WO2011149278A2 - Large-area deposition device for gas-mixing prevention - Google Patents

Large-area deposition device for gas-mixing prevention Download PDF

Info

Publication number
WO2011149278A2
WO2011149278A2 PCT/KR2011/003855 KR2011003855W WO2011149278A2 WO 2011149278 A2 WO2011149278 A2 WO 2011149278A2 KR 2011003855 W KR2011003855 W KR 2011003855W WO 2011149278 A2 WO2011149278 A2 WO 2011149278A2
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
gas
deposition apparatus
area deposition
supply line
Prior art date
Application number
PCT/KR2011/003855
Other languages
French (fr)
Korean (ko)
Other versions
WO2011149278A3 (en
Inventor
이경호
Original Assignee
주식회사 테라세미콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 테라세미콘 filed Critical 주식회사 테라세미콘
Priority to CN201180025477.XA priority Critical patent/CN102906861A/en
Priority to JP2013512541A priority patent/JP2013528251A/en
Publication of WO2011149278A2 publication Critical patent/WO2011149278A2/en
Publication of WO2011149278A3 publication Critical patent/WO2011149278A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes

Definitions

  • the present invention relates to a large-area deposition apparatus for preventing gas mixing, which prevents gas from being mixed with each other before the gas is introduced into the chamber, and prevents gas mixture from being uniformly mixed with the gas to be uniformly injected into the chamber.
  • a large area deposition apparatus for preventing gas mixing, which prevents gas from being mixed with each other before the gas is introduced into the chamber, and prevents gas mixture from being uniformly mixed with the gas to be uniformly injected into the chamber.
  • Thin film deposition technology by chemical vapor deposition (CVD) is very important in many applications such as insulating layer and active layer of semiconductor device, transparent electrode of liquid crystal display device, light emitting layer and protective layer of light emitting display device. .
  • physical properties of thin films deposited by CVD are highly sensitive to process conditions such as deposition pressure, deposition temperature, and deposition time.
  • process conditions such as deposition pressure, deposition temperature, and deposition time.
  • the composition, density, adhesion, and deposition rate of the thin film to be deposited may be changed according to the change in deposition pressure.
  • Chemical vapor deposition includes LPCVD (Low Pressure Chemical Vapor Deposition), APCVD (Atmospheric Pressure Chemical Vapor Deposition), LTCVD (Low Temperature Chemical Vapor Deposition), PECVD (Plasma Enhanced Chemical Vapor Deposition), MOCVD (Metal Organic Chemical Vapor Deposition) Can be divided.
  • MOCVD uses metal organic compounds as precursors, and is a technology for growing a desired thin film by sending high vapor pressure metal organic compound vapor to a heated substrate surface in a chamber.
  • MOCVD has excellent step coverage and is free from damage to the substrate or the crystal surface, and can grow high purity and high quality thin films.
  • the deposition rate is relatively short, the process time can be shortened, and the productivity is also excellent.
  • the conventional MOCVD apparatus requires a shower head in which many fine holes are formed for uniformly injecting a gas, thereby increasing the cost.
  • MOCVD devices require processing of the shower head into a more complex shape to prevent the two or more gases used in the deposition of the thin film to mix before spraying to prevent deposition in undesired locations. For this reason, there is a problem that the cost of the MOCVD apparatus further increases.
  • the conventional MOCVD apparatus has a problem in that maintenance is inconvenient because the entire shower head must be separated when the gas injection hole of the shower head is clogged for repair or cleaning.
  • an object of the present invention is to simplify the structure of the gas to prevent the mutual mixing before entering the chamber, and at the same time the gas is uniformly mixed chamber It is to provide a large-area deposition apparatus for preventing gas mixing by uniformly spraying the inside, which can reduce the cost.
  • Another object of the present invention is to provide a large area deposition apparatus for preventing gas mixing, which is easy to maintain.
  • the gas is uniformly mixed into the chamber. It is ejected uniformly. That is, the gas can be prevented from being mixed before the gas is introduced into the chamber with a simple structure, and the gas can be uniformly mixed to eject the gas into the chamber, thereby reducing the cost.
  • the injection nozzle ejects the gas while oscillating left and right, the gas is more uniformly mixed and more uniformly ejected to the substrate inside the chamber, thereby improving the quality of the film deposited on the substrate.
  • FIG. 1 is a plan view of a large-area vapor deposition preventing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line “I-I” of FIG. 1.
  • FIG. 3 is an enlarged view of a portion “X” of FIG. 2.
  • FIG. 4 is an enlarged view of a portion “Y” of FIG. 2.
  • FIG. 5 is a perspective view of a supply line of a large-area vapor deposition preventing apparatus according to an embodiment of the present invention.
  • FIG. 6 is a perspective view of one supply line and a spray nozzle shown in FIG. 5.
  • FIG. 7 is a cross-sectional view taken along the line “II-II” of FIG. 1.
  • FIG. 8 is a cross-sectional view of the jet nozzle shown in FIG. 6.
  • FIG. 9 is a partially cutaway perspective view of the connector portion shown in FIG. 8.
  • FIG. 9 is a partially cutaway perspective view of the connector portion shown in FIG. 8.
  • FIG. 10 is a plan view of FIG. 5.
  • a gas mixing prevention large area deposition apparatus comprising: a chamber providing a deposition space for depositing a predetermined material on a substrate; A plurality of supply ports installed at one side of the chamber and supplying gas into the chamber; A plurality of supply lines disposed in the chamber and connected to the respective supply ports; And a plurality of injection nozzles disposed above the substrate introduced into the chamber, connected along each supply line, and alternately arranged to alternately disperse different gases to eject the upper surface of the substrate. do.
  • the large-area vapor deposition preventing apparatus is installed in the chamber C, the chamber C, and functions as a heater to heat the substrate A.
  • a susceptor S and a gate valve G installed at one side of the chamber C to allow the substrate A to enter and exit the chamber C, and are provided outside the chamber C to supply air inside the chamber C.
  • a vacuum pump (not shown) for exhausting.
  • the chamber C provides a closed space for depositing a predetermined material on the substrate A.
  • the substrate A is deposited on the plurality of fins P and deposited.
  • a plurality of supply ports 100 for supplying gas are installed in an upper portion of the chamber C, and a plurality of supply lines 110 connected to the respective supply ports 100 to supply deposition gas inside the chamber C. ) Is placed.
  • Supply line 110 is a pipeline through which gas or steam flows.
  • a plurality of injection nozzles 120 are installed below the supply line 110.
  • the injection nozzle 120 is a conduit in which holes are formed to eject the gas moving inside the supply line 110 to the outside.
  • the injection nozzle 120 is disposed above the substrate A inside the chamber C, and is alternately disposed along each supply line 110 to alternately supply other gases to the upper surface of the substrate A.
  • the injection nozzle 120 is densely arranged in a row above the substrate A to uniformly inject the deposition gas onto the substrate A corresponding to the large area. Different gases injected from the injection nozzles 120 are sprayed and overlapped with each other, so that they are mixed with each other. Then, it is deposited with a uniform thickness on the large-area substrate (A).
  • FIG. 1 to 4 the upper surface portion of the chamber C vibrates the injection nozzle 120 uniformly on the large-area substrate A to improve the efficiency in which different gases are mixed and deposited on the substrate A.
  • FIG. A vibration air cylinder 130 for increasing is provided. The air cylinder 130 is mechanically connected to the injection nozzle 120 to vibrate the injection nozzle 120.
  • the air cylinder 130 is coupled to the shaft rod 135 and the shaft rod 135 which moves linearly by the stroke provided by the air cylinder 130 to cross the vibration displacement of the shaft rod 135 to the injection nozzle (
  • the nozzle bracket 140 for transmitting to 120 is connected.
  • the air cylinder 130 may be replaced with a vibration motor having a shaft capable of electrically vibrating.
  • the air cylinder 130 may be replaced with a reciprocating mechanism that enables the mechanical rotational movement of the rotational movement of the motor. That is, the air cylinder 130 is a driving body that provides a reciprocating motion for the vibration of the injection nozzle (120).
  • a plurality of shaft rods 135 may be installed on the chamber (C).
  • three shaft rods 135 may be installed on the upper surface of the chamber (C).
  • Two of the three shaft rods 135 on the left side are connected to the air cylinder 130 and the nozzle bracket 140 on the lower side, and the other on the right side is connected only to the nozzle bracket 140 on the lower side.
  • the shaft rod 135 and the nozzle bracket 140 can support the weight of the injection nozzle 120 installed in the form of hanging in the chamber (C), and the number varies so as to balance the vibration of the injection nozzle 120. Can be changed.
  • the illustrated example supports the three parts of the injection nozzle 120, but can also be fabricated as a four-part support structure for supporting two parts on both sides in order to increase the stability, and furthermore can be manufactured as a five or six part support structure It may be.
  • the cylinder rod 131 of the air cylinder 130 is connected to the moving table 136 is a slide movement, the two shaft rods 135 are coupled to both sides of the moving table (136).
  • slide tubes 137 are provided on both sides of the movable table 136, and the slide tubes 137 are fitted to guide bars 138 for guiding the movement of the slide tubes 137.
  • both end portions of the guide bar 138 is coupled to the holder 139 is fixed on the chamber (C).
  • the two shaft rods 135 are connected to the cylinder rod 131 of the air cylinder 130 through the moving table 136 and move together by the cylinder rod 131.
  • the guide bar 138 and the slide tube 137 can be replaced with other slide mechanisms for transmitting the linear motion of the air cylinder 131.
  • the slide tube 137 and the guide bar 138 are adopted because the binding force of the guide bar 138 to the slide tube 137 during the slide movement is good.
  • the shaft rod 135 is installed on the left and right sides of the chamber (C).
  • the shaft rod 135 on the left side receives the driving force of the air cylinder 130, and the shaft rod 135 on the right side is connected to another part of the spray nozzle 120 to guide the movement of the spray nozzle 120.
  • the nozzle bracket 140 extends downward from the upper portion of the chamber C, the upper end is coupled to the shaft rod 135, and the lower end is connected to the injection nozzle 120.
  • the air cylinder 130 causes the plurality of injection nozzles 120 arranged in a line to vibrate between the main nozzle 120 and the injection nozzle 120 adjacent to each other. For example, if a plurality of injection nozzles 120 are arranged at intervals of 20 mm each and two different gases are alternately injected, the vibration displacement of any injection nozzle 120 is up to 40 mm.
  • a floating joint for attenuating vibration by reducing axis errors between the cylinder rod 131 and the shaft rod 135 of the air cylinder 130 is disposed on the upper left portion of the chamber C. 141 is provided.
  • the cylinder rod 131 of the air cylinder 130 and the movement path of the shaft rod 135 may be difficult to accurately mount to the upper surface of the chamber C. If the cylinder rod 131 of the air cylinder 130 and the movement path of the shaft rod 135 do not coincide in a straight line, the shaft rod 135 connected to the cylinder rod 131 repeatedly transmits the axial force that is displaced. If received, the durability of the air cylinder 130 and the shaft rod 135 is reduced. In this case, the floating joint 141 performs buffered power transmission when the power transmission axis between the cylinder rod 131 and the shaft rod 135 is shifted.
  • the left / right upper surface portion of the chamber C is provided with a closed space through which the shaft rod 135 passes, and a shaft housing 145 in which both ends of the shaft rod 135 are movable is installed.
  • the shaft housing 145 serves to close the movement path of the shaft rod 135.
  • the shaft guide 146 surrounding the shaft rod 135 protruding to both sides of the shaft housing 145 closes the shaft. It is installed in the housing 145.
  • a metal O-ring (not shown), rubber ring (not shown) may be installed together.
  • the sealing guide 146 installed on the right side of the shaft housing 145 is provided with a bellows 147 for buffering the shock transmitted from the shaft rod 135 in the air cylinder 130.
  • the bellows 147 is a corrugated pipe in which a passage through which the shaft rod 135 is inserted is formed.
  • the ball bushing 148 into which the shaft rod 135 is inserted is fixed to the left and right sealing guides 146.
  • the ball bushing 148 guides the linear movement of the shaft rod 135 and also performs an airtight function on the outside of the hermetic guide 146.
  • the supply line 110 is fixed around the support 150.
  • the support 150 is positioned on the substrate A, and is installed in the form of being suspended in the chamber C by the nozzle bracket 140 coupled to the shaft rod 135.
  • the support 150 is a rectangular frame, and the injection nozzles 120 are installed in a row below the support 150 to close most of the inner space of the support 150.
  • Supply line 110 is fixed to the support 150 by a fixed block 151.
  • Semicircular grooves 152 are formed at both sides of the fixed block 151 so that half of the supply line 110 having a circular cross section is inserted and restrained.
  • the fixing block 151 is fixed on the support 150 by fastening means such as screws or bolts.
  • the fixed block 151 is installed at predetermined intervals along the supply line 110 disposed on the rectangular support 150.
  • the supply line 110 is installed at an upper surface of the support 150, and the injection nozzles 120 are arranged in a row below the support 150.
  • Injection nozzle 120 is installed in the longitudinal direction to cross the horizontal direction corresponding to the long side in the support 150.
  • the plurality of injection nozzles 120 are disposed along the longitudinal direction of the substrate A to form a quadrangle corresponding to the quadrangle substrate A.
  • FIG. 5 In the case of the fifth generation substrate A, the spray nozzle 120 provides a rectangular area corresponding to 1500 mm x 1300 mm.
  • the injection nozzle 120 may be installed to cross in the longitudinal direction of the short length of the support 150. 6 illustrates a connection relationship between the supply line 110 and the injection nozzle 120.
  • first connecting pipe 161 is coupled to the bottom of the supply line 110
  • second connecting pipe 162 is coupled to the upper surface of the injection nozzle 120 in correspondence with the first connecting pipe 161.
  • the first connector 161 and the second connector 162 are interconnected via the connector 163.
  • the first connection pipe 161 is coupled to the connector 163 through the support 150 (see FIG. 5).
  • the connector 163 is a fitting means.
  • a bellows pipe 164 is provided between the plurality of supply ports 100 and the supply line 110.
  • the bellows pipe 164 connects the supply port 100 and the supply line 110 and is stretched to allow the left and right flow of the supply line 110 with respect to the supply port 100.
  • the bellows pipe 164 is not directly connected to the supply line 110, but is connected to the supply line 110 through another supply port connected by a fitting.
  • the injection nozzle 120 is composed of a concentric double tube. That is, the injection nozzle 120 is connected to the supply line 110 to receive the gas from the supply line 110 and the first tube 171 and the first tube formed with a first hole 171a for ejecting the gas upwards It is comprised by the 2nd tube 172 which wraps around 171, and the 2nd hole 172a which blows gas downward is formed.
  • the first hole 171a of the first tube 171 has a larger gap between holes than the hole of the second tube 172.
  • the two first holes 171a of the first tube 171 may supply the deposition gas corresponding to the five second holes 172a of the second tube 172.
  • the deposition gas ejected through the first hole 171a of the first tube 171 moves along the second tube 172 and flows downward in an evenly spread state, and the second hole (2) of the second tube 172 172a) is ejected evenly downward.
  • the injection nozzle 120 can be manufactured in a multi-tube structure of more than three. At this time, it is advantageous for the uniform ejection of the gas to reverse the directions of the holes for ejecting the gas for each tube.
  • FIG. 10 is a plan view of FIG. 5 and illustrates a flow direction of the deposition gas supplied to the two supply ports 100 of FIGS. 1 and 7.
  • arrows illustrated in FIGS. 6 and 9 illustrate the flow direction of the deposition gas ejected from one injection nozzle 120.
  • Source materials of the deposition gas flowing through each of the two supply ports 100 shown in FIG. 2 are, for example, Zn and O 2 .
  • Zn source material may be a Zn organic compound DEZ (diethylzinc) is used
  • O 2 source material may be used O 2 .
  • DEZ diethylzinc
  • the temperature is raised, for example, about 100 ° C., so that DEZ is changed from a solid or liquid state to a gaseous state, and then supplied to one supply port 100.
  • the source material of the O 2 O 2 is supplied onto Since gaseous at normal temperatures and third port 100.
  • Deposition gas of each source material is supplied to each supply line 110 connected to each supply port 100 to fill the supply line 110 formed in a square. Then, each deposition gas is injected downward through the injection nozzle 120 connected in the transverse direction with respect to each supply line (110). At this time, the injection nozzle 120 is composed of a double tube, the deposition gas spread along the second tube 172 by flowing upward through the first hole 171a of the first tube 171 is the second tube. It blows out to the board
  • the cylinder rod 131 of the air cylinder 130 is reciprocated, and the cylinder rod 131 reciprocates the shaft rod 135 installed in the shaft housing 145.
  • the shaft rod 135 vibrates the nozzle bracket 140 coupled to the support 150 by a reciprocating motion while moving by the stroke of the cylinder rod 131 set in advance.
  • the injection nozzle 120 installed at the lower portion of the nozzle bracket 140 vibrates while reciprocating to both sides.
  • the vibration range of the arbitrary injection nozzles 120 among the plurality of injection nozzles 120 may be set within the interval between the arbitrary injection nozzles 120 and the nearest injection nozzle 120.
  • the plurality of injection nozzles 120 are composed of alternating DEZ gas injection nozzles 120 and O 2 gas injection nozzles 120, and vibration of any DEZ gas injection nozzles 120.
  • the range may be twice the spacing between any DEZ gas injection nozzle 120 and the nearest O 2 gas injection nozzle 120.
  • each of the injection nozzles 120 injects different deposition gases while exchanging positions by vibrating the air cylinder 130, and the injected deposition gases form a zigzag waveform from above to below.
  • A) is reached to the side.
  • the DEZ gas and the O 2 gas which is the deposition gas, are sprayed onto the substrate A while being more easily mixed by the vibration of the injection nozzle 120, and have a constant thickness on the substrate A by chemical reaction such as oxidation / reduction. Is deposited with ZnO.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Nozzles (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is a large-area deposition device for gas-mixing prevention. According to the present invention, since injection nozzles of a multi-tube structure are applied, the large-area deposition device for gas-mixing prevention enables each gas to be supplied to the different injection nozzles whereby the gases are uniformly mixed when being jetted in a chamber, such that the mixed gases are jetted to the inside of the chamber in a uniform manner. That is to say, the invention with a simple structure is capable of preventing the gases from being mixed before the gases flow into the inside of the chamber, and equally mixing the gases to uniformly jet the mixed gases to the inside of the chamber, thereby reducing costs. Further, since the injection nozzles jet the gases by vibrating in a horizontal direction, the gases are mixed more uniformly in such a manner that the mixed gases are jetted to a substrate inside the chamber in a more uniform manner, whereby the quality of films deposited on the substrate is improved. In addition, since the injection nozzles are repaired or cleaned by being separated from each other, maintenance works can be simply conducted.

Description

가스혼합 방지용 대면적 증착장치Large area deposition equipment for preventing gas mixing
본 발명은 가스혼합 방지용 대면적 증착장치에 관한 것으로서, 가스가 챔버의 내부로 유입되기 전에는 상호 혼합되는 것을 방지함과 동시에, 가스가 상호 균일하게 혼합되어 챔버 내부로 균일하게 분사되도록 한 가스혼합 방지용 대면적 증착장치에 관한 것이다.The present invention relates to a large-area deposition apparatus for preventing gas mixing, which prevents gas from being mixed with each other before the gas is introduced into the chamber, and prevents gas mixture from being uniformly mixed with the gas to be uniformly injected into the chamber. A large area deposition apparatus.
화학기상 증착법(Chemical Vapor Deposition; CVD)에 의한 박막증착 기술은 반도체소자의 절연층과 능동층, 액정표시소자의 투명전극, 발광표시소자의 발광층과 보호층 등의 여러 응용 분야에 있어 매우 중요하다.Thin film deposition technology by chemical vapor deposition (CVD) is very important in many applications such as insulating layer and active layer of semiconductor device, transparent electrode of liquid crystal display device, light emitting layer and protective layer of light emitting display device. .
일반적으로, CVD에 의해 증착된 박막의 물성은 증착압력, 증착온도, 증착시간 등의 공정조건에 매우 민감한 영향을 받는다. 예를 들어, 증착압력의 변화에 따라 증착되는 박막의 조성, 밀도, 접착력 및 증착속도 등이 변할 수 있다.In general, physical properties of thin films deposited by CVD are highly sensitive to process conditions such as deposition pressure, deposition temperature, and deposition time. For example, the composition, density, adhesion, and deposition rate of the thin film to be deposited may be changed according to the change in deposition pressure.
화학기상 증착법은 LPCVD(Low Pressure Chemical Vapor Deposition), APCVD(Atmospheric Pressure Chemical Vapor Deposition), LTCVD(Low Temperature Chemical Vapor Deposition), PECVD(Plasma Enhanced Chemical Vapor Deposition), MOCVD(Metal Organic Chemical Vapor Deposition) 등으로 나눌 수 있다.Chemical vapor deposition includes LPCVD (Low Pressure Chemical Vapor Deposition), APCVD (Atmospheric Pressure Chemical Vapor Deposition), LTCVD (Low Temperature Chemical Vapor Deposition), PECVD (Plasma Enhanced Chemical Vapor Deposition), MOCVD (Metal Organic Chemical Vapor Deposition) Can be divided.
이중에서 MOCVD는 전구체(Precursor)로 금속유기 화합물(Metal Organic Compound)을 이용하는 것으로서, 챔버 안에서 가열된 기판 표면에 증기압이 높은 금속유기 화합물 증기를 보내어 원하는 박막을 성장시키는 기술이다.Among them, MOCVD uses metal organic compounds as precursors, and is a technology for growing a desired thin film by sending high vapor pressure metal organic compound vapor to a heated substrate surface in a chamber.
MOCVD는 단차(Step Coverage)가 우수하고, 기판이나 결정 표면에 손상이 없어, 고순도 및 고품질의 박막을 성장시킬 수 있다. 그리고, 비교적 증착속도가 빨라 공정시간을 단축시킬 수 있으므로, 생산성도 우수하다.MOCVD has excellent step coverage and is free from damage to the substrate or the crystal surface, and can grow high purity and high quality thin films. In addition, since the deposition rate is relatively short, the process time can be shortened, and the productivity is also excellent.
종래의 MOCVD 장치는 균일한 가스의 분사를 위해 많은 미세 구멍이 형성된 샤워헤드가 필요하므로, 원가가 상승하는 문제점이 있었다.The conventional MOCVD apparatus requires a shower head in which many fine holes are formed for uniformly injecting a gas, thereby increasing the cost.
특히, 종래의 MOCVD 장치는 박막의 증착시 사용되는 두 가지 이상의 가스가 분사 전에 혼합되어 원하지 않은 곳에서 증착이 이루어지는 것을 방지하기 위해 샤워 헤드를 더 복잡한 형상으로 가공해야 한다. 이로 인해, MOCVD 장치의 원가가 더 상승하는 문제점이 있었다.In particular, conventional MOCVD devices require processing of the shower head into a more complex shape to prevent the two or more gases used in the deposition of the thin film to mix before spraying to prevent deposition in undesired locations. For this reason, there is a problem that the cost of the MOCVD apparatus further increases.
또한, 종래의 MOCVD 장치는 샤워헤드의 가스 분사 구멍이 막혀 수리를 하거나, 세정을 해야 할 때, 샤워헤드 전체를 분리해야 해서 유지 보수가 불편한 문제점이 있었다.In addition, the conventional MOCVD apparatus has a problem in that maintenance is inconvenient because the entire shower head must be separated when the gas injection hole of the shower head is clogged for repair or cleaning.
본 발명은 상기한 종래 기술의 문제점들을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 간편한 구조로 가스가 챔버로 유입되기 전에 상호 혼합하는 것을 방지할 수 있음과 동시에, 가스가 균일하게 혼합되어 챔버 내부로 균일하게 분사되게 함으로써, 원가를 절감할 수 있는 가스혼합 방지용 대면적 증착장치를 제공함에 있다.The present invention has been made to solve the above problems of the prior art, an object of the present invention is to simplify the structure of the gas to prevent the mutual mixing before entering the chamber, and at the same time the gas is uniformly mixed chamber It is to provide a large-area deposition apparatus for preventing gas mixing by uniformly spraying the inside, which can reduce the cost.
본 발명의 다른 목적은 유지 보수가 간편한 가스혼합 방지용 대면적 증착장치를 제공함에 있다.Another object of the present invention is to provide a large area deposition apparatus for preventing gas mixing, which is easy to maintain.
본 발명에 따른 가스혼합 방지용 대면적 증착장치는 다중 튜브 구조의 분사 노즐이 적용되어 각각의 가스가 상호 다른 분사노즐에 공급되므로, 가스가 챔버에서 분출될 때, 균일하게 혼합되어, 챔버의 내부로 균일하게 분출된다. 즉, 간단한 구조로 가스가 챔버의 내부로 유입되기 전에 혼합되는 것을 방지할 수 있고, 가스를 균일하게 혼합하여 챔버의 내부로 균일하게 분출할 수 있으므로, 원가가 절감되는 효과가 있다.In the large-area vapor deposition apparatus for preventing gas mixing according to the present invention, since a multi-tube spray nozzle is applied to each gas to be supplied to different spray nozzles, when the gas is ejected from the chamber, the gas is uniformly mixed into the chamber. It is ejected uniformly. That is, the gas can be prevented from being mixed before the gas is introduced into the chamber with a simple structure, and the gas can be uniformly mixed to eject the gas into the chamber, thereby reducing the cost.
그리고, 분사노즐이 좌우 진동하면서 가스를 분출하므로, 가스가 더욱 균일하게 혼합되어 더욱 균일하게 챔버의 내부의 기판으로 분출되므로, 기판에 증착된 막의 품질이 향상되는 효과가 있다.Further, since the injection nozzle ejects the gas while oscillating left and right, the gas is more uniformly mixed and more uniformly ejected to the substrate inside the chamber, thereby improving the quality of the film deposited on the substrate.
그리고, 각각의 분사노즐 별로 분리하여 수리 또는 세정할 수 있으므로, 유지 보수 작업이 간편한 효과가 있다.And, since it can be repaired or cleaned separately for each injection nozzle, there is a simple effect of maintenance work.
도 1은 본 발명의 일 실시예에 따른 가스혼합 방지용 대면적 증착장치의 평면도이다.1 is a plan view of a large-area vapor deposition preventing apparatus according to an embodiment of the present invention.
도 2는 도 1의 "Ⅰ-Ⅰ"선 단면도이다.FIG. 2 is a cross-sectional view taken along the line “I-I” of FIG. 1.
도 3은 도 2의 "X"부 확대도이다.3 is an enlarged view of a portion “X” of FIG. 2.
도 4는 도 2의 "Y"부 확대도이다.4 is an enlarged view of a portion “Y” of FIG. 2.
도 5는 본 발명의 일 실시예에 따른 가스혼합 방지용 대면적 증착장치의 공급라인의 사시도이다.5 is a perspective view of a supply line of a large-area vapor deposition preventing apparatus according to an embodiment of the present invention.
도 6은 도 5에 도시된 하나의 공급라인과 분사노즐에 대한 사시도이다.FIG. 6 is a perspective view of one supply line and a spray nozzle shown in FIG. 5.
도 7은 도 1의 "Ⅱ-Ⅱ"선 단면도이다.FIG. 7 is a cross-sectional view taken along the line “II-II” of FIG. 1.
도 8은 도 6에 도시된 분사노즐에 대한 단면도이다.8 is a cross-sectional view of the jet nozzle shown in FIG. 6.
도 9는 도 8에 도시된 커넥터 부위의 일부 절개 사시도이다.FIG. 9 is a partially cutaway perspective view of the connector portion shown in FIG. 8. FIG.
도 10은 도 5의 평면도이다.FIG. 10 is a plan view of FIG. 5.
상기 목적을 달성하기 위한 본 발명에 따른 가스혼합 방지용 대면적 증착장치는, 기판 상에 소정 물질을 증착하기 위한 증착공간을 제공하는 챔버; 상기 챔버의 일측에 설치되며 상기 챔버의 내부로 가스를 공급하는 복수의 공급포트; 상기 챔버의 내부에 배치되며, 상기 각 공급포트에 연결된 복수의 공급라인; 및 상기 챔버로 투입된 상기 기판의 상방에 배치되고, 상기 각 공급라인을 따라 연결되며, 상호 교번하게 배치되어 각기 다른 가스를 교번하여 상기 기판의 상면에 분출하는 복수의 분사노즐을 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a gas mixing prevention large area deposition apparatus comprising: a chamber providing a deposition space for depositing a predetermined material on a substrate; A plurality of supply ports installed at one side of the chamber and supplying gas into the chamber; A plurality of supply lines disposed in the chamber and connected to the respective supply ports; And a plurality of injection nozzles disposed above the substrate introduced into the chamber, connected along each supply line, and alternately arranged to alternately disperse different gases to eject the upper surface of the substrate. do.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시하여 도시한 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있도록 충분히 상세하게 설명된다. 본 발명의 다양한 실시예는 상호 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 특정 구조 및 특성은 실시예와 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미가 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에 도시된 실시예들의 길이, 면적, 두께 및 형태는, 편의상, 과장되어 표현될 수도 있다.DETAILED DESCRIPTION OF THE INVENTION The following detailed description of the invention refers to the accompanying drawings that illustrate specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It is to be understood that the various embodiments of the invention, although different from one another, need not be mutually exclusive. For example, certain shapes, specific structures, and features described herein may be embodied in other embodiments without departing from the spirit and scope of the invention in connection with the embodiments. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled. The length, area, thickness, and shape of the embodiments shown in the drawings may be exaggerated for convenience.
이하 첨부된 도면을 참조하여 본 발명의 구성을 상세하게 설명하도록 한다.Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
도 1과 도 2를 참조하면, 본 발명의 일 실시예에 따른 가스 혼합 방지용 대면적 증착 장치는 챔버(C), 챔버(C)의 내부에 설치되며 기판(A)을 가열하는 히터 기능을 하는 서셉터(Susceptor)(S), 챔버(C)의 일측에 설치되어 기판(A)의 출입을 허용하는 게이트 밸브(G), 챔버(C)의 외측에 구비되어 챔버(C)내부의 공기를 배기하는 진공펌프(미도시) 등을 포함한다.1 and 2, the large-area vapor deposition preventing apparatus according to an embodiment of the present invention is installed in the chamber C, the chamber C, and functions as a heater to heat the substrate A. A susceptor S and a gate valve G installed at one side of the chamber C to allow the substrate A to enter and exit the chamber C, and are provided outside the chamber C to supply air inside the chamber C. And a vacuum pump (not shown) for exhausting.
기판(A)의 출입을 위해 게이트 밸브(G)가 개방된 경우를 제외하고, 챔버(C)는 기판(A)에 소정의 물질의 증착하기 위한 밀폐된 공간을 제공한다. 기판(A)은 복수의 핀(P) 상에 안착되어 증착된다.Except when the gate valve G is opened for entry and exit of the substrate A, the chamber C provides a closed space for depositing a predetermined material on the substrate A. The substrate A is deposited on the plurality of fins P and deposited.
챔버(C) 내부의 상측 부위에는 가스를 공급하는 복수의 공급포트(100)가 설치되고, 챔버(C) 내부에는 각 공급포트(100)에 연결되어 증착가스를 공급받는 복수의 공급라인(110)이 배치된다. 공급라인(110)은 가스 또는 증기 등이 흘러 이동할 수 있는 관로이다.A plurality of supply ports 100 for supplying gas are installed in an upper portion of the chamber C, and a plurality of supply lines 110 connected to the respective supply ports 100 to supply deposition gas inside the chamber C. ) Is placed. Supply line 110 is a pipeline through which gas or steam flows.
공급라인(110)의 하방에는 복수의 분사노즐(120)이 설치된다. 분사노즐(120)은 공급라인(110)의 내부를 이동하는 가스를 외부로 분출할 수 있도록 홀들이 형성된 관로이다. 분사노즐(120)은 챔버(C)의 내부에서 기판(A)의 상방에 배치되고, 각 공급라인(110)을 따라 교번하게 배치되어 다른 가스를 교번하여 기판(A)의 상면에 공급한다.A plurality of injection nozzles 120 are installed below the supply line 110. The injection nozzle 120 is a conduit in which holes are formed to eject the gas moving inside the supply line 110 to the outside. The injection nozzle 120 is disposed above the substrate A inside the chamber C, and is alternately disposed along each supply line 110 to alternately supply other gases to the upper surface of the substrate A.
분사노즐(120)은 기판(A)의 상방에 일렬로 촘촘하게 배치되어 대면적에 해당하는 기판(A)에 균일하게 증착가스를 분사한다. 분사노즐(120)에서 분사되는 서로 다른 가스는 분출되면서 분사 영역이 서로 중첩되므로, 상호 혼합된다. 그리고, 대면적의 기판(A) 상에 균일한 두께로 증착된다.The injection nozzle 120 is densely arranged in a row above the substrate A to uniformly inject the deposition gas onto the substrate A corresponding to the large area. Different gases injected from the injection nozzles 120 are sprayed and overlapped with each other, so that they are mixed with each other. Then, it is deposited with a uniform thickness on the large-area substrate (A).
도 1 내지 도 4를 참조하면, 챔버(C)의 상면부에는 분사노즐(120)을 대면적의 기판(A) 상에서 일정하게 진동시켜 기판(A)에 서로 다른 가스가 혼합되어 증착되는 효율을 높이기 위한 진동용 에어 실린더(130)가 구비된다. 에어 실린더(130)는 분사노즐(120)을 진동시킬 수 있게 기구적으로 분사노즐(120)에 연결된다.1 to 4, the upper surface portion of the chamber C vibrates the injection nozzle 120 uniformly on the large-area substrate A to improve the efficiency in which different gases are mixed and deposited on the substrate A. FIG. A vibration air cylinder 130 for increasing is provided. The air cylinder 130 is mechanically connected to the injection nozzle 120 to vibrate the injection nozzle 120.
즉, 에어 실린더(130)에는 에어 실린더(130)가 제공하는 스트로크만큼 선형으로 이동하는 샤프트 로드(135)와 샤프트 로드(135)에 교차하게 결합되어 샤프트 로드(135)의 진동 변위를 분사노즐(120)에 전달하는 노즐 브라켓(140)이 연결된다. 에어 실린더(130)는 전기적으로 진동할 수 있는 샤프트가 구비된 진동모터로 대체될 수 있다. 또한, 에어 실린더(130)는 모터의 회전 운동을 기구적으로 왕복 운동할 수 있게 하는 왕복기구로 대체될 수 있다. 즉, 에어 실린더(130)는 분사노즐(120)의 진동을 위한 왕복 운동을 제공하는 구동체이다.That is, the air cylinder 130 is coupled to the shaft rod 135 and the shaft rod 135 which moves linearly by the stroke provided by the air cylinder 130 to cross the vibration displacement of the shaft rod 135 to the injection nozzle ( The nozzle bracket 140 for transmitting to 120 is connected. The air cylinder 130 may be replaced with a vibration motor having a shaft capable of electrically vibrating. In addition, the air cylinder 130 may be replaced with a reciprocating mechanism that enables the mechanical rotational movement of the rotational movement of the motor. That is, the air cylinder 130 is a driving body that provides a reciprocating motion for the vibration of the injection nozzle (120).
이때, 샤프트 로드(135)는 챔버(C) 상에 복수개가 설치될 수 있다. 도시된 바와 같이, 샤프트 로드(135)는 챔버(C)의 상면에 세 개 설치될 수 있다. 세 개의 샤프트 로드(135) 중 좌측의 두 개는 에어 실린더(130)와 하방에 있는 노즐 브라켓(140)에 연결되며, 우측의 다른 한 개는 하방에 있는 노즐 브라켓(140)에만 연결된다. 샤프트 로드(135)와 노즐 브라켓(140)은 챔버(C)에 매달리는 형태로 설치된 분사노즐(120)의 무게를 지탱할 수 있고, 분사노즐(120)의 진동시 균형을 잡아줄 수 있도록 개수가 다양하게 변경될 수 있다. 즉, 도시된 예는 분사노즐(120)의 세 부분을 지지하고 있으나, 안정성을 높이기 위해 양측 두 부분을 지지하는 4 부분 지지 구조로도 제작할 수 있고, 더 나아가 5 또는 6 부분 지지 구조로도 제작할 수도 있다.In this case, a plurality of shaft rods 135 may be installed on the chamber (C). As shown, three shaft rods 135 may be installed on the upper surface of the chamber (C). Two of the three shaft rods 135 on the left side are connected to the air cylinder 130 and the nozzle bracket 140 on the lower side, and the other on the right side is connected only to the nozzle bracket 140 on the lower side. The shaft rod 135 and the nozzle bracket 140 can support the weight of the injection nozzle 120 installed in the form of hanging in the chamber (C), and the number varies so as to balance the vibration of the injection nozzle 120. Can be changed. That is, the illustrated example supports the three parts of the injection nozzle 120, but can also be fabricated as a four-part support structure for supporting two parts on both sides in order to increase the stability, and furthermore can be manufactured as a five or six part support structure It may be.
한편, 에어 실린더(130)의 실린더 로드(131)에는 슬라이드 이동되는 이동대(136)가 연결되고, 이동대(136)의 양측에는 두 개의 샤프트 로드(135)가 결합된다. 또한, 이동대(136)의 양측에는 슬라이드 관(137)이 설치되고, 슬라이드 관(137)은 슬라이드 관(137)의 이동을 안내하는 가이드 바(138)에 끼워진다. 이때, 가이드 바(138)의 양측 단부는 고정대(139)에 결합되어 챔버(C) 상에 고정된다.On the other hand, the cylinder rod 131 of the air cylinder 130 is connected to the moving table 136 is a slide movement, the two shaft rods 135 are coupled to both sides of the moving table (136). In addition, slide tubes 137 are provided on both sides of the movable table 136, and the slide tubes 137 are fitted to guide bars 138 for guiding the movement of the slide tubes 137. At this time, both end portions of the guide bar 138 is coupled to the holder 139 is fixed on the chamber (C).
두 개의 샤프트 로드(135)는 이동대(136)를 통해 에어 실린더(130)의 실린더 로드(131)에 연결되어 실린더 로드(131)에 의해 함께 운동한다. 가이드 바(138)와 슬라이드 관(137)은 에어 실린더(131)의 직선 운동을 전달하기 위한 다른 슬라이드 기구로 대체할 수 있다. 슬라이드 관(137)과 가이드 바(138)를 채택한 것은 슬라이드 운동시에 슬라이드 관(137)에 대한 가이드 바(138)의 구속력이 좋기 때문이다.The two shaft rods 135 are connected to the cylinder rod 131 of the air cylinder 130 through the moving table 136 and move together by the cylinder rod 131. The guide bar 138 and the slide tube 137 can be replaced with other slide mechanisms for transmitting the linear motion of the air cylinder 131. The slide tube 137 and the guide bar 138 are adopted because the binding force of the guide bar 138 to the slide tube 137 during the slide movement is good.
도 2를 참조하면, 챔버(C)의 좌측과 우측에는 샤프트 로드(135)가 설치된다. 좌측의 샤프트 로드(135)는 에어 실린더(130)의 구동력을 전달받고, 우측의 샤프트 로드(135)는 분사노즐(120)의 다른 부위에 연결되어 분사노즐(120)의 이동을 안내하는 기능을 수행한다. 노즐 브라켓(140)은 챔버(C)의 상부에서 하방으로 연장되고, 상단부는 샤프트 로드(135)에 결합되며 하단부는 분사노즐(120)에 연결된다.2, the shaft rod 135 is installed on the left and right sides of the chamber (C). The shaft rod 135 on the left side receives the driving force of the air cylinder 130, and the shaft rod 135 on the right side is connected to another part of the spray nozzle 120 to guide the movement of the spray nozzle 120. Perform. The nozzle bracket 140 extends downward from the upper portion of the chamber C, the upper end is coupled to the shaft rod 135, and the lower end is connected to the injection nozzle 120.
에어 실린더(130)는 일렬로 배치된 복수의 분사노즐(120)이 상호 인접하는 본사노즐(120)과 분사노즐(120) 사이에서 진동하게 한다. 예를 들어, 복수의 분사노즐(120)이 각각 20 mm 간격으로 배치되고 서로 다른 두 종류의 가스가 교번으로 분사된다면 임의의 분사노즐(120)의 진동 변위는 최대 40 mm이다.The air cylinder 130 causes the plurality of injection nozzles 120 arranged in a line to vibrate between the main nozzle 120 and the injection nozzle 120 adjacent to each other. For example, if a plurality of injection nozzles 120 are arranged at intervals of 20 mm each and two different gases are alternately injected, the vibration displacement of any injection nozzle 120 is up to 40 mm.
도 2, 도 3 및 도 4를 참조하면, 챔버(C)의 좌측 상면부에는 에어 실린더(130)의 실린더 로드(131)와 샤프트 로드(135)의 축선 오차를 줄여서 진동을 감쇠하는 플로팅 조인트(141)가 구비된다.2, 3, and 4, a floating joint for attenuating vibration by reducing axis errors between the cylinder rod 131 and the shaft rod 135 of the air cylinder 130 is disposed on the upper left portion of the chamber C. 141 is provided.
통상적으로 챔버(C)의 상면부에 에어 실린더(130)의 실린더 로드(131)와 샤프트 로드(135)의 이동 경로를 정확하게 일치시켜 장착하기는 어려울 수 있다. 만일, 에어 실린더(130)의 실린더 로드(131)와 샤프트 로드(135)의 이동 경로가 직선으로 일치되지 않은 상태에서, 실린더 로드(131)와 연결된 샤프트 로드(135)가 어긋난 축력을 반복적으로 전달받는 경우, 에어 실린더(130)와 샤프트 로드(135)의 내구성이 떨어지게 된다. 이러한 경우, 플로팅 조인트(141)는 실린더 로드(131)와 샤프트 로드(135) 사이의 동력 전달 축선이 어긋난 경우, 완충적인 동력 전달을 수행한다.In general, the cylinder rod 131 of the air cylinder 130 and the movement path of the shaft rod 135 may be difficult to accurately mount to the upper surface of the chamber C. If the cylinder rod 131 of the air cylinder 130 and the movement path of the shaft rod 135 do not coincide in a straight line, the shaft rod 135 connected to the cylinder rod 131 repeatedly transmits the axial force that is displaced. If received, the durability of the air cylinder 130 and the shaft rod 135 is reduced. In this case, the floating joint 141 performs buffered power transmission when the power transmission axis between the cylinder rod 131 and the shaft rod 135 is shifted.
챔버(C)의 좌/우측 상면부에는 샤프트 로드(135)가 통과하는 밀폐된 공간이 제공되고, 샤프트 로드(135)의 양측 단부가 이동가능하게 설치되는 샤프트 하우징(145)이 설치된다. 샤프트 하우징(145)은 샤프트 로드(135)의 이동 경로를 밀폐하는 기능을 수행하는 것으로서, 샤프트 하우징(145)의 양측으로 돌출된 샤프트 로드(135)를 둘러싸서 폐쇄하는 밀폐 가이드(146)가 샤프트 하우징(145)에 설치된다.The left / right upper surface portion of the chamber C is provided with a closed space through which the shaft rod 135 passes, and a shaft housing 145 in which both ends of the shaft rod 135 are movable is installed. The shaft housing 145 serves to close the movement path of the shaft rod 135. The shaft guide 146 surrounding the shaft rod 135 protruding to both sides of the shaft housing 145 closes the shaft. It is installed in the housing 145.
밀폐 가이드(146)와 샤프트 하우징(145) 사이에는 기밀을 유지하기 위한 각종 밀폐 수단으로서, 금속 재질의 오링(미도시)이나 고무링(미도시) 등이 함께 설치될 수 있다. 샤프트 하우징(145)의 우측에 설치된 밀폐 가이드(146)에는 에어 실린더(130)에서 샤프트 로드(135)로부터 전달되는 충격을 완충시키는 벨로우즈(147)가 설치된다.As the various sealing means for maintaining the airtightness between the sealing guide 146 and the shaft housing 145, a metal O-ring (not shown), rubber ring (not shown) may be installed together. The sealing guide 146 installed on the right side of the shaft housing 145 is provided with a bellows 147 for buffering the shock transmitted from the shaft rod 135 in the air cylinder 130.
벨로우즈(147)는 샤프트 로드(135)가 삽입되는 통로가 형성된 주름관이다. 또한, 좌우 밀폐 가이드(146)에는 샤프트 로드(135)가 삽입되는 볼 부싱(148)이 고정되게 설치된다. 볼 부싱(148)은 샤프트 로드(135)의 직선 운동을 안내하고, 밀폐 가이드(146)의 외부에 대한 기밀 기능도 수행한다.The bellows 147 is a corrugated pipe in which a passage through which the shaft rod 135 is inserted is formed. In addition, the ball bushing 148 into which the shaft rod 135 is inserted is fixed to the left and right sealing guides 146. The ball bushing 148 guides the linear movement of the shaft rod 135 and also performs an airtight function on the outside of the hermetic guide 146.
도 3 내지 도 5를 참조하면, 공급라인(110)은 지지체(150)의 둘레에 고정된다. 지지체(150)는 기판(A) 상에 위치되며, 샤프트 로드(135)에 결합된 노즐 브라켓(140)에 의해 챔버(C)의 내부에 매달리는 형태로 설치된다.3 to 5, the supply line 110 is fixed around the support 150. The support 150 is positioned on the substrate A, and is installed in the form of being suspended in the chamber C by the nozzle bracket 140 coupled to the shaft rod 135.
지지체(150)는 사각형의 프레임이며, 분사노즐(120)은 지지체(150)의 하방에 일렬로 설치되어 지지체(150)의 내측공간을 대부분 폐쇄하고 있다.The support 150 is a rectangular frame, and the injection nozzles 120 are installed in a row below the support 150 to close most of the inner space of the support 150.
공급라인(110)은 고정블록(151)에 의해 지지체(150)에 고정된다. 고정블록(151)의 양측 부분에는 단면(斷面)이 원형인 공급라인(110)의 반쪽이 삽입되어 구속될 수 있는 반원형의 홈(152)이 형성된다. 고정블록(151)은 나사 또는 볼트와 같은 체결 수단에 의해 지지체(150) 상에 고정된다. 고정블록(151)은 사각형의 지지체(150) 상에 배치된 공급라인(110)을 따라 소정 간격으로 설치된다. Supply line 110 is fixed to the support 150 by a fixed block 151. Semicircular grooves 152 are formed at both sides of the fixed block 151 so that half of the supply line 110 having a circular cross section is inserted and restrained. The fixing block 151 is fixed on the support 150 by fastening means such as screws or bolts. The fixed block 151 is installed at predetermined intervals along the supply line 110 disposed on the rectangular support 150.
도 5를 참조하면, 지지체(150)의 상면부에 공급라인(110)이 설치되고, 지지체(150)의 하방에 분사노즐(120)이 일렬로 배치된다. 분사노즐(120)은 지지체(150)에서 길이가 긴 쪽에 해당하는 가로 방향과 교차하는 세로 방향으로 설치된다. 그리하여, 복수의 분사노즐(120)은 기판(A)의 길이 방향을 따라 배치되어 사각형의 기판(A)에 대응하게 사각형을 형성하게 된다. 5. 5세대 기판(A)일 경우, 분사노즐(120)은 직사각형으로 1500 mm x 1300 mm 대응하는 면적을 제공한다. 물론 분사노즐(120)은 지지체(150)의 길이가 짧은 세로 방향에 교차하게 설치될 수도 있다. 도 6에는 공급라인(110)과 분사노즐(120)의 연결 관계가 도시되어 있다. 즉, 공급라인(110)의 저면에는 제1 연결관(161)이 결합되며, 분사노즐(120)의 상면에는 제1 연결관(161)에 대응하여 제2 연결관(162)이 결합되며, 제1 연결관(161)과 제2 연결관(162)은 커넥터(163)를 매개로 상호 연결된다. 이때, 제1 연결관(161)은 지지체(150)(도 5참조)를 관통하여 커넥터(163)에 결합된다. 커넥터(163)는 피팅 수단이다.Referring to FIG. 5, the supply line 110 is installed at an upper surface of the support 150, and the injection nozzles 120 are arranged in a row below the support 150. Injection nozzle 120 is installed in the longitudinal direction to cross the horizontal direction corresponding to the long side in the support 150. Thus, the plurality of injection nozzles 120 are disposed along the longitudinal direction of the substrate A to form a quadrangle corresponding to the quadrangle substrate A. FIG. 5. In the case of the fifth generation substrate A, the spray nozzle 120 provides a rectangular area corresponding to 1500 mm x 1300 mm. Of course, the injection nozzle 120 may be installed to cross in the longitudinal direction of the short length of the support 150. 6 illustrates a connection relationship between the supply line 110 and the injection nozzle 120. That is, the first connecting pipe 161 is coupled to the bottom of the supply line 110, the second connecting pipe 162 is coupled to the upper surface of the injection nozzle 120 in correspondence with the first connecting pipe 161. The first connector 161 and the second connector 162 are interconnected via the connector 163. At this time, the first connection pipe 161 is coupled to the connector 163 through the support 150 (see FIG. 5). The connector 163 is a fitting means.
도 7을 참조하면, 복수의 공급포트(100)와 공급라인(110) 사이에는 벨로우즈 관(164)이 구비된다. 벨로우즈 관(164)은 공급포트(100)와 공급라인(110)을 연결하며, 공급포트(100)에 대해 공급라인(110)의 좌우 유동을 허용할 수 있도록 신축된다. 벨로우즈 관(164)은 직접 공급라인(110)에 연결되지 않고, 피팅으로 연결된 다른 공급용 포트를 통해 공급라인(110)에 연결된다.Referring to FIG. 7, a bellows pipe 164 is provided between the plurality of supply ports 100 and the supply line 110. The bellows pipe 164 connects the supply port 100 and the supply line 110 and is stretched to allow the left and right flow of the supply line 110 with respect to the supply port 100. The bellows pipe 164 is not directly connected to the supply line 110, but is connected to the supply line 110 through another supply port connected by a fitting.
도 8과 도 9를 참조하면, 분사노즐(120)은 동심을 이루는 2중 튜브로 구성된다. 즉, 분사노즐(120)은 공급라인(110)에 연결되어 공급라인(110)으로부터 가스를 공급받고 상방으로 가스를 분출하는 제1 홀(171a)이 형성된 제1 튜브(171) 및 제1 튜브(171)를 감싸고 있고 하방으로 가스를 분출하는 제2 홀(172a)이 형성된 제2 튜브(172)로 구성된다.8 and 9, the injection nozzle 120 is composed of a concentric double tube. That is, the injection nozzle 120 is connected to the supply line 110 to receive the gas from the supply line 110 and the first tube 171 and the first tube formed with a first hole 171a for ejecting the gas upwards It is comprised by the 2nd tube 172 which wraps around 171, and the 2nd hole 172a which blows gas downward is formed.
제1 튜브(171)의 제1 홀(171a)은 제2 튜브(172)의 홀보다 홀간 간격이 크게 형성된다. 대략, 제1 튜브(171)의 2 개의 제1 홀(171a)은 제2 튜브(172)의 5 개의 제2 홀(172a)에 대응하여 증착가스를 공급할 수 있다. 제1 튜브(171)의 제1 홀(171a)을 통해 분출된 증착가스는 제2 튜브(172)를 따라 이동하여 고르게 퍼진 상태에서 하방으로 유동하고, 제2 튜브(172)의 제2 홀(172a)을 통해 고르게 하방으로 분출된다.The first hole 171a of the first tube 171 has a larger gap between holes than the hole of the second tube 172. In general, the two first holes 171a of the first tube 171 may supply the deposition gas corresponding to the five second holes 172a of the second tube 172. The deposition gas ejected through the first hole 171a of the first tube 171 moves along the second tube 172 and flows downward in an evenly spread state, and the second hole (2) of the second tube 172 172a) is ejected evenly downward.
한편, 분사노즐(120)은 3중 이상의 다중 튜브 구조로도 제작이 가능하다. 이때, 각 튜브마다 가스를 분출하는 홀들의 방향은 서로 반대로 하는 것이 최종적으로 가스의 균일한 분출에 유리하다.On the other hand, the injection nozzle 120 can be manufactured in a multi-tube structure of more than three. At this time, it is advantageous for the uniform ejection of the gas to reverse the directions of the holes for ejecting the gas for each tube.
도 10는 도 5의 평면도로서 도 1과 도 7의 2 개의 공급포트(100)로 공급된 증착가스의 유동 방향이 도시되어 있다. 참고로, 도 6 및 도 9에 도시된 화살표는 하나의 분사노즐(120)에서 분출되는 증착가스의 유동 방향을 도시한 것이다.FIG. 10 is a plan view of FIG. 5 and illustrates a flow direction of the deposition gas supplied to the two supply ports 100 of FIGS. 1 and 7. For reference, arrows illustrated in FIGS. 6 and 9 illustrate the flow direction of the deposition gas ejected from one injection nozzle 120.
도 2와 함께 도 5 내지 도 10을 참조하여 본 발명의 일 실시예에 따른 가스혼합 방지용 대면적 증착장치의 가스혼합과 유동 및 증착과정을 설명한다.5 to 10 together with FIG. 2 will be described the gas mixing, flow and deposition process of the large area deposition apparatus for preventing gas mixing according to an embodiment of the present invention.
도 2에 도시된 2개의 각 공급포트(100)를 통해 유입되는 증착가스의 소스원료는 예를 들어 Zn과 O2이다. 기판(A)이 서셉터(S)에서 일정 온도로 가열된 후, 각 공급포트(100)에는 Zn과 O2 소스원료가 유입된다. Zn의 소스원료는 Zn 유기 화합물인 DEZ(diethylzinc)가 사용되고, O2의 소스원료는 O2가 사용될 수 있다. 이때, DEZ는 상온에서 기체 상태가 아니므로 온도를 예를 들어 100℃도 정도 올려주어 DEZ를 고체나 액체 상태에서 기체 상태로 변화시킨 후, 하나의 공급포트(100)에 공급한다. O2의 소스원료인 O2는 상온에서 기체 상태이므로 다른 공급포트(100)에 그대로 공급한다.Source materials of the deposition gas flowing through each of the two supply ports 100 shown in FIG. 2 are, for example, Zn and O 2 . After the substrate A is heated to a predetermined temperature in the susceptor S, Zn and O 2 source materials are introduced into each supply port 100. Zn source material may be a Zn organic compound DEZ (diethylzinc) is used, O 2 source material may be used O 2 . At this time, since DEZ is not in a gaseous state at room temperature, the temperature is raised, for example, about 100 ° C., so that DEZ is changed from a solid or liquid state to a gaseous state, and then supplied to one supply port 100. The source material of the O 2 O 2 is supplied onto Since gaseous at normal temperatures and third port 100.
각 소스원료의 증착가스는 각 공급포트(100)와 연결된 각 공급라인(110)으로 공급되어 사각형으로 형성된 공급라인(110)을 채우게 된다. 이후, 각 증착가스는 각 공급라인(110)에 대해 횡 방향으로 연결된 분사노즐(120)을 통해 하방으로 분사된다. 이때, 분사노즐(120)은 2중 튜브로 구성되어 있는데, 제1 튜브(171)의 제1 홀(171a)을 통해 상방으로 유동하여 제2 튜브(172)를 따라 퍼진 증착가스는 제2 튜브(172)의 제2 홀(172a)을 통해 하방에 있는 기판(A)으로 분출된다.Deposition gas of each source material is supplied to each supply line 110 connected to each supply port 100 to fill the supply line 110 formed in a square. Then, each deposition gas is injected downward through the injection nozzle 120 connected in the transverse direction with respect to each supply line (110). At this time, the injection nozzle 120 is composed of a double tube, the deposition gas spread along the second tube 172 by flowing upward through the first hole 171a of the first tube 171 is the second tube. It blows out to the board | substrate A below through the 2nd hole 172a of 172.
한편, 에어 실린더(130)의 실린더 로드(131)는 왕복 운동을 하게 되며, 실린더 로드(131)는 샤프트 하우징(145)에 설치된 샤프트 로드(135)를 왕복 운동시킨다. 샤프트 로드(135)는 미리 설정된 실린더 로드(131)의 스트로크만큼 운동하면서 왕복 운동에 의해 지지체(150)에 결합된 노즐 브라켓(140)을 진동시킨다. 노즐 브라켓(140)이 진동될 때, 노즐 브라켓(140)의 하부에 설치된 분사노즐(120)은 양측으로 왕복 운동하면서 진동된다. 이때, 복수의 분사노즐(120) 중에서 임의의 분사노즐(120)의 진동 범위는 임의의 분사노즐(120)과 최인접하는 분사노즐(120) 사이의 간격 내에서 설정될 수 있다. 예를 들어, 본 실시예에서, 복수의 분사노즐(120)은 교번하는 DEZ 가스 분사노즐(120)과 O2 가스 분사노즐(120)로 구성되는데, 임의의 DEZ 가스 분사노즐(120)의 진동 범위는 임의의 DEZ 가스 분사노즐(120)과 이에 최인접하는 O2 가스 분사노즐(120) 사이 간격의 2배일 수 있다.Meanwhile, the cylinder rod 131 of the air cylinder 130 is reciprocated, and the cylinder rod 131 reciprocates the shaft rod 135 installed in the shaft housing 145. The shaft rod 135 vibrates the nozzle bracket 140 coupled to the support 150 by a reciprocating motion while moving by the stroke of the cylinder rod 131 set in advance. When the nozzle bracket 140 is vibrated, the injection nozzle 120 installed at the lower portion of the nozzle bracket 140 vibrates while reciprocating to both sides. In this case, the vibration range of the arbitrary injection nozzles 120 among the plurality of injection nozzles 120 may be set within the interval between the arbitrary injection nozzles 120 and the nearest injection nozzle 120. For example, in the present embodiment, the plurality of injection nozzles 120 are composed of alternating DEZ gas injection nozzles 120 and O 2 gas injection nozzles 120, and vibration of any DEZ gas injection nozzles 120. The range may be twice the spacing between any DEZ gas injection nozzle 120 and the nearest O 2 gas injection nozzle 120.
이와 같이, 에어 실린더(130)의 진동에 의해 각각의 분사노즐(120)은 각기 다른 증착가스를 상호 위치를 교환하면서 분사하며, 분사된 증착가스는 상방에서 하방으로 지그재그의 파형을 형성하면서 기판(A) 측으로 도달된다. 이때, 증착가스인 DEZ 가스와 O2 가스는 분사노즐(120)의 진동에 의해 보다 쉽게 혼합되면서 기판(A)에 뿌려지고, 산화/환원 등의 화학 반응에 의해 기판(A) 상에 일정한 두께의 ZnO로 증착된다.As described above, each of the injection nozzles 120 injects different deposition gases while exchanging positions by vibrating the air cylinder 130, and the injected deposition gases form a zigzag waveform from above to below. A) is reached to the side. At this time, the DEZ gas and the O 2 gas, which is the deposition gas, are sprayed onto the substrate A while being more easily mixed by the vibration of the injection nozzle 120, and have a constant thickness on the substrate A by chemical reaction such as oxidation / reduction. Is deposited with ZnO.
상기와 같이 기술된 본 발명의 실시예들에 대한 도면은 자세한 윤곽 라인을 생략하여, 본 발명의 기술사상에 속하는 부분을 쉽게 알 수 있도록 개략적으로 도시한 것이다. 또한, 상기 실시예들은 본 발명의 기술사상을 한정하는 기준이 될 수 없으며, 본 발명의 청구범위에 포함된 기술사항을 이해하기 위한 참조적인 사항에 불과하다.The drawings of the embodiments of the present invention described above are schematically illustrated so as to easily understand the parts belonging to the technical idea of the present invention by omitting detailed outline lines. In addition, the embodiments are not intended to limit the technical spirit of the present invention, but are merely a reference for understanding the technical matters included in the claims of the present invention.

Claims (20)

  1. 기판 상에 소정 물질을 증착하기 위한 증착공간을 제공하는 챔버;A chamber providing a deposition space for depositing a predetermined material on a substrate;
    상기 챔버의 일측에 설치되며 상기 챔버의 내부로 가스를 공급하는 복수의 공급포트;A plurality of supply ports installed at one side of the chamber and supplying gas into the chamber;
    상기 챔버의 내부에 배치되며, 상기 각 공급포트에 연결된 복수의 공급라인; 및A plurality of supply lines disposed in the chamber and connected to the respective supply ports; And
    상기 챔버로 투입된 상기 기판의 상방에 배치되고, 상기 각 공급라인을 따라 연결되며, 상호 교번하게 배치되어 각기 다른 가스를 교번하여 상기 기판의 상면에 분출하는 복수의 분사노즐을 포함하는 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.And a plurality of injection nozzles disposed above the substrate introduced into the chamber, connected along each supply line, and alternately arranged to alternately disperse different gases to eject the upper surface of the substrate. Large area deposition equipment for preventing gas mixing.
  2. 제1항에 있어서,The method of claim 1,
    상기 챔버의 외측에는 상기 분사노즐을 진동시키는 에어 실린더가 구비된 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.Large area deposition apparatus for preventing gas mixing, characterized in that the outer cylinder is provided with an air cylinder for vibrating the injection nozzle.
  3. 제2항에 있어서,The method of claim 2,
    상기 챔버의 외측에는 이동가능하게 설치되어 상기 에어 실린더의 실린더 로드와 연동되는 복수의 샤프트 로드가 설치되며,A plurality of shaft rods are installed on the outside of the chamber so as to be movable and interlock with the cylinder rods of the air cylinders.
    상기 챔버의 내부에는 상기 샤프트 로드에 일단부가 결합되고 상기 분사노즐에 타단부가 연결된 복수의 노즐 브라켓이 설치된 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.And a plurality of nozzle brackets having one end coupled to the shaft rod and the other end connected to the injection nozzle, respectively, in the chamber.
  4. 제3항에 있어서,The method of claim 3,
    상기 샤프트 로드는 상기 챔버의 상면에 세 개가 설치되고,Three shaft rods are installed on the upper surface of the chamber,
    상기 세 개의 샤프트 로드 중 두 개는 상기 에어 실린더에 연결되며,Two of the three shaft rods are connected to the air cylinder,
    다른 하나는 반대 측에서 상기 노즐 브라켓 중 어느 하나에 연결된 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.The other large area deposition apparatus for preventing gas mixing, characterized in that connected to any one of the nozzle bracket on the opposite side.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 에어 실린더의 상기 실린더 로드에는 슬라이드 이동되는 이동대가 연결되고, 상기 이동대의 양측에는 상기 에어 실린더에 연결된 상기 두 개의 샤프트 로드가 결합된 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.The movable rod which is slide-moved is connected to the cylinder rod of the air cylinder, and the two shaft rods connected to the air cylinder are coupled to both sides of the movable unit.
  6. 제5항에 있어서,The method of claim 5,
    상기 이동대의 양측에는 슬라이드 관이 설치되고, 상기 슬라이드 관은 상기 슬라이드 관의 이동을 안내하는 가이드 바에 끼워진 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.A slide tube is installed on both sides of the movable table, and the slide tube is fitted with a guide bar for guiding the movement of the slide tube.
  7. 제6항에 있어서,The method of claim 6,
    상기 가이드 바의 양측 단부는 상기 챔버의 상면에 설치된 고정대에 결합된 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.Both end portions of the guide bar is gas mixing prevention large-area deposition apparatus, characterized in that coupled to the fixing table installed on the upper surface of the chamber.
  8. 제3항에 있어서,The method of claim 3,
    상기 챔버의 외측에는 상기 샤프트 로드가 통과하는 밀폐된 공간을 제공하며, 상기 샤프트 로드의 양측 단부가 이동가능하게 설치되는 복수의 샤프트 하우징이 설치된 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.And a plurality of shaft housings provided at an outer side of the chamber to provide a closed space through which the shaft rod passes, and wherein both shaft ends of the shaft rod are movable to be installed.
  9. 제3항에 있어서,The method of claim 3,
    상기 에어 실린더의 상기 실린더 로드와 상기 샤프트 로드 사이에는 축선 오차에 따른 진동을 줄이기 위한 플로팅 조인트가 구비되는 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.And a floating joint is provided between the cylinder rod of the air cylinder and the shaft rod to reduce vibration due to an axial error.
  10. 제3항에 있어서,The method of claim 3,
    상기 샤프트 로드에는 상기 에어 실린더의 상기 실린더 로드로부터 전달되는 충격을 완충시키는 벨로우즈가 설치된 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.The shaft rod is a large area deposition apparatus for preventing gas mixing, characterized in that the bellows for cushioning the shock transmitted from the cylinder rod of the air cylinder is installed.
  11. 제10항에 있어서,The method of claim 10,
    상기 샤프트 로드에는 상기 벨로우즈에 접촉되는 볼 부싱이 설치된 특징으로 하는 가스혼합 방지용 대면적 증착장치.The shaft rod deposition apparatus for preventing gas mixing, characterized in that the ball bushing in contact with the bellows is installed.
  12. 제2항에 있어서,The method of claim 2,
    상기 에어 실린더는 임의의 상기 분사노즐을 상호 인접하는 분사노즐 간의 간격 내에서 진동시키는 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.And the air cylinder vibrates any of the spray nozzles within a distance between adjacent spray nozzles.
  13. 제1항에 있어서,The method of claim 1,
    상기 공급라인은 상기 기판의 상측 상기 챔버의 내부에 설치된 지지체의 둘레에 고정되는 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.And the supply line is fixed around a support installed in the chamber above the substrate.
  14. 제13항에 있어서,The method of claim 13,
    상기 지지체는 사각 프레임 형상이고, 상기 분사노즐은 상기 지지체의 하방에 일렬로 설치되어 상기 지지체의 내측공간을 폐쇄하는 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.The support body has a rectangular frame shape, the injection nozzle is installed in a row below the support to close the inner space of the support gas deposition preventing large area deposition apparatus, characterized in that.
  15. 제13항에 있어서,The method of claim 13,
    상기 지지체에는 상기 공급라인을 고정시키는 고정블록이 설치된 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.A large area deposition apparatus for preventing gas mixing, characterized in that the support block is installed on the support to fix the supply line.
  16. 제1항에 있어서,The method of claim 1,
    상기 공급라인의 저면에는 제1 연결관이 결합되고, 상기 분사노즐의 상면에는 상기 제1 연결관에 대응하여 제2 연결관이 결합되며, 상기 제1 연결관과 상기 제2 연결관은 커넥터를 매개로 상호 연결된 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.A first connector is coupled to a bottom surface of the supply line, and a second connector is coupled to an upper surface of the injection nozzle corresponding to the first connector, and the first connector and the second connector connect a connector. Large area deposition apparatus for preventing gas mixing, characterized in that interconnected via a medium.
  17. 제1항에 있어서,The method of claim 1,
    상기 복수의 공급포트와 상기 공급라인 사이에는 벨로우즈 관이 구비된 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.A large-area deposition apparatus for preventing gas mixing, characterized in that a bellows pipe is provided between the plurality of supply ports and the supply line.
  18. 제1항에 있어서,The method of claim 1,
    상기 분사노즐은 동심을 이루는 다중 튜브로 구성되는 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.The injection nozzle is a large area deposition apparatus for preventing gas mixing, characterized in that consisting of multiple concentric tubes.
  19. 제18항에 있어서,The method of claim 18,
    상기 분사노즐은 상기 공급라인에 연결되어 상기 공급라인으로부터 가스를 공급받아 상방으로 가스를 분출하는 제1 홀이 형성된 제1 튜브; 및The injection nozzle may include a first tube connected to the supply line and receiving a gas from the supply line and having a first hole for ejecting gas upwardly; And
    상기 제1 튜브를 감싸며, 상기 제1 홀에서 분출된 가스를 하방으로 분출하는 제2 홀이 형성된 제2 튜브를 구비하는 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.And a second tube surrounding the first tube, the second tube having a second hole for ejecting the gas ejected from the first hole downward.
  20. 제1항에 있어서,The method of claim 1,
    상기 복수의 분사노즐은 상기 기판의 길이 방향을 따라 배치되어 사각형을 이루는 것을 특징으로 하는 가스혼합 방지용 대면적 증착장치.And the plurality of injection nozzles are disposed along a length direction of the substrate to form a quadrangle.
PCT/KR2011/003855 2010-05-28 2011-05-26 Large-area deposition device for gas-mixing prevention WO2011149278A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180025477.XA CN102906861A (en) 2010-05-28 2011-05-26 Large-area deposition device for gas-mixing prevention
JP2013512541A JP2013528251A (en) 2010-05-28 2011-05-26 Large area vapor deposition equipment for gas mixing prevention

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0050421 2010-05-28
KR1020100050421A KR101120039B1 (en) 2010-05-28 2010-05-28 Large Area Deposition Apparatus For Preventing Gas Mixing

Publications (2)

Publication Number Publication Date
WO2011149278A2 true WO2011149278A2 (en) 2011-12-01
WO2011149278A3 WO2011149278A3 (en) 2012-03-01

Family

ID=45004573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003855 WO2011149278A2 (en) 2010-05-28 2011-05-26 Large-area deposition device for gas-mixing prevention

Country Status (5)

Country Link
JP (1) JP2013528251A (en)
KR (1) KR101120039B1 (en)
CN (1) CN102906861A (en)
TW (1) TW201213598A (en)
WO (1) WO2011149278A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195528A (en) * 2014-09-05 2014-12-10 厦门大学 High-frequency vibration coupled micro plasma-enhanced chemical vapor deposition device
CN106048561B (en) * 2016-08-17 2019-02-12 武汉华星光电技术有限公司 A kind of apparatus for atomic layer deposition and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910006164B1 (en) * 1987-03-18 1991-08-16 가부시키가이샤 도시바 Making method and there device of thin film
KR20010021506A (en) * 1997-07-04 2001-03-15 에르바스티, 매티 Method and apparatus for growing thin films
KR20060075564A (en) * 2004-12-28 2006-07-04 동부일렉트로닉스 주식회사 Gas injector
KR20090020797A (en) * 2007-08-24 2009-02-27 주식회사 테라세미콘 Semiconductor manufacturing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910006164B1 (en) * 1987-03-18 1991-08-16 가부시키가이샤 도시바 Making method and there device of thin film
KR20010021506A (en) * 1997-07-04 2001-03-15 에르바스티, 매티 Method and apparatus for growing thin films
KR20060075564A (en) * 2004-12-28 2006-07-04 동부일렉트로닉스 주식회사 Gas injector
KR20090020797A (en) * 2007-08-24 2009-02-27 주식회사 테라세미콘 Semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JP2013528251A (en) 2013-07-08
KR20110130877A (en) 2011-12-06
KR101120039B1 (en) 2012-03-22
TW201213598A (en) 2012-04-01
WO2011149278A3 (en) 2012-03-01
CN102906861A (en) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2010140778A2 (en) Showerhead for film depositing vacuum equipment
JP5372757B2 (en) Chemical vapor deposition apparatus with shower head for positively adjusting the injection speed of reaction gas and method therefor
WO2010067974A2 (en) Apparatus for treating multiple substrates
WO2011149278A2 (en) Large-area deposition device for gas-mixing prevention
WO2012071195A1 (en) Extended reactor assembly with multiple sections for performing atomic layer deposition on large substrate
KR102220321B1 (en) Material deposition arrangement, vacuum deposition system and methods therefor
KR101559470B1 (en) Chemical Vapor Deposition Apparatus
WO2012134070A2 (en) Gas-injection apparatus, atomic layer deposition apparatus, and atomic layer deposition method using the apparatus
WO2018210001A1 (en) Modularized nozzle and apparatus for spatially-separated atomic layer deposition
WO2013100462A1 (en) Substrate processing device
WO2015083884A1 (en) Substrate processing apparatus
TWI658167B (en) Apparatus for distributing gas and apparatus for processing substrate including the same
KR102030683B1 (en) Material Deposition Arrangements, Vacuum Deposition Systems, and Methods Thereof
KR100346767B1 (en) Free floating shield and semiconductor processing system
KR102631372B1 (en) Substrate processing apparatus
WO2014073806A1 (en) Shower head, and thin film deposition apparatus including same
WO2015083883A1 (en) Substrate processing apparatus
KR102260370B1 (en) Full-area counter-flow heat exchange substrate support
CN206438200U (en) CVD stove reaction chamber multi-angle feeders
US20090244115A1 (en) Droplet discharge apparatus
WO2023038370A1 (en) Substrate processing apparatus
CN220952044U (en) Spray set and treatment facility
KR101613864B1 (en) Metal organic chemical vapour deposition reaction apparatus
KR101297344B1 (en) A chemical vapor deposition apparatus and a gas supply unit thereof
JP2019073404A (en) Burner for synthesis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025477.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786910

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013512541

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786910

Country of ref document: EP

Kind code of ref document: A2