WO2011145652A1 - デフォーカスされた旋光度測定装置および旋光度測定方法ならびにデフォーカスされた光ファイバ光学系 - Google Patents

デフォーカスされた旋光度測定装置および旋光度測定方法ならびにデフォーカスされた光ファイバ光学系 Download PDF

Info

Publication number
WO2011145652A1
WO2011145652A1 PCT/JP2011/061442 JP2011061442W WO2011145652A1 WO 2011145652 A1 WO2011145652 A1 WO 2011145652A1 JP 2011061442 W JP2011061442 W JP 2011061442W WO 2011145652 A1 WO2011145652 A1 WO 2011145652A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
sample
defocused
signal light
Prior art date
Application number
PCT/JP2011/061442
Other languages
English (en)
French (fr)
Inventor
梶岡博
Original Assignee
塩野義製薬株式会社
有限会社グローバルファイバオプティックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 塩野義製薬株式会社, 有限会社グローバルファイバオプティックス filed Critical 塩野義製薬株式会社
Priority to US13/698,988 priority Critical patent/US8922760B2/en
Priority to KR1020127030210A priority patent/KR20130095642A/ko
Priority to JP2012515908A priority patent/JPWO2011145652A1/ja
Priority to CN2011800247225A priority patent/CN103038627A/zh
Priority to EP11783586.8A priority patent/EP2573544A4/en
Publication of WO2011145652A1 publication Critical patent/WO2011145652A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/19Dichroism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14558Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters by polarisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Definitions

  • the present invention relates to a defocused optical fiber optical system that can be used for a defocused optical rotation measurement device and an optical rotation measurement system for a light scattering sample as a sample for optical rotation measurement of collected blood, serum, living body, etc. And a method for measuring optical rotation using a defocused optical fiber optical system. More specifically, it can measure the concentration of carbohydrate in a sample for optical rotation measurement.
  • Defocused optical rotation measurement device that can irradiate the skin with laser light and measure the transmitted light and / or reflected light to measure the carbohydrate concentration of the sample for optical rotation measurement with high measurement accuracy, defocus
  • the present invention relates to a method for measuring the optical rotation using the optical fiber optical system and the defocused optical fiber optical system.
  • the first method known as a method for measuring the glucose concentration in blood is to irradiate a part of a living body such as a finger with infrared laser light as described in Patent Document 1, and to scatter light from a blood vessel. Is used to measure the concentration of glucose contained in blood. This utilizes the fact that scattered light is reduced in proportion to the glucose concentration. However, this method has a problem that the light intensity of scattered light depends on temperature, skin moisture, oil components, etc., and is not widely used.
  • the second method is to propagate a polarization component orthogonal to the optical rotatory material and measure its birefringence in an open loop.
  • this method has a large error when measuring glucose of about 10 mm at a blood glucose level of about 0.1 g / dL (deciliter), which is a healthy person. It cannot be measured.
  • the third method is a method of measuring with a birefringence measuring apparatus described in Patent Document 3.
  • This method is similar to the present invention in that a counter collimator optical system is provided in a ring of a ring interferometer made of a polarization-maintaining optical fiber, a parallel beam is propagated in the specimen, and the phase difference between the left and right light is measured. The optical rotation of the specimen is measured.
  • glucose in a glass cell having a thickness of about 10 mm can be measured with sufficient accuracy at 0.1 g / dL, which is a blood sugar level of a healthy person.
  • FIG. 23 is a diagram showing an optical system in which a light scattering specimen is inserted into a conventional counter collimator, and a pair of single mode (hereinafter also referred to as SM) optical fibers 1-1 and 1- 1 having ferrules 2-1 and 2-2.
  • the lenses 3-1 and 3-2 are arranged at the positions of the focal lengths 5-1 and 5-2 of the lenses 3-1 and 3-2, respectively, from the tip of the lens 2 to constitute an opposing collimator optical system.
  • the light scattering specimen 4 is arranged and the optical rotation of the light scattering specimen 4 is measured.
  • each optical fiber is placed at the focal position of each lens to form a counter collimator, and the signal light emitted from the end face of one optical fiber is converted into a parallel beam by the lens.
  • signal light that has been irradiated onto the scattered sample 4 and transmitted through the light scattered sample 4 is coupled to the other optical fiber.
  • a fold portion at the base of a finger having a thickness of about 1.5 mm is inserted into the opposing collimator in FIG. 23, the scattering loss of the living body is very large, and the optical rotation cannot be measured.
  • the insertion loss of the single-mode optical fiber facing collimator optical system is normally about 0.5 dB, but when a living body is inserted, the insertion loss becomes 80 dB or more.
  • the axis is the collimator angle (unit: degree), that is, the beam angle entering and exiting the collimator, and the vertical axis is the loss (unit: dB). From this, it can be seen that the coupling loss increases by 50 dB or more when the beam angle deviates from about 0 degree to about 0.3 degree.
  • an optical measuring device that measures the blood concentration of blood collected up to now and the glucose concentration of a living body with high accuracy has not been put into practical use.
  • the present invention has been made in view of the above situation, and the problem to be solved by the present invention is that the collected blood and the glucose concentration of a living body can be actually used in a medical field without depending on a reagent.
  • High-precision real-time measurement, non-invasive measurement of glucose concentration in a living body with high accuracy, and easy-to-use optical rotation measurement device, measurement system, and novel polarized light that can be used therefor A conversion optical system and an optical rotation measurement method using the same are provided.
  • each opposing optical fiber is It is a common technical idea that the collimator optical system should have an end face at the focal position of the lens. However, according to the results of experimental studies by the present inventors, this method cannot solve the problems of the present invention.
  • the present invention has solved the problem by using a defocus polarization conversion optical system of a completely new technical idea in which the end face of the optical fiber is shifted from the focal position of the lens. Furthermore, by incorporating a mode matching unit into the polarization conversion optical system, the coupling loss of an optical system in which a scatterer such as a living body is sandwiched between optical fibers is realized with a low loss that could not be expected in the past. Examples of the present invention will be specifically described below.
  • An embodiment of the first invention (hereinafter referred to as invention 1) as an example of the present invention made to solve the problem is an optical path of signal light through a single mode optical fiber in which a lens is arranged at the tip.
  • the signal light emitted from the end face of one single-mode optical fiber having a lens disposed at the tip is placed opposite to the sample for optical rotation measurement (hereinafter referred to as sample).
  • sample for optical rotation measurement
  • the signal light transmitted through the sample and / or the signal light reflected by the sample is incident on the end face of the other single-mode optical fiber having a lens disposed at the tip, thereby increasing the optical rotation of the sample.
  • An optical rotation measuring apparatus capable of measuring related optical information, comprising: an output unit for signal light incident on the sample of the one single-mode optical fiber; A lens disposed in the signal light input section (hereinafter referred to simply as a signal light output section to be incident on the sample of the optical fiber and / or a lens disposed in the signal light input section from the sample.
  • the output lens disposed in the input portion of the signal light from the sample and / or the output portion of the signal light incident on the sample of the other single mode optical fiber is an optical path of the signal light.
  • at least one of the end face of the one single-mode optical fiber and the end face of the other single-mode optical fiber is a defocused optical fiber that is not at the focal position of the output lens of the single-mode optical fiber. It is an example of embodiment of the invention of the defocused optical rotation measuring device characterized by forming the optical system.
  • An embodiment of the second invention as an example of the present invention developed from the invention 1 (hereinafter referred to as the invention 2) is the defocused optical rotation measuring device according to the invention 1, wherein Implementation of the invention of a defocused optical rotation measuring device characterized in that at least one of the numerical aperture (hereinafter referred to as NA) of a single mode optical fiber and the NA of the other single mode optical fiber is 0.07 or less. It is an example of the form.
  • An embodiment of the third invention as an example of the present invention developed by developing the invention 1 or 2 (hereinafter referred to as invention 3) is the defocused optical rotation measuring device according to the invention 1 or 2.
  • the end face of the one single mode optical fiber and the end face of the other single mode optical fiber are located closer to the output lens than the focal position of the output lens of the optical fiber.
  • 2 is an embodiment of the invention of the optical rotation measuring device.
  • An embodiment of the fourth invention as an example of the present invention developed from the invention 1 or 2 (hereinafter referred to as invention 4) is the defocused optical rotation measuring device according to the invention 1 or 2.
  • the end surface of the one single-mode optical fiber and the end surface of the other single-mode optical fiber are located farther from the output lens than the focal position of the output lens of the optical fiber. It is an example of embodiment of the invention of the focused optical rotation measuring device.
  • An embodiment of the fifth invention as an example of the present invention developed from the inventions 1 to 4 (hereinafter referred to as invention 5) is the defocused optical rotation according to any of the inventions 1 to 4.
  • the tip portion of the single mode optical fiber and the output lens of the optical fiber are fixed to each other. .
  • An embodiment of the sixth invention as an example of the present invention developed from Inventions 1 to 5 is the defocused optical rotation according to any one of Inventions 1 to 5.
  • At least one of the one single-mode optical fiber and the other single-mode optical fiber has a Faraday rotator disposed between an end surface of the single-mode optical fiber and a sample. It is an example of embodiment of the invention of the focused optical rotation measuring device.
  • An embodiment of the seventh invention as an example of the present invention developed from the inventions 1 to 6 is the defocused optical rotation according to any of the inventions 1 to 6.
  • at least one of the one single-mode optical fiber and the other single-mode optical fiber has a quarter-wave plate and a polarizer disposed between the end surface of the single-mode optical fiber and the sample.
  • 1 is an embodiment of the invention of a defocused optical rotation measuring device characterized by that.
  • An eighth embodiment of the present invention (hereinafter referred to as invention 8) as an example of the present invention developed by developing inventions 1 to 7 is the defocused optical rotation according to any one of inventions 1 to 7.
  • the one single-mode optical fiber and the other single-mode optical fiber are polarization-maintaining optical fibers, and a polarizer, a Faraday rotator, and a quarter wavelength are provided between each optical fiber tip and the sample.
  • a signal light of the same intrinsic polarization mode that is, an output polarization mode
  • a right circle is formed on the sample from one incident side of the sample.
  • Defocused optical rotation characterized in that the polarizer, the Faraday rotator, the quarter-wave plate orientation, and the polarization-maintaining optical fiber intrinsic polarization orientation are set so as to be coupled in an optical mode. It is an example of embodiment of the invention of a degree measuring device.
  • an embodiment of the ninth invention as an example of the present invention developed from the inventions 1 to 8 is the defocused optical rotation according to any of the inventions 1 to 8.
  • the defocused optical rotation measurement apparatus includes a ring of a ring optical interference system configured by the sample, the defocused optical fiber optical system, and the polarization plane preserving optical fiber, and the ring is moved in both directions.
  • An embodiment of the tenth invention as an example of the present invention developed by developing the invention 9 is the defocused optical rotation measuring device according to the invention 9, wherein the defocusing is performed.
  • the optical rotation measuring apparatus propagates the polarization as the clockwise signal light and the polarization as the counterclockwise signal light to the ring optical path of the ring interferometer, and the optical fiber portion of the ring optical path of the ring interferometer as the clockwise signal light.
  • the same optical fiber in the same linear polarization mode with the same polarization as the counterclockwise signal light, respectively propagate through the same optical fiber as the clockwise signal light and the counterclockwise signal light, respectively.
  • It is an embodiment of the invention of a defocused optical rotation measuring device characterized in that it is configured to propagate signal light and counterclockwise signal light.
  • An embodiment of the eleventh invention as an example of the present invention developed from the inventions 1 to 10 is the defocused optical rotation according to any one of the inventions 1 to 10.
  • An embodiment of an invention of a defocused optical rotation measurement device characterized in that the measurement device has a mechanism capable of scanning the sample in a direction perpendicular to the optical path.
  • an embodiment of the twelfth invention as an example of the present invention developed from the inventions 1 to 11 is the defocused optical rotation according to any of the inventions 1 to 11.
  • the sample is a part of a living body
  • the optical rotation measuring device measures optical information related to the optical rotation of the sample, as a part of the detection means of the phase difference of the signal light, It has a means for detecting the phase difference in synchronization with a signal given artificially so as to periodically change the size of a part of the living body such as the pulse of the living body or the thickness of the measurement site.
  • the defocused optical rotation measuring device characterized.
  • An embodiment of the thirteenth invention as an example of the present invention developed from the inventions 1 to 12 is the defocused optical rotation according to any of the inventions 1 to 12.
  • the sample is a part of a living body
  • the optical rotation measuring device has a measurement terminal portion for sandwiching a portion for measuring optical information related to the optical rotation of the sample, and the distal end portion of the optical fiber is It is an example of embodiment of the invention of the defocused optical rotation measuring device characterized by being hold
  • An embodiment of the fourteenth invention as an example of the present invention developed by developing the inventions 1 to 13 is the defocused optical rotation according to any of the inventions 1 to 13.
  • the measuring apparatus further includes an inter-lens distance adjusting means capable of changing a distance between the output lens of the one single mode optical fiber and the output lens of the other single mode optical fiber. It is an example of embodiment of the invention of the focused optical rotation measuring device.
  • An embodiment of the fifteenth invention as an example of the present invention developed from the inventions 1 to 14 is the defocused optical rotation according to any one of the inventions 1 to 14.
  • the one single mode optical fiber and the other single mode optical fiber is a single mode light in which a first optical fiber and a second optical fiber having different core diameters are connected via a mode matching unit.
  • the first optical fiber is a small core diameter / high NA single mode optical fiber
  • the second optical fiber is a large core diameter / low NA single mode optical fiber
  • the second optical fiber is disposed closer to the sample on the optical path than the first optical fiber, and the sample of the second optical fiber.
  • An embodiment of the embodiment of the invention the defocused optical rotation measuring apparatus characterized by being arranged the output unit lens in the optical path of the signal light in the vicinity of an end face of the near side.
  • An embodiment of the sixteenth invention as an example of the present invention developed by developing the inventions 1 to 15 is the defocused optical rotation according to any of the inventions 1 to 15.
  • the defocused optical rotation measuring apparatus wherein one optical fiber and the other optical fiber arranged opposite to each other in the optical path of the signal light are the same type of optical fiber. It is an example of embodiment of this invention.
  • An embodiment of the seventeenth invention as an example of the present invention developed by developing the inventions 1 to 16 is the defocused optical rotation according to any of the inventions 1 to 16.
  • the optical fiber disposed opposite to the sample in the optical path of the signal light is a so-called double clad polarization-maintaining optical fiber. It is an embodiment.
  • An embodiment of the eighteenth invention as an example of the present invention developed by developing the inventions 1 to 17 is the defocused optical rotation according to any of the inventions 1 to 17.
  • the measuring apparatus at least one of a core expansion fiber and a core reduction fiber is used in the mode matching unit, which is an embodiment of the invention of the defocused optical rotation measurement apparatus.
  • An embodiment of the nineteenth invention as an example of the present invention developed by developing the inventions 1 to 18 is the defocused optical rotation according to any of the inventions 1 to 18.
  • the distance between the output lens of the one single mode optical fiber and the output lens of the other single mode optical fiber, which are opposed to each other in the optical path of the signal light is narrower than 3 mm. It is an example of embodiment of invention of the defocused optical rotation measuring device.
  • An embodiment of the twentieth invention as an example of the present invention developed from the inventions 1 to 19 is the defocused optical rotation according to any one of the inventions 1 to 19.
  • the polarizer, the Faraday rotator, the quarter-wave plate, and the output lens arranged opposite to each other across the sample in the optical path of the signal light are arranged at the optical fiber end. Both of the optical fiber optical systems formed are on the same side of the signal light incident surface of the sample, and a quarter-wave plate is disposed between the defocused optical fiber optical system and the sample.
  • 1 is an embodiment of an invention of a defocused optical rotation measuring device.
  • An embodiment of the twenty-first invention (hereinafter referred to as invention 21) as an example of the present invention made to solve the problem is an optical path of signal light through a single mode optical fiber in which a lens is arranged at the tip.
  • the signal light emitted from the end face of one single-mode optical fiber having a lens disposed at the tip is placed opposite to the sample for optical rotation measurement (hereinafter referred to as sample).
  • sample for optical rotation measurement
  • the signal light transmitted through the sample and / or the signal light reflected by the sample is incident on the end face of the other single-mode optical fiber having a lens disposed at the tip, thereby increasing the optical rotation of the sample.
  • An optical fiber optical system that can be used in an optical rotation measurement system capable of measuring related optical information, wherein the test of the one single-mode optical fiber is performed.
  • a lens (hereinafter referred to as an output portion of signal light to be incident on the sample of the optical fiber and / or from the sample) disposed at an output portion of the signal light to be incident on and / or an input portion of the signal light from the sample.
  • a lens disposed in the signal light input section is simply referred to as an output section lens) and a signal light input section from the sample of the other single mode optical fiber and / or an output section of the signal light incident on the sample.
  • the disposed output lens is disposed in the optical path of the signal light, and at least one of the end surface of the one single mode optical fiber and the end surface of the other single mode optical fiber is an output of the single mode optical fiber.
  • 2 is an embodiment of the invention of a defocused optical fiber optical system characterized in that it is not at the focal position of the partial lens.
  • An embodiment of the twenty-second invention as an example of the present invention developed from the invention 21 is the defocused optical fiber optical system according to the invention 21, wherein An embodiment of the invention of a defocused optical fiber optical system, wherein at least one of a numerical aperture (hereinafter referred to as NA) of a single mode optical fiber and an NA of the other single mode optical fiber is 0.07 or less. It is an example of the form.
  • NA numerical aperture
  • An embodiment of the 23rd invention as an example of the present invention developed from the invention 21 or 22 (hereinafter referred to as the invention 23) is a defocused optical fiber optical system according to the invention 21 or 22.
  • the end face of the one single mode optical fiber and the end face of the other single mode optical fiber are located closer to the output lens than the focal position of the output lens of the optical fiber.
  • 1 is an embodiment of an invention of a manufactured optical fiber optical system.
  • An embodiment of the twenty-fourth invention as an example of the present invention developed from the invention 21 or 22 (hereinafter referred to as the invention 24) is a defocused optical fiber optical system according to the invention 21 or 22.
  • the end surface of the one single-mode optical fiber and the end surface of the other single-mode optical fiber are located farther from the output lens than the focal position of the output lens of the optical fiber.
  • 1 is an embodiment of the invention of a focused optical fiber optical system.
  • An embodiment of the twenty-fifth invention as an example of the present invention developed from the inventions 21 to 24 (hereinafter referred to as invention 25) is a defocused optical fiber according to any of the inventions 21 to 24.
  • an embodiment of the defocused optical fiber optical system according to the present invention is characterized in that a tip portion of the single mode optical fiber and an output lens of the optical fiber are fixed to each other. .
  • An embodiment of the twenty-sixth invention as an example of the present invention developed from the inventions 21 to 25 (hereinafter referred to as invention 26) is a defocused optical fiber according to any of the inventions 21 to 25.
  • the optical system at least one of the one single mode optical fiber and the other single mode optical fiber has a Faraday rotator disposed between an end face of the single mode optical fiber and a sample.
  • 1 is an embodiment of the invention of a focused optical fiber optical system.
  • An embodiment of the twenty-seventh invention as an example of the present invention developed from the inventions 21 to 26 (hereinafter referred to as the invention 27) is a defocused optical fiber according to any of the inventions 21 to 26.
  • the optical system at least one of the one single-mode optical fiber and the other single-mode optical fiber has a quarter-wave plate and a polarizer disposed between the end surface of the single-mode optical fiber and the sample.
  • 1 is an embodiment of a defocused optical fiber optical system according to the present invention.
  • An embodiment of the twenty-eighth invention as an example of the present invention developed from the inventions 21 to 27 is a defocused optical fiber according to any of the inventions 21 to 27.
  • the one single-mode optical fiber and the other single-mode optical fiber are polarization plane-maintaining optical fibers, and a polarizer, a Faraday rotator, and a quarter wavelength are provided between each optical fiber tip and a sample.
  • a signal light of the same intrinsic polarization mode that is, an output polarization mode
  • a right circle is formed on the sample from one incident side of the sample.
  • the outgoing polarized light is respectively applied to the polarization-preserving optical fiber on the optical path
  • the polarizer, the Faraday rotator, the quarter-wave plate orientation, and the polarization-maintaining optical fiber intrinsic polarization orientation are set so as to be coupled in a polarization mode equal to the polarization mode.
  • 1 is an embodiment of the invention of a focused optical fiber optical system.
  • an embodiment of the twenty-ninth invention as an example of the present invention developed from the inventions 21 to 28 is a defocused optical fiber according to any of the inventions 21 to 28.
  • the defocused optical fiber optical system can form a ring optical path of a ring optical interference system with the sample, the defocused optical fiber optical system, and the polarization-maintaining optical fiber,
  • Use as a component of an optical rotation measurement system capable of measuring optical information related to the optical rotation of the sample by measuring a phase difference caused by the sample of light propagating in the ring optical path in both directions 1 is an embodiment of the invention of a defocused optical fiber optical system characterized in that
  • An embodiment of the 30th invention as an example of the present invention developed by developing the invention 29 is the defocused optical fiber optical system according to the invention 29, wherein the optical fiber The optical system propagates the polarized light as the clockwise signal light and the polarized light as the counterclockwise signal light in the ring optical path of the ring interferometer, and the optical fiber portion of the ring optical path of the ring interferometer is polarized with the polarized light as the clockwise signal light.
  • the same optical fiber is propagated as a clockwise signal light and a counterclockwise signal light in the eigen linear polarization mode with the same polarization as the rotation signal light, respectively, and the sample portion is in the circular polarization state orthogonal to each other and the clockwise signal light and the left signal light, respectively.
  • a defocused optical fiber optical system characterized by being configured to propagate a rotating signal light.
  • An embodiment of the 31st invention as an example of the present invention developed from the inventions 21 to 30 (hereinafter referred to as invention 31) is a defocused optical fiber according to any of the inventions 21 to 30.
  • a defocused optical fiber optical system according to an embodiment of the present invention has a mechanism capable of scanning the sample in a direction perpendicular to the optical path.
  • An embodiment of the thirty-second invention as an example of the present invention developed from the inventions 21 to 31 is a defocused optical fiber according to any of the inventions 21 to 31.
  • the sample is a part of a living body
  • the optical rotation measurement device measures optical information related to the optical rotation of the sample, as a part of the detection means of the phase difference of the signal light, It has a means for detecting the phase difference in synchronization with a signal given artificially so as to periodically change the size of a part of the living body such as the pulse of the living body or the thickness of the measurement site.
  • An embodiment of the 33rd invention as an example of the present invention developed from the inventions 21 to 32 is a defocused optical fiber according to any of the inventions 21 to 32.
  • the sample is a part of a living body
  • the optical fiber optical system has a measurement terminal portion that sandwiches a portion for measuring optical information related to the optical rotation of the sample, and the tip portion of the optical fiber is
  • It is an embodiment of the invention of a defocused optical fiber optical system characterized in that it is held by the measurement terminal section.
  • An embodiment of the 34th invention as an example of the present invention developed from the inventions 21 to 33 is a defocused optical fiber according to any of the inventions 21 to 33.
  • the optical system further includes an inter-lens distance adjusting means capable of changing a distance between the output lens of the one single mode optical fiber and the output lens of the other single mode optical fiber.
  • 1 is an embodiment of the invention of a focused optical fiber optical system.
  • An embodiment of the thirty-fifth invention as an example of the present invention developed from the inventions 21 to 34 is a defocused optical fiber according to any of the inventions 21 to 34.
  • the optical system at least one of the one single mode optical fiber and the other single mode optical fiber is a single mode light in which a first optical fiber and a second optical fiber having different core diameters are connected via a mode matching unit.
  • the first optical fiber is a small core diameter / high NA single mode optical fiber
  • the second optical fiber is a large core diameter / low NA single mode optical fiber, and the single mode optical fiber.
  • the second optical fiber is disposed closer to the sample on the optical path than the first optical fiber, and is disposed in front of the second optical fiber.
  • the output unit lens in the vicinity of an end face of the side close to the sample is in the form examples of embodiments of the invention the optical fiber optics are defocused, characterized in that disposed on the light path of the signal light.
  • An embodiment of the thirty-sixth invention as an example of the present invention developed from the inventions 21 to 35 (hereinafter referred to as the invention 36) is a defocused optical fiber according to any of the inventions 21 to 35.
  • a defocused optical fiber optical system wherein one optical fiber and the other optical fiber arranged opposite to each other in the optical path of the signal light are the same type of optical fiber. It is an example of embodiment of this invention.
  • An embodiment of the thirty-seventh invention as an example of the present invention developed from the inventions 21 to 36 (hereinafter referred to as the invention 37) is a defocused optical fiber according to any of the inventions 21 to 36.
  • the optical fiber disposed opposite to the sample in the optical path of the signal light is a so-called double clad polarization-maintaining optical fiber. It is an embodiment.
  • An embodiment of the thirty-eighth invention as an example of the present invention developed from the inventions 21 to 37 (hereinafter referred to as the invention 38) is a defocused optical fiber according to any of the inventions 21 to 37.
  • the optical system at least one of a core expansion fiber and a core reduction fiber is used for the mode matching unit, which is an embodiment of the invention of the defocused optical fiber optical system.
  • An embodiment of the thirty-ninth invention as an example of the present invention developed from the inventions 21 to 38 is a defocused optical fiber according to any of the inventions 21 to 38.
  • the distance between the output lens of the one single mode optical fiber and the output lens of the other single mode optical fiber, which are arranged opposite to each other in the optical path of the signal light is narrower than 3 mm.
  • 1 is an embodiment of an invention of a defocused optical fiber optical system.
  • An embodiment of the 40th invention as an example of the present invention developed from the inventions 21 to 39 is a defocused optical fiber according to any of the inventions 21 to 39.
  • a defocus in which the polarizer, the Faraday rotator, the quarter-wave plate, and the output lens arranged opposite to each other with the sample interposed in the optical path of signal light are arranged at the end of an optical fiber.
  • Both of the optical fiber optical systems formed are on the same side of the signal light incident surface of the sample, and a quarter-wave plate is disposed between the defocused optical fiber optical system and the sample.
  • 1 is an embodiment of an invention of a defocused optical fiber optical system.
  • An embodiment of the forty-first invention (hereinafter referred to as invention 41) as an example of the present invention made to solve the problem is an optical path of signal light through a single mode optical fiber having a lens disposed at the tip.
  • the signal light emitted from the end face of one single-mode optical fiber having a lens disposed at the tip is placed opposite to the sample for optical rotation measurement (hereinafter referred to as sample).
  • sample for optical rotation measurement
  • the signal light transmitted through the sample and / or the signal light reflected by the sample is incident on the end face of the other single-mode optical fiber having a lens disposed at the tip, thereby increasing the optical rotation of the sample.
  • An optical rotation measurement method for measuring related optical information comprising: an output portion of signal light incident on the sample of the one single-mode optical fiber and / or the sample from the sample A lens disposed at the input portion of the light (hereinafter referred to simply as an output portion of the signal light incident on the sample of the optical fiber and / or a lens disposed at the input portion of the signal light from the sample. Lens) and the other single mode optical fiber, the signal light input from the sample and / or the output light lens arranged at the output of the signal light incident on the sample are arranged in the optical path of the signal light.
  • At least one of the end face of the one single-mode optical fiber and the end face of the other single-mode optical fiber is a defocused optical fiber optical system that is not at the focal position of the output lens of the single-mode optical fiber.
  • 1 is an embodiment of the invention of a defocused optical rotation measurement method characterized by forming
  • An embodiment of the forty-second invention as an example of the present invention developed from the invention 41 (hereinafter referred to as the invention 42) is the defocused optical rotation measuring method according to the invention 41, wherein Implementation of the defocused optical rotation measurement method invention characterized in that at least one of the numerical aperture (hereinafter referred to as NA) of the single mode optical fiber and the NA of the other single mode optical fiber is 0.07 or less. It is an example of the form.
  • NA numerical aperture
  • An embodiment of the 43rd invention as an example of the present invention developed from the invention 41 or 42 (hereinafter referred to as the invention 43) is a defocused optical rotation measuring method according to the invention 41 or 42.
  • the end face of the one single mode optical fiber and the end face of the other single mode optical fiber are located closer to the output lens than the focal position of the output lens of the optical fiber.
  • 5 is an embodiment of the invention of the optical rotation measurement method performed.
  • An embodiment of the 44th invention as an example of the present invention developed by developing the invention 41 or 44 is the defocused optical rotation measurement method according to the invention 41 or 44.
  • the end surface of the one single-mode optical fiber and the end surface of the other single-mode optical fiber are located farther from the output lens than the focal position of the output lens of the optical fiber. It is an example of embodiment of the invention of the focused optical rotation measuring method.
  • An embodiment of the forty-fifth invention as an example of the present invention developed from the inventions 41 to 44 (hereinafter referred to as the invention 45) is the defocused optical rotation according to any of the inventions 41 to 44.
  • the measurement method a single-mode optical fiber in which a tip portion of the single-mode optical fiber and an output lens of the optical fiber are fixed to each other is used. It is an embodiment.
  • An embodiment of the 46th invention as an example of the present invention developed from the inventions 41 to 45 (hereinafter referred to as the invention 46) is the defocused optical rotation according to any of the inventions 41 to 45.
  • the measurement method at least one of the one single-mode optical fiber and the other single-mode optical fiber has a Faraday rotator arranged between an end surface of the single-mode optical fiber and a sample. It is an example of embodiment of the invention of the focused optical rotation measuring method.
  • An embodiment of the 47th invention as an example of the present invention developed from the inventions 41 to 46 is the defocused optical rotation according to any of the inventions 41 to 46.
  • the measurement method at least one of the one single-mode optical fiber and the other single-mode optical fiber has a quarter-wave plate and a polarizer disposed between the end surface of the single-mode optical fiber and the sample.
  • 1 is an embodiment of the invention of a defocused optical rotation measurement method characterized by the above.
  • an embodiment of the 48th invention as an example of the present invention developed from the inventions 41 to 47 is the defocused optical rotation according to any of the inventions 41 to 47.
  • the one single-mode optical fiber and the other single-mode optical fiber are polarization-maintaining optical fibers, and a polarizer, a Faraday rotator, and a four-minute portion are disposed between each optical fiber tip and the output lens.
  • 1 wavelength plates are arranged, signal light in the same intrinsic polarization mode (that is, output polarization mode) is emitted from both of the polarization-maintaining optical fibers, and the sample is irradiated from one incident side of the sample.
  • the polarizer, the Faraday rotator, the quarter-wave plate orientation, and the polarization-maintaining optical fiber intrinsic polarization orientation are set so as to couple in a polarization mode equal to the outgoing polarization mode. It is an example of embodiment of the invention of the defocused optical rotation measuring method.
  • an embodiment of the 49th invention as an example of the present invention developed from the inventions 41 to 48 is the defocused optical rotation according to any of the inventions 41 to 48.
  • the defocused optical rotation measurement system includes a ring of a ring optical interference system composed of the sample, the defocused optical fiber optical system, and the polarization-maintaining optical fiber, and the ring is moved in both directions.
  • An invention of a defocused optical rotation measurement method characterized in that the optical rotation of the sample can be measured by measuring a phase difference caused by the sample of propagating light. It is an example of an embodiment.
  • An embodiment of the 50th invention as an example of the present invention developed by developing the invention 49 is the defocused optical rotation measurement method according to the invention 49, wherein the defocus is measured.
  • the optical rotation measurement system propagates the polarized light as the clockwise signal light and the polarized light as the counterclockwise signal light to the ring optical path of the ring interferometer, and the optical fiber portion of the ring optical path of the ring interferometer as the clockwise signal light.
  • the same optical fiber in the same linear polarization mode with the same polarization as the counterclockwise signal light, respectively propagate through the same optical fiber as the clockwise signal light and the counterclockwise signal light, respectively.
  • An embodiment of the 51st invention as an example of the present invention developed from the inventions 41 to 50 (hereinafter referred to as invention 51) is the defocused optical rotation according to any of the inventions 41 to 50.
  • an embodiment of an invention of a defocused optical rotation measurement method characterized in that a mechanism capable of scanning the sample in a direction perpendicular to the optical path is used.
  • An embodiment of the 52nd invention as an example of the present invention developed from the inventions 41 to 51 is the defocused optical rotation according to any of the inventions 41 to 51.
  • the sample is a part of a living body
  • the optical rotation measurement method measures optical information related to the optical rotation of the sample, as a part of the detection means of the phase difference of the signal light
  • a means for detecting the phase difference in synchronism with an artificially given signal so as to periodically change the size of a part of the living body, such as the pulse of the living body or the thickness of a measurement site, is used. It is an example of embodiment of the invention of the defocused optical rotation measuring method.
  • An embodiment of the 53rd invention as an example of the present invention developed from the inventions 41 to 52 is the defocused optical rotation according to any of the inventions 41 to 52.
  • the sample is a part of a living body
  • the optical rotation measurement method uses a measurement terminal portion that sandwiches a portion for measuring optical information related to the optical rotation of the sample, and the tip portion of the optical fiber is It is an example of embodiment of the invention of the defocused optical rotation measuring method characterized by being hold
  • An embodiment of the 54th invention as an example of the present invention developed from the inventions 41 to 53 (hereinafter referred to as the invention 54) is the defocused optical rotation according to any of the inventions 41 to 53.
  • a distance adjusting unit that can change a distance between the output lens of the one single mode optical fiber and the output lens of the other single mode optical fiber is used. It is an example of embodiment of the invention of the focused optical rotation measuring method.
  • An embodiment of the 55th invention as an example of the present invention developed from the inventions 41 to 54 is a defocused optical rotation according to any of the inventions 41 to 54.
  • at least one of the one single-mode optical fiber and the other single-mode optical fiber is a single-mode light in which a first optical fiber and a second optical fiber having different core diameters are connected via a mode matching unit.
  • the first optical fiber is a small core diameter / high NA single mode optical fiber
  • the second optical fiber is a large core diameter / low NA single mode optical fiber, and the single mode optical fiber.
  • the second optical fiber is disposed closer to the sample on the optical path than the first optical fiber, and the second optical fiber of the second optical fiber
  • an embodiment of the 56th invention as an example of the present invention developed from the inventions 41 to 55 is the defocused optical rotation according to any of the inventions 41 to 55.
  • the defocused optical rotation measurement method is characterized in that one optical fiber and the other optical fiber arranged opposite to each other in the optical path of the signal light are the same type of optical fiber. It is an example of embodiment of this invention.
  • An embodiment of the 57th invention as an example of the present invention developed from the inventions 41 to 56 (hereinafter referred to as the invention 57) is the defocused optical rotation according to any of the inventions 41 to 56.
  • the optical fiber disposed facing the sample in the optical path of the signal light is a so-called double clad polarization-maintaining optical fiber. It is an embodiment.
  • An embodiment of the 58th invention as an example of the present invention developed from the inventions 41 to 57 (hereinafter referred to as the invention 58) is the defocused optical rotation according to any of the inventions 41 to 57.
  • an embodiment of the defocused optical rotation measurement method according to the present invention is characterized in that at least one of a core expansion fiber and a core reduction fiber is used for the mode matching unit.
  • An embodiment of the 59th invention as an example of the present invention developed from the inventions 41 to 58 (hereinafter referred to as the invention 59) is the defocused optical rotation according to any of the inventions 41 to 58.
  • the distance between the output lens of the one single-mode optical fiber and the output lens of the other single-mode optical fiber that are opposed to each other in the optical path of the signal light is narrower than 3 mm. It is an example of embodiment of the invention of the defocused optical rotation measuring method.
  • An embodiment of the 60th invention as an example of the present invention developed from the inventions 41 to 59 (hereinafter referred to as the invention 60) is the defocused optical rotation according to any of the inventions 41 to 59.
  • the polarizer, the Faraday rotator, the quarter-wave plate, and the output lens arranged opposite to each other across the sample in the optical path of signal light are arranged at the end of the optical fiber.
  • Both of the optical fiber optical systems formed are on the same side of the signal light incident surface of the sample, and a quarter-wave plate is disposed between the defocused optical fiber optical system and the sample.
  • 1 is an embodiment of the invention of a defocused optical rotation measurement method.
  • invention 61 An embodiment of the 61st invention (hereinafter referred to as invention 61) as an example of the present invention made to solve the problem is an optical path of signal light through a single mode optical fiber having a lens disposed at the tip.
  • the signal light emitted from the end face of one single-mode optical fiber having a lens disposed at the tip is placed opposite to the sample for optical rotation measurement (hereinafter referred to as sample).
  • sample The signal light transmitted through the sample and / or the signal light reflected by the sample is incident on the end face of the other single-mode optical fiber having a lens disposed at the tip, thereby increasing the optical rotation of the sample.
  • An optical rotation measurement apparatus capable of measuring related optical information, wherein an output part of signal light incident on the sample of the one single-mode optical fiber, and / or Is a lens disposed at the input portion of the signal light from the sample (hereinafter, disposed at the output portion of the signal light incident on the sample of the optical fiber and / or the input portion of the signal light from the sample.
  • the lens is simply referred to as an output lens) and the other single mode optical fiber is connected to the signal light input portion from the sample and / or the signal light output portion incident on the sample.
  • At least one of the one single-mode optical fiber and the other single-mode optical fiber is connected to a first optical fiber and a second optical fiber having different core diameters via a mode matching section.
  • the first optical fiber is a relatively small core diameter and high NA (NA means a numerical aperture) single mode optical fiber.
  • the second optical fiber is a large core diameter / low NA single mode optical fiber, and the second optical fiber of the single mode optical fiber is closer to the sample on the optical path than the first optical fiber.
  • An embodiment of the 62nd invention as an example of the present invention developed from the invention 61 (hereinafter referred to as the invention 62) is an optical rotation measuring apparatus according to the invention 61, wherein the second optical fiber is an optical rotation measuring device.
  • This is an embodiment of the invention of an optical rotation measuring device characterized in that NA is 0.07 or less.
  • An embodiment of the 63rd invention as an example of the present invention developed by developing the invention 61 or 62 is the optical rotation measuring device according to the invention 61 or 61, wherein the optical fiber Optical rotation measurement characterized in that the optical system is a polarization conversion optical system having a polarizer, a Faraday rotator, and a quarter-wave plate in addition to the output lens on the optical path near the end face of the optical fiber. It is an example of embodiment of an apparatus invention.
  • An embodiment of the 64th invention as an example of the present invention developed by developing any of the inventions 61 to 63 is an optical rotation measurement according to any of the inventions 61 to 63.
  • the optical rotation measuring device is caused by the sample of light propagating in both directions in the ring optical path, wherein the sample, the optical fiber optical system, and the single mode optical fiber constitute a ring optical path of a ring optical interference system.
  • invention 65 is a single-mode optical fiber in which a lens is disposed at the tip portion of the optical path of signal light.
  • the signal light emitted from the end face of one single-mode optical fiber having a lens disposed at the tip is placed opposite to the sample for optical rotation measurement (hereinafter referred to as sample).
  • sample The sample for optical rotation measurement
  • the signal light transmitted through the sample and / or the signal light reflected by the sample is incident on the end face of the other single-mode optical fiber having a lens disposed at the tip, thereby increasing the optical rotation of the sample.
  • An optical fiber optical system that can be used in an optical rotation measurement system capable of measuring related optical information, wherein the test of the one single-mode optical fiber is performed.
  • a lens (hereinafter referred to as an output portion of signal light to be incident on the sample of the optical fiber and / or from the sample) disposed at an output portion of the signal light to be incident on and / or an input portion of the signal light from the sample.
  • a lens disposed in the signal light input section is simply referred to as an output section lens) and a signal light input section from the sample of the other single mode optical fiber and / or an output section of the signal light incident on the sample.
  • the arranged output lens is arranged in the optical path of the signal light, and at least one of the one single mode optical fiber and the other single mode optical fiber is a first optical fiber and a second optical fiber having different core diameters.
  • the first optical fiber is relatively small core diameter and high NA single mode light.
  • the second optical fiber is a large core diameter / low NA single mode optical fiber, and the second optical fiber of the single mode optical fiber is closer to the sample in the optical path than the first optical fiber.
  • An embodiment of the 66th invention (hereinafter referred to as invention 66) as an example of the present invention made to solve the problem is an optical path of signal light through a single mode optical fiber having a lens disposed at the tip.
  • a signal emitted from the end face of one single-mode optical fiber which is disposed oppositely across a sample for optical rotation measurement (hereinafter referred to as a sample) such as a light scattering sample, and a lens is arranged at the tip portion.
  • a sample a sample for optical rotation measurement
  • a lens is arranged at the tip portion.
  • Light is incident on the sample, and signal light transmitted through the sample and / or signal light reflected by the sample is incident on the end face of the other single-mode optical fiber having a lens disposed at the tip.
  • An optical rotation measurement method capable of measuring optical information related to optical rotation, comprising: an output unit for signal light incident on the sample of the one single-mode optical fiber; Or a lens disposed in an input portion for signal light from the sample (hereinafter, disposed in an output portion for signal light incident on the sample of the optical fiber and / or an input portion for signal light from the sample.
  • the lens is simply referred to as an output lens) and the other single mode optical fiber is connected to the signal light input portion from the sample and / or the signal light output portion incident on the sample.
  • At least one of the one single-mode optical fiber and the other single-mode optical fiber is connected to a first optical fiber and a second optical fiber having different core diameters via a mode matching section.
  • the first optical fiber is a relatively small core diameter / high NA single mode optical fiber, and the second optical fiber is relatively connected to each other.
  • the output lens is disposed in the optical path of the signal light in the vicinity of the end face of the optical fiber close to the sample.
  • the present invention particularly relates to a non-invasive measurement method that does not collect blood, firstly, there is no annoyance and pain associated with blood collection with a needle, second, there is no need to dispose of the blood collection needle, and it is hygienic. In addition, it eliminates the need for a reagent that reacts with glucose, which was used in blood collection methods, so it eliminates the need for an annual running cost of 100,000 yen or more, and is economical.
  • the optical rotation measuring device capable of measuring the light-scattering specimen of the present invention is used in general households, thereby greatly increasing the number of diabetic patients and the number of people who are said to be diabetic reserves worldwide. It provides an extremely large gospel that can be reduced to a very low level, and a great gospel that can significantly reduce the cost of treatment for the patient. Furthermore, by using the optical rotation measuring apparatus and optical rotation measuring method using the improved optical fiber optical system including the mode matching unit of the present invention, optical information related to the optical rotation of the specimen to be measured is conventionally expected. It is possible to measure with extremely high accuracy so as not to be performed, and the effect of the present invention can be further enhanced.
  • 1 is a defocused polarization conversion coupling optical system as an embodiment of the present invention.
  • the explanation of the optical fiber optical system also serves as a partial or whole explanation of the optical rotation measuring device and the optical rotation measuring method without particularly mentioning it while avoiding misunderstanding. Yes, and vice versa.
  • the inventor of the present invention has been requested by many medical staffs to realize a measuring instrument that can measure the collected blood and the glucose concentration of a living body with high accuracy. Based on the fact that this has not been achieved to date, we have analyzed the cause in detail.
  • the basic configuration of the measuring apparatus is preferably a ring interferometer using an optical fiber, and polarized light is incident on a sample to be measured (sample) and the phase change of the polarized light is measured.
  • sample sample
  • phase change of the polarized light is measured.
  • optical coupling is performed using an optical fiber collimator optical system between the entrance and exit surfaces of the sample, so that the optical loss can be reduced and the insertion loss can be reduced most. It was an established theory between experts. When measuring an intensity change or phase change of signal light using an optical fiber collimator optical system, the end face of the optical fiber is arranged at the focal position of the collimator lens.
  • the inventor of the present invention goes beyond the common sense of this expert, and is a conventional optical fiber polarization conversion optical system (hereinafter also referred to as a conventional polarization conversion optical system) in which the end face of the optical fiber is arranged at the focal position of the lens.
  • a pair of conventional polarization conversions each configured to constitute a defocused optical fiber polarization conversion optical system (hereinafter also referred to as a defocus polarization conversion optical system) in which the end face of the optical fiber is disposed away from the focal position of the lens.
  • the conventional type is used between a case where blood or a living body collected as a sample is placed between the optical systems and polarized light as signal light is incident on the sample, and a pair of defocus polarization conversion optical systems arranged opposite to each other.
  • the sampled blood or living body is placed as a sample under the same conditions as in the case of the polarization conversion optical system, and the polarized light as the signal light is incident on the sample, the level of the signal light by the sample respectively. The change was measured.
  • FIG. 1A shows the case where the end face of the optical fiber is offset (ie, defocused) from the focal position of the output lens to give an initial loss of 10 dB (loss when there is no beam angle deviation).
  • b) is a theoretical calculation result of the beam angle dependence of the coupling loss when an initial loss of 20 dB is given.
  • the horizontal axis represents the beam angle of incident light
  • the vertical axis represents the loss (dB). From the figure, it can be seen that the loss when the beam angle is shifted by 0.3 degrees is at most about 5 dB when the initial loss is 10 dB, and about 1 dB when the initial loss is 20 dB.
  • the inventor of the present invention further studied in detail an actual optical rotation measuring device and an optical fiber optical system.
  • signal light emitted from the end face of one single mode optical fiber having a lens disposed at the tip is made incident on a sample such as blood or a living body, and transmitted through the sample.
  • the signal light, the signal light reflected by the sample, or the signal light transmitted through the sample and the signal light reflected by the sample are incident on the end face of the other single mode optical fiber having a lens disposed at the tip.
  • an optical rotation measuring device configured to measure optical information related to the optical rotation of the sample was used.
  • the one single-mode optical fiber and the other single mode optical fiber may be a pair or a plurality of pairs.
  • At least one of the one single-mode optical fiber and the other single-mode optical fiber has an output lens at the tip (this output lens is a left and right signal light in a ring interferometer). If it becomes an output side optical fiber for one signal light of the both-round light, for example, left-handed light, it becomes a lens of the input side optical fiber for right-handed light that is the other signal light, but the output At least one of the end faces of the single-mode optical fiber having the output lens is a defocused optical fiber optical system that is not at the focal position of the output lens. It is characterized by that.
  • FIGS. 2 and 3 are diagrams for explaining the configuration of a defocused optical fiber optical system that is a main part of an optical rotation measuring apparatus as an embodiment of the present invention.
  • PM shows a polarization conversion optical system as a defocused optical fiber optical system in the case of an optical fiber.
  • the beams emitted from the tips of the ferrules 2-1 and 2-2 of the PM optical fibers 1-1 and 1-2 are sequentially
  • Reference numerals 14-1 and 14-2 denote defocused polarization conversion optical systems used in the opposing system.
  • FIG. 4 shows a polarization conversion coupling optical system as a defocused optical fiber optical system as an embodiment of the present invention.
  • the polarization conversion optical systems 14-1 and 14-2 are opposed to each other, and light scattering as a sample is performed between them.
  • the structure is such that the specimen 4 is sandwiched.
  • the optical fiber opposing insertion loss was 60 dB.
  • the breakdown is 6 dB for the loss of two Faraday rotators, and 54 dB for the scattering loss of the living body.
  • the light source wavelength was 780 nm.
  • FIG. 5 is a diagram illustrating the principle of a defocused polarization conversion coupling optical system as an optical fiber optical system as an embodiment of the present invention.
  • the intrinsic polarization axes of the opposing PM optical fibers are spatially orthogonal to each other, and the light emitted from each PM optical fiber is in the slow axis mode in FIG. 5, but both may be in the first mode.
  • the right circularly polarized light and the left circularly polarized light are incident on the light scattering specimen 4 through the 45-degree Faraday rotator of the same specification and the quarter wavelength plate, respectively, and the emitted light is again coupled to the slow axis of the PM optical fiber it can.
  • Such a polarization conversion optical system can be realized by using a Faraday rotation element which is a nonreciprocal element.
  • polarizers 9-1 and 9-2 and 45-degree Faraday rotators 11-1 and 11-2 and quarter-wave plates 13-1 and 13-2 are arranged between the sample and the lens.
  • FIG. 25 shows another example of a conventional collimated coupling optical system.
  • the distance between the tip of the optical fiber and the lens is equal to the focal length of each lens.
  • the parallel beam 25 emitted from the polarization conversion optical systems 14-3 and 14-4 is reflected by the mirrors 26-1 and 26-2.
  • the loss of the coupling system is as small as 1 dB or less because the beam is collimated.
  • the coupling loss between the polarization conversion optical systems 14-3 and 14-4 becomes as large as 100 dB or more, and the optical rotation cannot be measured.
  • the conventional polarization conversion coupling optical system 14 is used. Instead of collimating systems such as -3 and 14-4, the position of the tip of the optical fiber is shifted from the focal position of the lens facing it, that is, defocused, and the light scattered in the living body is placed facing the optical path. It was found that it should be possible to couple to a single mode optical fiber. Conventionally, the examination of the single-mode optical fiber facing system with such a living body sandwiched between the living body is difficult to analyze due to light scattering in the living body, and has not been studied theoretically.
  • the focal length was 1 Defocused by 0.8 mm with a .8 mm lens, that is, when the tip of the optical fiber is brought closer to the lens by 0.8 mm from the focal point of the lens, and when the tip of the optical fiber is The coupling loss was the smallest when the lens was moved away from the lens by about 0.3 mm from the focal position. In both cases, similar insertion loss of living body was obtained.
  • the distance between the tip of the optical fiber and the lens arranged correspondingly should be defocused from the focal position of the optical fiber by about half the focal length of the lens.
  • Experimental results were obtained.
  • the tip portion of the optical fiber optical system of the present invention can be sandwiched like a forceps to control conditions for sandwiching the living body. By doing so, the measurement accuracy can be further improved.
  • FIG. 6 is a configuration diagram of a living body optical rotation measurement apparatus when a polarization conversion coupling optical system as a defocused optical fiber optical system according to an embodiment of the present invention is used for a ring light interference system.
  • the light source 17 is an SLD (Super Luminescent Diode) having a wavelength of 780 nm, and its output is guided to the first directional coupler 18-1, the optical fiber polarizer 19, and the second directional coupler 18-2.
  • the light is branched into the PM optical fiber 1 and the PM optical fiber 1-1 constituting the ring, and light on both the left and right sides is generated.
  • SLD Super Luminescent Diode
  • Reference numeral 20 denotes an optical phase modulator in which a PM optical fiber of about 1 m is wound around a cylinder type PZT (lead zirconate titanate).
  • the left and right bi-directional light that has circulated around the ring passes through the second and first directional couplers again and is converted into an electrical signal by the light receiver 21, and the signal processing unit 22 generates the left and right bi-directional light based on the optical rotation of the light scattering specimen 4.
  • the phase difference is calculated.
  • a 20 KHz sinusoidal modulation signal is applied from the signal processing unit 22 to the optical phase modulator 20.
  • the signal processing in FIG. 6 employs the method used in the phase modulation type optical fiber gyro described in Non-Patent Document 2.
  • phase modulation is performed at 20 KHz
  • a 40 KHz component that is a second harmonic and an 80 KHz component that is a fourth harmonic are output from the ring interference system in addition to the fundamental wave of 20 KHz.
  • the phase difference between the left and right light propagating in the ring optical path is obtained. Since the ratio of the second harmonic and the fourth harmonic is proportional to the degree of phase modulation, it is controlled to be constant.
  • the ring optical path of the ring interference system is a PM optical fiber constituting a loop with the polarization conversion optical systems 14-1 and 14-2 as the defocused optical fiber optical system according to the embodiment of the present invention. 1 is composed.
  • the right and left bi-directionally propagated light propagates in the light scattering specimen 4 only in the right and left circularly polarized light, and the other PM optical fiber portions are the slow axes of the same PM optical fiber. Propagating in polarization mode. In this way, it is possible to stably measure only the phase difference between the left and right circularly polarized light in the light scattering specimen portion.
  • linearly polarized light is decomposed into left and right circularly polarized light, and the direction of polarized light changes by ⁇ when a phase difference of 2 ⁇ occurs between the left and right circularly polarized light. Since the phase difference of the left and right circularly polarized light of the light scattering specimen can be measured in FIG. 6, the optical rotation can be measured.
  • the optical rotation of whole blood having a thickness of 1 mm was measured using the polarization conversion coupling optical system as the defocused optical fiber optical system in FIG.
  • f 1.8 mm
  • the offset between the fiber and the lens was 0.9 mm. That is, the distance between the lenses of the polarization conversion optical systems 14-1 and 14-2 and the tips of the ferrules 2-1 and 2-2 was fixed at 0.9 mm.
  • the loss level of the optical interference system in this experiment was as follows.
  • Light source output 10mW (PM optical fiber output)
  • Optical gyro (ring interference system) loss 10 dB Insertion loss of a defocused polarization conversion coupling optical system sandwiching blood: 40 dB Connector and splice loss: 3dB Total loss: 53dB
  • Received power 50nW
  • a silicon APD having a 100 KHz bandwidth and a minimum receiving sensitivity of 5 pW was used as the light receiver. Under such conditions, a phase difference of 0.001 degrees of left and right circularly polarized light propagating whole blood with an average measurement time of 10 seconds could be measured with a sufficient signal-to-noise ratio.
  • the reference of the phase of both the left and right light was the measured value when the specimen was pure water. Since the beam diameter is about 0.1 mm, the amount of blood required for the measurement may be as small as several ⁇ l.
  • the folds at the base of the thumb and index finger were measured as a light scattering specimen.
  • an SLD with an output of 50 mW at 1060 nm was used as the light source.
  • f 1.8 mm
  • the offset from the lens focal position at the tip of the optical fiber 0.9 mm. That is, the distance between the lenses of the polarization conversion optical systems 14-1 and 14-2 and the tips of the ferrules 2-1 and 2-2 was set to 0.9 mm.
  • the loss level of the optical interference system in this experiment was as follows.
  • Light source output 50 mW (PM optical fiber output)
  • Optical gyro (ring interference system) loss 10 dB
  • Insertion loss of a defocused polarization conversion coupling optical system sandwiching blood 55 dB
  • Connector and splice loss 5dB
  • Total loss 70dB
  • Received power 5nW
  • a silicon APD having a 100 KHz bandwidth and a minimum receiving sensitivity of 5 pW was used as the light receiver.
  • the S / N of the light receiving system was about 30 dB.
  • the light source wavelength is 780 nm or 1060 nm, but the wavelength may be in the 1550 nm band.
  • the loss of the Faraday rotator is smaller than that of 780 nm, but when the light scattering specimen is a living body, the water absorption loss is increased.
  • the 1060 nm band is a wavelength region of an optical fiber laser, and a light source power of 100 mW or more can be easily applied, and a PM optical fiber having a core diameter of 20 to 30 ⁇ m, which is much larger than conventional PM optical fibers, has been put into practical use There are merits such as being.
  • FIG. 7 is an embodiment of the present invention, and the rotation angle of a living body when a polarization conversion optical system as a defocused optical fiber optical system, which is a modification of the above example, is used for a reflection type optical interference system.
  • the light source 17 is a 780 nm SLD, and its output is transmitted through the first directional coupler 18-1, the optical fiber type polarizer 19, the 45-degree twisted splice 27-1, and the PM optical fiber 1-4. It is guided to the fiber type polarization beam splitter / combiner 28-1.
  • the orthogonal eigenpolarization modes separated by the optical fiber polarization splitter / combiner 28-1 are transmitted through the PM optical fibers 1-5 and 1-7 and the PM optical fiber 1-6, respectively. Guided to 28-2.
  • Reference numerals 29-1, 29-2, and 29-3 are splices.
  • Reference numeral 20 denotes an optical phase modulator in which a PM optical fiber of about 1 m is wound around a cylinder type PZT. The sum of the lengths of the PM optical fibers 1-5 and 1-7 was 100 m.
  • Reference numeral 30 denotes a delay optical system that generates a difference in propagation time between orthogonal polarization modes including two optical fiber polarization splitters and combiners and an optical phase modulator.
  • the optical fiber polarization splitter / synthesizer 28-2 is guided to the PM optical fiber 1-8 via the second 45-degree twisted splice 27-2, and two orthogonal polarization modes propagate in the PM optical fiber 1-8. Then, it is guided to the lens 3-3.
  • Two intrinsic polarization components having the same amplitude emitted from the PM optical fiber 1-8 pass through the lens 3-3, pass through the quarter-wave plate 13-3, and enter the light scattering specimen 4 with right circular polarization and left
  • Light that is incident as circularly polarized light and propagates through the light scattering specimen 4 passes through the Faraday rotator 11-3, is reflected by the mirror 26-3, propagates again through the light scattering specimen in the opposite direction,
  • the Faraday rotator 11-3 and the quarter-wave are passed through the one-wave plate 13-3, the lens 3-3, and coupled to the PM optical fiber 1-8 in an intrinsic polarization mode orthogonal to the output polarization.
  • the direction of the one-wave plate 13-3 can be set.
  • Such a reflection-type optical rotation measuring device has a merit that a single Faraday rotation element and a quarter-wave plate may be used as compared with the ring interference-type optical rotation measurement device of FIG.
  • the orthogonal polarization modes propagating through the PM optical fiber 1-8 are orthogonal to each other on the way back and forth, no phase difference occurs in the PM optical fiber 1-8 portion.
  • the orthogonal polarization mode similarly travels in the PM optical fibers 1-5, 1-7, and 1-6 one by one in a reciprocating manner, so that the optical fiber type polarization beam splitter / combiner 28-1
  • the separated orthogonal polarization modes return with the same phase in the optical fiber transmission portion.
  • phase difference due to the optical rotation of the light scattering specimen 4 in the defocused polarization conversion optical system at the tip of the PM optical fiber 1-8 can be measured.
  • the method for measuring the phase difference of the orthogonal polarization mode returned to the light receiver 21 through the optical fiber type polarization beam splitter / combiner 28-1, the polarizer 19 and the directional coupler 18-1 is the same as the detection system of FIG. It is a phase modulation method.
  • the optical rotation measurement accuracy of the present invention can be further enhanced.
  • a mechanism for scanning the sample in a direction orthogonal to the optical path of the signal light is provided so that a place with good detection sensitivity can be found and a measurement position can be selected. Can be improved and usability can be improved.
  • FIG. 8 shows, as an embodiment of the present invention, a modified example of a biological rotation measuring apparatus when a polarization conversion optical system as a defocused optical fiber optical system according to the present invention is used in a reflection type optical interference system.
  • FIG. 8 The difference between FIG. 8 and FIG. 7 is that no mirror is used behind the light scattering specimen in FIG. That is, in FIG. 8, the reflected light from the light scattering specimen 4 is recombined with the PM optical fiber 1-8 via the quarter-wave plate 13-3 and the Faraday rotator 11-3.
  • the right circularly polarized light is reflected by the light scattering specimen, it returns as the right circularly polarized light. Therefore, in principle, the optical rotation cannot be measured with the optical system of FIG.
  • the phase difference between round-trip left and right circularly polarized waves may not necessarily be canceled out, and measurement is possible although sensitivity is lowered.
  • the thickness of the light scattering specimen is limited and the measurement site is limited.
  • an optical fiber optical system in which a lens is disposed at a tip portion used in the optical rotation measuring device, the optical fiber optical system, and the optical rotation measuring method of the present invention, the end surface of the optical fiber is focused on the focus of the lens.
  • An optical fiber optical system that is not arranged in position is used.
  • the coupling loss can be maximized.
  • the increase in the coupling loss with respect to the change in the incident angle or the emission angle of the optical fiber is, for example, that the coupling loss increases by 50 dB or more when the beam angle is shifted by about 0.3 degrees. , Become big. In the case of the measurement object of the present invention, this increase in loss is not allowed.
  • the inventor of the present invention has made various studies. As a result, by arranging the end face of the optical fiber so as to be shifted from the focal position of the lens, the loss when the incident / exit angle is not shifted slightly increases, but the beam It was found that the angular dependence of can be greatly relaxed. Therefore, the opposing coupling loss of the optical fiber was experimentally investigated in the direction in which the position of the end face of the optical fiber approaches the lens from the focal position of the lens ( ⁇ direction) and the direction in which the position of the optical fiber moves away from the lens (+ direction).
  • a pair of lenses having a focal length of 0.7 mm arranged on the end face of a PM optical fiber for 1550 nm are opposed to each other with a lens facing distance of 2 mm, and the distance (offset) from the focal position of the end face of the fiber is set to +400 to +1000 ⁇ m.
  • the loss was as large as 68 dB.
  • the loss was 80 dB or more at any offset.
  • the focal length of the lens was 2.75 mm
  • the offset was -250 to +1200 ⁇ m and the loss was as large as 70 dB.
  • the focal length of the lens was 1.8 mm
  • the offset was ⁇ 250 to +1200 ⁇ m and the loss was as large as 65 dB.
  • the loss could be 52 dB
  • the loss could be 49 dB with the end face of the optical fiber in contact with the lens.
  • the end face of the optical fiber is brought into contact with the lens, and the polarizer, the Faraday rotator, and the quarter-wave plate (linearly polarized light instead of circularly polarized light) are placed outside the lens (on the side opposite to the side where the optical fiber end face is disposed). Can be placed if a quarter wave plate is not required.
  • the lens facing distance is 2 mm
  • the minimum loss is 35.3 dB
  • the distance between the lenses is about 3 mm apart.
  • Even the loss increase was small.
  • the inventor also tried a multimode optical fiber having a core diameter of 62.6 ⁇ m in the defocused polarization conversion coupling optical system.
  • the insertion loss did not drop below 45 dB, and the loss increased rapidly when the distance between the lenses was about 3 mm.
  • the end face of the optical fiber is not placed at the focal position of the lens, but is placed at a position close to the lens or away from the lens. It turned out to be preferable. In particular, in a lens having a focal length of 0.7 to 2.75 mm, it is more preferable that the end face of the optical fiber be as close as possible to the lens.
  • a polarizer, a Faraday rotator, and a quarter-wave plate are mounted between an end face of an optical fiber having a distance of 0.6 mm or less and a lens, and the optical rotation is measured. As a result, the optical rotation could be measured with high accuracy.
  • the sample is removed when the distance between the opposing lenses is larger than 4 mm. Insertion loss when using a living body increases.
  • the insertion loss measured in the same manner as in the above example can be reduced to 45 dB or less, and the measurement accuracy of optical information related to optical rotation can be greatly improved. it can.
  • the tip of the optical fiber and the lens are fixed. It is easy to use and can measure optical information related to optical rotation with high reproducibility and high accuracy.
  • the optical fiber end face and the output lens are arranged in a defocused state so that optical information related to the optical rotation of the sample cannot be expected so much in the past. I explained that it can be measured by.
  • the present inventor changed the core diameter of the polarization-preserving optical fiber used in the opposed defocus polarization conversion optical system variously and inserted a living body into the opposed defocus polarization conversion optical system of the present invention.
  • the insertion loss was examined experimentally. As a result, a core diameter of 10 ⁇ m can be obtained by using a large core diameter / low NA (NA is a numerical aperture) polarization-maintaining optical fiber with a core diameter of 20-30 ⁇ m for a wavelength of 1064 nm that is currently used for an optical fiber laser. It has been found that the insertion loss can be as low as 20 to 30 dB compared to the case where a polarization-maintaining optical fiber is used.
  • the light from the light source is split into right-handed light and left-handed light, and is an optical fiber type coupler, that is, 2 ⁇ 2 type.
  • a directional coupler is required.
  • couplers for polarization-maintaining optical fibers having a core diameter of 20 to 30 ⁇ m have not been commercialized.
  • a ring fiber having a certain length is required, but a polarization maintaining optical fiber having a core diameter of 20 to 30 ⁇ m is expensive. Has the problem of not being economical.
  • FIG. 9 is a diagram for explaining the mode matching unit used in the embodiment of the present invention. That is, a relatively small core diameter / high NA polarization-preserving optical fiber 31 as the first optical fiber is heated in the vicinity of the exit portion, that is, in the vicinity of the end portion, so as to expand the core portion, and this core is expanded. The end portion of the small core diameter / high NA polarization preserving optical fiber 31 as the first optical fiber and the relatively large core diameter / low NA polarization preserving optical fiber as the second optical fiber. The end portion of 32 is connected and reinforced by a mode matching portion 33.
  • FIG. 10 is a diagram for explaining the mode matching unit 34 used in the embodiment of the present invention.
  • the mode matching unit 33 and the mode matching unit 34 include at least an end part of the first optical fiber that is a core expansion optical fiber and an end part of the second optical fiber connected thereto.
  • the end of the second optical fiber connected to the first optical fiber is extended by heating, for example, the vicinity of the end of the second optical fiber, and the end of the second optical fiber.
  • the core diameter in the vicinity of the portion can be formed so as to gradually decrease toward the side connected to the first optical fiber, and it can be connected to the first optical fiber. Further, since the outer shape of the optical fiber often deforms slightly due to heat during processing at the core expanded portion or the core reduced portion, the end portion of the first optical fiber is processed into the core expanded fiber, and the second optical fiber By processing the end portions of the core into a core-reduced fiber and connecting the two end portions, the connection loss due to processing errors can be further reduced.
  • FIG. 11 is a diagram for explaining the production of collimated light from the mode matching unit used in the embodiment of the present invention. That is, the end face 32 a of the optical fiber 32 is at the focal position 36 of the lens 35.
  • FIG. 12 is a diagram for explaining the production of defocused light from the mode matching unit used in the embodiment of the present invention.
  • the end face 32 a of the optical fiber 32 is disposed on the lens side with respect to the focal position 36 of the lens 35.
  • a ring optical path of a ring interferometer is used, a sample is arranged in the middle of the ring optical path, and the optical path of signal light
  • An optical fiber terminal in the middle of one ring optical path and an optical fiber terminal in the middle of the other ring optical path, which are arranged to face each other with a sample interposed therebetween, are respectively used as a polarization conversion optical system, and the polarization conversion optical system is a polarization plane rotating element. It is configured as a nonreciprocal optical system.
  • the polarization plane rotation element when a polarized beam as signal light is incident from one side of the polarization plane rotation element, the polarization plane of the signal light is rotated clockwise or counterclockwise toward the traveling direction of the signal light.
  • the polarization plane of the signal light is rotated counterclockwise or clockwise toward the traveling direction of the signal light. That is, the polarization plane rotating element that acts to rotate the signal light incident from the one side by a predetermined angle in the same direction as the signal light incident from the one side when viewed in the traveling direction. Is preferably used.
  • the polarization of the clockwise signal light and the polarization of the counterclockwise signal light are propagated in the ring optical path of the ring interferometer, and as described in detail below, the ring interferometer
  • the optical fiber part of the ring optical path propagates the same optical fiber as right-handed light and left-handed light in the same polarization mode with the same polarization of right-handed signal light and left-handed signal light, and the sample parts are orthogonal to each other.
  • the light is propagated as clockwise light and counterclockwise light in a circularly polarized state, and the optical rotation of the sample can be detected with high accuracy by utilizing each configuration of the present invention.
  • the above embodiment is an example in which the two polarization plane rotating elements are used in the same way, and are specific to the two optical fiber terminals arranged opposite to each other on the optical path in the middle of the ring optical path.
  • This is a case where the polarization axes are orthogonal.
  • the optical rotation measuring device, the polarization conversion optical system, and the optical rotation measuring method of the present invention are realized even when the intrinsic polarization axes of the two optical fiber terminals arranged opposite to each other on the optical path in the middle of the ring optical path are made parallel.
  • the polarization plane rotation directions of the two polarization plane rotation elements are set in the same direction toward the traveling direction of the signal light. There is a need. However, in this case, two types of rotation directions are required as the types of polarization plane rotation elements.
  • the polarization plane rotation element described using the Faraday rotation element in the embodiment of the present invention is a non-reciprocal optical element, and its function is as described above.
  • the Faraday rotator at this time is a Faraday rotator that rotates the plane of polarization in a predetermined direction by 45 degrees.
  • FIG. 13 is a diagram showing the production of collimated circularly polarized light from the mode matching unit used in the embodiment of the present invention.
  • the end face 32 a of the optical fiber 32 is at the focal position 36 of the lens 35.
  • reference numeral 41 denotes a polarization conversion collimator optical system including a mode matching unit.
  • FIG. 14 is a diagram showing that defocused circularly polarized light is produced from the mode matching unit used in the embodiment of the present invention.
  • the end face 32 a of the optical fiber 32 is on the lens side with respect to the focal position 36 of the lens 35.
  • the linearly polarized outgoing light of the large core diameter / low NA polarization-preserving optical fiber 32 which is the pigtail of the mode matching unit 34, is collimated as signal light by the lens 35, and in turn, a polarizer 38 and a polarization plane rotating element. Is circularly polarized through the Faraday element 39 and the quarter-wave plate 40.
  • reference numeral 42 denotes a defocus polarization conversion optical system including a mode matching unit.
  • a polarizer 38, a Faraday element 39, and a quarter-wave plate 40 are between the lens 35 and the end face 32a of the optical fiber 32.
  • the polarizer 38, the Faraday element 39, and the quarter-wave plate 40 in FIG. 14 may be arranged on the opposite side of the end face 32 a of the optical fiber 32 of the lens 35.
  • FIG. 15 conceptually shows a beam emitted from a circularly polarized collimator including a mode matching unit used in the embodiment of the present invention
  • FIG. 16 shows a mode matching unit used in the embodiment of the present invention. It is the figure which showed notionally the beam radiate
  • a beam 43 emitted from a polarization conversion collimator (mode matching polarization conversion collimator) 41 including a mode matching unit is collimated circularly polarized light that is a parallel beam, and is applied to a sample (not shown) arranged in the traveling direction.
  • a beam 44 emitted from a defocus polarization conversion optical system (mode matching defocus polarization conversion optical system) 42 including a mode matching unit is a defocused circularly polarized light that is a diverging beam. The light is incident on a sample (not shown) arranged in the traveling direction.
  • FIG. 17 shows an optical system in which a sample 45 is inserted into a counter mode matching polarization conversion collimator as an embodiment of the present invention.
  • FIG. 18 shows an optical system in which a sample 45 is inserted into a counter mode matching defocus polarization conversion optical system as an embodiment of the present invention.
  • the counter collimator in FIG. 17 has a smaller insertion loss.
  • the sample 45 is a light scatterer such as a living body
  • the present inventor has conducted various experiments.
  • the insertion loss of the defocusing counter optical system of FIG. It was 1000 times (30 dB) smaller.
  • a simulation method that can explain the results of this experiment has not been commercialized.
  • the polarizer 38, the Faraday element 39, and the quarter-wave plate 40 are made as thin as possible in the optical system of FIG. 14 and approach the end face of the optical fiber and approach the lens 35, the lowest insertion is achieved. A loss of 30 dB could be obtained.
  • circularly polarized lights that are orthogonal to each other enter the living body from the opposed defocus polarization conversion optical systems 42-1 and 42-2 including the mode matching unit in FIG. 18 placed in a ring optical path of an optical interferometer described later, After the orthogonal circularly polarized light propagating in both directions propagates through the sample 45, the opposite polarized light is coupled to the opposite polarization plane preserving optical fiber via the opposite defocus polarization conversion optical system to the same polarization axis as the incident linearly polarized light.
  • the intrinsic polarization axis directions of the polarizer 38, the Faraday element 39, and the quarter-wave plate facing the intrinsic polarization axis direction of the wavefront-preserving optical fiber were adjusted.
  • FIG. 19 illustrates a coupling optical system that irradiates a light scattering specimen obliquely with signal light using defocus polarization conversion optical systems 42-1 and 42-2 including a mode matching unit as an embodiment of the present invention. It is a figure for doing.
  • FIG. 19 shows a reflection system for the transmission system of FIG.
  • Reference numeral 46 is a quartz glass plate, and 47 is a quarter-wave plate.
  • the phase of the light reflected on the surface of the living body or in the living body is reversed, so if there is no phase plate, the incident light and the reflected light are orthogonally polarized to the living body and the phase difference is canceled and the phase difference due to the optical rotation of the living body. Cannot be measured.
  • the defocus optical system 42 including the mode matching unit including the polarization state. -1 and 42-2 can be bonded. Note that the measurement system of FIG. 19 does not use a metal plate and is different in principle from conventional SPR (surface plasmon resonance).
  • FIG. 20 shows an example of an embodiment of the present invention shown in FIG. 18 in which a coupling optical system sandwiching a light scattering sample with a counter-defocus polarization conversion optical system including a mode matching unit is used to increase the small core diameter of the optical ring interferometer.
  • Implementation of the present invention that is installed in a ring optical path including NA polarization-preserving optical fibers 51-1 and 51-2, and measures the optical rotation of scattered / reflected light from the surface and inside of a light scattering specimen 45 as a sample
  • the light source 48 is an SLD (Super Luminescent Diode) having a wavelength of 1060 nm, and its output is a first directional coupler (coupler) 49-1, an optical fiber polarizer 50, and a second directional coupler (coupler).
  • 49-2 is branched into a small-core-diameter high-NA polarization-maintaining optical fiber 51-1 and a small-core-diameter high-NA polarization-maintaining optical fiber 51-2 that form a ring optical path by the second coupler 49-2.
  • Linearly polarized light 53-1 and 53-2 around both the left and right sides respectively propagating in the ring optical path are generated.
  • Reference numeral 52 denotes an optical phase modulator in which a small core diameter high NA polarization-maintaining optical fiber 51-1 of about 1 m is wound around a cylinder type PZT (lead zirconate titanate) element.
  • the left and right light that circulates in the ring optical path is connected to defocus polarization conversion optical systems 42-1 and 42-2 including mode matching sections by splices 54-1 and 54-2, respectively.
  • Light scattered and reflected by the sample 45 propagates through the opposing defocus polarization conversion optical systems 42-1 and 42-2, and again passes through the second coupler 49-2, the polarizer 50, and the first coupler 49-1.
  • the signal processing unit 56 obtains the phase difference between the left and right light depending on the optical rotation of the light scattering specimen 45 by calculation.
  • a 20 KHz sinusoidal modulation signal 57 is applied from the signal processing unit 56 to the optical phase modulator 52.
  • the directions of the linearly polarized light 53-1 and 53-2 can be made such that the polarization directions of both the left and right polarized light incident on the sample are orthogonal by rotating the optical fiber around the optical axis.
  • the signal processing in FIG. 20 employs the method used in the phase modulation type optical fiber gyro described in Non-Patent Document 2. Phase modulation Same as in FIG.
  • the ring optical path of the ring interferometer mainly includes polarization-maintaining optical fibers 51-1 and 51-2 that occupy most of the loop, and the defocus polarization conversion optical system 42-1 described in the embodiment of the present invention. 42-2 and a light scattering specimen 45.
  • the light propagating in both the left and right directions propagates in the right and left circularly polarized light only in the portion of the light scattering specimen 45, and other than that,
  • the part of the polarization-maintaining optical fiber is to propagate in the same intrinsic polarization mode of the polarization-maintaining optical fiber.
  • the skin thickness of the subject was about 1.5 mm.
  • the insertion loss is about 65 dB in the case of the opposed collimator in FIG.
  • the loss level of the optical interference system in this experiment was as follows.
  • Light source output 10 mW (polarization plane preserving optical fiber output)
  • Optical gyro (ring interference system) loss 10 dB Insertion loss of defocused polarization conversion coupling optical system across the living body: 34 dB Mode matching section loss: 6 dB (2 locations)
  • Connector and splice loss 3dB Total loss: 53dB
  • Received power 50nW
  • a silicon APD Alignment photodiode
  • a large core diameter / low NA polarization maintaining optical fiber having a core diameter of 30 ⁇ m was brought as close to the lens as possible from the focal point. Under such conditions, the average measurement time was 10 seconds, and the phase difference of the left and right circularly polarized light propagating through the finger folds could be measured with a sufficient signal-to-noise ratio.
  • a refractive index matching agent was applied to the folds of the finger to suppress reflection loss.
  • a signal synchronized with the pulse was detected.
  • the phase difference was measured while shifting the measurement site in a direction perpendicular to the optical axis.
  • the result that a phase difference changes with parts was obtained. This was interpreted as a difference between when the beam passed through the blood vessel and when it did not.
  • Data related to blood glucose level can be obtained by repeating measurement for an actual diabetic patient.
  • the periodic signal is applied to the portion sandwiching the living body to periodically change the thickness of the living body, and is synchronized with the period. It is also effective to detect this.
  • FIG. 21 shows an example of the embodiment of the present invention, in which the coupling optical system shown in FIG. 19 is used to irradiate signal light to the light scattering specimen 45 as a sample obliquely using a mode-matching opposed defocus polarization conversion optical system.
  • It is a block diagram of the principal part 59 of the optical rotation measuring apparatus which measures the optical rotation of the light which is installed in the ring optical path of a ring interferometer and propagates the surface of a light-scattering specimen.
  • a mirror was previously placed on the specimen portion, and the axes were aligned so that the coupling between the defocus polarization conversion optical systems 42-1 and 42-2 could be obtained with the required accuracy.
  • the finger was placed on the quarter-wave plate 47, and the optical rotation included in the reflected light and scattered light from the living body was measured.
  • a refractive index matching agent was used between the quarter-wave plate 47 and the finger.
  • At least one of the one single-mode optical fiber and the other single-mode optical fiber has an output lens disposed at the tip, and the single-mode optical fiber having the output lens At least one of the end faces constitutes a defocus polarization conversion optical system that is an optical system that is not at the focal position of the output lens.
  • each of the one single-mode optical fiber and the other single-mode optical fiber has an output lens disposed at the tip, and the end surface of the single-mode optical fiber having the output lens is the output
  • a defocus polarization conversion optical system which is an optical system that is not at the focal position of the partial lens, is configured.
  • FIG. 22 is a diagram for explaining a measurement method in the main part 58 of the optical rotation measuring device as an embodiment of the present invention.
  • part of the measurement object 45 the beam emitted from the defocus polarization conversion optical system 42-1 is shown. It is a figure explaining the example of the method of observing whether it is irradiated. That is, in actual measurement, laser light from the HeNe laser 60 as the visible laser is incident from the other incident end of the second coupler 49-2 in FIG. 22, and the half mirror 61 is placed in front of the measurement target 45.
  • the microscope 62 was used to observe which part of the measurement object 45 was irradiated with the beam emitted from the defocus polarization conversion optical system 42-1.
  • the sample 45 was a living body
  • the blood vessel portion could be observed by applying permeable oil.
  • the HeNe laser was turned off and the microscope and half mirror were removed. As a result, the optical rotation and the positional relationship between the blood vessels of the living body became clear.
  • the defocused optical rotation measurement apparatus As described above, the defocused optical rotation measurement apparatus, the defocus polarization conversion optical system, and the optical rotation measurement method using the optical system of the present invention have been described.
  • the effect of the present invention can be exhibited even when used alone in the defocused optical rotation measurement apparatus, the defocus polarization conversion optical system, and the optical rotation measurement method using the optical system of the present invention. Even if the invention is configured, not only can the effect of the present invention be exhibited, but the present invention is not limited to this, and many variations can be made based on the technical idea of the present invention. To do.
  • non-invasive blood glucose level measurement that has not been realized by the present invention can be performed.
  • diabetic patients can be freed from the trouble of collecting blood several times a day, and the number of diabetic patients currently increasing worldwide by utilizing the blood glucose level measuring device of the present invention in a preventive and conservative manner.
  • the cost required for the treatment can be greatly reduced.
  • the present invention can be used not only in the medical field and the nursing field but also in a wide range of fields such as the health device field, the pharmaceutical field, the food field, and the agricultural field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】採血した血液や生体のグルコース濃度を、試薬に頼らずに、医療現場で実際に使用できるような高い精度でリアルタイムに測定することができ、さらに、無侵襲で生体のグルコース濃度を高い精度で測定することができ、かつ、使い易い旋光度測定装置、測定システムおよびそれに用いることができる新規な偏光変換光学系とそれを用いた旋光度測定方法を提供する。 【解決手段】光ファイバリング干渉計中に試料を挟んだ非相反偏光変換光学系を挿入し、非相反偏光変換光学系の入出力光ファイバには伝送部としての小コア径・高NAシングルモード光ファイバに入出力部としての大コア径・低NAシングルモード光ファイバをモード整合部を介して接続したものを用い、光ファイバ端面はレンズの焦点に置かずにデフォーカスにした構成を取り入れて課題を解決した。

Description

デフォーカスされた旋光度測定装置および旋光度測定方法ならびにデフォーカスされた光ファイバ光学系
 本発明は、採血した血液、血清、生体などの旋光度測定用検体としての光散乱検体のデフォーカスされた旋光度測定装置、旋光度測定システムに用いることができるデフォーカスされた光ファイバ光学系およびデフォーカスされた光ファイバ光学系を用いた旋光度測定方法に関するもので、さらに具体的には、旋光度測定用検体の糖質の濃度を測定することができ、人の血液、指、耳、皮膚などにレーザ光を照射し、その透過光および/または反射光を測定して旋光度測定用検体の糖質成分濃度を高い測定精度で測定できるデフォーカスされた旋光度測定装置、デフォーカスされた光ファイバ光学系およびデフォーカスされた光ファイバ光学系を用いた旋光度測定方法に関する発明である。
 血液中のグルコース濃度の測定方法として知られている第1の方法は、特許文献1に記載があるような、指などの生体の一部に赤外レーザ光を照射し、血管からの散乱光を分光し血液に含まれるグルコース濃度を測定するものである。これはグルコース濃度に比例して散乱光が低減することを利用している。しかし、この方法は散乱光の光強度が温度や皮膚の水分や油成分などに依存するという問題があり、広く普及していない。
 第2の方法は、非特許文献1および特許文献2などに記載されているように、旋光物質に直交する偏光成分を伝搬させてその複屈折率をオープンループで計測するものである。しかし、この方法では健常者の血糖値レベルである0.1g/dL(デシリットル)程度で厚さが10mm程度のグルコースを測定すると誤差が大きく、光の散乱が大きい血液や指などの生体では全く測定できない。
 第3の方法は、特許文献3に記載されている複屈折率測定装置で測定する方法である。この方法は本発明と同じく偏波面保存光ファイバからなるリング干渉計のリングの中に対向コリメータ光学系を設け、検体内に平行ビームを伝搬させ、左右両回り光の位相差を測定することによって検体の旋光度を計測するものである。この方法では厚さ10mm程度のガラス製セルに入れたグルコースで健常者の血糖値レベルである0.1g/dLを十分な精度で測定できる。
図23は従来の対向コリメータに光散乱検体を挿入した光学系を示す図で、フェルール2-1,2-2を有する一対のシングルモード(以下、SMともいう)光ファイバ1-1,1-2の先端からそれぞれレンズ3-1,3-2の焦点距離5-1,5-2だけ離れた位置にレンズ3-1,3-2を配置し、対向コリメータ光学系を構成し、その間に光散乱検体4を配置して光散乱検体4の旋光度を測定する。測定精度を高める最良の方法として、各光ファイバの端面をそれぞれ各レンズの焦点位置に配置して対向コリメータを形成し、一方の光ファイバの端面から出射する信号光をレンズで平行光線にして光散乱検体4に照射し、光散乱検体4を透過した信号光を他方の光ファイバに結合させる構成である。しかし、図23の対向コリメータに厚さ1.5mm程度の指の付け根のひだ部を挿入した場合には、生体の散乱損失が非常に大きく、旋光度を測定することができない。
 この原因は、シングルモード光ファイバ対向コリメータ光学系の挿入損失は、通常は0.5dB程度であるが、生体を挿入すると挿入損失が80dB以上となるためである。
 図24は波長850nm用SM光ファイバを用いた対向コリメータの、レンズの焦点距離がf=2.5mm、レンズ間の距離が30mmの場合のビーム角度依存性の理論計算結果で、図中、横軸はコリメータ角度(単位:度)すなわちコリメータへ入出射するビーム角度、縦軸は損失(単位:dB)である。これより、ビーム角度が0度から0.3度程度ずれると結合損失が50dB以上増大することがわかる。したがって、実際の指のひだ部をレンズ付きシングルモード光ファイバ対向コリメータ光学系で挟んだ場合の挿入損失が80dB以上となる理由は、レンズでコリメートされた平行光線が生体内部でランダムに散乱されビーム伝搬角度が変化するためと考えられる。
 以上のことからもわかることであるが、これまで採血した血液や生体のグルコース濃度を高精度に測定する光学的な測定装置の開発が多く試みられてきた。しかし、採血した血液や生体のグルコース濃度を高精度で測定することは極めて難しく、果物の糖度測定には用いられるものの、採血した血液や生体のグルコース濃度の測定に使える測定器はまだ実現されておらず、採血した血液や生体のグルコース濃度の測定は試薬を用いた手法に頼らざるを得ないのが現状である。
特開2004-313554号公報 特開2007-093289号公報 特開2005-274380号公報
横田 正幸他、「鉛ガラスファイバ偏光変調器を用いたグルコースセンサー」、第31回光波センシング技術研究会LST31-8,PP.51-56,2003年6月 梶岡、於保、「光ファイバジャイロの開発」、第3回光波センシング技術研究会、LST3-9,PP.55-62,1989年6月
 以上述べたように現在までに採血した血液や生体のグルコース濃度を高精度に測定する光学的な測定装置は実用化されていない。本発明は以上のような状況に鑑みてなされたもので、本発明が解決しようとする課題は、採血した血液や生体のグルコース濃度を、試薬に頼らずに、医療現場で実際に使用できるような高い精度でリアルタイムに測定することができる、さらに、無侵襲で生体のグルコース濃度を高い精度で測定することができかつ、使い易い旋光度測定装置、測定システムおよびそれに用いることができる新規な偏光変換光学系とそれを用いた旋光度測定方法を提供することである。
 先端にレンズを有する光ファイバを被測定対象を挟んで信号光の光路上で対向させて一方から他方に光結合させる光ファイバ光学系における結合損失を少なくするには、対向する各光ファイバをその端面がレンズの焦点位置にあるコリメータ光学系にするのがよいというのが衆知の技術思想である。しかし、本発明者の実験的検討結果によると、この方法では本発明の課題を解決することができない。
 本発明は、従来の技術思想とは異なり、光ファイバの端面をレンズの焦点位置からずらして配置する全く新しい技術思想のデフォーカス偏光変換光学系を用いることによって課題を解決した。さらに、モード整合部を偏光変換光学系に取り入れて、生体などの散乱体を光ファイバで挟んだ光学系の結合損失を従来では期待できなかった低損失で実現した。以下、本発明の例を具体的に説明する。
 課題を解決するためになされた本発明の例としての第1の発明の実施の形態例(以下、発明1という)は、先端部にレンズが配置されているシングルモード光ファイバを信号光の光路において光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定することができる旋光度測定装置であって、前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面の少なくとも一方は、当該シングルモード光ファイバの出力部レンズの焦点位置にないデフォーカスされた光ファイバ光学系を形成していることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1を展開してなされた本発明の例としての第2の発明の実施の形態例(以下、発明2という)は、発明1に記載のデフォーカスされた旋光度測定装置において、前記一方のシングルモード光ファイバの開口数(以下、NAという)と前記他方のシングルモード光ファイバのNAの少なくとも一方が0.07以下であることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1または2を展開してなされた本発明の例としての第3の発明の実施の形態例(以下、発明3という)は、発明1または2に記載のデフォーカスされた旋光度測定装置において、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズに近い位置にあることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1又は2を展開してなされた本発明の例としての第4の発明の実施の形態例(以下、発明4という)は、発明1又は2に記載のデフォーカスされた旋光度測定装置において、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズから離れた位置にあることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~4を展開してなされた本発明の例としての第5の発明の実施の形態例(以下、発明5という)は、発明1~4のいずれかに記載のデフォーカスされた旋光度測定装置において、前記シングルモード光ファイバの先端部と当該光ファイバの出力部レンズとが相互に固定されていることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~5を展開してなされた本発明の例としての第6の発明の実施の形態例(以下、発明6という)は、発明1~5のいずれかに記載のデフォーカスされた旋光度測定装置において、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間にファラデー回転素子が配置されていることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~6を展開してなされた本発明の例としての第7の発明の実施の形態例(以下、発明7という)は、発明1~6のいずれかに記載のデフォーカスされた旋光度測定装置において、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間に4分の1波長板及び偏光子が配置されていることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~7を展開してなされた本発明の例としての第8の発明の実施の形態例(以下、発明8という)は、発明1~7のいずれかに記載のデフォーカスされた旋光度測定装置において、前記一方のシングルモード光ファイバと他方のシングルモード光ファイバが偏波面保存光ファイバであり、前記各光ファイバ先端部と試料の間に偏光子とファラデー回転素子と4分の1波長板が配置されており、前記双方の各偏波面保存光ファイバから同一の固有偏光モード(すなわち、出射偏光モード)の信号光が出射し、前記試料に前記試料の一方の入射側からは右円偏光または左円偏光として入射し、前記試料の他方の入射側からは左円偏光または右円偏光として入射して後、それぞれ光路上の偏波面保存光ファイバに前記出射偏光モードと等しい偏光モードで結合するように前記偏光子と前記ファラデー回転素子と前記4分の1波長板の方位と偏波面保存光ファイバの固有偏光方位が設定されていることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~8を展開してなされた本発明の例としての第9の発明の実施の形態例(以下、発明9という)は、発明1~8のいずれかに記載のデフォーカスされた旋光度測定装置において、前記デフォーカスされた旋光度測定装置は前記試料と前記デフォーカスされた光ファイバ光学系と前記偏波面保存光ファイバとでリング光干渉系のリングが構成され、前記リングを両方向に伝搬する光の前記試料に起因して生じる位相差を測定することによって前記試料の旋光度を測定することができることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明9を展開してなされた本発明の例としての第10の発明の実施の形態例(以下、発明10という)は、発明9に記載のデフォーカスされた旋光度測定装置において、前記デフォーカスされた旋光度測定装置は、リング干渉計のリング光路に右回り信号光としての偏光と左回り信号光としての偏光を伝搬させ、リング干渉計のリング光路の光ファイバ部分は右回り信号光としての偏光と左回り信号光としての偏光が同一の固有直線偏光モードで同じ光ファイバをそれぞれ右回り信号光と左回り信号光として伝搬させ、前記試料部分は互いに直交する円偏光状態でそれぞれ右回り信号光と左回り信号光を伝搬させるように構成されていることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~10を展開してなされた本発明の例としての第11の発明の実施の形態例(以下、発明11という)は、発明1~10のいずれかに記載のデフォーカスされた旋光度測定装置において、光路と直角方向に前記試料をスキャンできる機構を有することを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~11を展開してなされた本発明の例としての第12の発明の実施の形態例(以下、発明12という)は、発明1~11のいずれかに記載のデフォーカスされた旋光度測定装置において、前記試料が生体の一部であり、前記旋光度測定装置は前記試料の旋光度に関連する光学情報を測定するのに、前記信号光の位相差の検出手段の一部として、生体の脈拍または測定部位の厚味などの当該生体の一部の寸法を周期的に変化させるように人為的に与えた信号と同期させて前記位相差を検出する手段を有していることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~12を展開してなされた本発明の例としての第13の発明の実施の形態例(以下、発明13という)は、発明1~12のいずれかに記載のデフォーカスされた旋光度測定装置において、前記試料が生体の一部であり、前記旋光度測定装置は前記試料の旋光度に関連する光学情報を測定する部分を挟む測定端子部を有するとともに前記光ファイバの前記先端部が前記測定端子部に保持されていることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~13を展開してなされた本発明の例としての第14の発明の実施の形態例(以下、発明14という)は、発明1~13のいずれかに記載のデフォーカスされた旋光度測定装置において、前記一方のシングルモード光ファイバの出力部レンズと他方のシングルモード光ファイバの出力部レンズとの間の距離を変更することができるレンズ間距離調整手段を有することを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~14を展開してなされた本発明の例としての第15の発明の実施の形態例(以下、発明15という)は、発明1~14のいずれかに記載のデフォーカスされた旋光度測定装置において、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NAシングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されていることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~15を展開してなされた本発明の例としての第16の発明の実施の形態例(以下、発明16という)は、発明1~15のいずれかに記載のデフォーカスされた旋光度測定装置において、信号光の光路において前記試料を挟んで対向させて配置された一方の光ファイバと他方の光ファイバが同一種類の光ファイバであることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~16を展開してなされた本発明の例としての第17の発明の実施の形態例(以下、発明17という)は、発明1~16のいずれかに記載のデフォーカスされた旋光度測定装置において、信号光の光路において前記試料を挟んで対向させて配置された光ファイバがいわゆるダブルクラッド型偏波面保存光ファイバであることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~17を展開してなされた本発明の例としての第18の発明の実施の形態例(以下、発明18という)は、発明1~17のいずれかに記載のデフォーカスされた旋光度測定装置において、前記モード整合部にコア拡大ファイバとコア縮小ファイバの少なくとも一方が用いられていることを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~18を展開してなされた本発明の例としての第19の発明の実施の形態例(以下、発明19という)は、発明1~18のいずれかに記載のデフォーカスされた旋光度測定装置において、信号光の光路において対向配置された前記一方のシングルモード光ファイバの出力部レンズと前記他方のシングルモード光ファイバの出力部レンズの間の距離を3mmより狭くしたことを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 発明1~19を展開してなされた本発明の例としての第20の発明の実施の形態例(以下、発明20という)は、発明1~19のいずれかに記載のデフォーカスされた旋光度測定装置において、信号光の光路において前記試料を挟んで対向配置された前記偏光子と前記ファラデー回転素子と前記4分の1波長板と前記出力部レンズとを光ファイバ端部に配置したデフォーカスされた光ファイバ光学系の双方が前記試料の信号光入射面の同一側にあるとともに前記デフォーカスされた光ファイバ光学系と前記試料の間に4分の1波長板を配置したことを特徴とするデフォーカスされた旋光度測定装置の発明の実施の形態例である。
 課題を解決するためになされた本発明の例としての第21の発明の実施の形態例(以下、発明21という)は、先端部にレンズが配置されているシングルモード光ファイバを信号光の光路において光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定することができる旋光度測定システムに用いることができる光ファイバ光学系であって、前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面の少なくとも一方は、当該シングルモード光ファイバの出力部レンズの焦点位置にないことを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21を展開してなされた本発明の例としての第22の発明の実施の形態例(以下、発明22という)は、発明21に記載のデフォーカスされた光ファイバ光学系において、前記一方のシングルモード光ファイバの開口数(以下、NAという)と前記他方のシングルモード光ファイバのNAの少なくとも一方が0.07以下であることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21または22を展開してなされた本発明の例としての第23の発明の実施の形態例(以下、発明23という)は、発明21または22に記載のデフォーカスされた光ファイバ光学系において、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズに近い位置にあることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21又は22を展開してなされた本発明の例としての第24の発明の実施の形態例(以下、発明24という)は、発明21又は22に記載のデフォーカスされた光ファイバ光学系において、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズから離れた位置にあることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~24を展開してなされた本発明の例としての第25の発明の実施の形態例(以下、発明25という)は、発明21~24のいずれかに記載のデフォーカスされた光ファイバ光学系において、前記シングルモード光ファイバの先端部と当該光ファイバの出力部レンズとが相互に固定されていることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~25を展開してなされた本発明の例としての第26の発明の実施の形態例(以下、発明26という)は、発明21~25のいずれかに記載のデフォーカスされた光ファイバ光学系において、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間にファラデー回転素子が配置されていることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~26を展開してなされた本発明の例としての第27の発明の実施の形態例(以下、発明27という)は、発明21~26のいずれかに記載のデフォーカスされた光ファイバ光学系において、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間に4分の1波長板及び偏光子が配置されていることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~27を展開してなされた本発明の例としての第28の発明の実施の形態例(以下、発明28という)は、発明21~27のいずれかに記載のデフォーカスされた光ファイバ光学系において、前記一方のシングルモード光ファイバと他方のシングルモード光ファイバが偏波面保存光ファイバであり、前記各光ファイバ先端部と試料の間に偏光子とファラデー回転素子と4分の1波長板が配置されており、前記双方の各偏波面保存光ファイバから同一の固有偏光モード(すなわち、出射偏光モード)の信号光が出射し、前記試料に前記試料の一方の入射側からは右円偏光または左円偏光として入射し、前記試料の他方の入射側からは左円偏光または右円偏光として入射して後、それぞれ光路上の偏波面保存光ファイバに前記出射偏光モードと等しい偏光モードで結合するように前記偏光子と前記ファラデー回転素子と前記4分の1波長板の方位と偏波面保存光ファイバの固有偏光方位が設定されていることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~28を展開してなされた本発明の例としての第29の発明の実施の形態例(以下、発明29という)は、発明21~28のいずれかに記載のデフォーカスされた光ファイバ光学系において、前記デフォーカスされた光ファイバ光学系は、前記試料と前記デフォーカスされた光ファイバ光学系と前記偏波面保存光ファイバとでリング光干渉系のリング光路を構成することができ、前記リング光路を両方向に伝搬する光の前記試料に起因して生じる位相差を測定することによって前記試料の旋光度に関連する光学情報を測定することができる旋光度測定システムの構成要素として用いることができることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明29を展開してなされた本発明の例としての第30の発明の実施の形態例(以下、発明30という)は、発明29に記載のデフォーカスされた光ファイバ光学系において、前記光ファイバ光学系は、リング干渉計のリング光路に右回り信号光としての偏光と左回り信号光としての偏光を伝搬させ、リング干渉計のリング光路の光ファイバ部分は右回り信号光としての偏光と左回り信号光としての偏光が同一の固有直線偏光モードで同じ光ファイバをそれぞれ右回り信号光と左回り信号光として伝搬させ、前記試料部分は互いに直交する円偏光状態でそれぞれ右回り信号光と左回り信号光を伝搬させるように構成されていることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~30を展開してなされた本発明の例としての第31の発明の実施の形態例(以下、発明31という)は、発明21~30のいずれかに記載のデフォーカスされた光ファイバ光学系において、光路と直角方向に前記試料をスキャンできる機構を有することを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~31を展開してなされた本発明の例としての第32の発明の実施の形態例(以下、発明32という)は、発明21~31のいずれかに記載のデフォーカスされた光ファイバ光学系において、前記試料が生体の一部であり、前記旋光度測定装置は前記試料の旋光度に関連する光学情報を測定するのに、前記信号光の位相差の検出手段の一部として、生体の脈拍または測定部位の厚味などの当該生体の一部の寸法を周期的に変化させるように人為的に与えた信号と同期させて前記位相差を検出する手段を有していることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~32を展開してなされた本発明の例としての第33の発明の実施の形態例(以下、発明33という)は、発明21~32のいずれかに記載のデフォーカスされた光ファイバ光学系において、前記試料が生体の一部であり、前記光ファイバ光学系は前記試料の旋光度に関連する光学情報を測定する部分を挟む測定端子部を有するとともに前記光ファイバの前記先端部が前記測定端子部に保持されていることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~33を展開してなされた本発明の例としての第34の発明の実施の形態例(以下、発明34という)は、発明21~33のいずれかに記載のデフォーカスされた光ファイバ光学系において、前記一方のシングルモード光ファイバの出力部レンズと他方のシングルモード光ファイバの出力部レンズとの間の距離を変更することができるレンズ間距離調整手段を有することを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~34を展開してなされた本発明の例としての第35の発明の実施の形態例(以下、発明35という)は、発明21~34のいずれかに記載のデフォーカスされた光ファイバ光学系において、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NAシングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されていることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~35を展開してなされた本発明の例としての第36の発明の実施の形態例(以下、発明36という)は、発明21~35のいずれかに記載のデフォーカスされた光ファイバ光学系において、信号光の光路において前記試料を挟んで対向させて配置された一方の光ファイバと他方の光ファイバが同一種類の光ファイバであることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~36を展開してなされた本発明の例としての第37の発明の実施の形態例(以下、発明37という)は、発明21~36のいずれかに記載のデフォーカスされた光ファイバ光学系において、信号光の光路において前記試料を挟んで対向させて配置された光ファイバがいわゆるダブルクラッド型偏波面保存光ファイバであることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~37を展開してなされた本発明の例としての第38の発明の実施の形態例(以下、発明38という)は、発明21~37のいずれかに記載のデフォーカスされた光ファイバ光学系において、前記モード整合部にコア拡大ファイバとコア縮小ファイバの少なくとも一方が用いられていることを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~38を展開してなされた本発明の例としての第39の発明の実施の形態例(以下、発明39という)は、発明21~38のいずれかに記載のデフォーカスされた光ファイバ光学系において、信号光の光路において対向配置された前記一方のシングルモード光ファイバの出力部レンズと前記他方のシングルモード光ファイバの出力部レンズの間の距離を3mmより狭くしたことを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 発明21~39を展開してなされた本発明の例としての第40の発明の実施の形態例(以下、発明40という)は、発明21~39のいずれかに記載のデフォーカスされた光ファイバ光学系において、信号光の光路において前記試料を挟んで対向配置された前記偏光子と前記ファラデー回転素子と前記4分の1波長板と前記出力部レンズとを光ファイバ端部に配置したデフォーカスされた光ファイバ光学系の双方が前記試料の信号光入射面の同一側にあるとともに前記デフォーカスされた光ファイバ光学系と前記試料の間に4分の1波長板を配置したことを特徴とするデフォーカスされた光ファイバ光学系の発明の実施の形態例である。
 課題を解決するためになされた本発明の例としての第41の発明の実施の形態例(以下、発明41という)は、先端部にレンズが配置されているシングルモード光ファイバを信号光の光路において光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定する旋光度測定方法であって、前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面の少なくとも一方は、当該シングルモード光ファイバの出力部レンズの焦点位置にないデフォーカスされた光ファイバ光学系を形成していることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41を展開してなされた本発明の例としての第42の発明の実施の形態例(以下、発明42という)は、発明41に記載のデフォーカスされた旋光度測定方法において、前記一方のシングルモード光ファイバの開口数(以下、NAという)と前記他方のシングルモード光ファイバのNAの少なくとも一方が0.07以下であることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41または42を展開してなされた本発明の例としての第43の発明の実施の形態例(以下、発明43という)は、発明41または42に記載のデフォーカスされた旋光度測定方法において、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズに近い位置にあることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41又は44を展開してなされた本発明の例としての第44の発明の実施の形態例(以下、発明44という)は、発明41又は44に記載のデフォーカスされた旋光度測定方法において、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズから離れた位置にあることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~44を展開してなされた本発明の例としての第45の発明の実施の形態例(以下、発明45という)は、発明41~44のいずれかに記載のデフォーカスされた旋光度測定方法において、前記シングルモード光ファイバの先端部と当該光ファイバの出力部レンズとが相互に固定されているシングルモード光ファイバを用いることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~45を展開してなされた本発明の例としての第46の発明の実施の形態例(以下、発明46という)は、発明41~45のいずれかに記載のデフォーカスされた旋光度測定方法において、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間にファラデー回転素子が配置されていることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~46を展開してなされた本発明の例としての第47の発明の実施の形態例(以下、発明47という)は、発明41~46のいずれかに記載のデフォーカスされた旋光度測定方法において、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間に4分の1波長板及び偏光子が配置されていることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~47を展開してなされた本発明の例としての第48の発明の実施の形態例(以下、発明48という)は、発明41~47のいずれかに記載のデフォーカスされた旋光度測定方法において、前記一方のシングルモード光ファイバと他方のシングルモード光ファイバが偏波面保存光ファイバであり、前記各光ファイバ先端部と当該出力部レンズの間に偏光子とファラデー回転素子と4分の1波長板が配置されており、前記双方の各偏波面保存光ファイバから同一の固有偏光モード(すなわち、出射偏光モード)の信号光が出射し、前記試料に前記試料の一方の入射側からは右円偏光または左円偏光として入射し、前記試料の他方の入射側からは左円偏光または右円偏光として入射して後、それぞれ光路上の偏波面保存光ファイバに前記出射偏光モードと等しい偏光モードで結合するように前記偏光子と前記ファラデー回転素子と前記4分の1波長板の方位と偏波面保存光ファイバの固有偏光方位が設定されていることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~48を展開してなされた本発明の例としての第49の発明の実施の形態例(以下、発明49という)は、発明41~48のいずれかに記載のデフォーカスされた旋光度測定方法において、前記デフォーカスされた旋光度測定系が前記試料と前記デフォーカスされた光ファイバ光学系と前記偏波面保存光ファイバとでリング光干渉系のリングが構成され、前記リングを両方向に伝搬する光の前記試料に起因して生じる位相差を測定することによって前記試料の旋光度を測定することができるように構成されていることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明49を展開してなされた本発明の例としての第50の発明の実施の形態例(以下、発明50という)は、発明49に記載のデフォーカスされた旋光度測定方法において、前記デフォーカスされた旋光度測定系が、リング干渉計のリング光路に右回り信号光としての偏光と左回り信号光としての偏光を伝搬させ、リング干渉計のリング光路の光ファイバ部分は右回り信号光としての偏光と左回り信号光としての偏光が同一の固有直線偏光モードで同じ光ファイバをそれぞれ右回り信号光と左回り信号光として伝搬させ、前記試料部分は互いに直交する円偏光状態でそれぞれ右回り信号光と左回り信号光を伝搬させるように構成されていることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~50を展開してなされた本発明の例としての第51の発明の実施の形態例(以下、発明51という)は、発明41~50のいずれかに記載のデフォーカスされた旋光度測定方法において、光路と直角方向に前記試料をスキャンできる機構を用いることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~51を展開してなされた本発明の例としての第52の発明の実施の形態例(以下、発明52という)は、発明41~51のいずれかに記載のデフォーカスされた旋光度測定方法において、前記試料が生体の一部であり、前記旋光度測定方法は前記試料の旋光度に関連する光学情報を測定するのに、前記信号光の位相差の検出手段の一部として、生体の脈拍または測定部位の厚味などの当該生体の一部の寸法を周期的に変化させるように人為的に与えた信号と同期させて前記位相差を検出する手段を用いることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~52を展開してなされた本発明の例としての第53の発明の実施の形態例(以下、発明53という)は、発明41~52のいずれかに記載のデフォーカスされた旋光度測定方法において、前記試料が生体の一部であり、前記旋光度測定方法は前記試料の旋光度に関連する光学情報を測定する部分を挟む測定端子部を用いるとともに前記光ファイバの前記先端部が前記測定端子部に保持されていることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~53を展開してなされた本発明の例としての第54の発明の実施の形態例(以下、発明54という)は、発明41~53のいずれかに記載のデフォーカスされた旋光度測定方法において、前記一方のシングルモード光ファイバの出力部レンズと他方のシングルモード光ファイバの出力部レンズとの間の距離を変更することができるレンズ間距離調整手段を用いることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~54を展開してなされた本発明の例としての第55の発明の実施の形態例(以下、発明55という)は、発明41~54のいずれかに記載のデフォーカスされた旋光度測定方法において、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NAシングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されていることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~55を展開してなされた本発明の例としての第56の発明の実施の形態例(以下、発明56という)は、発明41~55のいずれかに記載のデフォーカスされた旋光度測定方法において、信号光の光路において前記試料を挟んで対向させて配置された一方の光ファイバと他方の光ファイバを同一種類の光ファイバにすることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~56を展開してなされた本発明の例としての第57の発明の実施の形態例(以下、発明57という)は、発明41~56のいずれかに記載のデフォーカスされた旋光度測定方法において、信号光の光路において前記試料を挟んで対向させて配置された光ファイバがいわゆるダブルクラッド型偏波面保存光ファイバであることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~57を展開してなされた本発明の例としての第58の発明の実施の形態例(以下、発明58という)は、発明41~57のいずれかに記載のデフォーカスされた旋光度測定方法において、前記モード整合部にコア拡大ファイバとコア縮小ファイバの少なくとも一方を用いることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~58を展開してなされた本発明の例としての第59の発明の実施の形態例(以下、発明59という)は、発明41~58のいずれかに記載のデフォーカスされた旋光度測定方法において、信号光の光路において対向配置された前記一方のシングルモード光ファイバの出力部レンズと前記他方のシングルモード光ファイバの出力部レンズの間の距離を3mmより狭くしたことを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 発明41~59を展開してなされた本発明の例としての第60の発明の実施の形態例(以下、発明60という)は、発明41~59のいずれかに記載のデフォーカスされた旋光度測定方法において、信号光の光路において前記試料を挟んで対向配置された前記偏光子と前記ファラデー回転素子と前記4分の1波長板と前記出力部レンズとを光ファイバ端部に配置したデフォーカスされた光ファイバ光学系の双方が前記試料の信号光入射面の同一側にあるとともに前記デフォーカスされた光ファイバ光学系と前記試料の間に4分の1波長板を配置したことを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 課題を解決するためになされた本発明の例としての第61の発明の実施の形態例(以下、発明61という)は、先端部にレンズが配置されているシングルモード光ファイバを信号光の光路において光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定することができる旋光度測定装置の発明であって、前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NA(NAは開口数を意味する)シングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されている光ファイバ光学系を用いていることを特徴とする旋光度測定装置の発明の実施の形態例である。
 発明61を展開してなされた本発明の例としての第62の発明の実施の形態例(以下、発明62という)は、発明61に記載の旋光度測定装置において、前記第2の光ファイバのNAが0.07以下であることを特徴とする旋光度測定装置の発明の実施の形態例である。
 発明61又は62を展開してなされた本発明の例としての第63の発明の実施の形態例(以下、発明63という)は、発明61又は61に記載の旋光度測定装置において、前記光ファイバ光学系が光ファイバの端面の近傍の光路上に前記出力部レンズに加えて偏光子とファラデー回転素子と4分の1波長板とを有する偏光変換光学系であることを特徴とする旋光度測定装置の発明の実施の形態例である。
 発明61~63のいずれかを展開してなされた本発明の例としての第64の発明の実施の形態例(以下、発明64という)は、発明61~63のいずれかに記載の旋光度測定装置において、前記旋光度測定装置は前記試料と前記光ファイバ光学系と前記シングルモード光ファイバとでリング光干渉系のリング光路が構成され、前記リング光路を両方向に伝搬する光の前記試料に起因して生じる位相差を測定することによって前記試料の旋光度を測定することができるように構成されていることを特徴とする旋光度測定装置の発明の実施の形態例である。
 課題を解決するためになされた本発明の例としての第65の発明の実施の形態例(以下、発明65という)は、先端部にレンズが配置されているシングルモード光ファイバを信号光の光路において光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定することができる旋光度測定システムに用いることができる光ファイバ光学系であって、前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NAシングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されていることを特徴とする光ファイバ光学系の発明の実施の形態例である。
 課題を解決するためになされた本発明の例としての第66の発明の実施の形態例(以下、発明66という)は、先端部にレンズが配置されているシングルモード光ファイバを信号光の光路の発明で、光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定することができる旋光度測定方法の発明であって、前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NAシングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されていることを特徴とするデフォーカスされた旋光度測定方法の発明の実施の形態例である。
 本発明のデフォーカスされた旋光度測定装置によれば、あるいは、デフォーカスされた光ファイバ光学系および前記光ファイバ光学系を用いた旋光度測定方法を用いることによって、微量な血液での測定や採血しないでの測定で血糖値に関係する生体のグルコース濃度を高い精度で測定することができる。
 本発明は、特に、採血しない無侵襲測定方式において、第1に、針による採血に伴う煩わしさや苦痛がないこと、第2に、採血針の廃棄処理が不要で衛生的であること、第3に、採血法で使用していたグルコースと反応する試薬が不要なので年間10万円以上のランニングコストが不要になり経済的であること、第4に、簡単に測定できるため血糖値モニターが1日何回でもできるので糖尿病患者や健常者の健康管理に使えること、第5に国が負担する医療費も大幅に低減できることなど、大きな効果を発揮するものである。
 そして、本発明の光散乱検体の測定が可能な旋光度測定装置が一般家庭で使用されることにより、現在世界的に増加している糖尿病患者の数および糖尿病予備軍といわれる人の数を大幅に減らすことができるという極めて大きな福音をもたらすとともに、患者にはその治療に必要な費用を大幅に低減できるという大きな福音をもたらすものである。さらに、本発明のモード整合部を含む改善された光ファイバ光学系を用いた旋光度測定装置、旋光度測定方法を用いることによって、被測定検体の旋光度に関連する光学情報を従来では到底期待できなかったほど極めて高い精度で測定することができ、前記の本発明の効果を一層大きなものにすることができる。
初期損失が10dB、20dB増加する対向シングルモード光ファイバ光学系の結合損失のビーム角度依存性(理論計算値)を説明するグラフである。 本発明の実施の形態例としてのデフォーカスされた偏光変換光学系の構成図である。 本発明の実施の形態例としてのデフォーカスされた偏光変換光学系の構成図である。 本発明の実施の形態例としてのデフォーカスされた偏光変換結合光学系である。 本発明の実施の形態例としてのデフォーカスされた偏光変換結合光学系の原理説明図である。 本発明の実施の形態例としてのデフォーカスされた旋光度測定装置の構成図である。 本発明の実施の形態例としてのデフォーカスされた旋光度測定装置の構成図である。 本発明の実施の形態例としてのデフォーカスされた旋光度測定装置の構成図である。 本発明の実施の形態例に用いたモード整合部を説明するための図である。 本発明の実施の形態例に用いたモード整合部を説明するための図である。 本発明の実施の形態例に用いたモード整合部からコリメート光を作ることを説明するための図である。 本発明の実施の形態例に用いたモード整合部からデフォーカス光を作ることを説明するための図である。 本発明の実施の形態例に用いたモード整合部からコリメート円偏光を作ることを示した図である。 本発明の実施の形態例に用いたモード整合部からデフォーカス円偏光を作ることを示した図である。 本発明の実施の形態例に用いたモード整合部を含む円偏光偏光変換コリメータから出射されるビームを概念的に示した図である。 本発明の実施の形態例に用いたモード整合部を含む円偏光デフォーカス偏光変換光学系から出射されるビームを概念的に示した図である。 本発明の実施の形態例としての、対向モード整合偏光変換コリメータに光散乱検体を挿入した光学系である。 本発明の実施の形態例としての、対向モード整合デフォーカス偏光変換光学系に光散乱検体を挿入した光学系である。 本発明の実施の形態例としての、モード整合デフォーカス偏光変換光学系を用いて光散乱検体に信号光を斜めから照射する結合光学系を説明するための図である。 本発明の実施の形態例としての、対向モード整合デフォーカス偏光変換光学系で光散乱検体を挟んだ結合光学系を用いた旋光度測定装置の構成図である。 本発明の実施の形態例としての、対向モード整合デフォーカス偏光変換光学系を用いて光散乱検体に信号光を斜めから照射する結合光学系を用いた旋光度測定装置の構成図である。 本発明の実施の形態例としての旋光度測定装置における測定方法を説明する図である。 従来の対向コリメータに光散乱検体を挿入した光学系である。 対向シングルモード光学系の結合損失のビーム角度依存性(理論計算値)を説明するグラフである。 従来のコリメートされた結合光学系を説明する図である。
 1:リングを構成するPM光ファイバ
 1-1,1-2,1-3,1-4,1-5,1-6,1-7,1-8:光ファイバ
 2-1,2-2:フェルール
 3-1,3-2,3-3,35:レンズ
 4,45:試料、光散乱検体
 5-1,5-2,37:焦点距離
 9-1,9-2,38:偏光子
 11-1,11-2,11-3,39:ファラデー回転素子
 13-1,13-2,13-3,40,47:4分の1波長板
 14-1,14-2:偏光変換デフォーカス光学系
 14-3,14-4:偏光変換コリメータ光学系
 15-1,15-2:PM光ファイバ断面
 16-1,16-2:入射偏光方位
 17,48:SLD光源
 18-1,18-2:方向性結合器
 19,50:光ファイバ型偏光子
 20,52:光位相変調器
 21,55:受光器
 22,56:信号処理回路
 23,57:位相変調信号
 24:移動ステージ
 25:平行ビーム
 26-1,26-2,26-3:ミラー
 27-1,27-2:45度捩じりスプライス
 28-1,28-2:光ファイバ型偏光ビーム分離合成器
 29-1,29-2,54-1,54-2:スプライス
 30:直交偏波遅延光回路
 31,51-1,51-2:小コア径高NA偏波面保存光ファイバ
 32:大コア径低NA偏波面保存光ファイバ
 32a:光ファイバの端面
 33,34:モード整合部
 36:レンズ焦点位置
 41:モード整合部を含む偏光変換コリメータ光学系
 42:モード整合部を含むデフォーカス偏光変換光学系
 43:コリメート円偏光
 44:デフォーカス円偏光
 46:ガラス板
 49-1、49-2:カプラ
 53-1,53-2:左右両回り直線偏光
 58,59:旋光度測定装置
 60:可視レーザ
 61:ハーフミラー
 62:顕微鏡
 以下、図面を参照して本発明に係る一発明の実施の形態の例について説明する。なお、説明に用いる各図は本発明の実施の形態例を理解できる程度に各構成成分の寸法、形状、配置関係などを概略的に示してある。そして説明の都合上、部分的に拡大率を変えて図示する場合もあり、本発明の実施の形態例の説明に用いる図は、必ずしも実施例などの実物や記述と相似形でない場合もある。また、各図において、同様な構成成分については同一の番号を付けて示し、重複する説明を省略することもある。また、以下の説明では、本発明に係る各実施の形態例の、デフォーカスされた旋光度測定装置、デフォーカスされた光ファイバ光学系を用いた旋光度測定方法に関して説明の重複部分が多い。したがって、説明の重複を避けるため、誤解を生じないようにしつつ、特に言及せずに、光ファイバ光学系の説明で旋光度測定装置や旋光度測定方法の部分的あるいは全体的説明を兼ねる場合もあり、又、その逆の場合もある。
 本発明の発明者は、これまで多くの医療関係者から、採血した血液や生体のグルコース濃度を高い精度で測定できる測定器の実現を望まれ、その実現に多くの努力が払われてきたが、その実現が今日までできなかったことを踏まえて、その原因を詳しく分析した。
 その結果、従来知られている種々の測定方法では実現は困難で、これまでこの種の測定には使われなかった新しい測定原理を見出すことが必須であるという結論に達した。
 測定装置の基本構成は、光ファイバを用いたリング干渉計にし、被測定用検体(試料)に偏光を入射させ、その偏光の位相変化を測定することが好ましい。しかし、測定精度を格別に向上させる必要がある。
 これまで、光ファイバ間に試料を挟んだリング干渉計においては、試料の入出射面間に光ファイバコリメータ光学系を用いて光結合を行うのが光損失が少なく、挿入損失を最も低減できるというのが専門家間の定説であった。光ファイバコリメータ光学系を用いて信号光の強度変化や位相変化を測定する場合は、光ファイバの端面をコリメータレンズの焦点位置に配置する。
 この方式を用いて種々の試料について位相変化を測定した。しかしながら、医療現場などで実用化するには、糖質に関する情報の検出精度が不足で、検出精度をさらに高める必要があることがわかった。
 そこで、本発明の発明者はこの専門家の常識を越えて、光ファイバの端面をレンズの焦点位置に配置した従来の光ファイバ偏光変換光学系(以下、従来型偏光変換光学系ともいう)と光ファイバの端面をレンズの焦点位置から離して配置したデフォーカス光ファイバ偏光変換光学系(以下、デフォーカス偏光変換光学系ともいう)をそれぞれ構成し、対向して配置した一対の従来型偏光変換光学系の間に試料として採血した血液や生体などを配置して試料に信号光としての偏光を入射させた場合と、対向して配置した一対のデフォーカス偏光変換光学系の間に前記従来型偏光変換光学系の場合と同じ条件の試料として採血した血液や生体などを配置して試料に信号光としての偏光を入射させた場合について、それぞれ試料による信号光の位相変化を測定した。
 その結果、デフォーカス偏光変換光学系を用いた場合が従来型偏光変換光学系を用いた場合よりも試料による信号光の位相変化をより高い精度で測定できることを見出し、本発明をなすに至った。
 図1は、前記検討結果を検証しようとして本発明の発明者が行った理論計算結果の例で、焦点距離がf=2.5mm、レンズ間距離が30mmの場合の波長が850nm用のSM光ファイバを用いた対向シングルモード光ファイバ光学系の結合損失のビーム角度依存性の理論計算結果である。図1(a)は光ファイバの端面を出力部レンズの焦点位置からオフセット(すなわち、デフォーカス)して10dBの初期損失(ビーム角度ズレがない場合の損失)を与えた場合の、図1(b)は20dBの初期損失を与えた場合の結合損失のビーム角度依存性の理論計算結果である。図中、横軸は入射光のビーム角度、縦軸は損失(dB)である。図より、ビーム角度が0.3度ずれた場合の損失は、初期損失が10dBの場合に高々5dB程度、初期損失が20dBの場合に1dB程度であることがわかる。本発明の発明者は、さらに実際の旋光度測定装置、光ファイバ光学系について詳細に検討した。
 以下、実施の形態例を引用してさらに詳しく説明する。
本発明の実施の形態例では、先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を採血した血液や生体などの試料に入射させ、前記試料を透過した信号光あるいは前記試料によって反射された信号光あるいは前記試料を透過した信号光と前記試料によって反射された信号光の双方を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定することができるように構成した旋光度測定装置を用いた。
 前記一方のシングルモード光ファイバと他方のシングルモード光ファイバは別のものの場合(第1の例)と前記一方のシングルモード光ファイバと他方のシングルモード光ファイバは同一のものの場合(第2の例)とがあり、前記一方のシングルモード光ファイバと他方のシングルモード光ファイバが一対の場合もあり、複数対の場合もある。
 本発明の実施の形態例は、前記一方のシングルモード光ファイバと他方のシングルモード光ファイバの少なくとも1つは先端部に出力部レンズ(この出力部レンズは、リング干渉計における信号光としての左右両回り光のうちの一方の信号光、たとえば左回り光に対して出力側光ファイバになる場合は他方の信号光である右回り光に対しては入力側光ファイバのレンズになるが、出力部レンズという)が配置されていて、出力部レンズを有するシングルモード光ファイバの端面の少なくとも1つは、当該出力部レンズの焦点位置にない光学系であるデフォーカスされた光ファイバ光学系を構成していることを特徴としている。
 図2と図3は、本発明の実施の形態例としての旋光度測定装置の要部であるデフォーカスされた光ファイバ光学系の構成を説明する図で、シングルモード光ファイバを偏波面保存(PM)光ファイバとした場合のデフォーカスされた光ファイバ光学系としての偏光変換光学系を示す。図2と図3のデフォーカスされた偏光変換光学系(偏光変換光学システム)において、PM光ファイバ1-1,1-2のフェルール2-1,2-2の先端から出射したビームは、順にそれぞれレンズ3-1,3-2と偏光子ホルダ8-1,8-2で保持された偏光子9-1,9-2とファラデー回転素子ホルダ10-1,10-2で保持された前記偏光面回転素子としての45度ファラデー回転素子11-1,11-2と波長板ホルダ12-1,12-2で保持された4分の1波長板13-1,13-2を介して空間に導かれる。符号14-1,14-2は対向系で使用されるデフォーカスされた偏光変換光学系である。偏光変換光学系14-1,14-2は、構成は左右対称であるがそれぞれPM光ファイバから出射した直線偏光を左右円偏光に変換する機能を有している。図2,図3において、レンズの焦点距離fはf=1.8mmで、レンズと光ファイバ端面との距離を1mm、すなわち焦点からのオフセット量をレンズに近い方向へ0.8mmとした。
 図4は本発明の実施の形態例としてのデフォーカスされた光ファイバ光学系としての偏光変換結合光学系で偏光変換光学系14-1,14-2を対向させてその間に試料としての光散乱検体4を挟んだ構造になっている。光ファイバ対向挿入損失は60dBであった。この内訳は、ファラデー回転素子(2個)分の損失が6dB、生体の散乱損失が54dBであった。なお、光源波長は780nmを用いた。このように生体の一部を対向シングルモード光ファイバで挟んで挿入損失54dBを実現した例は本発明の発明者の知る限り前例がない。これは、図2および図3でそれぞれ偏光子9-1,9-2、ファラデー回転素子11-1,11-2、4分の1波長板13-1,13-2の各3種類の光学素子を厚さ0.5mmに収納し、生体を厚さ1.5mmになるように挟み、レンズ間距離を2.5mmに抑えるようにしたことによる。
 図5は本発明の実施の形態例としての光ファイバ光学系としてのデフォーカスされた偏光変換結合光学系の原理説明図である。対向するPM光ファイバの固有偏光軸は互いに空間的に直交し、それぞれのPM光ファイバから出射される光は図5ではスロー軸モードであるが両方ともファーストモードでも構わない。これらを同一仕様の45度ファラデー回転素子と4分の1波長板を介してそれぞれ右円偏光、左円偏光を光散乱検体4に入射させ、その出射光を再びPM光ファイバのスロー軸に結合できる。このような偏光変換光学系は非相反素子であるファラデー回転素子を使用して実現することができる。なお、図5では偏光子9-1,9-2、45度ファラデー回転素子11-1,11-2、4分の1波長板13-1,13-2を試料とレンズの間に配置しているが、光ファイバ端面とレンズの間に置く方法もある。このようにするとレンズ間に上記光部品が入らないのでレンズ間距離を短くでき、光ファイバ対向損失を低く抑えられる。
 図5のデフォーカスされた偏光変換結合光学系は従来のコリメートされた結合光学系とは使い方が異なっている。図25に従来のコリメートされた結合光学系のもう1つの例を示す。この場合には、図23の場合と同様に、光ファイバの先端とレンズの間の距離が各レンズの焦点距離に等しい。偏光変換光学系14-3,14-4より出射される平行ビーム25はミラー26-1,26-2で反射される。ここで、光散乱検体4がない場合には移動ステージ24を右側に動かしてレンズ間距離を数cm離しても結合系の損失はビームがコリメートされているので1dB以下と小さいが、光散乱検体4が挿入されると偏光変換光学系14-3と14-4の結合損失は100dB以上と非常に大きくなってしまい、旋光度を測定することができない。
 本発明者が本発明をなすにあたって種々検討をした結果、光散乱検体4を対向する偏光変換結合光学系の間に挿入した状態で挿入損失を小さく抑えるには、従来の偏光変換結合光学系14-3,14-4のようなコリメート系ではなく、光ファイバ先端の位置をそれに対向するレンズの焦点位置からずらして、すなわちデフォーカスして、生体内で散乱した光を光路において対向して置かれたシングルモード光ファイバに結合できるようにすればよいということを見出した。従来、このような生体を挟んだシングルモード光ファイバ対向系の検討は生体内における光散乱のため解析が困難で、理論的な検討はほとんど行われていないため、実験的に検討した。
 実験から、親指と人差し指の付け根のひだ部を本発明のデフォーカスされた光ファイバ光学系としての偏光変換結合光学系14-1と14-2で挟んで旋光度を測定したとき、焦点距離1.8mmのレンズで0.8mmだけデフォーカスし、すなわち光ファイバの先端をレンズの焦点位置から0.8mmだけレンズに近づけた場合と、焦点距離0.7mmのレンズで光ファイバの先端をレンズの焦点位置からおよそ0.3mmだけレンズから遠ざけた場合に結合損失が最も小さかった。どちらも同程度の生体挿入結合損失が得られた。この実験結果から、光ファイバの先端とそれに対応して配置するレンズの距離は、光ファイバの先端を当該レンズの焦点位置からレンズの焦点距離のおよそ半分程度の距離だけデフォーカスするのがよいという実験結果が得られた。なお、本発明において、試料が親指と人差し指の付け根のひだ部など生体の一部である場合、本発明の光ファイバ光学系の先端部を鉗子の如き挟持構造にし、生体を挟む条件を制御できるようにすると、測定精度を一層高めることができる。
 図6は、本発明の実施の形態例のデフォーカスされた光ファイバ光学系としての偏光変換結合光学系をリング光干渉系に用いた場合の生体の旋光度測定装置の構成図である。光源17は波長が780nmのSLD(Super luminescent Diode)であり、その出力は第1の方向性結合器18-1、光ファイバ型偏光子19、第2の方向性結合器18-2に導かれ、リングを構成するPM光ファイバ1とPM光ファイバ1-1に分岐され、左右両周り光が生成される。符号20はシリンダ型PZT(チタン酸ジルコン酸鉛)に1m程度のPM光ファイバを巻き付けた光位相変調器である。リングを周回した左右両周り光は再び第2、第1の方向性結合器を経て受光器21で電気信号に変換され、信号処理部22によって光散乱検体4の旋光度による左右両周り光の位相差を演算で求める。信号処理部22から光位相変調器20に20KHzの正弦波状の変調信号が印加される。
 図6における信号処理は非特許文献2に記載の位相変調方式光ファイバジャイロで用いた方法を採用した。位相変調を20KHzで変調するとリング干渉系から20KHzの基本波の他に2倍波である40KHz成分および4倍波である80KHz成分が出力される。基本波と2倍波の強度の比よりリング光路を伝搬する左右両周り光の位相差を求める。2倍波と4倍波の比は位相変調度に比例するので一定になるように制御される。
 図6において、リング干渉系のリング光路は、本発明の実施の形態例であるデフォーカスされた光ファイバ光学系としての偏光変換光学系14-1,14-2とループを構成するPM光ファイバ1で構成される。図6で特筆すべき点は、光散乱検体4の内部でのみ左右両周り伝搬光がそれぞれ直交する左右円偏光で伝搬し、それ以外のPM光ファイバの部分は同一のPM光ファイバのスロー軸偏光モードで伝搬することである。このようにすると光散乱検体部分の左右円偏光の位相差のみを安定して測定できる。一般に、直線偏光は左右円偏光に分解され、左右円偏光の位相に2θの差が生じると偏光の向きがθだけ変化することはよく知られている。図6で光散乱検体の左右円偏光の位相差を測定できるので旋光度を測定することができる。
 まず、図4のデフォーカスされた光ファイバ光学系としての偏光変換結合光学系を用いて厚さ1mmの全血の旋光度を計測した。この実験においてはf=1.8mm、ファイバとレンズのオフセットを0.9mmとした。すなわち偏光変換光学系14-1,14-2のレンズとフェルール2-1,2-2の先端の距離を0.9mmで固定した。
この実験における光干渉系の損失レベルは以下のようであった。
光源出力:10mW(PM光ファイバ出力)
光ジャイロ(リング干渉系)損失:10dB
血液を挟んだデフォーカスされた偏光変換結合光学系の挿入損失:40dB
コネクタおよびスプライス損失:3dB
トータル損失:53dB
受光電力:50nW
ここで受光器は100KHz帯域幅で最小受信感度が5pWのシリコンAPDを用いた。このような条件で測定の平均時間10秒で全血を伝搬する左右円偏光の位相差0.001度を十分な信号対雑音比で測定することができた。すなわちグルコース濃度に換算すると10mg/dlに相当するノイズ幅で測定ができた。なお左右両回り光の位相の基準は検体を純水の場合の測定値とした。なお、ビーム径は0.1mm程度であるので測定に必要な血液の量は数μリットルと非常に微量でよい。
 次に光散乱検体として親指と人差し指の付け根のひだ部を測定した。この実験においては、光源を1060nmの出力50mWのSLDを用いた。同様に、f=1.8mm、光ファイバ先端のレンズ焦点位置からのオフセット=0.9mmとした。すなわち偏光変換光学系14-1,14-2のレンズとフェルール2-1,2-2の先端の距離を0.9mmとした。
この実験における光干渉系の損失レベルは以下のようであった。
光源出力:50mW(PM光ファイバ出力)
光ジャイロ(リング干渉系)損失:10dB
血液を挟んだデフォーカスされた偏光変換結合光学系の挿入損失:55dB
(なお、波長1060nmでは780nmに比べてファラデー回転素子の損失が低い。)
コネクタおよびスプライス損失:5dB
トータル損失:70dB
受光電力:5nW
この場合にも受光器は100KHz帯域幅で最小受信感度が5pWのシリコンAPDを用いた。受光系のS/Nは約30dBとれた。
 この実験においては指のひだ部に屈折率整合剤を塗布して反射損失を抑えた。本実験においては脈拍に同期した信号の検出を行った。測定部位を光軸と直角方向にずらしながら位相差を測定した。その結果、部位によって位相差が変化するという結果を得た。これはビームが血管部分を通過する場合とそうでない場合の違いが得られたものと解釈した。実際の糖尿病患者に対する測定を繰り返すことによって血糖値と関係するデータが得られるものと考える。なお、脈拍に同期した信号検出の他にも、生体を挟む部分に周期的な押圧を与え生体の厚さを周期的に変化させ、その周期と同期する周期的な信号を検出する方式も有効と考えられる。
 上述の実施の形態例では光源波長を780nmや1060nmとしたが、波長を1550nm帯とすることもできる。この場合にはファラデー回転素子の損失が780nmの場合より小さくなるが、光散乱検体が生体の場合には水の吸収損失が大きくなる。また1060nm帯は光ファイバレーザの波長域であり、光源パワーとして100mW以上のものが容易に適用できることやコア径が20から30μmと従来のPM光ファイバより格段に大きなPM光ファイバが実用化されているなどのメリットがある。
 図7は、本発明の実施の形態例で、前記の例の変形例であるデフォーカスされた光ファイバ光学系としての偏光変換光学系を反射型光干渉系に用いた場合の生体の旋光度測定装置の構成図である。光源17は780nmのSLDであり、その出力は第1の方向性結合器18-1、光ファイバ型偏光子19、45度捩じりスプライス27-1、PM光ファイバ1-4を介して光ファイバ型偏光分離合成器28-1に導かれる。光ファイバ型偏光分離合成器28-1で分離された直交固有偏光モードはそれぞれPM光ファイバ1-5および1-7とPM光ファイバ1-6を介して第2の光ファイバ型偏光分離合成器28-2に導かれる。符号29-1、29-2,29-3はスプライスである。符号20はシリンダ型PZTに1m程度のPM光ファイバを巻き付けた光位相変調器である。PM光ファイバ1-5と1-7の長さの和は100mとした。符号30は2つの光ファイバ型偏光分離合成器と光位相変調器を含んだ直交偏光モード間に伝搬時間の差を発生させる遅延光学系である。
 光ファイバ型偏光分離合成器28-2は第2の45度捩じりスプライス27-2を介してPM光ファイバ1-8に導かれ2つの直交偏光モードがPM光ファイバ1-8内を伝搬しレンズ3-3に導かれる。PM光ファイバ1-8から出射した振幅の等しい2つの固有偏光成分がレンズ3-3を通過し、4分の1波長板13-3を通過し、光散乱検体4にそれぞれ右円偏光、左円偏光で入射し、該光散乱検体4を伝搬した光がファラデー回転素子11-3を通過し、ミラー26-3で反射し、再び該光散乱検体を逆方向に伝搬し、該4分の1波長板13-3を通過し、レンズ3-3を通過し、該PM光ファイバ1-8に出射偏光と直交する固有偏光モードで結合するように該ファラデー回転素子11-3と該4分の1波長板13-3の方位を設定することができる。
 このような反射型の旋光度測定装置の特徴は、図6のリング干渉型の旋光度測定装置に比べてファラデー回転素子や4分の1波長板が単一でよいというメリットがある。図7においてはPM光ファイバ1-8を伝搬する直交偏光モードは行きと帰りで互いに直交するので、PM光ファイバ1-8の部分では位相差が発生しない。また遅延光学系30においては、直交偏光モードは同様に往復でPM光ファイバ1-5,1-7と1-6部分を1回ずつ伝搬するので、光ファイバ型偏光分離合成器28-1で分離された直交偏光モードは光ファイバ伝送部分では同一の位相で戻ってくる。すなわちPM光ファイバ1-8の先端部のデフォーカスされた偏光変換光学系の部分の光散乱検体4の旋光度による位相差のみが計測できる。光ファイバ型偏光分離合成器28-1、偏光子19および方向性結合器18-1を介して受光器21に戻ってきた直交偏光モードの位相差を測定する方法は図6の検出系と同じ位相変調方式である。
 シングルモード光ファイバの出射光をレンズを介して血液や生体などの光散乱検体に入射させ該光散乱検体の透過光をレンズを介して効率よく対向するシングルモード光ファイバに結合するようにするために、レンズ間距離を制御できる機構を設けることにより本発明の旋光度測定精度を一層高めることができる。
 また、本発明の実施の形態例において、試料を信号光の光路に直交する方向にスキャンする機構を設け、検出感度の良いところを見つけたり、測定する位置を選択したりするようにし、測定精度を高め、使い勝手を向上させることができる。
 図8は、本発明の実施の形態例として、本発明のデフォーカスされた光ファイバ光学系としての偏光変換光学系を反射型光干渉系に用いた場合の生体の旋光度測定装置の変形例の構成図である。図8と図7の違いは、図8では光散乱検体の後ろにミラーを使用していないことである。すなわち図8においては光散乱検体4からの反射光を4分の1波長板13-3、ファラデー回転素子11-3を介してPM光ファイバ1-8に再結合している。一般に右円偏光が光散乱検体で反射されると右円偏光で戻ってくるので原理的には図8の光学系では旋光度は測定できない。しかし生体などのランダムな散乱においては必ずしも往復の左右円偏光の位相差が相殺されない場合があり感度は低下するが測定が可能である。図7の測定系では光散乱検体の厚さが制限され測定部位が限定されるが図8の測定系ではセンサー部を測定対象に接触させるだけでよいのでセンサー部の構成が非常に簡単になるというメリットがある。
 本発明の技術思想によれば、本発明の旋光度測定装置、光ファイバ光学系および旋光度測定方法に用いる先端部にレンズを配置した光ファイバ光学系は、光ファイバの端面を当該レンズの焦点位置に配置していない光ファイバ光学系を用いている。
 周知のように、先端部にレンズを配置したシングルモード光ファイバを対向させて、一方から他方に光結合をさせる場合、各光ファイバの端面をレンズの焦点位置に配置して、対向コリメータを構成して光結合をさせるときが結合損失を最も高くすることができる。しかし、光ファイバの入射角あるいは出射角の変化に対する結合損失の増加は、図24を用いて説明したように、たとえばビーム角度が0.3度程度ずれると結合損失が50dB以上増大するというように、大きなものとなる。本発明の測定対象のような場合にはこの損失増大は許されない。
 前記のように、本発明の発明者は、種々検討した結果、光ファイバの端面をレンズの焦点位置からずらして配置することによって、入出射角度にズレがない場合の損失は少し増えるが、ビームの角度依存性を大幅に緩和できることを見出した。そこで、光ファイバの端面の位置をレンズの焦点位置からレンズに近づける方向(-方向)とレンズから遠ざける方向(+方向)について光ファイバの対向結合損失を実験的に調べた。
 たとえば、1550nm用のPM光ファイバの端面に焦点距離が0.7mmのレンズ配置したもの一対をレンズ対向距離2mmで対向させ、ファイバの端面の焦点位置からの距離(オフセット)を+400~+1000μmにした場合、損失は68dBと大きかった。レンズ対向距離を3mmにすると、どのオフセットでも損失は80dB以上であった。
 レンズの焦点距離が2.75mmの場合、レンズ対向距離を2mmにすると、オフセットを-250~+1200μmで損失が70dBと大きかった。
 レンズの焦点距離が1.8mmの場合、レンズ対向距離が2mmのとき、オフセットが-250~+1200μmで損失が65dBと大きかった。しかし、レンズ間距離を1.5mmにし、オフセットを-800μmにすると損失を52dBにすることができ、光ファイバ端面をレンズに接触させた状態で損失を49dBにすることができた。この場合、光ファイバ端面をレンズに接触させ、レンズの外側(光ファイバ端面を配置してある側と反対側)に偏光子とファラデー回転素子と4分の1波長板(円偏光でなく直線偏光を用いる場合は4分の1波長板は不要であるが)を配置することができる。
 また、1060nm用のPM光ファイバでコア直径が30μmのファイバレーザ用のダブルクラッド型光ファイバを用いて、レンズ対向距離を2mmにし、最低損失35.3dBが得られレンズ間距離を3mm程度離しても損失増は小さかった。これは上記に述べたデフォーカスされた偏光変換結合光学系の挿入損失に比べて大幅な改善である。発明者は比較のためにデフォーカスされた偏光変換結合光学系にコア径が62.6μmの多モード光ファイバも試してみた。しかし挿入損失は45dB以下にはならずしかもレンズ間距離を3mm程度離すと急激に損失が増加した。
 これらの多くの実験の結果から、信号光の結合損失を低減するには、光ファイバの端面をレンズの焦点位置に配置せずに焦点位置からレンズに近い位置あるいはレンズから離れた位置に配置することが好ましいことがわかった。特に、焦点距離が0.7~2.75mmのレンズにおいては、光ファイバの端面をレンズにできるだけ近づけることがさらに好ましい。上記の実施の形態例の検討過程で、偏光子とファラデー回転素子と4分の1波長板を、間隔が0.6mm以下の光ファイバ端面とレンズの間に実装し、旋光度の測定を行ったところ、高い精度で旋光度を測定することができた。
 また、本発明のデフォーカスされた光ファイバ光学系を少なくとも2つを信号光の光路において試料を挟んで対向させた対向光ファイバ光学系においては、対向レンズ間距離を4mmより大きくすると、試料を生体にした時の挿入損失が大きくなる。対向レンズ間距離を4mm以下にすることにより、前記例と同様に測定した挿入損失を50dB以下にすることができ、旋光度に関連する光学情報の測定精度を高めることができる。さらに好ましくは、対向レンズ間距離を3mmより狭くすることにより、前記例と同様に測定した挿入損失を45dB以下にすることができ、旋光度に関連する光学情報の測定精度を大幅に高めることができる。
 また、本発明のデフォーカスされた旋光度測定装置、デフォーカスされた光ファイバ光学系およびその光学系を用いた旋光度測定方法においては、光ファイバの先端部とレンズを固定しておくことにより、使い易く、再現性よく高精度に旋光度に関連する光学情報を測定できる。
 以上、図を参照しながら、本発明の実施の形態例において、光ファイバ端面と出力部レンズをデフォーカス状態で配置して試料の旋光度に関連する光学情報を従来では到底期待できないほど高精度で測定できることを説明した。
 つぎに、偏波面保存光ファイバを改善することにより試料の旋光度に関連する光学情報を極めて高い精度で測定することができる改善について詳述する。
 本発明者は前記の検討に加えて、対向デフォーカス偏光変換光学系に使用する偏波面保存光ファイバのコア径を種々変えて生体を本発明の対向デフォーカス偏光変換光学系に挿入したときの挿入損失について実験的に検討した。その結果、現在光ファイバレーザ用に使用されている波長が1064nm用のコア直径が20~30μmの大コア径・低NA(NAは開口数)偏波面保存光ファイバを用いるとコア直径が10μmの偏波面保存光ファイバを用いた場合よりも挿入損失が20~30dBも低くできることを見出した。
 対向デフォーカス偏光変換光学系に使用する偏波面保存光ファイバとしてコア直径が30μm、従ってNA~0.07のファイバレーザ用のダブルクラッド型光ファイバをデフォーカス条件で用いた場合に、通常のPM980(コア径~7μm、NA~0.2)に比べ大幅に挿入損失が低下した原因の一つは光ファイバのNAが小さいのでレンズで集光せずとも浅い角度で試料に入射することによって散乱損失を低く抑えられたためであると考えられる。考えられるもう一つの原因は散乱試料によって散乱された光がダブルクラッド型光ファイバの第2クラッドで全反射したモードが30μmのコアのシングルモードにモード結合するためではないかと考えられる。
 しかしながら、本発明における旋光度計測は検体をリング光干渉計のリング光路中に設置するため、光源からの光を右回り光と左回り光に分岐しまた結合する光ファイバ型カプラ、すなわち2x2型方向性結合器が必要である。しかし、コア直径が20~30μmの偏波面保存光ファイバ用のカプラは商用化されていない。また、本発明の旋光度計測でいわゆる位相変調方式を採用するにあたり、ある程度の長さのリングファイバが要求されるがコア直径が20~30μmの偏波面保存光ファイバは高価であるのでリング光路用には経済的でないという問題がある。
 このような背景から本発明者は従来のコア直径が10μmと30μmの偏波面保存光ファイバのモード整合をとることを考案した。図9は本発明の実施の形態例に用いたモード整合部を説明するための図である。すなわち、第1の光ファイバとしての相対的に小コア径・高NA偏波面保存光ファイバ31の出射部近傍すなわち端部近傍を加熱してコア部を拡大したいわゆるコア拡大光ファイバにし、このコア拡大光ファイバになった第1の光ファイバとしての小コア径・高NA偏波面保存光ファイバ31の端部と第2の光ファイバとしての相対的に大コア径・低NA偏波面保存光ファイバ32の端部とをモード整合部33で接続し補強した。接続損失は約3dBあったが加熱条件を最適化するとさらに低損失化することができる。図10は本発明の実施の形態例に用いたモード整合部34を説明するための図である。ここで、モード整合部33とモード整合部34は、少なくとも、前記第1の光ファイバのコア拡大光ファイバになっている端部部分とそれに接続される前記第2の光ファイバの端部部分を含んだ構成になっているが、これに狭く限定されるものではなく、多くのバリエーションを可能とするものである。その例として、前記第2の光ファイバの第1の光ファイバに接続される側の端部を、たとえば、第2の光ファイバの端部近傍を加熱して引き延ばし、第2の光ファイバの端部近傍のコア径を第1の光ファイバに接続される側に向かって漸減するように形成し、それを第1の光ファイバに接続するようにすることができる。さらに、コア拡大部分あるいはコア縮小部分は光ファイバの外形が加工時の熱により多少変形することが多いので、第1の光ファイバの端部部分をコア拡大ファイバに加工し、第2の光ファイバの端部部分をコア縮小ファイバに加工して両者の端部部分を接続することにより加工による誤差に起因する接続損失を一層低減することができる。
 以下に詳述する本発明の基本的技術思想の一部としての前記第1の光ファイバとしての小コア径・高NA偏波面保存光ファイバ31の端部と第2の光ファイバとしての相対的に大コア径・低NA偏波面保存光ファイバ32の端部とをモード整合部33で接続して用いる実施の形態例は、前記本発明の実施の形態例としてのデフォーカス偏光変換光学系において極めて大きな効果を発揮するものであるが、コリメート偏光変換光学系においても大きな効果を発揮するものである。図11は本発明の実施の形態例に用いたモード整合部からコリメート光を作ることを説明するための図である。すなわち光ファイバ32の端面32aはレンズ35の焦点位置36にある。なお、図11~図14において符号37を付した矢印はレンズ35の焦点距離である。図12は本発明の実施の形態例に用いたモード整合部からデフォーカス光を作ることを説明するための図である。この場合、光ファイバ32の端面32aはレンズ35の焦点位置36よりもレンズ側に配置されている。
 本発明の実施の形態例としての旋光度測定装置および偏光変換光学系ならびに旋光度測定方法においては、リング干渉計のリング光路を用い、リング光路の途中に試料を配置し、信号光の光路において試料を挟んで対向して配置される一方のリング光路途中の光ファイバ端末と他方のリング光路途中の光ファイバ端末をそれぞれ偏光変換光学系にし、前記偏光変換光学系を偏光面回転素子を用いた非相反光学系に構成している。前記偏光面回転素子としては当該偏光面回転素子の一方の側から信号光としての偏光ビームを入射させたときには当該信号光の偏光面を当該信号光の進行方向に向かって時計回りまたは反時計回りに所定角度だけ回転させ、当該偏光面回転素子の他方の側から信号光として偏光ビームを入射させたときには当該信号光の偏光面を当該信号光の進行方向に向かって反時計回りまたは時計回りにすなわち前記一方の側から入射させた信号光の進行方向に向かって見た状態では前記一方の側から入射させた信号光の場合と同方向に所定角度だけ回転させるように作用する偏光面回転素子を用いることが好ましい。本発明の実施の形態例としての旋光度測定装置では、リング干渉計のリング光路に右回り信号光の偏光と左回り信号光の偏光を伝搬させ、以下に詳述するように、リング干渉計のリング光路の光ファイバ部分は右回り信号光の偏光と左回り信号光の偏光が同一の固有偏光モードで同じ光ファイバをそれぞれ右回り光と左回り光として伝搬させ、試料部分は互いに直交する円偏光状態でそれぞれ右回り光と左回り光として伝搬させるようにし、本発明の各構成を活用して試料の旋光度を高い精度で検出できるようにしている。
 前記実施の形態例は、前記2つの偏光面回転素子として同一使用のものを使用した例であり、前記リング光路途中の、光路上で試料を挟んで対向配置した前記2つの光ファイバ端末の固有偏光軸が直交している場合である。前記リング光路途中の、光路上で資料を挟んで対向配置した前記2つの光ファイバ端末の固有偏光軸を平行にしても本発明の旋光度測定装置および偏光変換光学系ならびに旋光度測定方法を実現することができるが、前記本発明の実施の形態例と同様の効果を得るためには、前記2つの偏光面回転素子の偏光面回転方向を当該信号光の進行方向に向かって同一方向にする必要がある。但し、この場合には偏光面回転素子のタイプとして回転方向が互いに逆方向の2種類必要になる。
 本発明の実施の形態例でファラデー回転素子を用いて説明した前記偏光面回転素子は非相反光学素子で、その作用は前記のごとくである。このときのファラデー回転素子は、偏光面を所定の方向に45度回転させるファラデー回転素子である。
 図13は本発明の実施の形態例に用いたモード整合部からコリメート円偏光を作ることを示した図である。図13で光ファイバ32の端面32aはレンズ35の焦点位置36にある。図13で符号41はモード整合部を含む偏光変換コリメータ光学系を示す。図14は本発明の実施の形態例に用いたモード整合部からデフォーカス円偏光を作ることを示した図である。図14で光ファイバ32の端面32aはレンズ35の焦点位置36よりレンズ側にある。図13で、モード整合部34のピグテールである大コア径・低NA偏波面保存光ファイバ32の直線偏光出射光が、信号光として、レンズ35でコリメートされ、順に偏光子38、偏光面回転素子としてのファラデー素子39、4分の1波長板40を介し円偏光化される。図14で、符号42はモード整合部を含むデフォーカス偏光変換光学系を表している。図14においては偏光子38、ファラデー素子39、4分の1波長板40がレンズ35と光ファイバ32の端面32aとの間にあるが、図13のコリメート光学系の場合のようにレンズ35の後ろすなわち図14の偏光子38、ファラデー素子39、4分の1波長板40をレンズ35の光ファイバ32の端面32aと反対側に配置してもよい。
 図15は本発明の実施の形態例に用いたモード整合部を含む円偏光コリメータから出射されるビームを概念的に示した図、図16は本発明の実施の形態例に用いたモード整合部を含む円偏光デフォーカス光学系から出射されるビームを概念的に示した図である。
 図15では、モード整合部を含む偏光変換コリメータ(モード整合偏光変換コリメータ)41から出射されるビーム43は平行ビームであるコリメート円偏光でその進行方向に配置されている試料(図示せず)に入射するようになっており、図16では、モード整合部を含むデフォーカス偏光変換光学系(モード整合デフォーカス偏光変換光学系)42から出射されるビーム44は発散ビームであるデフォーカス円偏光でその進行方向に配置されている試料(図示せず)に入射するようになっている。
 図17は本発明の実施の形態例としての、対向モード整合偏光変換コリメータに試料45を挿入した光学系である。図18は本発明の実施の形態例としての、対向モード整合デフォーカス偏光変換光学系に試料45を挿入した光学系である。
 試料45が通常の散乱損失の低い水溶液のような場合には、図17の対向コリメータの方が挿入損失は小さい。しかし試料45が生体のような光散乱体の場合には、本発明者が種々実験を行った結果、図17の対向コリメータ系よりも図18のデフォーカス対向光学系の方が挿入損失が約1000倍(30dB)小さかった。この実験結果を説明できるシミュレーション手法は商用化されていなかった。実験の結果、図14の光学系で偏光子38、ファラデー素子39、4分の1波長板40をできるだけ薄く作り光ファイバの端面に接近させ、かつ、レンズ35に接近させた場合に最も低い挿入損失30dBを得ることができた。なお後述する光干渉計のリング光路中に置かれる図18のモード整合部を含む対向デフォーカス偏光変換光学系42-1,42-2から生体に向かってそれぞれ互いに直交する円偏光が入射し、それぞれ両方向に伝搬する直交円偏光が試料45を伝搬した後、対向するデフォーカス偏光変換光学系を経て対向する偏波面保存光ファイバに入射直線偏光と同じ偏光軸に結合するように、対向する偏波面保存光ファイバの固有偏光軸方位と対向する偏光子38、ファラデー素子39および4分の1波長板の固有偏光軸方位を調整した。
 図19は本発明の実施の形態例としての、モード整合部を含むデフォーカス偏光変換光学系42-1,42-2を用いて光散乱検体に信号光を斜めから照射する結合光学系を説明するための図である。図19は図18の透過系に対する反射系である。符号46は石英ガラス板、47は4分の1波長板である。一般に生体表面または生体内で反射した光の位相は反転するので、位相板がないと生体に対し入射光と反射光はそれぞれ直交円偏光となって位相差がキャンセルされ生体の旋光性による位相差が計測できない。位相板を生体(この場合には一種のミラー)と入射光の間に置くことにより入射光と同一の円偏光が反射されるので、偏光状態を含めてモード整合部を含むデフォーカス光学系42-1と42-2の結合がとれる。なお、図19の測定系は金属板を用いておらず従来のSPR(表面プラズモン共鳴)とは原理が異なるものである。
 図20は図18に示した本発明の実施の形態例としての、モード整合部を含む対向デフォーカス偏光変換光学系で光散乱検体を挟んだ結合光学系を光リング干渉計の小コア径高NA偏波面保存光ファイバ51-1,51-2を含むリング光路内に設置し、試料としての光散乱検体45の表面および内部からの散乱光・反射光の旋光度を測定する本発明の実施の形態例としての旋光度測定装置の主要部58の構成図である。
 光源48は波長が1060nmのSLD(Super luminescent Diode)であり、その出力は第1の方向性結合器(カプラ)49-1、光ファイバ型偏光子50、第2の方向性結合器(カプラ)49-2に導かれ、第2のカプラ49-2でリング光路を構成する小コア径高NA偏波面保存光ファイバ51-1と小コア径高NA偏波面保存光ファイバ51-2に分岐され、それぞれリング光路を伝搬する左右両周り直線偏光53-1,53-2が生成される。符号52はシリンダ型PZT(チタン酸ジルコン酸鉛)素子に1m程度の小コア径高NA偏波面保存光ファイバ51-1を巻き付けた光位相変調器である。リング光路を周回した左右両周り光はスプライス54-1,54-2でそれぞれモード整合部を含むデフォーカス偏光変換光学系42-1,42-2と接続される。試料45で散乱、反射された光は対向するデフォーカス偏光変換光学系42-1,42-2を伝搬し再び第2のカプラ49-2、偏光子50、第1のカプラ49-1を経て受光器55で電気信号に変換され、信号処理部56によって光散乱検体45の旋光度による左右両周り光の位相差を演算で求める。信号処理部56から光位相変調器52に20KHzの正弦波状の変調信号57が印加される。直線偏光53-1,53-2の方向は、光ファイバを光軸の回りに回転させて、試料に入射する左右両偏光の偏光方向を直交するようにできる。
 図20における信号処理は非特許文献2に記載の位相変調方式光ファイバジャイロで用いた方法を採用した。位相変調図6の場合と同様である。
 図20において、リング干渉計のリング光路は、主としてループの大半を占める偏波面保存光ファイバ51-1、51-2と本発明の実施の形態例説明したデフォーカス偏光変換光学系42-1,42-2と光散乱検体45で構成される。図20で特筆すべき点は、前期実施の形態例の説明からもわかるように、光散乱検体45の部分でのみ左右両周り伝搬光がそれぞれ直交する左右円偏光で伝搬し、それ以外の各偏波面保存光ファイバの部分は偏波面保存光ファイバの同一の固有偏光モードで伝搬することである。このようにすると光散乱検体部分の左右円偏光の位相差のみを安定に測定できる。一般に、直線偏光は左右円偏光に分解され、左右円偏光の位相に2θの差が生じると偏光の向きがθだけ変化することが知られている。図20では光散乱検体45の左右円偏光の位相差を測定できるのでその旋光度を測定することができる。
 次に試料としての散乱検体45が指のひだ部である場合の実験結果について述べる。被検者の皮膚の厚さは約1.5mmであった。この部分の両端に偏波面保存光ファイバを置いて生体を挟んで光結合をとると、図17の対向コリメータの場合には挿入損失が65dB程度あった。しかし、大コア径・低NA光ファイバをレンズ35にできるだけ接近させた図18のデフォーカスした対向コリメータの場合には35dBとなり、前記例よりも30dBも低かった。この実験における光干渉系の損失レベルは以下のようであった。
光源出力:10mW(偏波面保存光ファイバ出力)
光ジャイロ(リング干渉系)損失:10dB
生体を挟んだデフォーカスされた偏光変換結合光学系の挿入損失:34dB
モード整合部損失:6dB(2か所)
コネクタおよびスプライス損失:3dB
トータル損失:53dB
受光電力:50nW
ここで受光器は100KHz帯域幅で最小受信感度が5pWのシリコンAPD(Avalanche photodiode)を用いた。この実験ではコア径30μmの大コア径・低NA偏波面保存光ファイバを焦点からできるだけレンズに接近させた。このような条件で測定の平均時間を10秒とし、指のひだ部を伝搬する左右円偏光の位相差を十分な信号対雑音比で測定することができた。
 この実験においては指のひだ部に屈折率整合剤を塗布して反射損失を抑えた。本実験においては脈拍に同期した信号の検出を行った。測定部位を光軸と直角方向にずらしながら位相差を測定した。その結果、部位によって位相差が変化するという結果を得た。これはビームが血管部分を通過する場合とそうでない場合の違いが得られたものと解釈した。実際の糖尿病患者に対する測定を繰り返すことによって血糖値と関係するデータが得られる。なお、本発明においては、脈拍に同期した信号検出の他にも、生体を挟む部分に周期的な押圧を与えて生体の厚さを周期的に変化させ、その周期と同期する周期的な信号を検出する方式も有効である。なお、測定対象の部位近傍に本発明に記載の旋光度測定用の偏波面保存光ファイバと並列に多モード光ファイバを配置し、その挿入損失の変動を測定することによって脈拍を測定することができる。
 図21は本発明の実施の形態例としての、モード整合対向デフォーカス偏光変換光学系を用いて試料としての光散乱検体45に信号光を斜めから照射する図19に示した結合光学系を光リング干渉計のリング光路内に設置し光散乱検体の表面を伝搬する光の旋光度を測定する旋光度測定装置の主要部59の構成図である。この場合には、試料45を配置する前に、あらかじめ検体部にミラーを置きデフォーカス偏光変換光学系42-1、42-2の間の結合が必要な精度でとれるように軸合わせを行った。その後、指を4分の1波長板47の上に置いて生体からの反射光および散乱光に含まれる旋光度を測定した。実際には4分の1波長板47と指の間に屈折率整合剤を用いた。
 この実験でも測定部位を4分の1波長板47の平面上でずらしながら位相差を測定した。その結果、部位によって位相差が変化するという結果を得た。これはビームが血管部分を通過する場合とそうでない場合の違いが得られたものと解釈した。実際の糖尿病患者に対する測定を繰り返すことによって血糖値と関係するデータを作成し、測定データとたとえば血糖値との対応テーブルを作成しておき、たとえば信号処理回路56の記憶部分に入力しておき、測定結果の表示を行うように構成することができる。
 本発明の実施の好ましい形態例は、前記一方のシングルモード光ファイバと他方のシングルモード光ファイバの少なくとも1つは先端部に出力部レンズが配置されていて、出力部レンズを有するシングルモード光ファイバの端面の少なくとも1つは、当該出力部レンズの焦点位置にない光学系であるデフォーカス偏光変換光学系を構成していることを特徴としている。そして、特に好ましい例では、前記一方のシングルモード光ファイバと他方のシングルモード光ファイバのそれぞれが先端部に出力部レンズが配置されていて、出力部レンズを有するシングルモード光ファイバの端面が当該出力部レンズの焦点位置にない光学系であるデフォーカス偏光変換光学系を構成していることを特徴としている。
 図22は本発明の実施の形態例としての旋光度測定装置の主要部58における測定方法を説明する図で、デフォーカス偏光変換光学系42-1から出射されるビームが測定対象45のどの部分に照射されているかを観測する方法の例を説明する図である。すなわち、実際の測定においては、図22の第2カプラ49-2のもう一つの入射端から可視レーザとしてのHeNeレーザ60からのレーザ光を入射し、測定対象45の前にハーフミラー61を置いて、顕微鏡62でデフォーカス偏光変換光学系42-1から出射されるビームが測定対象45のどの部分に照射されているかを観測した。試料45が生体の場合には透過オイルを塗布することによって血管部分を観測できた。旋光度を測定するときにはHeNeレーザはオフにし、顕微鏡とハーフミラーを取り除いて測定した。これによって、旋光度と生体の血管の位置関係が明確になった。
 以上、本発明のデフォーカスされた旋光度測定装置、デフォーカス偏光変換光学系およびその光学系を用いた旋光度測定方法を説明したが、本発明の実施の形態例の前記各構成は、それぞれ単独で本発明のデフォーカスされた旋光度測定装置、デフォーカス偏光変換光学系およびその光学系を用いた旋光度測定方法に用いても本発明の効果を発揮することができ、種々組み合わせて本発明を構成しても本発明の効果を発揮することができるものであるのみならず、本発明はこれに狭く限定されるものでなく、本発明の技術思想に基づいて多くのバリエーションを可能とするものである。
 以上説明したように、本発明によってこれまで実現されていなかった無侵襲の血糖値測定が可能になる。その結果糖尿病患者を1日に数回の採血の煩わしさから解放することができ、また本発明の血糖値測定器を予防保全的に活用することにより現在世界的に増加している糖尿病患者数を減らすことができ、その治療に必要な費用を大幅に低減できる。そして、本発明は、医療分野、介護分野で活用できるのみならず、健康機器分野、医薬品分野、食品分野、農業分野など広い分野で利用できるものである。

Claims (66)

  1.  先端部にレンズが配置されているシングルモード光ファイバを信号光の光路において光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定することができる旋光度測定装置であって、
     前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面の少なくとも一方は、当該シングルモード光ファイバの出力部レンズの焦点位置にないデフォーカスされた光ファイバ光学系を形成していることを特徴とするデフォーカスされた旋光度測定装置。
  2.  請求項1に記載のデフォーカスされた旋光度測定装置において、
     前記一方のシングルモード光ファイバの開口数(以下、NAという)と前記他方のシングルモード光ファイバのNAの少なくとも一方が0.07以下であることを特徴とするデフォーカスされた旋光度測定装置。
  3.  請求項1又は2に記載のデフォーカスされた旋光度測定装置において、
     前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズに近い位置にあることを特徴とするデフォーカスされた旋光度測定装置。
  4.  請求項1又は2に記載のデフォーカスされた旋光度測定装置において、
     前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズから離れた位置にあることを特徴とするデフォーカスされた旋光度測定装置。
  5.  請求項1~4のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     前記シングルモード光ファイバの先端部と当該光ファイバの出力部レンズとが相互に固定されていることを特徴とするデフォーカスされた旋光度測定装置。
  6.  請求項1~5のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間にファラデー回転素子が配置されていることを特徴とするデフォーカスされた旋光度測定装置。
  7.  請求項1~6のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間に4分の1波長板及び偏光子が配置されていることを特徴とするデフォーカスされた旋光度測定装置。
  8.  請求項1~7のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     前記一方のシングルモード光ファイバと他方のシングルモード光ファイバが偏波面保存光ファイバであり、前記各光ファイバ先端部と試料の間に偏光子とファラデー回転素子と4分の1波長板が配置されており、前記双方の各偏波面保存光ファイバから同一の固有偏光モード(すなわち、出射偏光モード)の信号光が出射し、前記試料に前記試料の一方の入射側からは右円偏光又は左円偏光として入射し、前記試料の他方の入射側からは左円偏光又は右円偏光として入射して後、それぞれ光路上の偏波面保存光ファイバに前記出射偏光モードと等しい偏光モードで結合するように前記偏光子と前記ファラデー回転素子と前記4分の1波長板の方位と偏波面保存光ファイバの固有偏光方位が設定されていることを特徴とするデフォーカスされた旋光度測定装置。
  9.  請求項1~8のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     前記デフォーカスされた旋光度測定装置は前記試料と前記デフォーカスされた光ファイバ光学系と前記偏波面保存光ファイバとでリング光干渉系のリング光路が構成され、前記リング光路を両方向に伝搬する光の前記試料に起因して生じる位相差を測定することによって前記試料の旋光度を測定することができることを特徴とするデフォーカスされた旋光度測定装置。
  10.  請求項9に記載のデフォーカスされた旋光度測定装置において、
     前記デフォーカスされた旋光度測定装置は、リング干渉計のリング光路に右回り信号光としての偏光と左回り信号光としての偏光を伝搬させ、リング干渉計のリング光路の光ファイバ部分は右回り信号光としての偏光と左回り信号光としての偏光が同一の固有直線偏光モードで同じ光ファイバをそれぞれ右回り信号光と左回り信号光として伝搬させ、前記試料部分は互いに直交する円偏光状態でそれぞれ右回り信号光と左回り信号光を伝搬させるように構成されていることを特徴とするデフォーカスされた旋光度測定装置。
  11.  請求項1~10のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     光路と直角方向に前記試料をスキャンできる機構を有することを特徴とするデフォーカスされた旋光度測定装置。
  12.  請求項1~11のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     前記試料が生体の一部であり、前記旋光度測定装置は前記試料の旋光度に関連する光学情報を測定するのに、前記信号光の位相差の検出手段の一部として、生体の脈拍または測定部位の厚みなどの当該生体の一部の寸法を周期的に変化させるように人為的に与えた信号と同期させて前記位相差を検出する手段を有していることを特徴とするデフォーカスされた旋光度測定装置。
  13.  請求項1~12のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     前記試料が生体の一部であり、前記旋光度測定装置は前記試料の旋光度に関連する光学情報を測定する部分を挟む測定端子部を有するとともに前記光ファイバの前記先端部が前記測定端子部に保持されていることを特徴とするデフォーカスされた旋光度測定装置。
  14.  請求項1~13のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     前記一方のシングルモード光ファイバの出力部レンズと他方のシングルモード光ファイバの出力部レンズとの間の距離を変更することができるレンズ間距離調整手段を有することを特徴とするデフォーカスされた旋光度測定装置。
  15.  請求項1~14のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NAシングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されていることを特徴とするデフォーカスされた旋光度測定装置。
  16.  請求項1~15のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     信号光の光路において前記試料を挟んで対向させて配置された一方の光ファイバと他方の光ファイバが同一種類の光ファイバであることを特徴とするデフォーカスされた旋光度測定装置。
  17.  請求項1~16のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     信号光の光路において前記試料を挟んで対向させて配置された光ファイバがいわゆるダブルクラッド型偏波面保存光ファイバであることを特徴とするデフォーカスされた旋光度測定装置。
  18.  請求項1~17のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     前記モード整合部にコア拡大ファイバとコア縮小ファイバの少なくとも一方が用いられていることを特徴とするデフォーカスされた旋光度測定装置。
  19.  請求項1~18のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     信号光の光路において対向配置された前記一方のシングルモード光ファイバの出力部レンズと前記他方のシングルモード光ファイバの出力部レンズの間の距離を3mmより狭くしたことを特徴とするデフォーカスされた旋光度測定装置。
  20.  請求項1~19のいずれか1項に記載のデフォーカスされた旋光度測定装置において、
     信号光の光路において前記試料を挟んで対向配置された前記偏光子と前記ファラデー回転素子と前記4分の1波長板と前記出力部レンズとを光ファイバ端部に配置したデフォーカスされた光ファイバ光学系の双方が前記試料の信号光入射面の同一側にあるとともに前記デフォーカスされた光ファイバ光学系と前記試料の間に4分の1波長板を配置したことを特徴とするデフォーカスされた旋光度測定装置。
  21.  先端部にレンズが配置されているシングルモード光ファイバを信号光の光路において光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定することができる旋光度測定システムに用いることができる光ファイバ光学系であって、
     前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面の少なくとも一方は、当該シングルモード光ファイバの出力部レンズの焦点位置にないことを特徴とするデフォーカスされた光ファイバ光学系。
  22.  請求項21に記載のデフォーカスされた光ファイバ光学系において、
     前記一方のシングルモード光ファイバの開口数(以下、NAという)と前記他方のシングルモード光ファイバのNAの少なくとも一方が0.07以下であることを特徴とするデフォーカスされた光ファイバ光学系。
  23.  請求項21または22に記載のデフォーカスされた光ファイバ光学系において、
     前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズに近い位置にあることを特徴とするデフォーカスされた光ファイバ光学系。
  24.  請求項21又は23に記載のデフォーカスされた光ファイバ光学系において、
     前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズから離れた位置にあることを特徴とするデフォーカスされた光ファイバ光学系。
  25.  請求項21~24のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     前記シングルモード光ファイバの先端部と当該光ファイバの出力部レンズとが相互に固定されていることを特徴とするデフォーカスされた光ファイバ光学系。
  26.  請求項21~25のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間にファラデー回転素子が配置されていることを特徴とするデフォーカスされた光ファイバ光学系。
  27.  請求項21~26のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間に4分の1波長板及び偏光子が配置されていることを特徴とするデフォーカスされた光ファイバ光学系。
  28.  請求項21~27のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     前記一方のシングルモード光ファイバと他方のシングルモード光ファイバが偏波面保存光ファイバであり、前記各光ファイバ先端部と試料の間に偏光子とファラデー回転素子と4分の1波長板が配置されており、前記双方の各偏波面保存光ファイバから同一の固有偏光モード(すなわち、出射偏光モード)の信号光が出射し、前記試料に前記試料の一方の入射側からは右円偏光または左円偏光として入射し、前記試料の他方の入射側からは左円偏光または右円偏光として入射して後、それぞれ光路上の偏波面保存光ファイバに前記出射偏光モードと等しい偏光モードで結合するように前記偏光子と前記ファラデー回転素子と前記4分の1波長板の方位と偏波面保存光ファイバの固有偏光方位が設定されていることを特徴とするデフォーカスされた光ファイバ光学系。
  29.  請求項21~28のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     前記デフォーカスされた光ファイバ光学系は、前記試料と前記デフォーカスされた光ファイバ光学系と前記偏波面保存光ファイバとでリング光干渉系のリング光路を構成することができ、前記リング光路を両方向に伝搬する光の前記試料に起因して生じる位相差を測定することによって前記試料の旋光度に関連する光学情報を測定することができる旋光度測定システムの構成要素として用いることができることを特徴とするデフォーカスされた光ファイバ光学系。
  30.  請求項29に記載のデフォーカスされた光ファイバ光学系において、
     前記光ファイバ光学系は、リング干渉計のリング光路に右回り信号光としての偏光と左回り信号光としての偏光を伝搬させ、リング干渉計のリング光路の光ファイバ部分は右回り信号光としての偏光と左回り信号光としての偏光が同一の固有直線偏光モードで同じ光ファイバをそれぞれ右回り信号光と左回り信号光として伝搬させ、前記試料部分は互いに直交する円偏光状態でそれぞれ右回り信号光と左回り信号光を伝搬させるように構成されていることを特徴とするデフォーカスされた光ファイバ光学系。
  31.  請求項21~30のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     光路と直角方向に前記試料をスキャンできる機構を有することを特徴とするデフォーカスされた光ファイバ光学系。
  32.  請求項21~31のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     前記試料が生体の一部であり、前記旋光度測定装置は前記試料の旋光度に関連する光学情報を測定するのに、前記信号光の位相差の検出手段の一部として、生体の脈拍または測定部位の厚みなどの当該生体の一部の寸法を周期的に変化させるように人為的に与えた信号と同期させて前記位相差を検出する手段を有していることを特徴とするデフォーカスされた光ファイバ光学系。
  33.  請求項21~32のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     前記試料が生体の一部であり、前記光ファイバ光学系は前記試料の旋光度に関連する光学情報を測定する部分を挟む測定端子部を有するとともに前記光ファイバの前記先端部が前記測定端子部に保持されていることを特徴とするデフォーカスされた光ファイバ光学系。
  34.  請求項21~33のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、前記一方のシングルモード光ファイバの出力部レンズと他方のシングルモード光ファイバの出力部レンズとの間の距離を変更することができるレンズ間距離調整手段を有することを特徴とするデフォーカスされた光ファイバ光学系。
  35.  請求項21~34のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NAシングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されていることを特徴とするデフォーカスされた光ファイバ光学系。
  36.  請求項21~35のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     信号光の光路において前記試料を挟んで対向させて配置された一方の光ファイバと他方の光ファイバが同一種類の光ファイバであることを特徴とするデフォーカスされた光ファイバ光学系。
  37.  請求項21~36のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     信号光の光路において前記試料を挟んで対向させて配置された光ファイバがいわゆるダブルクラッド型偏波面保存光ファイバであることを特徴とするデフォーカスされた光ファイバ光学系。
  38.  請求項21~37のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     前記モード整合部にコア拡大ファイバとコア縮小ファイバの少なくとも一方が用いられていることを特徴とするデフォーカスされた光ファイバ光学系。
  39.  請求項21~38のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     信号光の光路において対向配置された前記一方のシングルモード光ファイバの出力部レンズと前記他方のシングルモード光ファイバの出力部レンズの間の距離を3mmより狭くしたことを特徴とするデフォーカスされた光ファイバ光学系。
  40.  請求項21~39のいずれか1項に記載のデフォーカスされた光ファイバ光学系において、
     信号光の光路において前記試料を挟んで対向配置された前記偏光子と前記ファラデー回転素子と前記4分の1波長板と前記出力部レンズとを光ファイバ端部に配置したデフォーカスされた光ファイバ光学系の双方が前記試料の信号光入射面の同一側にあるとともに前記デフォーカスされた光ファイバ光学系と前記試料の間に4分の1波長板を配置したことを特徴とするデフォーカスされた光ファイバ光学系。
  41.  先端部にレンズが配置されているシングルモード光ファイバを信号光の光路において光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定する旋光度測定方法であって、
     前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面の少なくとも一方は、当該シングルモード光ファイバの出力部レンズの焦点位置にないデフォーカスされた光ファイバ光学系を形成していることを特徴とするデフォーカスされた旋光度測定方法。
  42.  請求項41に記載のデフォーカスされた旋光度測定方法において、
     前記一方のシングルモード光ファイバの開口数(以下、NAという)と前記他方のシングルモード光ファイバのNAの少なくとも一方が0.07以下であることを特徴とするデフォーカスされた旋光度測定方法。
  43.  請求項41または42に記載のデフォーカスされた旋光度測定方法において、
     前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズに近い位置にあることを特徴とするデフォーカスされた旋光度測定方法。
  44.  請求項41又は43に記載のデフォーカスされた旋光度測定方法において、前記一方のシングルモード光ファイバの端面と前記他方のシングルモード光ファイバの端面が、当該光ファイバの出力部レンズの焦点位置よりも当該出力部レンズから離れた位置にあることを特徴とするデフォーカスされた旋光度測定方法。
  45.  請求項41~44のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     前記シングルモード光ファイバの先端部と当該光ファイバの出力部レンズとが相互に固定されているシングルモード光ファイバを用いることを特徴とするデフォーカスされた旋光度測定方法。
  46.  請求項41~45のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間にファラデー回転素子が配置されていることを特徴とするデフォーカスされた旋光度測定方法。
  47.  請求項41~46のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方は、当該シングルモード光ファイバの端面と試料の間に4分の1波長板及び偏光子が配置されていることを特徴とするデフォーカスされた旋光度測定方法。
  48.  請求項41~47のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     前記一方のシングルモード光ファイバと他方のシングルモード光ファイバが偏波面保存光ファイバであり、前記各光ファイバ先端部と当該出力部レンズの間に偏光子とファラデー回転素子と4分の1波長板が配置されており、前記双方の各偏波面保存光ファイバから同一の固有偏光モード(すなわち、出射偏光モード)の信号光が出射し、前記試料に前記試料の一方の入射側からは右円偏光または左円偏光として入射し、前記試料の他方の入射側からは左円偏光または右円偏光として入射して後、それぞれ光路上の偏波面保存光ファイバに前記出射偏光モードと等しい偏光モードで結合するように前記偏光子と前記ファラデー回転素子と前記4分の1波長板の方位と偏波面保存光ファイバの固有偏光方位が設定されていることを特徴とするデフォーカスされた旋光度測定方法。
  49.  請求項41~48のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     前記デフォーカスされた旋光度測定系が前記試料と前記デフォーカスされた光ファイバ光学系と前記偏波面保存光ファイバとでリング光干渉系のリングが構成され、前記リングを両方向に伝搬する光の前記試料に起因して生じる位相差を測定することによって前記試料の旋光度を測定することができるように構成されていることを特徴とするデフォーカスされた旋光度測定方法。
  50.  請求項49に記載のデフォーカスされた旋光度測定方法において、
     前記デフォーカスされた旋光度測定系が、リング干渉計のリング光路に右回り信号光としての偏光と左回り信号光としての偏光を伝搬させ、リング干渉計のリング光路の光ファイバ部分は右回り信号光としての偏光と左回り信号光としての偏光が同一の固有直線偏光モードで同じ光ファイバをそれぞれ右回り信号光と左回り信号光として伝搬させ、前記試料部分は互いに直交する円偏光状態でそれぞれ右回り信号光と左回り信号光を伝搬させるように構成されていることを特徴とするデフォーカスされた旋光度測定方法。
  51.  請求項41~50のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     光路と直角方向に前記試料をスキャンできる機構を用いることを特徴とするデフォーカスされた旋光度測定方法。
  52.  請求項41~51のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     前記試料が生体の一部であり、前記旋光度測定方法は前記試料の旋光度に関連する光学情報を測定するのに、前記信号光の位相差の検出手段の一部として、生体の脈拍または測定部位の厚みなどの当該生体の一部の寸法を周期的に変化させるように人為的に与えた信号と同期させて前記位相差を検出する手段を用いることを特徴とするデフォーカスされた旋光度測定方法。
  53.  請求項41~52のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     前記試料が生体の一部であり、前記旋光度測定方法は前記試料の旋光度に関連する光学情報を測定する部分を挟む測定端子部を用いるとともに前記光ファイバの前記先端部が前記測定端子部に保持されていることを特徴とするデフォーカスされた旋光度測定方法。
  54.  請求項41~53のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     前記一方のシングルモード光ファイバの出力部レンズと他方のシングルモード光ファイバの出力部レンズとの間の距離を変更することができるレンズ間距離調整手段を用いることを特徴とするデフォーカスされた旋光度測定方法。
  55.  請求項41~54のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NAシングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されていることを特徴とするデフォーカスされた旋光度測定方法。
  56.  請求項41~55のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     信号光の光路において前記試料を挟んで対向させて配置された一方の光ファイバと他方の光ファイバを同一種類の光ファイバにすることを特徴とするデフォーカスされた旋光度測定方法。
  57.  請求項41~56のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     信号光の光路において前記試料を挟んで対向させて配置された光ファイバがいわゆるダブルクラッド型偏波面保存光ファイバであることを特徴とするデフォーカスされた旋光度測定方法。
  58.  請求項41~57のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     前記モード整合部にコア拡大ファイバとコア縮小ファイバの少なくとも一方を用いることを特徴とするデフォーカスされた旋光度測定方法。
  59.  請求項41~58のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     信号光の光路において対向配置された前記一方のシングルモード光ファイバの出力部レンズと前記他方のシングルモード光ファイバの出力部レンズの間の距離を3mmより狭くしたことを特徴とするデフォーカスされた旋光度測定方法。
  60.  請求項41~59のいずれか1項に記載のデフォーカスされた旋光度測定方法において、
     信号光の光路において前記試料を挟んで対向配置された前記偏光子と前記ファラデー回転素子と前記4分の1波長板と前記出力部レンズとを光ファイバ端部に配置したデフォーカスされた光ファイバ光学系の双方が前記試料の信号光入射面の同一側にあるとともに前記デフォーカスされた光ファイバ光学系と前記試料の間に4分の1波長板を配置したことを特徴とするデフォーカスされた旋光度測定方法。
  61.  先端部にレンズが配置されているシングルモード光ファイバを信号光の光路において光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定することができる旋光度測定装置であって、
     前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NA(NAは開口数を意味する)シングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されている光ファイバ光学系を用いていることを特徴とする旋光度測定装置。
  62.  請求項61に記載の旋光度測定装置において、
     前記第2の光ファイバのNAが0.07以下であることを特徴とする旋光度測定装置。
  63.  請求項61又は61に記載の旋光度測定装置において、
     前記光ファイバ光学系が光ファイバの端面の近傍の光路上に前記出力部レンズに加えて偏光子とファラデー回転素子と4分の1波長板とを有する偏光変換光学系であることを特徴とする旋光度測定装置。
  64.  請求項61~63のいずれか1項に記載の旋光度測定装置において、
     前記旋光度測定装置は前記試料と前記光ファイバ光学系と前記シングルモード光ファイバとでリング光干渉系のリング光路が構成され、前記リング光路を両方向に伝搬する光の前記試料に起因して生じる位相差を測定することによって前記試料の旋光度を測定することができるように構成されていることを特徴とする旋光度測定装置。
  65.  先端部にレンズが配置されているシングルモード光ファイバを信号光の光路において光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定することができる旋光度測定システムに用いることができる光ファイバ光学系であって、
     前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NAシングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されていることを特徴とする光ファイバ光学系。
  66.  先端部にレンズが配置されているシングルモード光ファイバを信号光の光路において光散乱検体などの旋光度測定用検体(以下、試料という)を挟んで対向配置し、前記先端部にレンズが配置されている一方のシングルモード光ファイバの端面から出射される信号光を試料に入射させ、前記試料を透過した信号光及び/又は前記試料によって反射された信号光を先端部にレンズが配置されている他方のシングルモード光ファイバの端面に入射させて前記試料の旋光度に関連する光学情報を測定することができる旋光度測定方法であって、
     前記一方のシングルモード光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズ(以下、前記光ファイバの前記試料に入射させる信号光の出力部及び/又は前記試料からの信号光の入力部に配置されているレンズを単に出力部レンズという)と前記他方のシングルモード光ファイバの前記試料からの信号光の入力部及び/又は前記試料に入射させる信号光の出力部に配置されている出力部レンズは前記信号光の光路に配置されており、前記一方のシングルモード光ファイバと前記他方のシングルモード光ファイバの少なくとも一方はコア径の異なる第1の光ファイバと第2の光ファイバをモード整合部を介して接続したシングルモード光ファイバであり、相対的に前記第1の光ファイバは小コア径・高NAシングルモード光ファイバで前記第2の光ファイバは大コア径・低NAシングルモード光ファイバであり、前記シングルモード光ファイバの前記第2の光ファイバが前記第1の光ファイバよりも光路上で前記試料に近い側に配置されており、前記第2の光ファイバの前記試料に近い側の端面近傍に前記出力部レンズが信号光の光路に配置されていることを特徴とするデフォーカスされた旋光度測定方法。
PCT/JP2011/061442 2010-05-19 2011-05-18 デフォーカスされた旋光度測定装置および旋光度測定方法ならびにデフォーカスされた光ファイバ光学系 WO2011145652A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/698,988 US8922760B2 (en) 2010-05-19 2011-05-18 Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
KR1020127030210A KR20130095642A (ko) 2010-05-19 2011-05-18 디포커스된 선광도 측정 장치 및 선광도 측정 방법, 및 디포커스된 광 파이버 광학계
JP2012515908A JPWO2011145652A1 (ja) 2010-05-19 2011-05-18 デフォーカスされた旋光測定装置および旋光測定方法ならびにデフォーカスされた光ファイバ光学系
CN2011800247225A CN103038627A (zh) 2010-05-19 2011-05-18 散焦后的旋光度测定装置及旋光度测定方法以及散焦后的光纤光学系统
EP11783586.8A EP2573544A4 (en) 2010-05-19 2011-05-18 DEFINED DEVICE FOR OPTICAL ROTATION MEASUREMENT, OPTICAL ROTATION MEASUREMENT METHOD AND DEFOCOUSED GLASS FIBER SYSTEM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-128301 2010-05-19
JP2010128301 2010-05-19
JP2010-264353 2010-11-26
JP2010264353 2010-11-26

Publications (1)

Publication Number Publication Date
WO2011145652A1 true WO2011145652A1 (ja) 2011-11-24

Family

ID=44991746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061442 WO2011145652A1 (ja) 2010-05-19 2011-05-18 デフォーカスされた旋光度測定装置および旋光度測定方法ならびにデフォーカスされた光ファイバ光学系

Country Status (6)

Country Link
US (1) US8922760B2 (ja)
EP (1) EP2573544A4 (ja)
JP (1) JPWO2011145652A1 (ja)
KR (1) KR20130095642A (ja)
CN (1) CN103038627A (ja)
WO (1) WO2011145652A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179140A3 (en) * 2012-05-29 2014-04-17 Global Fiberoptics, Ltd. Optical rotation measuring device, optically rotational ingredient analyzing device, and optically rotational ingredient analyzing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143650A (ja) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 旋光計測方法及び旋光計測装置
EP3485306B1 (en) * 2016-07-13 2023-10-04 Micatu Inc. An integrated polarizing and analyzing optical fiber collimator device and methods of use thereof
EP3919891A4 (en) * 2019-01-31 2022-06-22 Tohoku University DEVICE AND METHOD FOR MEASURING GLYCEMIA LEVELS
CN112082735B (zh) * 2020-09-04 2022-08-02 哈尔滨工程大学 一种基于Sagnac结构的光纤敏感环双向同步测量装置及方法
CN113341236B (zh) * 2021-05-31 2024-03-01 昆明理工大学 保偏光纤耦合型电光晶体电场传感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267831A (ja) * 1997-03-25 1998-10-09 Unie Opt:Kk 複屈折測定光学系および高空間分解能偏光解析装置
JP2004113434A (ja) * 2002-09-26 2004-04-15 Masato Nakamura 血糖測定装置
JP2004138864A (ja) * 2002-10-18 2004-05-13 Hitachi Ltd 光伝送モジュール
JP2004313554A (ja) 2003-04-17 2004-11-11 Nagasaki Prefecture 血糖値の非侵襲測定装置
JP2005274380A (ja) 2004-03-25 2005-10-06 Optoquest Co Ltd 複屈折率測定装置
JP2006323027A (ja) * 2005-05-17 2006-11-30 Sumitomo Electric Ind Ltd 光ファイバの接続方法
JP2007093289A (ja) 2005-09-27 2007-04-12 Atago:Kk 偏光状態測定装置、円二色性測定装置及びその方法
JP2008032993A (ja) * 2006-07-28 2008-02-14 Kyocera Corp 光ファイバ体およびこれを用いたモード変換器
JP2008102009A (ja) * 2006-10-19 2008-05-01 Sumitomo Electric Ind Ltd 光学測定装置および光学的測定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4242232C2 (de) * 1992-12-15 1998-12-10 Burkhard Kuhls Vorrichtung und Verfahren zur nicht-invasiven Konzentrationsbestimmung polarisierender Stoffe im menschlichen Körper
JP3395798B2 (ja) * 1993-12-22 2003-04-14 株式会社ニコン 位置検出方法及び装置、並びに露光方法及び装置
WO2003005083A2 (en) * 2001-07-06 2003-01-16 Corning Incorporated Method of connecting optical fibers, an optical fiber therefor, and an optical fiber span therefrom
JP2004077466A (ja) * 2002-06-17 2004-03-11 Citizen Watch Co Ltd 濃度測定装置および濃度測定方法
US6943881B2 (en) * 2003-06-04 2005-09-13 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
JPWO2006030818A1 (ja) * 2004-09-14 2008-05-15 松下電器産業株式会社 フォーカス引込方法および光ディスク装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267831A (ja) * 1997-03-25 1998-10-09 Unie Opt:Kk 複屈折測定光学系および高空間分解能偏光解析装置
JP2004113434A (ja) * 2002-09-26 2004-04-15 Masato Nakamura 血糖測定装置
JP2004138864A (ja) * 2002-10-18 2004-05-13 Hitachi Ltd 光伝送モジュール
JP2004313554A (ja) 2003-04-17 2004-11-11 Nagasaki Prefecture 血糖値の非侵襲測定装置
JP2005274380A (ja) 2004-03-25 2005-10-06 Optoquest Co Ltd 複屈折率測定装置
JP2006323027A (ja) * 2005-05-17 2006-11-30 Sumitomo Electric Ind Ltd 光ファイバの接続方法
JP2007093289A (ja) 2005-09-27 2007-04-12 Atago:Kk 偏光状態測定装置、円二色性測定装置及びその方法
JP2008032993A (ja) * 2006-07-28 2008-02-14 Kyocera Corp 光ファイバ体およびこれを用いたモード変換器
JP2008102009A (ja) * 2006-10-19 2008-05-01 Sumitomo Electric Ind Ltd 光学測定装置および光学的測定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAJIOKA; OHO: "Development of optical fiber gyro", THE THIRD LIGHTWAVE SENSING TECHNICAL STUDY MEETING, vol. 3-9, June 1989 (1989-06-01), pages 55 - 62
See also references of EP2573544A4 *
YOKOTA MASAYUKI: "Glucose sensor using a lead glass fiber polarization modulation device", THE 31ST LIGHTWAVE SENSING TECHNICAL STUDY MEETING, vol. 31-8, June 2003 (2003-06-01), pages 51 - 56

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179140A3 (en) * 2012-05-29 2014-04-17 Global Fiberoptics, Ltd. Optical rotation measuring device, optically rotational ingredient analyzing device, and optically rotational ingredient analyzing method

Also Published As

Publication number Publication date
EP2573544A4 (en) 2014-01-22
JPWO2011145652A1 (ja) 2013-07-22
KR20130095642A (ko) 2013-08-28
US20130128262A1 (en) 2013-05-23
US8922760B2 (en) 2014-12-30
CN103038627A (zh) 2013-04-10
EP2573544A1 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2011145652A1 (ja) デフォーカスされた旋光度測定装置および旋光度測定方法ならびにデフォーカスされた光ファイバ光学系
US8964017B2 (en) Optical tissue imaging based on optical frequency domain imaging
US20130107274A1 (en) Optical imaging and mapping using propagation modes of light
EP2405253A1 (en) Optical rotation measuring device and optical rotation measuring method
WO2005114149A1 (en) Low coherence interferometry utilizing phase
WO2005114094A1 (en) Method and system of low coherence interferometry for analyzing biological samples
JP2005274380A (ja) 複屈折率測定装置
WO2005114150A1 (en) Low coherence interferometric system for optical metrology
CA2528417A1 (en) Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
WO2008051587A2 (en) Low coherence interferometry utilizing phase
US8718734B2 (en) Non-invasive polarimetric apparatus and method for analyte sensing in birefringent media
JP2008500536A (ja) 寄生反射を低減する光呼掛け装置および寄生反射を除去する方法
CN102650595B (zh) 光学成分测定装置
JP2012112909A (ja) 旋光測定装置および旋光度測定方法ならびにマルチパス対向偏光変換光学系
Tian et al. Sensitivity-Enhanced and Compact Refractometer Based on Double Assembled Long-Period Fiber Gratings With Tapered Fiber Structure
JP2012202910A (ja) 反射光測定装置
JP2015225030A (ja) 偏光変調干渉計方式を用いた生体の旋光特性測定方法及び生体の旋光特性測定装置
Tosi et al. Optical Fiber Biosensors: Device Platforms, Biorecognition, Applications
WO2012070646A1 (ja) 旋光度測定装置、旋光度測定システムに用い得る旋光度測定方法、旋光度測定光学系、旋光度測定用の検体セル
WO2012070465A1 (ja) 旋光度測定装置および旋光度測定に用いることができる偏光変換光学系ならびにその偏光変換光学系を用いた旋光度測定システムにおける旋光度測定方法
CN201623363U (zh) 一种基于超精细调谐滤波器的扫频激光光源
WO2013179140A2 (en) Optical rotation measuring device, optically rotational ingredient analyzing device, and optically rotational ingredient analyzing method
JP2012112906A (ja) Spr方式旋光測定装置および光ファイバ共鳴光学系ならびにそれを用いた旋光測定方法
JP2015225021A (ja) 微量検体用旋光特性測定装置
JP5374762B2 (ja) 反射型複屈折率測定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024722.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783586

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515908

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127030210

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2603/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011783586

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13698988

Country of ref document: US