WO2011145716A1 - Method for formation of concavo-convex pattern using resin film, and device for use in the method - Google Patents

Method for formation of concavo-convex pattern using resin film, and device for use in the method Download PDF

Info

Publication number
WO2011145716A1
WO2011145716A1 PCT/JP2011/061621 JP2011061621W WO2011145716A1 WO 2011145716 A1 WO2011145716 A1 WO 2011145716A1 JP 2011061621 W JP2011061621 W JP 2011061621W WO 2011145716 A1 WO2011145716 A1 WO 2011145716A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
concavo
convex pattern
substrate
forming
Prior art date
Application number
PCT/JP2011/061621
Other languages
French (fr)
Japanese (ja)
Inventor
隆弘 鈴木
秀洋 赤間
亜紀子 権藤
千尋 打出
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2011145716A1 publication Critical patent/WO2011145716A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a method for forming a concavo-convex pattern by an imprint method that can be used for manufacturing information display panels such as electronic paper, electronic devices, optical components, and recording media, and in particular, a resin film such as a resin intermediate stamper.
  • the present invention relates to a method of forming a fine concavo-convex pattern using
  • Nanoimprint technology is a method for forming inverted copies of nano- or micrometer-order concavo-convex patterns of molds (also referred to as molds and templates), and has a finer structure than conventional press processing technologies. This is a microfabrication technology to achieve this. This technique itself has no limit on resolution, and the resolution is determined by the accuracy of mold production. Therefore, as long as the mold can be manufactured, it is possible to form an ultrafine structure with an apparatus that is easier and much cheaper than conventional photolithography.
  • the nanoimprint technology is roughly divided into two types depending on the material to be transferred.
  • One is a thermal imprint technique in which a material to be transferred is heated, plastically deformed by a mold, and then cooled to form a pattern.
  • the other is to apply liquid light (generally ultraviolet (UV)) curable resin on the substrate at room temperature, then press the light-transmitting mold against the resin and irradiate the resin to cure the resin on the substrate.
  • UV imprint technology for forming a pattern.
  • UV imprint technology enables pattern formation at room temperature, so that distortion due to differences in the coefficient of linear expansion between the substrate and mold due to heat is less likely to occur, and high-precision pattern formation is possible.
  • the resin is likely to adhere to the mold that is the mother stamper, and if the resin adheres, it is extremely difficult to repair the mold. Further, since the mold does not usually have plasticity, the substrate or the mold may be physically damaged when the substrate to be patterned is not a plastic material. Since the mold (mother stamper) is very expensive, if the mold is replaced due to adhesion of a resin or physical damage, the cost is greatly increased, and it cannot be said that the entire manufacturing is inexpensive.
  • Patent Document 1 discloses an imprint method by two steps. That is, in the first step, heat is applied to a template (mother stamper) having a surface patterned with fine irregularities on the order of micrometers or nanometers, such as polycarbonate (PC), polymethyl methacrylate (PMMA), and cycloolefin.
  • a template mother stamper
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • cycloolefin cycloolefin.
  • the surface of the polymer foil (resin film) made of a plastic resin is placed so as to face and come into contact with each other, and an imprint process is formed on the surface of the polymer foil in which the pattern of the template surface is reversed.
  • the obtained polymer stamper (intermediate stamper) is arranged so that the inversion pattern of the template faces and comes into contact with the photosensitive material (ultraviolet curable resin or the like) on the substrate.
  • the photosensitive material ultraviolet curable resin or the like
  • the mold and the substrate to which the uneven pattern of the mold is transferred are not the same material. Therefore, the mold and the substrate have different coefficients of thermal expansion. Therefore, even when the mold and the substrate are subjected to the same environmental change due to heating or cooling, the ratio of dimensional change is different.
  • a resin-made intermediate stamper is obtained using a mother stamper manufactured according to the pattern of the substrate.
  • the resin intermediate stamper and the substrate are accurately aligned.
  • two or more alignment patterns also referred to as alignment marks
  • alignment cameras also referred to as alignment cameras. Observe and align the marks.
  • an object of the present invention is a method of forming a fine uneven pattern on a substrate using a resin film such as a resin intermediate stamper, and the resin film shrinkage rate variation or the temperature in the alignment process.
  • An object of the present invention is to provide a method for forming a concavo-convex pattern that can accurately form a concavo-convex pattern at a position where a concavo-convex pattern is to be formed on a substrate even if there is a change.
  • an object of the present invention is to provide an apparatus used for the method for forming the concavo-convex pattern.
  • Adjustment of the size of the fine concavo-convex pattern formed in the resin film in the planar direction is usually performed in a process of forming the concavo-convex pattern.
  • the concavo-convex pattern of the resin film is adjusted by preparing the concavo-convex pattern of the metal stamper in consideration of the shrinkage rate of the resin film. .
  • the present inventors have reached the present invention.
  • the object is to transfer the concavo-convex pattern of a resin film having a fine concavo-convex pattern formed on the surface to a photocurable resin layer made of a photocurable resin composition formed on a substrate, and A method for forming a fine concavo-convex pattern on a curable resin layer, wherein the fine concavo-convex pattern of the resin film is disposed at a position where the reverse concavo-convex pattern of a photocurable resin layer on the substrate is to be formed.
  • an alignment step for aligning the resin film and the substrate and a pressing step for placing and pressing a fine uneven pattern of the resin film on the photocurable resin layer on the substrate
  • a light irradiation step for curing or semi-curing the photocurable resin layer by irradiating light to the photocurable resin layer, and in the alignment step, the resin film is stretched in a plane direction. It is achieved by the method of forming the concavo-convex pattern, which comprises the step of using a decompression means for.
  • the stretching means is a means for stretching the resin film in the biaxial direction of the vertical direction and the horizontal direction. Thereby, it becomes possible to extend in any direction in the plane direction, and the resin film and the substrate can be more accurately aligned, and the uneven pattern can be formed at a more accurate position.
  • the stretching means is a means for stretching within an elastic deformation range of the resin film. Thereby, the resin film and the substrate can be aligned so that the formation of the inverted concavo-convex pattern due to the breakage of the resin film or the large deformation of the concavo-convex pattern does not occur.
  • At least two clamp portions that are capable of detachably fixing the edge portion of the resin film and that are independently movable and stationary in the planar direction of the resin film.
  • the edge of the resin film is fixed to the clamp part of the film holding part having the above, and the resin film is extended by moving the clamp part.
  • the resin film can be easily stretched in the plane direction by fixing the edge of the resin film with the clamp and moving the clamp.
  • the resin film has a rectangular shape, and the edge of each side of the resin film is fixed to at least one clamp part.
  • the edges of each side of the resin film are fixed with at least one clamp part, and the clamp part is moved to efficiently stretch the resin film in the plane direction. can do.
  • each side of the rectangular resin film is fixed to two or more clamp parts. Thereby, by finely adjusting the extension in the planar direction by dividing and extending each side of the resin film, the resin film and the substrate can be aligned with higher accuracy.
  • the number of clamps for fixing the edge of each side of the resin film is more preferably 3 or more, and particularly preferably 3 to 10.
  • the alignment step is a step of aligning a plurality of alignment marks provided on the resin film and the substrate. Thereby, the resin film and the substrate can be aligned efficiently and accurately.
  • At least one alignment mark for the resin film and the substrate is provided for each of two clamp portions for fixing the edge of the resin film. Since the shrinkage rate and expansion rate of the resinous film may vary depending on the resinous film part, when each side of the resinous film is divided and stretched, an alignment mark corresponding to the stretched range is provided, By aligning, the resin film and the substrate can be aligned with higher accuracy.
  • the resin film is a resin intermediate stamper.
  • the positioning step includes means for moving and adjusting the position of the resin film and / or the substrate in a planar direction, and means for adjusting the angle of the resin film and / or the substrate.
  • the resin film and the substrate can be more efficiently and accurately obtained by performing the alignment process using means for adjusting the position and angle of the resin film and the substrate. Can be aligned.
  • the above object is also a concavo-convex pattern forming apparatus used in the method for forming a concavo-convex pattern according to the present invention, wherein a fine concavo-convex pattern of the resin film is formed on a reverse concavo-convex pattern of a photocurable resin layer on the substrate.
  • An alignment means for aligning the resin film and the substrate in order to arrange the pattern at a position where the pattern is to be formed, and a fine uneven pattern of the resin film on the photocurable resin layer on the substrate
  • Mounting, pressing means for pressing, light irradiation to the photocurable resin layer, light irradiation means for curing or semi-curing the photocurable resin layer, and the alignment means This is achieved by an apparatus for forming a concavo-convex pattern characterized by including a stretching means for stretching a resin film in a planar direction.
  • this apparatus includes a resin film including a stretching means for stretching the resin film in the planar direction in the method for forming a concavo-convex pattern according to the present invention
  • the apparatus includes an alignment means for aligning the resin film with the light on the substrate.
  • the reverse concavo-convex pattern of the curable resin layer can be accurately adjusted to the position where it should be formed.
  • the resin film can be placed on and pressed on the photocurable resin layer on the substrate, and the photocurable resin layer can be cured or semi-cured by irradiation with light such as ultraviolet rays. Therefore, this apparatus is a concavo-convex pattern forming apparatus capable of accurately forming the concavo-convex pattern of the resin film at the position where the inverted concavo-convex pattern is to be formed on the substrate.
  • corrugated pattern formation apparatus of this invention is an apparatus which can form an uneven
  • FIG. 1 is a schematic cross-sectional view showing a typical example of a method for forming a fine uneven pattern according to the present invention.
  • FIG. 2 is a schematic view for explaining a preferred example of the alignment step in the method for forming a fine uneven pattern of the present invention
  • FIG. 2 (a) is a schematic plan view
  • FIG. 3 is a schematic view for explaining a preferred example of the alignment step when the fine uneven pattern forming method of the present invention is performed by a roll-to-roll method.
  • FIG. 4 is a schematic cross-sectional view showing a typical example of a fine concavo-convex pattern forming apparatus of the present invention.
  • the present invention can be carried out in the same manner as a method for forming a fine uneven pattern by a general imprint method, except for an alignment process including a means for stretching a resin film.
  • FIG. 1 is a schematic cross-sectional view showing a typical example in the method for forming a fine uneven pattern of the present invention.
  • corrugated pattern was formed in the surface, and the photocurable resin layer 16 which consists of a photocurable resin composition in the surface was formed.
  • the substrate 15 and the resin film 11 are arranged so that they face each other (FIG. 1A).
  • the resin film 11 include an intermediate stamper made of a thermoplastic resin having a concavo-convex pattern transferred from a mold such as a metal stamper having a fine concavo-convex pattern by a thermal imprint method.
  • the substrate 15 include a substrate for an information display panel electronic component and a substrate on which a predetermined wiring pattern is formed.
  • a glass substrate, a silicon wafer, a metal substrate such as copper, chromium, iron, and aluminum can be used.
  • the edge part of the resin film 11 is detachably fixed by the clamp part 21.
  • the clamp part 21 is installed in the film holding part 22, and can be moved and stopped independently in the plane direction (longitudinal direction and / or lateral direction) of the resin film 11.
  • the substrate 15 is detachably fixed to the substrate holding unit 23.
  • the resin film 11 and the substrate 15 are aligned so that the concavo-convex pattern of the resin film 11 accurately matches the position where the inverted concavo-convex pattern of the photocurable resin layer 16 on the surface of the substrate 15 is to be formed.
  • an alignment mark for alignment is usually provided on the resin film 11 and the substrate 15, and is observed with an alignment camera for alignment, and is aligned automatically or manually so that the alignment marks overlap.
  • the aligning step includes stretching means for stretching the resin film 11 in the planar direction. In FIG. 1, the resin film 11 is extended in the plane direction by moving the clamp part 21 in the plane direction (FIG. 1A).
  • the stretching means may be any means as long as the resin film can be accurately controlled and stretched.
  • the film holding unit 22 and / or the substrate holding unit 23 are moved in the plane direction (longitudinal direction and / or lateral direction) or the angle is adjusted.
  • the unevenness pattern of the resinous film 11 and the inverted unevenness pattern of the surface of the substrate 15 due to the variation in the shrinkage rate when forming the unevenness pattern of the resinous film 11 and the difference in the expansion rate due to the temperature change in the alignment process.
  • There is a dimensional difference from the position where the film is to be formed also referred to as “scale level deviation” in the present invention
  • the resin film 11 is stretched in the plane direction, thereby correcting the scale level deviation of the concavo-convex pattern, thereby enabling accurate alignment.
  • the stretching of the resin film 11 in the planar direction may be in either the longitudinal direction or the lateral direction, but it is preferable that the resin film 11 can be stretched in the biaxial direction of the longitudinal direction and the lateral direction so that alignment can be performed more accurately. Further, the proportion of the resin film 11 that can be extended in the planar direction varies depending on the material of the resin film 11. In the elastic deformation range of the resinous film 11, the resinous film 11 is not damaged, or the shape of the concave / convex pattern is deformed, so that the formation of the inverted concave / convex pattern on the photocurable resin layer 16 does not occur. It is preferable to stretch.
  • the stretching distance is usually 1% or less, preferably 0.5% or less, based on the length of the resin film 11.
  • the concave / convex pattern formed on the resin film 11 is preferably smaller than a pattern (for example, an electrode pattern) in a range where the inverted concave / convex pattern of the photocurable resin layer 16 of the substrate 15 is to be formed. This is because it is possible to stretch the resin film 11 in the planar direction, but it is difficult to compress it in the planar direction.
  • the uneven pattern of the resin film 11 is pressed against the photocurable resin layer 16 (FIG. 1 ( b) (Pressing step)).
  • the photocurable resin layer 16 is heated as necessary so that pressing is possible. If pressing is possible at room temperature, heating is not necessary. Since the temperature change of the substrate 15, the resin film 11 and the substrate 15 affects the formation position and scale of the concavo-convex pattern, the clamp portion 21 is moved in the plane direction so that the alignment marks overlap even when pressed, and is made of resin.
  • the film 11 may be stretched.
  • the photocurable resin layer 16 is cured by irradiating light (such as ultraviolet rays) (light irradiation process).
  • the curing may be semi-curing to such an extent that the shape of the concavo-convex pattern can be maintained without being completely cured.
  • the resin film 11 before pressing the uneven
  • a vacuum process may be performed to evacuate the surroundings. Thereby, it is possible to prevent a transfer defect of the uneven pattern.
  • the vacuum process can be performed, for example, by setting a range including the resin film 11 and the substrate 15 as a sealed space and degassing the space with a vacuum pump.
  • the resin film 11 is removed from the photocurable resin layer 16c on which the concavo-convex pattern is formed and cured (FIG. 1 (c)).
  • the photocurable resin layer 16 is semi-cured, after removing the resin film 11, it is fully cured by further irradiating light.
  • the reverse concavo-convex pattern of the concavo-convex pattern of the resin film 11 on which the fine concavo-convex pattern is formed is accurately formed at the position where the reverse concavo-convex pattern of the photocurable transfer layer 16 on the surface of the substrate 15 is to be formed. can do.
  • FIG. 2 is a schematic view for explaining a preferred example of the alignment step in the method for forming a fine concavo-convex pattern according to the present invention
  • FIG. 2 (a) is a schematic plan view
  • FIG. It is a schematic sectional drawing.
  • the edge of each side of the rectangular resin film 31 on which a fine concavo-convex pattern is formed is fixed to a plurality of clamp portions 41.
  • the clamp part 41 can fix the edge part of a film so that attachment or detachment is possible by tightening with a screw or the like.
  • the clamp part 41 is installed in the film holding
  • the film holding part 42 is also preferably movable and stationary in the planar direction (longitudinal direction and / or lateral direction) of the resinous film 31, and the angle can be adjusted.
  • the resin film 31 is fixed at the edge of each side by five clamp portions 41. However, if the resin film 31 is fixed by at least two clamp portions 41. good. However, it is preferable to fix the edge of each side of the resin film 31 with at least one clamp part 41 so that the film can be extended in the vertical direction and the horizontal direction.
  • the resin film 41 has a rectangular shape, but the shape of the resin film is not particularly limited. For example, it may be circular, elliptical, or polygonal. Even in that case, it is only necessary to be fixed by at least two clamp portions 41.
  • the position which mutually opposes the vertical direction and / or horizontal direction of the edge part of the resin-made films 31 is two clamp parts 41 (for example, in Fig.2 (a)). It is preferable that they are fixed to two groups surrounded by a broken line. By moving the two clamp parts 41 in the opposite directions (or stopping one and moving the other), the resin film 31 is efficiently stretched in the plane direction without causing distortion. can do. It is sufficient that at least one pair of such two opposing clamp portions 41 is used. In order to extend the resin film 31 with higher accuracy, as shown in FIG. It is preferable that a plurality of sets are used in the lateral direction.
  • the radix of the clamp part 41 is not particularly limited. As shown in FIGS. 2 (a) and 2 (b), when the resin film is rectangular, in order to efficiently extend the resin film in the plane direction, at least one clamp on each side edge is provided. It is preferable to fix with a part.
  • a plurality of clamp portions 41 may be used to fix each side of the resin film 31 in multiple divisions (FIG. 2A), and a clamp having a width that can fix the edges of each side at once. You may fix the edge of each edge
  • clamp portions 41 are used at the edge of each side. It is preferable to divide and fix the sides. By dividing and extending each side of the resin film, fine adjustment of the extension in the plane direction can be performed, and the resin film and the substrate can be aligned with higher accuracy.
  • the clamp part 41 for fixing the edge part of each side of the resin film 31 is more preferably 3 or more, and particularly preferably 3 to 10 groups.
  • the width of the fixing portion for fixing the edge portion of the resin film 31 in one clamp portion 41 is not particularly limited.
  • the width of the fixing part of one clamp part is usually 5 to 200 mm, preferably 10 to 100 mm.
  • the substrate 35 on which the photocurable resin layer 36 is formed is detachably fixed to the substrate holding portion 43. It is preferable that the substrate holder 43 is also movable and stationary in the plane direction (longitudinal direction and / or lateral direction) of the resin film 31 and the angle can be adjusted.
  • the resin film 31 and the substrate 35 have an uneven pattern of the resin film 31, and the photocurable resin layer 36 on the surface of the substrate 35 is inverted.
  • Alignment alignment marks 45a and 45b are respectively provided so as to match the position where the uneven pattern is to be formed. Then, the alignment marks 45a and 45b are observed by the alignment camera 50, and the clamp part 41 is moved in the plane direction automatically or manually so that the two overlap each other, and the resin film 31 is stretched efficiently and accurately.
  • the film 31 and the substrate 35 can be aligned.
  • the resin film 31 can be more efficiently and accurately used by using a means for moving the film holding portion 42 and / or the substrate holding portion 43 in the plane direction or adjusting the angle as necessary. And the substrate 35 can be aligned.
  • the alignment step includes means for extending the resin film 31 in the plane direction as described above, even if the resin film 31 and the substrate 35 are shifted in scale level, a plurality of displacements occur. There is no case where the alignment mark is not aligned and accurate alignment cannot be performed.
  • At least two alignment marks 45a and 45b are provided on the resin film 31 and the substrate 35, respectively.
  • the alignment mark it is preferable that 45a and 45b are provided at least one by one, preferably two by two with respect to two of the clamp part 41 (for example, two shown by being surrounded by a broken line in FIG. 2A).
  • the alignment marks 45a and 45b corresponding to the range where each clamp part 41 extends the resin film are provided. By aligning, the resin film 31 and the substrate 35 can be aligned with higher accuracy.
  • the alignment step can be performed by a method as shown in FIG.
  • FIG. 3 is a schematic view for explaining a preferred example of the alignment step when the fine uneven pattern forming method of the present invention is performed by a roll-to-roll method.
  • the edges of two sides parallel to the transport direction of the roll 30 of the resin film 31 are fixed by the clamp portion 41, and the plane direction (the roll transport direction and Stretch in the direction that goes straight.
  • the plane direction the roll transport direction and Stretch in the direction that goes straight.
  • a plane direction (the same direction as a roll conveyance direction) is adjusted by adjusting the tension applied to the resin film 31 in the roll conveyance.
  • the alignment marks 45a and 45b can be aligned similarly to the description of FIG. 2 described above, and the resin film 31 and the substrate 35 can be aligned with high accuracy.
  • any resin film on which a fine concavo-convex pattern is formed may be used.
  • a light transmissive resin film is preferable.
  • an intermediate stamper made of a resin transferred from a nanoimprint stamper made of a material such as nickel, titanium, silicon, quartz or the like having a fine concavo-convex pattern onto a thermoplastic resin film by a thermal imprint method, a photo-curing resin was used.
  • Examples include an intermediate stamper formed by the UV imprint method, and a resin film formed with a concavo-convex pattern by an etching method, laser processing, cutting with a tool provided with a fine shape, or the like.
  • a resin-made intermediate stamper is preferable in that the number of processes is small, the formation of a fine concavo-convex pattern is easy, and the formation accuracy of the concavo-convex pattern is high, and an intermediate stamper made of a thermoplastic resin obtained by a thermal imprint method is particularly preferable. Is preferred.
  • the material for the resin film include polycarbonate, cycloolefin copolymer (COC), polymethyl methacrylate (PMMA), and the like.
  • photocurable resin composition In the method for forming a concavo-convex pattern of the present invention, any photocurable resin composition for forming a photocurable resin layer may be used.
  • a liquid composition that can be used in the nanoimprint process method is preferred.
  • the viscosity is preferably 10 to 10,000 cps.
  • the photocurable resin composition is preferably a composition containing a photocurable resin and a photoinitiator.
  • photocurable resin examples include urethane acrylate, polyester acrylate, epoxy acrylate, epoxy resin, imide-based oligomer, and polyene / thiol-based oligomer.
  • Urethane acrylates include, for example, diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), trimethylhexamethylene diisocyanate, tolylene diisocyanate, 4,4-diphenylmethane diisocyanate, xylylene diisocyanate, and poly (propylene oxide).
  • diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), trimethylhexamethylene diisocyanate, tolylene diisocyanate, 4,4-diphenylmethane diisocyanate, xylylene diisocyanate, and poly (propylene oxide).
  • Polyols such as diol, poly (propylene oxide) triol, poly (tetramethylene oxide) diol, ethoxylated bisphenol A and 2-hydroxyethyl acrylate 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, glycidol dimethacrylate, pentaerythritol tri Hydroxy acrylates such as acrylate Obtained by reacting, those having an acryloyl group and a urethane bond as a functional group in the molecule.
  • polyester acrylate examples include polyester acrylate composed of phthalic anhydride, propylene oxide and acrylic acid, polyester acrylate composed of adipic acid, 1,6-hexanediol and acrylic acid, trimellitic acid, diethylene glycol and acrylic acid. And polyester acrylate.
  • the epoxy acrylate is synthesized by reaction of an epoxy compound such as epichlorohydrin and acrylic acid or methacrylic acid.
  • an epoxy compound such as epichlorohydrin and acrylic acid or methacrylic acid.
  • bisphenol A type epoxy acrylate and bisphenol S synthesized by reaction of bisphenol A, epichlorohydrin and acrylic acid.
  • Bisphenol S-type epoxy acrylate synthesized by reaction of chlorophenol, epichlorohydrin and acrylic acid bisphenol F-type epoxy acrylate synthesized by reaction of bisphenol F, epichlorohydrin and acrylic acid, synthesis by reaction of phenol novolac, epichlorohydrin and acrylic acid And phenol novolac type epoxy acrylate.
  • epoxy resin examples include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin; phenol novolac type epoxy resin, cresol novolak type epoxy resin and the like.
  • examples include novolak-type epoxy resins; aromatic epoxy resins such as trisphenolmethane triglycidyl ether, and hydrogenated products and brominated products thereof.
  • a photoradical polymerization initiator and a photocationic polymerization initiator are preferable.
  • the photoradical polymerization initiator for example, 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-) Propyl) ketone, ⁇ -hydroxy- ⁇ - ⁇ '-dimethylacetophenone, methoxyacetophenone, acetophenone derivatives such as 2,2-dimethoxy-2-phenylacetophenone; benzoin ether compounds such as benzoin ethyl ether and benzoin propyl ether; benzyldimethyl Ketal derivatives such as ketals; halogenated ketones, acyl phosphine oxides, acyl phosphonates, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2 -N, N-dimethylamino- 1- (4-morpholinophenyl)
  • photocationic polymerization initiator examples include iron-allene complex compounds, aromatic diazonium salts, aromatic iodonium salts, aromatic sulfonium salts, onium salts, pyridinium salts, aluminum complexes / silanol salts, trichloromethyltriazine derivatives, and the like. It is done.
  • Examples of the counter anion of the onium salt or pyridinium salt include SbF 6 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , BF 4 ⁇ , tetrakis (pentafluoro) borate, trifluoromethane sulfonate, methane sulfonate, trifluoro Examples include acetate, acetate, sulfonate, tosylate, and nitrate.
  • the addition amount of the photopolymerization initiator (G) is generally 0.1 to 15 parts by weight, preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the photocurable resin.
  • a reactive diluent may be added to the photocurable resin composition.
  • the reactive diluent include 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, neopentyl, and the like.
  • Glycol diacrylate 2- (2-ethoxyethoxy) ethyl acrylate, tetrahydrofurfuryl acrylate, 2-phenoxyethyl acrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, 1,3-butylene glycol diacrylate, tripropylene glycol diacrylate , Trimethylolpropane triacrylate, pentaerythritol tetraacrylate, and hydroxypivalic acid neopentyl glycol diacrylate.
  • the photo-curable resin composition further includes photopolymerization initiation assistants, thermal polymerization inhibitors, fillers, adhesion-imparting agents, thixotropic agents, plasticizers, colorants, etc. that are generally added as necessary. May be added.
  • the photocurable resin layer when the photocurable resin layer is cured, many light sources that emit light in the ultraviolet to visible region can be used as the light source. , Mercury halogen lamp, carbon arc lamp, incandescent lamp, laser beam and the like.
  • the irradiation time is not generally determined depending on the type of the lamp and the intensity of the light source, but is about 0.1 to several tens of seconds, preferably 0.5 to several seconds.
  • the ultraviolet irradiation amount is preferably 300 mJ / cm 2 or more.
  • the laminate may be preheated to 30 to 80 ° C. and irradiated with light (such as ultraviolet rays).
  • the concavo-convex pattern forming apparatus of the present invention includes a resin film and a substrate in order to dispose the fine concavo-convex pattern of the resin film at a position where the inverted concavo-convex pattern of the photocured resin layer on the substrate should be formed.
  • the positioning means for positioning includes stretching means for stretching the resin film in the planar direction. And after aligning a resin film and a board
  • FIG. 4 is a schematic sectional view showing a typical example of the uneven pattern forming apparatus of the present invention.
  • a plurality of clamp parts 61 for detachably fixing a resin film 51 on which a fine uneven pattern is formed are installed on a film holding part 62 so as to be movable and stationary in a plane direction.
  • the clamp part 61 can fix the edge of a film so that attachment or detachment is possible by tightening with a screw or the like.
  • the film holding portion 62 is also movable and stationary in the plane direction and can be adjusted in angle.
  • a substrate holding part 63 for detachably fixing the substrate 55 on which the photocurable resin layer 56 is formed is installed so as to face the film holding part 62. It is preferable that the substrate holder 63 is also movable and stationary in the plane direction, and the angle can be adjusted.
  • a plurality of alignment cameras 70 for observing alignment marks for alignment of the resin film 51 and the substrate 55 are installed above the resin film 51 fixed to the clamp portion 61. It is preferable that one alignment camera 70 is installed for each pair of alignment marks.
  • a UV-type pressing unit 73 provided with a transmission-type pressing unit 71 that presses against the photo-curable resin layer 56 and a UV lamp 72 for irradiating ultraviolet rays is installed in a state where the resin film 51 is stretched.
  • the transmissive pressing part 71 and the UV lamp 72 may be installed separately, the integrated UV pressing part 73 of the integrated UV pressing part 73 can be irradiated with ultraviolet rays while the resin film 51 is pressed against the photocurable resin layer 56.
  • Such an apparatus is preferred.
  • the UV pressing unit 73 Even if the UV pressing unit 73 is not pressed by a solid (for example, quartz) like the transmission pressing unit 71, the UV pressing unit 73 applies a pressure by a liquid medium such as a constant compressible gas such as air or oil, and the resin. You may have a device which presses the film-made film 51 against the photocurable resin layer 56.
  • a liquid medium such as a constant compressible gas such as air or oil
  • the resin film and the substrate can be accurately aligned, and the concavo-convex pattern can be accurately formed at the position where the concavo-convex pattern is to be formed on the substrate.
  • the uneven pattern forming apparatus of the present invention is an apparatus used for a method of continuously forming an uneven pattern by a roll-to-roll method using a long resin film as shown in FIG. May be.
  • the apparatus which has said positioning means and a press means is installed on the conveyance line of the roll of resin films.
  • the extending method in the planar direction of the alignment means is performed by fixing the clamp unit in the direction orthogonal to the roll conveyance direction, and is applied to the resin film in the roll conveyance in the same direction as the roll conveyance direction. This is done by adjusting the tension.
  • partitions of information display panels such as high-quality electronic displays and electronic paper, electronic devices (lithography, transistors), optical components (microlens arrays, waveguides, optical filters, Photonic crystals), bio-related materials (DNA chips, microreactors), recording media (patterned media, DVD) and the like can be advantageously obtained.

Abstract

Disclosed is a method for forming a fine concavo-convex pattern on a substrate using a resin film, which can form the concavo-convex pattern accurately at a position at which the concavo-convex pattern is to be formed on the substrate even when the fluctuation in shrinking ratios of the resin film, the change in temperature in an alignment step or the like occurs. Specifically disclosed are: a method for forming a concavo-convex pattern by transferring a fine concavo-convex pattern formed on the surface of a resin film (11) onto a photocurable resin layer (16) that is formed on a substrate (15) and comprises a photocurable resin composition to thereby form a fine inverted concavo-convex pattern on the photocurable resin layer (16), wherein the method is characterized by involving a step of aligning the resin film (11) with the substrate (15) for the purpose of placing the concavo-convex pattern formed on the resin film (11) at a position at which the inverted concavo-convex pattern to be formed on the photocurable resin layer (16) on the substrate (15), wherein the aligning step involves a substep of using an extension means that can extend the resin film (11) in the plane direction; and a device for use in the method.

Description

樹脂製フィルムを用いた凹凸パターンの形成方法、その方法に使用する装置Method for forming concavo-convex pattern using resin film and apparatus used for the method
 本発明は、電子ペーパー等の情報表示用パネル、電子デバイス、光学部品、記録媒体等の製造に利用できるインプリント法による凹凸パターンを形成する方法に関し、特に樹脂製の中間スタンパ等の樹脂製フィルムを用いた微細な凹凸パターンの形成方法に関する。 The present invention relates to a method for forming a concavo-convex pattern by an imprint method that can be used for manufacturing information display panels such as electronic paper, electronic devices, optical components, and recording media, and in particular, a resin film such as a resin intermediate stamper. The present invention relates to a method of forming a fine concavo-convex pattern using
 近年、ナノインプリント技術(インプリント法ともいう)によるシリコン基板等に所望の回路パターン等を形成する方法が確立されつつある。ナノインプリント技術は、モールド(金型、テンプレートともいう)のナノ又はマイクロメータオーダーの凹凸パターンの反転したコピーを形成するための方法であり、従来のプレス加工技術と比較して、より微小な構造を実現するための微細加工技術である。この技術自体には解像度に限界がなく、解像度はモールドの作製精度によって決まる。したがって、モールドさえ作製できれば、従来のフォトリソグラフィーより容易に、且つはるかに安価な装置により、極微細構造を形成することが可能である。 In recent years, a method for forming a desired circuit pattern or the like on a silicon substrate or the like by nanoimprint technology (also referred to as an imprint method) is being established. Nanoimprint technology is a method for forming inverted copies of nano- or micrometer-order concavo-convex patterns of molds (also referred to as molds and templates), and has a finer structure than conventional press processing technologies. This is a microfabrication technology to achieve this. This technique itself has no limit on resolution, and the resolution is determined by the accuracy of mold production. Therefore, as long as the mold can be manufactured, it is possible to form an ultrafine structure with an apparatus that is easier and much cheaper than conventional photolithography.
 ナノインプリント技術には転写される材料により2種類に大別される。一方は、転写される材料を加熱し、モールドにより塑性変形させた後、冷却してパターンを形成する熱インプリント技術である。もう一方は、基板上に室温で液状の光(一般に紫外線(UV))硬化性樹脂を塗布した後、光透過性のモールドを樹脂に押し当て、光照射することで基板上の樹脂を硬化させパターンを形成するUVインプリント技術である。特にUVインプリント技術は室温にてパターン形成できるため熱による基板、モールド間の線膨張係数差による歪が発生しにくく、高精度のパターン形成が可能であり、半導体等のリソグラフィ技術の代替技術として注目を集めている。 The nanoimprint technology is roughly divided into two types depending on the material to be transferred. One is a thermal imprint technique in which a material to be transferred is heated, plastically deformed by a mold, and then cooled to form a pattern. The other is to apply liquid light (generally ultraviolet (UV)) curable resin on the substrate at room temperature, then press the light-transmitting mold against the resin and irradiate the resin to cure the resin on the substrate. This is a UV imprint technique for forming a pattern. In particular, UV imprint technology enables pattern formation at room temperature, so that distortion due to differences in the coefficient of linear expansion between the substrate and mold due to heat is less likely to occur, and high-precision pattern formation is possible. As an alternative to lithography technology for semiconductors, etc. It attracts attention.
 但し、ナノインプリント技術は、パターン成形を安価に行うことができるが、マザースタンパであるモールドに樹脂が付着し易く、樹脂が付着した場合、そのモールドを補修することは極めて困難である。また、通常、モールドは可塑性を有さないため、パターン形成すべき基板が可塑性材料でない場合、基板又はモールドが物理的に損傷する場合がある。モールド(マザースタンパ)が非常に高価なため、樹脂の付着や、物理的損傷によりモールドを交換すると大幅なコストアップとなり、製造全体として安価とは言えない場合が多い。 However, although nanoimprint technology can perform pattern molding at low cost, the resin is likely to adhere to the mold that is the mother stamper, and if the resin adheres, it is extremely difficult to repair the mold. Further, since the mold does not usually have plasticity, the substrate or the mold may be physically damaged when the substrate to be patterned is not a plastic material. Since the mold (mother stamper) is very expensive, if the mold is replaced due to adhesion of a resin or physical damage, the cost is greatly increased, and it cannot be said that the entire manufacturing is inexpensive.
 その課題を解決する方法として、特許文献1には、2工程によるインプリント法が開示されている。即ち、第1工程で、マイクロメータ又はナノメータのオーダの微細な凹凸のパターンニングがなされた表面を有するテンプレート(マザースタンパ)に、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、シクロオレフィン等の熱可塑性樹脂製のポリマーフォイル(樹脂製フィルム)の表面と表面が向かい合い接触するように置かれ、インプリント処理により、テンプレート表面のパターンが反転されたものがポリマーフォイルの表面に形成される。そして、第2工程で、得られたポリマースタンパ(中間スタンパ)が、基板上の感光性材料(紫外線硬化性樹脂等)に、テンプレートの反転パターンが向かい合い接触するように配置され、感光性材料が露光されることにより、基板上に第二の反転パターン(テンプレートと同一のパターン)が形成される。 As a method for solving the problem, Patent Document 1 discloses an imprint method by two steps. That is, in the first step, heat is applied to a template (mother stamper) having a surface patterned with fine irregularities on the order of micrometers or nanometers, such as polycarbonate (PC), polymethyl methacrylate (PMMA), and cycloolefin. The surface of the polymer foil (resin film) made of a plastic resin is placed so as to face and come into contact with each other, and an imprint process is formed on the surface of the polymer foil in which the pattern of the template surface is reversed. Then, in the second step, the obtained polymer stamper (intermediate stamper) is arranged so that the inversion pattern of the template faces and comes into contact with the photosensitive material (ultraviolet curable resin or the like) on the substrate. By being exposed, a second reverse pattern (the same pattern as the template) is formed on the substrate.
 この方法では、製品が中間スタンパを用いて成形されるため、テンプレート(マザースタンパ)には深刻な損傷が発生することを防止することができる。 In this method, since the product is molded using the intermediate stamper, it is possible to prevent the template (mother stamper) from being seriously damaged.
 一方、ナノインプリント技術において、通常、金型及び金型の凹凸パターンを転写すべき基板は同じ材料ではないため、金型及び基板は異なった熱膨張率を有している。従って、金型と基板とが加熱や冷却等により同様な環境変化を受けた場合であっても、寸法変化する割合が異なることになる。 On the other hand, in the nanoimprint technology, usually, the mold and the substrate to which the uneven pattern of the mold is transferred are not the same material. Therefore, the mold and the substrate have different coefficients of thermal expansion. Therefore, even when the mold and the substrate are subjected to the same environmental change due to heating or cooling, the ratio of dimensional change is different.
 これは、特許文献1で示したような樹脂製の中間スタンパを用いたインプリント法により、ガラスやシリコン等からなる基板に微細な凹凸パターンを形成する場合にも問題となる。ガラスやシリコン、及び樹脂製フィルムの熱膨張率は大きく異なるからである。 This also poses a problem when a fine uneven pattern is formed on a substrate made of glass, silicon or the like by an imprint method using a resin intermediate stamper as shown in Patent Document 1. This is because the thermal expansion coefficients of glass, silicon, and resin film are greatly different.
 例えば、基板に形成された電極パターン等に合わせて凹凸パターンを形成する場合、まず、基板のパターンに合わせて作製したマザースタンパを用いて、樹脂製の中間スタンパを得る。次いで、基板上に凹凸パターンを転写するため、その樹脂製の中間スタンパと基板とを精確に位置合わせする。この場合、一般に、中間スタンパと基板に2個以上の位置合わせ用パターン(アライメントマークともいう)が形成されており、これらのマークを2点以上の位置合わせ用のカメラ(アライメントカメラともいう)で観察し、マークを合わせることで位置合わせを行う。しかしながら、マザースタンパから中間スタンパへの転写工程における中間スタンパの収縮率のバラつきや、中間スタンパと基板とを位置合わせする工程におけるわずかな温度変化による基板と中間スタンパの寸法変化の差によって、2点以上のアライメントマークが合わなくなり、精確な位置合わせができなくなるという問題が生じる。 For example, when forming a concavo-convex pattern according to an electrode pattern or the like formed on a substrate, first, a resin-made intermediate stamper is obtained using a mother stamper manufactured according to the pattern of the substrate. Next, in order to transfer the concavo-convex pattern onto the substrate, the resin intermediate stamper and the substrate are accurately aligned. In this case, in general, two or more alignment patterns (also referred to as alignment marks) are formed on the intermediate stamper and the substrate, and these marks are used by two or more alignment cameras (also referred to as alignment cameras). Observe and align the marks. However, there are two points due to the variation in the shrinkage ratio of the intermediate stamper in the transfer process from the mother stamper to the intermediate stamper and the difference in dimensional change between the substrate and the intermediate stamper due to a slight temperature change in the process of aligning the intermediate stamper and the substrate. There arises a problem that the above alignment marks are not aligned and accurate alignment cannot be performed.
特開2007-165812号公報JP 2007-165812 A
 従って、本発明の目的は、樹脂製の中間スタンパ等の樹脂製フィルムを用いて基板上に微細な凹凸パターンを形成する方法であって、樹脂製フィルムの収縮率のバラつきや位置合わせ工程における温度変化等があっても、基板上の凹凸パターンを形成すべき位置に精確に凹凸パターンを形成することができる凹凸パターンの形成方法を提供することにある。 Accordingly, an object of the present invention is a method of forming a fine uneven pattern on a substrate using a resin film such as a resin intermediate stamper, and the resin film shrinkage rate variation or the temperature in the alignment process. An object of the present invention is to provide a method for forming a concavo-convex pattern that can accurately form a concavo-convex pattern at a position where a concavo-convex pattern is to be formed on a substrate even if there is a change.
 また、本発明の目的は、その凹凸パターンの形成方法に使用する装置を提供することにある。 Also, an object of the present invention is to provide an apparatus used for the method for forming the concavo-convex pattern.
 樹脂フィルムに形成された微細な凹凸パターンの平面方向の大きさの調整は、通常、凹凸パターンを形成する工程で行われる。例えば、金属製スタンパから中間スタンパである樹脂製フィルムに転写する工程において、樹脂製フィルムの収縮率等を考慮して金属製スタンパの凹凸パターンを作製することで樹脂フィルムの凹凸パターンが調整される。このため、上述のような位置合わせする工程におけるわずかな温度変化による基板と樹脂フィルムの寸法変化の差によって位置合せができなくなるという課題に対応することには限界があった。本発明者らは、樹脂フィルムと基板とを位置合わせする段階で、凹凸パターンの平面方向の大きさまで調整する方法を検討した結果、本発明に至った。 Adjustment of the size of the fine concavo-convex pattern formed in the resin film in the planar direction is usually performed in a process of forming the concavo-convex pattern. For example, in the process of transferring from a metal stamper to a resin film that is an intermediate stamper, the concavo-convex pattern of the resin film is adjusted by preparing the concavo-convex pattern of the metal stamper in consideration of the shrinkage rate of the resin film. . For this reason, there has been a limit to addressing the problem that alignment cannot be performed due to a difference in dimensional change between the substrate and the resin film due to slight temperature changes in the alignment process as described above. As a result of studying a method for adjusting the size of the concavo-convex pattern to the planar direction at the stage of aligning the resin film and the substrate, the present inventors have reached the present invention.
 即ち、上記目的は、表面に微細な凹凸パターンが形成された樹脂製フィルムの当該凹凸パターンを、基板上に形成された光硬化性樹脂組成物からなる光硬化性樹脂層に転写し、前記光硬化性樹脂層に微細な反転凹凸パターンを形成する方法であって、前記樹脂製フィルムの微細な凹凸パターンを、前記基板上の光硬化製樹脂層の反転凹凸パターンを形成すべき位置に配置するために、前記樹脂製フィルムと前記基板とを位置合わせするための位置合せ工程、前記樹脂製フィルムの微細な凹凸パターンを前記基板上の光硬化性樹脂層に載置、押圧するための押圧工程、前記光硬化性樹脂層に光照射して、前記光硬化性樹脂層を硬化又は半硬化するための光照射工程を含み、且つ前記位置合せ工程において、前記樹脂製フィルムを平面方向に伸張する伸張手段を用いる工程を含むことを特徴とする凹凸パターンの形成方法によって達成される。 That is, the object is to transfer the concavo-convex pattern of a resin film having a fine concavo-convex pattern formed on the surface to a photocurable resin layer made of a photocurable resin composition formed on a substrate, and A method for forming a fine concavo-convex pattern on a curable resin layer, wherein the fine concavo-convex pattern of the resin film is disposed at a position where the reverse concavo-convex pattern of a photocurable resin layer on the substrate is to be formed. Therefore, an alignment step for aligning the resin film and the substrate, and a pressing step for placing and pressing a fine uneven pattern of the resin film on the photocurable resin layer on the substrate And a light irradiation step for curing or semi-curing the photocurable resin layer by irradiating light to the photocurable resin layer, and in the alignment step, the resin film is stretched in a plane direction. It is achieved by the method of forming the concavo-convex pattern, which comprises the step of using a decompression means for.
 これにより、従来よりも樹脂フィルムと基板とを精確に位置合せすることができる。 This makes it possible to align the resin film and the substrate more accurately than in the past.
 本発明の凹凸パターンの形成方法の好ましい態様は以下の通りである。
(1)前記伸張手段が、前記樹脂製フィルムを縦方向及び横方向の二軸方向に伸張する手段である。これにより、平面方向のどの方向にも伸張することが可能になり、樹脂製フィルムと基板とをより精確に位置合わせをして、より精確な位置に凹凸パターンを形成することができる。
The preferable aspect of the formation method of the uneven | corrugated pattern of this invention is as follows.
(1) The stretching means is a means for stretching the resin film in the biaxial direction of the vertical direction and the horizontal direction. Thereby, it becomes possible to extend in any direction in the plane direction, and the resin film and the substrate can be more accurately aligned, and the uneven pattern can be formed at a more accurate position.
(2)前記伸張手段が、前記樹脂製フィルムの弾性変形範囲で伸張する手段である。これにより、樹脂製フィルムの破損や凹凸パターンの形状の大きな変形による反転凹凸パターンの形成不良が生じないように、樹脂製フィルムと基板とを位置合わせすることができる。 (2) The stretching means is a means for stretching within an elastic deformation range of the resin film. Thereby, the resin film and the substrate can be aligned so that the formation of the inverted concavo-convex pattern due to the breakage of the resin film or the large deformation of the concavo-convex pattern does not occur.
(3)前記伸張手段が、前記樹脂製フィルムの縁部を着脱可能に固定することができ、当該樹脂製フィルムの平面方向に、それぞれ独立して移動及び静止自在である少なくとも2基のクランプ部を有するフィルム保持部の当該クランプ部に、前記樹脂製フィルムの縁部を固定し、前記クランプ部を移動させることにより前記樹脂製フィルムを伸張する手段である。樹脂製フィルムの縁部をクランプ部で固定し、このクランプ部を移動させることで、樹脂製フィルムの平面方向の伸張を容易にすることができる。 (3) At least two clamp portions that are capable of detachably fixing the edge portion of the resin film and that are independently movable and stationary in the planar direction of the resin film. The edge of the resin film is fixed to the clamp part of the film holding part having the above, and the resin film is extended by moving the clamp part. The resin film can be easily stretched in the plane direction by fixing the edge of the resin film with the clamp and moving the clamp.
(4)前記樹脂製フィルムの縁部の縦方向及び/又は横方向に互いに対向する位置を、前記クランプ部に固定する。これにより、樹脂製フィルムに歪みを生じること無く、効率的に樹脂製フィルムを平面方向に伸張することができる。 (4) The positions of the edges of the resin film facing each other in the vertical direction and / or the horizontal direction are fixed to the clamp part. Thereby, the resin film can be efficiently stretched in the plane direction without causing distortion in the resin film.
(5)前記樹脂製フィルムが矩形状であり、当該樹脂製フィルムの各辺の縁部を、それぞれ少なくとも1基の前記クランプ部に固定する。樹脂製フィルムが矩形状の場合、樹脂製フィルムの各辺の縁部を、それぞれ少なくとも1基のクランプ部で固定し、クランプ部を移動させることで、効率良く、樹脂製フィルムを平面方向に伸張することができる。 (5) The resin film has a rectangular shape, and the edge of each side of the resin film is fixed to at least one clamp part. When the resin film has a rectangular shape, the edges of each side of the resin film are fixed with at least one clamp part, and the clamp part is moved to efficiently stretch the resin film in the plane direction. can do.
(6)前記矩形状の樹脂製フィルムの各辺の縁部を、それぞれ2基以上の前記クランプ部に固定する。これにより、樹脂製フィルムの各辺を分割して伸張することで平面方向の伸張の微調整を行うことができ、より高精度に樹脂製フィルムと基板とを位置合わせすることができる。樹脂製フィルムの各辺の縁部を固定するクランプ部は、3基以上が更に好ましく、3~10基が特に好ましい。 (6) The edge of each side of the rectangular resin film is fixed to two or more clamp parts. Thereby, by finely adjusting the extension in the planar direction by dividing and extending each side of the resin film, the resin film and the substrate can be aligned with higher accuracy. The number of clamps for fixing the edge of each side of the resin film is more preferably 3 or more, and particularly preferably 3 to 10.
(7)前記位置合わせ工程が、前記樹脂製フィルムと前記基板とに設けられた複数のアライメントマークを重ね合わせることで位置合わせする工程である。これにより、効率良く、且つ精確に樹脂製フィルムと基板とを位置合わせすることができる。 (7) The alignment step is a step of aligning a plurality of alignment marks provided on the resin film and the substrate. Thereby, the resin film and the substrate can be aligned efficiently and accurately.
(8)前記樹脂製フィルム及び前記基板のアライメントマークが、前記樹脂製フィルムの縁部を固定するクランプ部2基に対して、少なくとも1個ずつ設けられている。樹脂製フィルムの収縮率や膨張率が樹脂製フィルムの部分によって異なる場合があるため、樹脂製フィルムの各辺を分割して伸張する場合に、その伸張する範囲に対応するアライメントマークを設けて、位置合わせすることで、より高精度に樹脂製フィルムと基板とを位置合わせすることができる。 (8) At least one alignment mark for the resin film and the substrate is provided for each of two clamp portions for fixing the edge of the resin film. Since the shrinkage rate and expansion rate of the resinous film may vary depending on the resinous film part, when each side of the resinous film is divided and stretched, an alignment mark corresponding to the stretched range is provided, By aligning, the resin film and the substrate can be aligned with higher accuracy.
(9)前記樹脂製フィルムが、樹脂製の中間スタンパである。 (9) The resin film is a resin intermediate stamper.
(10)前記位置合わせ工程が、前記樹脂製フィルム及び/又は前記基板の位置を平面方向に移動調整する手段、並びに前記樹脂製フィルム及び/又は前記基板の角度を調節する手段を含む。樹脂フィルムを平面方向に伸張する手段に加えて、樹脂製フィルムや基板の位置や角度を調整する手段を用いて、位置合わせ工程を行うことで、より効率良く高精度に樹脂製フィルムと基板とを位置合わせすることができる。 (10) The positioning step includes means for moving and adjusting the position of the resin film and / or the substrate in a planar direction, and means for adjusting the angle of the resin film and / or the substrate. In addition to the means for extending the resin film in the plane direction, the resin film and the substrate can be more efficiently and accurately obtained by performing the alignment process using means for adjusting the position and angle of the resin film and the substrate. Can be aligned.
 また、上記目的は、本発明の凹凸パターンの形成方法に使用される凹凸パターンの形成装置であって、前記樹脂製フィルムの微細な凹凸パターンを、前記基板上の光硬化製樹脂層の反転凹凸パターンを形成すべき位置に配置するために、前記樹脂製フィルムと前記基板とを位置合わせするための位置合せ手段、前記樹脂製フィルムの微細な凹凸パターンを前記基板上の光硬化性樹脂層に載置、押圧するための押圧手段、前記光硬化性樹脂層に光照射して、前記光硬化性樹脂層を硬化又は半硬化するための光照射手段を含み、且つ前記位置合せ手段が、前記樹脂製フィルムを平面方向に伸張する伸張手段を含むことを特徴とする凹凸パターンの形成装置によって達成される。 The above object is also a concavo-convex pattern forming apparatus used in the method for forming a concavo-convex pattern according to the present invention, wherein a fine concavo-convex pattern of the resin film is formed on a reverse concavo-convex pattern of a photocurable resin layer on the substrate. An alignment means for aligning the resin film and the substrate in order to arrange the pattern at a position where the pattern is to be formed, and a fine uneven pattern of the resin film on the photocurable resin layer on the substrate Mounting, pressing means for pressing, light irradiation to the photocurable resin layer, light irradiation means for curing or semi-curing the photocurable resin layer, and the alignment means, This is achieved by an apparatus for forming a concavo-convex pattern characterized by including a stretching means for stretching a resin film in a planar direction.
 本装置は、本発明の凹凸パターンの形成方法における、樹脂製フィルムを平面方向に伸張する伸張手段を含む樹脂製フィルムと基板との位置合わせ手段を含むので、樹脂製フィルムを、基板上の光硬化性樹脂層の反転凹凸パターンを形成すべき位置に精確に合わせることができる。そして、その状態で樹脂製フィルムを基板上の光硬化性樹脂層に載置、押圧し、紫外線等の光照射により光硬化性樹脂層を硬化又は半硬化することができる。従って、本装置は、樹脂製フィルムの凹凸パターンを、基板上の反転凹凸パターンを形成すべき位置に精確に凹凸パターンを形成することができる凹凸パターンの形成装置である。 Since this apparatus includes a resin film including a stretching means for stretching the resin film in the planar direction in the method for forming a concavo-convex pattern according to the present invention, the apparatus includes an alignment means for aligning the resin film with the light on the substrate. The reverse concavo-convex pattern of the curable resin layer can be accurately adjusted to the position where it should be formed. In this state, the resin film can be placed on and pressed on the photocurable resin layer on the substrate, and the photocurable resin layer can be cured or semi-cured by irradiation with light such as ultraviolet rays. Therefore, this apparatus is a concavo-convex pattern forming apparatus capable of accurately forming the concavo-convex pattern of the resin film at the position where the inverted concavo-convex pattern is to be formed on the substrate.
 本発明の凹凸パターンの形成方法によれば、樹脂製フィルムに微細な凹凸パターンを形成する際の樹脂製フィルムの収縮率のバラつきや、樹脂製フィルムと基板との位置合わせ工程において温度変化がある場合であっても、樹脂製フィルムを平面方向に伸張することにより、樹脂製フィルムの大きさまで調整できるので、基板上の反転凹凸パターンを形成すべき位置に精確に位置合わせして、凹凸パターンを形成することができる。従って、本発明の凹凸パターンの形成装置は、基板上の凹凸パターンを形成すべき位置に精確に凹凸パターンを形成することができる装置である。 According to the method for forming a concavo-convex pattern of the present invention, there is a variation in shrinkage of the resin film when forming a fine concavo-convex pattern on the resin film, and there is a temperature change in the alignment process between the resin film and the substrate. Even in such a case, the resin film can be adjusted to the size of the resin film by stretching the resin film in the plane direction. Can be formed. Therefore, the uneven | corrugated pattern formation apparatus of this invention is an apparatus which can form an uneven | corrugated pattern exactly in the position which should form the uneven | corrugated pattern on a board | substrate.
図1は、本発明の微細な凹凸パターンの形成方法の代表的な一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a typical example of a method for forming a fine uneven pattern according to the present invention. 図2は、本発明の微細な凹凸パターンの形成方法における、位置合わせ工程の好適な一例を説明するための概略図であり、図2(a)が概略平面図であり、図2(b)が概略断面図である。FIG. 2 is a schematic view for explaining a preferred example of the alignment step in the method for forming a fine uneven pattern of the present invention, FIG. 2 (a) is a schematic plan view, and FIG. Is a schematic cross-sectional view. 図3は、本発明の微細な凹凸パターンの形成方法を、ロール・トゥ・ロール方式で行う場合の位置合わせ工程の好適な一例を説明するための概略図である。FIG. 3 is a schematic view for explaining a preferred example of the alignment step when the fine uneven pattern forming method of the present invention is performed by a roll-to-roll method. 図4は、本発明の微細な凹凸パターンの形成装置の代表的な一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing a typical example of a fine concavo-convex pattern forming apparatus of the present invention.
 本発明の凹凸パターンの形成方法の実施形態について、図面を参照しながら説明する。  Embodiments of the method for forming an uneven pattern according to the present invention will be described with reference to the drawings. *
 本発明は、樹脂製フィルムの伸張手段を含む位置合わせ工程以外は、一般的なインプリント法による微細な凹凸パターンの形成方法と同様に行うことができる。 The present invention can be carried out in the same manner as a method for forming a fine uneven pattern by a general imprint method, except for an alignment process including a means for stretching a resin film.
 図1は、本発明の微細な凹凸パターンの形成方法における代表的な一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing a typical example in the method for forming a fine uneven pattern of the present invention.
 まず、表面に微細な凹凸パターンが形成された樹脂製フィルム11の凹凸パターンと、表面に光硬化性樹脂組成物からなる光硬化性樹脂層16が形成された基板15の光硬化性樹脂層16とが対向するように、基板15と樹脂製フィルム11とを配置する(図1(a))。樹脂製フィルム11は、例えば、微細な凹凸パターンを有する金属製スタンパ等の金型から熱インプリント法により凹凸パターンが転写された熱可塑性樹脂製の中間スタンパ等が挙げられる。基板15は、情報表示用パネル電子部品用の基板や、これに所定の配線パターンが形成されたもの等が挙げられる。例えば、ガラス基板、シリコンウェーハ、銅、クロム、鉄、アルミニウム等の金属製基板等が挙げられる。 First, the photocurable resin layer 16 of the board | substrate 15 in which the uneven | corrugated pattern of the resin-made film 11 in which the fine uneven | corrugated pattern was formed in the surface, and the photocurable resin layer 16 which consists of a photocurable resin composition in the surface was formed. The substrate 15 and the resin film 11 are arranged so that they face each other (FIG. 1A). Examples of the resin film 11 include an intermediate stamper made of a thermoplastic resin having a concavo-convex pattern transferred from a mold such as a metal stamper having a fine concavo-convex pattern by a thermal imprint method. Examples of the substrate 15 include a substrate for an information display panel electronic component and a substrate on which a predetermined wiring pattern is formed. For example, a glass substrate, a silicon wafer, a metal substrate such as copper, chromium, iron, and aluminum can be used.
 樹脂製フィルム11の縁部は、クランプ部21により着脱可能に固定されている。クランプ部21はフィルム保持部22に設置されており、樹脂製フィルム11の平面方向(縦方向及び/又は横方向)にそれぞれ独立して移動及び静止できるようになっている。また、基板15は基板保持部23に着脱可能に固定されている。 The edge part of the resin film 11 is detachably fixed by the clamp part 21. The clamp part 21 is installed in the film holding part 22, and can be moved and stopped independently in the plane direction (longitudinal direction and / or lateral direction) of the resin film 11. The substrate 15 is detachably fixed to the substrate holding unit 23.
 続いて、樹脂製フィルム11の凹凸パターンが、基板15表面の光硬化性樹脂層16の反転凹凸パターンを形成すべき位置に精確に合うように、樹脂製フィルム11と基板15とを位置合わせする(位置合わせ工程)。後述するように、通常、樹脂製フィルム11と基板15とに位置合わせ用のアライメントマークが設けられており、位置合わせ用のアライメントカメラで観察し、アライメントマーク重なり合うように自動又は手動で位置合わせする(図1では示していない)。本発明においては、位置合せ工程として、樹脂製フィルム11を平面方向に伸張する伸張手段を含む。図1においては、クランプ部21を平面方向に移動させることにより、樹脂製フィルム11を平面方向に伸張している(図1(a))。伸張手段は樹脂製フィルムを精確に制御して伸張できればどのような手段でも良い。 Subsequently, the resin film 11 and the substrate 15 are aligned so that the concavo-convex pattern of the resin film 11 accurately matches the position where the inverted concavo-convex pattern of the photocurable resin layer 16 on the surface of the substrate 15 is to be formed. (Alignment process). As will be described later, an alignment mark for alignment is usually provided on the resin film 11 and the substrate 15, and is observed with an alignment camera for alignment, and is aligned automatically or manually so that the alignment marks overlap. (Not shown in FIG. 1). In the present invention, the aligning step includes stretching means for stretching the resin film 11 in the planar direction. In FIG. 1, the resin film 11 is extended in the plane direction by moving the clamp part 21 in the plane direction (FIG. 1A). The stretching means may be any means as long as the resin film can be accurately controlled and stretched.
 従来の位置合わせ工程は、フィルム保持部22、及び/又は基板保持部23を平面方向(縦方向及び/又は横方向)に移動させたり、角度調節したりすることにより位置合わせしていた。しかしながら、この方法では樹脂製フィルム11の凹凸パターンを形成する際の収縮率のバラつきや、位置合わせ工程における温度変化による膨張率の差により樹脂製フィルム11の凹凸パターンと基板15表面の反転凹凸パターンを形成すべき位置との寸法的な相違(本発明において、「スケールレベルのズレ」ともいう)が生じ、精確な位置合せができない場合があった。本発明においては、上述のように樹脂製フィルム11を平面方向へ伸張することにより、凹凸パターンのスケールレベルのズレを修正することにより精確な位置合わせを行うことができる。 In the conventional alignment process, the film holding unit 22 and / or the substrate holding unit 23 are moved in the plane direction (longitudinal direction and / or lateral direction) or the angle is adjusted. However, in this method, the unevenness pattern of the resinous film 11 and the inverted unevenness pattern of the surface of the substrate 15 due to the variation in the shrinkage rate when forming the unevenness pattern of the resinous film 11 and the difference in the expansion rate due to the temperature change in the alignment process. There is a dimensional difference from the position where the film is to be formed (also referred to as “scale level deviation” in the present invention), and accurate alignment may not be possible. In the present invention, as described above, the resin film 11 is stretched in the plane direction, thereby correcting the scale level deviation of the concavo-convex pattern, thereby enabling accurate alignment.
 樹脂製フィルム11の平面方向への伸張は縦方向及び横方向のどちらか一方でも良いが、より精確に位置合わせができるように、縦方向及び横方向の二軸方向へ伸張できることが好ましい。また、樹脂製フィルム11の平面方向への伸張可能の割合は樹脂製フィルム11の材質によっても異なる。樹脂製フィルム11が破損したり、凹凸パターンの形状の変形が生じたりして、光硬化性樹脂層16への反転凹凸パターンの形成不良が生じないように、樹脂製フィルム11の弾性変形範囲で伸張するのが好ましい。伸張距離は、樹脂製フィルム11の長さを基準として、通常1%以下、好ましくは0.5%以下である。 The stretching of the resin film 11 in the planar direction may be in either the longitudinal direction or the lateral direction, but it is preferable that the resin film 11 can be stretched in the biaxial direction of the longitudinal direction and the lateral direction so that alignment can be performed more accurately. Further, the proportion of the resin film 11 that can be extended in the planar direction varies depending on the material of the resin film 11. In the elastic deformation range of the resinous film 11, the resinous film 11 is not damaged, or the shape of the concave / convex pattern is deformed, so that the formation of the inverted concave / convex pattern on the photocurable resin layer 16 does not occur. It is preferable to stretch. The stretching distance is usually 1% or less, preferably 0.5% or less, based on the length of the resin film 11.
 また、樹脂製フィルム11に形成された凹凸パターンは、基板15の光硬化性樹脂層16の反転凹凸パターンを形成すべき範囲のパターン(例えば電極パターン)よりも、小さい方が好ましい。樹脂製フィルム11を平面方向に伸張することは可能であるが、平面方向に圧縮することは困難だからである。 Further, the concave / convex pattern formed on the resin film 11 is preferably smaller than a pattern (for example, an electrode pattern) in a range where the inverted concave / convex pattern of the photocurable resin layer 16 of the substrate 15 is to be formed. This is because it is possible to stretch the resin film 11 in the planar direction, but it is difficult to compress it in the planar direction.
 なお、本発明においても、より精確に位置合わせするために、フィルム保持部22、及び/又は基板保持部23自体を平面方向に移動させたり、角度を調節したりする手段を併用することが好ましい。 In the present invention, it is preferable to use a means for moving the film holding unit 22 and / or the substrate holding unit 23 itself in the plane direction or adjusting the angle in order to align more accurately. .
 次いで、樹脂製フィルム11と基板15とを精確に位置合せした状態(樹脂製フィルム11を伸張した状態)で、樹脂製フィルム11の凹凸パターンを光硬化性樹脂層16に押圧する(図1(b)(押圧工程))。押圧が可能なように、光硬化性樹脂層16は必要に応じて加熱される。常温で押圧可能であれば加熱する必要は無い。基板15、樹脂製フィルム11及び基板15の温度変化が凹凸パターンの形成位置やスケールに影響を与えるので、押圧時においても、アライメントマークが重なり合うようにクランプ部21を平面方向に移動させて樹脂製フィルム11を伸張させても良い。 Next, in a state in which the resin film 11 and the substrate 15 are accurately aligned (a state in which the resin film 11 is stretched), the uneven pattern of the resin film 11 is pressed against the photocurable resin layer 16 (FIG. 1 ( b) (Pressing step)). The photocurable resin layer 16 is heated as necessary so that pressing is possible. If pressing is possible at room temperature, heating is not necessary. Since the temperature change of the substrate 15, the resin film 11 and the substrate 15 affects the formation position and scale of the concavo-convex pattern, the clamp portion 21 is moved in the plane direction so that the alignment marks overlap even when pressed, and is made of resin. The film 11 may be stretched.
 その状態で、光硬化性樹脂層16を光(紫外線等)照射することにより硬化させる(光照射工程)。硬化は、全硬化させなくても、凹凸パターンの形状を維持できる程度の半硬化でも良い。 In this state, the photocurable resin layer 16 is cured by irradiating light (such as ultraviolet rays) (light irradiation process). The curing may be semi-curing to such an extent that the shape of the concavo-convex pattern can be maintained without being completely cured.
 なお、樹脂製フィルム11の凹凸パターンを光硬化性樹脂層16に押圧する前に、光硬化性樹脂層16と樹脂製フィルム11の凹凸パターン中に、エアが入り込まないように、樹脂製フィルム11と基板15と位置合わせする前及び/又は後にこれらの周囲を真空引きする真空工程を行っても良い。これにより、凹凸パターンの転写不良を防ぐことができる。真空工程は、例えば、樹脂製フィルム11及び基板15を含む範囲を密閉空間とし、その空間内を真空ポンプで脱気することで行うことができる。 In addition, before pressing the uneven | corrugated pattern of the resin film 11 against the photocurable resin layer 16, the resin film 11 is prevented so that air may not enter into the uneven pattern of the photocurable resin layer 16 and the resin film 11. And / or after the alignment with the substrate 15, a vacuum process may be performed to evacuate the surroundings. Thereby, it is possible to prevent a transfer defect of the uneven pattern. The vacuum process can be performed, for example, by setting a range including the resin film 11 and the substrate 15 as a sealed space and degassing the space with a vacuum pump.
 その後、樹脂製フィルム11を、凹凸パターンが形成され、且つ硬化した光硬化性樹脂層16cから除去する(図1(c))。なお、光硬化性樹脂層16が半硬化の場合は、樹脂製フィルム11を除去した後、更に光照射することで全硬化させる。 Thereafter, the resin film 11 is removed from the photocurable resin layer 16c on which the concavo-convex pattern is formed and cured (FIG. 1 (c)). In addition, when the photocurable resin layer 16 is semi-cured, after removing the resin film 11, it is fully cured by further irradiating light.
 このようにして、微細な凹凸パターンが形成された樹脂製フィルム11の凹凸パターンの反転凹凸パターンを、基板15表面の光硬化性転写層16の反転凹凸パターンを形成すべき位置に、精確に形成することができる。 In this way, the reverse concavo-convex pattern of the concavo-convex pattern of the resin film 11 on which the fine concavo-convex pattern is formed is accurately formed at the position where the reverse concavo-convex pattern of the photocurable transfer layer 16 on the surface of the substrate 15 is to be formed. can do.
 次に、本発明の凹凸パターンの形成方法における、位置合わせ工程(特に伸張手段を用いる工程)について詳細に説明する。図2は本発明の微細な凹凸パターンの形成方法における、位置合わせ工程の好適な一例を説明するための概略図であり、図2(a)が概略平面図であり、図2(b)が概略断面図である。 Next, the alignment step (particularly the step using the stretching means) in the method for forming a concavo-convex pattern of the present invention will be described in detail. FIG. 2 is a schematic view for explaining a preferred example of the alignment step in the method for forming a fine concavo-convex pattern according to the present invention, FIG. 2 (a) is a schematic plan view, and FIG. It is a schematic sectional drawing.
 図2(a)、(b)に示すように、微細な凹凸パターンが形成された矩形状の樹脂製フィルム31の各辺の縁部が、複数のクランプ部41に固定されている。クランプ部41はネジによる締付け等により着脱可能にフィルムの縁部を固定できる。そして、クランプ部41はフィルム保持部42に、それぞれ独立して樹脂製フィルム31の平面方向に自在に移動及び静止させることができるように設置されている。これらのクランプ部41を移動させることで、容易に平面方向に樹脂製フィルム31を伸張することができる。また、フィルム保持部42も、樹脂製フィルム31の平面方向(縦方向及び/又は横方向)に移動及び静止自在であり、角度の調節が可能であることが好ましい。 As shown in FIGS. 2A and 2B, the edge of each side of the rectangular resin film 31 on which a fine concavo-convex pattern is formed is fixed to a plurality of clamp portions 41. The clamp part 41 can fix the edge part of a film so that attachment or detachment is possible by tightening with a screw or the like. And the clamp part 41 is installed in the film holding | maintenance part 42 so that it can be moved and made to rest freely in the plane direction of the resin film 31, respectively. By moving these clamp portions 41, the resin film 31 can be easily stretched in the planar direction. The film holding part 42 is also preferably movable and stationary in the planar direction (longitudinal direction and / or lateral direction) of the resinous film 31, and the angle can be adjusted.
 図2(a)では、樹脂製フィルム31は、各辺の縁部を5基のクランプ部41で固定されているが、樹脂製フィルム31は少なくとも2基のクランプ部41で固定されていれば良い。但し、縦方向及び横方向への伸張が可能なように、樹脂製フィルム31の各辺の縁部を少なくとも1基のクランプ部41で固定することが好ましい。 In FIG. 2A, the resin film 31 is fixed at the edge of each side by five clamp portions 41. However, if the resin film 31 is fixed by at least two clamp portions 41. good. However, it is preferable to fix the edge of each side of the resin film 31 with at least one clamp part 41 so that the film can be extended in the vertical direction and the horizontal direction.
 また、図2(a)では、樹脂製フィルム41は矩形状であるが、樹脂製フィルムの形状は特に制限は無い。たとえば、円形、楕円形、又は多角形でも良い。その場合も、少なくとも2基のクランプ部41により固定されていれば良い。 In FIG. 2A, the resin film 41 has a rectangular shape, but the shape of the resin film is not particularly limited. For example, it may be circular, elliptical, or polygonal. Even in that case, it is only necessary to be fixed by at least two clamp portions 41.
 また、図2(a)に示すように、樹脂製フィルム31の縁部の縦方向及び/又は横方向に互いに対向する位置が、2基のクランプ部41(例えば、図2(a)中の破線で囲って示した2基)に固定されていることが好ましい。その2基のクランプ部41をそれぞれ対向する方向に移動(又は一方を静止し他方を移動)させることで、樹脂製フィルム31に歪みを生じること無く、効率的に樹脂製フィルムを平面方向に伸張することができる。このような対向する2基のクランプ部41は少なくとも1組用いられていれば良いが、より高精度に樹脂製フィルム31を伸張するために、図2(a)に示すように、縦方向及び横方向に複数組用いられていることが好ましい。 Moreover, as shown to Fig.2 (a), the position which mutually opposes the vertical direction and / or horizontal direction of the edge part of the resin-made films 31 is two clamp parts 41 (for example, in Fig.2 (a)). It is preferable that they are fixed to two groups surrounded by a broken line. By moving the two clamp parts 41 in the opposite directions (or stopping one and moving the other), the resin film 31 is efficiently stretched in the plane direction without causing distortion. can do. It is sufficient that at least one pair of such two opposing clamp portions 41 is used. In order to extend the resin film 31 with higher accuracy, as shown in FIG. It is preferable that a plurality of sets are used in the lateral direction.
 また、クランプ部41の基数は特に制限は無い。図2(a)、(b)に示すように、樹脂製フィルムが矩形状の場合は、効率良く、樹脂製フィルムを平面方向に伸張するため、各辺の縁部をそれぞれ少なくとも1基のクランプ部で固定することが好ましい。例えば、クランプ部41を複数基用いて、樹脂製フィルム31の各辺を多分割して固定しても良く(図2(a))、各辺の縁部を一括して固定できる幅のクランプ部41を1基ずつ用いて、樹脂製フィルム31の各辺の縁部を固定しても良い。樹脂製フィルム31の部分的な収縮率や膨張率のバラつきが生じる場合もあるので、図2(a)に示したように、各辺の縁部にクランプ部41を2基以上用いて、各辺を分割して固定したほうが好ましい。樹脂製フィルムの各辺を分割して伸張することで平面方向の伸張の微調整を行うことができ、より高精度に樹脂製フィルムと基板とを位置合わせすることができる。樹脂製フィルム31の各辺の縁部を固定するクランプ部41は、3基以上が更に好ましく、3~10基が特に好ましい。 Also, the radix of the clamp part 41 is not particularly limited. As shown in FIGS. 2 (a) and 2 (b), when the resin film is rectangular, in order to efficiently extend the resin film in the plane direction, at least one clamp on each side edge is provided. It is preferable to fix with a part. For example, a plurality of clamp portions 41 may be used to fix each side of the resin film 31 in multiple divisions (FIG. 2A), and a clamp having a width that can fix the edges of each side at once. You may fix the edge of each edge | side of the resin-made films 31 using the part 41 one by one. Since there may be variations in the partial shrinkage rate and expansion rate of the resin film 31, as shown in FIG. 2 (a), two or more clamp portions 41 are used at the edge of each side. It is preferable to divide and fix the sides. By dividing and extending each side of the resin film, fine adjustment of the extension in the plane direction can be performed, and the resin film and the substrate can be aligned with higher accuracy. The clamp part 41 for fixing the edge part of each side of the resin film 31 is more preferably 3 or more, and particularly preferably 3 to 10 groups.
 また、1基のクランプ部41における、樹脂製フィルム31の縁部を固定する固定部の幅は特に制限は無い。1基のクランプ部の固定部の幅は、通常、5~200mmであり、好ましくは10~100mmである。 Further, the width of the fixing portion for fixing the edge portion of the resin film 31 in one clamp portion 41 is not particularly limited. The width of the fixing part of one clamp part is usually 5 to 200 mm, preferably 10 to 100 mm.
 一方、光硬化性樹脂層36が形成された基板35は、基板保持部43に着脱可能に固定されている。基板保持部43も樹脂製フィルム31の平面方向(縦方向及び/又は横方向)に移動及び静止自在であり、角度の調節が可能であることが好ましい。 On the other hand, the substrate 35 on which the photocurable resin layer 36 is formed is detachably fixed to the substrate holding portion 43. It is preferable that the substrate holder 43 is also movable and stationary in the plane direction (longitudinal direction and / or lateral direction) of the resin film 31 and the angle can be adjusted.
 図2(a)、(b)に示した、位置合わせ工程においては、樹脂製フィルム31及び基板35には、樹脂製フィルム31の凹凸パターンが、基板35表面の光硬化性樹脂層36の反転凹凸パターンを形成すべき位置に合うように、位置合わせ用のアライメントマーク45a及び45bがそれぞれ設けられている。そしてアライメントカメラ50により、アライメントマーク45a及び45bを観察し、両者が重なり合うように、自動又は手動によりクランプ部41を平面方向に移動させて樹脂フィルム31を伸張して効率良く、且つ精確に樹脂製フィルム31と基板35とを位置合わせすることができる。位置合わせ工程において、必要に応じて、フィルム保持部42及び/又は基板保持部43を平面方向に移動させたり、角度調節したりする手段を併用することで、より効率良く精確に樹脂製フィルム31と基板35とを位置合わせすることができる。 In the alignment process shown in FIGS. 2A and 2B, the resin film 31 and the substrate 35 have an uneven pattern of the resin film 31, and the photocurable resin layer 36 on the surface of the substrate 35 is inverted. Alignment alignment marks 45a and 45b are respectively provided so as to match the position where the uneven pattern is to be formed. Then, the alignment marks 45a and 45b are observed by the alignment camera 50, and the clamp part 41 is moved in the plane direction automatically or manually so that the two overlap each other, and the resin film 31 is stretched efficiently and accurately. The film 31 and the substrate 35 can be aligned. In the alignment step, the resin film 31 can be more efficiently and accurately used by using a means for moving the film holding portion 42 and / or the substrate holding portion 43 in the plane direction or adjusting the angle as necessary. And the substrate 35 can be aligned.
 本発明においては、位置合わせ工程として、上述のような樹脂製フィルム31の平面方向への伸張手段を含むので、樹脂製フィルム31と基板35とが、スケールレベルのズレが生じても、複数のアライメントマークが合わず、精確な位置合わせができないというようなことが無い。 In the present invention, since the alignment step includes means for extending the resin film 31 in the plane direction as described above, even if the resin film 31 and the substrate 35 are shifted in scale level, a plurality of displacements occur. There is no case where the alignment mark is not aligned and accurate alignment cannot be performed.
 アライメントマーク45a及び45bは、樹脂製フィルム31と基板35とに、少なくとも2個ずつ設けられている。但し、図2(a)に示したように、樹脂製フィルム31の各辺の縁部を固定するクランプ部41が複数あり、樹脂製フィルム31の各辺を分割して伸張する場合、アライメントマーク45a及び45bは、クランプ部41の2基(例えば、図2(a)中の破線で囲って示した2基)に対して少なくとも1個ずつ、好ましくは2個ずつ設けられていることが好ましい。上述のように、樹脂製フィルムの収縮率や膨張率が樹脂製フィルムの部分によって異なる場合があるため、それぞれのクランプ部41が樹脂製フィルムを伸張する範囲に対応するアライメントマーク45a及び45bを設けて、位置合わせすることで、より高精度に樹脂製フィルム31と基板35とを位置合わせすることができる。 At least two alignment marks 45a and 45b are provided on the resin film 31 and the substrate 35, respectively. However, as shown in FIG. 2A, when there are a plurality of clamp portions 41 for fixing the edge of each side of the resinous film 31, and each side of the resinous film 31 is divided and extended, the alignment mark It is preferable that 45a and 45b are provided at least one by one, preferably two by two with respect to two of the clamp part 41 (for example, two shown by being surrounded by a broken line in FIG. 2A). . As described above, since the shrinkage rate and the expansion rate of the resin film may vary depending on the resin film part, the alignment marks 45a and 45b corresponding to the range where each clamp part 41 extends the resin film are provided. By aligning, the resin film 31 and the substrate 35 can be aligned with higher accuracy.
 なお、本発明の凹凸パターンの形成方法においては、長尺状の樹脂製フィルム31を用いてロール・トゥ・ロール方式で連続的に行うこともできる。この場合、位置合わせ工程は、図3に示すような方法で行うことができる。 In addition, in the formation method of the uneven | corrugated pattern of this invention, it can also carry out continuously by a roll-to-roll system using the elongate resin film 31. FIG. In this case, the alignment step can be performed by a method as shown in FIG.
 図3は、本発明の微細な凹凸パターンの形成方法を、ロール・トゥ・ロール方式で行う場合の、位置合わせ工程の好適な一例を説明するための概略図である。図示の通り、ロール・トゥ・ロール方式の場合、樹脂製フィルム31のロール30の搬送方向と平行する2辺の縁部をクランプ部41で固定し、上述のように平面方向(ロール搬送方向と直行する方向)に伸張を行う。そして、ロール30の搬送方向と直行する2辺については、クランプ41で固定することができないので、ロール搬送における樹脂製フィルム31に掛かるテンションを調節することで平面方向(ロール搬送方向と同じ方向)に伸張を行う。これにより、上述の図2の説明と同様にアライメントマーク45a、45bを位置合わせし、高精度に樹脂製フィルム31と基板35を位置合わせすることができる。 FIG. 3 is a schematic view for explaining a preferred example of the alignment step when the fine uneven pattern forming method of the present invention is performed by a roll-to-roll method. As shown in the figure, in the case of the roll-to-roll method, the edges of two sides parallel to the transport direction of the roll 30 of the resin film 31 are fixed by the clamp portion 41, and the plane direction (the roll transport direction and Stretch in the direction that goes straight. And since it cannot fix with the clamp 41 about two sides orthogonal to the conveyance direction of the roll 30, a plane direction (the same direction as a roll conveyance direction) is adjusted by adjusting the tension applied to the resin film 31 in the roll conveyance. To stretch. Thereby, the alignment marks 45a and 45b can be aligned similarly to the description of FIG. 2 described above, and the resin film 31 and the substrate 35 can be aligned with high accuracy.
[樹脂製フィルム]
 本発明の凹凸パターンの形成方法において、微細な凹凸パターンが形成された樹脂製フィルムはどのようなものでも良い。基板側が光透過性で無い場合は、光硬化性樹脂層の硬化が困難になるので、光透過性の樹脂製フィルムが好ましい。例えば、微細な凹凸パターンを有するニッケル、チタン、シリコン、石英等材質からなるナノインプリント用のスタンパから熱可塑性樹脂製フィルムに熱インプリント法により転写した樹脂製の中間スタンパ、光硬化性樹脂を用いたUVインプリント法で形成した中間スタンパ、及び樹脂製フィルムにエッチング法やレーザ加工、微細形状を付与した工具による切削加工等により凹凸パターンを形成したもの等が挙げられる。工程数が少なく、微細な凹凸パターンの形成が容易であり、凹凸パターンの形成精度が高い点で、樹脂製の中間スタンパが好ましく、特に熱インプリント法により得られた熱可塑性樹脂製の中間スタンパが好ましい。樹脂製フィルムの材質は例えば、ポリカーボネート、シクロオレフィン共重合体(COC)、ポリメチルメタクリレート(PMMA)等が挙げられる。
[Resin film]
In the method for forming a concavo-convex pattern according to the present invention, any resin film on which a fine concavo-convex pattern is formed may be used. When the substrate side is not light transmissive, it is difficult to cure the light curable resin layer. Therefore, a light transmissive resin film is preferable. For example, an intermediate stamper made of a resin transferred from a nanoimprint stamper made of a material such as nickel, titanium, silicon, quartz or the like having a fine concavo-convex pattern onto a thermoplastic resin film by a thermal imprint method, a photo-curing resin was used. Examples include an intermediate stamper formed by the UV imprint method, and a resin film formed with a concavo-convex pattern by an etching method, laser processing, cutting with a tool provided with a fine shape, or the like. A resin-made intermediate stamper is preferable in that the number of processes is small, the formation of a fine concavo-convex pattern is easy, and the formation accuracy of the concavo-convex pattern is high, and an intermediate stamper made of a thermoplastic resin obtained by a thermal imprint method is particularly preferable. Is preferred. Examples of the material for the resin film include polycarbonate, cycloolefin copolymer (COC), polymethyl methacrylate (PMMA), and the like.
 [光硬化性樹脂組成物]
本発明の凹凸パターンの形成方法において、光硬化性樹脂層を形成する光硬化性樹脂組成物はどのようなものでも良い。特にナノインプリントプロセス法に使用できる液状組成物が好ましい。液状組成物の場合、粘度は10~10000cpsが好ましい。光硬化性樹脂組成物は光硬化性樹脂と光開始剤を含む組成物が好ましい。
[Photocurable resin composition]
In the method for forming a concavo-convex pattern of the present invention, any photocurable resin composition for forming a photocurable resin layer may be used. In particular, a liquid composition that can be used in the nanoimprint process method is preferred. In the case of a liquid composition, the viscosity is preferably 10 to 10,000 cps. The photocurable resin composition is preferably a composition containing a photocurable resin and a photoinitiator.
 光硬化性樹脂としては、例えば、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、エポキシ樹脂、イミド系オリゴマー、ポリエン・チオール系オリゴマー等が挙げられる。 Examples of the photocurable resin include urethane acrylate, polyester acrylate, epoxy acrylate, epoxy resin, imide-based oligomer, and polyene / thiol-based oligomer.
 ウレタンアクリレートは、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、トリメチルヘキサメチレンジイソシアネート、トリレンジイソシアネート、4,4-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等のジイソシアネート類とポリ(プロピレンオキサイド)ジオール、ポリ(プロピレンオキサイド)トリオール、ポリ(テトラメチレンオキサイド)ジオール、エトキシ化ビスフェノールA等のポリオール類と2-ヒドロキシエチルアクリレート2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、グリシドールジメタクリレート、ペンタエリスリトールトリアクリレート等のヒドロキシアクリレート類とを反応させることによって得られ、分子中に官能基としてアクリロイル基とウレタン結合を有するものである。 Urethane acrylates include, for example, diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), trimethylhexamethylene diisocyanate, tolylene diisocyanate, 4,4-diphenylmethane diisocyanate, xylylene diisocyanate, and poly (propylene oxide). Polyols such as diol, poly (propylene oxide) triol, poly (tetramethylene oxide) diol, ethoxylated bisphenol A and 2-hydroxyethyl acrylate 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, glycidol dimethacrylate, pentaerythritol tri Hydroxy acrylates such as acrylate Obtained by reacting, those having an acryloyl group and a urethane bond as a functional group in the molecule.
 ポリエステルアクリレートとしては、例えば、無水フタル酸とプロピレンオキサイドとアクリル酸とからなるポリエステルアクリレート、アジピン酸と1,6-ヘキサンジオールとアクリル酸とからなるポリエステルアクリレート、トリメリット酸とジエチレングリコールとアクリル酸とからなるポリエステルアクリレート等が挙げられる。 Examples of the polyester acrylate include polyester acrylate composed of phthalic anhydride, propylene oxide and acrylic acid, polyester acrylate composed of adipic acid, 1,6-hexanediol and acrylic acid, trimellitic acid, diethylene glycol and acrylic acid. And polyester acrylate.
 エポキシアクリレートは、エピクロルヒドリン等のエポキシ化合物とアクリル酸又はメタクリル酸との反応により合成されたものであり、例えば、ビスフェノールAとエピクロルヒドリンとアクリル酸との反応により合成されるビスフェノールA型エポキシアクリレート、ビスフェノールSとエピクロルヒドリンとアクリル酸との反応により合成されるビスフェノールS型エポキシアクリレート、ビスフェノールFとエピクロルヒドリンとアクリル酸との反応により合成されるビスフェノールF型エポキシアクリレート、フェノールノボラックとエピクロルヒドリンとアクリル酸との反応により合成されるフェノールノボラック型エポキシアクリレート等が挙げられる。 The epoxy acrylate is synthesized by reaction of an epoxy compound such as epichlorohydrin and acrylic acid or methacrylic acid. For example, bisphenol A type epoxy acrylate and bisphenol S synthesized by reaction of bisphenol A, epichlorohydrin and acrylic acid. Bisphenol S-type epoxy acrylate synthesized by reaction of chlorophenol, epichlorohydrin and acrylic acid, bisphenol F-type epoxy acrylate synthesized by reaction of bisphenol F, epichlorohydrin and acrylic acid, synthesis by reaction of phenol novolac, epichlorohydrin and acrylic acid And phenol novolac type epoxy acrylate.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリスフェノールメタントリグリシジルエーテル等の芳香族エポキシ樹脂、及び、これらの水添化物や臭素化物等が挙げられる。 Examples of the epoxy resin include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin; phenol novolac type epoxy resin, cresol novolak type epoxy resin and the like. Examples include novolak-type epoxy resins; aromatic epoxy resins such as trisphenolmethane triglycidyl ether, and hydrogenated products and brominated products thereof.
 光重合開始剤(G)としては、光ラジカル重合開始剤及び光カチオン重合開始剤が好ましく、光ラジカル重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α-α'-ジメチルアセトフェノン、メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン等のアセトフェノン誘導体;ベンゾインエチルエーテル、ベンゾインプロピルエーテル等のベンゾインエーテル系化合物;ベンジルジメチルケタール等のケタール誘導体;ハロゲン化ケトン、アシルフォスフィンオキシド、アシルフォスフォナート、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-N,N-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキシドビス-(2,6-ジメトキシベンゾイル)2,4,4-トリメチルペンチルフォスフィンオキシド、ビス(η5-シクロペンタジエニル)-ビス(ペンタフルオロフェニル)-チタニウム、ビス(η5-シクロペンタジエニル)-ビス[2,6-ジフルオロー3-(1H-ピリ-1-イル)フェニル]-チタニウム、アントラセン、ペリレン、コロネン、テトラセン、ベンズアントラセン、フェノチアジン、フラビン、アクリジン、ケトクマリン、チオキサントン誘導体、ベンゾフェノン、アセトフェノン、2-クロロチオキサンソン、2,4-ジメチルチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン、イソプロピルチオキサンソン等が挙げられる。光カチオン重合開始剤としては、例えば、鉄-アレン錯体化合物、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩、オニウム塩、ピリジニウム塩、アルミニウム錯体/シラノール塩、トリクロロメチルトリアジン誘導体等が挙げられる。上記オニウム塩やピリジニウム塩の対アニオンとしては、例えば、SbF6-、PF6-、AsF6-、BF4-、テトラキス(ペンタフルオロ)ボレート、トリフルオロメタンスルフォネート、メタンスルフォネート、トリフルオロアセテート、アセテート、スルフォネート、トシレート、ナイトレート等が挙げられる。 As the photopolymerization initiator (G), a photoradical polymerization initiator and a photocationic polymerization initiator are preferable. As the photoradical polymerization initiator, for example, 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-) Propyl) ketone, α-hydroxy-α-α'-dimethylacetophenone, methoxyacetophenone, acetophenone derivatives such as 2,2-dimethoxy-2-phenylacetophenone; benzoin ether compounds such as benzoin ethyl ether and benzoin propyl ether; benzyldimethyl Ketal derivatives such as ketals; halogenated ketones, acyl phosphine oxides, acyl phosphonates, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2 -N, N-dimethylamino- 1- (4-morpholinophenyl) -1-butane, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxidebis- (2,6-dimethoxybenzoyl) 2,4,4-trimethylpentylphosphine Oxide, bis (η5-cyclopentadienyl) -bis (pentafluorophenyl) -titanium, bis (η5-cyclopentadienyl) -bis [2,6-difluoro-3- (1H-pyrid-1-yl) phenyl ] -Titanium, anthracene, perylene, coronene, tetracene, benzanthracene, phenothiazine, flavin, acridine, ketocoumarin, thioxanthone derivative, benzophenone, acetophenone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4- Diethylthioxanthone, 2,4 -Diisopropylthioxanthone, isopropylthioxanthone and the like. Examples of the photocationic polymerization initiator include iron-allene complex compounds, aromatic diazonium salts, aromatic iodonium salts, aromatic sulfonium salts, onium salts, pyridinium salts, aluminum complexes / silanol salts, trichloromethyltriazine derivatives, and the like. It is done. Examples of the counter anion of the onium salt or pyridinium salt include SbF 6− , PF 6− , AsF 6− , BF 4− , tetrakis (pentafluoro) borate, trifluoromethane sulfonate, methane sulfonate, trifluoro Examples include acetate, acetate, sulfonate, tosylate, and nitrate.
 光重合開始剤(G)の添加量は、一般に光硬化性樹脂100重量部に対して、0.1~15重量部であり、好ましくは、0.5~10重量部である。 The addition amount of the photopolymerization initiator (G) is generally 0.1 to 15 parts by weight, preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the photocurable resin.
 上記光硬化性樹脂組成物には、反応性希釈剤が添加されてもよく、反応性希釈剤としては、例えば、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、2-(2-エトキシエトキシ)エチルアクリレート、テトラヒドロフルフリルアクリレート、2-フェノキシエチルアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート等が挙げられる。 A reactive diluent may be added to the photocurable resin composition. Examples of the reactive diluent include 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, neopentyl, and the like. Glycol diacrylate, 2- (2-ethoxyethoxy) ethyl acrylate, tetrahydrofurfuryl acrylate, 2-phenoxyethyl acrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, 1,3-butylene glycol diacrylate, tripropylene glycol diacrylate , Trimethylolpropane triacrylate, pentaerythritol tetraacrylate, and hydroxypivalic acid neopentyl glycol diacrylate.
 上記光硬化性樹脂組成物には、更に、必要に応じて、一般に添加されている光重合開始助剤、熱重合禁止剤、充填剤、接着付与剤、チクソ付与剤、可塑剤、着色剤等が添加されてもよい。 The photo-curable resin composition further includes photopolymerization initiation assistants, thermal polymerization inhibitors, fillers, adhesion-imparting agents, thixotropic agents, plasticizers, colorants, etc. that are generally added as necessary. May be added.
 本発明の方法において、光硬化性樹層を硬化する場合は、光源として紫外~可視領域に発光する多くのものが採用でき、例えば超高圧、高圧、低圧水銀灯、ケミカルランプ、キセノンランプ、ハロゲンランプ、マーキュリーハロゲンランプ、カーボンアーク灯、白熱灯、レーザ光等が挙げられる。照射時間は、ランプの種類、光源の強さによって一概には決められないが、0.1秒~数十秒程度、好ましくは0.5~数秒である。紫外線照射量は、300mJ/cm以上が好ましい。 In the method of the present invention, when the photocurable resin layer is cured, many light sources that emit light in the ultraviolet to visible region can be used as the light source. , Mercury halogen lamp, carbon arc lamp, incandescent lamp, laser beam and the like. The irradiation time is not generally determined depending on the type of the lamp and the intensity of the light source, but is about 0.1 to several tens of seconds, preferably 0.5 to several seconds. The ultraviolet irradiation amount is preferably 300 mJ / cm 2 or more.
 また、硬化促進のために、予め積層体を30~80℃に加温し、これに光(紫外線等)を照射してもよい。 In order to accelerate curing, the laminate may be preheated to 30 to 80 ° C. and irradiated with light (such as ultraviolet rays).
[凹凸パターンの形成装置]
 本発明の凹凸パターンの形成装置は、樹脂製フィルムの微細な凹凸パターンを、基板上の光硬化製樹脂層の反転凹凸パターンを形成すべき位置に配置するために、樹脂製フィルムと基板とを位置合わせするための位置合わせ手段に、樹脂製フィルムを平面方向に伸張する伸張手段を含んでいる。そして、樹脂フィルムと基板とを位置合わせした後に、樹脂製フィルムの微細な凹凸パターンを基板上の光硬化性樹脂層に載置、押圧するための押圧手段、光(紫外線等)を照射して、光硬化性樹脂層を硬化又は半硬化するための光照射手段を含んでいる。これにより、本発明の凹凸パターンの形成方法を効率的に行うことができる。
[Uneven pattern forming device]
The concavo-convex pattern forming apparatus of the present invention includes a resin film and a substrate in order to dispose the fine concavo-convex pattern of the resin film at a position where the inverted concavo-convex pattern of the photocured resin layer on the substrate should be formed. The positioning means for positioning includes stretching means for stretching the resin film in the planar direction. And after aligning a resin film and a board | substrate, the fine concavo-convex pattern of resin-made films is laid on the photocurable resin layer on a board | substrate, and presses, light (ultraviolet rays etc.) is irradiated. And a light irradiation means for curing or semi-curing the photocurable resin layer. Thereby, the formation method of the uneven | corrugated pattern of this invention can be performed efficiently.
 図4は、本発明の凹凸パターンの形成装置の代表的な一例を示す概略断面図である。図4においては、微細な凹凸パターンが形成された樹脂製フィルム51を着脱可能に固定する複数のクランプ部61がフィルム保持部62に平面方向に移動及び静止自在に設置されている。クランプ部61は、ネジによる締付け等により着脱可能にフィルムの縁部を固定できるものである。フィルム保持部62も平面方向に移動及び静止自在であり、角度調節が可能であることが好ましい。また、光硬化性樹脂層56が形成された基板55を着脱自在に固定する基板保持部63がフィルム保持部62と向かい合うように設置されている。基板保持部63も平面方向に移動及び静止自在であり、角度調節が可能であることが好ましい。 FIG. 4 is a schematic sectional view showing a typical example of the uneven pattern forming apparatus of the present invention. In FIG. 4, a plurality of clamp parts 61 for detachably fixing a resin film 51 on which a fine uneven pattern is formed are installed on a film holding part 62 so as to be movable and stationary in a plane direction. The clamp part 61 can fix the edge of a film so that attachment or detachment is possible by tightening with a screw or the like. It is preferable that the film holding portion 62 is also movable and stationary in the plane direction and can be adjusted in angle. Further, a substrate holding part 63 for detachably fixing the substrate 55 on which the photocurable resin layer 56 is formed is installed so as to face the film holding part 62. It is preferable that the substrate holder 63 is also movable and stationary in the plane direction, and the angle can be adjusted.
 また、クランプ部61に固定された樹脂製フィルム51の上方に、樹脂製フィルム51及び基板55の位置合わせ用のアライメントマークを観察するためのアライメントカメラ70が複数設置されている。1対のアライメントマーク毎に1台のアライメントカメラ70が設置されていることが好ましい。 Further, a plurality of alignment cameras 70 for observing alignment marks for alignment of the resin film 51 and the substrate 55 are installed above the resin film 51 fixed to the clamp portion 61. It is preferable that one alignment camera 70 is installed for each pair of alignment marks.
 更に、位置合わせ後、樹脂製フィルム51を伸張した状態で、光硬化性樹脂層56に押圧する透過型押圧部71と、紫外線照射するためのUVランプ72が備えられたUV押圧部73が設置されている。透過型押圧部71とUVランプ72は別々に設置されていても良いが、樹脂製フィルム51を光硬化性樹脂層56に押圧した状態で紫外線照射できるように、一体型のUV押圧部73のような装置が好ましい。 Further, after alignment, a UV-type pressing unit 73 provided with a transmission-type pressing unit 71 that presses against the photo-curable resin layer 56 and a UV lamp 72 for irradiating ultraviolet rays is installed in a state where the resin film 51 is stretched. Has been. Although the transmissive pressing part 71 and the UV lamp 72 may be installed separately, the integrated UV pressing part 73 of the integrated UV pressing part 73 can be irradiated with ultraviolet rays while the resin film 51 is pressed against the photocurable resin layer 56. Such an apparatus is preferred.
 UV押圧部73は透過型押圧部71のような固体(例えば、石英等)で押圧するものでなくても、空気等の定圧縮性の気体やオイル等の液体の媒体により圧力を掛け、樹脂製フィルム51を光硬化性樹脂層56に押圧する装置を有するものでも良い。 Even if the UV pressing unit 73 is not pressed by a solid (for example, quartz) like the transmission pressing unit 71, the UV pressing unit 73 applies a pressure by a liquid medium such as a constant compressible gas such as air or oil, and the resin. You may have a device which presses the film-made film 51 against the photocurable resin layer 56.
 このような凹凸パターンの形成装置によれば、樹脂製フィルムと基板とを精確に位置合わせして、基板上の凹凸パターンを形成すべき位置に精確に凹凸パターンを形成することができる。 According to such a concavo-convex pattern forming apparatus, the resin film and the substrate can be accurately aligned, and the concavo-convex pattern can be accurately formed at the position where the concavo-convex pattern is to be formed on the substrate.
 また、本発明の凹凸パターンの形成装置は、図3に示すような長尺状の樹脂製フィルムを用いて、ロール・トゥ・ロール方式で連続的に凹凸パターンを形成する方法に用いる装置であっても良い。この場合は、樹脂製フィルムのロールの搬送ライン上に、上記の位置合わせ手段、及び押圧手段を有する装置を設置する。上述のように、位置合わせ手段の平面方向の伸張方法は、ロール搬送方向と直行する方向についてはクランプ部で固定して行い、ロール搬送方向と同じ方向については、ロール搬送における樹脂製フィルムに掛かるテンションを調節することで行う。 Further, the uneven pattern forming apparatus of the present invention is an apparatus used for a method of continuously forming an uneven pattern by a roll-to-roll method using a long resin film as shown in FIG. May be. In this case, the apparatus which has said positioning means and a press means is installed on the conveyance line of the roll of resin films. As described above, the extending method in the planar direction of the alignment means is performed by fixing the clamp unit in the direction orthogonal to the roll conveyance direction, and is applied to the resin film in the roll conveyance in the same direction as the roll conveyance direction. This is done by adjusting the tension.
 なお、本発明は上記の実施の形態の構成に限定されるものではなく、発明の要旨の範囲内で種々変形が可能である。 The present invention is not limited to the configuration of the above-described embodiment, and various modifications can be made within the scope of the gist of the invention.
 本発明の凹凸パターンの形成方法によれば、高品質な電子ディスプレイ、電子ペーパー等の情報表示用パネルの隔壁や電子デバイス(リソグラフィ、トランジスタ)、光学部品(マイクロレンズアレイ、導波路、光学フィルタ、フォトニックス結晶)、バイオ関連材料(DNAチップ、マイクロリアクタ)、記録媒体(パターンドメディア、DVD)等を有利に得ることができる。 According to the method for forming a concavo-convex pattern according to the present invention, partitions of information display panels such as high-quality electronic displays and electronic paper, electronic devices (lithography, transistors), optical components (microlens arrays, waveguides, optical filters, Photonic crystals), bio-related materials (DNA chips, microreactors), recording media (patterned media, DVD) and the like can be advantageously obtained.
 11、31、51:樹脂製フィルム
 15、35、55:基板
 16、36、56:光硬化性樹脂層
 21、41、61:クランプ部
 22、42、62:フィルム保持部
 23、43、63:基板保持部
 30:ロール 
 45a、45b:アライメントマーク
 50、70:アライメントカメラ
 71:UVランプ
 72:透過型押圧部
 73:UV押圧部
11, 31, 51: Resin film 15, 35, 55: Substrate 16, 36, 56: Photocurable resin layer 21, 41, 61: Clamp part 22, 42, 62: Film holding part 23, 43, 63: Substrate holder 30: roll
45a, 45b: Alignment mark 50, 70: Alignment camera 71: UV lamp 72: Transmission type pressing part 73: UV pressing part

Claims (11)

  1.  表面に微細な凹凸パターンが形成された樹脂製フィルムの当該凹凸パターンを、基板上に形成された光硬化性樹脂組成物からなる光硬化性樹脂層に転写し、前記光硬化性樹脂層に微細な反転凹凸パターンを形成する方法であって、
     前記樹脂製フィルムの微細な凹凸パターンを、前記基板上の光硬化製樹脂層の反転凹凸パターンを形成すべき位置に配置するために、前記樹脂製フィルムと前記基板とを位置合わせするための位置合せ工程、
     前記樹脂製フィルムの微細な凹凸パターンを前記基板上の光硬化性樹脂層に載置、押圧するための押圧工程、
     前記光硬化性樹脂層に光照射して、前記光硬化性樹脂層を硬化又は半硬化するための光照射工程を含み、且つ
     前記位置合せ工程において、前記樹脂製フィルムを平面方向に伸張する伸張手段を用いる工程を含むことを特徴とする凹凸パターンの形成方法。
    The concavo-convex pattern of the resin film having a fine concavo-convex pattern formed on the surface is transferred to a photocurable resin layer made of a photocurable resin composition formed on a substrate, and the photocurable resin layer is finely patterned. A method for forming a reversal uneven pattern,
    Position for aligning the resin film and the substrate in order to dispose the fine concavo-convex pattern of the resin film at a position where the inverted concavo-convex pattern of the photocurable resin layer on the substrate is to be formed. Alignment process,
    A pressing step for placing and pressing the fine concavo-convex pattern of the resin film on the photocurable resin layer on the substrate;
    A light irradiation step for irradiating the photocurable resin layer with light to cure or semi-harden the photocurable resin layer, and in the alignment step, stretching the resin film in a planar direction A method of forming a concavo-convex pattern comprising a step of using means.
  2.  前記伸張手段が、前記樹脂製フィルムを縦方向及び横方向の二軸方向に伸張する手段である請求項1に記載の凹凸パターンの形成方法。 The method for forming a concavo-convex pattern according to claim 1, wherein the stretching means is a means for stretching the resin film in a biaxial direction of a vertical direction and a horizontal direction.
  3.  前記伸張手段が、前記樹脂製フィルムの弾性変形範囲で伸張する手段である請求項1又は2に記載の凹凸パターンの形成方法。 The method for forming a concavo-convex pattern according to claim 1 or 2, wherein the stretching means is a means for stretching within an elastic deformation range of the resin film.
  4.  前記伸張手段が、前記樹脂製フィルムの縁部を着脱可能に固定することができ、当該樹脂製フィルムの平面方向に、それぞれ独立して移動及び静止自在である少なくとも2基のクランプ部を有するフィルム保持部の当該クランプ部に、前記樹脂製フィルムの縁部を固定し、前記クランプ部を移動させることにより前記樹脂製フィルムを伸張する手段である請求項1~3のいずれか1項に記載の凹凸パターンの形成方法。 A film having at least two clamp portions that are capable of detachably fixing the edge portion of the resin film and that are independently movable and stationary in the planar direction of the resin film. The means according to any one of claims 1 to 3, which is means for extending the resin film by fixing an edge of the resin film to the clamp part of the holding part and moving the clamp part. A method for forming an uneven pattern.
  5.  前記樹脂製フィルムの縁部の縦方向及び/又は横方向に互いに対向する位置を、前記クランプ部に固定する請求項4に記載の凹凸パターンの形成方法。 The method for forming a concavo-convex pattern according to claim 4, wherein positions of the edges of the resin film facing each other in the vertical direction and / or the horizontal direction are fixed to the clamp part.
  6.  前記樹脂製フィルムが矩形状であり、
     当該樹脂製フィルムの各辺の縁部を、それぞれ少なくとも1基の前記クランプ部に固定する請求項4又は5に記載の凹凸パターンの形成方法。
    The resin film is rectangular,
    The method for forming a concavo-convex pattern according to claim 4 or 5, wherein an edge of each side of the resin film is fixed to at least one clamp part.
  7.  前記矩形状の樹脂製フィルムの各辺の縁部を、それぞれ2基以上の前記クランプ部に固定する請求項6に記載の凹凸パターンの形成方法。 The method for forming a concavo-convex pattern according to claim 6, wherein an edge of each side of the rectangular resin film is fixed to two or more clamp parts.
  8.  前記位置合わせ工程が、前記樹脂製フィルムと前記基板とに設けられた複数のアライメントマークを重ね合わせることで位置合わせする工程である請求項1~7のいずれか1項に記載の凹凸パターンの形成方法。 The uneven pattern formation according to any one of claims 1 to 7, wherein the alignment step is a step of aligning a plurality of alignment marks provided on the resin film and the substrate. Method.
  9.  前記樹脂製フィルム及び前記基板のアライメントマークが、前記樹脂製フィルムの縁部を固定するクランプ部2基に対して、少なくとも1個ずつ設けられている請求項8に記載の凹凸パターンの形成方法。 The method for forming a concavo-convex pattern according to claim 8, wherein at least one alignment mark of the resin film and the substrate is provided for each of two clamp portions for fixing an edge of the resin film.
  10.  前記樹脂製フィルムが、樹脂製の中間スタンパである請求項1~9に記載の凹凸パターンの形成方法。 The method for forming a concavo-convex pattern according to any one of claims 1 to 9, wherein the resin film is a resin intermediate stamper.
  11.  請求項1~10のいずれか1項に記載の凹凸パターンの形成方法に使用される凹凸パターンの形成装置であって、
     前記樹脂製フィルムの微細な凹凸パターンを、前記基板上の光硬化製樹脂層の反転凹凸パターンを形成すべき位置に配置するために、前記樹脂製フィルムと前記基板とを位置合わせするための位置合せ手段、
     前記樹脂製フィルムの微細な凹凸パターンを前記基板上の光硬化性樹脂層に載置、押圧するための押圧手段、
     前記光硬化性樹脂層に光照射して、前記光硬化性樹脂層を硬化又は半硬化するための光照射手段を含み、且つ
     前記位置合せ手段が、前記樹脂製フィルムを平面方向に伸張する伸張手段を含むことを特徴とする凹凸パターンの形成装置。
    An apparatus for forming a concavo-convex pattern used in the method for forming a concavo-convex pattern according to any one of claims 1 to 10,
    Position for aligning the resin film and the substrate in order to dispose the fine concavo-convex pattern of the resin film at a position where the inverted concavo-convex pattern of the photocurable resin layer on the substrate is to be formed. Matching means,
    A pressing means for placing and pressing the fine concavo-convex pattern of the resin film on the photocurable resin layer on the substrate;
    A light irradiation means for irradiating the photocurable resin layer with light to cure or semi-harden the photocurable resin layer, and the alignment means extends the resin film in a planar direction. An apparatus for forming a concavo-convex pattern comprising means.
PCT/JP2011/061621 2010-05-20 2011-05-20 Method for formation of concavo-convex pattern using resin film, and device for use in the method WO2011145716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010115927A JP2011240643A (en) 2010-05-20 2010-05-20 Method for forming uneven pattern using resin film, and device for use in the method
JP2010-115927 2010-05-20

Publications (1)

Publication Number Publication Date
WO2011145716A1 true WO2011145716A1 (en) 2011-11-24

Family

ID=44991802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061621 WO2011145716A1 (en) 2010-05-20 2011-05-20 Method for formation of concavo-convex pattern using resin film, and device for use in the method

Country Status (2)

Country Link
JP (1) JP2011240643A (en)
WO (1) WO2011145716A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014217951A (en) * 2013-05-01 2014-11-20 株式会社リコー Method and device for manufacturing flat-type part, and mold
WO2016090395A1 (en) * 2014-12-10 2016-06-16 Joanneum Research Forschungsgesellschaft Mbh Poly- or prepolymer composition, or embossing lacquer comprising such a composition and use thereof
CN108352301A (en) * 2015-10-26 2018-07-31 大日本印刷株式会社 Film die and method for stamping
CN111443405A (en) * 2015-12-18 2020-07-24 迪睿合电子材料有限公司 Optical film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101881200B1 (en) * 2012-05-08 2018-07-24 아사히 가세이 가부시키가이샤 Transfer method and thermal nanoimprint device
KR101225512B1 (en) 2012-08-17 2013-01-23 이장엽 Coating apparatus of interior panel and coating method using the same
US9481124B2 (en) * 2013-03-15 2016-11-01 Johnson & Johnson Vision Care, Inc. Method and apparatus for forming thermoformed ophthalmic insert devices
KR101684238B1 (en) * 2015-03-25 2016-12-20 한국기계연구원 Printing correction system using a flexible cliche and a printing method using the same
KR101631968B1 (en) * 2015-04-28 2016-06-20 부산대학교 산학협력단 Method for Fabricating Structure Having Micro-scale Surface Wrinkles
KR101688615B1 (en) * 2015-05-07 2017-01-02 한국기계연구원 Printing correction system using flexible and hard cliches and a printing method using the same
JP2017034276A (en) * 2016-10-20 2017-02-09 大日本印刷株式会社 Mold for imprint and imprint method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015375A (en) * 2005-06-08 2007-01-25 Canon Inc Mold, apparatus including mold, pattern transfer apparatus and pattern forming method
JP2007165812A (en) * 2005-12-09 2007-06-28 Obducat Ab Pattern duplicating device using intermediate stamp
JP2010080714A (en) * 2008-09-26 2010-04-08 Canon Inc Stamping device, and method of manufacturing article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015375A (en) * 2005-06-08 2007-01-25 Canon Inc Mold, apparatus including mold, pattern transfer apparatus and pattern forming method
JP2007165812A (en) * 2005-12-09 2007-06-28 Obducat Ab Pattern duplicating device using intermediate stamp
JP2010080714A (en) * 2008-09-26 2010-04-08 Canon Inc Stamping device, and method of manufacturing article

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014217951A (en) * 2013-05-01 2014-11-20 株式会社リコー Method and device for manufacturing flat-type part, and mold
WO2016090395A1 (en) * 2014-12-10 2016-06-16 Joanneum Research Forschungsgesellschaft Mbh Poly- or prepolymer composition, or embossing lacquer comprising such a composition and use thereof
KR20170093229A (en) * 2014-12-10 2017-08-14 요하노이움 리서치 포르슝스게젤샤프트 엠베하 Poly- or prepolymer composition, or embossing lacquer comprising such a composition and use thereof
CN107533287A (en) * 2014-12-10 2018-01-02 约阿内研究有限责任公司 Polymer composition or prepolymer composite or embossing lacquer comprising such composition and application thereof
JP2018505288A (en) * 2014-12-10 2018-02-22 ヨアネウム・リサーチ・フォーシュングスゲゼルシャフト・エムベーハー Polymer compositions or prepolymer compositions or embossed paints comprising such compositions and the use of embossed paints
CN107533287B (en) * 2014-12-10 2021-06-01 约阿内研究有限责任公司 Polymer or prepolymer composition or embossing lacquer comprising such a composition and use thereof
KR102423758B1 (en) * 2014-12-10 2022-07-20 요하노이움 리서치 포르슝스게젤샤프트 엠베하 Poly- or prepolymer composition, or embossing lacquer comprising such a composition and use thereof
CN108352301A (en) * 2015-10-26 2018-07-31 大日本印刷株式会社 Film die and method for stamping
US11123960B2 (en) * 2015-10-26 2021-09-21 Dai Nippon Printing Co., Ltd. Film mold and imprinting method
CN108352301B (en) * 2015-10-26 2023-03-24 大日本印刷株式会社 Thin film mold and imprinting method
CN111443405A (en) * 2015-12-18 2020-07-24 迪睿合电子材料有限公司 Optical film
CN111443405B (en) * 2015-12-18 2023-08-25 迪睿合电子材料有限公司 Method for using optical film

Also Published As

Publication number Publication date
JP2011240643A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2011145716A1 (en) Method for formation of concavo-convex pattern using resin film, and device for use in the method
WO2011034123A1 (en) Photocurable transfer sheet, and method for forming recessed and projected pattern using same
JP5232077B2 (en) Microstructure transfer device
US8016585B2 (en) Nanoimprint resin stamper
JP2013110196A (en) Alignment method between resin film and substrate
JP5499668B2 (en) Imprint mold and pattern forming method using the mold
US8734702B2 (en) Original and article manufacturing method using same
JP2010269580A (en) Imprint apparatus and manufacturing method for article
JPWO2012029843A1 (en) Transfer system and transfer method
WO2011111815A1 (en) Method for formation of concave-convex pattern using photocurable transcription sheet, and device for use in the method
EP2138895B1 (en) Nano imprinting method and apparatus
Otto et al. Reproducibility and homogeneity in step and repeat UV-nanoimprint lithography
WO2012117892A1 (en) Resin stamper for imprinting, and production method thereof
JP2015159179A (en) Method and device for producing film-shaped mold, and film-shaped mold
JP2010225785A (en) Method of manufacturing transfer film for imprinting, and transfer film for imprinting
KR100930925B1 (en) Composite Imprint Stamp and Manufacturing Method
KR100934239B1 (en) How to make a large area stamp for imprint
JP2012019013A (en) Photocurable transfer sheet, and method of forming imprint pattern using same
JP2011178052A (en) Photo-curable transfer sheet and method for forming concavo-convex pattern using the same
JP2013105755A (en) Alignment method and method for forming recessed and projecting pattern
JP2011136459A (en) Photocurable transfer sheet, and method for forming irregular pattern using the same
TWI426479B (en) Device and method for fabricating flat display device
JP6036865B2 (en) Imprint mold
JP2013103335A (en) Shape adjustment stage for resin stamper, and imprint device including the same
JP2012023117A (en) Method for manufacturing intermediate stamper and method for forming uneven pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783648

Country of ref document: EP

Kind code of ref document: A1