WO2011147122A1 - 一种黑硅太阳能电池及其制备方法 - Google Patents

一种黑硅太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2011147122A1
WO2011147122A1 PCT/CN2010/075750 CN2010075750W WO2011147122A1 WO 2011147122 A1 WO2011147122 A1 WO 2011147122A1 CN 2010075750 W CN2010075750 W CN 2010075750W WO 2011147122 A1 WO2011147122 A1 WO 2011147122A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
layer
silicon wafer
black silicon
black
Prior art date
Application number
PCT/CN2010/075750
Other languages
English (en)
French (fr)
Inventor
夏洋
刘邦武
李超波
刘杰
汪明刚
李勇滔
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Priority to US13/699,740 priority Critical patent/US20130068297A1/en
Publication of WO2011147122A1 publication Critical patent/WO2011147122A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of solar cell device manufacturing technology, and in particular, to a black silicon solar cell and a method of fabricating the same. Background technique
  • Black silicon is a revolutionary new material structure in the electronics industry. It usually refers to a silicon surface or a silicon-based film (including the surface or film of a silicon compound) with a high absorption rate. Compared with the general silicon material structure, black silicon has a strong light absorption capability. If black silicon is applied to an optical sensor or a solar cell, the sensitization efficiency is increased by a hundred times, and the conversion efficiency of the solar cell is also remarkably improved.
  • the present invention proposes a black silicon solar cell and a method of fabricating the same.
  • the black silicon solar cell includes a metal back electrode, a crystalline silicon, a black silicon layer, a passivation layer, and a metal gate; the metal back electrode is located on a back surface of the crystalline silicon, and the black silicon layer is located on the crystalline silicon.
  • the passivation layer is on the black silicon layer, and the metal gate is on the passivation layer.
  • the crystalline silicon is monocrystalline or polycrystalline silicon
  • the metal back electrode is made of aluminum, copper, silver, gold or platinum
  • the metal gate is made of aluminum, copper, silver, gold or platinum.
  • the thickness of the metal back electrode is 10 to 15 ⁇ m; the thickness of the single crystal silicon or polysilicon is 100 to 300 ⁇ m; the thickness of the black silicon layer is 0.1 to 10 ⁇ m; and the thickness of the passivation layer is 50 ⁇ 200 nm; the metal gate has a thickness of 2 to 10 ⁇ m, a gate width of 30 to 150 ⁇ m, and a pitch of 2 to 3 mm.
  • the method for preparing a black silicon solar cell includes:
  • preparing a black silicon layer on the surface of the pretreated silicon wafer preparing an emitter on the black silicon layer, and passivating the emitter to form a passivation layer;
  • a metal back electrode and a metal gate are prepared on the back surface of the single crystal silicon wafer and the passivation layer.
  • the step of pretreating the silicon wafer specifically includes:
  • the silicon wafer after the damage layer was removed by deionized water and dried with nitrogen.
  • the step of preparing a black silicon layer on the surface of the pretreated silicon wafer by using a plasma immersion ion implantation technique includes:
  • the plasma immersion ion implantation apparatus generates a plasma, and reactive ions in the plasma are injected into the silicon wafer;
  • the reactive ions react with the silicon wafer to form a black silicon layer.
  • the step of placing the silicon wafer in an implantation chamber of a plasma immersion ion implantation apparatus further includes: electrically connecting the silicon wafer to a power source to which a bias voltage can be applied; the process parameter including the injection chamber
  • the background pressure and the working pressure, the composition and volume ratio of the mixed gas injected into the injection chamber is 10 - 5 Pa ⁇ 10 - 3 Pa, and the working pressure range is 0.1 Pa ⁇ 50Pa
  • the mixed gas is composed of a gas having an etching action and a gas having a passivation effect, and the gas having an etching action includes SF 6 , CF 4 , CHF 3 , C 4 F 8 , NF 3 , SiF 4 , C 2 F 6 , HF, BF 3 , PF 3 , Cl 2 , HCl, SiH 2 Cl 2 , SiCl 4 , BC1 3 or HBr
  • the passivating gas comprises 0 2 , N 2 0 or N :
  • the product ratio ranges from 0.01 to 100.
  • the step of preparing an emitter on the black silicon layer specifically includes:
  • the phosphorus oxychloride and the silicon wafer are reacted to obtain a phosphorus atom;
  • the phosphorus atoms permeate and diffuse into the interior of the silicon wafer to form a PN junction.
  • the method further includes:
  • the silicon wafer after the immersion treatment is etched and edge-treated.
  • the passivation treatment is performed by surface oxidation growth SiO 2 passivation, or by PECVD growth SiNx or SiO ⁇ .
  • the black silicon solar cell structure tube provided by the invention uses the black silicon layer as the absorption layer, and the average absorption rate of the battery is improved;
  • the preparation method of the black silicon solar cell provided by the invention is unique and easy to grasp, has the characteristics of convenient operation, repeated and reliable, and has clear industrialization prospects.
  • FIG. 1 is a schematic structural view of a black silicon solar cell according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a reflectance curve of a black silicon solar cell according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a method for preparing a black silicon solar cell according to an embodiment of the present invention
  • FIG. 4 is a black silicon minority provided by an embodiment of the present invention
  • an embodiment of the present invention provides a black silicon solar cell including a metal back electrode 1, a crystalline silicon 2, a black silicon layer 3, a passivation layer 4, and a metal gate 5.
  • the metal back electrode 1 is located on the back surface of the crystalline silicon 2, and the metal back electrode may be made of metal such as aluminum (Al), copper (Cu), silver (Ag), gold (Au) or platinum (Pt), or may be made of a plurality of metals.
  • the material is mixed, such as an alloy material or a copper plated surface, and the crystalline silicon 2 may be p-type single crystal silicon, p-type polycrystalline silicon, n-type single crystal silicon or n-type polycrystalline silicon, and may also be cleaned and damaged.
  • the black silicon layer 3 is located on the crystal silicon 2, and the black silicon layer 3 may be black silicon formed by processing the crystalline silicon (including single crystal silicon and polycrystalline silicon) by a plasma immersion ion implantation process, or may be an etching process Black silicon formed by processing crystalline silicon (including single crystal silicon and polycrystalline silicon), the etching process includes dry etching and wet etching, and dry etching includes reactive ion etching (RIE), induced ion coupling plasma Body (ICP) etching, high voltage plasma etching, etc.; the doping type of the black silicon layer corresponds to the doping type of crystalline silicon, for example: if the crystalline silicon is p-type, the black silicon layer is n-type; The crystalline silicon is n-type, and the black silicon layer is p-type.
  • RIE reactive ion etching
  • ICP induced ion coupling plasma Body
  • the passivation layer 4 is located on the black silicon layer 3.
  • the passivation layer can be formed by treating the black silicon layer by surface oxidation growth SiO 2 passivation, or by using PECVD to grow 81 ⁇ or 810 2 passivation.
  • the silicon layer is formed by processing.
  • the metal gate 5 is located on the passivation layer 4, and the metal gate may be made of metal such as aluminum (Al), copper (Cu), silver (Ag), gold (Au) or platinum (Pt), or may be various Metal materials are mixed, such as alloy materials or copper-plated copper sheets.
  • the thickness of the metal back electrode 1 is 1 to 100 ⁇ m, preferably 10 to 15 ⁇ m; the thickness of the crystalline silicon 2 is 10 to 1000 ⁇ m, preferably 100 to 300 ⁇ m; and the thickness of the black silicon layer 3 is 0.01 to 50 ⁇ m.
  • the passivation layer 4 has a thickness of 1 to 500 nm, preferably 50 to 200 nm; the metal gate 5 has a thickness of 1 to 50 ⁇ m, preferably 2 to 10 ⁇ m, and the gate width is 10 to 1000 ⁇ m, preferably 30 to 150 ⁇ m, and a pitch of 1 to 10 mm, preferably 2 to 3 mm.
  • the black silicon solar cell structure of the present embodiment provides a black silicon layer as an absorption layer, and the average absorption rate of the battery is improved. As shown in FIG. 2, the average reflectance of the battery is less than that in the visible light band. 2%, since the average transmittance of the battery is almost zero, the average absorption rate is greater than 97%.
  • an embodiment of the present invention further provides a method for fabricating a black silicon solar cell, the method comprising the following steps:
  • Step 101 cleaning and de-damaging the single crystal silicon wafer
  • the monocrystalline silicon wafer is immersed in a hydrofluoric acid solution for 1 to 10 minutes, and washed with deionized water; then, the cleaned single crystal silicon wafer is immersed in a sodium hydroxide solution having a concentration of 1% to 30%. ⁇ 10 minutes, the temperature is 50 ⁇ 80 ° C, remove the damaged layer on the surface of the single crystal silicon wafer; Finally, the single crystal silicon wafer is washed with deionized water, and dried with nitrogen;
  • Step 102 Prepare a black silicon layer on the surface of the single crystal silicon wafer by using a plasma immersion ion implantation technique.
  • the apparatus used for plasma immersion ion implantation is also generally called a plasma immersion ion implanter. It generally includes an implantation chamber and a plasma source; in the injection chamber, a sample stage on which a sample can be placed is provided, and on a side opposite to the sample stage, a plasma source is provided; the plasma source includes a vacuum system , which can evacuate the injection chamber to a preset background pressure range; a gas supply system that can charge the injection chamber with the required gas, and can adjust various parameters of the gas according to certain control rules.
  • the flow rate of the gas, the extraction speed, the proportion of the gas composition, and the concentration, when the gas is charged into the injection chamber, the pressure of the injection chamber can be brought into a preset working pressure range; and the plasma power source can be a radio frequency power source. , microwave power or DC power, these power supplies can also be powered in pulses, and the frequency of these power supplies can a fixed frequency or a variable frequency; in addition, the device further includes a power supply capable of applying a bias voltage, the power supply capable of applying a bias voltage is electrically connected to a sample stage in the injection chamber, and a power source type and plasma capable of applying a bias voltage Similar to the power supply, it can be RF power, microwave power or DC power.
  • the plasma immersion ion implantation process is: placing a single crystal silicon wafer in the implantation Adjusting the process parameters of the plasma immersion ion implanter into a preset range of values; plasma immersion ion implanter generates plasma, reactive ions in the plasma are injected into the single crystal silicon wafer; reactive ions and single crystal The silicon wafer reacts to form black silicon;
  • the process parameters to be adjusted include the background pressure and working pressure of the injection chamber, the flow rate of the injected gas, the velocity of the extracted gas, the composition of the mixed gas, the composition ratio and concentration, the output power and frequency of the plasma power source, and the bias can be applied.
  • the bias voltage applied by the voltage supply, if pulsed, includes pulse width, duty cycle, and frequency;
  • the background pressure of the injection chamber may range from 10 to 7 Pa to 1000 Pa, preferably from 10 to 5 Pa to 10 Pa, more preferably from 10 to 5 Pa to 10 to 3 Pa; and the working pressure of the injection chamber The range may be 10 - 3 Pa ⁇ lOOOPa, preferably O.OlPa ⁇ lOOPa, more preferably O.lPa ⁇ 50Pa;
  • the injection gas may be a mixed gas composed of an etching gas and a passivating gas
  • the etching gas includes SF 6 , CF 4 , CHF 3 , C 4 F 8 , NF 3 , SiF 4 , C 2 F 6 , HF, BF 3 , PF 3 , Cl 2 , HCl, SiH 2 Cl 2 , SiCl 4 , BC1 3 or HBr
  • the gas having a passivation comprising 0 2 , N 2 0 or N 2
  • It may be composed of a plurality of gases having an etching action and a plurality of gases having a passivation effect, more preferably consisting of a gas having an etching action and a gas having a passivation effect, for example, by SF 6 and 0. a mixed gas composed of 2 , or a mixed gas composed of CF 4 and N 2 , which is composed of a gas having an etching action and a gas having a passivation and having etch
  • the product ratio may preferably be 0.1 to 80, more preferably 1 to 20;
  • the flow rate of the mixed gas may be 1 to 1000 sccm, preferably 10 to 100 sccm, and more preferably 20 to 80 sccm;
  • the output power of the plasma power source is 1 to 100000 W, preferably 10 to 50000 W, and more preferably 300 to 5000 W;
  • the applied bias voltage is -100,000 to 100,000 V, preferably -50000 50000V, more preferably -10000 ⁇ 0 V;
  • pulse width is 1 us ⁇ I s, preferably lus ⁇ 0.1 s, more preferably lus ⁇ 1 ms;
  • duty ratio is 1% ⁇ 99%
  • it is 10% to 90%, more preferably 20% to 80%
  • the frequency of the plasma power source is DC to 10 GHz, preferably 1 MHz to 5 GHz, and more preferably 13.56 MHz to 5 GHz;
  • the frequency of the bias voltage of the power supply is DC ⁇ 10GHz;
  • the mixed gas used is composed of SF 6 and 0 2 , and since the surface of the single crystal silicon wafer is treated by the oxygen-containing plasma, the surface state density of the single crystal silicon wafer is lowered, and the single sheet is effectively improved.
  • the surface quality of the crystalline silicon wafer reduces the surface recombination of the single crystal silicon wafer;
  • Figure 4 is a diagram showing the minority carrier lifetime distribution of black silicon measured by microwave photoconductive attenuation method. It can be seen from Fig. 4 that the average minority lifetime of black silicon is greater than 10.647 microseconds;
  • Step 103 preparing an emitter on a black silicon layer
  • the monocrystalline silicon wafer is placed in a quartz vessel of a tubular diffusion furnace, and phosphorus oxychloride is introduced into the quartz vessel at a high temperature of 850 to 900 ° C, and reacted with phosphorus silicate and silicon wafer to obtain phosphorus. Atom; After a certain period of time, the phosphorus atoms enter the surface layer of the silicon wafer from the periphery of the single crystal silicon wafer, and penetrate into the silicon wafer through the gap between the silicon atoms to form an interface between the N-type semiconductor and the P-type semiconductor, that is, PN junction
  • Step 104 removing the phosphosilicate glass on the surface of the single crystal silicon wafer by chemical etching
  • the single crystal silicon wafer is immersed in a hydrofluoric acid solution to cause a chemical reaction to form a soluble complex hexafluorosilicic acid to remove a layer of phosphosilicate glass formed on the surface of the single crystal silicon wafer after diffusion and sintering;
  • Step 105 etching and removing the single crystal silicon wafer
  • Step 106 Passivating the emitter to form a passivation layer
  • the single crystal silicon wafer is oxidized in a dry oxygen atmosphere at a temperature of 800 to 1000 ° C for 20 to 40 minutes, and then annealed at the same temperature in a nitrogen atmosphere for an annealing time of 5 to 20 minutes. ;
  • Step 107 preparing a metal A1 back electrode on the back side of the single crystal silicon wafer
  • a metal A1 having a thickness of 10 to 15 ⁇ m is deposited on the back surface of the single crystal silicon wafer; and then annealed at 350 to 450 ° C for 20 to 40 minutes under a protective atmosphere to form an ohmic contact metal A1 back.
  • the annealing process of 350 ⁇ 450 °C is used instead of the high temperature sintering process, which can avoid the damage of the single crystal silicon wafer induced by the stress induced by the high temperature sintering process, and is beneficial to reducing the thickness of the single crystal silicon wafer;
  • Step 108 preparing an Ag gate on the passivation layer
  • Screen printing is used to print silver paste on the surface of the passivation layer through a special printer and template to form an Ag gate with a gate thickness of 2 to 10 microns and a gate width of 30 to 150 microns.
  • the spacing is 2 ⁇ 3 mm.
  • the preparation method of the black silicon solar cell provided by the embodiment is unique and easy to grasp, and has the characteristics of convenient operation, repeatability and reliability, and has a clear industrialization prospect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Photovoltaic Devices (AREA)
  • Drying Of Semiconductors (AREA)
  • Silicon Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Description

一种黑硅太阳能电池及其制备方法
技术领域
本发明涉及太阳能电池器件制造技术领域, 特别涉及一种黑硅太阳能电池 及其制备方法。 背景技术
面对当前的能源危机和化石类燃料的大量耗用所引发的温室效应、 酸雨等 环境问题, 迫切需要在世界范围内开发和有效利用新能源。 太阳能是一种取材 方便、 绿色环保的可再生能源, 在不远的将来将成为世界能源供应的主体。 太 阳能电池作为一种清洁高效的绿色可持续能源, 将为太阳能的有效利用提供更 广阔的前景。 因此, 针对太阳能电池光电转换效率的探索也必将是一个极具应 用意义和发展前景的方向。
目前, 太阳能电池由于生产成本太高而无法取代传统能源, 因此降低太阳 能电池的生产成本就成为这一行业最大的问题, 而太阳能电池的生产成本与太 阳能电池的效率密切相关。 由于硅的高折射率, 其反射损失可达 40%以上, 即 硅基太阳能电池的光反射率较高, 从而大大降低了硅基太阳能电池的光电转换 效率。
黑硅是一种电子产业革命性的新型材料结构, 通常是指吸收率很高的硅表 面或硅基薄膜(包括硅化合物的表面或薄膜)。 与一般的硅材料结构相比, 黑硅 具有很强的吸光能力。 如果将黑硅应用于光学传感器或太阳能电池, 那么感光 效率会提高上百倍, 太阳能电池的转换效率也得以显著提高。
美国哈佛大学的 Eric Mazur等人利用飞秒激光方法制备了黑硅材料, 并由 此制备了黑硅太阳能电池, 这种黑硅太阳能电池的光电转换效率为 8.8% ~ 13.9%。 然而, 利用飞秒激光方法制备黑硅材料的成本比较高, 这样势必会增加 黑硅太阳能电池的生产成本, 不利于生产应用。 发明内容
为了降低黑硅太阳能电池的生产成本, 本发明提出了一种黑硅太阳能电池 及其制备方法。
所述黑硅太阳能电池包括金属背电极、 晶硅、 黑硅层、 钝化层和金属栅极; 所述金属背电极位于所述晶硅的背面, 所述黑硅层位于所述晶硅上, 所述钝化 层位于所述黑硅层上, 所述金属栅极位于所述钝化层上。
所述晶硅为单晶硅或多晶硅, 所述金属背电极由铝、 铜、 银、 金或铂制成, 所述金属栅极由铝、 铜、 银、 金或铂制成。
所述金属背电极的厚度为 10 ~ 15微米;所述单晶硅或多晶硅的厚度为 100 ~ 300微米; 所述黑硅层的厚度为 0.1 ~ 10微米; 所述钝化层的厚度为 50 ~ 200纳 米; 所述金属栅极的厚度为 2 ~ 10微米, 栅极宽度为 30 ~ 150微米, 间距为 2 ~ 3毫米。
所述黑硅太阳能电池制备方法包括:
对硅片进行预处理;
利用等离子体浸没离子注入技术, 在预处理后的硅片表面制备黑硅层; 在所述黑硅层上制备发射极, 并对所述发射极进行钝化处理, 形成钝化层; 分别在所述单晶硅片的背面和钝化层上制备金属背电极和金属栅极。
所述对硅片进行预处理的步骤具体包括:
将硅片浸入到氢氟酸溶液中, 之后用去离子水清洗;
将去离子水清洗后的硅片浸入到氢氧化钠溶液中, 去除所述硅片表面的损 伤层;
用去离子水清洗去除损伤层后的硅片, 并用氮气吹干。
所述利用等离子体浸没离子注入技术, 在预处理后的硅片表面制备黑硅层 的步骤包括:
将所述硅片放置于等离子体浸没离子注入设备的注入腔室内;
调整所述等离子体浸没离子注入设备的工艺参数进入预先设置的数值范 围;
所述等离子体浸没离子注入设备产生等离子体, 所述等离子体中的反应离 子注入至所述硅片内;
所述反应离子与所述硅片发生反应, 形成黑硅层。
所述将所述硅片放置于等离子体浸没离子注入设备的注入腔室内的步骤还 包括: 将所述硅片与可施加偏置电压的电源电气连接; 所述工艺参数包括所述 注入腔室的本底压强和工作压强, 注入至所述注入腔室的混合气体的组成成分 和体积比; 所述本底压强范围为 10—5Pa ~ 10—3Pa, 所述工作压强范围为 0.1Pa ~ 50Pa; 所述混合气体由具有刻蚀作用的气体和具有钝化作用的气体组成, 所述 具有刻蚀作用的气体包括 SF6、 CF4、 CHF3、 C4F8、 NF3、 SiF4、 C2F6、 HF、 BF3、 PF3、 Cl2、 HC1、 SiH2Cl2、 SiCl4、 BC13或 HBr, 所述具有钝化作用的气体包括 02、 N20或 N:
积比范围为 0.01 ~ 100。
所述在所述黑硅层上制备发射极的步骤具体包括:
把所述硅片放在管式扩散炉的石英容器内;
在高温下使用氮气将三氯氧磷带入所述石英容器;
所述三氯氧磷和硅片进行反应, 得到磷原子; 所述磷原子向所述硅片内部渗透扩散, 形成 PN结。
在所述黑硅层上制备发射极和对所述发射极进行钝化处理步骤之间还包 括:
将所述硅片放在氢氟酸溶液中浸泡;
对浸泡处理后的硅片进行刻蚀去边处理。
所述钝化处理采用表面氧化生长 Si02钝化方式进行处理, 或采用 PECVD 生长 SiNx或 SiO ^化方式进行处理。
与现有技术相比, 本发明技术方案产生的有益效果如下:
1、 本发明提供的黑硅太阳能电池结构筒单, 利用黑硅层作为吸收层, 电池 的平均吸收率提高;
2、 本发明提供的黑硅太阳能电池的制备方法筒单独特、 易于掌握, 具有操 作方便、 重复可靠的特点, 具有明确的产业化前景。 附图说明
图 1是本发明实施方式提供的黑硅太阳能电池结构示意图;
图 2是本发明实施方式提供的黑硅太阳能电池的反射率曲线示意图; 图 3是本发明实施方式提供的黑硅太阳能电池的制备方法流程图; 图 4是本发明实施方式提供的黑硅少子寿命分布图。 具体实施方式
下面结合附图和实施方式, 对本发明技术方案作进一步描述。
参见图 1 ,本发明实施方式提供了一种黑硅太阳能电池, 包括金属背电极 1、 晶硅 2、 黑硅层 3、 钝化层 4和金属栅极 5。 金属背电极 1位于晶硅 2的背面, 该金属背电极可由铝 (Al )、 铜 (Cu )、 银(Ag )、 金(Au )或铂(Pt )等金属制成, 也可由多种金属材料混合制成, 例 如合金材料或表面镀银的铜片, 而晶硅 2可为 p型单晶硅、 p型多晶硅、 n型单 晶硅或 n型多晶硅, 还可为经过清洗和去损伤预处理后的上述各种晶硅。
黑硅层 3位于晶硅 2上, 黑硅层 3可为利用等离子体浸没离子注入工艺对 晶硅(包括单晶硅和多晶硅)进行加工而形成的黑硅, 还可为利用刻蚀工艺对 晶硅(包括单晶硅和多晶硅)进行加工而形成的黑硅, 该刻蚀工艺包括干法刻 蚀和湿法刻蚀,干法刻蚀包括反应离子刻蚀( RIE )、感应离子耦合等离子体( ICP ) 刻蚀、 高压等离子体刻蚀等等; 黑硅层的掺杂类型与晶硅的掺杂类型相对应, 例如: 若晶硅为 p型, 则黑硅层为 n型; 若晶硅为 n型, 则黑硅层为 p型。
钝化层 4位于黑硅层 3上, 钝化层可通过采用表面氧化生长 Si02钝化方式 对黑硅层进行处理而形成, 也可通过采用 PECVD生长 81^或8102钝化方式对 黑硅层进行处理而形成。
金属栅极 5位于钝化层 4上, 该金属栅极可由可由铝(Al )、 铜 (Cu )、 银 ( Ag )、 金(Au )或铂(Pt )等金属制成, 也可由多种金属材料混合制成, 例如 合金材料或表面镀金的铜片。
其中, 金属背电极 1的厚度为 1 ~ 100微米, 优选为 10 ~ 15微米; 晶硅 2 的厚度为 10 ~ 1000微米, 优选为 100 ~ 300微米; 黑硅层 3的厚度为 0.01 ~ 50 微米, 优选为 0.1 ~ 10微米; 钝化层 4的厚度为 1 ~ 500纳米, 优选为 50 ~ 200 纳米; 金属栅极 5的厚度为 1 ~ 50微米, 优选为 2 ~ 10微米, 栅极宽度为 10 ~ 1000微米, 优选为 30 ~ 150微米, 间距为 1 ~ 10毫米, 优选为 2 ~ 3毫米。
本实施方式提供的黑硅太阳能电池结构筒单, 利用黑硅层作为吸收层, 电 池的平均吸收率提高, 如图 2所示, 在可见光波段内, 电池的平均反射率小于 2%, 由于电池的平均透射率几乎为零, 所以平均吸收率大于 97%。
参见图 3 , 本发明实施方式还提供了一种黑硅太阳能电池的制备方法, 该方 法包括以下步骤:
步骤 101 : 对单晶硅片进行清洗和去损伤处理;
首先, 把单晶硅片浸入到氢氟酸溶液中 1~10分钟, 去离子水清洗; 然后, 把清洗后的单晶硅片浸入到浓度为 1%~30%的氢氧化钠溶液中 1~10分钟, 温度 为 50 ~ 80°C , 去除单晶硅片表面的损伤层; 最后, 用去离子水清洗单晶硅片, 并用氮气吹干;
步骤 102: 利用等离子体浸没离子注入技术, 在单晶硅片表面制备黑硅层; 在本实施方式中, 等离子体浸没离子注入所使用的设备, 通常也被称为等 离子体浸没离子注入机, 其一般地包括注入腔室和等离子体源; 在注入腔室内, 设有其上可放置样品的样品台, 在与样品台相对的一侧, 设有等离子体源; 等离子体源包括抽真空系统, 其可将注入腔室抽真空至预先设置的本底压 强范围; 供气系统, 其可向注入腔室充入所需的气体, 并且能够按照一定的控 制规则来调整气体的各种参数, 例如气体的流量、 抽取速度、 气体成分比例和 浓度等参数, 当气体充入注入腔室之后, 可使得注入腔室的压强进入预先设置 的工作压强范围; 以及等离子体电源, 其可为射频电源、 微波电源或直流电源, 这些电源还可以脉沖形式供电, 并且这些电源的频率可为固定频率或可变频率; 此外, 该设备还包括可施加偏置电压的电源, 该可施加偏置电压的电源与注入 腔室内的样品台电气连接, 可施加偏置电压的电源类型与等离子体电源相似, 可为射频电源、 微波电源或直流电源, 这些电源还可以脉沖形式供电, 还可以 是这些电源的任意组合, 进而向样品台提供由多种偏置电压组成的偏置电压; 在本实施方式中, 等离子体浸没离子注入工艺为: 将单晶硅片放置于注入 腔室内; 调整等离子体浸没离子注入机的工艺参数进入预先设置的数值范围; 等离子体浸没离子注入机产生等离子体, 该等离子体中的反应离子注入至单晶 硅片内; 反应离子与单晶硅片发生反应, 形成黑硅;
所需调整的工艺参数包括注入腔室的本底压强和工作压强, 注入气体的流 量, 抽取气体的速度, 混合气体组成成分、 组成比例和浓度, 等离子体电源的 输出功率和频率, 可施加偏置电压的电源所施加的偏置电压, 如果采用脉沖形 式, 还包括脉宽、 占空比和频率;
注入腔室的本底压强范围可为 10—7Pa ~ 1000Pa, 优选地可为 10—5Pa ~ 10Pa, 更为优选地可为 10— 5Pa ~ 10— 3Pa; 注入腔室的工作压强范围可为 10— 3Pa ~ lOOOPa, 优选为 O.OlPa ~ lOOPa, 更为优选地可为 O.lPa ~ 50Pa;
注入气体可为由具有刻蚀作用的气体和具有钝化作用的气体组成的混合气 体, 具有刻蚀作用的气体包括 SF6、 CF4、 CHF3、 C4F8、 NF3、 SiF4、 C2F6、 HF、 BF3、 PF3、 Cl2、 HC1、 SiH2Cl2、 SiCl4、 BC13或 HBr, 具有钝化作用的气体包括 02、 N20或 N2, 优选地可由多种具有刻蚀作用的气体和多种具有钝化作用的气 体组成, 更为优选地可由一种具有刻蚀作用的气体和一种具有钝化作用的气体 组成, 例如由 SF6和 02组成的混合气体, 或者由 CF4和 N2组成的混合气体, 在 满足混合气体由具有刻蚀作用的气体和具有钝化作用的气体组成并且具有刻蚀
积比还可优选为 0.1 ~ 80,更为优选地可为 1 ~ 20;混合气体的流量可为 1 ~ 1000 sccm, 优选为 10 ~ 100 sccm, 更为优选地可为 20 ~ 80 sccm;
等离子体电源的输出功率为 1 ~ 100000W, 优选为 10 ~ 50000W, 更为优选 地可为 300 ~ 5000W; 所施加偏置电压为 -100000 ~ 100000V, 优选为 -50000 ~ 50000V, 更为优选地可为 -10000 ~ 0 V; 脉宽为 1 us ~ I s, 优选为 lus ~ 0.1 s, 更为优选地可为 lus ~ 1 ms; 占空比为 1% ~ 99% , 优选为 10% ~ 90% , 更为优选 地可为 20% ~ 80% ,等离子体电源的频率为直流〜 10GHz,优选为 lMHz ~ 5GHz, 更为优选地可为 13.56MHz ~ 5GHz; 可施加偏置电压的电源的频率为直流〜 10GHz;
在本实施方式中, 采用的混合气体由 SF6和 02组成, 由于利用含氧等离子 体对单晶硅片表面进行处理, 所以降低了单晶硅片的表面态密度, 有效地提高 了单晶硅片的表面质量, 减少了单晶硅片的表面复合;
图 4是采用微波光电导衰减法测量得到的黑硅的少子寿命分布图, 由图 4 可以看出, 黑硅的平均少子寿命大于 10.647微秒;
步骤 103: 在黑硅层上制备发射极;
把单晶硅片放在管式扩散炉的石英容器内, 在 850 ~ 900 °C的高温下使用氮 气将三氯氧磷带入石英容器, 通过三氯氧磷和硅片进行反应, 得到磷原子; 经 过一定时间, 磷原子从单晶硅片四周进入硅片的表面层, 并且通过硅原子之间 的空隙向硅片内部渗透扩散, 形成了 N型半导体和 P型半导体的交界面, 即 PN 结;
步骤 104: 采用化学腐蚀法去除单晶硅片表面的磷硅玻璃;
把单晶硅片放在氢氟酸溶液中浸泡, 使其产生化学反应生成可溶性的络合 物六氟硅酸, 以去除扩散制结后在单晶硅片表面形成的一层磷硅玻璃;
步骤 105: 对单晶硅片进行刻蚀去边处理;
利用 CF4气体, 采用高频辉光放电反应, 使反应气体激活生成活性粒子, 这些活性粒子扩散到单晶硅片需要刻蚀的部位, 在那里与被刻蚀材料发生化学 反应, 生成易挥发性物质而被去除; 步骤 106: 对发射极进行钝化处理, 形成钝化层;
在实际应用中, 可以采用表面氧化生长 Si02钝化方式进行处理, 也可以采 用 PECVD生长 81^或8102钝化方式进行处理; 本实施方式采用表面氧化生长 Si02钝化方式进行处理, 包括如下步骤: 将单晶硅片放入干氧气氛中进行氧化, 温度为 800 ~ 1000 °C , 时间为 20 ~ 40分钟, 然后在氮气气氛中同样温度下进行 退火, 退火时间为 5 ~ 20分钟;
步骤 107: 在单晶硅片的背面制备金属 A1背电极;
以高纯铝作为蒸发源, 在单晶硅片的背面沉积厚度为 10 ~ 15 微米的金属 A1; 然后在保护气氛下, 350 ~ 450°C退火 20 ~ 40 分钟, 形成欧姆接触的金属 A1背电极; 在本步骤中, 采用 350 ~ 450°C退火替代高温烧结过程, 可避免高温 烧结过程诱导的应力对单晶硅片的损伤, 有利于降低单晶硅片的厚度;
步骤 108: 在钝化层上制备 Ag栅极;
采用丝网印刷法, 即通过特殊的印刷机和模板将银浆印制在钝化层的表面, 形成 Ag栅极,栅极的厚度为 2 ~ 10微米,栅极宽度为 30 ~ 150微米,间距为 2 ~ 3毫米。
在本制备方法的具体实施方式中, 还可以采用多晶硅替换单晶硅, 同样可 以实现本发明。
本实施方式提供的黑硅太阳能电池的制备方法筒单独特、 易于掌握, 具有 操作方便、 重复可靠的特点, 具有明确的产业化前景。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行了 进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种黑硅太阳能电池, 其特征在于, 包括金属背电极、 晶硅、 黑硅层、 钝化层和金属栅极; 所述金属背电极位于所述晶硅的背面, 所述黑硅层位于所 述晶硅上, 所述钝化层位于所述黑硅层上, 所述金属栅极位于所述钝化层上。
2、 如权利要求 1所述的黑硅太阳能电池, 其特征在于, 所述晶硅为单晶硅 或多晶硅, 所述金属背电极由铝、 铜、 银、 金或铂制成, 所述金属栅极由铝、 铜、 银、 金或铂制成。
3、 如权利要求 2所述的黑硅太阳能电池, 其特征在于, 所述金属背电极的 厚度为 10 ~ 15微米; 所述单晶硅或多晶硅的厚度为 100 ~ 300微米; 所述黑硅 层的厚度为 0.1 ~ 10微米; 所述钝化层的厚度为 50 ~ 200纳米; 所述金属栅极的 厚度为 2 ~ 10微米, 栅极宽度为 30 ~ 150微米, 间距为 2 ~ 3毫米。
4、 一种黑硅太阳能电池制备方法, 其特征在于, 所述方法包括:
对硅片进行预处理;
利用等离子体浸没离子注入技术, 在预处理后的硅片表面制备黑硅层; 在所述黑硅层上制备发射极, 并对所述发射极进行钝化处理, 形成钝化层; 分别在所述单晶硅片的背面和钝化层上制备金属背电极和金属栅极。
5、 如权利要求 4所述的黑硅太阳能电池制备方法, 其特征在于, 所述对硅 片进行预处理的步骤具体包括:
将硅片浸入到氢氟酸溶液中, 之后用去离子水清洗;
将去离子水清洗后的硅片浸入到氢氧化钠溶液中, 去除所述硅片表面的损 伤层;
用去离子水清洗去除损伤层后的硅片, 并用氮气吹干。
6、 如权利要求 4所述的黑硅太阳能电池制备方法, 其特征在于, 所述利用 等离子体浸没离子注入技术, 在预处理后的硅片表面制备黑硅层的步骤包括: 将所述硅片放置于等离子体浸没离子注入设备的注入腔室内;
调整所述等离子体浸没离子注入设备的工艺参数进入预先设置的数值范 围;
所述等离子体浸没离子注入设备产生等离子体, 所述等离子体中的反应离 子注入至所述硅片内;
所述反应离子与所述硅片发生反应, 形成黑硅层。
7. 如权利要求 6所述的黑硅太阳能电池制备方法, 其特征在于, 所述将所 述硅片放置于等离子体浸没离子注入设备的注入腔室内的步骤还包括: 将所述 硅片与可施加偏置电压的电源电气连接; 所述工艺参数包括所述注入腔室的本 底压强和工作压强, 注入至所述注入腔室的混合气体的组成成分和体积比; 所 述本底压强范围为 10—5Pa ~ 10—3Pa, 所述工作压强范围为 0.1Pa ~ 50Pa; 所述混合 气体由具有刻蚀作用的气体和具有钝化作用的气体组成, 所述具有刻蚀作用的 气体包括 SF6、 CF4、 CHF3、 C4F8、 NF3、 SiF4、 C2F6、 HF、 BF3、 PF3、 Cl2、 HC1、 SiH2Cl2、 SiCl4、 BC13或 HBr, 所述具有钝化作用的气体包括 02、 N20或 N2, 所
100。
8、 如权利要求 4所述的黑硅太阳能电池制备方法, 其特征在于, 所述在所 述黑硅层上制备发射极的步骤具体包括:
把所述硅片放在管式扩散炉的石英容器内;
在高温下使用氮气将三氯氧磷带入所述石英容器;
所述三氯氧磷和硅片进行反应, 得到磷原子;
9、 如权利要求 4所述的黑硅太阳能电池制备方法, 其特征在于, 在所述黑 硅层上制备发射极和对所述发射极进行钝化处理步骤之间还包括:
将所述硅片放在氢氟酸溶液中浸泡;
对浸泡处理后的硅片进行刻蚀去边处理。
10、 如权利要求 4所述的黑硅太阳能电池制备方法, 其特征在于, 所述钝 化处理采用表面氧化生长 SiO^化方式进行处理,或采用 PECVD生长 SiNx或 Si02钝化方式进行处理。
PCT/CN2010/075750 2010-05-25 2010-08-05 一种黑硅太阳能电池及其制备方法 WO2011147122A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/699,740 US20130068297A1 (en) 2010-05-25 2010-08-05 Black Silicon Solar Cell and Its Preparation Method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010181010.1 2010-05-25
CN201010181010 2010-05-25
CN2010102448584A CN101916787B (zh) 2010-05-25 2010-08-04 一种黑硅太阳能电池及其制备方法
CN201010244858.4 2010-08-04

Publications (1)

Publication Number Publication Date
WO2011147122A1 true WO2011147122A1 (zh) 2011-12-01

Family

ID=43053048

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2010/075454 WO2011147115A1 (zh) 2010-05-25 2010-07-26 利用等离子体浸没离子注入制备黑硅的方法
PCT/CN2010/075750 WO2011147122A1 (zh) 2010-05-25 2010-08-05 一种黑硅太阳能电池及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075454 WO2011147115A1 (zh) 2010-05-25 2010-07-26 利用等离子体浸没离子注入制备黑硅的方法

Country Status (4)

Country Link
US (2) US8703591B2 (zh)
EP (1) EP2578729A4 (zh)
CN (2) CN101880914B (zh)
WO (2) WO2011147115A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258912A (zh) * 2013-05-13 2013-08-21 华南师范大学 一种微构造硅雪崩二极管的制备方法
CN105702712A (zh) * 2016-01-29 2016-06-22 大连理工大学 一种提高碳化硅半导体欧姆接触特性的方法
CN105810762A (zh) * 2016-05-23 2016-07-27 协鑫集成科技股份有限公司 晶体硅片纳米绒面结构及其制备方法
CN109494281A (zh) * 2018-12-03 2019-03-19 乐山新天源太阳能科技有限公司 太阳能电池抗pid装置

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815104B2 (en) 2008-03-21 2014-08-26 Alliance For Sustainable Energy, Llc Copper-assisted, anti-reflection etching of silicon surfaces
CN101880914B (zh) * 2010-05-25 2012-09-12 中国科学院微电子研究所 利用等离子体浸没离子注入制备黑硅的方法
CN102140697A (zh) * 2010-12-28 2011-08-03 中国科学院微电子研究所 一种基于单晶硅衬底上多孔金字塔结构的制造方法
WO2012121706A1 (en) * 2011-03-08 2012-09-13 Alliance For Sustainable Energy, Llc Efficient black silicon photovoltaic devices with enhanced blue response
CN102757011B (zh) * 2011-04-25 2015-07-15 中北大学 微机械热电堆红外探测器及其制作方法
CN102306664B (zh) * 2011-09-07 2013-01-02 中国科学院微电子研究所 一种发射极上黑硅结构的太阳能电池及其制备方法
CN102270668B (zh) * 2011-09-07 2014-04-02 中国科学院微电子研究所 一种异质结太阳能电池及其制备方法
CN102361039B (zh) * 2011-10-31 2013-08-28 上海理工大学 一种基于透明导电层的黑硅太阳能电池的制备方法
CN102437236A (zh) * 2011-11-25 2012-05-02 中国科学院微电子研究所 一种黑硅太阳能电池表面的钝化方法
US20130320512A1 (en) 2012-06-05 2013-12-05 Infineon Technologies Austria Ag Semiconductor Device and Method of Manufacturing a Semiconductor Device
EP2872488B1 (en) 2012-07-16 2018-08-22 Fibrogen, Inc. Crystalline forms of a prolyl hydroxylase inhibitor
CN102800758A (zh) * 2012-08-28 2012-11-28 夏洋 一种晶硅太阳能电池表面钝化层仿生制备方法
EP2904634B1 (en) * 2012-10-01 2020-04-08 Ultra High Vaccum Solutions Ltd. T/a Nines Engineering Combined etch and passivation of silicon solar cells
CN102938435B (zh) * 2012-11-23 2015-05-06 中国科学院半导体研究所 制备超饱和硫系元素掺杂硅的方法
CN103872172A (zh) * 2012-12-10 2014-06-18 中微半导体设备(上海)有限公司 一种太阳能电池的制绒方法
RU2550868C2 (ru) * 2013-05-28 2015-05-20 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН) Способ формирования микроструктурированного и высокодопированного слоя на поверхности кремния
CN103412444B (zh) * 2013-07-23 2015-08-26 北京京东方光电科技有限公司 一种阵列基板及其制作方法和显示面板
KR20160090287A (ko) 2013-09-27 2016-07-29 덴마크스 텍니스케 유니버시테트 나노구조의 실리콘계 태양 전지 및 나노구조의 실리콘계 태양 전지의 제조 방법
CN103700728B (zh) * 2013-12-28 2017-01-25 苏州阿特斯阳光电力科技有限公司 一种黑硅硅片表面纳米微结构的修正方法
CN103730541B (zh) * 2014-01-13 2016-08-31 中国科学院物理研究所 太阳能电池纳米发射极及其制备方法
CN103985777A (zh) * 2014-05-20 2014-08-13 新奥光伏能源有限公司 一种硅异质结太阳能电池及其制作方法
CN104064627A (zh) * 2014-06-27 2014-09-24 电子科技大学 一种制造宽波段高吸收黑硅材料的方法
JP6315809B2 (ja) * 2014-08-28 2018-04-25 東京エレクトロン株式会社 エッチング方法
CN104465841B (zh) * 2014-11-18 2017-01-25 上海理工大学 光热电转换器件及制备方法
CN104505430A (zh) * 2014-12-04 2015-04-08 常州大学 一种高效多晶黑硅电池
CN104979410B (zh) * 2015-05-15 2017-03-15 欧贝黎新能源科技股份有限公司 一种单晶硅片无掩膜反应离子蚀刻绒面制备方法
WO2017062481A1 (en) 2015-10-07 2017-04-13 The Regents Of The University Of California Fabrication of mass spectrometry surface
CN106784058A (zh) * 2016-11-22 2017-05-31 浙江昱辉阳光能源江苏有限公司 一种黑硅太阳能电池结构及其制作工艺
CN107742660B (zh) * 2017-09-25 2019-06-11 江西展宇新能源股份有限公司 一种改善多晶黑硅太阳电池晶向间差异的工艺方法
CN110518075B (zh) * 2018-05-22 2021-04-30 中国科学院宁波材料技术与工程研究所 一种黑硅钝化膜、其制备方法及应用
CN109659392B (zh) * 2018-12-05 2020-06-12 中国科学院长春光学精密机械与物理研究所 降低微结构硅材料上金半接触电阻的方法及微结构硅材料
CN110581183A (zh) * 2019-08-29 2019-12-17 江苏顺风新能源科技有限公司 一种纯黑组件单晶perc电池及其制备工艺
CN110534880B (zh) * 2019-09-04 2020-06-26 暨南大学 单个纳米颗粒光散射电调控天线及制备、电调控的方法
CN111653650B (zh) * 2020-06-15 2021-11-19 英利能源(中国)有限公司 一种TOPCon电池生产片清洗参数优化及制备方法
CN111933745A (zh) * 2020-06-28 2020-11-13 泰州中来光电科技有限公司 一种基于反应离子刻蚀的黑硅钝化接触电池的制备方法
CN112349812A (zh) * 2020-10-27 2021-02-09 武汉新芯集成电路制造有限公司 硅片表面绒面结构的制备方法
CN112885928B (zh) * 2021-03-30 2022-11-15 东南大学 一种硅晶片上快速形成八边形金字塔结构的方法
CN114038941A (zh) * 2021-11-05 2022-02-11 浙江晶科能源有限公司 太阳能电池制备方法
CN114068753A (zh) * 2021-11-18 2022-02-18 中北大学 一种基于微纳米复合结构的黑硅紫外pin型光电传感器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2886809Y (zh) * 2006-01-24 2007-04-04 中电电气(南京)光伏有限公司 带有正面钝化n型扩散层的n型硅太阳能电池

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8232492U1 (de) * 1982-11-19 1986-03-27 Siemens AG, 1000 Berlin und 8000 München Solarzelle aus amorphem Silizium
JP2717583B2 (ja) * 1988-11-04 1998-02-18 キヤノン株式会社 積層型光起電力素子
US5151386A (en) * 1990-08-01 1992-09-29 Mobil Solar Energy Corporation Method of applying metallized contacts to a solar cell
JP2703673B2 (ja) * 1991-05-17 1998-01-26 三菱電機株式会社 半導体装置
US5661308A (en) * 1996-05-30 1997-08-26 Eaton Corporation Method and apparatus for ion formation in an ion implanter
US6027988A (en) * 1997-05-28 2000-02-22 The Regents Of The University Of California Method of separating films from bulk substrates by plasma immersion ion implantation
US7057256B2 (en) * 2001-05-25 2006-06-06 President & Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
CN1385906A (zh) * 2002-05-24 2002-12-18 中国科学院上海微系统与信息技术研究所 一种广义的绝缘体上半导体薄膜材料及制备方法
US7291286B2 (en) * 2004-12-23 2007-11-06 Lam Research Corporation Methods for removing black silicon and black silicon carbide from surfaces of silicon and silicon carbide electrodes for plasma processing apparatuses
JP4371999B2 (ja) * 2004-12-28 2009-11-25 パナソニック株式会社 ドライエッチング方法及びドライエッチング装置
EP1763086A1 (en) * 2005-09-09 2007-03-14 Interuniversitair Micro-Elektronica Centrum Photovoltaic cell with thick silicon oxide and silicon nitride passivation and fabrication method
JP5025135B2 (ja) * 2006-01-24 2012-09-12 三洋電機株式会社 光起電力モジュール
US8658887B2 (en) * 2006-11-20 2014-02-25 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
EP2654089A3 (en) * 2007-02-16 2015-08-12 Nanogram Corporation Solar cell structures, photovoltaic modules and corresponding processes
TWI427811B (zh) * 2008-05-14 2014-02-21 Sino American Silicon Prod Inc 供薄膜型太陽能電池用之半導體結構組合及其製造方法
US8734659B2 (en) * 2008-10-09 2014-05-27 Bandgap Engineering Inc. Process for structuring silicon
US20100147383A1 (en) * 2008-12-17 2010-06-17 Carey James E Method and apparatus for laser-processing a semiconductor photovoltaic apparatus
CN101734611B (zh) 2009-12-16 2011-08-31 北京大学 基于无掩膜深反应离子刻蚀制备黑硅的方法
CN101789462B (zh) * 2010-02-24 2012-02-08 中国科学院半导体研究所 一种广谱吸收的黑硅太阳能电池结构及其制作方法
CN101880914B (zh) * 2010-05-25 2012-09-12 中国科学院微电子研究所 利用等离子体浸没离子注入制备黑硅的方法
US8384179B2 (en) * 2010-07-13 2013-02-26 University Of Electronic Science And Technology Of China Black silicon based metal-semiconductor-metal photodetector
CN101950779B (zh) * 2010-09-07 2012-07-04 中国科学院微电子研究所 一种原位制备太阳能电池的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2886809Y (zh) * 2006-01-24 2007-04-04 中电电气(南京)光伏有限公司 带有正面钝化n型扩散层的n型硅太阳能电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO MING ET AL.: "Microstructured silicon a new type of opto-electronic material", PHYSICS, vol. 32, no. 7, July 2003 (2003-07-01), pages 455 - 457 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258912A (zh) * 2013-05-13 2013-08-21 华南师范大学 一种微构造硅雪崩二极管的制备方法
CN105702712A (zh) * 2016-01-29 2016-06-22 大连理工大学 一种提高碳化硅半导体欧姆接触特性的方法
CN105810762A (zh) * 2016-05-23 2016-07-27 协鑫集成科技股份有限公司 晶体硅片纳米绒面结构及其制备方法
CN109494281A (zh) * 2018-12-03 2019-03-19 乐山新天源太阳能科技有限公司 太阳能电池抗pid装置
CN109494281B (zh) * 2018-12-03 2024-01-26 乐山新天源太阳能科技有限公司 太阳能电池抗pid装置

Also Published As

Publication number Publication date
EP2578729A4 (en) 2013-12-11
US20130068297A1 (en) 2013-03-21
CN101880914B (zh) 2012-09-12
CN101916787A (zh) 2010-12-15
EP2578729A1 (en) 2013-04-10
WO2011147115A1 (zh) 2011-12-01
US20130072007A1 (en) 2013-03-21
US8703591B2 (en) 2014-04-22
CN101880914A (zh) 2010-11-10
CN101916787B (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
WO2011147122A1 (zh) 一种黑硅太阳能电池及其制备方法
Abdullah et al. Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell
CN106229386B (zh) 一种银铜双金属mace法制备黑硅结构的方法
US20200220033A1 (en) Metal-assisted etch combined with regularizing etch
CN109087965B (zh) 一种背面钝化的晶体硅太阳能电池及其制备方法
WO2012031388A1 (zh) 一种原位制备太阳能电池的方法
CN112117334A (zh) 选择性发射极的制备方法及太阳能电池的制备方法
WO2024066207A1 (zh) 一种新型太阳能电池及其制作方法
WO2012040917A1 (zh) 一种浅结太阳能电池及其制备方法
CN104362219B (zh) 一种晶体硅太阳能电池制造工艺
CN102683483B (zh) 一种晶硅太阳能电池去死层方法
Chen et al. Improvement of conversion efficiency of multi-crystalline silicon solar cells using reactive ion etching with surface pre-etching
CN106328736A (zh) 一种抗lid黑硅太阳能高效电池及其生产方法
CN110391319B (zh) 一种抗pid效应的高效黑硅电池片的制备方法
CN112687762A (zh) 太阳能电池表面钝化方法
CN114038924A (zh) 一种基于rie等离子刻蚀制绒的背接触异质结太阳电池
CN108010990A (zh) 一种晶体硅太阳能电池片的制作方法
CN110785856B (zh) 高效太阳能电池的制造方法
CN111863604A (zh) 一种pn结硅微球的制备方法
CN104393067B (zh) 一种纳米结构太阳电池及其制备方法
Hwang et al. Making silicon solar cells in a green, low-hazardous, and inexpensive way
JP5516611B2 (ja) 太陽電池の製造方法及び太陽電池
KR20120025828A (ko) 실리콘 태양전지용 실리콘 기판 표면의 처리 방법
Qian et al. The application of different surface reflectance and passivation in polycrystalline silicon solar cell industrialization
Zhou et al. Acid texturing of large area multi-crystalline silicon wafers for solar cell fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13699740

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851993

Country of ref document: EP

Kind code of ref document: A1