WO2011145362A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2011145362A1
WO2011145362A1 PCT/JP2011/052091 JP2011052091W WO2011145362A1 WO 2011145362 A1 WO2011145362 A1 WO 2011145362A1 JP 2011052091 W JP2011052091 W JP 2011052091W WO 2011145362 A1 WO2011145362 A1 WO 2011145362A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
impurity
conductivity type
concentration
type
Prior art date
Application number
PCT/JP2011/052091
Other languages
English (en)
French (fr)
Inventor
堀田 和重
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/698,356 priority Critical patent/US8754418B2/en
Publication of WO2011145362A1 publication Critical patent/WO2011145362A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • H01L2029/7863Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile with an LDD consisting of more than one lightly doped zone or having a non-homogeneous dopant distribution, e.g. graded LDD

Definitions

  • the present invention relates to a semiconductor device including a thin film transistor (TFT) and a manufacturing method thereof.
  • TFT thin film transistor
  • TFTs 1 to 3 As a switching element of an active matrix display device, there is a TFT using polycrystalline silicon (p-Si) (for example, Patent Documents 1 to 3). Since the mobility of TFTs having polycrystalline silicon is higher than that of TFTs having amorphous silicon (a-Si), not only pixel TFTs that contribute to display but also TFTs for driver circuits that require high-speed operation. Can be formed. The pixel TFT is required to have a small off-current to maintain high display quality, and the driver circuit TFT is required to have a high on-current because high-speed operation is required.
  • p-Si polycrystalline silicon
  • One of the TFT structures is a low concentration region (Lightly Doped Drain, hereinafter referred to as “LDD region”) between at least one of a channel region and a source region and between a channel region and a drain region.
  • LDD region Lightly Doped Drain
  • a structure in which is formed is widely used (for example, Patent Documents 1 to 3). Such a structure is called an “LDD structure”.
  • Japanese Patent Application Laid-Open No. 2004-228688 has both a drive circuit TFT and a pixel TFT having an LDD region.
  • the impurity concentration of the LDD region of the n-type pixel TFT is set to the impurity concentration of the LDD region of the n-type drive TFT.
  • a lower semiconductor device is disclosed.
  • the off current of the pixel TFT can be reduced without reducing the on current of the driver circuit TFT.
  • a liquid crystal display device in which display unevenness or the like does not occur and the operation speed of the drive circuit is high is realized.
  • both the driving circuit TFT and the pixel TFT have an LDD region.
  • the length of the LDD region of the n-type pixel TFT is larger than the length of the LDD region of the n-type driving circuit TFT.
  • a semiconductor device is disclosed.
  • the off current of the pixel TFT can be reduced without reducing the on current of the driver circuit TFT.
  • the p-type driving circuit TFT since both the driving circuit TFT and the pixel TFT have an LDD region, the p-type driving circuit TFT also has an LDD region. If the p-type driving circuit TFT has an LDD region, there is a problem that the on-current is reduced and the TFT size is increased by the LDD region. In addition, a TFT having an LDD structure has a problem that its manufacturing method is complicated. When manufacturing by making the impurity concentration of the LDD region of the pixel TFT different from the impurity concentration of the LDD region of the driving circuit TFT, the manufacturing method is particularly complicated.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device having good TFT characteristics and a simple manufacturing method of the semiconductor device.
  • a semiconductor device includes a first conductive type thin film transistor for a pixel, a first conductive type thin film transistor for a drive circuit, and a second conductive type thin film transistor for a drive circuit different from the first conductive type. And at least one of the channel region and the source region of the first conductivity type driving circuit thin film transistor and the channel region and the drain region of the first conductivity type driving circuit thin film transistor, A first low-concentration region, and a second low-concentration region at least between the channel region and the source region of the pixel thin film transistor and between the channel region and the drain region of the pixel thin film transistor.
  • the first low-concentration region has the first conductivity type impurity at a first impurity concentration
  • the pixel thin film transistor has a first impurity concentration.
  • the channel region and the channel region of the first conductivity type driving circuit thin film transistor have the second conductivity type impurity at a second impurity concentration lower than the first impurity concentration, and the second low concentration region is , Having the first conductivity type impurity at the first impurity concentration, and having the second conductivity type impurity at the second impurity concentration.
  • the first low-concentration region is formed between a channel region and a source region of the first conductivity type driving circuit thin film transistor and between the channel region and the drain of the first conductivity type driving circuit thin film transistor. It is formed anywhere between the regions.
  • the second low-concentration region is formed between a channel region and a source region of the pixel thin film transistor and between a channel region and a drain region of the pixel thin film transistor.
  • the first conductivity type pixel thin film transistor further includes a third low concentration region formed between the first low concentration region and a channel region of the first conductivity type driving circuit thin film transistor. And the third low-concentration region has the first conductivity type impurity at the first impurity concentration, and has the second conductivity type impurity at the second impurity concentration.
  • the first conductivity type pixel thin film transistor further includes a fourth region formed between the first low concentration region and the channel region of the first conductivity type driver circuit thin film transistor.
  • the fourth region has the second conductivity type impurity at a third impurity concentration lower than the second impurity concentration.
  • the first conductivity type is n-type
  • the second conductivity type is p-type
  • the display device of the present invention is a display device having any one of the above semiconductor devices.
  • a method of manufacturing a semiconductor device comprising: a first conductive type pixel thin film transistor; a first conductive type drive circuit thin film transistor; and a second conductive type drive circuit thin film transistor different from the first conductive type. And a step a of doping the first conductivity type impurity with a first impurity concentration, and a doping of the second conductivity type impurity with a second impurity concentration lower than the first impurity concentration. Step b, and at least one of a channel region and a source region of the first conductive type driving circuit thin film transistor and a channel region and a drain region of the first conductive type driving circuit thin film transistor.
  • the step c is performed between the channel region and the source region of the first conductive type driving circuit thin film transistor and between the channel region and the drain region of the first conductive type driving circuit thin film transistor.
  • Step c1 of forming the first low-concentration region is included in any of them.
  • the second low-concentration region is formed between the channel region and the source region of the pixel thin film transistor and between the channel region and the drain region of the pixel thin film transistor. Forming step d1.
  • the step a includes the first conductivity type impurity at the first impurity concentration between the first low concentration region and the channel region of the first conductivity type driver circuit thin film transistor. And a step a1 of forming a third low concentration region having the second conductivity type impurity at the second impurity concentration.
  • the second conductivity type impurity formed between the first low concentration region and a channel region of the first conductivity type driving circuit thin film transistor is converted into the second impurity.
  • the step a includes a step a3 of doping an n-type impurity with the first impurity concentration
  • the step b includes a step b1 of doping a p-type impurity with the second impurity concentration.
  • a semiconductor device having good TFT characteristics and a simple manufacturing method of the semiconductor device are provided.
  • (A) is typical sectional drawing of TFT substrate 100A of embodiment by this invention
  • (b) is typical sectional drawing of TFT substrate 100B of other embodiment
  • (A) is typical sectional drawing of TFT substrate 100C of further another embodiment
  • (b) is typical sectional drawing of TFT substrate 100D of further another embodiment.
  • (A) is a schematic top view of TFT substrates 100A and 100B
  • (b) is a schematic top view of TFT 100 substrate C
  • (c) is a schematic top view of TFT substrate 100D. It is.
  • (A)-(e) is sectional drawing explaining the manufacturing process of TFT substrate 100A.
  • (A)-(d) is sectional drawing explaining the manufacturing process of TFT substrate 100A.
  • (A)-(d) is sectional drawing explaining the other manufacturing process of TFT substrate 100A.
  • (A) And (b) is sectional drawing explaining the manufacturing process of TFT substrate 100B.
  • (A) And (b) is sectional drawing explaining the manufacturing process of TFT substrate 100C.
  • (A) And (b) is sectional drawing explaining the manufacturing process of TFT substrate 100D.
  • Embodiments according to the present invention will be described below with reference to the drawings.
  • a semiconductor device according to an embodiment of the present invention and a manufacturing method thereof will be described by exemplifying a TFT substrate used in a liquid crystal display device as a semiconductor device.
  • the present invention is not limited to this, and can be applied to, for example, a TFT substrate used in an organic EL display device.
  • FIGS. 1 and 2 show n-type driving circuit TFTs 10A1 to 10A4 (sometimes referred to as TFT 10A) and p-type driving included in the TFT substrates 100A to 100D (sometimes referred to as TFT substrate 100) according to the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the structure of a circuit TFT 10B and an n-type pixel TFT 10C.
  • FIG. 3 is a schematic top view showing the structure of the TFT substrates 100A to 100D.
  • symbol is attached
  • the TFT substrate of the liquid crystal display device is, for example, the TFT substrate 100A.
  • the TFT 100A is manufactured as designed, an attempt to manufacture the TFT 100A may cause misalignment in the manufacturing process, and as a result, the TFT substrates 100B to 100D may be manufactured.
  • the structure of the TFT 100A will be described.
  • a TFT substrate 100A shown in FIGS. 1A and 3A includes a first insulating layer 21 formed on an insulating substrate (for example, a glass substrate) 11 and an n-type formed on the first insulating layer 21.
  • the n-type driver circuit TFT 10A1 includes a crystalline semiconductor layer (for example, a polycrystalline silicon layer) 30A1 including a channel region 33A1, a source region 34A1, and a drain region 35A1. Further, the n-type driving circuit TFT 10A1 includes a gate electrode 51 for controlling the conductivity of the channel region 33A1 and a second insulating layer 22 formed under the gate electrode 51.
  • the crystalline semiconductor layer 30A1 has first low concentration regions (LDD regions) 31A1 and 32A1 formed between the channel region 33A1 and the source region 34A1 and between the channel region 33A1 and the drain region 35A1. Further, only one of the first low concentration regions 31A1 and 32A1 may be formed.
  • the first low-concentration regions 31A1 and 32A1 use a first conductivity type (for example, n-type) impurity (for example, phosphorus (P)) as a first impurity concentration C 1 (for example, 5 ⁇ 10 17 cm ⁇ 3 or more and 3 ⁇ 10 18 cm).
  • a first conductivity type for example, n-type
  • impurity for example, phosphorus (P)
  • C 1 for example, 5 ⁇ 10 17 cm ⁇ 3 or more and 3 ⁇ 10 18 cm.
  • ⁇ 3 or less which is 1 ⁇ 10 18 cm ⁇ 3 in the present embodiment, and has a second conductivity type (for example, p-type) impurity (for example, boron (B)) at a concentration (for example, boron (B)) lower than the first impurity concentration C 1 (for example, 3 ⁇ 10 16 cm ⁇ 3 or more and 3 ⁇ 10 17 cm ⁇ 3 or less, and in this embodiment, 6 ⁇ 10 16 cm ⁇ 3 .
  • p-type impurity for example, boron (B)
  • concentration for example, boron (B)
  • the second conductivity type impurity is a second impurity concentration C 2 lower than the first impurity concentration C 1 (for example, 3 ⁇ 10 16 cm ⁇ 3 to 3 ⁇ 10 17 cm ⁇ 3 , 2 ⁇ 10 17 cm ⁇ 3 ).
  • the impurity of the first conductivity type has an impurity concentration higher than the first impurity concentration C 1 (for example, 6 ⁇ 10 18 cm ⁇ 3 or more and 6 ⁇ 10 20 cm ⁇ 3 or less, 1 in this embodiment). ⁇ 10 20 cm -3 ).
  • the n-type driver circuit TFT 10A1 includes a third insulating layer 23 formed on the crystalline semiconductor layer 30A1, and further includes a fourth insulating layer 24 formed on the third insulating layer 23. Further, the n-type driver circuit TFT 10A1 includes a source electrode 52 connected to the source region 34A1 and a drain electrode 53 connected to the drain region 35A1.
  • the p-type driver circuit TFT 10B includes a crystalline semiconductor layer 30B including a channel region 33B, a source region 34B, and a drain region 35B. Further, the p-type driving circuit TFT 10B includes a gate electrode 51 that controls the conductivity of the channel region 33B, and a second insulating layer 22 formed under the gate electrode 51.
  • the source region 34B and the drain region 35B have a second conductivity type (eg, p-type) impurity (eg, boron (B)) having an impurity concentration higher than the second impurity concentration C 2 (eg, 5 ⁇ 10 18 cm ⁇ 3 or more 2 ⁇ 10 20 cm ⁇ 3 or less, and 2 ⁇ 10 19 cm ⁇ 3 in this embodiment.
  • a second conductivity type eg, p-type impurity (eg, boron (B)
  • the channel region 33B has the second conductivity type impurity at a second impurity concentration C 2 (for example, 3 ⁇ 10 16 cm ⁇ 3 or more and 3 ⁇ 10 17 cm ⁇ 3 or less, in this embodiment, 6 ⁇ 10 16 cm ⁇ 3 ).
  • the p-type driving circuit TFT 10B includes a third insulating layer 23 formed on the crystalline semiconductor layer 30B, and further includes a fourth insulating layer 24 formed on the third insulating layer 23.
  • the p-type driving circuit TFT 10B includes a source electrode 52 connected to the source region 34B and a drain electrode 53 connected to the drain region 35B.
  • the p-type driving circuit TFT 10B does not have a low concentration region (LDD region).
  • LDD region low concentration region
  • the n-type pixel TFT 10C includes a crystalline semiconductor layer 30C including a channel region 33C, a source region 34C, and a drain region 35C. Further, the n-type pixel TFT 10 ⁇ / b> C includes a gate electrode 51 that controls the conductivity of the channel region 33 ⁇ / b> C and a second insulating layer 22 formed under the gate electrode 51.
  • the crystalline semiconductor layer 30C has second low concentration regions (LDD regions) 31C and 32C formed between the channel region 33C and the source region 34C and between the channel region 33C and the drain region 35C. Only one of the second low-concentration regions 31C and 32C may be formed.
  • the second low-concentration regions 31C and 32C have a first conductivity type (eg, n-type) impurity (eg, phosphorus (P)) as a first impurity concentration C 1 (eg, 5 ⁇ 10 17 cm ⁇ 3 or more and 3 ⁇ 10 18 cm). ⁇ 3 or less, which is 1 ⁇ 10 18 cm ⁇ 3 in this embodiment), and a second conductivity type (for example, p-type) impurity (for example, boron (B)) is a second impurity lower than the first impurity concentration C 1. It has a concentration C 2 (for example, 3 ⁇ 10 16 cm ⁇ 3 or more and 3 ⁇ 10 17 cm ⁇ 3 or less, 2 ⁇ 10 17 cm ⁇ 3 in this embodiment).
  • a first conductivity type eg, n-type impurity (eg, phosphorus (P)
  • a second conductivity type (for example, p-type) impurity for example, boron (B)
  • C 2 for
  • the channel region 33C has, for example, a second conductivity type impurity of a second impurity concentration C 2 (for example, 3 ⁇ 10 16 cm ⁇ 3 to 3 ⁇ 10 17 cm ⁇ 3 , 2 ⁇ 10 17 cm ⁇ 3 in this embodiment).
  • the first conductivity type impurity is an impurity concentration higher than the first impurity concentration C 1 (for example, 6 ⁇ 10 18 cm ⁇ 3 or more and 6 ⁇ 10 20 cm ⁇ 3 or less, 1 in this embodiment). ⁇ 10 20 cm -3 ).
  • the n-type pixel TFT 10 ⁇ / b> C includes a third insulating layer 23 formed on the crystalline semiconductor layer 30 ⁇ / b> C, and further includes a fourth insulating layer 24 formed on the third insulating layer 23.
  • the n-type pixel TFT 10C includes a source electrode 52 connected to the source region 34C and a drain electrode 53 connected to the drain region 35C. As shown in FIG. 3A, the n-type pixel TFT 10 ⁇ / b> C is connected to the pixel electrode 54 through the drain electrode 53.
  • the n-type impurity concentration in the LDD region (second low-concentration regions 31C and 32C) of the n-type pixel TFT 10C is equal to that of the LDD region (first low-concentration regions 31A1 and 32A1) of the n-type driving circuit TFT 10A1. Is equal to the impurity concentration.
  • the LDD region of the n-type pixel TFT 10C has a higher p-type impurity concentration than the LDD region of the n-type driver circuit TFT 10A1.
  • the on-current of the n-type pixel TFT 10C is higher than that of the n-type driver circuit TFT 10A1. Smaller than current.
  • a TFT substrate 100B shown in FIGS. 1B and 3A includes a first insulating layer 21 formed on an insulating substrate (for example, a glass substrate) 11 and an n-type formed on the first insulating layer 21.
  • Driving circuit TFT 10A2, p-type driving circuit TFT 10B, and n-type pixel TFT 10C are included in a TFT substrate 100B shown in FIGS. 1B and 3A.
  • the n-type driver circuit TFT 10A2 includes a crystalline semiconductor layer 30A2 including a channel region 33A2, a source region 34A2, and a drain region 35A2. Further, the n-type driving circuit TFT 10A2 includes a gate electrode 51 that controls the conductivity of the channel region 33A2, and a second insulating layer 22 formed under the gate electrode 51.
  • the crystalline semiconductor layer 30A2 has first low concentration regions (LDD regions) 31A2 and 32A2 formed between the channel region 33A2 and the source region 34A2 and between the channel region 33A2 and the drain region 35A2. Only one of the first low concentration regions 31A2 and 32A2 may be formed.
  • the n-type driving circuit TFT 10A2 includes regions 36A2 and 37A2 formed between the first low concentration regions 31A2 and 32A2 and the channel region 33A2. Only one of the regions 36A2 and 37A2 may be formed.
  • the first low-concentration regions 31A2 and 32A2 have a first conductivity type (for example, n-type) impurity (for example, phosphorus (P)) as a first impurity concentration C 1 (for example, 5 ⁇ 10 17 cm ⁇ 3 or more and 3 ⁇ 10 18 cm).
  • the second conductivity type impurity is a second impurity concentration C 2 lower than the first impurity concentration C 1 (for example, more than 3 ⁇ 10 16 cm ⁇ 3 and not more than 3 ⁇ 10 17 cm ⁇ 3 , 2 in this embodiment).
  • the impurity of the first conductivity type has an impurity concentration higher than the first impurity concentration C 1 (for example, 6 ⁇ 10 18 cm ⁇ 3 or more and 6 ⁇ 10 20 cm ⁇ 3 or less, 1 in this embodiment). ⁇ 10 20 cm -3 ).
  • the regions 36A2 and 37A2 have the second conductivity at a concentration lower than the second impurity concentration C 2 (for example, 3 ⁇ 10 16 cm ⁇ 3 or more and less than 3 ⁇ 10 17 cm ⁇ 3 , in this embodiment, 6 ⁇ 10 16 cm ⁇ 3 ). With impurities of the type.
  • the n-type driver circuit TFT 10A2 includes a third insulating layer 23 formed on the crystalline semiconductor layer 30A2, and further includes a fourth insulating layer 24 formed on the third insulating layer 23.
  • the n-type driver circuit TFT 10A2 has a source electrode 52 connected to the source region 34A2 and a drain electrode 53 connected to the drain region 35A2.
  • a TFT substrate 100C shown in FIGS. 2A and 3B includes a first insulating layer 21 formed on an insulating substrate (for example, a glass substrate) 11 and an n-type formed on the first insulating layer 21.
  • Driving circuit TFT 10A3, p-type driving circuit TFT 10B, and n-type pixel TFT 10C are included in a TFT substrate 100C shown in FIGS. 2A and 3B.
  • the n-type driver circuit TFT 10A3 includes a crystalline semiconductor layer 30A3 including a channel region 33A3, a source region 34A3, and a drain region 35A3. Further, the n-type driver circuit TFT 10A3 includes a gate electrode 51 that controls the conductivity of the channel region 33A3 and a second insulating layer 22 formed on the gate electrode 51.
  • the crystalline semiconductor layer 30A3 includes first low concentration regions (LDD regions) 31A3 and 32A3 formed in at least one of the channel region 33A3 and the source region 34A3 and between the channel region 33A3 and the drain region 35A3. Have. Only one of the first low concentration regions 31A3 and 32A3 may be formed.
  • the n-type driving circuit TFT 10A3 includes low concentration regions 38A3 and 39A3 formed between the first low concentration regions 31A3 and 32A3 and the channel region 33A3. Only one of the low concentration regions 38A3 and 39A3 may be formed.
  • the first low-concentration regions 31A3 and 32A3 use a first conductivity type (for example, n-type) impurity (for example, phosphorus (P)) as a first impurity concentration C 1 (for example, 5 ⁇ 10 17 cm ⁇ 3 or more and 3 ⁇ 10 18 cm).
  • ⁇ 3 or less which is 1 ⁇ 10 18 cm ⁇ 3 in the present embodiment, and has a second conductivity type (for example, p-type) impurity (for example, boron (B)) at a concentration (for example, boron (B)) lower than the first impurity concentration C 1 (for example, 3 ⁇ 10 16 cm ⁇ 3 or more and 3 ⁇ 10 17 cm ⁇ 3 or less, and in this embodiment, 6 ⁇ 10 16 cm ⁇ 3 .
  • p-type impurity for example, boron (B)
  • concentration for example, boron (B)
  • the second conductivity type impurity is a second impurity concentration C 2 lower than the first impurity concentration C 1 (for example, 3 ⁇ 10 16 cm ⁇ 3 or more and 3 ⁇ 10 17 cm ⁇ 3 or less, in this embodiment, 6 ⁇ 10 16 cm -3 ).
  • the impurity of the first conductivity type has an impurity concentration higher than the first impurity concentration C 1 (for example, 6 ⁇ 10 18 cm ⁇ 3 or more and 6 ⁇ 10 20 cm ⁇ 3 or less, 1 in this embodiment). ⁇ 10 20 cm -3 ).
  • Low concentration regions 38A3 and 39A3 are a first conductivity type impurity has the first impurity concentration C 1, and has a second conductivity type impurity in the second impurity concentration C 2.
  • the n-type driver circuit TFT 10A3 includes a third insulating layer 23 formed on the crystalline semiconductor layer 30A3, and further includes a fourth insulating layer 24 formed on the third insulating layer 23.
  • the n-type driver circuit TFT 10A3 includes a source electrode 52 connected to the source region 34A3 and a drain electrode 53 connected to the drain region 35A3.
  • a TFT substrate 100D shown in FIGS. 2B and 3C includes a first insulating layer 21 formed on an insulating substrate (for example, a glass substrate) 11 and an n-type formed on the first insulating layer 21.
  • Drive circuit TFT 10A4, p-type drive circuit TFT 10B, and n-type pixel TFT 10C are included in FIGS. 2B and 3C.
  • the n-type driver circuit TFT 10A4 includes a crystalline semiconductor layer 30A4 including a channel region 33A4, a source region 34A4, and a drain region 35A4. Further, the n-type driving circuit TFT 10A4 includes a gate electrode 51 for controlling the conductivity of the channel region 33A4 and a second insulating layer 22 formed under the gate electrode 51.
  • the crystalline semiconductor layer 30A4 has first low concentration regions (LDD regions) 31A4 and 32A4 formed between the channel region 33A4 and the source region 34A4 and between the channel region 33A4 and the drain region 35A4. Only one of the first low concentration regions 31A4 and 32A4 may be formed.
  • the n-type driver circuit TFT 10A4 includes a region 36A4 formed between the first low-concentration region 31A4 (or 32A4) and the channel region 33A4. Further, the n-type driving circuit TFT 10A4 includes a low concentration region 38A4 formed between the first low concentration region 32A4 (or 31A4) and the channel region 33A4.
  • the first low-concentration regions 31A4 and 32A4 use a first conductivity type (for example, n-type) impurity (for example, phosphorus (P)) as a first impurity concentration C 1 (for example, 5 ⁇ 10 17 cm ⁇ 3 or more and 3 ⁇ 10 18 cm).
  • the second conductivity type impurity is a second impurity concentration C 2 lower than the first impurity concentration C 1 (for example, more than 3 ⁇ 10 16 cm ⁇ 3 and not more than 3 ⁇ 10 17 cm ⁇ 3 , 2 in this embodiment).
  • the impurity of the first conductivity type is an impurity concentration higher than the first impurity concentration C 1 (for example, 6 ⁇ 10 18 cm ⁇ 3 or more and 6 ⁇ 10 20 cm ⁇ 3 or less, 1 in this embodiment). ⁇ 10 20 cm -3 ).
  • the region 36A4 has a concentration lower than the second impurity concentration C 2 (for example, 3 ⁇ 10 16 cm ⁇ 3 or more and less than 3 ⁇ 10 17 cm ⁇ 3 , in this embodiment, 6 ⁇ 10 16 cm ⁇ 3 ) and has the second conductivity type. Has impurities.
  • Low concentration region 38A4 is a first conductivity type impurity has the first impurity concentration C 1, and has a second conductivity type impurity in the second impurity concentration C 2.
  • the impurity concentration of the second conductivity type in the region 36A4 is lower than the impurity concentration of the second conductivity type in the low concentration region 38A4.
  • the n-type driver circuit TFT 10A4 includes a third insulating layer 23 formed on the crystalline semiconductor layer 30A4, and further includes a fourth insulating layer 24 formed on the third insulating layer 23.
  • the n-type driver circuit TFT 10A4 includes a source electrode 52 connected to the source region 34A4 and a drain electrode 53 connected to the drain region 35A4.
  • the first insulating layer 21, the second insulating layer 22, and the third insulating layer 23 are made of, for example, silicon nitride (SiN x ) or silicon dioxide (SiO 2 ).
  • the fourth insulating layer 24 is made of, for example, silicon nitride (SiN x ), silicon dioxide (SiO 2 ), or a photosensitive organic insulating film material.
  • the gate electrode 51, the source electrode 52, and the drain electrode 53 can be formed using, for example, any of refractory metals W, Ta, Ti, Mo, or alloy materials thereof.
  • the pixel electrode 54 is a transparent electrode such as ITO (Indium Tin Oxide).
  • the n-type driving circuit TFT 10A includes LDD regions (first low-concentration regions 31A1 to A4 and 32A1 to A4) with low resistance, the off current can be reduced without reducing the on current. Since the p-type driver circuit TFT 10B does not have a low concentration region (LDD region), the on-current is not reduced, and the TFT size can be reduced by not forming the low concentration region (LDD region). . Since the n-type pixel TFT 10C has an LDD region (second low-concentration regions 31C and 32C) having a resistance larger than that of the LDD region of the n-type driver circuit TFT 10A, the off-current is reduced.
  • the insulating layer 21 is formed with a thickness in the range of, for example, 50 nm to 400 nm.
  • an amorphous semiconductor layer for example, an amorphous silicon layer (a-Si layer)
  • a-Si layer amorphous silicon layer
  • the thickness of the amorphous semiconductor layer 30 ′ is, for example, not less than 30 nm and not more than 200 nm.
  • the amorphous semiconductor layer 30 ′ is crystallized by a known method L 1 to form a crystalline semiconductor layer (for example, a polycrystalline silicon layer (p-Si layer) 30).
  • the crystalline semiconductor layer 30 is patterned by a known method to form an island-shaped crystalline semiconductor layer 30A1.
  • a second insulating layer (gate insulating layer) 22 is formed by a known method so as to cover the entire surface of the island-shaped crystalline semiconductor layer 30A1.
  • the second insulating layer (gate insulating layer) 22 is made of, for example, silicon nitride (SiN x ) or silicon dioxide (SiO 2 ).
  • the thickness of the second insulating layer 22 is, for example, not less than 30 nm and not more than 300 nm.
  • a p-type impurity (for example, boron (B)) p1 is doped on the entire surface of the island-shaped crystalline semiconductor layer 30A1 by a known method under the condition of a voltage of 25 kV and a dose of 1 ⁇ 10 12 cm ⁇ 2 , for example.
  • a mask is not formed using a photoresist.
  • the step of doping the p-type impurity p1 may be omitted. Up to this point, the steps are common to the n-type driving circuit TFT 10A1, the p-type driving circuit TFT 10B, and the n-type pixel TFT 10C.
  • a photoresist 71 is formed so as to cover the island-shaped crystalline semiconductor layer 30A1 other than the region to be the channel region 33A1.
  • a p-type impurity p2 is doped into a region to be the channel region 33A1 of the island-shaped crystalline semiconductor layer 30A1.
  • the conditions for doping the p-type impurity p2 are preferably a range of 5 ⁇ 10 11 cm ⁇ 2 to 5 ⁇ 10 12 cm ⁇ 2 at a voltage of 25 kV.
  • the conditions for doping the p-type impurity p2 are, for example, a voltage of 25 kV and a dose amount of 3 ⁇ 10 12 cm ⁇ 2 .
  • a first electrode (gate electrode) 51 is formed on the second insulating layer 22 by a known method.
  • the first electrode 51 can be formed using, for example, any one of refractory metals W, Ta, Ti, Mo, or alloy materials thereof.
  • the thickness of the first electrode 51 is, for example, not less than 200 nm and not more than 800 nm.
  • the island-shaped crystalline semiconductor layer 30A1 is doped with an n-type impurity n1 (for example, phosphorus (P)) in a self-aligned manner with respect to the first electrode 51.
  • n1 for example, phosphorus (P)
  • the condition for doping the n-type impurity n1 is preferably a voltage of 80 kV and a dose of 5 ⁇ 10 12 cm ⁇ 2 or more and 3 ⁇ 10 13 cm ⁇ 2 or less.
  • the conditions for doping the n-type impurity n1 are, for example, a voltage of 80 kV and a dose of 1 ⁇ 10 13 cm ⁇ 2 .
  • a photoresist 74 is formed by a known method so as to cover the regions to be the first low concentration regions (LDD regions) 31A1 and 32A1.
  • the island-shaped crystalline semiconductor layer 30A1 is doped with an n-type impurity n2.
  • the source region 34A1 and the drain region 35A1 are formed in the island-shaped crystalline semiconductor layer 30A1.
  • a first low concentration region 31A1 is formed between the source region 34A1 and the channel region 33A1
  • a first low concentration region 32A1 is formed between the drain region 35A1 and the channel region 33A1. Only one of the first low concentration regions 31A1 and 32A1 may be formed.
  • the conditions for doping the n-type impurity n2 are preferably in the range of a voltage of 45 kV and a dose of 1 ⁇ 10 14 cm ⁇ 2 or more and 1 ⁇ 10 16 cm ⁇ 2 or less.
  • the conditions for doping the n-type impurity n2 are, for example, a voltage of 45 kV and a dose of 2 ⁇ 10 15 cm ⁇ 2 .
  • the n-type impurity n2 may be doped before the first electrode 51 is formed.
  • a photoresist 76 is formed by a known method so as to cover at least the island-shaped crystalline semiconductor layer 30A1.
  • a p-type impurity p3 is doped to form the source region 34B and the drain region 35B in the island-shaped crystalline semiconductor layer 30B.
  • the island-shaped crystalline semiconductor layer 30A1 is not doped with the p-type impurity p3.
  • the conditions for doping the p-type impurity p3 are preferably in the range of a voltage of 80 kV and a dose of 5 ⁇ 10 14 cm ⁇ 2 or more and 2 ⁇ 10 16 cm ⁇ 2 or less.
  • the conditions for doping the p-type impurity p3 are, for example, a voltage of 80 kV and a dose of 1.3 ⁇ 10 15 cm ⁇ 2 .
  • the photoresist 76 is removed. Thereafter, the crystalline semiconductor layer 30A1 is activated by a known method.
  • the third insulating layer 23 is formed on the island-shaped crystalline semiconductor layer 30A1 by a known method.
  • the third insulating layer 23 is made of, for example, silicon nitride (SiN x ) or silicon dioxide (SiO 2 ).
  • the thickness of the third insulating layer 23 is, for example, not less than 300 nm and not more than 1000 nm.
  • an annealing process is performed by a known method to perform hydrogenation. This annealing treatment may be performed after forming a contact hole described later, or may be performed after forming a source electrode and a drain electrode.
  • a contact hole is formed by a known method so as to penetrate the second insulating layer 22 and the third insulating layer 23.
  • a source electrode 52 formed on the third insulating layer 23 and connected to the source region 34A1 and a drain electrode 53 formed on the third insulating layer 23 and connected to the drain region 35A1 are formed.
  • the source electrode 52 and the drain electrode 53 can be formed using, for example, any of refractory metals W, Ta, Ti, Mo, or alloy materials thereof.
  • the thickness of the source electrode 52 and the drain electrode 53 is, for example, not less than 200 nm and not more than 800 nm.
  • the fourth insulating layer 24 is formed on the third insulating layer 23 by a known method, and the n-type driving circuit TFT 10A1 shown in FIG. 1A is obtained.
  • the fourth insulating layer 24 can be formed of, for example, a photosensitive organic insulating film material.
  • the thickness of the fourth insulating layer 24 is, for example, not less than 1000 nm and not more than 3000 nm.
  • the second insulating layer 22 is formed on the island-shaped crystalline semiconductor layer 30B and the island-shaped crystalline semiconductor layer 30B on the insulating substrate 11. Thereafter, a p-type impurity p1 is doped on the entire surface of the island-shaped crystalline semiconductor layer 30B. In some cases, the island-shaped crystalline semiconductor layer 30B may not be doped with the p-type impurity p1.
  • a photoresist 72 is formed so as to cover at least the entire surface of the island-shaped crystalline semiconductor layer 30B. Thereafter, a p-type impurity p2 is doped into a region to be the channel region 33A1 of the island-shaped crystalline semiconductor layer 30A1. At this time, the p-type impurity p2 is not doped into the island-shaped crystalline semiconductor layer 30B by the photoresist 72.
  • a first electrode (gate electrode) 51 is formed on the second insulating layer 22 by a known method.
  • An impurity (for example, phosphorus (P)) n1 is doped into the island-shaped crystalline semiconductor layer 30B in a self-aligned manner with respect to the first electrode 51.
  • a photoresist 73 is formed by a known method so as to cover the island-shaped crystalline semiconductor layer 30B. Thereafter, the island-shaped crystalline semiconductor layer 30A1 is doped with an n-type impurity n2. However, the n-type impurity n2 is not doped into the island-shaped crystalline semiconductor layer 30B by the photoresist 73.
  • a source region 34B and a drain region 35B are formed in the island-shaped crystalline semiconductor layer 30B by doping with a p-type impurity p3.
  • the source region 34B and the drain region 35B are formed in a self-aligned manner with respect to the gate electrode 51.
  • No low concentration region (LDD region) is formed in the island-shaped crystalline semiconductor layer 30B.
  • the third insulating layer 23, the fourth insulating layer 24, the source electrode 52, and the drain electrode 53 are formed.
  • the island-shaped crystalline semiconductor layer 30C and the second insulating layer 22 are formed on the island-shaped crystalline semiconductor layer 30C on the insulating substrate 11. Thereafter, a p-type impurity p1 is doped on the entire surface of the island-shaped crystalline semiconductor layer 30C. In some cases, the island-shaped crystalline semiconductor layer 30C may not be doped with the p-type impurity p1.
  • a p-type impurity p2 is doped on the entire surface of the island-shaped crystalline semiconductor layer 30C.
  • a first electrode (gate electrode) 51 is formed on the second insulating layer 22 by a known method. Thereafter, the island-shaped crystalline semiconductor layer 30C is doped with an n-type impurity (for example, phosphorus (P)) n1 in a self-aligned manner with respect to the first electrode 51.
  • an n-type impurity for example, phosphorus (P)
  • a photoresist 75 is formed by a known method so as to cover the regions to be the second low concentration regions (LDD regions) 31C and 32C.
  • an n-type impurity n2 is doped into the island-shaped crystalline semiconductor layer 30C.
  • a source region 34C and a drain region 35C are formed in the island-shaped crystalline semiconductor layer 30C.
  • a second low concentration region 31C is formed between the source region 34C and the channel region 33C, and a first low concentration region 32C is formed between the drain region 35C and the channel region 33C.
  • the doping of the n-type impurity n2 may be performed before the first electrode (gate electrode) 51 is formed. Only one of the first low concentration regions 31C and 32C may be formed.
  • Second low concentration regions (LDD regions) 31C and 32C have both n-type impurity n1 and p-type impurity p2.
  • a photoresist 77 ' is formed by a known method so as to cover the island-shaped crystalline semiconductor layer 30C. Thereafter, a p-type impurity p3 is doped to form the source region 34B and the drain region 35B in the island-shaped crystalline semiconductor layer 30B. However, the p-type impurity p3 is not doped into the island-shaped crystalline semiconductor layer 30C by the photoresist 77 '.
  • the third insulating layer 23, the fourth insulating layer 24, the source electrode 52, and the drain electrode 53 are formed.
  • the pixel electrode 54 is formed on the fourth insulating layer 24 by a known method.
  • the n-type impurity n1, the p-type impurities p1, and p2 are converted into desired island-shaped crystalline semiconductor layers 30A1, 30B, This is a method of doping to 30C.
  • the first insulating layer 21 and the island-shaped crystalline semiconductor layers 30A1, 30B, and 30C are formed on the insulating substrate 11, respectively.
  • a p-type impurity p1 is doped on the entire surface of the island-like crystalline semiconductor layers 30A1, 30B, and 30C.
  • the conditions for doping the p-type impurity p1 are, for example, a voltage of 13 kV and a dose of 1 ⁇ 10 12 cm ⁇ 2 .
  • the p-type impurity p1 may not be doped into the island-shaped crystalline semiconductor layers 30A1, 30B, and 30C.
  • a photoresist 77 is formed by a known method so as to cover the entire surface of the island-shaped crystalline semiconductor layer 30B.
  • a photoresist 78 is formed by a known method so as to cover the island-shaped crystalline semiconductor layer 30A1 other than the region to be the channel region 33A1.
  • a p-type impurity p2 is doped into the entire surface of the island-shaped crystalline semiconductor layer 30C and the region to be the channel region 33A1 of the island-shaped crystalline semiconductor layer 30A1.
  • the conditions for doping the p-type impurity p2 are preferably in the range of a voltage of 13 kV and a dose of 5 ⁇ 10 11 cm ⁇ 2 or more and 5 ⁇ 10 12 cm ⁇ 2 or less.
  • the conditions for doping the p-type impurity p2 are, for example, a voltage of 13 kV and a dose amount of 3 ⁇ 10 12 cm ⁇ 2 .
  • a photoresist 79 is formed so as to cover the entire surface of the island-shaped crystalline semiconductor layer 30B.
  • a photoresist 80 is formed so as to cover the channel region 33A1 of the island-shaped crystalline semiconductor layer 30A1 and the region to be the first low concentration region.
  • a photoresist 81 is formed so as to cover the channel region and the second low concentration region of the island-shaped crystalline semiconductor layer 30C.
  • an n-type impurity n1 is doped into the source region 34A1 and drain region 35A1 of the island-shaped crystalline semiconductor layer 30A1 and the region to be the source region and drain region of the crystalline semiconductor layer 30C.
  • the doping condition of the n-type impurity n1 is preferably in the range of a voltage of 20 kV and a dose of 5 ⁇ 10 13 cm ⁇ 2 or more and 1 ⁇ 10 15 cm ⁇ 2 or less.
  • the doping condition of the n-type impurity n1 is, for example, a voltage of 20 kV and a dose amount of 2 ⁇ 10 14 cm ⁇ 2 .
  • the second insulating layer (gate insulating layer) 22 and the gate electrode 51 are formed by a known method. Thereafter, the island-shaped crystalline semiconductor layer 30A1, the crystalline semiconductor layer 30B, and the crystalline semiconductor layer 30C are doped with the n-type impurity n2 in a self-aligned manner with respect to the respective gate electrodes 51. As a result, the first low concentration regions 31A1 and 32A1, the source region 34A1, and the drain region 35A1 are formed in the island-shaped crystalline semiconductor layer 30A1. At the same time, a second low concentration region, a source region, and a drain region are formed in the island-shaped crystalline semiconductor layer 30C.
  • the condition for doping the n-type impurity n2 is preferably a voltage of 80 kV and a dose of 5 ⁇ 10 12 cm ⁇ 2 or more and 3 ⁇ 10 13 cm ⁇ 2 or less.
  • the doping condition of the n-type impurity n2 is, for example, a voltage of 80 kV and a dose amount of 1 ⁇ 10 13 cm ⁇ 2 .
  • n-type driving circuit TFT 10A1 there are at least two methods for manufacturing the n-type driving circuit TFT 10A1, the p-type driving circuit TFT 10B, and the n-type pixel TFT 10C, and the following methods for manufacturing the n-type driving circuit TFTs 10A2 to 10A4 are also available. Similarly, there are at least two types.
  • n-type driving circuit TFT 10A2 shown in FIG. 1B will be described with reference to FIG. A description of the p-type driver circuit TFT 10B and the n-type pixel TFT 10C that are formed at the same time is omitted.
  • the island-shaped crystalline semiconductor layer 30A2 on the insulating substrate 11 and the second insulating layer (gate insulating layer) 22 are formed on the island-shaped crystalline semiconductor layer 30A2 by the method described above. Thereafter, the p-type impurities p1 and p2 are doped into the island-shaped crystalline semiconductor layer 30A2 by the method described above. The p-type impurity p1 may not be doped.
  • a first electrode (gate electrode) 51 is formed on the second insulating layer 22 by a known method.
  • a channel region 33A2 is formed in the island-shaped crystalline semiconductor layer 30A2 by the method described above. At this time, the length of the first electrode 51 is larger than the length of the channel region 33A2.
  • the island-shaped crystalline semiconductor layer 30A2 is doped with the n-type impurity n1 in a self-aligned manner with respect to the first electrode 51.
  • Regions 36A2 and 37A2 that are not doped with p-type impurity p2 and n-type impurity n1 are formed in island-shaped crystalline semiconductor layer 30A2.
  • the region 36A2 is formed between the channel region 33A2 and a source region 34A2 described later.
  • the region 37A2 is formed between the channel region 33A2 and a drain region 35A2 described later. Only one of the regions 36A2 and 37A2 may be formed.
  • the concentration of the p-type impurity in the regions 36A2 and 37A2 is lower than the concentration of the p-type impurity included in the channel region 33A2.
  • the condition for doping the n-type impurity n1 is preferably a voltage of 80 kV and a dose of 5 ⁇ 10 12 cm ⁇ 2 or more and 3 ⁇ 10 13 cm ⁇ 2 or less.
  • the doping condition of the n-type impurity n1 is, for example, a voltage of 80 kV and a dose amount of 1 ⁇ 10 13 cm ⁇ 2 .
  • the n-type impurity n1 and the p-type impurities p1 and p2 may be doped before forming the second insulating layer (gate insulating layer) 22.
  • a photoresist 82 is formed so as to cover the regions to be the first low concentration regions 31A2 and 32A2 of the island-shaped crystalline semiconductor layer 30A2.
  • the island-shaped crystalline semiconductor layer 30A2 is doped with the n-type impurity n2 to form the first low concentration regions 31A2 and 32A2, the source region 33A2, and the drain region 35A2.
  • the first low concentration region 31A2 is formed between the region 36A2 and the source region 34A2, and the first low concentration region 32A2 is formed between the region 37A2 and the drain region 35A2.
  • the concentration of the n-type impurity in the first low concentration regions 31A2 and 32A2 is lower than the concentration of the n-type impurity in the source region 34A2 and the drain region 35A2. Only one of the first low concentration regions 31A2 and 32A2 may be formed.
  • the conditions for doping the n-type impurity n2 are preferably in the range of a voltage of 45 kV and a dose of 1 ⁇ 10 14 cm ⁇ 2 or more and 1 ⁇ 10 16 cm ⁇ 2 or less.
  • the conditions for doping the n-type impurity n2 are, for example, a voltage of 45 kV and a dose of 2 ⁇ 10 15 cm ⁇ 2 .
  • the n-type driving circuit TFT 10A2 shown in FIG. 1B is formed by the method described above.
  • n-type driving circuit TFT 10A3 shown in FIG. A description of the p-type driver circuit TFT 10B and the n-type pixel TFT 10C that are formed at the same time is omitted.
  • the island-shaped crystalline semiconductor layer 30A3 on the insulating substrate 11 and the second insulating layer (gate insulating layer) 22 are formed on the island-shaped crystalline semiconductor layer 30A3 by the method described above. Thereafter, the p-type impurities p1 and p2 are doped into the island-shaped crystalline semiconductor layer 30A3 by the method described above. The p-type impurity p1 may not be doped.
  • a first electrode (gate electrode) 51 is formed on the second insulating layer 22 by a known method. Further, the channel region 33A3 is formed in the island-shaped crystalline semiconductor layer 30A3 by the above-described method. At this time, the length of the gate electrode 51 is smaller than the length of the channel region 33A3.
  • the island-shaped crystalline semiconductor layer 30A3 is doped with the n-type impurity n1 in a self-aligned manner with respect to the first electrode 51.
  • a photoresist e.g., corresponding to the photoresist 71 in FIG. 4D
  • the low concentration regions 38A3 and 39A3 are formed in the island-shaped crystalline semiconductor layer 30A3.
  • the low concentration regions 38A3 and 39A3 are regions having both the p-type impurity p2 and the n-type impurity n1.
  • the low concentration region 38A3 is formed between the channel region 33A3 and the source region 34A3, and the low concentration region 39A3 is formed between the channel region 33A3 and the drain region 35A3. Only one of the low concentration regions 38A3 and 39A3 may be formed.
  • the condition for doping the n-type impurity n1 is preferably a voltage of 80 kV and a dose of 5 ⁇ 10 12 cm ⁇ 2 or more and 3 ⁇ 10 13 cm ⁇ 2 or less.
  • the conditions for doping the n-type impurity n1 are, for example, a voltage of 80 kV and a dose of 1 ⁇ 10 13 cm ⁇ 2 .
  • the n-type impurity n1 and the p-type impurities p1 and p2 may be doped before forming the second insulating layer (gate insulating layer) 22.
  • a photoresist 83 is formed so as to cover the regions to be the first low concentration regions 31A3 and 32A3 of the island-shaped crystalline semiconductor layer 30A3.
  • the island-shaped crystalline semiconductor layer 30A3 is doped with the n-type impurity n2 to form the first low concentration regions 31A3 and 32A3, the source region 34A3, and the drain region 35A3.
  • the first low concentration region 31A3 is formed between the low concentration region 38A3 and the source region 34A3, and the first low concentration region 32A3 is formed between the low concentration region 39A3 and the drain region 35A3. Only one of the first low concentration regions 31A3 and 32A3 may be formed.
  • the conditions for doping the n-type impurity n2 are preferably in the range of a voltage of 45 kV and a dose of 1 ⁇ 10 14 cm ⁇ 2 or more and 1 ⁇ 10 16 cm ⁇ 2 or less.
  • the conditions for doping the n-type impurity n2 are, for example, a voltage of 45 kV and a dose of 2 ⁇ 10 15 cm ⁇ 2 .
  • the n-type driving circuit TFT 10A3 shown in FIG. 2A is formed by the method described above.
  • n-type driving circuit TFT 10A4 shown in FIG. 2B Next, a method for manufacturing the n-type driving circuit TFT 10A4 shown in FIG. 2B will be described. A description of the p-type driver circuit TFT 10B and the n-type pixel TFT 10C that are formed at the same time is omitted.
  • the island-shaped crystalline semiconductor layer 30A4 on the insulating substrate 11 and the second insulating layer (gate insulating layer) 22 are formed on the island-shaped crystalline semiconductor layer 30A4 by the method described above. Thereafter, the p-type impurities p1 and p2 are doped into the island-shaped crystalline semiconductor layer 30A4 by the method described above. The p-type impurity p1 may not be doped.
  • a gate electrode 51 is formed on the second insulating layer 22 by a known method.
  • a channel region 33A4 is formed in the island-shaped crystalline semiconductor layer 30A4 by the method described above.
  • the length of the gate electrode 51 is larger than the length of the channel region 33A4, and the gate electrode 51 is formed closer to the region to be the source region 34A4.
  • the gate electrode 51 may be formed closer to the region that becomes the drain region 35A4.
  • the island-shaped crystalline semiconductor layer 30A4 is doped with an n-type impurity n1 in a self-aligned manner with respect to the gate electrode 51.
  • a photoresist for example, equivalent to the photoresist 71 in FIG. 4D
  • the gate electrode 51 that contributes to the formation of the channel region 33A4 of the island-shaped crystalline semiconductor layer 30A4.
  • a region 36A4 not doped with the n-type impurity n1 is formed, and a low concentration region 38A4 is formed in the island-shaped crystalline semiconductor layer 30A4 in the region doped with the n-type impurity n1.
  • the concentration of the p-type impurity in the region 36A4 is lower than the concentration of the p-type impurity in the channel region 33A4.
  • the low concentration region 38A4 is a region having both the p-type impurity p2 and the n-type impurity n1.
  • the region 36A4 is formed between the channel region 33A4 and the source region 34A4, and the low concentration region 38A4 is formed between the channel region 33A4 and the drain region 35A4. In some cases, the region 36A4 is formed between the channel region 33A4 and the drain region 35A4, and the low concentration region 38A4 is formed between the channel region 33A4 and the source region 34A4.
  • the condition for doping the n-type impurity n1 is preferably a voltage of 80 kV and a dose of 5 ⁇ 10 12 cm ⁇ 2 or more and 3 ⁇ 10 13 cm ⁇ 2 or less.
  • the conditions for doping the n-type impurity n1 are, for example, a voltage of 80 kV and a dose of 1 ⁇ 10 13 cm ⁇ 2 .
  • the n-type impurity n1 and the p-type impurities p1 and p2 may be doped before the second insulating layer (gate insulating layer) 22 is formed.
  • a photoresist 84 is formed so as to cover the regions to be the first low concentration regions 31A4 and 32A4 of the island-like crystalline semiconductor layer 30A4.
  • the island-shaped crystalline semiconductor layer 30A4 is doped with the n-type impurity n2 to form the first low concentration regions 31A4 and 32A4, the source region 34A4, and the drain region 35A4.
  • the first low concentration region 31A4 is formed between the region 36A4 and the source region 34A4, and the first low concentration region 32A4 is formed between the low concentration region 38A4 and the drain region 35A4. Only one of the first low concentration regions 31A4 and 32A4 may be formed.
  • the conditions for doping the n-type impurity n2 are preferably in the range of a voltage of 45 kV and a dose of 1 ⁇ 10 14 cm ⁇ 2 or more and 1 ⁇ 10 16 cm ⁇ 2 or less.
  • the conditions for doping the n-type impurity n2 are, for example, a voltage of 45 kV and a dose of 2 ⁇ 10 15 cm ⁇ 2 .
  • the n-type driving circuit TFT 10A4 shown in FIG. 2B is formed by the method described above.
  • an n-type driving circuit TFT 10A (TFT10A1 to TFT10A4) and an n-type pixel TFT 10C having a low concentration region (LDD region) are obtained.
  • the p-type driving circuit TFT 10B having no region can be manufactured monolithically. Further, the resistances of the low concentration regions (LDD regions) 31A1 to 31A4 and 32A1 to 32A4 of the n-type driving circuit TFT 10A are made different from the resistances of the low concentration regions (LDD regions) 31C and 32C of the n-type pixel TFT 10C, Each TFT can be formed without increasing the number of manufacturing steps and the number of photomasks.
  • a TFT 10A having a large on-current while reducing an off-current can be obtained, and an n-type pixel TFT 10C having a small off-current can be obtained. Since the low concentration region (LDD region) is not formed in the p-type driving circuit TFT 10B, the on-current is not reduced and the size of the TFT can be reduced.
  • LDD region low concentration region
  • the applicable range of the present invention is extremely wide, and it can be applied to a semiconductor device provided with a TFT, or an electronic device in any field having such a semiconductor device.
  • a circuit or a pixel portion formed by implementing the present invention can be used for an active matrix liquid crystal display device or an organic EL display device.
  • Such a display device can be used for a display screen of a mobile phone or a portable game machine, a monitor of a digital camera, or the like. Therefore, the present invention can be applied to all electronic devices in which a liquid crystal display device or an organic EL display device is incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

 本発明の半導体装置(100A)は、第1導電型の駆動回路用TFT(10A1)のチャネル領域(33A1)とソース領域(34A1)との間、および第1導電型の駆動回路用TFT(10A1)のチャネル領域(33A1)とドレイン領域(35A1)との間の少なくとも一方に、第1低濃度領域(31A1、32A1)を有し、第1導電型の画素用TFT(10C)のチャネル領域(33C)とソース領域(34C)との間、および第1導電型の画素用TFT(10C)のチャネル領域(33C)とドレイン領域35Cとの間の少なくとも一方に、第2低濃度領域(31C、32C)を有し、第1低濃度領域(31A1、32A1)は、第1導電型の不純物(n1)を第1不純物濃度(C1)で有し、第2低濃度領域(31C、32C)は、第1導電型の不純物(n1)を第1不純物濃度(C1)で有し、かつ、第2導電型の不純物(p2)を第2不純物濃度(C2)で有する。

Description

半導体装置およびその製造方法
 本発明は、薄膜トランジスタ(Thin Film Transistor:TFT)を備える半導体装置およびその製造方法に関する。
 アクティブマトリクス型表示装置のスイッチング素子として、多結晶シリコン(p-Si)を用いたTFTがある(例えば特許文献1~3)。多結晶シリコンを有するTFTの移動度は、アモルファスシリコン(a-Si)を有するTFTの移動度よりも高いので、表示に寄与する画素用TFTのみでなく高速動作が要求される駆動回路用TFTも形成できる。画素用TFTには、表示品位を高く保つためにオフ電流の小さなTFTが要求され、駆動回路用TFTには、高速動作が必要なことからオン電流の大きなTFTが要求される。
 TFTの構造の1つとして、チャネル領域とソース領域との間、および、チャネル領域とドレイン領域との間の少なくとも一方に、低濃度領域(Lightly Doped Drain、以下「LDD領域」という場合がある)を形成した構造が広く用いられている(例えば特許文献1~3)。このような構造は「LDD構造」といわれている。LDD領域を形成することにより、ソース領域またはドレイン領域近傍の電界集中を緩和することができるので、オフ電流を小さくでき長期信頼性も高めることができる。
 特許文献1には、駆動回路用TFTおよび画素用TFTのいずれもLDD領域を有し、例えばn型の画素用TFTのLDD領域の不純物濃度をn型の駆動回路用TFTのLDD領域の不純物濃度より低くした半導体装置が開示されている。これにより、駆動回路用TFTのオン電流を小さくすることなく、画素用TFTのオフ電流を小さくすることができる。その結果、表示むらなどが発生せず、駆動回路の動作速度が高い液晶表示装置が実現されると記載されている。
 特許文献2には、駆動回路用TFTおよび画素用TFTのいずれもLDD領域を有し、例えばn型画素用TFTのLDD領域の長さをn型の駆動回路用TFTのLDD領域の長さより大きくした半導体装置が開示されている。これにより、駆動回路用TFTのオン電流を小さくすることなく、画素用TFTのオフ電流を小さくすることができる。その結果、表示むらなどが発生せず、駆動回路の動作速度が高い液晶表示装置が実現されると記載されている。
特開2004-341540号公報 特開2004-170999号公報 特開平6-88972号公報
 特許文献1~3に記載の半導体装置は、駆動回路用TFTおよび画素用TFTのいずれもLDD領域を有しているので、p型の駆動回路用TFTもLDD領域を有することになる。p型の駆動回路用TFTがLDD領域を有するとオン電流が小さくなり、LDD領域の分だけTFTのサイズが大きくなるという問題がある。また、LDD構造を有するTFTは、その製造方法が複雑となる問題もある。画素用TFTのLDD領域の不純物濃度と駆動回路用TFTのLDD領域の不純物濃度とを異ならせて製造する場合、特にその製造方法が複雑になる。
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、TFT特性の良好な半導体装置およびその半導体装置の簡便な製造方法を提供することにある。
 本発明の半導体装置は、第1導電型の画素用薄膜トランジスタと、前記第1導電型の駆動回路用薄膜トランジスタと、前記第1導電型と異なる第2導電型の駆動回路用薄膜トランジスタとを有する半導体装置であって、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とソース領域との間、および、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とドレイン領域との間の少なくとも一方に、第1低濃度領域を有し、前記画素用薄膜トランジスタのチャネル領域とソース領域との間、および、前記画素用薄膜トランジスタのチャネル領域とドレイン領域との間の少なくとも一方に、第2低濃度領域を有し、前記第1低濃度領域は、前記第1導電型の不純物を第1不純物濃度で有し、前記画素用薄膜トランジスタのチャネル領域、および、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域は、前記第2導電型の不純物を前記第1不純物濃度より低い第2不純物濃度で有し、前記第2低濃度領域は、前記第1導電型の不純物を前記第1不純物濃度で有し、かつ、前記第2導電型の不純物を前記第2不純物濃度で有する。
 ある実施形態において、前記第1低濃度領域は、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とソース領域との間、および、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とドレイン領域との間のいずれにも形成されている。
 ある実施形態において、前記第2低濃度領域は、前記画素用薄膜トランジスタのチャネル領域とソース領域との間、および、前記画素用薄膜トランジスタのチャネル領域とドレイン領域との間のいずれにも形成されている。
 ある実施形態において、前記第1導電型の画素用薄膜トランジスタは、前記第1低濃度領域と前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域との間に形成された第3低濃度領域をさらに有し、前記第3低濃度領域は、前記第1導電型の不純物を前記第1不純物濃度で有し、かつ、前記第2導電型の不純物を前記第2不純物濃度で有する。
 ある実施形態において、前記第1導電型の画素用薄膜トランジスタは、前記第1低濃度領域と前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域との間に形成された第4領域をさらに有し、前記第4領域は、前記第2導電型の不純物を前記第2不純物濃度より低い第3不純物濃度で有する。
 ある実施形態において、前記第1導電型はn型であり、前記第2導電型はp型である。
 本発明の表示装置は、上記いずれかの半導体装置を有する表示装置である。
 本発明の半導体装置の製造方法は、第1導電型の画素用薄膜トランジスタと、前記第1導電型の駆動回路用薄膜トランジスタと、前記第1導電型と異なる第2導電型の駆動回路用薄膜トランジスタとを有する半導体装置の製造方法であって、前記第1導電型の不純物を第1不純物濃度でドーピングする工程aと、前記第2導電型の不純物を前記第1不純物濃度より低い第2不純物濃度でドーピングする工程bと、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とソース領域との間、および、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とドレイン領域との間の少なくとも一方に、前記第1導電型の不純物を前記第1不純物濃度で含有する第1低濃度領域を形成する工程cと、前記画素用薄膜トランジスタのチャネル領域とソース領域との間、および、前記画素用薄膜トランジスタのチャネル領域とドレイン領域との間の少なくとも一方に、前記第1導電型の不純物を前記第1不純物濃度で有し、かつ、前記第2導電型の不純物を前記第2不純物濃度で含有する第2低濃度領域を形成する工程dとを包含する。
 ある実施形態において、前記工程cは、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とソース領域との間、および、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とドレイン領域との間のいずれにも前記第1低濃度領域を形成する工程c1を包含する。
 ある実施形態において、前記工程dは、前記画素用薄膜トランジスタのチャネル領域とソース領域との間、および、前記画素用薄膜トランジスタのチャネル領域とドレイン領域との間のいずれにも前記第2低濃度領域を形成する工程d1を包含する。
 ある実施形態において、前記工程aは、前記第1低濃度領域と前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域との間に、前記第1導電型の不純物を前記第1不純物濃度で有し、かつ、前記第2導電型の不純物を前記第2不純物濃度で有する第3低濃度領域を形成する工程a1を包含する。
 ある実施形態において、前記工程aは、前記第1低濃度領域と前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域との間に形成された、前記第2導電型の不純物を前記第2不純物濃度より低い第3不純物濃度で有する第4領域を形成する工程a2を包含する。
 ある実施形態において、前記工程aは、n型不純物を前記第1不純物濃度でドーピングする工程a3を、前記工程bは、p型不純物を前記第2不純物濃度でドーピングする工程b1を包含する。
 本発明によると、良好なTFT特性を有する半導体装置およびその半導体装置の簡便な製造方法が提供される。
(a)は、本発明による実施形態のTFT基板100Aの模式的な断面図であり、(b)は、他の実施形態のTFT基板100Bの模式的な断面図である。 (a)は、さらに他の実施形態のTFT基板100Cの模式的な断面図であり、(b)は、さらに他の実施形態のTFT基板100Dの模式的な断面図である。 (a)は、TFT基板100Aおよび100Bの模式的な上面図であり、(b)は、TFT100基板Cの模式的な上面図であり、(c)は、TFT基板100Dの模式的な上面図である。 (a)~(e)は、TFT基板100Aの製造工程を説明する断面図である。 (a)~(d)は、TFT基板100Aの製造工程を説明する断面図である。 (a)~(d)は、TFT基板100Aの他の製造工程を説明する断面図である。 (a)および(b)は、TFT基板100Bの製造工程を説明する断面図である。 (a)および(b)は、TFT基板100Cの製造工程を説明する断面図である。 (a)および(b)は、TFT基板100Dの製造工程を説明する断面図である。
 以下、図面を参照して本発明による実施形態を説明する。ここでは、半導体装置として液晶表示装置に用いられるTFT基板を例示して本発明による実施形態の半導体装置およびその製造方法を説明する。本発明はこれに限られず、例えば有機EL表示装置に用いられるTFT基板にも適用され得る。
 図1および図2は、本発明による実施形態のTFT基板100A~100D(TFT基板100という場合がある)が有するn型の駆動回路用TFT10A1~10A4(TFT10Aという場合がある)、p型の駆動回路用TFT10Bおよびn型の画素用TFT10Cの構造を示す模式的な断面図である。図3は、TFT基板100A~100Dの構造を示す模式的な上面図である。なおTFT基板100の共通する構成要素は同じ符号を付し、説明の重複を避ける。
 本発明による実施形態の液晶表示装置のTFT基板は、例えばTFT基板100Aである。設計通りにTFT100Aが製造されることが好ましいが、TFT100Aを製造しようとしても製造プロセスにおけるアライメントずれなどが生じ、その結果、TFT基板100B~100Dが製造されることがある。まず、TFT100Aの構造を説明する。
 図1(a)および図3(a)に示すTFT基板100Aは、絶縁基板(例えばガラス基板)11上に形成された第1絶縁層21と、第1絶縁層21上に形成されたn型の駆動回路用TFT10A1、p型の駆動回路用TFT10Bおよびn型の画素用TFT10Cとを有する。
 n型の駆動回路用TFT10A1は、チャネル領域33A1、ソース領域34A1およびドレイン領域35A1を含む結晶質半導体層(例えば多結晶シリコン層)30A1を備える。さらに、n型の駆動回路用TFT10A1は、チャネル領域33A1の導電性を制御するゲート電極51と、ゲート電極51の下に形成された第2絶縁層22とを備える。結晶質半導体層30A1は、チャネル領域33A1とソース領域34A1との間、および、チャネル領域33A1とドレイン領域35A1との間に形成された第1低濃度領域(LDD領域)31A1および32A1を有する。また、第1低濃度領域31A1および32A1は、いずれか一方だけ形成されてもよい。第1低濃度領域31A1および32A1は、第1導電型(例えばn型)の不純物(例えばリン(P))を第1不純物濃度C1(例えば5×1017cm-3以上3×1018cm-3以下、本実施形態では1×1018cm-3)で有し、第2導電型(例えばp型)の不純物(例えばボロン(B))を第1不純物濃度C1より低い濃度(例えば3×1016cm-3以上3×1017cm-3以下、本実施形態では6×1016cm-3)で有する。チャネル領域33A1は、例えば第2導電型の不純物を第1不純物濃度C1より低い第2不純物濃度C2(例えば3×1016cm-3以上3×1017cm-3以下、本実施形態では2×1017cm-3)で有する。ソース領域34A1およびドレイン領域35A1は、第1導電型の不純物を第1不純物濃度C1より高い不純物濃度(例えば6×1018cm-3以上6×1020cm-3以下、本実施形態では1×1020cm-3)で有する。n型の駆動回路用TFT10A1は、結晶質半導体層30A1上に形成された第3絶縁層23を有し、さらに、第3絶縁層23上に形成された第4絶縁層24を有する。さらに、n型の駆動回路用TFT10A1は、ソース領域34A1に接続されたソース電極52と、ドレイン領域35A1に接続されたドレイン電極53とを有する。
 p型の駆動回路用TFT10Bは、チャネル領域33B、ソース領域34Bおよびドレイン領域35Bを含む結晶質半導体層30Bを備える。さらに、p型の駆動回路用TFT10Bは、チャネル領域33Bの導電性を制御するゲート電極51と、ゲート電極51の下に形成された第2絶縁層22とを備える。ソース領域34Bおよびドレイン領域35Bは、第2導電型(例えばp型)の不純物(例えばボロン(B))を第2不純物濃度C2より高い不純物濃度(例えば5×1018cm-3以上2×1020cm-3以下、本実施形態では2×1019cm-3)で有する。チャネル領域33Bは、第2導電型の不純物を第2不純物濃度C2(例えば3×1016cm-3以上3×1017cm-3以下、本実施形態では6×1016cm-3)で有する。p型の駆動回路用TFT10Bは、結晶質半導体層30B上に形成された第3絶縁層23を有し、さらに、第3絶縁層23上に形成された第4絶縁層24を有する。p型の駆動回路用TFT10Bは、ソース領域34Bに接続されたソース電極52と、ドレイン領域35Bに接続されたドレイン電極53とを有する。p型の駆動回路用TFT10Bは、低濃度領域(LDD領域)を有していない。
 n型の画素用TFT10Cは、チャネル領域33C、ソース領域34Cおよびドレイン領域35Cを含む結晶質半導体層30Cを備える。さらに、n型の画素用TFT10Cは、チャネル領域33Cの導電性を制御するゲート電極51と、ゲート電極51の下に形成された第2絶縁層22とを備える。結晶質半導体層30Cは、チャネル領域33Cとソース領域34Cとの間、および、チャネル領域33Cとドレイン領域35Cとの間に形成された第2低濃度領域(LDD領域)31Cおよび32Cを有する。第2低濃度領域31Cおよび32Cは、いずれか一方だけ形成されてもよい。第2低濃度領域31Cおよび32Cは、第1導電型(例えばn型)の不純物(例えばリン(P))を第1不純物濃度C1(例えば5×1017cm-3以上3×1018cm-3以下、本実施形態では1×1018cm-3)で有し、第2導電型(例えばp型)の不純物(例えばボロン(B))を第1不純物濃度C1より低い第2不純物濃度C2(例えば3×1016cm-3以上3×1017cm-3以下、本実施形態では2×1017cm-3)で有する。チャネル領域33Cは、例えば第2導電型の不純物を第2不純物濃度C2(例えば3×1016cm-3以上3×1017cm-3以下、本実施形態では2×1017cm-3)で有する。ソース領域34Cおよびドレイン領域35Cは、第1導電型の不純物を第1不純物濃度C1より高い不純物濃度(例えば6×1018cm-3以上6×1020cm-3以下、本実施形態では1×1020cm-3)で有する。n型の画素用TFT10Cは、結晶質半導体層30C上に形成された第3絶縁層23を有し、さらに、第3絶縁層23上に形成された第4絶縁層24を有する。n型の画素用TFT10Cは、ソース領域34Cに接続されたソース電極52と、ドレイン領域35Cに接続されたドレイン電極53とを有する。n型の画素用TFT10Cは、図3(a)に示すように、ドレイン電極53を介して画素電極54と接続している。
 n型の画素用TFT10CのLDD領域(第2低濃度領域31Cおよび32C)のn型の不純物濃度は、n型の駆動回路用TFT10A1のLDD領域(第1低濃度領域31A1および32A1)のn型の不純物濃度と等しい。しかしながら、n型の画素用TFT10CのLDD領域は、n型の駆動回路用TFT10A1のLDD領域より高いp型の不純物濃度を有している。従って、n型の画素用TFT10CのLDD領域の抵抗は、n型の駆動回路用TFT10A1のLDD領域の抵抗より大きいので、n型の画素用TFT10Cのオン電流はn型の駆動回路用TFT10A1のオン電流より小さくなる。
 次にTFT基板100B~100Dについて説明する。
 図1(b)および図3(a)に示すTFT基板100Bは、絶縁基板(例えばガラス基板)11上に形成された第1絶縁層21と、第1絶縁層21上に形成されたn型の駆動回路用TFT10A2、p型の駆動回路用TFT10Bおよびn型の画素用TFT10Cとを有する。
 n型の駆動回路用TFT10A2は、チャネル領域33A2、ソース領域34A2およびドレイン領域35A2を含む結晶質半導体層30A2を備える。さらに、n型の駆動回路用TFT10A2は、チャネル領域33A2の導電性を制御するゲート電極51と、ゲート電極51の下に形成された第2絶縁層22とを備える。結晶質半導体層30A2は、チャネル領域33A2とソース領域34A2との間、および、チャネル領域33A2とドレイン領域35A2との間に形成された第1低濃度領域(LDD領域)31A2および32A2を有する。第1低濃度領域31A2および32A2は、いずれか一方だけ形成されてもよい。さらに、n型の駆動回路用TFT10A2は、第1低濃度領域31A2および32A2とチャネル領域33A2との間に形成された領域36A2および37A2を有する。領域36A2および37A2は、いずれか一方だけ形成されてもよい。第1低濃度領域31A2および32A2は、第1導電型(例えばn型)の不純物(例えばリン(P))を第1不純物濃度C1(例えば5×1017cm-3以上3×1018cm-3以下、本実施形態では1×1018cm-3)で有し、第2導電型(例えばp型)の不純物(例えばボロン(B))を第1不純物濃度C1より低い濃度(例えば3×1016cm-3以上3×1017cm-3以下、本実施形態では6×1016cm-3)で有する。チャネル領域33A2は、第2導電型の不純物を第1不純物濃度C1より低い第2不純物濃度C2(例えば3×1016cm-3超3×1017cm-3以下、本実施形態では2×1017cm-3)で有する。ソース領域34A2およびドレイン領域35A2は、第1導電型の不純物を第1不純物濃度C1より高い不純物濃度(例えば6×1018cm-3以上6×1020cm-3以下、本実施形態では1×1020cm-3)で有する。領域36A2および37A2は、第2不純物濃度C2より低い濃度(例えば3×1016cm-3以上3×1017cm-3未満、本実施形態では6×1016cm-3)で第2導電型の不純物を有する。n型の駆動回路用TFT10A2は、結晶質半導体層30A2上に形成された第3絶縁層23を有し、さらに、第3絶縁層23上に形成された第4絶縁層24を有する。n型の駆動回路用TFT10A2は、ソース領域34A2に接続されたソース電極52と、ドレイン領域35A2に接続されたドレイン電極53とを有する。
 図2(a)および図3(b)に示すTFT基板100Cは、絶縁基板(例えばガラス基板)11上に形成された第1絶縁層21と、第1絶縁層21上に形成されたn型の駆動回路用TFT10A3、p型の駆動回路用TFT10Bおよびn型の画素用TFT10Cとを有する。
 n型の駆動回路用TFT10A3は、チャネル領域33A3、ソース領域34A3およびドレイン領域35A3を含む結晶質半導体層30A3を備える。さらに、n型の駆動回路用TFT10A3は、チャネル領域33A3の導電性を制御するゲート電極51と、ゲート電極51上に形成された第2絶縁層22とを備える。結晶質半導体層30A3は、チャネル領域33A3とソース領域34A3との間、および、チャネル領域33A3とドレイン領域35A3との間の少なくとも一方に形成された第1低濃度領域(LDD領域)31A3および32A3を有する。第1低濃度領域31A3および32A3は、いずれか一方だけ形成されてもよい。さらに、n型の駆動回路用TFT10A3は、第1低濃度領域31A3および32A3とチャネル領域33A3との間に形成された低濃度領域38A3および39A3を有する。低濃度領域38A3および39A3は、いずれか一方だけ形成されてもよい。第1低濃度領域31A3および32A3は、第1導電型(例えばn型)の不純物(例えばリン(P))を第1不純物濃度C1(例えば5×1017cm-3以上3×1018cm-3以下、本実施形態では1×1018cm-3)で有し、第2導電型(例えばp型)の不純物(例えばボロン(B))を第1不純物濃度C1より低い濃度(例えば3×1016cm-3以上3×1017cm-3以下、本実施形態では6×1016cm-3)で有する。チャネル領域33A3は、第2導電型の不純物を第1不純物濃度C1より低い第2不純物濃度C2(例えば3×1016cm-3以上3×1017cm-3以下、本実施形態では6×1016cm-3)で有する。ソース領域34A3およびドレイン領域35A3は、第1導電型の不純物を第1不純物濃度C1より高い不純物濃度(例えば6×1018cm-3以上6×1020cm-3以下、本実施形態では1×1020cm-3)で有する。低濃度領域38A3および39A3は、第1導電型の不純物を第1不純物濃度C1で有し、かつ、第2導電型の不純物を第2不純物濃度C2で有する。n型の駆動回路用TFT10A3は、結晶質半導体層30A3上に形成された第3絶縁層23を有し、さらに、第3絶縁層23上に形成された第4絶縁層24を有する。n型の駆動回路用TFT10A3は、ソース領域34A3に接続されたソース電極52と、ドレイン領域35A3に接続されたドレイン電極53とを有する。
 図2(b)および図3(c)に示すTFT基板100Dは、絶縁基板(例えばガラス基板)11上に形成された第1絶縁層21と、第1絶縁層21上に形成されたn型の駆動回路用TFT10A4、p型の駆動回路用TFT10Bおよびn型の画素用TFT10Cとを有する。
 n型の駆動回路用TFT10A4は、チャネル領域33A4、ソース領域34A4およびドレイン領域35A4を含む結晶質半導体層30A4を備える。さらに、n型の駆動回路用TFT10A4は、チャネル領域33A4の導電性を制御するゲート電極51と、ゲート電極51の下に形成された第2絶縁層22とを備える。結晶質半導体層30A4は、チャネル領域33A4とソース領域34A4との間、および、チャネル領域33A4とドレイン領域35A4との間に形成された第1低濃度領域(LDD領域)31A4および32A4を有する。第1低濃度領域31A4および32A4は、いずれか一方だけ形成されてもよい。さらに、n型の駆動回路用TFT10A4は、第1低濃度領域31A4(または、32A4)とチャネル領域33A4との間に形成された領域36A4を有する。さらに、n型の駆動回路用TFT10A4は、第1低濃度領域32A4(または、31A4)とチャネル領域33A4との間に形成された低濃度領域38A4を有する。第1低濃度領域31A4および32A4は、第1導電型(例えばn型)の不純物(例えばリン(P))を第1不純物濃度C1(例えば5×1017cm-3以上3×1018cm-3以下、本実施形態では1×1018cm-3)で有し、第2導電型(例えばp型)の不純物(例えばボロン(B))を第1不純物濃度C1より低い濃度(例えば3×1016cm-3以上3×1017cm-3以下、本実施形態では6×1016cm-3)で有する。チャネル領域33A4は、第2導電型の不純物を第1不純物濃度C1より低い第2不純物濃度C2(例えば3×1016cm-3超3×1017cm-3以下、本実施形態では2×1017cm-3)で有する。ソース領域34A4およびドレイン領域35A4は、第1導電型の不純物を第1不純物濃度C1より高い不純物濃度(例えば6×1018cm-3以上6×1020cm-3以下、本実施形態では1×1020cm-3)で有する。領域36A4は、第2不純物濃度C2より低い濃度(例えば3×1016cm-3以上3×1017cm-3未満、本実施形態では6×1016cm-3)で第2導電型の不純物を有する。低濃度領域38A4は、第1導電型の不純物を第1不純物濃度C1で有し、かつ、第2導電型の不純物を第2不純物濃度C2で有する。領域36A4の第2導電型の不純物濃度は、低濃度領域38A4の第2導電型の不純物濃度より低い。n型の駆動回路用TFT10A4は、結晶質半導体層30A4上に形成された第3絶縁層23を有し、さらに、第3絶縁層23上に形成された第4絶縁層24を有する。n型の駆動回路用TFT10A4は、ソース領域34A4に接続されたソース電極52と、ドレイン領域35A4に接続されたドレイン電極53とを有する。
 第1絶縁層21、第2絶縁層22および第3絶縁層23は、例えば窒化シリコン(SiNx)または二酸化シリコン(SiO2)から形成される。
 第4絶縁層24は、例えば窒化シリコン(SiNx)、二酸化シリコン(SiO2)または感光性の有機絶縁膜材料から形成される。
 ゲート電極51、ソース電極52およびドレイン電極53は、例えば高融点金属のW、Ta、Ti、Moまたはこれらの合金材料のいずれかを用いて形成され得る。
 画素電極54は、例えばITO(Indium Tin Oxide)などの透明電極である。
 TFT基板100を上述のように構成することにより、異なるTFT特性が必要とされるTFTを同一基板上に形成する場合において、特性の異なるTFTを簡便な製造方法で形成し得る。また、製造コストも削減し得る。n型の駆動回路用TFT10Aは、抵抗の小さいLDD領域(第1低濃度領域31A1~A4および32A1~A4)を備えるので、オン電流を小さくすることなくオフ電流を小さくすることができる。p型の駆動回路用TFT10Bは、低濃度領域(LDD領域)を有しないので、オン電流が小さくならず、低濃度領域(LDD領域)を形成しない分TFTのサイズを小さくすることも可能となる。n型の画素用TFT10Cは、n型の駆動回路用TFT10AのLDD領域の抵抗より大きい抵抗のLDD領域(第2低濃度領域31Cおよび32C)を有するので、オフ電流が小さくなる。
 次に、図4~図9を参照しながら、本発明による実施形態の製造方法を説明する。
 最初にn型の駆動回路用TFT10A1の製造方法について説明する。
 図4(a)に示すように、絶縁基板(例えばガラス基板)11上に例えばCVD(Chemical Vapor Deposition)法により、例えば窒化シリコン(SiNX)または二酸化シリコン(SiO2)から形成された第1絶縁層21を例えば50nm以上400nm以下の範囲の厚さで形成する。続けて、公知の方法で第1絶縁層21上に非晶質半導体層(例えばアモルファスシリコン層(a-Si層))30’(不図示)を形成する。非晶質半導体層30’の厚さは、例えば30nm以上200nm以下である。次に、公知の方法L1で非晶質半導体層30’を結晶化し、結晶質半導体層(例えば多結晶シリコン層(p-Si層))30を形成する。
 次に、図4(b)に示すように、結晶質半導体層30を公知の方法でパターニングし、島状の結晶質半導体層30A1を形成する。その後、図4(c)に示すように、島状の結晶質半導体層30A1の全面を覆うように第2絶縁層(ゲート絶縁層)22を公知の方法で形成する。第2絶縁層(ゲート絶縁層)22は、例えば窒化シリコン(SiNX)または二酸化シリコン(SiO2)から形成される。第2絶縁層22の厚さは、例えば30nm以上300nm以下である。
 次に、p型不純物(例えばボロン(B))p1を、例えば電圧25kVでドーズ量1×1012cm-2の条件で島状の結晶質半導体層30A1の全面に公知の方法でドーピングする。このとき、フォトレジストを用いてマスクを形成していない。なお、p型不純物p1をドーピングする工程を省略してもよい場合もある。ここまで、n型の駆動回路用TFT10A1、p型の駆動回路用TFT10Bおよびn型の画素用TFT10Cに共通する工程である。
 次に、図4(d)に示すように、島状の結晶質半導体層30A1のチャネル領域33A1となる領域以外を覆うようにフォトレジスト71を形成する。その後、p型不純物p2を島状の結晶質半導体層30A1のチャネル領域33A1となる領域にドーピングする。p型不純物p2をドーピングする条件は、電圧25kVでドーズ量5×1011cm-2以上5×1012cm-2以下の範囲が好ましい。p型不純物p2をドーピングする条件は、例えば電圧25kVでドーズ量3×1012cm-2である。
 次に、フォトレジスト71を除去する。
 次に、図4(e)に示すように、第2絶縁層22上に第1電極(ゲート電極)51を公知の方法で形成する。第1電極51は、例えば高融点金属のW、Ta、Ti、Moまたはこれらの合金材料のいずれかを用いて形成され得る。第1電極51の厚さは、例えば200nm以上800nm以下である。その後、第1電極51に対して自己整合的に、n型不純物n1(例えばリン(P))を島状の結晶質半導体層30A1にドーピングする。n型不純物n1をドーピングする条件は、電圧80kVでドーズ量5×1012cm-2以上3×1013cm-2以下の範囲が好ましい。n型不純物n1をドーピングする条件は、例えば電圧80kVでドーズ量1×1013cm-2である。
 次に、図5(a)に示すように、第1低濃度領域(LDD領域)31A1および32A1となる領域を覆うようにフォトレジスト74を公知の方法で形成する。その後、n型不純物n2を島状の結晶質半導体層30A1にドーピングする。その結果、島状の結晶質半導体層30A1に、ソース領域34A1およびドレイン領域35A1が形成される。また、ソース領域34A1とチャネル領域33A1との間に第1低濃度領域31A1が形成され、ドレイン領域35A1とチャネル領域33A1との間に第1低濃度領域32A1が形成される。第1低濃度領域31A1および32A1は、いずれか一方だけ形成されてもよい。n型不純物n2をドーピングする条件は、電圧45kVでドーズ量1×1014cm-2以上1×1016cm-2以下の範囲が好ましい。n型不純物n2をドーピングする条件は、例えば電圧45kVでドーズ量2×1015cm-2である。なお、n型不純物n2のドーピングは、第1電極51を形成する前に行ってもよい。
 次に、フォトレジスト74を除去する。
 次に、図5(b)に示すように、少なくとも島状の結晶質半導体層30A1を覆うように公知の方法でフォトレジスト76を形成する。その後、島状の結晶質半導体層30Bにソース領域34Bおよびドレイン領域35Bを形成するためにp型不純物p3をドーピングする。しかしながら、フォトレジスト76で覆われているので、島状の結晶質半導体層30A1にp型不純物p3はドーピングされない。p型不純物p3をドーピングする条件は、電圧80kVでドーズ量5×1014cm-2以上2×1016cm-2以下の範囲が好ましい。p型不純物p3をドーピングする条件は、例えば電圧80kVで、ドーズ量1.3×1015cm-2である。
 次に、フォトレジスト76を除去する。その後、公知の方法で結晶質半導体層30A1を活性化させる。
 次に、図5(c)に示すように、島状の結晶質半導体層30A1上に第3絶縁層23を公知の方法で形成する。第3絶縁層23は、例えば窒化シリコン(SiNX)または二酸化シリコン(SiO2)から形成される。第3絶縁層23の厚さは、例えば300nm以上1000nm以下である。その後、公知の方法でアニール処理を行い、水素化する。なお、このアニール処理は後述するコンタクトホール形成後に行ってもよく、ソース電極およびドレイン電極形成後に行ってもよい。
 次に、図5(d)に示すように、第2絶縁層22および第3絶縁層23を貫通するように公知の方法でコンタクトホールを形成する。その後、第3絶縁層23上に形成され、ソース領域34A1と接続するソース電極52と、第3絶縁層23上に形成され、ドレイン領域35A1と接続するドレイン電極53とを形成する。ソース電極52およびドレイン電極53は、例えば高融点金属のW、Ta、Ti、Moまたはこれらの合金材料のいずれかを用いて形成され得る。ソース電極52およびドレイン電極53の厚さは、例えば200nm以上800nm以下である。
 次に、第3絶縁層23上に、第4絶縁層24を公知の方法で形成し、図1(a)に示したn型の駆動回路用TFT10A1が得られる。第4絶縁層24は、例えば感光性の有機絶縁膜材料から形成され得る。第4絶縁層24の厚さは、例えば1000nm以上3000nm以下である。
 次に、p型の駆動回路用TFT10Bの製造方法について説明する。なお、n型の駆動回路用TFT10A1と共通する構成要素については同じ符号を付し、説明の重複を避ける。
 絶縁基板11上に島状の結晶質半導体層30Bおよび島状の結晶質半導体層30B上に第2絶縁層22を形成する。その後、p型不純物p1を島状の結晶質半導体層30Bの全面にドーピングする。なお、p型不純物p1を島状の結晶質半導体層30Bにドーピングしなくてもよい場合もある。
 次に、図4(d)に示すように、少なくとも島状の結晶質半導体層30Bの全面を覆うようにフォトレジスト72を形成する。その後、p型不純物p2を島状の結晶質半導体層30A1のチャネル領域33A1となる領域にドーピングする。このとき、フォトレジスト72によりp型不純物p2は島状の結晶質半導体層30Bにドーピングされない。
 次に、フォトレジスト72を除去する。
 次に、図4(e)に示すように、第2絶縁層22上に第1電極(ゲート電極)51を公知の方法で形成する。不純物(例えばリン(P))n1を、第1電極51に対して自己整合的に島状の結晶質半導体層30Bにドーピングする。
 次に、図5(a)に示すように、島状の結晶質半導体層30Bを覆うようにフォトレジスト73を公知の方法で形成する。その後、n型不純物n2を島状の結晶質半導体層30A1にドーピングする。しかしながら、フォトレジスト73によりn型不純物n2は島状の結晶質半導体層30Bにドーピングされない。
 次に、フォトレジスト73を除去する。
 次に、図5(b)に示すように、p型不純物p3をドーピングして島状の結晶質半導体層30Bにソース領域34Bおよびドレイン領域35Bを形成する。ソース領域34Bおよびドレイン領域35Bは、ゲート電極51に対して自己整合的に形成される。島状の結晶質半導体層30Bに低濃度領域(LDD領域)は、形成されない。
 その後、上述したように、第3絶縁層23、第4絶縁層24、ソース電極52およびドレイン電極53を形成する。
 次に、n型の画素用TFT10Cの製造方法について説明する。なお、n型の駆動回路用TFT10A1と共通する構成要素については同じ符号を付し、説明の重複を避ける。
 絶縁基板11上に島状の結晶質半導体層30Cおよび島状の結晶質半導体層30C上に第2絶縁層22を形成する。その後、p型不純物p1を島状の結晶質半導体層30Cの全面にドーピングする。なお、p型不純物p1を島状の結晶質半導体層30Cにドーピングしなくてもよい場合もある。
 次に、図4(d)に示すように、p型不純物p2を島状の結晶質半導体層30Cの全面にドーピングする。
 次に、図4(e)に示すように、第2絶縁層22上に第1電極(ゲート電極)51を公知の方法で形成する。その後、第1電極51に対して自己整合的に、n型不純物(例えばリン(P))n1を島状の結晶質半導体層30Cにドーピングする。
 次に、図5(a)に示すように、第2低濃度領域(LDD領域)31Cおよび32Cとなる領域を覆うようにフォトレジスト75を公知の方法で形成する。その後、n型不純物n2を島状の結晶質半導体層30Cにドーピングする。その結果、島状の結晶質半導体層30Cに、ソース領域34Cおよびドレイン領域35Cが形成される。また、ソース領域34Cとチャネル領域33Cとの間に第2低濃度領域31Cが形成され、ドレイン領域35Cとチャネル領域33Cとの間に第1低濃度領域32Cが形成される。なお、n型不純物n2のドーピングは、第1電極(ゲート電極)51を形成する前に行ってもよい。第1低濃度領域31Cおよび32Cは、いずれか一方だけ形成されてもよい。第2低濃度領域(LDD領域)31Cおよび32Cは、n型不純物n1およびp型不純物p2のいずれも有する。
 次に、フォトレジスト75を除去する。
 次に、図5(b)に示すように、島状の結晶質半導体層30Cを覆うように公知の方法でフォトレジスト77’を形成する。その後、島状の結晶質半導体層30Bにソース領域34Bおよびドレイン領域35Bを形成するためにp型不純物p3をドーピングする。しかしながら、フォトレジスト77’により島状の結晶質半導体層30Cにp型不純物p3はドーピングされない。
 次に、フォトレジスト77’を除去する。
 次に、上述したように、第3絶縁層23、第4絶縁層24、ソース電極52およびドレイン電極53を形成する。
 次に、公知の方法で第4絶縁層24上に画素電極54を形成する。
 次に、図6を参照して、図1(a)に示したn型の駆動回路用TFT10A1、p型の駆動回路用TFT10Bおよびn型の画素用TFT10Cの他の製造方法について説明する。
 図6に記載の製造方法は、第2絶縁層(ゲート絶縁層)22を形成する前に、n型不純物n1、p型不純物p1およびp2を所望の島状の結晶質半導体層30A1、30B、30Cにドーピングする方法である。
 まず、上述したように、絶縁基板11上に第1絶縁層21、および島状の結晶質半導体層30A1、30B、30Cをそれぞれ形成する。
 次に、図6(a)に示すように、p型不純物p1を島状の結晶質半導体層30A1、30Bおよび30Cの全面にドーピングする。p型不純物p1をドーピングする条件は、例えば電圧13kVでドーズ量1×1012cm-2である。なお、p型不純物p1を島状の結晶質半導体層30A1、30Bおよび30Cにドーピングしなくてもよい場合もある。
 次に、図6(b)に示すように、島状の結晶質半導体層30Bの全面を覆うように公知の方法でフォトレジスト77を形成する。同時に、島状の結晶質半導体層30A1のチャネル領域33A1となる領域以外を覆うようにフォトレジスト78を公知の方法で形成する。その後、島状の結晶質半導体層30Cの全面および島状の結晶質半導体層30A1のチャネル領域33A1となる領域にp型不純物p2をドーピングする。p型不純物p2をドーピングする条件は、電圧13kVでドーズ量5×1011cm-2以上5×1012cm-2以下の範囲が好ましい。p型不純物p2をドーピングする条件は、例えば電圧13kVでドーズ量3×1012cm-2である。
 次に、フォトレジスト77および78を除去する。
 次に、図6(c)に示すように、島状の結晶質半導体層30Bの全面を覆うようにフォトレジスト79を形成する。同時に、島状の結晶質半導体層30A1のチャネル領域33A1および第1低濃度領域となる領域を覆うようにフォトレジスト80を形成する。さらに、島状の結晶質半導体層30Cのチャネル領域および第2低濃度領域となる領域を覆うようにフォトレジスト81を形成する。その後、島状の結晶質半導体層30A1のソース領域34A1およびドレイン領域35A1、並びに、結晶質半導体層30Cのソース領域およびドレイン領域となる領域にn型不純物n1をドーピングする。n型不純物n1のドーピング条件は、電圧20kVでドーズ量5×1013cm-2以上1×1015cm-2以下の範囲が好ましい。n型不純物n1のドーピング条件は、例えば電圧20kVでドーズ量2×1014cm-2である。
 その後フォトレジスト79、80および81を除去する。
 次に、図6(d)に示すように、公知の方法で第2絶縁層(ゲート絶縁層)22およびゲート電極51を形成する。その後、それぞれのゲート電極51に対して自己整合的にn型不純物n2を島状の結晶質半導体層30A1、結晶質半導体層30Bおよび結晶質半導体層30Cにドーピングする。その結果、島状の結晶質半導体層30A1に第1低濃度領域31A1および32A1、ならびにソース領域34A1およびドレイン領域35A1が形成される。同時に、島状の結晶質半導体層30Cに第2低濃度領域、ソース領域およびドレイン領域を形成する。n型不純物n2をドーピングする条件は、電圧80kVでドーズ量5×1012cm-2以上3×1013cm-2以下の範囲が好ましい。n型不純物n2のドーピング条件は、例えば電圧80kVでドーズ量1×1013cm-2である。その後、上述した方法で、図1(a)に示したn型の駆動回路用TFT10A1、p型の駆動回路用TFT10Bおよびn型の画素用TFT10Cを形成する。従って、n型の駆動回路用TFT10A1、p型の駆動回路用TFT10Bおよびn型の画素用TFT10Cを製造する方法は少なくとも2種類あり、以下に示すn型の駆動回路用TFT10A2~10A4の製造方法も同様に少なくとも2種類ある。
 次に、図1(b)に示したn型の駆動回路用TFT10A2について図7を参照しながら説明する。なお、同時に形成されるp型の駆動回路用TFT10Bおよびn型の画素用TFT10Cについての説明は省略する。
 上述した方法で、絶縁基板11上に島状の結晶質半導体層30A2、および島状の結晶質半導体層30A2上に第2絶縁層(ゲート絶縁層)22を形成する。その後、上述した方法で、p型不純物p1およびp2を島状の結晶質半導体層30A2にドーピングする。なお、p型不純物p1はドーピングしなくてもよい場合がある。
 次に、公知の方法で、第2絶縁層22上に第1電極(ゲート電極)51を形成する。次に、上述した方法で島状の結晶質半導体層30A2にチャネル領域33A2を形成する。このとき、第1電極51の長さは、チャネル領域33A2の長さより大きい。
 次に、図7(a)に示すように、第1電極51に対して自己整合的にn型不純物n1を島状の結晶質半導体層30A2にドーピングする。このとき、島状の結晶質半導体層30A2のチャネル領域33A2の形成に寄与するフォトレジスト(例えば図4(d)のフォトレジスト71に相当)と第1電極51とのアライメントずれ等によって生じた、p型不純物p2およびn型不純物n1がドーピングされない領域36A2および37A2が島状の結晶質半導体層30A2に形成される。領域36A2は、チャネル領域33A2と後述するソース領域34A2との間に形成される。領域37A2は、チャネル領域33A2と後述するドレイン領域35A2との間に形成される。領域36A2および37A2は、いずれか一方だけ形成される場合もある。また、領域36A2および37A2のp型不純物の濃度は、チャネル領域33A2が有するp型不純物の濃度より低い。n型不純物n1をドーピングする条件は、電圧80kVでドーズ量5×1012cm-2以上3×1013cm-2以下の範囲が好ましい。n型不純物n1のドーピング条件は、例えば電圧80kVでドーズ量1×1013cm-2である。なお、上述したようにn型不純物n1、p型不純物p1およびp2は、第2絶縁層(ゲート絶縁層)22を形成する前にドーピングされてもよい。
 次に、図7(b)に示すように、島状の結晶質半導体層30A2の第1低濃度領域31A2および32A2となる領域を覆うようにフォトレジスト82を形成する。その後、n型不純物n2を島状の結晶質半導体層30A2にドーピングして、第1低濃度領域31A2および32A2、ソース領域33A2ならびにドレイン領域35A2を形成する。第1低濃度領域31A2は、領域36A2とソース領域34A2との間に形成され、第1低濃度領域32A2は、領域37A2とドレイン領域35A2との間に形成される。第1低濃度領域31A2および32A2のn型不純物の濃度は、ソース領域34A2およびドレイン領域35A2のn型不純物の濃度より低い。第1低濃度領域31A2および32A2は、いずれか一方だけ形成されてもよい。n型不純物n2をドーピングする条件は、電圧45kVでドーズ量1×1014cm-2以上1×1016cm-2以下の範囲が好ましい。n型不純物n2をドーピングする条件は、例えば電圧45kVでドーズ量2×1015cm-2である。
 次に、フォトレジスト82を除去する。
 その後、上述した方法で、図1(b)に示したn型の駆動回路用TFT10A2を形成する。
 次に、図2(a)に示したn型の駆動回路用TFT10A3の製造方法を説明する。なお、同時に形成されるp型の駆動回路用TFT10Bおよびn型の画素用TFT10Cについての説明は省略する。
 上述した方法で、絶縁基板11上に島状の結晶質半導体層30A3、および島状の結晶質半導体層30A3上に第2絶縁層(ゲート絶縁層)22を形成する。その後、上述した方法で、p型不純物p1およびp2を島状の結晶質半導体層30A3にドーピングする。なお、p型不純物p1はドーピングしなくてもよい場合がある。
 次に、公知の方法で第2絶縁層22上に第1電極(ゲート電極)51を形成する。また、上述の方法で島状の結晶質半導体層30A3にチャネル領域33A3を形成する。このとき、ゲート電極51の長さは、チャネル領域33A3の長さより小さい。
 次に、図8(a)に示すように、第1電極51に対して自己整合的にn型不純物n1を島状の結晶質半導体層30A3にドーピングする。このとき、島状の結晶質半導体層30A3のチャネル領域33A3の形成に寄与するフォトレジスト(例えば図4(d)のフォトレジスト71に相当)とゲート電極51とのアライメントずれ等によって生じた領域に、n型不純物n1がドーピングされることにより、低濃度領域38A3および39A3が島状の結晶質半導体層30A3に形成される。低濃度領域38A3および39A3は、p型不純物p2とn型不純物n1のいずれも有する領域である。低濃度領域38A3は、チャネル領域33A3とソース領域34A3との間に形成され、低濃度領域39A3は、チャネル領域33A3とドレイン領域35A3との間に形成される。低濃度領域38A3および39A3は、いずれか一方だけ形成される場合もある。n型不純物n1をドーピングする条件は、電圧80kVでドーズ量5×1012cm-2以上3×1013cm-2以下の範囲が好ましい。n型不純物n1をドーピングする条件は、例えば電圧80kVでドーズ量1×1013cm-2である。なお、上述したようにn型不純物n1、p型不純物p1およびp2は、第2絶縁層(ゲート絶縁層)22を形成する前にドーピングされてもよい。
 次に、図8(b)に示すように、島状の結晶質半導体層30A3の第1低濃度領域31A3および32A3となる領域を覆うようにフォトレジスト83を形成する。その後、n型不純物n2を島状の結晶質半導体層30A3にドーピングして、第1低濃度領域31A3および32A3、ソース領域34A3ならびにドレイン領域35A3を形成する。第1低濃度領域31A3は、低濃度領域38A3とソース領域34A3との間に形成され、第1低濃度領域32A3は、低濃度領域39A3とドレイン領域35A3との間に形成される。第1低濃度領域31A3および32A3は、いずれか一方だけ形成されてもよい。n型不純物n2をドーピングする条件は、電圧45kVでドーズ量1×1014cm-2以上1×1016cm-2以下の範囲が好ましい。n型不純物n2をドーピングする条件は、例えば電圧45kVでドーズ量2×1015cm-2である。
 次に、フォトレジスト83を除去する。
 その後、上述した方法で、図2(a)に示したn型の駆動回路用TFT10A3を形成する。
 次に、図2(b)に示したn型の駆動回路用TFT10A4の製造方法を説明する。なお、同時に形成されるp型の駆動回路用TFT10Bおよびn型の画素用TFT10Cについての説明は省略する。
 上述した方法で、絶縁基板11上に島状の結晶質半導体層30A4、および島状の結晶質半導体層30A4上に第2絶縁層(ゲート絶縁層)22を形成する。その後、上述した方法で、p型不純物p1およびp2を島状の結晶質半導体層30A4にドーピングする。なお、p型不純物p1はドーピングしなくてもよい場合がある。
 次に、公知の方法で、第2絶縁層22上にゲート電極51を形成する。次に、上述した方法で島状の結晶質半導体層30A4にチャネル領域33A4を形成する。このとき、ゲート電極51の長さは、チャネル領域33A4の長さより大きく、ゲート電極51は、ソース領域34A4となる領域側に寄って形成される。あるいは、ゲート電極51は、ドレイン領域35A4となる領域側に寄って形成される場合もある。
 次に、図9(a)に示すように、ゲート電極51に対して自己整合的にn型不純物n1を島状の結晶質半導体層30A4にドーピングする。このとき、島状の結晶質半導体層30A4のチャネル領域33A4の形成に寄与するフォトレジスト(例えば図4(d)のフォトレジスト71に相当)とゲート電極51とのアライメントずれ等によって生じた領域に、n型不純物n1がドーピングされない領域36A4が形成され、n型不純物n1がドーピングされる領域に低濃度領域38A4が島状の結晶質半導体層30A4に形成される。領域36A4におけるp型不純物の濃度は、チャネル領域33A4におけるp型不純物の濃度より低い。低濃度領域38A4は、p型不純物p2およびn型不純物n1のいずれも有する領域である。領域36A4は、チャネル領域33A4とソース領域34A4との間に形成され、低濃度領域38A4は、チャネル領域33A4とドレイン領域35A4との間に形成される。また、領域36A4が、チャネル領域33A4とドレイン領域35A4との間に形成され、低濃度領域38A4が、チャネル領域33A4とソース領域34A4との間に形成される場合もある。n型不純物n1をドーピングする条件は、電圧80kVでドーズ量5×1012cm-2以上3×1013cm-2以下の範囲が好ましい。n型不純物n1をドーピングする条件は、例えば電圧80kVでドーズ量1×1013cm-2である。なお、上述したように、n型不純物n1、p型不純物p1およびp2は、第2絶縁層(ゲート絶縁層)22を形成する前にドーピングされてもよい。
 次に、図9(b)に示すように、島状の結晶質半導体層30A4の第1低濃度領域31A4および32A4となる領域を覆うようにフォトレジスト84を形成する。その後、n型不純物n2を島状の結晶質半導体層30A4にドーピングして、第1低濃度領域31A4および32A4、ソース領域34A4ならびにドレイン領域35A4を形成する。第1低濃度領域31A4は、領域36A4とソース領域34A4との間に形成され、第1低濃度領域32A4は、低濃度領域38A4とドレイン領域35A4との間に形成される。第1低濃度領域31A4および32A4は、いずれか一方だけ形成されてもよい。n型不純物n2をドーピングする条件は、電圧45kVでドーズ量1×1014cm-2以上1×1016cm-2以下の範囲が好ましい。n型不純物n2をドーピングする条件は、例えば電圧45kVでドーズ量2×1015cm-2である。
 次に、フォトレジスト84を除去する。
 その後、上述した方法で、図2(b)に示したn型の駆動回路用TFT10A4を形成する。
 このようにTFT基板100(100A~100D)を製造することにより、低濃度領域(LDD領域)を有するn型の駆動回路用TFT10A(TFT10A1~TFT10A4)およびn型の画素用TFT10Cが得られ、LDD領域を有しないp型の駆動回路用TFT10Bと伴にモノリシックに製造し得る。また、n型の駆動回路用TFT10Aの低濃度領域(LDD領域)31A1~31A4および32A1~32A4の抵抗とn型の画素用TFT10Cの低濃度領域(LDD領域)31Cおよび32Cの抵抗を異ならせ、製造工程およびフォトマスク数を増やすことなく各TFTを形成することができる。その結果、オフ電流を小さくしつつオン電流は大きいTFT10Aが得られ、オフ電流の小さいn型の画素用TFT10Cが得られる。p型の駆動回路用TFT10Bには低濃度領域(LDD領域)が形成されないので、オン電流が小さくならず、TFTの大きさを小さくし得る。
 本発明の適用範囲は極めて広く、TFTを備えた半導体装置、あるいは、そのような半導体装置を有するあらゆる分野の電子機器に適用することが可能である。例えば、本発明を実施して形成された回路や画素部はアクティブマトリクス型液晶表示装置や有機EL表示装置に用いることができる。このような表示装置は、例えば携帯電話や携帯ゲーム機の表示画面や、デジタルカメラのモニター等に利用され得る。従って、液晶表示装置や有機EL表示装置が組み込まれた電子機器全てに本発明を適用できる。
 10、10A、10A1~10A4、10B、10C  TFT
 11   絶縁基板
 21、22、23、24   絶縁層
 30A1~30A4、30B、30C   結晶質半導体層
 33A1~33A4、33B、33C   チャネル領域
 34A1~34A4、34B、34C   ソース領域
 35A1~35A4、35B、35C   ドレイン領域
 51   ゲート電極
 52   ソース電極
 53   ドレイン電極
 54   画素電極
 71、72、73、74、75、76、77、78、79、80、81、82、83、84   フォトレジスト
 100、100A、100B、100C、100D   TFT基板

Claims (13)

  1.  第1導電型の画素用薄膜トランジスタと、前記第1導電型の駆動回路用薄膜トランジスタと、前記第1導電型と異なる第2導電型の駆動回路用薄膜トランジスタとを有する半導体装置であって、
     前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とソース領域との間、および、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とドレイン領域との間の少なくとも一方に、第1低濃度領域を有し、
     前記画素用薄膜トランジスタのチャネル領域とソース領域との間、および、前記画素用薄膜トランジスタのチャネル領域とドレイン領域との間の少なくとも一方に、第2低濃度領域を有し、
     前記第1低濃度領域は、前記第1導電型の不純物を第1不純物濃度で有し、
     前記画素用薄膜トランジスタのチャネル領域、および、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域は、前記第2導電型の不純物を前記第1不純物濃度より低い第2不純物濃度で有し、
     前記第2低濃度領域は、前記第1導電型の不純物を前記第1不純物濃度で有し、かつ、前記第2導電型の不純物を前記第2不純物濃度で有する、半導体装置。
  2.  前記第1低濃度領域は、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とソース領域との間、および、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とドレイン領域との間のいずれにも形成されている、請求項1に記載の半導体装置。
  3.  前記第2低濃度領域は、前記画素用薄膜トランジスタのチャネル領域とソース領域との間、および、前記画素用薄膜トランジスタのチャネル領域とドレイン領域との間のいずれにも形成されている、請求項1または2に記載の半導体装置。
  4.  前記第1低濃度領域と前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域との間に形成された第3低濃度領域をさらに有し、
     前記第3低濃度領域は、前記第1導電型の不純物を前記第1不純物濃度で有し、かつ、前記第2導電型の不純物を前記第2不純物濃度で有する、請求項1から3のいずれかに記載の半導体装置。
  5.  前記第1低濃度領域と前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域との間に形成された第4領域をさらに有し、
     前記第4領域は、前記第2導電型の不純物を前記第2不純物濃度より低い第3不純物濃度で有する、請求項1から4のいずれかに記載の半導体装置。
  6.  前記第1導電型はn型であり、前記第2導電型はp型である、請求項1から5のいずれかに記載の半導体装置。
  7.  請求項1から6のいずれかに記載の半導体装置を有する表示装置。
  8.  第1導電型の画素用薄膜トランジスタと、前記第1導電型の駆動回路用薄膜トランジスタと、前記第1導電型と異なる第2導電型の駆動回路用薄膜トランジスタとを有する半導体装置の製造方法であって、
     前記第1導電型の不純物を第1不純物濃度でドーピングする工程aと、
     前記第2導電型の不純物を前記第1不純物濃度より低い第2不純物濃度でドーピングする工程bと、
     前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とソース領域との間、および、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とドレイン領域との間の少なくとも一方に、前記第1導電型の不純物を前記第1不純物濃度で含有する第1低濃度領域を形成する工程cと、
     前記画素用薄膜トランジスタのチャネル領域とソース領域との間、および、前記画素用薄膜トランジスタのチャネル領域とドレイン領域との間の少なくとも一方に、前記第1導電型の不純物を前記第1不純物濃度で有し、かつ、前記第2導電型の不純物を前記第2不純物濃度で含有する第2低濃度領域を形成する工程dとを包含する半導体装置の製造方法。
  9.  前記工程cは、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とソースとの間、および、前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域とドレイン領域との間のいずれにも前記第1低濃度領域を形成する工程c1を包含する、請求項8に記載の半導体装置の製造方法。
  10.  前記工程dは、前記画素用薄膜トランジスタのチャネル領域とソース領域との間、および、前記画素用薄膜トランジスタのチャネル領域とドレイン領域との間のいずれにも前記第2低濃度領域を形成する工程d1を包含する、請求項8または9に記載の半導体装置の製造方法。
  11.  前記工程aは、前記第1低濃度領域と前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域との間に、前記第1導電型の不純物を前記第1不純物濃度で有し、かつ、前記第2導電型の不純物を前記第2不純物濃度で有する第3低濃度領域を形成する工程a1を包含する、請求項8から10のいずれかに記載の半導体装置の製造方法。
  12.  前記工程aは、前記第1低濃度領域と前記第1導電型の駆動回路用薄膜トランジスタのチャネル領域との間に形成された、前記第2導電型の不純物を前記第2不純物濃度より低い第3不純物濃度で有する第4領域を形成する工程a2を包含する、請求項8から11のいずれかに記載の半導体装置の製造方法。
  13.  前記工程aは、n型不純物を前記第1不純物濃度でドーピングする工程a3を、
     前記工程bは、p型不純物を前記第1不純物濃度より低い前記第2不純物濃度でドーピングする工程b1を包含する、請求項8から12のいずれかに記載の半導体装置の製造方法。
PCT/JP2011/052091 2010-05-18 2011-02-02 半導体装置およびその製造方法 WO2011145362A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/698,356 US8754418B2 (en) 2010-05-18 2011-02-02 Semiconductor device, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-114796 2010-05-18
JP2010114796 2010-05-18

Publications (1)

Publication Number Publication Date
WO2011145362A1 true WO2011145362A1 (ja) 2011-11-24

Family

ID=44991480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052091 WO2011145362A1 (ja) 2010-05-18 2011-02-02 半導体装置およびその製造方法

Country Status (2)

Country Link
US (1) US8754418B2 (ja)
WO (1) WO2011145362A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876110B2 (en) * 2014-01-31 2018-01-23 Stmicroelectronics, Inc. High dose implantation for ultrathin semiconductor-on-insulator substrates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688972A (ja) * 1992-09-08 1994-03-29 Sony Corp 液晶表示装置
JP2001077373A (ja) * 1999-07-06 2001-03-23 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2002190597A (ja) * 2000-12-21 2002-07-05 Sharp Corp 薄膜トランジスタおよびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767602B2 (ja) 1994-12-27 2006-04-19 セイコーエプソン株式会社 液晶表示装置
JP3767613B2 (ja) 1994-12-27 2006-04-19 セイコーエプソン株式会社 液晶表示装置及びその製造方法、並びに電子機器
US6420758B1 (en) * 1998-11-17 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an impurity region overlapping a gate electrode
US7023021B2 (en) * 2000-02-22 2006-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688972A (ja) * 1992-09-08 1994-03-29 Sony Corp 液晶表示装置
JP2001077373A (ja) * 1999-07-06 2001-03-23 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2002190597A (ja) * 2000-12-21 2002-07-05 Sharp Corp 薄膜トランジスタおよびその製造方法

Also Published As

Publication number Publication date
US8754418B2 (en) 2014-06-17
US20130056766A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
US7592628B2 (en) Display with thin film transistor devices having different electrical characteristics in pixel and driving regions
US7326959B2 (en) Thin film transistor with common contact hole and fabrication method thereof
US20100271349A1 (en) Thin film transistor devices for oled displays and method for fabricating the same
US7985636B2 (en) Method for fabricating low temperature poly-silicon thin film transistor substrate
JP6503459B2 (ja) 半導体装置及びその製造方法
US20110220878A1 (en) Thin film transistor and method of manufacturing the same
US20090203160A1 (en) System for displaying images including thin film transistor device and method for fabricating the same
JP2006332400A (ja) 薄膜半導体装置およびその製造方法
US8158985B2 (en) Thin film transistor devices with different electrical characteristics and method for fabricating the same
US8174053B2 (en) Semiconductor device, production method thereof, and electronic device
US8278159B2 (en) Thin film transistor, method of fabricating the same, and a display device including the thin film transistor
US20130234144A1 (en) Display substrate and method of manufacturing the same
JP2005064477A (ja) ゲートとボディーが電気的に連結された薄膜トランジスタとその製造方法及びこれを備えたディスプレイ装置
CN101789434B (zh) 影像显示系统及其制造方法
US20090085039A1 (en) Image display system and fabrication method thereof
US20050112807A1 (en) Thin film transistor, method of fabricating the same and flat panel display using thin film transistor
JP5188106B2 (ja) 薄膜トランジスタデバイスを含む画像表示システムおよびその製造方法
KR101778223B1 (ko) 박막 트랜지스터 및 그 제조 방법
WO2011145362A1 (ja) 半導体装置およびその製造方法
WO2017110547A1 (ja) 半導体装置及びその製造方法
JP2011187500A (ja) 半導体装置およびその製造方法
US8030143B2 (en) Method of forming a display device by using separate masks in forming source and drain regions of MOS transistors
KR101087992B1 (ko) 피모스 다결정 실리콘 박막트랜지스터 제조방법
TWI229943B (en) Crystalline silicon TFT panel for LCD or OELD having an LDD region
JP2007173741A (ja) P型薄膜トランジスタ、n型薄膜トランジスタ及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13698356

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP