger (28) has a high pressure side flow path (28a) and an intermediate pressure side flow path (28b), and flows through the high pressure side flow path (28a) and the intermediate pressure side flow path (28b).
  • the refrigerant is configured to exchange heat.
  • the inflow end of the high-pressure channel (28a) is connected to the bottom of the receiver (27).
  • the outflow end of the high-pressure channel (28a) is connected to the first closing valve (11) via the second refrigerant pipe (33).
  • the inflow end and the outflow end of the intermediate pressure side flow path (28b) are each connected to the injection circuit (40).
  • the injection circuit (40) is for injecting refrigerant into the compressors (21a, 21b, 21c), and includes a first injection pipe (branch pipe) (37), a second injection pipe (38), and a first injection pipe (38). 1, second and third branch injection pipes (37a, 37b, 37c).
  • the first injection pipe (37) branches from the second refrigerant pipe (33) and is connected to the inflow end of the intermediate pressure side flow path (28b).
  • the first injection pipe (37) is provided with a supercooling pressure reducing valve (pressure reducing means) (29).
  • the supercooling pressure reducing valve (29) is an electronic expansion valve having a variable opening.
  • One end of the second injection pipe (38) is connected to the outflow end of the intermediate pressure side flow path (28b), and the other end of the second injection pipe (38) is connected to the first, second, and third branch injections.
  • the first, second, and third branch injection pipes (37a, 37b, 37c) are connected to the intermediate ports (5, 6, 7) of the compressors (21a, 21b, 21c), respectively.
  • the first branch injection pipe (37a) is provided with a first flow rate adjusting valve (30a), and the second and third branch injection pipes (37b, 37c) are respectively provided with second flow rate adjusting valves (30b, 30c). Is provided.
  • the first flow rate adjusting valve (30a) is constituted by an electronic expansion valve having a variable opening, and the second flow rate regulating valves (30b, 30c) are constituted by electromagnetic valves that can be opened and closed.
  • the receiver (27) is disposed between the external heat exchanger (25) and the supercooling heat exchanger (28) as described above, and temporarily stores the high-pressure refrigerant condensed in the external heat exchanger (25). Can be stored.
  • the external circuit (20) is provided with various sensors and pressure switches. Specifically, each discharge pipe (22a, 22b, 22c) is provided with a discharge pipe temperature sensor (61) and a high-pressure switch (62).
  • the discharge pipe temperature sensor (61) detects the temperature of the discharge pipe (22a, 22b, 22c), and the high pressure switch (62) detects the discharge pressure, and when the abnormally high pressure is detected, the refrigeration system (1) is urgently stopped It is something to be made.
  • a discharge pressure sensor (21a, 21b, 21c) for detecting the discharge pressure of the compressor (21a, 21b, 21c) is provided at the junction of each discharge pipe (22a, 22b, 22c) (that is, the inflow end of the discharge junction pipe (22)). 64).
  • a suction pressure sensor (65) for detecting the suction pressure of the compressor (21a, 21b, 21c) is provided at the junction (or near the junction) of each suction pipe (23a, 23b, 23c). It has been.
  • An outside air temperature sensor (67) for detecting the outside air temperature (specifically, the temperature inside the outside unit (2)) is provided in the vicinity of the outside fan (26).
  • the suction pipe (23b) is provided with a low pressure switch (63).
  • the second refrigerant pipe (33) is provided with a first liquid temperature sensor (68).
  • the liquid temperature sensor (68) detects the temperature of the liquid refrigerant.
  • Each in-compartment unit (3) is provided with an in-compartment circuit (50).
  • the internal circuit (50) includes a heating pipe (51), an internal expansion valve (52), and an internal heat exchanger (use side heat exchanger) (53) in order from one end to the other end. Is provided.
  • the heating pipe (51) is attached to a drain pan (55) provided below the internal heat exchanger (53).
  • the drain pan (55) collects the condensed water dripping from the internal heat exchanger (53).
  • the heating pipe (51) is attached to the drain pan (55) because the ice mass generated by freezing of the condensed water is converted into the heat of the high-pressure refrigerant flowing through the heating pipe (51). It is for melting using.
  • the internal expansion valve (52) is an electronic expansion valve whose opening degree can be adjusted.
  • the internal heat exchanger (53) is a cross-fin type fin-and-tube heat exchanger, and an internal fan (54) is provided in the vicinity of the internal heat exchanger (53). It has been.
  • the internal heat exchanger (53) is configured to exchange heat between the internal air sent by the internal fan (54) and the refrigerant flowing through the internal heat exchanger (53). Yes.
  • the temperature circuit (50) is provided with three temperature sensors. Specifically, the heat transfer tube of the internal heat exchanger (53) is provided with an evaporation temperature sensor (72) for detecting the evaporation temperature of the refrigerant. A refrigerant temperature sensor (73) for detecting the temperature of the gas refrigerant is provided in the vicinity of the gas side end of the internal circuit (50). In the vicinity of the internal fan (54), an internal temperature sensor (74) for detecting the internal temperature is provided.
  • controller The controller (9), the sensors described above, the detection value of the high-pressure pressure switch (62) and the low-pressure pressure switch (63) is input. Based on these detected values, the controller (9) controls the drive of the compressors (21a, 21b, 21c) and the fans (26, 54) and various valves (24, 29, 31, 52, SV). ) And the opening degree are adjusted, and the operation of the refrigeration apparatus (1) is controlled.
  • the controller (9) is a compressor that stops at the outside air temperature (more specifically, the temperature in the outside unit (2) in the operating state where the outside heat exchanger (25) becomes a condenser. If the saturation pressure corresponding to the temperature of the machine main body or its surroundings falls below the low-pressure pressure (evaporation pressure) of the operating compressor, the low-pressure pressure of the operating compressor is lowered below the temperature-corresponding saturation pressure. Take control. That is, the controller (9) performs control based on the temperature equivalent saturation pressure around the condenser that is higher than the outside air temperature.
  • the compressor discharge pipe temperature can be used as the temperature of the compressor body, and the temperature around the external heat exchanger (25), the outside air temperature, etc. can be used as the temperature around the compressor. Can do.
  • Refrigeration apparatus (1) it is configured to perform cooling operation for maintaining the cold store to a predetermined temperature (e.g., 5 ° C.).
  • At least one of the three compressors (21a, 21b, 21c) is driven and the interior is cooled by each interior unit (3).
  • the case where all three compressors (21a, 21b, 21c) are driven will be described.
  • the opening degrees of the supercooling pressure reducing valve (29) and the internal expansion valve (52) are adjusted as appropriate.
  • Each solenoid valve (SV) is opened and closed according to the operating state.
  • the high-pressure gas refrigerant compressed by the first, second, and third compressors (21a, 21b, 21c) is discharged from the discharge pipes (22a, 22b, 22c).
  • the high-pressure gas refrigerant discharged from each discharge pipe (22a, 22b, 22c) flows into each oil separator (38a, 38b, 38c).
  • each oil separator (38a, 38b, 38c) the refrigeration oil is separated from the high-pressure refrigerant.
  • the separated refrigerating machine oil is once stored in each oil separator (38a, 38b, 38c), and then passed through each oil return pipe (39a, 39b, 39c) and oil return junction pipe (39). It flows into the injection pipe (38).
  • the high-pressure refrigerant from which the refrigeration oil has been separated flows out from the oil separators (38a, 38b, 38c) and joins in the discharge junction pipe (22).
  • the high-pressure refrigerant joined in the discharge junction pipe (22) flows into the external heat exchanger (25).
  • the high-pressure refrigerant condenses by exchanging heat with external air.
  • the condensed refrigerant passes through the first refrigerant pipe (32), the receiver (27), and the high-pressure channel (28a) of the supercooling heat exchanger (28) in this order, and then flows into the second refrigerant pipe (33).
  • a part of the refrigerant flowing into the second refrigerant pipe (33) flows to the first injection pipe (37), and the other flows to the first connection pipe (14) via the first shut-off valve (11).
  • the high-pressure refrigerant that has flowed toward the first injection pipe (37) is depressurized to a predetermined pressure by the supercooling pressure reducing valve (29) to become an intermediate pressure refrigerant, and then the supercooling heat exchanger (28). Flows into the intermediate pressure channel (28b).
  • the supercooling heat exchanger (28) the intermediate-pressure refrigerant and the high-pressure refrigerant flowing through the high-pressure side flow path (28a) exchange heat.
  • the high-pressure refrigerant is cooled to increase the degree of supercooling, while the intermediate-pressure refrigerant is heated to become a gas refrigerant.
  • This gas refrigerant flows out of the supercooling heat exchanger (28) and then splits into the first, second, and third branch injection pipes (37a, 37b, 37c) via the second injection pipe (38). .
  • the first intermediate pressure position in the first compressor (21a) is set. It is injected into the compression chamber (43).
  • the intermediate pressure refrigerant flowing into the second and third branch injection pipes (37b, 37c) is adjusted in the second, third flow rate adjusting valves (30b, 30c) after the respective flow rates are adjusted by the second and third flow rate adjusting valves (30b, 30c).
  • the third compressor (21b, 21c) is injected into each compression chamber at the intermediate pressure position.
  • the high-pressure refrigerant that has flowed toward the first communication pipe (14) is divided into each internal circuit (50).
  • the high-pressure refrigerant that has flowed into the internal circuit (50) flows through the heating pipe (51).
  • the drain pan (55) ice blocks in which condensed water has been frozen by the refrigerant flowing through the heating pipe (51) are melted by the refrigerant in the heating pipe (51).
  • the high-pressure refrigerant flowing through the heating pipe (51) is further subcooled.
  • the high-pressure refrigerant that has flowed out of the heating pipe (51) is depressurized by the internal expansion valve (52) to become low-pressure refrigerant, and then flows into the internal heat exchanger (53).
  • the low-pressure refrigerant evaporates by exchanging heat with the internal air. Thereby, the air in a warehouse is cooled.
  • the refrigerant evaporated in each internal heat exchanger (53) flows into the external circuit (20) again through the second connection pipe (15).
  • the low-pressure refrigerant that has flowed into the external circuit (20) flows into the suction junction pipe (23), and is sucked into the compressors (21a, 21b, 21c) from the suction pipe (23a, 23b, 23c).
  • the low-pressure refrigerant sucked into the compressors (21a, 21b, 21c) is compressed to a predetermined pressure together with the intermediate-pressure refrigerant flowing from the intermediate ports (5, 6, 7), and becomes high-pressure refrigerant.
  • the high-pressure refrigerant is discharged again from the compressors (21a, 21b, 21c). As the refrigerant circulates in this manner, a cooling operation for maintaining the inside of each refrigerated warehouse at a predetermined temperature is performed.
  • the saturation equivalent pressure of the stopped compressor becomes lower than the low pressure (evaporation pressure) of the operating compressor, and the refrigerant flows into the stopped compressor.
  • the refrigerant may be dissolved in the refrigerating machine oil accumulated in the compressor and the oil may be diluted, resulting in poor lubrication at the time of restart.
  • the controller (9) when the saturated pressure corresponding to the temperature of the stopped compressor body or its surroundings falls below the low pressure of the operating compressor, the controller (9) causes the compression during operation.
  • the low pressure of the machine is controlled to be lower than the temperature equivalent saturation pressure.
  • step ST1 it is determined whether or not the low pressure LP of the operating compressor is smaller than the value obtained by f (ta).
  • f (ta) is a function of the outside air temperature, and the saturation pressure corresponding to the outside air temperature, or in the configuration in which the compressor and the outdoor heat exchanger are housed in the outdoor unit, the saturation corresponding to the compressor body or its ambient temperature. You may think of it as pressure.
  • step ST1 If the determination result in step ST1 is “YES”, the process proceeds to step ST2.
  • the routine proceeds to step ST2
  • the refrigerant does not flow into the stopped compressor because the outside air equivalent saturation pressure is higher than the low pressure (evaporation pressure) of the operating compressor. Therefore, in both cases (1) and (2), the control as described above is performed.
  • step ST1 determines whether the determination result in step ST1 is “NO” or the process proceeds to step ST3, and the temperature of (Ta) is corrected.
  • the device is thermo-off (pause operation: operation in which the compressor stops and only blows air).
  • the internal temperature does not fall below that.
  • the refrigerant does not circulate in the refrigerant circuit. Therefore, it is possible to prevent the refrigerant from flowing into each compressor and falling asleep even when the temperature of the stopped compressor body or its surroundings is low.
  • the said external heat exchanger (25) is comprised as a condenser
  • the said internal heat exchanger (53) is comprised as an evaporator
  • the said refrigerant circuit is in-compartment.
  • the refrigeration apparatus configured to perform only cooling with the heat exchanger (53), it is possible to prevent the refrigerant from sleeping in the stopped compressor and to improve the stability of the apparatus.
  • the compressor (21) is conventionally heated with a crankcase heater to evaporate the refrigerant dissolved in the refrigerating machine oil and separate it from the refrigerating machine oil.
  • a crankcase heater since it is not necessary to use a crankcase heater, the apparatus configuration can be simplified. Note that this embodiment does not require the use of a crankcase heater, and the crankcase heater may be used in combination with the control of this embodiment depending on the situation.
  • Embodiment 2 of the Invention A second embodiment of the present invention will be described.
  • the refrigeration apparatus (100) according to Embodiment 2 is provided, for example, in a convenience store. As shown in FIG. 4, the refrigeration apparatus (100) includes an outdoor unit (110) installed outside the room, an indoor unit (150) that air-conditions the store space, and two internal units ( 160a, 160b) and a booster unit (180).
  • the two internal units (160a, 160b) are composed of a first internal unit (160a) for refrigeration and a second internal unit (160b) for freezing.
  • the outdoor unit (110) has an outdoor circuit (111), the indoor unit (150) has an indoor circuit (152), the first internal unit (160a) has a first internal circuit (161a), The internal unit (160b) is provided with a second internal circuit (161b), and the booster unit (180) is provided with a booster circuit (181).
  • an outdoor circuit (111), an indoor circuit (152), a first internal circuit (161a), a second internal circuit (161b), and a booster circuit (181) are connected to four connecting pipes.
  • the refrigerant circuit (200) which performs a vapor compression refrigeration cycle is comprised.
  • the first internal circuit (161a) and the second internal circuit (161b) are connected in parallel.
  • the second internal circuit (161b) and the booster circuit (181) are connected in series.
  • the refrigerant circuit (200) is provided with a use side heat exchanger for the air conditioning system and a use side heat exchanger for the refrigeration / refrigeration system.
  • Each compressor (114a, 114b, 114c), which will be described later, includes a compressor connected to the use side heat exchanger of the air conditioning system, and a compressor connected to the use side heat exchanger of the refrigeration / refrigeration system. It is included.
  • the four connecting pipes (201, 202, 203, 204) are the first liquid side connecting pipe (201), the second liquid side connecting pipe (202), the first gas side connecting pipe (203), and the second gas side connecting pipe (204). It is composed of One end of the first liquid side connection pipe (201) is connected to the first liquid side shut-off valve (205) of the outdoor circuit (111), and the other end is connected to the indoor circuit (152). One end of the second liquid side communication pipe (202) is connected to the second liquid side shut-off valve (206) of the outdoor circuit (111), and the other end branches into two hands to connect the first internal circuit (161a). It is connected to the second internal circuit (161b).
  • the first gas side communication pipe (203) has one end connected to the first gas side shut-off valve (207) of the outdoor circuit (111) and the other end connected to the indoor circuit (152).
  • One end of the second gas side communication pipe (204) is connected to the second gas side shut-off valve (208) of the outdoor circuit (111), and the other end branches into two hands to connect with the first internal circuit (161a). It is connected to the second internal circuit (161b).
  • the second internal circuit (161b) and the booster circuit (181) are connected by a connection gas pipe (194).
  • the outdoor circuit (111), the compression mechanism (140), the outdoor heat exchanger (115), and a receiver (112) is provided.
  • the compression mechanism (140) includes a variable capacity compressor (114a), a first fixed capacity compressor (114b), and a second fixed capacity compressor (114c).
  • the discharge sides of these compressors (114a, 114b, 114c) are connected to each other. Further, these compressors (114a, 114b, 114c) are connected to a third four-way switching valve (133) described later on the suction side.
  • variable capacity compressor (114a) constitutes the first compressor (114a), and the first fixed capacity compressor (114b) and the second fixed capacity compressor (114c) are the second and second compressors, respectively. 3 compressors (114b, 14c) are configured.
  • variable capacity compressor (114a) is supplied with electric power through an inverter.
  • the variable capacity compressors (114a, 114b) are configured such that their operating capacities can be adjusted in stages by changing the output frequency of the inverter.
  • the electric motor is always operated at a constant rotational speed, and the operation capacity cannot be changed.
  • the variable capacity compressor (114a) constitutes an internal compressor that sucks the refrigerant evaporated in the internal units (160a, 160b).
  • the variable capacity compressor (114a) is a compressor dedicated to the interior.
  • the second fixed capacity compressor (114c) constitutes an indoor compressor that sucks the refrigerant evaporated in the indoor unit (150) during the cooling operation.
  • the second fixed capacity compressor (114c) is a compressor dedicated to the room.
  • the first fixed capacity compressor (114b) constitutes an internal compressor when a later-described third four-way switching valve (133) is in the first state, and the third four-way switching valve (133). Constitutes an indoor compressor when in the second state. In other words, the first fixed capacity compressor (114b) is used both as an internal compressor and an indoor compressor.
  • variable capacity compressor (114a) when the internal load, which is the sum of the cooling loads in the internal heat exchangers (164a, 64b) on the refrigeration side and the freezing side, is relatively small, only the variable capacity compressor (114a) The internal compressor is set, and the operating capacity of the variable capacity compressor (114a) is adjusted so that, for example, the pressure in the suction pipe (157a) of the variable capacity compressor (114a) becomes a constant value. As a result, the operating capacity of the variable capacity compressor (114a) is adjusted according to the internal load. When the internal load exceeds the maximum operating capacity of the variable capacity compressor (114a), the first fixed capacity compressor (114b) is also set as the internal compressor. At this time, the total operating capacity of the internal compressor is adjusted by the variable capacity compressor (114a).
  • the second fixed capacity compressor (114c) when the cooling load in the indoor heat exchanger (154) is relatively small, only the second fixed capacity compressor (114c) is set as the indoor compressor.
  • the first fixed capacity compressor (114b) When the cooling load increases, the first fixed capacity compressor (114b) is also set as the indoor compressor. When both the internal load and the cooling load are large, the first fixed capacity compressor (114b) is preferentially used as the internal compressor.
  • variable capacity compressor (114a), the first fixed capacity compressor (114b), and the second fixed capacity compressor (114c) are all constituted by, for example, a hermetic high-pressure dome type scroll compressor.
  • Each compressor (114) includes a scroll type compression mechanism (47) similar to that already described in FIG. A specific description of the compression mechanism (47) will be omitted.
  • the first discharge pipe (156a) of the variable capacity compressor (114a), the second discharge pipe (156b) of the first fixed capacity compressor (114b), and the third discharge pipe (156c) of the second fixed capacity compressor (114c). ) Is connected to the discharge junction pipe (121).
  • the discharge junction pipe (121) is connected to the first four-way switching valve (131).
  • a discharge branch pipe (122) branches from the discharge junction pipe (121).
  • the discharge branch pipe (122) is connected to the second four-way switching valve (132).
  • Each discharge pipe (156) has an oil separator (137a, 137b, 137c), high pressure switch (139a, 139b, 139c) and check valve (CV1, CV2, CV3) in order from the compressor (114) side. And are arranged.
  • Each high pressure switch (139) is configured to urgently stop the compressor (114) at an abnormally high pressure.
  • Each check valve (CV1, CV2, CV3) is configured to prohibit the flow of refrigerant toward the compressor (114).
  • the first suction pipe (157a) of the variable capacity compressor (114a) is connected to the second gas side closing valve (208).
  • the third suction pipe (157c) of the second fixed capacity compressor (114c) is connected to the second four-way switching valve (132).
  • the second suction pipe (157b) of the first fixed capacity compressor (114b) is connected to the third four-way switching valve (133).
  • the second suction pipe (157b) is provided with a low pressure switch (139d).
  • a first suction branch pipe (158a) branches off from the first suction pipe (157a).
  • a second suction branch pipe (158b) branches from the third suction pipe (157c).
  • Both the first suction branch pipe (158a) and the second suction branch pipe (158b) are connected to the third four-way switching valve (133).
  • the first suction branch pipe (158a) and the second suction branch pipe (158b) have check valves (CV7, CV8) that prohibit the flow of refrigerant from the third four-way switching valve (133) side, respectively. Is provided.
  • the outdoor heat exchanger (115) is a cross-fin type fin-and-tube heat exchanger.
  • the outdoor heat exchanger (115) constitutes a heat source side heat exchanger.
  • An outdoor fan (123) that sends outdoor air to the outdoor heat exchanger (115) is provided in the vicinity of the outdoor heat exchanger (115). In the outdoor heat exchanger (115), heat is exchanged between the refrigerant and the outdoor air.
  • the gas side of the outdoor heat exchanger (115) is connected to the first four-way switching valve (131).
  • the liquid side of the outdoor heat exchanger (115) is connected to the top of the receiver (112) via the first liquid pipe (124).
  • the first liquid pipe (124) is provided with an electromagnetic valve (228) that prohibits the flow of refrigerant toward the outdoor heat exchanger (115).
  • the receiver (112) is configured as a vertically long sealed container. In the receiver (112), the high-pressure refrigerant condensed in the outdoor heat exchanger (115) or the like is temporarily stored.
  • One end of the second liquid pipe (125) is connected to the bottom of the receiver (112).
  • the other end of the second liquid pipe (125) branches into a first branch pipe (126) and a second branch pipe (127).
  • the first branch pipe (126) is connected to the first liquid side stop valve (205).
  • the first branch pipe (126) communicates with the indoor circuit (152) via the first liquid side connecting pipe (201).
  • the first branch pipe (126) is provided with a check valve (CV10) that prohibits the flow of refrigerant toward the second liquid pipe (125).
  • the third branch pipe (128) is provided with a check valve (CV11) that prohibits the flow of refrigerant toward the first branch pipe (126).
  • the second branch pipe (127) is connected to the second liquid side stop valve (206).
  • the second branch pipe (127) communicates with the internal circuits (161a, 161b) via the second liquid side connecting pipe (202).
  • a second intermediate heat exchanger (117) described later is connected to the second branch pipe (127).
  • the fourth branch pipe (129) branches from between the second intermediate heat exchanger (117) and the second liquid side shut-off valve (206).
  • the end of the fourth branch pipe (129) opposite to the one connected to the second branch pipe (127) is the outdoor heat exchanger (115) and solenoid valve (228) in the first liquid pipe (124).
  • the fourth branch pipe (129) includes, in order from the second intermediate heat exchanger (117) side, a check valve (CV9) that prohibits the inflow of refrigerant into the second intermediate heat exchanger (117), and an opening degree.
  • a first outdoor expansion valve (166) configured by a variable electronic expansion valve is provided.
  • a connecting pipe (129a) is connected between the check valve (CV9) and the first outdoor expansion valve (166) in the fourth branch pipe (129), and between the electromagnetic valve (228) and the receiver (112) in the first liquid pipe (124).
  • a connecting pipe (129a) is connected.
  • the communication pipe (129a) is provided with a check valve (CV17) that prohibits the flow of refrigerant from the first liquid pipe (124) toward the fourth branch pipe (129).
  • the injection pipe (130) is branched from between the branch point of the fourth branch pipe (129) and the second liquid side shut-off valve (206).
  • the injection pipe (130) constitutes an injection passage.
  • the injection pipe (130) is connected to the main injection pipe (130d) extending from the second branch pipe (127) and the intermediate port (5) of the variable capacity compressor (114a) branched from the main injection pipe (130d).
  • the main injection pipe (130d) is provided with a second outdoor expansion valve (pressure reduction means) (167).
  • the second outdoor expansion valve (167) is an electronic expansion valve with a variable opening. In the second outdoor expansion valve (167), the refrigerant flowing into the main injection pipe (130d) from the second branch pipe (127) is reduced to an intermediate pressure in the refrigeration cycle.
  • Each branch injection pipe (130a, 130b, 130c) is provided with an electronic expansion valve (211, 212, 213) as a flow control valve.
  • the first intermediate heat exchanger (116) is configured to exchange heat between the refrigerant flowing through the first flow path (116a) and the refrigerant flowing through the second flow path (116b).
  • the first intermediate heat exchanger (116) is constituted by, for example, a double tube heat exchanger.
  • the first flow path (116a) is connected to the second liquid pipe (125), and the second flow path (116b) formed inside the first flow path (116a). Is connected downstream of the second outdoor expansion valve (167) in the main injection pipe (130d).
  • the high-pressure refrigerant in the second liquid pipe (125) is cooled by the intermediate-pressure refrigerant in the main injection pipe (130d).
  • the second intermediate heat exchanger (117) is configured to exchange heat between the refrigerant flowing through the first flow path (117a) and the refrigerant flowing through the second flow path (117b).
  • the second intermediate heat exchanger (117) is constituted by, for example, a plate heat exchanger.
  • the first flow path (117a) is connected to the second branch pipe (127), and the second flow path (117b) is the first intermediate heat exchange in the main injection pipe (130d). Connected downstream of the vessel (116).
  • the high-pressure refrigerant in the second branch pipe (127) is cooled by the intermediate-pressure refrigerant in the main injection pipe (130d).
  • the first four-way switching valve (131) has a first port (P1) connected to the discharge junction pipe (121) and a second port (P2) connected to the fourth port (P4) of the second four-way switching valve (132).
  • the third port (P3) is connected to the outdoor heat exchanger (115), and the fourth port (P4) is connected to the first gas side shut-off valve (1113).
  • the second four-way selector valve (132) has a first port (P1) connected to the discharge branch pipe (122), a second port (P2) connected to the third suction pipe (157c), and a fourth port (P4). Are connected to the second port (P2) of the first four-way selector valve (131), respectively.
  • the third port (P3) of the second four-way selector valve (132) is configured as a closed port.
  • the third four-way selector valve (133) has a first port (P1) connected to the high pressure pipe (136) connected to the discharge junction pipe (121), and a second port (P2) connected to the second suction pipe (157b). ),
  • the third port (P3) is connected to the second suction branch pipe (158b), and the fourth port (P4) is connected to the first suction branch pipe (158a).
  • the first port (P1) and the third port (P3) communicate with each other to connect the second port (P2) and the fourth port (P4).
  • ) Are in communication with each other (shown by a solid line in FIG. 4), the first port (P1) and the fourth port (P4) are in communication with each other, and the second port (P2) and the third port (P3).
  • a second state a state indicated by a broken line in FIG. 4 communicating with each other.
  • the first oil separator (137a) is provided in the first discharge pipe (156a), the second oil separator (137b) is provided in the second discharge pipe (156b), and the third discharge pipe (156c) is provided.
  • a third oil separator (137c) is provided.
  • Each oil separator (137) is configured in a sealed container shape, and is configured to separate the refrigerating machine oil from the refrigerant discharged from the corresponding compressor (114).
  • the first oil separator (137a) is connected to the first oil return pipe (142), the second oil separator (137b) is connected to the second oil return pipe (143), and the third oil separator is separated.
  • a third oil return pipe (144) is connected to the vessel (137c).
  • Each oil return pipe (142, 143, 144) is configured to send the refrigerating machine oil separated by the oil separator (137) to the compression chamber of the intermediate pressure of the compressor (114) through the injection pipe (130).
  • the oil return pipes (142, 143, 144) join together, are connected to the injection pipe (130), and are injected into the compressors (114) from the intermediate ports (5, 6, 7).
  • the first oil return pipe (142) includes a check valve (CV12) for inhibiting the flow of refrigeration oil returning to the first oil separator (137a) in order from the first oil separator (137a) side, There is provided a capillary tube (141a) for reducing the high pressure refrigerating machine oil to an intermediate pressure.
  • the second oil return pipe (143) includes a check valve (CV13) for prohibiting the flow of refrigeration oil returning to the second oil separator (137b) side in order from the second oil separator (137b) side, There is provided a capillary tube (141b) for reducing the high pressure refrigerating machine oil to an intermediate pressure.
  • the third oil return pipe (144) includes a check valve (CV14) that prohibits the flow of refrigeration oil returning to the third oil separator (137c) in order from the third oil separator (137c) side, There is provided a capillary tube (141c) for reducing the high pressure refrigerating machine oil to an intermediate pressure.
  • CV14 check valve
  • capillary tube (141c) for reducing the high pressure refrigerating machine oil to an intermediate pressure.
  • the discharge junction pipe (121) is provided with a discharge pressure sensor (118).
  • Each discharge pipe (156) is provided with a discharge temperature sensor (not shown).
  • the first suction pipe (157a) is provided with a first suction pressure sensor (119a) and a first suction temperature sensor (120a).
  • the third suction pipe (157c) is provided with a second suction pressure sensor (119b) and a second suction temperature sensor (120b).
  • the injection pipe (130) is provided with a liquid temperature sensor (172) and an intermediate pressure sensor (173). The detection values of these sensors are input to a controller (210) described later.
  • an indoor expansion valve (153) and an indoor heat exchanger (154) are provided in that order from the liquid side end to the gas side end.
  • the indoor expansion valve (153) is an electronic expansion valve whose opening degree can be adjusted.
  • the indoor heat exchanger (154) is a cross-fin type fin-and-tube heat exchanger.
  • the indoor heat exchanger (154) constitutes a second usage side heat exchanger (154).
  • An indoor fan (155) that sends indoor air to the indoor heat exchanger (154) is provided in the vicinity of the indoor heat exchanger (154). In the indoor heat exchanger (154), heat is exchanged between the refrigerant and the room air.
  • an evaporation temperature sensor (221) is provided in the heat transfer tube of the indoor heat exchanger (154).
  • a gas temperature sensor (222) is provided in the vicinity of the gas side end of the indoor circuit (152).
  • a room temperature sensor (223) is provided in the indoor unit.
  • the internal expansion valve (163a, 163b) and the internal heat exchanger (164a, 163b) are sequentially arranged from the liquid side end to the gas side end. 164b), respectively.
  • Each of the internal expansion valves (163a, 163b) is an electronic expansion valve whose opening degree can be adjusted.
  • Each of the in-compartment heat exchangers (164a, 164b) is configured by a cross fin type fin-and-tube heat exchanger.
  • the internal heat exchanger (164a) of the first internal circuit (161a) constitutes a first usage-side heat exchanger (164a).
  • an evaporation temperature sensor (224a, 224b) is provided in the heat transfer tube of the internal heat exchanger (164a, 164b).
  • gas temperature sensors (225a, 225b) are provided in the vicinity of the gas side end in the internal circuit (161a, 161b).
  • An internal temperature sensor (226a, 226b) is provided in the internal unit.
  • the booster circuit (181) is provided with a booster compressor (186) having a variable operation capacity.
  • the discharge pipe (178) of the booster compressor (186) is provided with an oil separator (187), a high pressure switch (188), and a check valve (CV15) in this order from the booster compressor (186) side.
  • Oil separator (187), the oil return pipe capillary tube (191) is provided (192) is connected.
  • the booster circuit (181), a bypass pipe for bypassing the booster compressor (186) (195) is provided.
  • the bypass pipe (195) is provided with a check valve (CV16).
  • the above controller is the outside air temperature (more specifically, the temperature in the external unit (110), and the compression stopped.
  • the temperature-equivalent saturation pressure of the machine main body or its surrounding temperature is lower than the low-pressure pressure of the operating compressor, the low-pressure pressure of the operating compressor is controlled to be lower than the temperature-equivalent saturation pressure. That is, the controller (210) performs control based on the temperature-equivalent saturation pressure around the condenser that is higher than the outside air temperature or the temperature-equivalent saturation pressure around the evaporator that is lower than the outside air temperature.
  • the compressor discharge pipe temperature can be used as the temperature of the compressor body, and the temperature around the external heat exchanger (25) or the outside air temperature is used as the temperature around the compressor. be able to.
  • the refrigeration apparatus (100) is configured to be able to set seven types of operation modes. Specifically, ⁇ i> cooling operation for cooling only the indoor unit (150), ⁇ ii> heating operation for heating only the indoor unit (150), ⁇ iii> first indoor unit (160a) and Refrigerated refrigeration operation that only cools the inside of the warehouse with the two inside units (160b), ⁇ iv> indoor unit with the cooling inside the inside of the first inside unit (160a) and the second inside unit (160b) ( 150) Cooling and cooling operation in which the cooling is performed, and ⁇ v> without cooling the outdoor heat exchanger (115), the cooling in the storage in the first storage unit (160a) and the second storage unit (160b) The first cooling / heating operation for heating the indoor unit (150), ⁇ vi> the second cooling / heating operation performed when the heating capacity of the indoor unit (150) is excessive in the first cooling / heating operation, and ⁇
  • a vapor compression refrigeration cycle is performed in which the outdoor heat exchanger (115) serves as a condenser and the indoor heat exchanger (154) serves as an evaporator.
  • the first fixed capacity compressor (114b) is also operated.
  • the third four-way selector valve (133) is set to the second state, and the first fixed capacity compressor (114b) constitutes an indoor compressor.
  • the variable capacity compressor (114a) is always stopped.
  • the refrigerant discharged from the second fixed capacity compressor (114c) is condensed in the outdoor heat exchanger (115), and flows into the indoor circuit (152) through the receiver (112).
  • the indoor circuit (152) the refrigerant flowing in is depressurized by the indoor expansion valve (153), and then absorbs heat from the indoor air by the indoor heat exchanger (154) and evaporates.
  • the indoor air cooled by the refrigerant is supplied to the store space.
  • the refrigerant evaporated in the indoor heat exchanger (154) is sucked into the second variable capacity compressor (114b) and discharged again.
  • the evaporation temperature of the refrigerant in the indoor heat exchanger (154) is, for example, about 10 ° C.
  • a vapor compression refrigeration cycle is performed in which the indoor heat exchanger (154) serves as a condenser and the outdoor heat exchanger (115) serves as an evaporator.
  • the first fixed capacity compressor (114b) is also operated.
  • the third four-way selector valve (133) is set to the second state.
  • the variable capacity compressor (114a) is always stopped.
  • the refrigerant discharged from the second fixed capacity compressor (114c) flows into the indoor circuit (152), dissipates heat to the indoor air in the indoor heat exchanger (154), and condenses.
  • the room air heated by the refrigerant is supplied to the store space.
  • the refrigerant condensed in the indoor heat exchanger (154) is depressurized by the first outdoor expansion valve (166), evaporates in the outdoor heat exchanger (115), and sucked into the second fixed capacity compressor (114c). It is discharged again.
  • ⁇ Refrigeration operation> In the refrigeration operation, as shown in FIG. 7, the variable capacity compressor (114a) is operated with the first four-way switching valve (131) set to the first state.
  • the indoor expansion valve (153) is set to a closed state.
  • the opening of the internal expansion valve (163a, 163b) is adjusted so that the superheat of the refrigerant that has passed through the internal heat exchanger (164, 64b) becomes the target superheat (for example, 5 ° C). Is controlled. This is the same in the cooling and cooling operation and the cooling and heating operation described later.
  • a vapor compression refrigeration cycle is performed in which the outdoor heat exchanger (115) serves as a condenser and each of the internal heat exchangers (164) serves as an evaporator.
  • the first fixed capacity compressor (114b) is also operated when the internal cooling capacity is insufficient.
  • the third four-way selector valve (133) is set to the first state, and the first fixed capacity compressor (114b) constitutes the internal compressor.
  • the second fixed capacity compressor (114c) is always stopped.
  • the refrigerant discharged from the variable capacity compressor (114a) is condensed in the outdoor heat exchanger (115).
  • the refrigerant condensed in the outdoor heat exchanger (115) is distributed to the first internal circuit (161a) and the second internal circuit (161b) via the receiver (112).
  • the refrigerant flowing in is depressurized by the internal expansion valve (163a), and then absorbs heat from the internal air in the internal heat exchanger (164a) to evaporate.
  • the inside air cooled by the refrigerant is supplied to the inside of the refrigerated showcase.
  • the refrigerant that has flowed in is decompressed by the internal expansion valve (163b), and then evaporates by absorbing heat from the internal air in the internal heat exchanger (164b).
  • the internal air cooled by the refrigerant is supplied into the freezer showcase.
  • the refrigerant evaporated in the internal heat exchanger (164b) is compressed by the booster compressor (186). Then, the refrigerant evaporated in the internal heat exchanger (164a) and the refrigerant compressed by the booster compressor (186) are drawn into the variable capacity compressor (114a) and discharged again after joining.
  • the refrigerant evaporation temperature in the internal heat exchanger (164a) is set to 5 ° C., for example, and the refrigerant evaporation temperature in the internal heat exchanger (164b) is set to ⁇ 30 ° C., for example. Is done. Since the refrigerant that has exited the internal heat exchanger (164b) is compressed by the booster compressor (186), the temperature of the refrigerant that merges in the second gas side connecting pipe (204) becomes about 5 ° C.
  • the variable capacity compressor (114a) and the first fixed capacity compressor (114b) perform the same internal heat exchange.
  • a refrigerating cycle for sucking the refrigerant evaporated in the container (164a) is performed.
  • variable capacity compressor (114a) and the second fixed capacity compressor are set with the first four-way switching valve (131) and the second four-way switching valve (132) being set to the first state. (114c) is performed.
  • a vapor compression refrigeration cycle is performed in which the outdoor heat exchanger (115) serves as a condenser and the indoor heat exchanger (154) and each internal heat exchanger (164) serve as an evaporator.
  • the first fixed capacity compressor (114b) In the cooling and cooling operation, when the cooling capacity of the indoor unit (150) and the cooling capacity of the internal unit (160) are sufficient, the first fixed capacity compressor (114b) is stopped.
  • the third four-way selector valve (133) When the cooling capacity in the internal unit (160) is insufficient, as shown in FIG. 8, the third four-way selector valve (133) is set to the first state and the first fixed capacity compressor (114b) is set. ) Is performed.
  • the first fixed capacity compressor (114b) is an internal compressor.
  • the third four-way switching valve (133) is set to the second state and the first fixed capacity compressor (114b). Is operated.
  • the first fixed capacity compressor (114b) is an indoor compressor.
  • the refrigerant discharged from the variable capacity compressor (114a) and the second fixed capacity compressor (114c) is condensed in the outdoor heat exchanger (115).
  • the refrigerant condensed in the outdoor heat exchanger (115) is distributed to the first internal circuit (161a), the second internal circuit (161b), and the indoor circuit (152) via the receiver (112). .
  • the refrigerant distributed to the first internal circuit (161a) and the second internal circuit (161b) flows in the same flow as the refrigeration operation, and is sucked into the variable capacity compressor (114a) and discharged again.
  • the refrigerant distributed to the indoor circuit (152) flows in the same flow as in the cooling operation, and is sucked into the second fixed capacity compressor (114c) and discharged again.
  • the evaporation temperature of the refrigerant in the indoor heat exchanger (154) becomes, for example, about 10 ° C., and the refrigerant evaporates in the internal heat exchanger (164a) of the first internal circuit (161a).
  • the temperature is set to 5 ° C., for example, and the evaporation temperature of the refrigerant in the internal heat exchanger (164b) of the second internal circuit (161b) is set to ⁇ 30 ° C., for example.
  • the refrigerant evaporation temperature in the indoor heat exchanger (154) is higher than the refrigerant evaporation temperature in the internal heat exchanger (164a) of the first internal circuit (161a).
  • variable capacity compressor (114a) sucks the refrigerant evaporated in the internal heat exchanger (164a) of the first internal circuit (161a), and more than the internal heat exchanger (164a).
  • Another suction refrigeration cycle is performed in which the second fixed capacity compressor (114c) sucks the refrigerant evaporated in the indoor heat exchanger (154) where the refrigerant evaporation temperature becomes high.
  • the first fixed capacity compressor (114b) is an indoor compressor
  • the first fixed capacity compressor (114b) also sucks the refrigerant evaporated in the indoor heat exchanger (154).
  • the variable capacity compressor (114a) and the first fixed capacity compressor (114b) perform the same internal heat exchange. It becomes the refrigerating cycle of the same suction which sucks in the refrigerant evaporated in the vessel (164a).
  • First cooling and heating operation In the first cooling / heating operation, as shown in FIG. 10, the first four-way selector valve (131) is set to the second state and the second four-way selector valve (132) is set to the first state. Then, the variable capacity compressor (114a) is operated. In the first cooling / heating operation, the first fixed capacity compressor (114b) is also operated when the internal cooling capacity is insufficient. At that time, the third four-way selector valve (133) is set to the first state, and the first fixed-capacity compressor (114b) serves as an internal compressor.
  • a vapor compression refrigeration cycle is performed in which the indoor heat exchanger (154) serves as a condenser and each internal heat exchanger (164) serves as an evaporator.
  • the cooling capacity (one evaporation heat amount) of the first internal unit (160a) and the second internal unit (160b), and the heating capacity (one condensation heat amount) of the indoor unit (150) Balance and 100% heat recovery is performed.
  • the refrigerant discharged from the variable capacity compressor (114a) dissipates heat to the indoor air in the indoor heat exchanger (154) and condenses.
  • the refrigerant condensed in the indoor heat exchanger (154) is distributed to the first internal circuit (161a) and the second internal circuit (161b), respectively.
  • the refrigerant distributed to the first internal circuit (161a) and the second internal circuit (161b) flows in the same flow as the refrigeration operation, and is sucked into the variable capacity compressor (114a) and discharged again. .
  • the variable capacity compressor (114a) and the first fixed capacity compressor (114b) perform the same internal heat exchange.
  • a refrigerating cycle for sucking the refrigerant evaporated in the container (164a) is performed. This is the same in the second cooling / heating operation and the third cooling / heating operation described later.
  • the second cooling / heating operation is performed by switching the second four-way switching valve (132) to the second state as shown in FIG. 11 when the heating capacity is surplus during the first cooling / heating operation. .
  • the outdoor heat exchanger (115) operates as a condenser.
  • the settings for the second cooling / air-heating operation are basically the same as those for the first cooling / air-heating operation except for the second four-way switching valve (132).
  • the refrigerant discharged from the variable capacity compressor (114a) flows into the outdoor heat exchanger (115).
  • the outdoor heat exchanger (115) the inflowing refrigerant dissipates heat to the outdoor air and condenses.
  • the refrigerant condensed in the outdoor heat exchanger (115) merges with the refrigerant condensed in the indoor heat exchanger (154) and is distributed to the first internal circuit (161a) and the second internal circuit (161b), respectively.
  • the cooling capacity (one evaporation heat amount) of the first internal unit (160a) and the second internal unit (160b) and the heating capacity (one condensation heat amount) of the indoor unit (150) are: Without balancing, excess condensation heat is released in the outdoor heat exchanger (115).
  • the third cooling and heating operation when the heating capacity is insufficient during the first cooling and heating operation, as shown in FIG. 12, the second four-way switching valve (132) is set to the first state and the first outdoor in a state of setting the expansion valve (166) to the open state, it is carried out by performing the operation of the second fixed capacity compressor (114c).
  • a vapor compression refrigeration cycle is performed in which the indoor heat exchanger (154) serves as a condenser and each of the internal heat exchangers (164) and the outdoor heat exchanger (115) serves as an evaporator.
  • the refrigerant condensed in the indoor heat exchanger (154) moves not only to the first internal circuit (161a) and the second internal circuit (161b) but also to the outdoor heat exchanger (115) side. Are also distributed.
  • the refrigerant distributed to the outdoor heat exchanger (115) is depressurized by the first outdoor expansion valve (166), then evaporated by the outdoor heat exchanger (115), and sucked into the second fixed capacity compressor (114c). And discharged again.
  • the cooling capacity (one evaporation heat amount) of the first internal unit (160a) and the second internal unit (160b) and the heating capacity (one condensation heat amount) of the indoor unit (150) are: Without balancing, the insufficient heat of evaporation is absorbed by the outdoor heat exchanger (115).
  • the saturation equivalent pressure of the stopped compressor becomes lower than the low pressure (evaporation pressure) of the operating compressor, and the refrigerant flows into the stopped compressor.
  • the refrigerant may be dissolved in the refrigerating machine oil accumulated in the compressor and the oil may be diluted, resulting in poor lubrication at the time of restart.
  • the controller controls the operating compression.
  • the low pressure of the machine is controlled to be lower than the temperature equivalent saturation pressure.
  • step ST1 it is determined whether or not the low pressure LP of the operating compressor is smaller than f (ta).
  • f (ta) may be considered as the equivalent saturation pressure at the outside air temperature ta or the equivalent saturation pressure at the ambient temperature of the compressor in a configuration in which the compressor and the outdoor heat exchanger are housed in the outdoor unit.
  • step ST1 If the determination result in step ST1 is “YES”, the process proceeds to step ST2.
  • the routine proceeds to step ST2
  • the refrigerant does not flow into the stopped compressor because the outside air equivalent saturation pressure is higher than the low pressure (evaporation pressure) of the operating compressor. Therefore, in both cases (1) and (2), the control as described above is performed.
  • step ST1 determines whether the determination result in step ST1 is “NO” or the process proceeds to step ST3, and the temperature of (Ta) is corrected.
  • the refrigerant does not flow into the stopped compressor as in the first embodiment, so that the refrigerant does not stagnate and the refrigerating machine oil is not diluted. Accordingly, poor lubrication or burning at the time of re-start of the compressor does not occur, it is possible to enhance the stability of the device (100).
  • the device (100) when the internal temperature decreases by lowering the low-pressure pressure (evaporation pressure) of the compressor during operation, the device (100) is thermo-off (operation that stops the compressor and only blows air). And the temperature inside the cabinet does not drop below that. In other words, it is not too cold. At this time, since all the compressors (114) are stopped, the refrigerant does not circulate in the refrigerant circuit (200). Therefore, the refrigerant can be prevented from flowing into each compressor even when the temperature of the stopped compressor body or its surroundings is low.
  • the low-pressure pressure evaporation pressure
  • the device (100) when the internal temperature decreases by lowering the low-pressure pressure (evaporation pressure) of the compressor during operation, the device (100) is thermo-off (operation that stops the compressor and only blows air). Thus, the internal temperature does not decrease further. At this time, since all the compressors (114) are stopped, the refrigerant does not circulate in the refrigerant circuit (200). Therefore, the refrigerant can be prevented from flowing into each compressor even when the temperature of the stopped compressor body or its surroundings is low.
  • the low-pressure pressure evaporation pressure
  • the external heat exchanger (heat source side heat exchanger) (115) which can be switched to a condenser and an evaporator, and the internal heat exchanger (115) which can be switched to a condenser and an evaporator A first usage-side heat exchanger (164) and an indoor heat exchanger (second usage-side heat exchanger) (154) configured as an evaporator, and the refrigerant circuit includes the first usage-side heat exchanger.
  • the refrigerant prevents the refrigerant from sleeping in the compressor that is stopped in both the operation state when the exchanger is a condenser and the evaporator. It is possible to increase the stability.
  • the compressor (114) is generally heated by a crankcase heater to evaporate the refrigerant dissolved in the refrigeration oil and separate it from the refrigeration oil.
  • a crankcase heater since it is not necessary to use a crankcase heater, the configuration of the apparatus can be simplified.
  • this embodiment does not presuppose that a crankcase heater is not used, and you may make it use a crankcase heater together with control of this embodiment according to a condition.
  • the three compressors (21a, 21b, 21c) (114a, 114b, 114c) are provided in the external circuit (20).
  • the number of compressors is not limited to this. Two or four or more may be used.
  • control based on the temperature of the compressor body or its surroundings is performed, but low-pressure control of the compressor may be performed based on the actual outside temperature.
  • the present invention includes a plurality of compressors that are being started and those that are being stopped. In this case, if the low pressure pressure (evaporation pressure) of the operating compressor is lower than the operating temperature equivalent saturation pressure regardless of the outside air temperature, the low pressure pressure is controlled to be lower than the outside temperature equivalent nutrient pressure. Just do it.
  • the present invention is useful for a refrigeration apparatus having a plurality of compressors and performing a vapor compression refrigeration cycle.
  • Refrigeration equipment 1 Refrigeration equipment 2 Heat source unit 9 Controller (control unit) 20 Refrigerant circuit 21 Compressor 25 Heat source side heat exchanger 52 Expansion mechanism 53 User side heat exchanger 100 Refrigeration unit 110 Heat source side unit 114 Compressor 115 Heat source side heat exchanger 153 Expansion mechanism 163 Expansion mechanism 164 User side heat exchanger 200 Refrigerant circuit 210 Controller (control unit)

Abstract

複数の圧縮機(21)と、熱源側熱交換器(25)と、膨張機構(52)と、利用側熱交換器(53)とが順に接続された冷媒回路(20)を有する冷凍装置において、複数の圧縮機(21)に運転中の圧縮機と停止中の圧縮機が混在する状態で、運転中の圧縮機に接続されている蒸発器の低圧圧力を、停止中の圧縮機本体またはその周囲の温度相当飽和圧力よりも低下させる制御をすることにより、停止中の圧縮機での冷媒の寝込みを防止し、再起動時の動作不良や焼損を抑制する。

Description

冷凍装置
 本発明は、冷凍装置に関し、特に複数の圧縮機が冷媒回路に接続されている冷凍装置に関するものである。
 従来より、冷凍サイクルを行う冷媒回路を備えた冷凍装置が知られている。この種の冷凍装置は、例えば、食品等を貯蔵する冷蔵庫の庫内を冷却するための冷凍機や、室内の空調を行う空調機などに広く利用されている。
 特許文献1には、室内ユニットと冷蔵冷凍ユニットとが設けられた冷凍装置が開示されている。この冷凍装置は、冷房冷凍をしながら冷蔵・冷凍ユニットを冷やす運転を行ったり、暖房運転をしながら冷蔵・冷凍ユニットを冷やす運転を行ったりすることができる。
特開2007-78338号公報
 ところで、複数の圧縮機が接続されている冷凍装置で、寒冷地などで外気温度が例えばマイナス10℃程度まで低下した状況になり、数台の圧縮機が運転中で、残り数台の圧縮機が停止している運転状態を考えてみる。このとき、運転中の圧縮機につながっている蒸発器の圧力(低圧圧力)は一般に5℃~10℃程度なので、外気温度(もしくは室外ユニットに圧縮機が収納されている場合は圧縮機本体またはその周囲の温度)がマイナス10℃であれば、その温度相当飽和圧力が上記低圧圧力より低くなる。そうすると、停止中の圧縮機の内部の圧力が運転中の圧縮機よりも低圧になるので、冷媒が運転中の圧縮機へではなく、停止中の圧縮機に流入して行くことが考えられる。
 そのような事態になると、停止中の圧縮機に溜まっている低温の冷凍機油に冷媒ガスが溶け込んで凝縮し(以下、冷凍機油に冷媒ガスが溶け込んで凝縮することを冷媒の寝込みという)、油の粘度が低下してしまうことになる。その結果、停止中の圧縮機を再起動した場合に、粘度の低い油が圧縮機内の機械的な摺動部分に供給されることになり、潤滑不良や焼損が生じることが考えられる。
 本発明は、このような問題点に鑑みて創案されたものであり、その目的は、複数の圧縮機を有する冷凍装置において停止中の圧縮機での冷媒の寝込みを防止し、再起動時の動作不良や焼損を抑制することである。
 第1の発明は、複数の圧縮機(21,114)と、熱源側熱交換器(25,115)と、膨張機構(52,153,163)と、利用側熱交換器(53,154,164)とが順に接続された冷媒回路(20,200)を有する冷凍装置を前提としている。
 そして、この冷凍装置は、複数の圧縮機(21,114)に運転中の圧縮機と停止中の圧縮機が混在する状態で、停止中の圧縮機本体または圧縮機周囲の温度相当飽和圧力が運転中の圧縮機に接続されている蒸発器側の熱交換器の低圧圧力よりも低下すると、その低圧圧力を、停止中の圧縮機本体またはその周囲の温度相当飽和圧力よりも低下させる制御部(9,200)を備えていることを特徴としている。圧縮機本体の温度には、圧縮機の吐出管温度を利用することができ、圧縮機周囲の温度には、外気温度などを利用することができる。
 この第1の発明では、寒冷地の冬期などに、停止中の圧縮機本体またはその周囲の温度が低下して、その温度相当飽和圧力が運転中の圧縮機の低圧圧力(蒸発圧力)よりも低くなると、運転中の圧縮機の低圧圧力(蒸発圧力)が、上記温度同等飽和圧力よりも低くなる制御が行われる。このようにすると、運転中の圧縮機の低圧圧力が停止中の圧縮機の圧力よりも低くなるので、冷媒は運転中の圧縮機に流入し、停止中の圧縮機には流入しない。
 第2の発明は、第1の発明において、複数の圧縮機(21,114)と熱源側熱交換器(25,115)が熱源側ユニット(2,110)に収納され、上記制御部(9,200)が、熱源側熱交換器(25,115)が凝縮器になる運転状態では、外気温度よりも高い凝縮器の周囲の温度相当飽和圧力に基づいて制御を行うことを特徴としている。凝縮器の周囲の温度には圧縮機本体の温度やその周囲の温度が含まれる。
 この第2の発明では、熱源側熱交換器(25,115)が凝縮器になるときには、熱源側ユニット(2,110)の中が一般に外気温度よりも高温になる。そして、外気温度よりも高い凝縮器の周囲の温度相当飽和圧力に基づいて制御が行われる。
 第3の発明は、第1の発明において、複数の圧縮機(21,114)と熱源側熱交換器(25,115)が熱源側ユニット(2,110)に収納され、上記制御部(9,200)が、熱源側熱交換器(25,115)が蒸発器になる運転状態では、外気温度よりも低い蒸発器の周囲の温度相当飽和圧力に基づいて制御を行うことを特徴としている。蒸発器の周囲の温度には圧縮機本体の温度やその周囲の温度が含まれる。
 この第3の発明では、熱源側熱交換器(25,115)が蒸発器になるときには、熱源側ユニット(2,110)の中が一般に外気温度よりも低温になる。そして、外気温度よりも低い蒸発器の周囲の温度相当飽和圧力に基づいて制御が行われる。
 第4の発明は、第1の発明において、上記冷媒回路(20)は、上記熱源側熱交換器(25)が凝縮器として構成され、上記利用側熱交換器(53)が蒸発器として構成され、利用側熱交換器(53)で冷却のみを行うように構成されていることを特徴としている。
 この第4の発明では、第2の発明と同様に、熱源側熱交換器(25)が凝縮器になるときに、熱源側ユニット(2)の中が一般に外気温度よりも高温になる。そして、外気温度よりも高い凝縮器の周囲の温度相当飽和圧力に基づいて制御が行われる。
 第5の発明は、第1の発明において、上記冷媒回路(200)が、凝縮器と蒸発器に切り換え可能な上記熱源側熱交換器(115)と、凝縮器と蒸発器に切り換え可能な第1利用側熱交換器(154)と、蒸発器として構成された第2利用側熱交換器(154)とを備え、第1利用側熱交換器(154)を蒸発器とし、第2利用側熱交換器(164)と熱源側熱交換器(115)を凝縮器とする第1の運転と、第1利用側熱交換器(154)と熱源側熱交換器(115)を蒸発器とし、第2利用側熱交換器(164)を凝縮器とする第2の運転とが切り換え可能に構成されていることを特徴としている。
 この第5の発明では、第2,第3の発明と同じように、熱源側熱交換器(115)が凝縮器や蒸発器になるときに、熱源側ユニット(110)の中の凝縮器や蒸発器の周囲の温度相当飽和圧力に基づいて制御が行われる。
 本発明によれば、寒冷地の冬期などに、停止中の圧縮機本体やその周囲の温度が低下して、その温度相当飽和圧力が運転中の圧縮機の低圧圧力(蒸発圧力)よりも低くなると、運転中の圧縮機の低圧圧力(蒸発圧力)を、上記温度同等飽和圧力よりも低くする制御が行われる。このようにすると、運転中の圧縮機の低圧圧力が停止中の圧縮機の圧力よりも低くなるので、冷媒は運転中の圧縮機に流入し、停止中の圧縮機には流入しない。したがって、複数の圧縮機(21,114)を有する冷凍装置において、停止中の圧縮機での冷媒の寝込みを防止し、再起動時の動作不良や焼損を抑制することが可能になる。
 上記第2の発明によれば、熱源側熱交換器(25,115)が凝縮器になるときには、熱源側ユニット(2,110)の中が一般に外気温度よりも高温になる。そして、外気温度よりも高い凝縮器の周囲の温度相当飽和圧力に基づいて制御される。このようにしても、運転中の圧縮機の低圧圧力(蒸発圧力)よりも停止中の圧縮機の機内圧力が低下するのを防止できるから、停止中の圧縮機に冷媒が寝込むことによる不具合を防止できる。例えば、上記低圧圧力を、外気温度相当飽和圧力に設定すればよい。
 上記第3の発明によれば、熱源側熱交換器(25,115)が蒸発器になるときには、熱源側ユニット(2,110)の中が一般に外気温度よりも低温になる。そして、圧縮機は、外気温度よりも低い蒸発器の周囲の温度相当飽和圧力に基づいて制御される。このようにしても、運転中の圧縮機の低圧圧力(蒸発圧力)よりも停止中の圧縮機の機内圧力が停止するのを防止できるから、停止中の圧縮機に冷媒が寝込むことによる不具合を防止できる。
 上記第4の発明によれば、上記第2の発明と同様に、外気温度よりも高い凝縮器の周囲の温度相当飽和圧力に基づいて制御を行うことにより、停止中の圧縮機に冷媒が寝込むことによる不具合を防止できる。
 上記第5の発明によれば、上記第2,第3の発明と同様に、外気温度とは異なる凝縮器や蒸発器の周囲温度の相当飽和圧力に基づいて制御を行うことにより、停止中の圧縮機に冷媒が寝込むことによる不具合を防止できる。
 さらに、上記第1~第5の発明によれば、従来は一般的に冷媒の寝込み防止のためにクランクケースヒータで圧縮機(21,114)を加熱して、冷凍機油に溶け込んだ冷媒を蒸発させて冷凍機油から分離させていたのに対して、クランクケースヒータを用いなくてもよいので、装置構成を簡素化できる。
図1は、実施形態1に係る冷凍装置の冷媒回路図である。 図2は、実施形態1の圧縮機における圧縮機構の要部を示す横断面図である。 図3は、実施形態1の圧縮機の制御を示すフローチャートである。 図4は、実施形態2に係る冷凍装置の冷媒回路図である。 図5は、実施形態2における冷房運転時の冷媒の流れを表す冷媒回路図である。 図6は、実施形態2における暖房運転時の冷媒の流れを表す冷媒回路図である。 図7は、実施形態2における冷蔵冷凍運転時の冷媒の流れを表す冷媒回路図である。 図8は、実施形態2における冷却冷房運転時の冷媒の流れを表す冷媒回路図である。 図9は、実施形態2における冷却冷房運転時の別の冷媒の流れを表す冷媒回路図である。 図10は、実施形態2における第1冷却暖房運転時の冷媒の流れを表す冷媒回路図である。 図11は、実施形態2における第2冷却暖房運転時の冷媒の流れを表す冷媒回路図である。 図12は、実施形態2における第3冷却暖房運転時の冷媒の流れを表す冷媒回路図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 《発明の実施形態1》
 本発明の実施形態1について説明する。
  〈全体構成〉
 本実施形態の冷凍装置(1)は、複数の冷蔵倉庫を冷却するものである。図1に示すように、上記冷凍装置(1)は、庫外ユニット(熱源側ユニット)(2)と、複数の庫内ユニット(利用側ユニット)(3)と、制御部であるコントローラ(9)とを備えている。上記庫外ユニット(2)は屋外に設置され、各庫内ユニット(3)は各冷蔵倉庫ごとに設置されている。又、上記庫外ユニット(2)には庫外回路(20)が、各庫内ユニット(3)には庫内回路(50)がそれぞれ設けられている。そして、この冷凍装置(1)の冷媒回路(10)は、蒸気圧縮式冷凍サイクルを行うように、庫外回路(20)に対して複数の庫内回路(50)が並列に接続されて構成されている。
 具体的に、上記庫外回路(20)と各庫内回路(50)とは、第1連絡配管(14)及び第2連絡配管(15)によって互いに接続されている。上記第1連絡配管(14)の一端は、上記庫外回路(20)の一端部に設けられた第1閉鎖弁(11)に接続され、該第1連絡配管(14)の他端は分岐して、各庫内回路(50)の一端にそれぞれ接続されている。又、上記第2連絡配管(15)の一端は、上記庫外回路(20)の他端部に設けられた第2閉鎖弁(12)に接続され、該第2連絡配管(15)の他端は分岐して、各庫内回路(50)の他端にそれぞれ接続されている。
  〈庫外ユニット〉
 上記庫外ユニット(2)の庫外回路(20)には、第1から第3までの3台の圧縮機(21a,21b,21c)と、庫外熱交換器(熱源側熱交換器)(25)と、レシーバ(27)と、過冷却熱交換器(28)と、過冷却用減圧弁(減圧手段)(29)とが設けられている。
 全ての圧縮機(21a,21b,21c)は、何れも全密閉式で高圧ドーム型のスクロール圧縮機であり、各圧縮機(21a,21b,21c)には、中間圧位置に開口する中間ポート(5,6,7)を有する圧縮室(4a,4b,4c)(図2参照)を備えた圧縮機構と、その圧縮機構を駆動する電動機とがそれぞれ設けられている。
 第1圧縮機(可変容量型圧縮機)(21a)の電動機には、該電動機の回転数を所定範囲内で自在に変更可能なインバータが接続されている。このインバータにより電動機の回転数を調整して、上記第1圧縮機(21a)の運転容量を増減させることが可能である。また、上記第2,第3圧縮機(固定容量型圧縮機)(21b,21c)の電動機には、上記インバータは接続されておらず、該電動機の回転数は一定になっている。したがって、上記第2,第3圧縮機(21b,21c)の運転容量は一定となる。
 図2は、上記第1圧縮機(21a)における圧縮機構(47)の要部を示す横断面図である。尚、上記第2,第3圧縮機(21b,21c)の圧縮機構は、上記第1圧縮機(21a)の圧縮機構(47)と同様の構成であるため、説明は省略する。
 図2に示すように、上記圧縮機構(47)は、固定スクロール(41)と、該固定スクロール(41)に噛合する可動スクロール(42)とを備えている。そして、上記固定スクロール(41)に設けられた固定側ラップ(41a)と上記可動スクロール(42)に設けられた可動側ラップ(42b)とが噛合して区画形成された第1、第2圧縮室(43,44)を備えている。
 尚、固定側ラップ(41a)の内周面と可動側ラップ(42b)の外周面との間に形成される空間が第1圧縮室(43)であり、固定側ラップ(41a)の外周面と可動側ラップ(42b)の内周面との間に形成される空間が第2圧縮室(44)である。これらの圧縮室(43,44)は、可動スクロール(42)の公転運動に伴って、該圧縮室(43,44)の容積が増減するようになっている。
 上記固定スクロール(41)の外周側には、吸入ポート(45)が形成されている。この吸入ポート(45)は、可動スクロール(42)の公転運動に伴って両方の圧縮室(43,44)に間欠的に連通するように構成されている。又、上記固定スクロール(41)の中央部には、吐出ポート(46)が形成されている。この吐出ポート(46)は、可動スクロール(42)の公転運動に伴って両方の圧縮室(43,44)に間欠的に連通するように構成されている。
 そして、上記固定スクロール(41)には、中間ポート(5)が形成されている。この中間ポート(5)は、可動スクロール(42)の公転運動に伴って上記第1圧縮室(43)に間欠的に連通するように構成されている。
 具体的には、第1圧縮室(43)が吸入ポート(45)及び吐出ポート(46)のどちらにも連通していない中間圧位置にあるときに、上記中間ポート(5)と第1圧縮室(43)とが連通し、第1圧縮室(43)が中間圧位置以外の位置にあるときに、上記中間ポート(5)と第1圧縮室(43)とが遮断される。
 上記各圧縮機(21a,21b,21c)の吐出側には、それぞれ吐出管(22a,22b,22c)が接続されている。各吐出管(22a,22b,22c)には、それぞれ逆止弁(CV)が設けられている。これらの吐出管(22a,22b,22c)は、吐出合流管(22)を介して接続されている。上記逆止弁(CV)は、各圧縮機(21a,21b,21c)から吐出合流管(22)へ向かう冷媒の流れのみを許容する向きに設けられている。
 又、上記各吐出管(22a,22b,22c)には、それぞれ逆止弁(CV)の上流側に油分離器(38a,38b,38c)が設けられている。上記各油分離器(38a,38b,38c)は、圧縮機(21a,21b,21c)の吐出冷媒から冷凍機油を分離するためのものである。そして、各油分離器(38a,38b,38c)には、それぞれ油戻し管(39a,39b,39c)が接続されている。これら3つの油戻し管(39a,39b,39c)は、油戻し合流管(39)の一端で合流している。油戻し合流管(39)の他端は、後述する第2インジェクション配管(38)に接続されている。又、上記各油戻し管(39a,39b,39c)には、上記油分離器(38a,38b,38c)の側から順に逆止弁(CV)とキャピラリチューブ(CP)とが設けられている。
 なお、上記各油戻し管(39a,39b,39c)に設けられた逆止弁(CV)は、油戻し合流管(39)へ向かう冷凍機油の流れのみを許容する向きに設けられている。
 上記各圧縮機(21a,21b,21c)の吸入側には、それぞれ吸入管(23a,23b,23c)が接続されている。これらの吸入管(23a,23b,23c)は、吸入合流管(23)に接続されている。吸入合流管(23)は、上記第2閉鎖弁(12)に接続されている。
 上記庫外熱交換器(25)の他端は、第1冷媒配管(32)を介してレシーバ(27)の頂部に接続されている。上記庫外熱交換器(25)は、クロスフィン式のフィン・アンド・チューブ型熱交換器である。庫外熱交換器(25)の近傍には、庫外ファン(26)が設けられている。そして、上記庫外熱交換器(25)は、庫外ファン(26)によって送られた庫外空気と該庫外熱交換器(25)内を流れる冷媒との間で熱交換が行われるように構成されている。
 上記過冷却熱交換器(28)は、高圧側流路(28a)と中圧側流路(28b)とを有し、上記高圧側流路(28a)および上記中圧側流路(28b)を流れる冷媒同士が熱交換するように構成されている。
 上記高圧側流路(28a)の流入端は、レシーバ(27)の底部に接続されている。また、高圧側流路(28a)の流出端は、第2冷媒配管(33)を介して第1閉鎖弁(11)に接続されている。一方、中圧側流路(28b)の流入端及び流出端は、それぞれインジェクション回路(40)に接続されている。
 上記インジェクション回路(40)は、各圧縮機(21a,21b,21c)に冷媒をインジェクションするためのものであり、第1インジェクション配管(分岐配管)(37)と第2インジェクション配管(38)と第1、第2、第3分岐インジェクション配管(37a,37b,37c)とを備えている。
 上記第1インジェクション配管(37)は、上記第2冷媒配管(33)から分岐して、上記中圧側流路(28b)の流入端に接続されている。また、上記第1インジェクション配管(37)には過冷却用減圧弁(減圧手段)(29)が設けられている。この過冷却用減圧弁(29)は、開度可変な電子膨張弁により構成されている。
 上記第2インジェクション配管(38)の一端に、上記中圧側流路(28b)の流出端が接続され、該第2インジェクション配管(38)の他端は、第1、第2、第3分岐インジェクション配管(37a,37b,37c)に分岐している。第1、第2、第3分岐インジェクション配管(37a,37b,37c)は、それぞれ各圧縮機(21a,21b,21c)の中間ポート(5,6,7)に接続されている。
 上記第1分岐インジェクション配管(37a)には第1流量調整弁(30a)が設けられ、第2、第3分岐インジェクション配管(37b,37c)にはそれぞれ第2流量調整弁(30b,30c)が設けられている。この第1流量調整弁(30a)は開度可変な電子膨張弁により構成され、第2流量調整弁(30b,30c)は、開閉可能な電磁弁により構成されている。
 上記レシーバ(27)は、上述したように庫外熱交換器(25)と過冷却熱交換器(28)との間に配置され、庫外熱交換器(25)で凝縮した高圧冷媒を一時的に貯留できるようになっている。
 上記庫外回路(20)には、各種センサや圧力スイッチが設けられている。具体的に、各吐出管(22a,22b,22c)には、それぞれ吐出管温度センサ(61)と高圧圧力スイッチ(62)が設けられている。吐出管温度センサ(61)は吐出管(22a,22b,22c)の温度を検出するものであり、高圧圧力スイッチ(62)は吐出圧力を検出して異常高圧時には冷凍装置(1)を緊急停止させるものである。
 各吐出管(22a,22b,22c)の合流箇所(即ち、吐出合流管(22)の流入端)には、圧縮機(21a,21b,21c)の吐出圧力を検出するための吐出圧力センサ(64)が設けられている。各吸入管(23a,23b,23c)の合流箇所(または合流箇所の近傍でもよい)には、圧縮機(21a,21b,21c)の吸入圧力を検出するための吸入圧力センサ(65)が設けられている。庫外ファン(26)の近傍には、外気温度(具体的には庫外ユニット(2)内の温度)を検出するための外気温センサ(67)が設けられている。吸入管(23b)には、低圧圧力スイッチ(63)が設けられている。
 また、上記第2冷媒配管(33)には、第1液温度センサ(68)が設けられている。液温度センサ(68)は、液冷媒の温度を検出するものである。
  〈庫内ユニット〉
 上記2つの庫内ユニット(3)は同様に構成されている。各庫内ユニット(3)には、庫内回路(50)が設けられている。上記庫内回路(50)は、一端側から他端側へ向かって順に、加熱用配管(51)、庫内膨張弁(52)および庫内熱交換器(利用側熱交換器)(53)が設けられている。
 上記加熱用配管(51)は、上記庫内熱交換器(53)の下方に設けられたドレンパン(55)に取り付けられている。このドレンパン(55)は、庫内熱交換器(53)から滴下する結露水を回収するものである。ここで、上記ドレンパン(55)に上記加熱用配管(51)が取り付けられているのは、上記結露水が凍結して生成される氷塊を、加熱用配管(51)を流通する高圧冷媒の熱を利用して融解するためである。
 上記庫内膨張弁(52)は、開度が調節可能な電子膨張弁で構成されている。
 上記庫内熱交換器(53)は、クロスフィン式のフィン・アンド・チューブ型熱交換器で構成され、該庫内熱交換器(53)の近傍には、庫内ファン(54)が設けられている。そして、上記庫内熱交換器(53)は、庫内ファン(54)によって送られた庫内空気と該庫内熱交換器(53)内を流れる冷媒とが熱交換するように構成されている。
 また、上記庫内回路(50)には、3つの温度センサが設けられている。具体的に、庫内熱交換器(53)の伝熱管には、冷媒の蒸発温度を検出するための蒸発温度センサ(72)が設けられている。庫内回路(50)におけるガス側端の近傍には、ガス冷媒の温度を検出するための冷媒温度センサ(73)が設けられている。庫内ファン(54)の近傍には、庫内の温度を検出するための庫内温度センサ(74)が設けられている。
  〈コントローラ〉
 上記コントローラ(9)は、上述した各センサ、高圧圧力スイッチ(62)及び低圧圧力スイッチ(63)の検出値が入力される。そして、これら検出値に基づいて、上記コントローラ(9)は、各圧縮機(21a,21b,21c)及びファン(26,54)の駆動制御、各種の弁(24,29,31,52,SV)の切換や開度調節を行いながら、上記冷凍装置(1)の運転を制御する。
 上記コントローラ(9)は、庫外熱交換器(25)が凝縮器になる運転状態において、外気温度(より具体的には庫外ユニット(2)の中の温度であり、停止している圧縮機本体またはその周囲の温度)の温度相当飽和圧力が、運転中の圧縮機の低圧圧力(蒸発圧力)よりも下がる条件になると、運転中の圧縮機の低圧圧力を上記温度相当飽和圧力より下げる制御を行う。つまり、コントローラ(9)は、外気温度よりも高くなっている凝縮器の周囲の温度相当飽和圧力に基づいて制御を行う。なお、圧縮機本体の温度には、圧縮機の吐出管温度を利用することができ、圧縮機周囲の温度には、庫外熱交換器(25)周辺の温度や外気温度などを利用することができる。
 -運転動作-
 以下に、上記冷凍装置(1)の運転動作について説明する。冷凍装置(1)は、冷蔵倉庫内を所定温度(例えば、5℃)に維持する冷却運転を行うように構成されている。
 この冷却運転では、3台の圧縮機(21a,21b,21c)のうち少なくとも1台が駆動されて、各庫内ユニット(3)で庫内が冷却される。ここでは、まず、3台全ての圧縮機(21a,21b,21c)を駆動する場合について説明する。また、過冷却用減圧弁(29)および庫内膨張弁(52)の開度が適宜調節される。各電磁弁(SV)は、運転状態に応じて開閉される。
 この冷却運転では、上記第1、第2,第3圧縮機(21a,21b,21c)が駆動されると、冷媒回路(10)において図1に示す実線の矢印の方向に冷媒が流れる。このとき、上記庫外熱交換器(25)が凝縮器として機能し、且つ上記各庫内熱交換器(53)が蒸発器として機能することにより、上記冷媒回路(10)において蒸気圧縮式冷凍サイクルが行われる。
 具体的に、上記第1、第2,第3圧縮機(21a,21b,21c)で圧縮された高圧ガス冷媒が各吐出管(22a,22b,22c)から吐出される。各吐出管(22a,22b,22c)から吐出された高圧ガス冷媒は各油分離器(38a,38b,38c)に流入する。該各油分離器(38a,38b,38c)では、高圧冷媒から冷凍機油が分離される。この分離した冷凍機油は、一旦各油分離器(38a,38b,38c)内に貯留された後、各油戻し管(39a,39b,39c)および油戻し合流管(39)を通って第2インジェクション配管(38)へ流入する。一方、冷凍機油が分離された高圧冷媒は、各油分離器(38a,38b,38c)を流出して上記吐出合流管(22)で合流する。
 上記吐出合流管(22)で合流した高圧冷媒は、庫外熱交換器(25)へ流入する。庫外熱交換器(25)では、高圧冷媒が庫外空気と熱交換して凝縮する。凝縮した冷媒は、第1冷媒配管(32)、レシーバ(27)および過冷却熱交換器(28)の高圧側流路(28a)を順に通過した後に第2冷媒配管(33)へ流入する。第2冷媒配管(33)に流入した冷媒は、一部が第1インジェクション配管(37)へ流れ、残りが上記第1閉鎖弁(11)を介して第1連絡配管(14)へ流れる。
 第1インジェクション配管(37)の方へ流れた高圧冷媒は、上記過冷却用減圧弁(29)で所定の圧力まで減圧されて中間圧冷媒となった後、上記過冷却熱交換器(28)の中圧側流路(28b)へ流入する。過冷却熱交換器(28)では、その中間圧冷媒と高圧側流路(28a)を流れる高圧冷媒とが熱交換する。これにより、上記高圧冷媒が冷却されて過冷却度が大きくなる一方、上記中間圧冷媒が加熱されてガス冷媒となる。このガス冷媒は、上記過冷却熱交換器(28)を流出した後、第2インジェクション配管(38)を介して第1、第2、第3分岐インジェクション配管(37a,37b,37c)に分流する。
 そして、第1分岐インジェクション配管(37a)に流入した中間圧冷媒は、その流量が上記第1流量調整弁(30a)で調整された後、第1圧縮機(21a)における中間圧位置の第1圧縮室(43)にインジェクションされる。
 また、第2、第3分岐インジェクション配管(37b,37c)に流入した各中間圧冷媒は、その各流量が上記第2,3流量調整弁(30b,30c)で調整された後、第2,第3圧縮機(21b,21c)における中間圧位置の各圧縮室へそれぞれインジェクションされる。
 一方、上記第1連絡配管(14)の方へ流れた高圧冷媒は、各庫内回路(50)へ分流する。庫内回路(50)へ流入した高圧冷媒は、加熱用配管(51)を流通する。その際、ドレンパン(55)では、加熱用配管(51)を流れる冷媒によって結露水が凍結した氷塊が加熱用配管(51)の冷媒によって融解される。これにより、加熱用配管(51)を流れる高圧冷媒がさらに過冷却される。加熱用配管(51)を流出した高圧冷媒は、上記庫内膨張弁(52)で減圧されて低圧冷媒になった後、上記庫内熱交換器(53)へ流入する。
 上記庫内熱交換器(53)では、低圧冷媒が庫内空気と熱交換して蒸発する。これにより、庫内空気が冷却される。各庫内熱交換器(53)で蒸発した冷媒は、第2連絡配管(15)を通って再び庫外回路(20)へ流入する。庫外回路(20)へ流入した低圧冷媒は、吸入合流管(23)へ流れ、吸入管(23a,23b,23c)から各圧縮機(21a,21b,21c)へ吸入される。各圧縮機(21a,21b,21c)へ吸入された低圧冷媒は、上記中間ポート(5,6,7)から流入した中間圧冷媒とともに、所定の圧力まで圧縮されて高圧冷媒となる。そして、この高圧冷媒は、圧縮機(21a,21b,21c)から再び吐出される。このように冷媒が循環することにより、各冷蔵倉庫内を所定温度に維持する冷却運転が行われる。
  〈圧縮機の制御動作〉
 ここで、上記3台の圧縮機(21a,21b,21c)のうち、1台または2台が起動していて残りの圧縮機が停止している状態を想定する。このとき、寒冷地で冬期に外気温度(より具体的には庫外ユニット(2)の中の温度)がマイナス10℃程度の低温になると、停止している圧縮機もマイナス10℃近くまで温度が低下する。一方、運転中の圧縮機につながっている蒸発器の蒸発温度が0℃~5℃程度であるとすると、停止中の圧縮機の方が低温になる。そのため、停止中の圧縮機の温度相当飽和圧力が、運転中の圧縮機の低圧圧力(蒸発圧力)よりも低くなり、冷媒が停止中の圧縮機に流入することが考えられる。また、その場合には、冷媒が圧縮機内に溜まっている冷凍機油に溶け込み、油が希釈されて、再起動時に潤滑不良が生じるおそれがある。
 そこで、本実施形態では、停止している圧縮機本体またはその周囲の温度相当飽和圧力が、運転中の圧縮機の低圧圧力よりも下がる条件になると、上記コントローラ(9)により、運転中の圧縮機の低圧圧力を上記温度相当飽和圧力より下げる制御を行う。
 まず、通常の運転時の制御について簡単に説明する。
 (1) 圧縮機(21a,21b,21c)の制御を庫内温度や室温と設定温度の差によって行うときは、Tsetを設定温度とし、Th1を吸込温度、圧縮機の周波数をHzとすると、
  Hz=f(Tset-Th1)
 で表される値に基づいてPID制御を行う。
 (2) 圧縮機(21a,21b,21c)のロードを設定温度のみに基づいて制御するときは、目標LP=f(設定温度-10)に設定して、それを設定温度より10K低い値の相当飽和圧力として、
  Hz=f(LP-目標LP)
 で表される値に基づいてPID制御を行う。なお、ここで述べているLP(低圧圧力)は、蒸発器の蒸発圧力のことであり、圧縮機の吸入圧力ではない。
 次に、停止中の圧縮機で冷媒の寝込みを防止する制御について図3のフローチャートを用いて説明する。まず、ステップST1では、運転中の圧縮機の低圧圧力LPが、f(ta)で求められる値よりも小さいかどうかを判別する。f(ta)は、外気温度の関数であり、外気温度相当飽和圧力、または、圧縮機や室外熱交換器が室外ユニットに収納されている構成においては、圧縮機本体またはその周囲温度の相当飽和圧力と考えてもよい。
 ステップST1の判別結果が「YES」の場合、ステップST2へ進む。ステップST2へ進んだときは、外気相当飽和圧力が運転中の圧縮機の低圧圧力(蒸発圧力)よりも高いので、停止中の圧縮機へは冷媒は流入していかない。したがって、上記(1),(2)のいずれも場合も、上記したとおりの制御を行う。
 また、ステップST1の判別結果は「NO」の場合、ステップST3へ進み、(Ta)の温度を補正する。本実施形態では、室外熱交換器が凝縮器になる。そこで、室外ユニット内の温度は外気温度よりも高くなっていると考えられる。したがって、上記の(1)の時に、目標LP=f(Ta)として、
  Hz=f(LP-目標LP)のPID制御を行う。
また、(2)のときは上記と同様の制御を行う。
 このようにすることにより、冷媒が停止中の圧縮機へ流入しないので、冷媒の寝込みが生じず、冷凍機油は希釈されない。
  -実施形態の効果-
 以上のように、本実施形態によれば、冷媒が停止中の圧縮機へ流入しないので、冷媒の寝込みが生じず、冷凍機油は希釈されない。したがって、圧縮機の再起動時の潤滑不良や焼損が生じず、装置の安定性を高めることができる。
 また、運転中の圧縮機の低圧圧力(蒸発圧力)を下げることによって庫内温度が低下すると、装置はサーモオフ(休止運転:圧縮機が停止し、送風のみを行うような運転)になり、庫内温度はそれよりも低下しない。このとき、圧縮機はすべて停止することになるので、冷媒回路中を冷媒が循環しない。そのため、停止中の圧縮機本体またはその周囲の温度が低くても、冷媒が各圧縮機へ流入して寝込むことを防止できる。
 このように、本実施形態では、上記庫外熱交換器(25)が凝縮器として構成されるとともに、上記庫内熱交換器(53)が蒸発器として構成されて、上記冷媒回路が庫内熱交換器(53)で冷却のみを行うように構成されている冷凍装置において、停止している圧縮機に冷媒が寝込むのを防止し、装置の安定性を高めることができる。
 また、冷媒の寝込み防止のために、従来はクランクケースヒータで圧縮機(21)を加熱して、冷凍機油に溶け込んだ冷媒を蒸発させて冷凍機油から分離させるのが一般的であるが、本実施形態によればクランクケースヒータを用いなくてもよいので、装置構成を簡素化できる。なお、本実施形態はクランクケースヒータを用いないことを要件とするものではなく、状況に応じて、クランクケースヒータを本実施形態の制御と併用するようにしてもよい。
 《発明の実施形態2》
 本発明の実施形態2について説明する。
 この実施形態2に係る冷凍装置(100)は、例えばコンビニエンスストアに設けられる。冷凍装置(100)は、図4に示すように、室外に設置される室外ユニット(110)と、店内空間を空調する室内ユニット(150)と、庫内を冷却する2台の庫内ユニット(160a,160b)と、ブースタユニット(180)とを備えている。2台の庫内ユニット(160a,160b)は、冷蔵用の第1庫内ユニット(160a)と冷凍用の第2庫内ユニット(160b)とから構成されている。
 室外ユニット(110)には室外回路(111)が、室内ユニット(150)には室内回路(152)が、第1庫内ユニット(160a)には第1庫内回路(161a)が、第2庫内ユニット(160b)には第2庫内回路(161b)が、ブースタユニット(180)にはブースタ回路(181)がそれぞれ設けられている。この冷凍装置(100)では、室外回路(111)、室内回路(152)、第1庫内回路(161a)、第2庫内回路(161b)、及びブースタ回路(181)を4本の連絡配管(201,202,203,204)で接続することによって、蒸気圧縮冷凍サイクルを行う冷媒回路(200)が構成されている。第1庫内回路(161a)と第2庫内回路(161b)は並列に接続されている。また、第2庫内回路(161b)とブースタ回路(181)は直列に接続されている。
 そして、上記冷媒回路(200)には空調系統の利用側熱交換器と冷蔵・冷凍系統の利用側熱交換器とが設けられている。また、後述する各圧縮機(114a,114b,114c)には、空調系統の利用側熱交換器に接続される圧縮機と、冷蔵・冷凍系統の利用側熱交換器に接続される圧縮機とが含まれている。
 4本の連絡配管(201,202,203,204)は、第1液側連絡配管(201)、第2液側連絡配管(202)、第1ガス側連絡配管(203)、及び第2ガス側連絡配管(204)から構成されている。第1液側連絡配管(201)は、一端が室外回路(111)の第1液側閉鎖弁(205)に接続され、他端が室内回路(152)に接続されている。第2液側連絡配管(202)は、一端が室外回路(111)の第2液側閉鎖弁(206)に接続され、他端が2手に分岐して第1庫内回路(161a)と第2庫内回路(161b)に接続されている。第1ガス側連絡配管(203)は、一端が室外回路(111)の第1ガス側閉鎖弁(207)に接続され、他端が室内回路(152)に接続されている。第2ガス側連絡配管(204)は、一端が室外回路(111)の第2ガス側閉鎖弁(208)に接続され、他端が2手に分岐して第1庫内回路(161a)と第2庫内回路(161b)に接続されている。また、第2庫内回路(161b)とブースタ回路(181)との間は、接続ガス管(194)によって接続されている。
  〈室外ユニット〉
 室外回路(111)には、圧縮機構(140)、室外熱交換器(115)、及びレシーバ(112)が設けられている。圧縮機構(140)は、可変容量圧縮機(114a)と第1固定容量圧縮機(114b)と第2固定容量圧縮機(114c)とから構成されている。圧縮機構(140)では、これらの圧縮機(114a,114b,114c)の吐出側が互いに接続されている。また、これらの圧縮機(114a,114b,114c)は、吸入側が後述する第3四路切換弁(133)に接続されている。本実施形態2では、可変容量圧縮機(114a)が第1圧縮機(114a)を構成し、第1固定容量圧縮機(114b)及び第2固定容量圧縮機(114c)がそれぞれ第2,第3圧縮機(114b,14c)を構成している。
 可変容量圧縮機(114a)には、インバータを介して電力が供給される。可変容量圧縮機(114a,114b)は、インバータの出力周波数を変化させることによって、その運転容量を段階的に調節することができるように構成されている。一方、第1,第2固定容量圧縮機(114b,114c)は、電動機が常に一定の回転速度で運転されるものであって、その運転容量が変更不能となっている。
 可変容量圧縮機(114a)は、庫内ユニット(160a,160b)で蒸発した冷媒を吸入する庫内用圧縮機を構成している。可変容量圧縮機(114a)は、庫内専用の圧縮機である。第2固定容量圧縮機(114c)は、冷房運転時に室内ユニット(150)で蒸発した冷媒を吸入する室内用圧縮機を構成している。第2固定容量圧縮機(114c)は、室内専用の圧縮機である。また、第1固定容量圧縮機(114b)は、後述する第3四路切換弁(133)が第1状態のときに庫内用圧縮機を構成し、その第3四路切換弁(133)が第2状態のときに室内用圧縮機を構成する。つまり、第1固定容量圧縮機(114b)は、庫内用圧縮機と室内用圧縮機に兼用される。
 圧縮機構(140)では、冷蔵側及び冷凍側の庫内熱交換器(164a,64b)における冷却負荷の合計である庫内側負荷が比較的小さい場合には、可変容量圧縮機(114a)のみが庫内用圧縮機に設定され、その可変容量圧縮機(114a)の運転容量が、例えば可変容量圧縮機(114a)の吸入管(157a)の圧力が一定値になるように調節される。その結果、可変容量圧縮機(114a)の運転容量は、庫内側負荷に応じて調節されることになる。そして、庫内側負荷が可変容量圧縮機(114a)の運転容量の最大値を超えると、第1固定容量圧縮機(114b)も庫内用圧縮機に設定される。このとき、庫内用圧縮機の合計運転容量は、可変容量圧縮機(114a)によって調節される。
 また、室内熱交換器(154)における冷房負荷が比較的小さい場合には、第2固定容量圧縮機(114c)のみが室内用圧縮機に設定される。そして、冷房負荷が大きくなると、第1固定容量圧縮機(114b)も室内用圧縮機に設定される。なお、庫内側負荷と冷房負荷が共に大きい場合には、第1固定容量圧縮機(114b)は庫内用圧縮機に優先的に用いられる。
 可変容量圧縮機(114a)、第1固定容量圧縮機(114b)、及び第2固定容量圧縮機(114c)は共に、例えば全密閉の高圧ドーム型のスクロール圧縮機により構成されている。各圧縮機(114)は、既に図2で説明したのと同様のスクロール式の圧縮機構(47)を備えている。圧縮機構(47)の具体的な説明は省略する。
 可変容量圧縮機(114a)の第1吐出管(156a)、第1固定容量圧縮機(114b)の第2吐出管(156b)及び第2固定容量圧縮機(114c)の第3吐出管(156c)は、吐出合流管(121)に接続されている。吐出合流管(121)は、第1四路切換弁(131)に接続されている。吐出合流管(121)からは吐出分岐管(122)が分岐している。吐出分岐管(122)は、第2四路切換弁(132)に接続されている。
 各吐出管(156)には、圧縮機(114)側から順に、油分離器(137a,137b,137c)と高圧圧力スイッチ(139a,139b,139c)と逆止弁(CV1,CV2,CV3)とが配置されている。各高圧圧力スイッチ(139)は、異常高圧時に圧縮機(114)を緊急停止させるように構成されている。各逆止弁(CV1,CV2,CV3)は、圧縮機(114)へ向かう冷媒の流れを禁止するように構成されている。
 可変容量圧縮機(114a)の第1吸入管(157a)は、第2ガス側閉鎖弁(208)に接続されている。第2固定容量圧縮機(114c)の第3吸入管(157c)は、第2四路切換弁(132)に接続されている。第1固定容量圧縮機(114b)の第2吸入管(157b)は、第3四路切換弁(133)に接続されている。第2吸入管(157b)には、低圧圧力スイッチ(139d)が設けられている。第1吸入管(157a)からは、第1吸入分岐管(158a)が分岐している。第3吸入管(157c)からは、第2吸入分岐管(158b)が分岐している。第1吸入分岐管(158a)及び第2吸入分岐管(158b)は共に第3四路切換弁(133)に接続されている。また、第1吸入分岐管(158a)及び第2吸入分岐管(158b)には、第3四路切換弁(133)側からの冷媒の流れを禁止する逆止弁(CV7,CV8)がそれぞれ設けられている。
 室外熱交換器(115)は、クロスフィン式のフィン・アンド・チューブ型熱交換器により構成されている。室外熱交換器(115)は熱源側熱交換器を構成している。室外熱交換器(115)の近傍には、室外熱交換器(115)に室外空気を送る室外ファン(123)が設けられている。室外熱交換器(115)では、冷媒と室外空気との間で熱交換が行われる。
 室外熱交換器(115)のガス側は、第1四路切換弁(131)に接続されている。室外熱交換器(115)の液側は、第1液管(124)を介してレシーバ(112)の頂部に接続されている。第1液管(124)には、室外熱交換器(115)へ向かう冷媒の流れを禁止する電磁弁(228)が設けられている。
 レシーバ(112)は、縦長の密閉容器状に構成されている。レシーバ(112)では、室外熱交換器(115)等で凝縮した高圧冷媒が一時的に貯留される。また、レシーバ(112)の底部には、第2液管(125)の一端が接続されている。第2液管(125)の他端は、第1分岐配管(126)と第2分岐配管(127)とに分岐している。
 第1分岐配管(126)は、第1液側閉鎖弁(205)に接続されている。第1分岐配管(126)は、第1液側連絡配管(201)を介して室内回路(152)に連通している。第1分岐配管(126)には、第2液管(125)へ向かう冷媒の流れを禁止する逆止弁(CV10)が設けられている。第1分岐配管(126)からは、第1液管(124)における電磁弁(228)とレシーバ(112)の間に接続された第3分岐管(128)が分岐している。第3分岐管(128)には、第1分岐配管(126)へ向かう冷媒の流れを禁止する逆止弁(CV11)が設けられている。
 第2分岐配管(127)は、第2液側閉鎖弁(206)に接続されている。第2分岐配管(127)は、第2液側連絡配管(202)を介して各庫内回路(161a,161b)に連通している。第2分岐配管(127)には、後述する第2中間熱交換器(117)が接続されている。第2分岐配管(127)からは、第4分岐管(129)とインジェクション管(インジェクション回路を構成する分岐配管)(130)とが分岐している。
 第4分岐管(129)は、第2中間熱交換器(117)と第2液側閉鎖弁(206)の間から分岐している。第4分岐管(129)は、第2分岐配管(127)に接続されている方とは逆の端部が第1液管(124)における室外熱交換器(115)と電磁弁(228)の間に接続されている。第4分岐管(129)には、第2中間熱交換器(117)側から順に、第2中間熱交換器(117)への冷媒の流入を禁止する逆止弁(CV9)と、開度可変の電子膨張弁により構成された第1室外膨張弁(166)が設けられている。また、第4分岐管(129)における逆止弁(CV9)と第1室外膨張弁(166)との間と、第1液管(124)における電磁弁(228)とレシーバ(112)の間に、連絡管(129a)が接続されている。この連絡管(129a)には、第1液管(124)から第4分岐管(129)へ向かう冷媒の流れを禁止する逆止弁(CV17)が設けられている。
 インジェクション管(130)は、第4分岐管(129)の分岐箇所と第2液側閉鎖弁(206)の間から分岐している。インジェクション管(130)はインジェクション通路を構成している。インジェクション管(130)は、第2分岐配管(127)から延びる主注入管(130d)と、主注入管(130d)から分岐して可変容量圧縮機(114a)の中間ポート(5)に接続する左側分岐注入管(130a)と、主注入管(130d)から分岐して第2固定容量圧縮機(114c)の中間ポート(6)に接続する右側分岐注入管(130c)と、主注入管(130d)から分岐して第1固定容量圧縮機(114b)の中間ポート(7)に接続する中央分岐注入管(130b)とを備えている。
 主注入管(130d)には、第2室外膨張弁(減圧手段)(167)が設けられている。第2室外膨張弁(167)は開度可変の電子膨張弁により構成されている。第2室外膨張弁(167)では、第2分岐配管(127)から主注入管(130d)に流入した冷媒が、冷凍サイクルにおける中間圧に減圧される。
 各分岐注入管(130a,130b,130c)には、流量調整弁として電子膨張弁(211,212,213)が設けられている。
 本実施形態2では、室内熱交換器(154)及び庫内熱交換器(164)の両方へ供給される冷媒を冷却するための第1中間熱交換器(116)と、室内熱交換器(154)及び庫内熱交換器(164)のうち庫内熱交換器(164)だけに供給される冷媒を冷却するための第2中間熱交換器(117)とが設けられている。
 第1中間熱交換器(116)は、第1流路(116a)を流通する冷媒と第2流路(116b)を流通する冷媒とを熱交換させるように構成されている。第1中間熱交換器(116)は、例えば二重管式熱交換器により構成されている。第1中間熱交換器(116)では、第1流路(116a)が第2液管(125)に接続され、第1流路(116a)の内側に形成された第2流路(116b)が主注入管(130d)における第2室外膨張弁(167)の下流に接続されている。第1中間熱交換器(116)における熱交換では、第2液管(125)の高圧の冷媒が主注入管(130d)の中間圧の冷媒によって冷却される。
 第2中間熱交換器(117)は、第1流路(117a)を流通する冷媒と第2流路(117b)を流通する冷媒とを熱交換させるように構成されている。第2中間熱交換器(117)は、例えばプレート式の熱交換器により構成されている。第2中間熱交換器(117)では、第1流路(117a)が第2分岐配管(127)に接続され、第2流路(117b)が主注入管(130d)における第1中間熱交換器(116)の下流に接続されている。第2中間熱交換器(117)における熱交換では、第2分岐配管(127)の高圧の冷媒が主注入管(130d)の中間圧の冷媒によって冷却される。
 第1四路切換弁(131)は、第1ポート(P1)が吐出合流管(121)に、第2ポート(P2)が第2四路切換弁(132)の第4ポート(P4)に、第3ポート(P3)が室外熱交換器(115)に、第4ポート(P4)が第1ガス側閉鎖弁(1113)にそれぞれ接続されている。また、第2四路切換弁(132)は、第1ポート(P1)が吐出分岐管(122)に、第2ポート(P2)が第3吸入管(157c)に、第4ポート(P4)が第1四路切換弁(131)の第2ポート(P2)にそれぞれ接続されている。第2四路切換弁(132)の第3ポート(P3)は閉塞された閉鎖ポートに構成されている。また、第3四路切換弁(133)は、第1ポート(P1)が吐出合流管(121)に接続された高圧管(136)に、第2ポート(P2)が第2吸入管(157b)に、第3ポート(P3)が第2吸入分岐管(158b)に、第4ポート(P4)が第1吸入分岐管(158a)にそれぞれ接続されている。
 第1乃至第3の各四路切換弁(131,32,33)は、第1ポート(P1)と第3ポート(P3)が互いに連通して第2ポート(P2)と第4ポート(P4)が互いに連通する第1状態(図4に実線で示す状態)と、第1ポート(P1)と第4ポート(P4)が互いに連通して第2ポート(P2)と第3ポート(P3)が互いに連通する第2状態(図4に破線で示す状態)との間で切換自在に構成されている。
 本実施形態2では、第1吐出管(156a)に第1油分離器(137a)が、第2吐出管(156b)に第2油分離器(137b)が、第3吐出管(156c)に第3油分離器(137c)が設けられている。各油分離器(137)は、密閉容器状に構成され、対応する圧縮機(114)から吐出された冷媒から冷凍機油を分離するように構成されている。
 また、第1油分離器(137a)には第1油戻し管(142)が接続され、第2油分離器(137b)には第2油戻し管(143)が接続され、第3油分離器(137c)には第3油戻し管(144)が接続されている。各油戻し管(142,143,144)は、油分離器(137)で分離された冷凍機油をインジェクション管(130)を通じて圧縮機(114)の中間圧の圧縮室に送るように構成されている。上記各油戻し管(142,143,144)は合流した後にインジェクション管(130)に接続され、各圧縮機(114)へ中間ポート(5,6,7)から注入される。
 第1油戻し管(142)には、第1油分離器(137a)側から順番に、第1油分離器(137a)側へ戻る冷凍機油の流れを禁止する逆止弁(CV12)と、高圧の冷凍機油を中間圧に減圧するキャピラリーチューブ(141a)とが設けられている。第2油戻し管(143)には、第2油分離器(137b)側から順番に、第2油分離器(137b)側へ戻る冷凍機油の流れを禁止する逆止弁(CV13)と、高圧の冷凍機油を中間圧に減圧するキャピラリーチューブ(141b)とが設けられている。第3油戻し管(144)には、第3油分離器(137c)側から順番に、第3油分離器(137c)側へ戻る冷凍機油の流れを禁止する逆止弁(CV14)と、高圧の冷凍機油を中間圧に減圧するキャピラリーチューブ(141c)とが設けられている。
 また、室外ユニット(110)には、各種のセンサが設けられている。具体的に、吐出合流管(121)には、吐出圧力センサ(118)が設けられている。各吐出管(156)には、吐出温度センサが設けられている(図示省略)。第1吸入管(157a)には、第1吸入圧力センサ(119a)及び第1吸入温度センサ(120a)が設けられている。第3吸入管(157c)には、第2吸入圧力センサ(119b)及び第2吸入温度センサ(120b)が設けられている。インジェクション管(130)には、液温度センサ(172)と中間圧力センサ(173)が設けられている。これらのセンサの検出値は、後述するコントローラ(210)に入力される。
  〈室内ユニット〉
 室内回路(152)では、その液側端からガス側端へ向かって順に、室内膨張弁(153)と室内熱交換器(154)とが設けられている。室内膨張弁(153)は、開度が調節可能な電子膨張弁により構成されている。また、室内熱交換器(154)は、クロスフィン式のフィン・アンド・チューブ型熱交換器により構成されている。室内熱交換器(154)は、第2利用側熱交換器(154)を構成している。室内熱交換器(154)の近傍には、室内熱交換器(154)に室内空気を送る室内ファン(155)が設けられている。室内熱交換器(154)では、冷媒と室内空気との間で熱交換が行われる。
 また、室内回路(152)では、室内熱交換器(154)の伝熱管に、蒸発温度センサ(221)が設けられている。また、室内回路(152)におけるガス側端の近傍に、ガス温度センサ(222)が設けられている。室内ユニット内には、室温センサ(223)が設けられている。
  〈庫内ユニット〉
 第1庫内回路(161a)及び第2庫内回路(161b)では、その液側端からガス側端へ向かって順に、庫内膨張弁(163a,163b)と庫内熱交換器(164a,164b)とがそれぞれ設けられている。各庫内膨張弁(163a,163b)は、開度が調節可能な電子膨張弁により構成されている。各庫内熱交換器(164a,164b)は、クロスフィン式のフィン・アンド・チューブ型熱交換器により構成されている。第1庫内回路(161a)の庫内熱交換器(164a)は、第1利用側熱交換器(164a)を構成している。各庫内熱交換器(164a,164b)の近傍には、庫内熱交換器(164a,164b)に庫内空気を送る庫内ファン(165a,165b)が設けられている。各庫内熱交換器(164a,64b)では、冷媒と庫内空気との間で熱交換が行われる。
 また、各庫内回路(161a,161b)では、庫内熱交換器(164a,164b)の伝熱管に、蒸発温度センサ(224a,224b)が設けられている。また、庫内回路(161a,161b)におけるガス側端の近傍に、ガス温度センサ(225a,225b)が設けられている。庫内ユニット内には、庫内温度センサ(226a,226b)が設けられている。
  〈ブースタユニット〉
 ブースタ回路(181)には、運転容量が可変のブースタ圧縮機(186)が設けられている。ブースタ圧縮機(186)の吐出管(178)には、ブースタ圧縮機(186)側から順に、油分離器(187)、高圧圧力スイッチ(188)、逆止弁(CV15)が設けられている。油分離器(187)には、キャピラリーチューブ(191)が設けられた油戻し管(192)が接続されている。また、ブースタ回路(181)には、ブースタ圧縮機(186)をバイパスするバイパス管(195)が設けられている。バイパス管(195)には、逆止弁(CV16)が設けられている。
  〈コントローラ〉
 上記コントローラは、庫外熱交換器(115)が凝縮器又は蒸発器になる運転状態において、外気温度(より具体的には庫外ユニット(110)の中の温度であり、停止している圧縮機本体またはその周囲の温度)の温度相当飽和圧力が、運転中の圧縮機の低圧圧力よりも下がる条件になると、運転中の圧縮機の低圧圧力を上記温度相当飽和圧力より下げる制御を行う。つまり、コントローラ(210)は、外気温度よりも高い凝縮器の周囲の温度相当飽和圧力、または外気温度よりも低い蒸発器の周囲の温度相当飽和圧力に基づいて制御を行う。なお、圧縮機本体の温度には、圧縮機の吐出管温度を利用することができ、圧縮機周囲の温度には、庫外熱交換器(25)の周辺の温度や外気温度などを利用することができる。
 その他の制御の具体的な内容は実施形態1と基本的に同じである。
   -運転動作-
 次に、冷凍装置(100)が行う運転動作について運転の種類毎に説明する。この冷凍装置(100)は、7種類の運転モードを設定可能に構成されている。具体的には、<i>室内ユニット(150)の冷房のみを行う冷房運転、<ii>室内ユニット(150)の暖房のみを行う暖房運転、<iii>第1庫内ユニット(160a)と第2庫内ユニット(160b)での庫内の冷却のみを行う冷蔵冷凍運転、<iv>第1庫内ユニット(160a)及び第2庫内ユニット(160b)での庫内の冷却と共に室内ユニット(150)での冷房を行う冷却冷房運転、<v>室外熱交換器(115)を用いずに、第1庫内ユニット(160a)及び第2庫内ユニット(160b)での庫内の冷却と室内ユニット(150)での暖房とを行う第1冷却暖房運転、<vi>第1冷却暖房運転で室内ユニット(150)の暖房能力が余るときに行う第2冷却暖房運転、そして<vii>第1冷却暖房運転で室内ユニット(150)の暖房能力が不足するときに行う第3冷却暖房運転が選択可能に構成されている。
  〈冷房運転〉
 冷房運転では、図5に示すように、第1四路切換弁(131)及び第2四路切換弁(132)が共に第1状態に設定された状態で、第2固定容量圧縮機(114c)の運転が行われる。各庫内膨張弁(163)は閉状態に設定される。冷房運転中は、室内熱交換器(154)を通過した冷媒の過熱度が目標過熱度(1例えば5℃)になるように、室内膨張弁(153)の開度が制御される。この点は、後述する冷却冷房運転でも同じである。
 冷房運転では、室外熱交換器(115)が凝縮器となって室内熱交換器(154)が蒸発器となる蒸気圧縮冷凍サイクルが行われる。なお、冷房運転では、冷房能力が不足する場合に、第1固定容量圧縮機(114b)の運転も行われる。その際、第3四路切換弁(133)が第2状態に設定されて、第1固定容量圧縮機(114b)が室内用圧縮機を構成する。可変容量圧縮機(114a)は常に停止している。 
 具体的に、冷房運転では、第2固定容量圧縮機(114c)から吐出された冷媒が、室外熱交換器(115)で凝縮し、レシーバ(112)を経て室内回路(152)に流入する。室内回路(152)では、流入した冷媒が、室内膨張弁(153)で減圧された後に、室内熱交換器(154)で室内空気から吸熱して蒸発する。冷媒によって冷却された室内空気は店内空間へ供給される。室内熱交換器(154)で蒸発した冷媒は、第2可変容量容量圧縮機(114b)に吸入されて再び吐出される。なお、室内熱交換器(154)での冷媒の蒸発温度は、例えば10℃程度になる。
  〈暖房運転〉
 暖房運転では、図6に示すように、第1四路切換弁(131)が第2状態に設定されて第2四路切換弁(132)が第1状態に設定された状態で、第2固定容量圧縮機(114c)の運転が行われる。各庫内膨張弁(163)は閉状態に設定される。
 暖房運転では、室内熱交換器(154)が凝縮器となって室外熱交換器(115)が蒸発器となる蒸気圧縮冷凍サイクルが行われる。なお、暖房運転では、暖房能力が不足する場合には、第1固定容量圧縮機(114b)の運転も行われる。その際、第3四路切換弁(133)は第2状態に設定される。可変容量圧縮機(114a)は常に停止している。
 具体的に、第2固定容量圧縮機(114c)から吐出された冷媒は、室内回路(152)に流入して、室内熱交換器(154)で室内空気に放熱して凝縮する。冷媒によって加熱された室内空気は店内空間へ供給される。室内熱交換器(154)で凝縮した冷媒は、第1室外膨張弁(166)で減圧された後に室外熱交換器(115)で蒸発し、第2固定容量圧縮機(114c)に吸入されて再び吐出される。
  〈冷蔵冷凍運転〉
 冷蔵冷凍運転では、図7に示すように、第1四路切換弁(131)が第1状態に設定された状態で、可変容量圧縮機(114a)の運転が行われる。室内膨張弁(153)は閉状態に設定される。冷蔵冷凍運転中は、庫内熱交換器(164,64b)を通過した冷媒の過熱度が目標過熱度(1例えば5℃)になるように、庫内膨張弁(163a,163b)の開度が制御される。この点は、後述する冷却冷房運転及び冷却暖房運転でも同じである。
 冷蔵冷凍運転では、室外熱交換器(115)が凝縮器となって各庫内熱交換器(164)が蒸発器となる蒸気圧縮冷凍サイクルが行われる。なお、冷蔵冷凍運転では、庫内の冷却能力が不足する場合には、第1固定容量圧縮機(114b)の運転も行われる。その際、第3四路切換弁(133)が第1状態に設定されて、第1固定容量圧縮機(114b)が庫内用圧縮機を構成する。第2固定容量圧縮機(114c)は常に停止している。 
 具体的に、冷蔵冷凍運転では、可変容量圧縮機(114a)から吐出された冷媒が、室外熱交換器(115)で凝縮する。そして、室外熱交換器(115)で凝縮した冷媒は、レシーバ(112)を経て、第1庫内回路(161a)及び第2庫内回路(161b)にそれぞれ分配される。
 第1庫内回路(161a)では、流入した冷媒が、庫内膨張弁(163a)で減圧された後に、庫内熱交換器(164a)で庫内空気から吸熱して蒸発する。冷媒によって冷却された庫内空気は、冷蔵ショーケースの庫内へ供給される。また、第2庫内回路(161b)では、流入した冷媒が、庫内膨張弁(163b)で減圧された後に、庫内熱交換器(164b)で庫内空気から吸熱して蒸発する。冷媒によって冷却された庫内空気は、冷凍ショーケースの庫内へ供給される。庫内熱交換器(164b)で蒸発した冷媒は、ブースタ圧縮機(186)によって圧縮される。そして、庫内熱交換器(164a)で蒸発した冷媒と、ブースタ圧縮機(186)によって圧縮された冷媒とは、合流後に可変容量圧縮機(114a)に吸入されて再び吐出される。
 なお、冷蔵冷凍運転では、庫内熱交換器(164a)での冷媒の蒸発温度が例えば5℃に設定され、庫内熱交換器(164b)での冷媒の蒸発温度が例えば-30℃に設定される。庫内熱交換器(164b)を出た冷媒はブースタ圧縮機(186)で圧縮されるので、第2ガス側連絡配管(204)で合流する冷媒の温度は約5℃になる。
 また、冷蔵冷凍運転では、第1固定容量圧縮機(114b)が庫内用圧縮機となる場合に、可変容量圧縮機(114a)及び第1固定容量圧縮機(114b)が同じ庫内熱交換器(164a)で蒸発した冷媒を吸入する同吸入の冷凍サイクルが行われる。
  〈冷却冷房運転〉
 冷却冷房運転では、第1四路切換弁(131)及び第2四路切換弁(132)が共に第1状態に設定された状態で、可変容量圧縮機(114a)及び第2固定容量圧縮機(114c)の運転が行われる。冷却冷房運転では、室外熱交換器(115)が凝縮器となって室内熱交換器(154)及び各庫内熱交換器(164)が蒸発器となる蒸気圧縮冷凍サイクルが行われる。
 なお、冷却冷房運転では、室内ユニット(150)における冷房能力及び庫内ユニット(160)における冷却能力が足りている場合には、第1固定容量圧縮機(114b)が停止される。また、庫内ユニット(160)における冷却能力が不足する場合には、図8に示すように、第3四路切換弁(133)が第1状態に設定されて第1固定容量圧縮機(114b)の運転が行われる。この場合、第1固定容量圧縮機(114b)は庫内用圧縮機となる。また、室内ユニット(150)における冷房能力が不足する場合には、図9に示すように、第3四路切換弁(133)が第2状態に設定されて第1固定容量圧縮機(114b)の運転が行われる。この場合、第1固定容量圧縮機(114b)は室内用圧縮機となる。
 具体的に、冷却冷房運転では、可変容量圧縮機(114a)及び第2固定容量圧縮機(114c)から吐出された冷媒が、室外熱交換器(115)で凝縮する。そして、室外熱交換器(115)で凝縮した冷媒は、レシーバ(112)を経て、第1庫内回路(161a)、第2庫内回路(161b)、及び室内回路(152)に分配される。
 第1庫内回路(161a)及び第2庫内回路(161b)に分配された冷媒は、冷蔵冷凍運転と同様の流れで流通し、可変容量圧縮機(114a)に吸入されて再び吐出される。室内回路(152)に分配された冷媒は、冷房運転と同様の流れで流通し、第2固定容量圧縮機(114c)に吸入されて再び吐出される。
 なお、冷却冷房運転では、室内熱交換器(154)での冷媒の蒸発温度が例えば10℃程度になり、第1庫内回路(161a)の庫内熱交換器(164a)での冷媒の蒸発温度が例えば5℃に設定され、第2庫内回路(161b)の庫内熱交換器(164b)での冷媒の蒸発温度が例えば-30℃に設定される。室内熱交換器(154)における冷媒の蒸発温度は、第1庫内回路(161a)の庫内熱交換器(164a)における冷媒の蒸発温度よりも高くなる。
 冷却冷房運転では、第1庫内回路(161a)の庫内熱交換器(164a)で蒸発した冷媒を可変容量圧縮機(114a)が吸入して、その庫内熱交換器(164a)よりも冷媒の蒸発温度が高くなる室内熱交換器(154)で蒸発した冷媒を第2固定容量圧縮機(114c)が吸入する別吸入の冷凍サイクルが行われる。また、第1固定容量圧縮機(114b)が室内用圧縮機となる場合には、第1固定容量圧縮機(114b)も室内熱交換器(154)で蒸発した冷媒を吸入する。また、冷却冷房運転では、第1固定容量圧縮機(114b)が庫内用圧縮機となる場合に、可変容量圧縮機(114a)及び第1固定容量圧縮機(114b)が同じ庫内熱交換器(164a)で蒸発した冷媒を吸入する同吸入の冷凍サイクルにもなる。
  〈第1冷却暖房運転〉
 第1冷却暖房運転では、図10に示すように、第1四路切換弁(131)が第2状態に設定されて第2四路切換弁(132)が第1状態に設定された状態で、可変容量圧縮機(114a)の運転が行われる。第1冷却暖房運転では、庫内の冷却能力が不足する場合に、第1固定容量圧縮機(114b)の運転も行われる。その際、第3四路切換弁(133)が第1状態に設定され、第1固定容量圧縮機(114b)は庫内用圧縮機となる。第1冷却暖房運転では、室内熱交換器(154)が凝縮器となって各庫内熱交換器(164)が蒸発器となる蒸気圧縮冷凍サイクルが行われる。第1冷却暖房運転中は、第1庫内ユニット(160a)と第2庫内ユニット(160b)との冷却能力(1蒸発熱量)と、室内ユニット(150)の暖房能力(1凝縮熱量)とがバランスし、100%の熱回収が行われる。
 具体的に、可変容量圧縮機(114a)から吐出された冷媒は、室内熱交換器(154)で室内空気に放熱して凝縮する。室内熱交換器(154)で凝縮した冷媒は、第1庫内回路(161a)及び第2庫内回路(161b)にそれぞれ分配される。第1庫内回路(161a)及び第2庫内回路(161b)に分配された冷媒は、冷蔵冷凍運転と同様の流れで流通し、可変容量圧縮機(114a)に吸入されて再び吐出される。
 第1冷却暖房運転では、第1固定容量圧縮機(114b)が庫内用圧縮機となる場合に、可変容量圧縮機(114a)及び第1固定容量圧縮機(114b)が同じ庫内熱交換器(164a)で蒸発した冷媒を吸入する同吸入の冷凍サイクルが行われる。この点は、後述する第2冷却暖房運転及び第3冷却暖房運転でも同じである。
  〈第2冷却暖房運転〉
 第2冷却暖房運転は、第1冷却暖房運転の際に暖房能力が余っている場合に、図11に示すように、第2四路切換弁(132)を第2状態に切り換えることによって行われる。第2冷却暖房運転では、室外熱交換器(115)が凝縮器として動作する。第2冷却暖房運転時の設定は、第2四路切換弁(132)以外は、基本的に第1冷却暖房運転と同じである。
 第2冷却暖房運転では、可変容量圧縮機(114a)から吐出した冷媒の一部が、室外熱交換器(115)に流入する。室外熱交換器(115)では、流入した冷媒が室外空気に放熱して凝縮する。室外熱交換器(115)で凝縮した冷媒は、室内熱交換器(154)で凝縮した冷媒と合流して、第1庫内回路(161a)及び第2庫内回路(161b)にそれぞれ分配される。第2冷却暖房運転では、第1庫内ユニット(160a)と第2庫内ユニット(160b)との冷却能力(1蒸発熱量)と、室内ユニット(150)の暖房能力(1凝縮熱量)とはバランスせずに、余る凝縮熱が室外熱交換器(115)で放出される。
  〈第3冷却暖房運転〉
 第3冷却暖房運転は、第1冷却暖房運転の際に暖房能力が不足する場合に、図12に示すように、第2四路切換弁(132)を第1状態に設定すると共に第1室外膨張弁(166)を開状態に設定した状態で、第2固定容量圧縮機(114c)の運転を行うことによって行われる。第3冷却暖房運転では、室内熱交換器(154)が凝縮器となって各庫内熱交換器(164)及び室外熱交換器(115)が蒸発器となる蒸気圧縮冷凍サイクルが行われる。
 第3冷却暖房運転では、室内熱交換器(154)で凝縮した冷媒が、第1庫内回路(161a)及び第2庫内回路(161b)だけでなく、室外熱交換器(115)側へも分配される。室外熱交換器(115)に分配された冷媒は、第1室外膨張弁(166)で減圧された後に室外熱交換器(115)で蒸発して、第2固定容量圧縮機(114c)に吸入されて再び吐出される。第3冷却暖房運転では、第1庫内ユニット(160a)と第2庫内ユニット(160b)との冷却能力(1蒸発熱量)と、室内ユニット(150)の暖房能力(1凝縮熱量)とはバランスせずに、不足する蒸発熱が室外熱交換器(115)で吸熱される。
  〈低圧制御動作〉
 ここで、上記3台の圧縮機(114a,114b,114c)のうち、1台または2台が起動していて残りの圧縮機が停止している状態を想定する。このとき、寒冷地で冬期に外気温度(より具体的には庫外ユニット(100)の中の温度)がマイナス10℃程度の低温になると、停止している圧縮機もマイナス10℃近くまで温度が低下する。一方、運転中の圧縮機につながっている蒸発器の蒸発温度が0℃~5℃程度であるとすると、停止中の圧縮機の方が低温になる。そのため、停止中の圧縮機の温度相当飽和圧力が、運転中の圧縮機の低圧圧力(蒸発圧力)よりも低くなり、冷媒が停止中の圧縮機に流入することが考えられる。また、その場合には、冷媒が圧縮機内に溜まっている冷凍機油に溶け込み、油が希釈されて、再起動時に潤滑不良が生じるおそれがある。
 そこで、本実施形態では、停止している圧縮機本体またはその周囲の温度相当飽和圧力が、運転中の圧縮機の低圧圧力よりも下がる条件になると、上記コントローラ(210)により、運転中の圧縮機の低圧圧力を上記温度相当飽和圧力より下げる制御を行う。
 まず、通常の運転時の制御について簡単に説明する。
 (1) 圧縮機の制御を庫内温度や室温と設定温度の差によって行うときは、Tsetを設定温度とし、Th1を吸込温度、圧縮機の周波数をHzとすると、
  Hz=f(Tset-Th1)
 で表される値に基づいてPID制御を行う。
 (2) 圧縮機のロードを設定温度のみに基づいて制御するときは、目標LP=f(設定温度-10)に設定して設定温度より10K低い値の相当飽和圧力として、
  Hz=f(LP-目標LP)
 で表される値に基づいてPID制御を行う。なお、ここで述べているLP(低圧圧力)は、蒸発器の蒸発圧力のことであり、圧縮機の吸入圧力ではない。
 次に、庫外熱交換器(115)が凝縮器になっているときに、停止中の圧縮機での冷媒の寝込みを防止する制御について図3のフローチャートを用いて説明する。まず、ステップST1では、運転中の圧縮機の低圧圧力LPが、f(ta)よりも小さいかどうかを判別する。f(ta)は、外気温度taの相当飽和圧力、または、圧縮機や室外熱交換器が室外ユニットに収納されている構成においては、圧縮機の周囲温度の相当飽和圧力と考えてよい。
 ステップST1の判別結果が「YES」の場合、ステップST2へ進む。ステップST2へ進んだときは、外気相当飽和圧力が運転中の圧縮機の低圧圧力(蒸発圧力)よりも高いので、停止中の圧縮機へは冷媒は流入していかない。したがって、上記(1),(2)のいずれも場合も、上記したとおりの制御を行う。
 また、ステップST1の判別結果は「NO」の場合、ステップST3へ進み、(Ta)の温度を補正する。本実施形態では、室外熱交換器が凝縮器になる。そこで、室外ユニット内の温度は外気温度よりも高くなっていると考えられる。したがって、上記の(1)の時に、目標LP=f(Ta)として、
  Hz=f(LP-目標LP)のPID制御を行う。
なお、(2)のときは上記と同様の制御を行う。
 また、室外熱交換器が蒸発器になって意図機には、ステップST3において、(1)のときに目標LP=蒸発器LPとして、
  Hz=f(LP-クーラLP)のPID制御を行う。
なお、(2)のときは上記と同様の制御を行う。
 このようにすることにより、冷媒が停止中の圧縮機へ流入しないので、冷媒の寝込みが生じず、冷凍機油は希釈されない。
  -実施形態2の効果-
 以上のように、本実施形態2によれば、実施形態1と同様に冷媒が停止中の圧縮機へ流入しないので、冷媒の寝込みが生じず、冷凍機油は希釈されない。したがって、圧縮機の再起動時の潤滑不良や焼損が生じず、装置(100)の安定性を高めることができる。
 また、運転中の圧縮機の低圧圧力(蒸発圧力)を下げることによって庫内温度が低下すると、装置(100)はサーモオフ(休止運転:圧縮機が停止し、送風のみを行うような運転)になり、庫内温度はそれよりも下がらない。つまり、冷えすぎは生じない。また、このとき、圧縮機(114)はすべて停止することになるので、冷媒回路(200)中を冷媒が循環しない。そのため、停止中の圧縮機本体またはその周囲の温度が低くても、冷媒が各圧縮機へ流入することを防止できる。
 また、運転中の圧縮機の低圧圧力(蒸発圧力)を下げることによって庫内温度が低下すると、装置(100)はサーモオフ(休止運転:圧縮機が停止し、送風のみを行うような運転)になり、庫内温度はそれよりも低下しない。このとき、圧縮機(114)はすべて停止することになるので、冷媒回路(200)中を冷媒が循環しない。そのため、停止中の圧縮機本体またはその周囲の温度が低くても、冷媒が各圧縮機へ流入することを防止できる。
 このように、本実施形態では、凝縮器と蒸発器に切り換え可能な庫外熱交換器(熱源側熱交換器)(115)と、凝縮器と蒸発器に切り換え可能な庫内熱交換器(第1利用側熱交換器)(164)と、蒸発器として構成された室内熱交換器(第2利用側熱交換器)(154)とを備え、冷媒回路が、第1利用側熱交換器(164)を蒸発器とし、第2利用側熱交換器(154)と熱源側熱交換器(115)を凝縮器とする第1の運転と、第1利用側熱交換器(164)と熱源側熱交換器(115)を蒸発器とし、第2利用側熱交換器(154)を凝縮器とする第2の運転とが切り換え可能に構成されている冷凍装置(100)において、庫外熱交換器が凝縮器になっているときと蒸発器になっているときのどちらの運転状態でも、停止している圧縮機に冷媒が寝込むのを防止し、装置の安定性を高めることができる。
 また、冷媒の寝込み防止のために、従来は一般的にクランクケースヒータで圧縮機(114)を加熱して、冷凍機油に溶け込んだ冷媒を蒸発させて冷凍機油から分離させていたが、本実施形態によればクランクケースヒータを用いなくてもよいので、装置構成を簡素化できる。なお、本実施形態はクランクケースヒータを用いないことを前提とするものではなく、状況に応じて、クランクケースヒータを本実施形態の制御と併用するようにしてもよい。
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
 上記各実施形態では、庫外回路(20)において3台の圧縮機(21a,21b,21c)(114a,114b,114c)を設けるようにしたが、これに限定されず、圧縮機の台数は2台または4台以上であってもよい。
 又、上記各実施形態では、圧縮機本体またはその周囲の温度に基づく制御を行うようにしているが、実際の庫外温度に基づいて圧縮機の低圧制御を行ってもよい。
 また、上記各実施形態では、外気温度がマイナス10℃程度まで下がる条件での制御について説明したが、本発明は、複数台の圧縮機のうちで起動中のものと停止中のものが混在する場合に、外気温度にかかわらず、外気温度相当飽和圧力が運転中の圧縮機の低圧圧力(蒸発圧力)がよりも下がる条件になれば、上記低圧圧力を外気温度相当養和圧力よりも下げる制御を行えばよい。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、複数の圧縮機を有して蒸気圧縮式の冷凍サイクルを行う冷凍装置について有用である。
 1  冷凍装置
 2  熱源側ユニット
 9  コントローラ(制御部)
 20 冷媒回路
 21 圧縮機
 25 熱源側熱交換器
 52 膨張機構
 53 利用側熱交換器
 100 冷凍装置
 110 熱源側ユニット
 114 圧縮機
 115 熱源側熱交換器
 153 膨張機構
 163 膨張機構
 164 利用側熱交換器
 200 冷媒回路
 210 コントローラ(制御部)

Claims (5)

  1. 複数の圧縮機(21,114)と、熱源側熱交換器(25,115)と、膨張機構(52,153,163)と、利用側熱交換器(53,154,164)とが順に接続された冷媒回路(20,200)を有する冷凍装置であって、
     複数の圧縮機(21,114)に運転中の圧縮機と停止中の圧縮機が混在する状態で、停止中の圧縮機本体またはその周囲の温度相当飽和圧力が運転中の圧縮機に接続されている蒸発器側の熱交換器の低圧圧力よりも低下すると、運転中の圧縮機に接続されている蒸発器の低圧圧力を、停止中の圧縮機本体またはその周囲の温度相当飽和圧力よりも低下させる制御部(9,200)を備えていることを特徴とする冷凍装置。
  2.  請求項1において、
     複数の圧縮機(21,114)と熱源側熱交換器(25,115)が熱源側ユニット(2,110)に収納され、
     上記制御部(9,200)は、熱源側熱交換器(25,115)が凝縮器になる運転状態では、外気温度よりも高い凝縮器の周囲の温度相当飽和圧力に基づいて制御を行うことを特徴とする冷凍装置。
  3.  請求項1において、
     複数の圧縮機(21,114)と熱源側熱交換器(25,115)が熱源側ユニット(2,110)に収納され、
     上記制御部(9,200)は、熱源側熱交換器(25,115)が蒸発器になる運転状態では、外気温度よりも低い蒸発器の周囲の温度相当飽和圧力に基づいて制御を行うことを特徴とする冷凍装置。
  4.  請求項1において、
     上記冷媒回路(20)は、上記熱源側熱交換器(25)が凝縮器として構成され、上記利用側熱交換器(53)が蒸発器として構成され、利用側熱交換器(53)で冷却のみを行うように構成されていることを特徴とする冷凍装置。
  5.  請求項1において、
     上記冷媒回路(200)は、凝縮器と蒸発器に切り換え可能な上記熱源側熱交換器(115)と、凝縮器と蒸発器に切り換え可能な第1利用側熱交換器(154)と、蒸発器として構成された第2利用側熱交換器(164)とを備え、
     第1利用側熱交換器(154)を蒸発器とし、第2利用側熱交換器(164)と熱源側熱交換器(115)を凝縮器とする第1の運転と、第1利用側熱交換器(154)と熱源側熱交換器(115)を蒸発器とし、第2利用側熱交換器(164)を凝縮器とする第2の運転とが切り換え可能に構成されていることを特徴とする冷凍装置。
PCT/JP2011/002781 2010-05-31 2011-05-18 冷凍装置 WO2011151985A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11789400.6A EP2578965A4 (en) 2010-05-31 2011-05-18 Freezing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010124821A JP4888583B2 (ja) 2010-05-31 2010-05-31 冷凍装置
JP2010-124821 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011151985A1 true WO2011151985A1 (ja) 2011-12-08

Family

ID=45066378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002781 WO2011151985A1 (ja) 2010-05-31 2011-05-18 冷凍装置

Country Status (3)

Country Link
EP (1) EP2578965A4 (ja)
JP (1) JP4888583B2 (ja)
WO (1) WO2011151985A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727704A (zh) * 2014-01-03 2014-04-16 上海理工大学 多温区恒温装置
KR102274537B1 (ko) 2014-10-29 2021-07-07 삼성전자주식회사 공조기기
JP6323508B2 (ja) * 2016-08-04 2018-05-16 ダイキン工業株式会社 冷凍装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129721A (ja) * 1992-10-20 1994-05-13 Mitsubishi Electric Corp 空気調和装置
JPH11311456A (ja) * 1998-04-30 1999-11-09 Toshiba Corp 冷凍サイクル装置
JP2006250437A (ja) * 2005-03-10 2006-09-21 Yanmar Co Ltd エンジン駆動式ヒートポンプ
JP2007078338A (ja) 2005-08-15 2007-03-29 Daikin Ind Ltd 冷凍装置
JP2007163106A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2009162423A (ja) * 2008-01-07 2009-07-23 Daikin Ind Ltd 冷凍装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001171B2 (ja) * 2005-07-26 2007-10-31 ダイキン工業株式会社 冷凍装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129721A (ja) * 1992-10-20 1994-05-13 Mitsubishi Electric Corp 空気調和装置
JPH11311456A (ja) * 1998-04-30 1999-11-09 Toshiba Corp 冷凍サイクル装置
JP2006250437A (ja) * 2005-03-10 2006-09-21 Yanmar Co Ltd エンジン駆動式ヒートポンプ
JP2007078338A (ja) 2005-08-15 2007-03-29 Daikin Ind Ltd 冷凍装置
JP2007163106A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2009162423A (ja) * 2008-01-07 2009-07-23 Daikin Ind Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2578965A4 *

Also Published As

Publication number Publication date
EP2578965A1 (en) 2013-04-10
JP2011252623A (ja) 2011-12-15
EP2578965A4 (en) 2017-05-31
JP4888583B2 (ja) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4396771B2 (ja) 冷凍装置
JP4360203B2 (ja) 冷凍装置
US20090077985A1 (en) Refrigerating Apparatus
JP2006207990A (ja) 冷凍装置
WO2018097154A1 (ja) 冷凍装置
JP4367579B1 (ja) 冷凍装置
JP4888583B2 (ja) 冷凍装置
JP6653443B2 (ja) 空気調和機の室外ユニット
JP2008175436A (ja) 冷凍装置
JP2008002711A (ja) 冷凍装置
JP6662753B2 (ja) 冷凍装置
JP2009293887A (ja) 冷凍装置
JP2018173195A (ja) 冷凍装置
JP5176897B2 (ja) 冷凍装置
JP5077089B2 (ja) 冷凍装置
JP5062079B2 (ja) 冷凍装置
JP7448848B2 (ja) 空気調和装置
JP2009156491A (ja) 冷凍装置
JP2013002791A (ja) 冷凍装置
JP2010236712A (ja) 冷凍装置
JP6678333B2 (ja) 空気調和機の室外ユニット
JP2018087676A (ja) 冷凍装置
JP2010156512A (ja) 冷凍装置
JP5194884B2 (ja) 冷凍装置
JP4169667B2 (ja) 冷凍システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011789400

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE