WO2011145134A1 - バックライトユニット及びそのバックライトユニットを用いた液晶表示装置 - Google Patents

バックライトユニット及びそのバックライトユニットを用いた液晶表示装置 Download PDF

Info

Publication number
WO2011145134A1
WO2011145134A1 PCT/JP2010/003307 JP2010003307W WO2011145134A1 WO 2011145134 A1 WO2011145134 A1 WO 2011145134A1 JP 2010003307 W JP2010003307 W JP 2010003307W WO 2011145134 A1 WO2011145134 A1 WO 2011145134A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
backlight unit
solid
liquid crystal
source elements
Prior art date
Application number
PCT/JP2010/003307
Other languages
English (en)
French (fr)
Inventor
春日宏行
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to CN201080066792.2A priority Critical patent/CN102893074B/zh
Priority to US13/698,177 priority patent/US9097934B2/en
Priority to PCT/JP2010/003307 priority patent/WO2011145134A1/ja
Publication of WO2011145134A1 publication Critical patent/WO2011145134A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means

Definitions

  • the present invention relates to a backlight unit for displaying a liquid crystal panel or the like and a liquid crystal display device using the backlight unit.
  • a backlight unit of a liquid crystal display device using a solid light source element for example, an LED element
  • a solid light source element for example, an LED element
  • a method called a mold and a method called a side lamp type (or side edge type) in which a light guide plate is provided on the back side of a liquid crystal panel and LED elements are arranged in a row in the thickness direction are known.
  • the direct-type backlight unit 1 shown in FIG. 9 includes an LED backlight array 2 in which a plurality of LEDs are arranged in the vertical and horizontal directions as a light source, and is fixed to the rear chassis 3 on the back side.
  • a reflector 4 is provided.
  • a brightness enhancement film (DBEF) 5 In the light emission direction of the LED, a brightness enhancement film (DBEF) 5, a prism film 6, and a diffusion film 7 are disposed in order in order to diffuse light emitted from the plurality of LEDs in the light traveling direction.
  • a drive circuit board 11 for driving the LEDs and the liquid crystal panel 10 is provided on the back side of the back chassis 3.
  • a liquid crystal panel 10 is disposed on the light emitting side of the diffusion film 7 in the backlight unit 1, and these constitute a liquid crystal display device 12.
  • the direct type backlight unit 1 has a configuration in which a large number of LEDs are arranged to face the entire back surface of the liquid crystal panel 10.
  • a direct type backlight unit there are inventions described in Patent Documents 1, 2, and 3, for example.
  • the drive circuit board 11, the rear chassis 3, the reflection are reflected from the back side, similarly to the direct type backlight unit 1 described above.
  • a plate 4, a brightness enhancement film (DBEF) 5, a prism film 6, and a diffusion film 7 are sequentially disposed.
  • DBEF brightness enhancement film
  • a light guide plate 15 is disposed between the reflector 4 and the brightness enhancement film 5, and an LED backlight array 16 in which LEDs are arranged in a line along the side surface in the thickness direction of the light guide plate 15 is provided. Yes.
  • the liquid crystal panel 10 is disposed further on the light emission side of the backlight unit 14.
  • the conventional direct-type backlight unit 1 has a configuration in which a large number of LEDs are arranged on the entire surface in the horizontal and vertical directions as the LED backlight array 2, so that the power consumption of these LEDs increases. There is a disadvantage of going against power saving. In addition, since the heat generated by a large number of LEDs cannot be efficiently radiated, the luminous efficiency of the LEDs is lowered, and from this point, there is a disadvantage that power saving cannot be achieved. Further, the side lamp type backlight unit 14 has a configuration in which the LEDs are arranged on the side surface in the thickness direction of the light guide plate 15, so that the side portion of the liquid crystal display device 12 is enlarged and enlarged.
  • an object of the present invention is to provide a backlight unit that can save power and can be miniaturized, and a liquid crystal display device using the backlight unit.
  • the backlight unit according to the present invention includes a plurality of solid state light source elements disposed as light sources, and an optical element disposed in front of the light emitting direction of the plurality of solid state light source elements to diffuse light emitted from the solid state light source elements.
  • a backlight unit including an element and a housing, wherein the plurality of solid state light source elements are arranged in an annular shape.
  • the light emitted from the solid light source elements arranged in an annular shape can be diffused throughout the optical element, so that it is compared with a conventional direct type backlight unit.
  • power can be saved by reducing the number of solid light source elements as light sources, and light emitted from the solid light source elements can be uniformly diffused.
  • the light source is not provided on the side surface as compared with the conventional sidelight type backlight unit, it is possible to prevent the backlight unit from being expanded in the side surface direction.
  • the plurality of solid state light source elements are preferably arranged in a heat radiation pattern having high thermal conductivity, and the heat radiation pattern is preferably connected to the housing.
  • heat generated from the solid-state light source element that emits light can be conducted to the heat radiation pattern, and heat can be conducted from the heat radiation pattern to the housing to dissipate to the outside air. Since the temperature is lowered and the light emission efficiency is improved, power can be saved.
  • a prism member provided facing the light emitting direction of the plurality of solid light source elements, and a substantially V-shaped recess provided between the plurality of solid light source elements and the prism member are provided.
  • the light emitted from the solid light source element may be diffused by the lens element and the prism member and emitted.
  • Light emitted from the solid light source element is diffused by passing through the lens element, and further diffused widely by the prism member, so that light with uniform luminance can be emitted.
  • the optical element includes a prism member provided with a substantially inverted V-shaped concave portion facing the light emission direction of the plurality of solid light source elements, and light emitted from the solid light source element is diffused by the prism member. You may make it radiate
  • the light emitted from the solid light source elements arranged in an annular shape is diffused and emitted by the prism member by being refracted or reflected, and the high luminance can be maintained while suppressing the decrease in luminance.
  • the plurality of solid light source elements may be arranged in a substantially rectangular ring shape, and the solid light source elements may be arranged in a central region of each side of the substantially rectangular shape at a sparser distance than the corner portion.
  • the solid light source elements arranged in a substantially rectangular annular shape are preferably smaller than the outer shape of the display element or the prism member.
  • the plurality of solid light source elements are arranged in a substantially rectangular annular shape, and the central region of each side of the solid light source elements arranged in the substantially rectangular shape includes a solid light source element having a relatively small light amount than the corner portion. Also good.
  • the solid light source elements arranged in a substantially rectangular annular shape are preferably smaller than the outer shape of the display element or the prism member.
  • the plurality of solid state light source elements may be arranged in a substantially circular or substantially elliptical ring shape. Even in this case, the light emitted from the solid light source elements arranged in a ring shape can be diffused throughout the optical element, so that the solid light source as a light source compared with the conventional direct type backlight unit Power consumption can be reduced by reducing the number of light source elements, and light emitted from the solid light source elements can be uniformly diffused. In addition, since the light source is not provided on the side surface as compared with the conventional sidelight type backlight unit, the backlight unit can be prevented from being expanded in the side surface direction.
  • the solid light source element is preferably an LED.
  • a liquid crystal display device includes any one of the backlight units described above, and a liquid crystal panel disposed in the light emission direction of the backlight unit.
  • the light emitted from the solid light source elements arranged in an annular shape can be diffused throughout the optical element, so that Compared with a type-type backlight unit, the number of solid-state light source elements used can be reduced and power can be saved.
  • the apparatus since the solid light source element is provided on the back side so as to face the optical element, the apparatus can be reduced in size without extending to the side as compared with the conventional sidelight type backlight unit, and the solid light source element The maximum optical path length from the display element to the display element can be set short, and it becomes easy to obtain luminance uniformity.
  • FIG. 1 It is a disassembled perspective view which shows typically the structure of the liquid crystal display device containing the backlight unit by 1st embodiment of this invention. It is principal part sectional drawing which shows the structure of the liquid crystal display device by 1st embodiment.
  • (A) is a top view which shows LED and a cooling pattern
  • (b) is an enlarged view of LED in (a). It is a fragmentary sectional view which shows the attachment structure to the board
  • FIG. 1 It is a schematic diagram which shows the positional relationship of a liquid crystal panel and the arrangement pattern of LED, and the optical path length from LED, (a) is based on 1st embodiment, (b) is based on the conventional side lamp type system. It is principal part sectional drawing which shows the structure of the liquid crystal display device by 2nd embodiment of this invention. The modification of the arrangement pattern to the board
  • the liquid crystal display device 20 includes a backlight unit 21 and a liquid crystal panel 22.
  • the backlight unit 21 is disposed by laminating a substrate 25 in which a plurality of LEDs 24 as light sources are arranged in a rectangular frame at predetermined intervals, and on the light emitting side of these LEDs 24.
  • the liquid crystal panel 22 includes a liquid crystal element and polarizing plates stacked before and after the liquid crystal element.
  • the substrate 25 in the backlight unit 21 is formed in, for example, a rectangular plate shape whose outer shape is smaller than that of the liquid crystal panel 22, and the rectangular frame-shaped LED cooling is performed along each side of the substrate 25.
  • the pattern 31 is fixed.
  • the LED 24 is fixed to the substrate 25 at a predetermined interval on the cooling pattern 31 by soldering or the like, and the cooling pattern 31 is made of a material such as a metal having high thermal conductivity such as copper foil in order to release the heat generated by the LED 24 that emits light. Is formed.
  • a terminal of the LED 24 fixed to the substrate 25 is inserted into a hole 31 a formed in the cooling pattern 31 in a non-contact manner and connected to an electrode 32 provided on the substrate 25.
  • each LED 24 is laminated with the cooling pattern 31 in a non-energized state and bonded to the substrate 25. 4 and 5, an LED drive circuit 34 having electrodes 32 and a drive circuit 35 for driving the liquid crystal panel 22 are fixed to the back surface of the substrate 25.
  • the LED cooling pattern 31 on the substrate 25 is formed wider than the LED 24.
  • the casing 26 and the reflection plate 27 are formed with rectangular windows 26a and 27a larger than the LEDs 24 arranged in an annular shape with an inner diameter smaller than that of the substrate 25 at the center.
  • the frame portions of the 26 window portions 26a are arranged so as to contact the LED cooling pattern 31 over the entire circumference.
  • the casing 26 is made of a material having high thermal conductivity such as aluminum. Therefore, the heat generated from the LED 24 can be transmitted from the LED cooling pattern 31 to the housing 26 and radiated into the air.
  • the reflecting plate 27 has a reflecting surface 27 b that faces the lens 28 on the opposite side to the bonding surface that contacts the casing 26.
  • the lens 28 shown in FIG. 2 has a rectangular shape that is larger than the substrate 25 and smaller than the prism plate 29 and the liquid crystal panel 22, for example.
  • a concave portion 37 having a substantially V-shaped cross section is formed on a surface 28 a facing the prism plate 29 of the lens 28 in a region facing each LED 24 provided on the substrate 25, and two inclined surfaces 37 a and 37 b of the concave portion 37 are formed.
  • the valley line formed by is preferably located offset from the center of the LED 24 toward the center of the lens 28.
  • the recessed part 37 may be continuously formed in the rectangular frame shape along the arrangement
  • a prism plate 29 constituting a prism member is formed by arranging a plurality of prisms 39 having a triangular section on a light incident surface 29a on the lens 28 side, extending in a certain direction, for example, a direction orthogonal to the paper surface, in parallel.
  • the exit surface 29b on the diffusion plate 30 side is, for example, a flat surface.
  • the light traveling toward the prism plate 29 is refracted by the inclined surfaces of the plurality of prisms 39 and transmitted through the prism plate 29.
  • incident light can be diffused so as to be uniform only in a direction orthogonal to the extending direction of the prisms 39.
  • the diffusion plate 30 can diffuse incident light at random because, for example, diffusion particles are dispersed and mixed at random.
  • a plurality of LEDs 24 as light sources are annularly arranged in a size smaller than the outer shape forming the rectangle of the liquid crystal panel 22.
  • the number of LEDs 24 is smaller than the LED light source of the conventional direct type backlight unit.
  • a plurality of LEDs 24 arranged in a rectangular shape are formed in a shape similar to that of the liquid crystal panel 22, the maximum light until the light emitted from the LEDs 24 reaches the farthest position (for example, a corner portion) of the liquid crystal panel 22.
  • the optical path length is a length La in a diagonal direction in plan view.
  • the external dimensions of the liquid crystal panel 22 and the light guide plate 15 are arranged in order to arrange the LEDs 24 on one side in the thickness direction of the light guide plate 15.
  • the maximum optical path length is a length Lb (> La) corresponding to the side adjacent to the side where the LED 24 is disposed. Therefore, in the backlight unit 21 according to the present embodiment, the maximum optical path length La can be made shorter than Lb, so that a decrease in light luminance can be reduced.
  • the liquid crystal display device 20 having the backlight unit 21 according to the present embodiment has the above-described configuration, and the operation thereof will be described next. 1 to 3, the light H emitted from the LEDs 24 arranged in a rectangular frame shape fixed to the substrate 25 on the LED cooling pattern 31 is emitted forward and enters from the incident surface 28 b of the lens 28. A part of the light H1 is refracted in the lens 28 and is emitted from the concave portion 37 having a substantially V-shaped cross section formed on the emission surface 28a.
  • a part of the light H2 and H3 is reflected by the inclined surfaces 37a and 37b of the concave portion 37 and proceeds to the outside and the inside of the lens 28, and a part of the light H2 traveling to the outside of the lens 28 is emitted from the lens 28. Proceed in the direction of the prism plate 29 arranged on the side or proceed to the reflection plate 27. Further, a part of the light H3 traveling inside the lens 28 also travels in the direction of the prism plate 29 disposed on the light emitting side of the lens 28. The light H2 traveling to the reflecting plate 27 is reflected by the reflecting surface 27a of the reflecting plate 27 and travels toward the prism plate 29.
  • these lights H1, H2, and H3 traveling to the prism plate 29 are incident from one inclined surface of the prism 39 arranged on the incident surface, refracted toward the central axis side of the backlight unit 21, and the direction of the diffusion plate 30 Proceed to In the prism plate 29, the incident light can be diffused so as to be substantially uniform only in the direction orthogonal to the extending direction of the plurality of prisms 39. Incident light cannot be diffused in the extending direction of the prism 39.
  • the incident light can be diffused randomly including the extending direction of the prism 39 by the diffused particles randomly dispersed and mixed. In this way, the light diffused almost uniformly over the entire liquid crystal panel 22 is incident on the entire liquid crystal panel 22 from the diffuser plate 30 and is transmitted therethrough, so that a liquid crystal image with substantially uniform brightness can be observed.
  • the LED 24 emits light by causing the LED 24 to emit light as described above, but the heat generated in the LED 24 is the heat that contacts the hole 26 a through the LED cooling pattern 31 provided on the substrate 25. It is transmitted to the housing 26 made of a material having high conductivity, and is radiated to the outside air through the housing 26. Therefore, the LED 24 can be quickly cooled.
  • the liquid crystal display device 20 including the backlight unit 21 the light emitted from the plurality of LEDs 24 arranged in a rectangular ring shape smaller than the liquid crystal panel 22 is used as the lens 28 and the prism plate 29.
  • the liquid crystal panel 22 can be diffused by being reflected or refracted by the diffusing plate 30, the number of LEDs 24 used can be reduced and power can be saved as compared with the conventional direct type liquid crystal display device. it can.
  • the substrate 25 in which the LEDs 24 are arranged in a ring shape as the light source is arranged on the back side of the liquid crystal display device 20, it is possible to prevent the side surfaces from being expanded as compared with the conventional side lamp type liquid crystal display device.
  • the maximum optical path length La from the LED 24 to the farthest corner of the liquid crystal panel 22 can be shortened as compared with the conventional side lamp type liquid crystal display device. High uniformity. Furthermore, the heat generated in the LED 24 can be transmitted to the housing 26 via the LED cooling pattern 31 having high thermal conductivity on the substrate 25 and can be dissipated into the air, so that the temperature of the LED 24 is lowered and the luminous efficiency of the LED 24 is reduced. As well as improving power consumption.
  • a liquid crystal display device provided with a backlight unit according to the second embodiment of the present invention will be described with reference to FIG. 7, but the same or similar parts and members as those in the first embodiment will be described using the same reference numerals. Is omitted.
  • the lens 28 is not provided in the backlight unit 42 of the liquid crystal display device 41 according to the second embodiment shown in FIG.
  • a prism plate 43 is provided on the light emission surface side of the LED 24 fixed to the substrate 25 via the LED cooling pattern 31.
  • the light incident surface 43a facing the LED 24 is substantially flat, and a concave portion 44 having an inverted V-shaped cross section is formed at a position facing the LED 24.
  • the concave portion 44 is formed by two inclined surfaces 44 a and 44 b so as to form an inverted V-shaped cross section, and the valley lines of the inclined surfaces 44 a and 44 b are arranged so as to be biased toward the center side of the prism plate 43 from the center of the LED 24. Yes.
  • the concave portion 44 that forms an inverted V-shaped cross section may be formed in a rectangular annular shape that is opposed to the plurality of LEDs 24, or may be divided for each LED 24.
  • a prism 45 having a triangular cross section is arranged on the exit surface 43b facing the entrance surface 43a of the prism plate 43.
  • the prism 45 extends in a direction perpendicular to the paper surface and is parallel to the direction parallel to the paper surface. It is formed in an array.
  • the light H emitted from the LED 24 enters the prism 43 by being refracted by one or the other inclined surfaces 44a and 44b of the concave portion 44 on the incident surface 43a of the prism 43, for example, and a part of the light is forward as it is.
  • the other part of the light travels laterally outward or inward and is refracted by one of the inclined surfaces of the plurality of prisms 45 on the exit surface 43b.
  • the light is diffused in the direction orthogonal to the extending direction of the prism 45 and emitted from the prism plate 43, and then diffused in the vertical and horizontal directions by the diffusion plate 30 to enter the liquid crystal panel 22. To do.
  • a part of the light is reflected by the incident surface 43 a of the prism plate 43 or the inclined surfaces 44 a and 44 b of the concave portion 44, re-reflected by the reflecting surface 27 a of the reflecting plate 27, and enters the prism plate 43.
  • the light emitted from the LED 24 is diffused throughout the liquid crystal panel 22 by being repeatedly refracted and reflected by the prism plate 43 and the reflection plate 27.
  • the same effect as the first embodiment can be exhibited, and since the lens 28 is not provided, there are few optical members to be transmitted, and the luminance is reduced. Can be suppressed.
  • the LEDs 24 on the substrate 25 are formed in, for example, a similar, substantially rectangular ring shape with respect to the outer shape of the liquid crystal panel 22, but the arrangement configuration of the LEDs 24 according to the present invention is as described above.
  • the configuration is not limited.
  • the plurality of LEDs 24 arranged on the substrate 25 are arranged in a rectangular shape, for example.
  • the plurality of LEDs 24 on each side have a configuration in which the arrangement interval is changed so that the arrangement interval is sparse at the center portion of the side and dense at the corner portion.
  • the light emitted from each LED 24 is refracted or reflected via the lens 28 and the prism plate 29 or the prism plate 43, the diffusion plate 30 and the like, and the amount of light is attenuated before reaching the liquid crystal panel 22. Brightness decreases.
  • the optical path length Lc from the LED 24 arranged in the rectangular shape to the four sides of the liquid crystal panel 22 is the optical path length Lc from the LED 24 in the corner portion to the corner portion of the liquid crystal panel 22.
  • the longest optical path length Ld from the LED 24 at the center of the side to the center of the side of the liquid crystal panel 22 is the shortest. Therefore, the intervals between the LEDs 24 arranged facing the center of the side of the liquid crystal panel 22 are sparsely arranged, and the intervals between the LEDs 24 arranged facing the corner portion of the liquid crystal panel 22 are arranged densely. Thus, a liquid crystal image having a more uniform luminance can be obtained over the entire liquid crystal panel 22.
  • the plurality of LEDs 24 arranged on the substrate 25 are arranged in a rectangular ring shape at equal intervals.
  • the LEDs 24a arranged at the center of each side are arranged such that the illuminance is smaller than that of the LEDs 24 arranged at the corners, or the illuminance is set to be smaller.
  • the luminance at the corner portion and the central side portion of the liquid crystal panel 22 is substantially the same. Therefore, a liquid crystal image with a more uniform luminance can be obtained over the entire liquid crystal panel 22 as in the first modification.
  • by reducing the light amount at the center of the side of the LED 24 from the corner portion it is possible to improve the uniformity of the luminance of the liquid crystal screen and to achieve the power saving effect.
  • the arrangement structure of the plurality of LEDs 24 on the substrate 25 is not limited to a rectangular ring shape.
  • the LEDs may be arranged in an elliptical shape, or may be an appropriate polygon such as a circle, hexagon, or octagon.
  • the backlight units 21 and 42 in the above-described embodiment, light is uniformly diffused by the prism plates 29 and 43 in which a plurality of prisms 39 and 45 are arranged in one direction and the diffusion plate 30.
  • the liquid crystal display devices 20 and 41 are configured so that the horizontal (horizontal) field of view is wider than the vertical (vertical) direction, the prisms 39 and 45 of the prism plates 29 and 43 are extended in the vertical direction. It is preferable to arrange them horizontally.
  • the backlight units 21 and 42 according to the present invention are not limited to the liquid crystal display devices 20 and 41 that transmit and display the liquid crystal panel 22, and can be used for other transmission type and reflection type display devices.
  • the present invention provides a backlight unit reduced in power consumption and miniaturized by using an LED as a light source of a backlight unit in a ring shape on the back surface of an optical element such as a prism member, and a liquid crystal display device using the backlight unit To do.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

バックライトユニット(21)は、光源として複数のLED(24)を基板(25)上に所定間隔で長方形の環状に配列し、複数のLED(24)から照射された光をレンズ(28)とプリズム板(29)と拡散板(30)を介して拡散させ、液晶パネル(22)に透過させる。レンズ(28)の入射面に略V字状の凹部(37)があり、更にプリズム板(29)の入射面には入射光を拡散するための断面三角形のプリズムが配列されている。LED(24)は熱伝導性の高いLED冷却パターン(31)に配設され、LED冷却パターン(31)は放熱用の筐体(26)に接触している。そのため、LEDの発熱はLED冷却パターン(31)から筐体(26)を伝導されて外気に放熱される。これにより、バックライトユニット(21)を省電力化すると共に小型化できる。

Description

バックライトユニット及びそのバックライトユニットを用いた液晶表示装置
本発明は、液晶パネル等を表示するためのバックライトユニット及びそのバックライトユニットを用いた液晶表示装置に関する。
従来、照明用の光源として固体光源素子(例えばLED素子)を用いた液晶表示装置のバックライトユニットは、液晶パネルの背面側に光学素子を介して光源として面全体に例えばLED素子を配列した直下型と呼ばれる方式と、液晶パネルの背面側に導光板を設けてその厚み方向に列状にLED素子を配列させたサイドランプ型(またはサイドエッジ型)と呼ばれる方式とが知られている。
例えば、図9に示す直下型方式のバックライトユニット1では、光源として複数のLEDが縦横方向に多数配列されてなるLEDバックライトアレー2が設けられ、その背面側に背面シャーシ3に固定された反射板4が設けられている。LEDの光出射方向には、光の進行方向に複数のLEDから出射される光を拡散する輝度上昇フィルム(DBEF)5、プリズムフィルム6、拡散フィルム7が順次配設されている。また、背面シャーシ3の背面側にはLEDと液晶パネル10を駆動させる駆動回路基板11が設けられている。
そして、バックライトユニット1における拡散フィルム7の更に光出射側には、液晶パネル10が配設されており、これらは液晶表示装置12を構成する。
直下型方式のバックライトユニット1は、多数のLEDを液晶パネル10の背面全体に対向して配列させる構成を備えている。
このような直下型方式のバックライトユニットを備えた先行技術として、例えば特許文献1、2,3に記載された発明がある。
また、図10に示す液晶表示装置12における、サイドランプ型方式のバックライトユニット14では、上述した直下型方式のバックライトユニット1と同様に、背面側から駆動回路基板11、背面シャーシ3、反射板4、輝度上昇フィルム(DBEF)5、プリズムフィルム6、拡散フィルム7が順次配設されている。また、反射板4と輝度上昇フィルム5の間には導光板15が配設され、導光板15の厚み方向の側面に沿ってLEDが一列に配列されてなるLEDバックライトアレー16が設けられている。
そして、バックライトユニット14の更に光出射側には、液晶パネル10が配設されている。
特開2007-96318号公報 特開2007-311561号公報 特開2008-41546号公報
しかしながら、従来の直下型方式のバックライトユニット1においては、LEDバックライトアレー2として横方向及び縦方向の全面に多数のLEDが配列された構成であるため、これらのLEDの消費電力が大きくなり省電力化に逆行するという欠点がある。また、多数のLEDで発生する熱を効率的に放熱できないのでLEDの発光効率が低くなり、この点からも省電力化できないという欠点がある。
また、サイドランプ型方式のバックライトユニット14では、導光板15の厚み方向の側面にLEDを配列した構成であるため、液晶表示装置12の側部が拡張して大型化するという欠点がある。
本発明は、上述した課題に鑑みて、省電力化すると共に小型化できるバックライトユニット及びこれを用いた液晶表示装置を提供することを目的とする。
本発明によるバックライトユニットは、光源として配設された複数の固体光源素子と、該複数の固体光源素子の光出射方向前方に配設されていて固体光源素子から照射された光を拡散させる光学素子と、筐体とを備えたバックライトユニットであって、複数の固体光源素子は環状に配設されていることを特徴とする。
 本発明によるバックライトユニットによれば、環状に配列された固体光源素子から発光された光を、光学素子を介して全体に拡散させることができるので、従来の直下型方式のバックライトユニットと比較して光源としての固体光源素子の数を減少させることで省電力化できると共に、固体光源素子からの出射光を均一に拡散できる。また、従来のサイドライト型のバックライトユニットと比較して側面に光源を設けていないので、バックライトユニットが側面方向に拡張されることを防止できる。
また、複数の固体光源素子は熱伝導性の高い放熱用パターンに配設され、この放熱用パターンは筐体に接続されていることが好ましい。
 本発明によるバックライトユニットによれば、発光する固体光源素子から発生する熱を放熱用パターンに伝導させ、この放熱用パターンから筐体に熱を伝導させて外気に放熱できるから、固体光源素子の温度が低下して発光効率が向上するため、省電力化できる。
また、光学素子として、複数の固体光源素子の光出射方向に対向して設けられたプリズム部材と、複数の固体光源素子とプリズム部材との間に設けられていて略V字形状の凹部を設けたレンズ素子とを備え、固体光源素子から出射する光はレンズ素子とプリズム部材とで拡散させられて出射するようにしてもよい。
固体光源素子から出射する光はレンズ素子を透過することで拡散させられ、更にプリズム部材によって広く拡散させられるから、均一な輝度の光を出射できる。
 また、光学素子として、複数の固体光源素子の光出射方向に対向して略逆V字形状の凹部を設けたプリズム部材が備えられ、固体光源素子から出射する光はプリズム部材で拡散させられて出射するようにしてもよい。
 環状に配列された固体光源素子から出射した光はプリズム部材で屈折や反射等して広く拡散させられて出射されることになり、輝度の低下を抑制して高輝度を維持できる。
また、複数の固体光源素子は略長方形の環状に配列され、略長方形における各辺の中央領域はコーナー部よりも疎の間隔で固体光源素子が配列されていてもよい。
この場合、略長方形の環状に配列された固体光源素子は表示素子やプリズム部材の外形形状より小さいことが好ましい。
あるいは、複数の固体光源素子は略長方形の環状に配列され、この略長方形に配列された固体光源素子における各辺の中央領域はコーナー部よりも比較的光量の小さい固体光源素子が含まれていてもよい。
この場合でも、略長方形の環状に配列された固体光源素子は表示素子やプリズム部材の外形形状より小さいことが好ましい。
さらに、複数の固体光源素子は略円形または略楕円形の環状に配列されていてもよい。
この場合でも、環状に配列された固体光源素子から発光された光を、光学素子を介して全体に拡散させることができるので、従来の直下型方式のバックライトユニットと比較して光源としての固体光源素子の数を減少させて省電力化できると共に、固体光源素子からの出射光を均一に拡散できる。また、従来のサイドライト型のバックライトユニットと比較して側面に光源を設けないから、バックライトユニットが側面方向に拡張されることを防止できる。
なお、固体光源素子はLEDであることが好ましい。
本発明による液晶表示装置は、上述したいずれかに記載されたバックライトユニットと、該バックライトユニットの光出射方向に配設された液晶パネルとを備えたことを特徴とする。
上述したように、本発明によるバックライトユニット及び液晶表示装置によれば、環状に配列させた固体光源素子から出射する光を、光学素子を介して全体に拡散させることができるため、従来の直下型方式のバックライトユニットと比較して、固体光源素子の使用数を減少させることができて省電力化できる。
また、固体光源素子を光学素子に対向させて背面側に設けたので、従来のサイドライト方式のバックライトユニットと比較して、装置が側面に拡張することがなく小型化でき、しかも固体光源素子から表示素子に至る最大光路長を短く設定できて輝度の均一性を得やすくなる。
本発明の第一実施形態によるバックライトユニットを含む液晶表示装置の構成を模式的に示す分解斜視図である。 第一実施形態による液晶表示装置の構成を示す要部断面図である。 (a)はLEDと冷却パターンを示す平面図、(b)は(a)におけるLEDの拡大図である。 LEDの基板への取り付け構造を示す部分断面図である。 LEDを装着した基板の背面を示す図である。 液晶パネルとLEDの配列パターンとの位置関係とLEDからの光路長を示す模式図であり、(a)は第一実施形態によるもの、(b)は従来のサイドランプ型方式によるものである。 本発明の第二実施形態による液晶表示装置の構成を示す要部断面図である。 LEDの基板への配列パターンの変形例を示すものであり、(a)は第一変形例、(b)は第二変形例、(c)は第三変形例を示す図である。 従来の直下型方式のバックライトユニットを備えた液晶表示装置の構成を模式的に示す分解図である。 従来のサイドランプ型方式のバックライトユニットを備えた液晶表示装置の構成を模式的に示す分解図である。
以下、本発明の実施形態について添付図面に基づいて説明する。
まず、本発明の第一実施形態によるバックライトユニットを含む液晶表示装置を図1乃至図6により説明する。
 図1に示すように、液晶表示装置20は、バックライトユニット21と液晶パネル22からなる。バックライトユニット21は、図1及び図2に示すように、光源としてのLED24を所定間隔で長方形枠状に複数配列させた基板25と、これらのLED24の光出射側に積層して配設された筐体26及び反射板27と、LED24から出射した光を拡散させるレンズ28と、拡散した光を更に拡散させるプリズム板29と、拡散板30とが順次配列して構成されている。
また、液晶パネル22は液晶素子とその前後に積層された偏光板とで構成されている。
 そして、バックライトユニット21における基板25は、図1及び図3に示すように、液晶パネル22より外形が小さい例えば長方形板状に形成され、基板25の各辺に沿って長方形枠形状のLED冷却パターン31が固定されている。冷却パターン31上には所定間隔でLED24が例えば半田付け等で基板25に固定され、冷却パターン31は発光するLED24の発熱を逃がすために例えば銅箔等の熱伝導率の高い金属等の素材で形成されている。
基板25に固定されたLED24の端子は冷却パターン31に形成された孔部31aに非接触で挿通して基板25に設けた電極32に接続されている。そのため、各LED24は冷却パターン31と非通電状態で積層されて基板25に接合されている。図4及び図5において、基板25の裏面には電極32を有するLED駆動回路34と液晶パネル22を駆動させるための駆動回路35が固定されている。
図3において、基板25のLED冷却パターン31はLED24より幅広に形成されている。そして、図4に示すように、筐体26及び反射板27は中央部に基板25より内径が小さく環状に配列されたLED24より大きい長方形状の窓部26a,27aが形成されており、筐体26の窓部26aの枠部が全周に亘ってLED冷却パターン31に当接するように配設されている。筐体26は例えばアルミニウム等の熱伝導率の高い素材で形成されている。
そのため、LED24から発生した熱をLED冷却パターン31から筐体26に伝達させて空気中に放熱することができる。
また、反射板27は筐体26に当接する接合面とは反対側のレンズ28に対向する面が反射面27bとされている。
そして、図2に示すレンズ28は、例えば基板25より寸法が大きく且つプリズム板29や液晶パネル22より小さい長方形状に形成されている。レンズ28のプリズム板29に対向する面28aには、基板25に設けた各LED24に対向する領域に断面略V字形状の凹部37が形成されており、凹部37の二つの傾斜面37a、37bで形成する谷線は好ましくはLED24の中心よりレンズ28の中心側に偏って位置している。なお、凹部37はLED24の配列に沿って長方形枠形状に連続して形成されていてもよく、或いは各LED24毎に分割して形成されていてもよい。
そのため、LED24から出射する光の多くは凹部37の外側の傾斜面37aに入射し、その一部の光は反射して、プリズム板29に向かうか反射板27の反射面27aで反射してプリズム板29に向かうことになり、残りの一部の光は傾斜面37aで屈折して透過する。また、LED24から出射する光の一部は凹部37の内側の傾斜面37bで反射するか屈折して透過する。
また、図2において、プリズム部材をなすプリズム板29はレンズ28側の入射面29aに断面三角形のプリズム39が一定方向、例えば紙面に直交する方向に延在して、平行に複数配列されて形成されており、拡散板30側の出射面29bは例えば平面とされている。そして、プリズム板29に向かう光は複数のプリズム39の傾斜面で屈折してプリズム板29を透過するように形成されている。
プリズム板29では、プリズム39が一方向に配列された構成であるために、入射する光をプリズム39の延在方向に直交する方向でのみ均一になるよう拡散できる。拡散板30は、例えば拡散粒子がランダムに分散混入されているから、入射する光をランダムに拡散させることができる。
 本実施形態によるバックライトユニット21は、図6(a)に示すように、光源としての複数のLED24が液晶パネル22の長方形をなす外形形状よりも小さい寸法に環状に配列形成されているから、従来の直下型方式のバックライトユニットのLED光源よりLED24の数が少ない。また、長方形状に配列された複数のLED24を液晶パネル22と相似的に小さい形状に形成すれば、LED24から出射する光が液晶パネル22の最も遠い位置(例えばコーナー部)に到達するまでの最大光路長は平面視で対角方向に長さLaになる。
 一方、図6(b)に示す従来のサイドランプ型方式のバックライトユニットでは、導光板15の厚み方向の一側面にLED24を一列に配列するために、液晶パネル22と導光板15の外形寸法を同一として、最大光路長はLED24を配設した辺に隣接する辺に相当する長さLb(>La)となる。
そのため、本実施形態によるバックライトユニット21では、最大光路長LaをLbより短くできるから光の輝度の低下を低減できる。
 本実施形態によるバックライトユニット21を有する液晶表示装置20は上述の構成を備えており、次にその作用を説明する。
 図1乃至図3において、LED冷却パターン31上で基板25に固定された長方形枠形状に配列されたLED24から出射された光Hは、前方に放射されてレンズ28の入射面28bから入射する。そして、一部の光H1はレンズ28内で屈折して出射面28aに形成された断面略V字形状の凹部37から出射する。
また、一部の光H2、H3は凹部37の傾斜面37a、37bで反射させられてレンズ28の外側と内側に進み、レンズ28の外側に進行する光H2の一部はレンズ28の光出射側に配設されたプリズム板29方向に進むか、反射板27に進む。また、レンズ28の内側に進行する光H3の一部もレンズ28の光出射側に配設されたプリズム板29方向に進む。反射板27に進む光H2は反射板27の反射面27aで反射させられてプリズム板29方向に進む。
そして、プリズム板29に進行するこれらの光H1、H2、H3は入射面に配列されたプリズム39の一方の傾斜面から入射してバックライトユニット21の中心軸側に屈折して拡散板30方向に進む。
プリズム板29では、入射する光を複数のプリズム39の延在方向に直交する方向についてのみほぼ均一になるよう拡散できる。プリズム39の延在方向については入射光の拡散はできない。
そして、プリズム板29で拡散された光が拡散板30に入射すると、ランダムに分散混入された拡散粒子により、入射光がプリズム39の延在方向を含めてランダムに拡散させることができる。このようにして、液晶パネル22全体にほぼ均一に拡散された光が拡散板30から液晶パネル22全体に入射して透過することでほぼ均一な輝度の液晶画像を観察できる。
また、図2乃至図4において、上述のようにLED24を発光させることでLED24は発熱するが、LED24で発生した熱は基板25に設けたLED冷却パターン31を介して孔部26aで接触する熱伝導率の高い素材からなる筐体26に伝達され、筐体26を介して外気中に放熱される。そのため、LED24は速やかに冷却できる。
上述のように、本実施形態によるバックライトユニット21を備えた液晶表示装置20によれば、液晶パネル22より小さい長方形の環状に配列された複数のLED24から出た光をレンズ28およびプリズム板29及び拡散板30によって反射または屈折させることで液晶パネル22全体に拡散させることができるので、従来の直下型方式の液晶表示装置と比較して、LED24の使用数を減らすことができて省電力化できる。
 しかも、光源としてLED24を環状に配列した基板25を液晶表示装置20の背面側に配置したから、従来のサイドランプ方式の液晶表示装置と比較して、側面が拡張されることを防止できる。図6に示すように、LED24から液晶パネル22の最も遠い位置になるコーナー部までの最大光路長Laを、従来のサイドランプ方式の液晶表示装置と比較して短くできるので、液晶画面の輝度の均一性が高い。
 更に、LED24で発生した熱を基板25上の熱伝導性の高いLED冷却パターン31を介して筐体26に伝達し、空気中に放熱することができるので、LED24の温度が下がりLED24の発光効率を向上させると共に省電力化できる。
 次に本発明の第二実施形態によるバックライトユニットを備えた液晶表示装置について図7により説明するが、上述の第一実施形態と同一または同様な部分、部材には同一の符号を用いて説明を省略する。
 図7に示す第二実施形態による液晶表示装置41のバックライトユニット42において、上述の第一実施形態と相違してレンズ28は設けられていない。そして、LED冷却パターン31を介して基板25に固定されたLED24の光出射面側にプリズム板43が設けられている。
プリズム板43はLED24に対向する光の入射面43aが略平面とされ、しかもLED24に対向する位置には断面逆V字形状の凹部44が形成されている。凹部44は断面逆V字を形成するように二つの傾斜面44a、44bで形成され、しかも傾斜面44a、44bの谷線はLED24の中心よりプリズム板43の中心側に偏って配設されている。断面逆V字を形成する凹部44は複数のLED24に対向して連続する長方形環状に形成されていてもよいし、各LED24毎に分割して形成されていてもよい。
 また、プリズム板43の入射面43aに対向する出射面43bには例えば断面三角形をなすプリズム45が配列され、プリズム45は紙面に直交する方向に延在すると共に紙面に平行な方向に平行に複数配列して形成されている。
 そのため、LED24から射出された光Hは例えばプリズム43の入射面43aにおける凹部44の一方または他方の傾斜面44a、44bで屈折する等してプリズム43内に侵入し、一部の光はそのまま前方に進み、他の一部の光は横方向外側または内側に進んで、射出面43bの複数のプリズム45のいずれかの斜面で屈折させられる。
そして、光がプリズム45の延在方向に直交する方向に拡散させられてプリズム板43から出射した後、拡散板30で拡散作用を受けて縦及び横方向に拡散させられて液晶パネル22へ入射する。また、一部の光はプリズム板43の入射面43aまたは凹部44の傾斜面44a、44bで反射し、反射板27の反射面27aで再反射させられてプリズム板43に入射することになる。
そのため、結果として、LED24から射出した光は、プリズム板43と反射板27で屈折や反射を繰り返すことによって、液晶パネル22全体に拡散される。
 上述のように、本第二実施形態によるバックライトユニット42においても、第一実施形態と同様な作用効果を発揮でき、しかもレンズ28が設けられていないため、透過する光学部材が少なく輝度の低下を抑制できる。
 次に、上述した本発明の各実施形態によるバックライトユニット21、42において、基板25上におけるLED24の環状の配置構成の変形例について図8により説明する。
 上述の各実施形態においては、液晶パネル22の外形形状に対して、基板25上のLED24は例えば相似的に小さい略長方形の環状に形成されているが、本発明によるLED24の配列構成は上述の構成に限定されるものではない。
例えば、図8(a)に示す第一変形例では、基板25上に配列した複数のLED24は例えば長方形状に配列されている。そして、各辺における複数のLED24は辺の中央部で配列間隔が疎となり、コーナー部では密となるように配列間隔を変化させた構成を備えている。
ここで、各LED24から発光する光は、レンズ28及びプリズム板29またはプリズム板43,拡散板30等を経由して屈折したり反射したりして液晶パネル22に到達するまでに光量が減衰して輝度が低下する。
そのため、複数のLED24を長方形状に配列させた場合、長方形状配列されたLED24から液晶パネル22の四辺までの光路長は、コーナー部のLED24から液晶パネル22のコーナー部までの光路長Lcが最も長く、辺の中央部のLED24から液晶パネル22の辺の中央部までの光路長Ldが最も短い。そのため、液晶パネル22の辺の中央部に対向して配置されているLED24の間隔を疎に配列し、液晶パネル22のコーナー部に対向して配置されているLED24の間隔を密に配列することで、液晶パネル22全体でより均一な輝度の液晶画像が得られる。
次に、図8(b)に示す第二変形例では、基板25上に配列された複数のLED24は等間隔で長方形状の環状に配列されている。各辺の中央部に配列されているLED24aは、コーナー部に配置されたLED24よりも照度の小さいもの、或いは照度を小さく調整して設定したものが配列されている。
この構成により、コーナー部に配列されたLED24の照度より辺の中央部に配列されたLED24aの照度が小さいために、液晶パネル22のコーナー部と辺中央部とで輝度がほぼ同一になる。よって、第一変形例と同様に液晶パネル22全体でより均一な輝度の液晶画像が得られる。
これら第一及び第二変形例によっても、LED24の辺中央部の光量をコーナー部より低下させることで、液晶画面の輝度の均一性を向上できると共に省電力化の効果が得られる。
また、基板25上の複数のLED24の配列構造は長方形状の環状に限定されるものではない。例えば図8(c)に示すように、楕円形にLEDを配列してもよく、或いは、円形、六角形や八角形等の適宜の多角形でもよい。また、LED24による適宜の環状枠内でランダムにLED24を分散して配列させた構成等を採用してもよい。
さらに、バックライトユニット21、42の配列構成として、上述の実施形態では一方向に複数のプリズム39、45を配列させたプリズム板29、43と拡散板30とで光を均一に拡散させるように構成したが、液晶表示装置20,41について横方向(水平方向)の視野を縦方向(垂直方向)より広く形成するためには、プリズム板29、43のプリズム39、45を垂直方向に延在させて水平方向に配列させることが好ましい。
また、本発明によるバックライトユニット21,42は液晶パネル22を透過表示する液晶表示装置20,41に限定されることなく、その他の透過型や反射型の表示装置に採用できる。
以上、本発明の好ましい実施形態と変形例等を説明したが、本発明は上述の実施形態や変形例等に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
本発明は、LEDをバックライトユニットの光源としてプリズム部材等の光学素子の背面に環状に配設したことで、省電力化すると共に小型化したバックライトユニット及びこれを用いた液晶表示装置を提供する。
20、41 液晶表示装置
21、42 バックライトユニット
22 液晶パネル
24 LED
25 基板
26 筐体
27 反射板
28 レンズ
29、43 プリズム板
30 拡散板
31 LED冷却パターン
37、44 凹部
37a、37b、44a、44b 傾斜面
39、45 プリズム

Claims (9)

  1.  光源として配設された複数の固体光源素子と、該複数の固体光源素子の光出射方向前方に配設されていて照射された光を拡散させる光学素子と、筐体と、を備えたバックライトユニットであって、
    前記複数の固体光源素子は環状に配設されていることを特徴とするバックライトユニット。
  2.  前記複数の固体光源素子は放熱用パターンに配設され、該放熱用パターンは前記筐体に接続されている請求項1に記載されたバックライトユニット。
  3. 前記光学素子として、前記複数の固体光源素子の光出射方向に対向して設けられたプリズム部材と、前記複数の固体光源素子とプリズム部材との間に設けられていて略V字形状の凹部を設けたレンズ素子とを備え、
    前記固体光源素子から出射する光は前記レンズ素子とプリズム部材とで拡散させられて出射するようにした請求項1または2に記載されたバックライトユニット。
  4.  前記光学素子として、前記複数の固体光源素子の光出射方向に対向して略逆V字形状の凹部を設けたプリズム部材が備えられ、前記固体光源素子から出射する光は前記プリズム部材で拡散させられて出射するようにした請求項1または2に記載されたバックライトユニット。
  5. 前記複数の固体光源素子は略長方形の環状に配列され、該略長方形における各辺の中央領域はコーナー部よりも疎の間隔で固体光源素子が配列されている請求項1乃至4のいずれか1項に記載されたバックライトユニット。
  6. 前記複数の固体光源素子は略長方形の環状に配列され、該略長方形に配列された固体光源素子における各辺の中央領域はコーナー部よりも比較的光量の小さい固体光源素子が含まれている請求項1乃至4のいずれか1項に記載されたバックライトユニット。
  7. 前記複数の固体光源素子は略円形または略楕円形の環状に配列されていることを特徴とする請求項1乃至4のいずれか1項に記載されたバックライトユニット。
  8.  前記固体光源素子はLEDである請求項1乃至7のいずれか1項に記載されたバックライトユニット。
  9. 請求項1乃至8のいずれか1項に記載された前記バックライトユニットと、該バックライトユニットの光出射方向に配設された液晶パネルとを備えた液晶表示装置。
PCT/JP2010/003307 2010-05-17 2010-05-17 バックライトユニット及びそのバックライトユニットを用いた液晶表示装置 WO2011145134A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080066792.2A CN102893074B (zh) 2010-05-17 2010-05-17 背光模组以及使用该背光模组的液晶显示装置
US13/698,177 US9097934B2 (en) 2010-05-17 2010-05-17 Backlight unit and liquid crystal display device using said backlight unit
PCT/JP2010/003307 WO2011145134A1 (ja) 2010-05-17 2010-05-17 バックライトユニット及びそのバックライトユニットを用いた液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003307 WO2011145134A1 (ja) 2010-05-17 2010-05-17 バックライトユニット及びそのバックライトユニットを用いた液晶表示装置

Publications (1)

Publication Number Publication Date
WO2011145134A1 true WO2011145134A1 (ja) 2011-11-24

Family

ID=44991264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003307 WO2011145134A1 (ja) 2010-05-17 2010-05-17 バックライトユニット及びそのバックライトユニットを用いた液晶表示装置

Country Status (3)

Country Link
US (1) US9097934B2 (ja)
CN (1) CN102893074B (ja)
WO (1) WO2011145134A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047678A (zh) * 2022-06-30 2022-09-13 厦门天马微电子有限公司 一种背光模组及显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102301713B1 (ko) * 2015-01-23 2021-09-13 미래나노텍(주) 백라이트 유닛을 위한 광학 시트 및 그 제조 방법
US10585308B2 (en) * 2016-09-12 2020-03-10 Citizen Watch Co., Ltd. Light-emitting device
JPWO2018055919A1 (ja) * 2016-09-23 2019-07-04 ソニーセミコンダクタソリューションズ株式会社 表示装置、投射型表示装置および電子機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311561A (ja) * 2006-05-18 2007-11-29 Showa Denko Kk 表示装置、発光装置、および固体発光素子基板
JP2010056061A (ja) * 2008-08-27 2010-03-11 Lg Display Co Ltd バックライトユニット及びこれを用いた液晶表示装置
JP4461197B1 (ja) * 2009-04-27 2010-05-12 株式会社東芝 面状照明装置およびこれを備えた液晶表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW594115B (en) * 1992-10-09 2004-06-21 Asahi Glass Co Ltd A liquid crystal display device and an illumination device for a direct viewing type display element
JP2001221975A (ja) * 2000-02-10 2001-08-17 Fujitsu Ltd 光学装置
US7320531B2 (en) * 2003-03-28 2008-01-22 Philips Lumileds Lighting Company, Llc Multi-colored LED array with improved brightness profile and color uniformity
US20060087866A1 (en) * 2004-10-22 2006-04-27 Ng Kee Y LED backlight
EP1768197A3 (en) 2005-09-27 2012-11-21 LG Electronics Inc. Light emitting diode package and backlight unit using the same
JP4533352B2 (ja) 2006-08-09 2010-09-01 昭和電工株式会社 発光装置、表示装置、およびカバー取付部材
US7667378B2 (en) * 2006-11-14 2010-02-23 Epson Imaging Devices Corporation Illuminating device, electro-optic device, and electronic apparatus
KR100851146B1 (ko) * 2007-02-05 2008-08-08 엘지이노텍 주식회사 면 광원 장치 및 이를 이용한 디스플레이 장치
TWI358000B (en) * 2008-09-15 2012-02-11 Au Optronics Corp Display device with low scratch visibility and man
CN201434226Y (zh) * 2009-04-29 2010-03-31 苏州世鼎电子有限公司 具散热结构的发光二极管灯具
KR101352276B1 (ko) * 2009-07-24 2014-01-16 엘지디스플레이 주식회사 발광다이오드의 방열장치와 이를 이용한 액정표시장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311561A (ja) * 2006-05-18 2007-11-29 Showa Denko Kk 表示装置、発光装置、および固体発光素子基板
JP2010056061A (ja) * 2008-08-27 2010-03-11 Lg Display Co Ltd バックライトユニット及びこれを用いた液晶表示装置
JP4461197B1 (ja) * 2009-04-27 2010-05-12 株式会社東芝 面状照明装置およびこれを備えた液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047678A (zh) * 2022-06-30 2022-09-13 厦门天马微电子有限公司 一种背光模组及显示装置
CN115047678B (zh) * 2022-06-30 2024-01-16 厦门天马微电子有限公司 一种背光模组及显示装置

Also Published As

Publication number Publication date
US20130128188A1 (en) 2013-05-23
US9097934B2 (en) 2015-08-04
CN102893074B (zh) 2015-06-24
CN102893074A (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
JP4430585B2 (ja) 面光源装置
US8342729B2 (en) Backlight module
JP2006286638A (ja) 複数の隣り合って重なり合う導光板を有する発光装置
JP2006156324A (ja) バックライトユニット及びそれを備えた液晶表示装置
JP2010067439A (ja) 面発光装置および表示装置
JP2013026422A (ja) 発光装置および表示装置
JP2004342587A (ja) バックライトおよびそれを用いた液晶表示装置
JP2005026202A (ja) バックライトモジュール
JP2010009785A (ja) 中空式面照明装置
JP2006302581A (ja) 発光ユニットの放熱装置、バックライト装置及び画像表示装置
KR20180125953A (ko) 발광 장치, 표시 장치 및 조명 장치
WO2015012135A1 (ja) 照明装置及び液晶表示装置
TW201426129A (zh) 液晶顯示裝置
WO2011145134A1 (ja) バックライトユニット及びそのバックライトユニットを用いた液晶表示装置
JP5849192B2 (ja) 面光源および液晶ディスプレイ装置
JP2007173133A (ja) 光源ユニット及び面発光装置
JP2011040664A (ja) 面光源および液晶ディスプレイ装置
JP5098778B2 (ja) 照明装置、液晶表示装置及び電子機器
WO2013015000A1 (ja) 発光装置および表示装置
JP2010097783A (ja) 面状光源及び液晶表示装置
WO2013088594A1 (ja) バックライト装置および液晶表示装置
US8915637B2 (en) Light source module
JP2008216406A5 (ja)
US20130027288A1 (en) Led backlight and liquid crystal display device
US20120262633A1 (en) Lighting device, display device and television receiver

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066792.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13698177

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2013)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10851700

Country of ref document: EP

Kind code of ref document: A1